

1 **The genetic basis of the black pupae phenotype in tephritid fruit flies**
2

3 Daniel F. Paulo^{1,2,†}, Thu N.M. Nguyen^{3,†}, Chris M. Ward⁴, Renee L. Corpuz², Angela N.
4 Kauwe², Pedro Rendon⁵, Rocio E.Y. Ruano⁶, Amanda A.S. Cardoso⁷, Georgia Gouvi⁷,
5 Elisabeth Fung^{8,9}, Peter Crisp^{8,9}, Anzu Okada⁴, Amanda Choo⁴, Christian Stauffer¹⁰,
6 Kostas Bourtzis⁷, Sheina B. Sim², Simon W. Baxter^{3,*}, and Scott M. Geib^{2,*}

7

8 1. Department of Plant and Environmental Protection Sciences, University of Hawai'i
9 at Mānoa, Honolulu, USA.
10 2. U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye
11 U.S. Pacific Basin Agricultural Research Center, Hilo, USA.
12 3. School of BioSciences, The University of Melbourne, Melbourne, Australia.
13 4. School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
14 5. International Atomic Energy Agency, Technical Cooperation, Division for Latin
15 America and the Caribbean, MOSCAMED Program, Guatemala City, Guatemala.
16 6. MOSCAMED Program, Guatemala City, Guatemala.
17 7. Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications,
18 Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture,
19 Seibersdorf, Austria.
20 8. School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia.
21 9. South Australian Research and Development Institute, Urrbrae, Australia.
22 10. Department of Forest and Soil Sciences, Boku University, Vienna, Austria.

23

24 † These authors contributed equally: Daniel Paulo and Thu Nguyen
25 * Correspondence: simon.baxter@unimelb.edu.au; scott.geib@usda.gov

27 **Abstract**

28

29 The remarkable diversity of insect pigmentation offers a captivating avenue for exploring
30 evolution and genetics. In tephritid fruit flies, decoding the molecular pathways underlying
31 pigmentation traits also plays a central role in applied entomology. Mutant phenotypes
32 like the black pupae (bp) have long been used as a component of genetic sexing strains,
33 allowing male-only release in tephritid sterile insect technique applications. However, the
34 genetic basis of bp remains largely unknown. Here, we present independent evidence
35 from classical and modern genetics showing that the bp phenotype in the GUA10 strain
36 of the Mexican fruit fly, *Anastrepha ludens*, is caused by a large deletion at the *ebony*
37 locus resulting in the removal of the entire protein-coding region of the gene. Targeted
38 knockout of *ebony* induced analogous bp phenotypes across six tephritid species
39 spanning over 50 million years of divergent evolution. This functionally validated our
40 findings and allowed for a deeper investigation into the role of Ebony in pigmentation and
41 development in these species. Our study offers fundamental knowledge for developing
42 new sexing strains based on the bp marker and for future evolutionary developmental
43 biology studies in tephritid fruit flies.

44

45

46 **Keywords:** Tephritidae, Ebony, black pupae phenotype, association mapping, whole
47 genome sequencing, CRISPR

48

49

50 **Introduction**

51
52 The color palette and patterns displayed by insects are perhaps the most striking
53 evidence of their extraordinary diversity. Insect pigmentation has long fascinated
54 biologists, leading to insights into their evolution, ecology, development, genetics, and
55 physiology¹⁻³. A deep understanding of molecular mechanisms underlying pigmentation
56 pathways in insects has not only implications in evolutionary and developmental biology
57 but also provides fertile grounds for the development of genetic-based methods in applied
58 entomology. A textbook example of how mutations affecting pigmentation traits can be
59 implemented in insect pest management comes from genetic studies in tephritid fruit flies.
60

61 With nearly 5,000 recognized species, the family Tephritidae (true fruit flies) is one of the
62 largest groups within Diptera. In addition to its remarkable diversity and intriguing life-
63 history traits, the family is renowned for accommodating some of the most invasive
64 insects worldwide^{4,5}. Owing to their generalist herbivorous (polyphagous) habits, a few
65 species have become major horticultural and agricultural pests^{6,7}. Females of these
66 species lay their eggs inside a wide range of fruits and vegetables, where hatching larvae
67 will feed to complete their development, resulting in significant consequences on
68 commodity production and trade. These characteristics ensure tephritids a position in
69 food security, sustainable agriculture, and conservation biology debates. The sterile
70 insect technique (SIT), as a component of area-wide integrated pest management (AW-
71 IPM) approaches, is among the most effective and environment-friendly tactics for
72 controlling tephritid pests⁸. The technique relies on the continuous mass-release of
73 irradiation-sterilized males into target areas to mate with wild females, leading to the
74 production of infertile embryos and suppression of pest populations⁹. A key determinant
75 to the success of SIT in tephritids has been the linkage of selectable traits to the male sex
76 in genetic sexing strains (GSS). Puparium color based GSS have been developed in
77 several fruit flies using the naturally occurring mutations *white pupae* (*wp*)¹⁰⁻¹² and *black*
78 *pupae* (*bp*)¹³⁻¹⁵. In these strains, females are homozygous for recessive mutations
79 causing an atypical white or black puparium pigmentation, while males display the typical
80 brown puparium color due to a chromosomal translocation of the wildtype rescue allele
81 onto the male Y-chromosome, resulting in a consistent heterozygous state. This sex-
82 linked color dimorphism allows female removal before releases, ensuring cost-
83 effectiveness and efficacy of large-scale SIT programs¹⁶.
84

85 The white pupae (*wp*) phenotype in three distantly related tephritids, the Mediterranean
86 fruit fly (medfly) *Ceratitis capitata*, the oriental fruit fly *Bactrocera dorsalis*, and the melon
87 fly *Zeugodacus cucurbitae*, results from parallel mutations in a single, conserved gene
88 encoding a Major Facilitator Superfamily (MSF) transporter protein¹⁷. This molecular
89 identity supports early biochemical studies showing that the *wp* gene is essential to

90 transport hemolymph catecholamines (pigment precursors) to the pupal cuticle¹⁸,
91 promoting normal sclerotization and pigmentation. Despite gene conservation, similar *wp*
92 mutations were never found in *Anastrepha*—a mega-diverse genus of fruit flies in the
93 American (sub)tropics that includes major fruit-infesting pests, such as the Mexican fruit
94 fly (mexfly) *Anastrepha ludens* and the South American fruit fly *Anastrepha fraterculus*.
95 Alternatively, the black pupae (bp) mutant phenotype has been observed in *Anastrepha*
96 and used to develop GSSs in this group of flies; however, its genetic basis remains largely
97 unknown.

98

99 In this study, we present a collection of independent evidence from genetics,
100 transcriptomics, and functional genomics, showing that *ebony* is the responsible gene for
101 the mutant black pupae trait in *A. ludens* and likely other tephritids displaying parallel
102 phenotypes. Our findings support the following conclusions: (1) the bp phenotype in the
103 *A. ludens* GUA10 strain¹³ is caused by a large deletion at the *ebony* locus. This deletion
104 removes the entire protein-coding region of the gene, thus disrupting its function; (2)
105 disruption of *ebony* function is sufficient to recreate analogous bp phenotypes in diverse
106 tephritids, indicating its potential as a candidate gene for other naturally occurring bp
107 mutations within the family; (3) Ebony plays an essential role in inhibiting black
108 melanization in adult fruit flies, which constitutes one of the genetic mechanisms
109 underlying pigmentation differences within and between tephritid species; and (4) the
110 *ebony* gene may have pleiotropic effects on both embryo viability and adult development
111 in tephritids, ultimately impacting fitness. We discuss these discoveries through the lens
112 of dipteran evolutionary developmental biology¹⁹ and their implications for the
113 construction of new GSS for SIT applications.

114

115 **Results**

116

117 ***Generation of a mapping population***

118

119 We adopted the *A. ludens* GUA10 strain as our model to investigate the genetic basis of
120 the black pupae trait in tephritids (Fig. 1a). GUA10 is a GSS with an autosomal recessive
121 *bp* mutation as a selectable marker, allowing sex separation based on pupal color
122 dimorphism¹⁴. Females from GUA10 are homozygous for the *bp* mutation, exhibiting an
123 atypical dark pupal case. The mutation also induces darkening of larva anal lobes and
124 ectopic melanization of adult cuticle. Conversely, GUA10 males carry an irradiation-
125 derived translocation between the Y-chromosome and the polytene chromosome 3
126 (mitotic chromosome 2), the latter known to harbor the *bp*-related gene¹³. This
127 rearrangement links a functional *bp* allele to the male sex. Consequently, males are
128 consistently heterozygous, displaying a wildtype brown pupal case.

129

130 We conducted a series of genetic crosses to introgress the *bp* mutation into a wildtype
131 genetic background, enabling us to identify the relative genomic location of the *bp*
132 causative loci in *A. ludens* using association mapping (Fig. 1b). We selected wildtype (wt)
133 males to provide a reference background, and females from GUA10 as donors for the *bp*
134 mutation (*bp*^{-(GUA10)}). Isolated-mating between GUA10 females (*bp*^{-/-}) and wt males
135 (*bp*^{+/+}) followed by inbreeding of F1 hybrids (*bp*^{+-/-}) led to the segregation of *bp* alleles at
136 F2, placing them within a common genetic background. To further increase wildtype
137 representation and recombination between divergent genomes, F2 *bp* females were
138 individually backcrossed to wt males. Then, the resulting heterozygous F3 (*bp*^{+-/-})
139 individuals were inbred to generate the F4 mapping population, where siblings share
140 similar genetic makeup with the exception of the *bp* mutation, and thus develop as black
141 or brown pupae independently of their sexes.

142

143 ***Association mapping implicates pigmentation genes to the black pupae phenotype*** 144 ***in A. ludens GUA10***

145

146 To map the *bp*^{-(GUA10)} mutation, we generated whole genome sequences (WGS) from
147 black (*bp*^{-/-}) and brown (*bp*^{+/+} or *bp*^{+-/-}) pupae siblings from the F4 mapping population (*n*
148 = 18 of each phenotype). Resulting short reads were aligned to the *A. ludens* reference
149 genome (GenBank: GCA_028408465.1) and used to identify DNA variants in each
150 individual. We next calculated measures of genetic diversity along the genome using 100
151 kb sliding windows with a 20 kb step size. To minimize false identifications, we only
152 considered the top 0.25% of windows from scans. Genome-wide landscape of pairwise
153 genetic differentiation (*F_{ST}*) between black and brown pupae siblings revealed a large
154 island encompassing 8.74 Mb within the *A. ludens* chromosome 2 exhibiting the most
155 significant genetic difference between phenotypes (Fig. 1c). Therefore, this genomic
156 interval was considered the candidate region of the *bp*^{-(GUA10)} mutation.

157

158 To gain insight into the biological functions within this candidate region, we conducted a
159 gene ontology (GO) enrichment analysis, comparing the gene content of its genomic
160 interval to the complete genome annotation (Fig. 1d). Out of the 99 protein-coding genes
161 located at the candidate region, seven exhibited significant enrichment in categories
162 related to cuticle melanization and sclerotization (Supplementary Table 1). This set
163 included five genes within the neuropeptide signaling pathway (Fisher's exact test, *p* =
164 7.20e-4) and two genes involved in the melanin biosynthetic process from tyrosine
165 (Fisher's exact test, *p* = 3.42e-3). Upon closer examination, we identified *yellow-f2*
166 (GenBank: XP_053946313.1) and *ebony* (GenBank: XP_053946246.1) as candidate
167 genes associated with the black pupae phenotype in mexfly.

168

169 In *Drosophila melanogaster*, mutations in *yellow* result in a loss of black pigment,
170 underscoring the essential role of the Yellow protein in black melanin production²⁰. The
171 *yellow-f2*, a member of the Yellow gene family, is implicated in melanization during later
172 pupal and adult development²¹. In contrast, *ebony* mutants exhibit increased black
173 pigmentation²². Previous studies have demonstrated that the pattern and intensity of
174 melanization in *Drosophila* are largely determined by the coordinated expression of
175 Yellow and Ebony²³. Therefore, the melanin-promoting gene *yellow-f2* and the melanin-
176 inhibiting gene *ebony* emerged as promising candidates responsible for the black pupae
177 phenotype in *A. ludens*.

178

179 ***ebony is silenced in black pupae females from A. ludens GUA10***

180

181 We performed RNA-Seq transcriptome profiling on 1-day-old black (females, *bp*^{-/-}) and
182 brown (males, *bp*^{+/−}) pupae siblings from the GUA10 strain currently maintained in
183 Guatemala, under the assumption that transcriptional errors in candidate protein-coding
184 genes result in the mutant trait. Similar to the approach used to identify the *wp* mutation¹⁷,
185 we anticipated that differential read coverage between genotypes would reveal transcript
186 variants or alterations in gene expression. RNA-Seq coverage was similar for *yellow-f2*;
187 however, only reads from brown pupae males mapped to *ebony* (Fig. 1e). Differentially
188 expressed gene (DEG) analysis showed significant downregulation of *ebony* in black
189 pupae individuals (\log_2 fold-change = 7.4, p = 8.3e-06, and FDR = 0.03; Fig. 1f and
190 Supplementary Table 2). Semiquantitative RT-PCR confirmed the silencing of *ebony* in
191 black pupae females of GUA10 (Fig. 1g), leading to the hypothesis that *ebony* is the
192 causative gene behind the mutant phenotype in this strain. Reinforcing this idea, *in situ*
193 hybridization located *ebony* within region 24 of the polytene chromosome 3 (mitotic
194 chromosome 2) in wildtype *A. ludens* (Supplementary Fig. 1), which is part of the 2-Y
195 translocation chromosome found of both GUA10¹⁴ and its predecessor strain TAP-7¹³.

196

197 ***The black pupae phenotype in A. ludens GUA10 results from a large indel variant 198 at the ebony locus***

199

200 We next screened the genomic regions surrounding *ebony* for DNA variants called from
201 WGS short-reads of the F4 mapping population. Apart from single nucleotide and short
202 insertion-deletion polymorphisms (SNPs and indels, respectively) in adjacent sequences,
203 we could not identify variants within *ebony* (Fig. 2a), indicating that either this locus is
204 identical between brown and black pupae siblings of the mapping population or there is
205 a lack of read coverage in one or both subpopulation phenotypes. To better understand
206 this pattern, we examined the short-read mapping coverage and identified a broad
207 chromosomal interval with no coverage from black pupae individuals (Fig. 2b,
208 Supplementary Fig. 2). This observation suggested that most *ebony* loci are missing in

209 these flies. To confirm this putative deletion event, we sequenced a single male and
210 female of *A. ludens* GUA10 strain with PacBio HiFi sequencing. We reasoned the effort
211 could provide evidence of the *bp*^{-(GUA10)} mutation in single long HiFi reads associated with
212 *ebony*. Both male and female samples generated approximately 69 Gb of data,
213 representing over 80× coverage of the estimated 820 Mb genome. Mapping of HiFi reads
214 to the reference genome of *A. ludens* validated our assumption and revealed a complex
215 DNA variant spanning a 20,182 bp region within the *ebony* locus (Fig. 2c, Supplementary
216 Fig. 2). The variant contains two large deletions of 8,186 bp and 4,310 bp, resulting in the
217 excision of the entire protein-coding sequence and a significant portion of the 5' upstream
218 region of the gene, respectively. Qualitative end-point PCR encompassing a 360 bp
219 region between *ebony* exons e1 and e2 confirmed the absence of the gene in bp females
220 from GUA10 (Fig. 2d). Altogether, these data show that the loss of the *ebony* coding
221 sequence is responsible for the black pupae phenotype in *A. ludens* GUA10.

222

223 ***Disruption of ebony creates analogous black pupae phenotypes in diverse tephritid***
224 ***flies***

225

226 We used CRISPR/Cas9-mediated gene knockout (KO) to functionally validate our
227 findings. Out of 260 *A. ludens* embryos injected with Cas9-sgRNA ribonucleoprotein
228 (RNP) complexes targeting exon 1 of *ebony*, 38 (14.6%) survived into the pupal stage
229 (Supplementary Table S3). Among them, 4 (10.5%) displayed the bp phenotype and
230 developed into darker (melanic) adults (Fig. 3a), resembling the original mutant
231 phenotype¹³ (see Fig. 1a). These mosaic knockout (mKO) flies contained indels in 56-
232 89% of PCR-generated amplicons surround the sgRNA target site (Supplementary Fig.
233 3), confirming that the disruption of *ebony* is sufficient to induce the black pupae
234 phenotype in *A. ludens*. Using a similar approach, we further recreated the mutant
235 phenotype in *A. fraterculus* (Fig. 3b, Supplementary Fig. 4), demonstrating the functional
236 conservation of *ebony* in other *Anastrepha* species.

237

238 Ebony is highly conserved among tephritids (Supplementary Fig. 5); thus, we anticipated
239 that disrupting *ebony* orthologs would result in the bp phenotype even in distantly related
240 species within the family (Fig. 3c-f). To test this assumption, we conducted additional
241 CRISPR/Cas9 KO experiments on *C. capitata*, *B. dorsalis*, and *Z. cucurbitae*. Across all
242 species, we observed high survival and mutagenesis rates (15-34% and 58-68%,
243 respectively; Supplementary Table 3), and all experiments resulted in G₀ individuals
244 exhibiting phenotypes that ranged from mosaic black-brown puparium to complete
245 melanized pupal cases (Fig. 3c, e, f). As expected by the nature of *bp* mutations in these
246 flies²⁵⁻²⁷, the eclosed adults also displayed an overall darker cuticle. Genotyping of PCR
247 products spanning Cas9 cut sites confirmed the presence of indels at the *ebony* loci, with
248 modification frequencies ranging from 87-92% (Supplementary Fig. 6). Taken together,

249 these results offered functional evidence supporting *ebony* as the responsible gene for
250 the bp phenotype in mexfly GUA10 and likely other tephritids displaying parallel
251 phenotypes.

252

253 ***Ebony regulates pigmentation patterning in tephritid flies***

254

255 Although mutations resulting in the bp phenotype are well-documented in tephritids, their
256 impact on adult morphology has been overlooked. To address this, we established
257 biallelic KO lines to investigate the contribution of *ebony* to adult pigment patterns. We
258 focused on the conspicuous pictured wings of *C. capitata* and *Z. cucurbitae*, and the body
259 pigmentation of *B. dorsalis* and *Z. cucurbitae*. These traits are prevalent among tephritids
260 and thus may serve as ideal models for studying the evolution of pigmentation in this
261 group of flies.

262

263 The wings of *C. capitata* exhibit intricate patterns featuring pigmented spots and bands
264 varying in color and shape. Among these, the dominant discal crossband and the costal
265 band are particularly intriguing (Fig. 4a), as their pigmentation is absent in model wings
266 of *Drosophila* (examples in True et al.²⁸). In *ebony* mutants, the appearance of those spots
267 changed from brownish-yellow to dark brown; but their pattern remained the same (Fig.
268 4b). Interestingly, knocking out *ebony* had no effect on the silver lamina of medfly wings,
269 while mutants of *Zeugodacus* displayed ectopic pigmentation in the structure (Fig. 4c, d).
270 This ectopic pigmentation closely resembles that observed in *D. melanogaster*²³, with no
271 apparent changes in the apical spot, but a subtle enlargement of the fuscous black dm-
272 cu crossvein blotch. A combination of modifications is observed in the wings of *A.*
273 *fraterculus* *ebony* mutants (Supplementary Fig. 4). Similar to the medfly, the appearance
274 of brownish-yellow bands changes to dark brown, and as in the melon fly, fuscous black
275 edges intensify.

276

277 The *B. dorsalis* Punador strain maintained at the USDA-ARS-PBARC facility in Hawaii,
278 exhibits a scutum predominantly black with peripheral reddish-brown areas (Fig. 5a). This
279 pattern closely resembles the predominant morphotype found in the coastal areas of
280 China²⁹, which is the most likely source population that invaded the Hawaiian Islands³⁰.
281 In contrast, its abdomen is predominantly reddish-brown, displaying a distinct black T-
282 shaped marking and narrow fuscous corners on tergites T4 and T5 (Fig. 5b, c). Loss of
283 Ebony altered the pigment pattern in both body parts, allowing the breach of black melanin
284 into areas where it was previously absent or constraint (Fig. 5d-f). These effects were
285 even more dramatic in *ebony* mutants of the melon fly. The overall appearance of the
286 thorax changed from orange-brown (Fig. 5g) to black (Fig. 5j), and the narrow abdominal
287 bands (Fig. 5h, i) were significantly enlarged (Fig. 5k, l). These results illustrate the

288 important role of Ebony in controlling the expressivity of black pigments in tephritids by
289 inhibiting melanization, thus ensuring proper pigmentation patterning.

290

291 ***Development of an ebony-null strain for the Queensland fruit fly***

292

293 The Queensland fruit fly *Bactrocera tryoni* is a significant agricultural pest in Australia³¹,
294 where the SIT is applied to manage established populations and eliminate outbreaks in
295 key horticultural regions. Presently, SIT targeting *B. tryoni* involves releasing both males
296 and females, as no efficient method to remove females before sterilization exists.
297 Therefore, creating a bp strain would represent a significant advancement in managing
298 this important pest. To this end, we expanded our CRISPR/Cas9 experiments to KO
299 *ebony* in *B. tryoni*. Out of 661 injected embryos, 12 survived to adulthood, all developing
300 from brown pupal cases. We next backcrossed five G₀ adults to the Ourimbah wt strain.
301 All G₁ flies were combined and allowed to interbreed. In total, 24 individuals with black
302 puparium were recovered among the G₂ offspring, confirming successful germline
303 transmission of Cas9-induced mutations. Fourteen individuals survived to adulthood, all
304 displaying dark cuticles (Fig. 3d). Molecular genotyping of G₂ identified four *ebony* mutant
305 alleles containing indels resulting in frameshift mutations (Supplementary Fig. 7). Initial
306 attempts to develop a stable strain through inter-crossing G₂ mutants failed due to non-
307 viable eggs. However, we eventually established an *ebony*-null mutant strain (named *Bt-ebony*)
308 after three rounds of backcrossing G₂ homozygous mutants to the wt laboratory
309 strain (see crossing scheme in Supplementary Fig. 8). Genotyping of *Bt-ebony* revealed
310 a homozygous -2 bp deletion at *ebony* exon 1, resulting in a loss-of-function mutation as
311 evidenced by the complete penetrance of the black pupae phenotype (Supplementary
312 Fig. 7).

313

314 ***Ebony has possible pleiotropic effects on the development of the Queensland fruit***
315 ***fly***

316

317 We next asked if *ebony*-null alleles would result in fitness costs over the development of
318 *B. tryoni*, an important consideration for potential SIT applications. We first conducted
319 phenotype and genotype segregation analyses to test the effects on viability
320 (Supplementary Table 4). *Bt-ebony* males (e^{-/-}) were mass backcrossed to wildtype
321 females (e^{+/+}), resulting in hybrid offspring (e^{+/+}) with brown pupae phenotypes. Inbreeding
322 of F1 flies produced F2 progeny with wildtype (n = 200) or *ebony* (n = 60) phenotypes at
323 an approximate 3:1 ratio ($\chi^2 = 0.51$, $p = 0.47$, d.f = 1). Genotyping a subset of
324 phenotypically wildtype F2 flies further confirmed the expected 1:2 segregation ratio of
325 wildtype (n = 25) to heterozygous (n = 55) genotypes ($\chi^2 = 0.16$, $p = 0.69$, d.f = 1), with no
326 sex ratio bias. These results confirm the complete recessive inheritance of *ebony* and
327 suggest that the generated mutant alleles do not impose viability costs on *B. tryoni*.

328

329 We further evaluated fecundity and development over three consecutive generations
330 using four genetic crossing combinations: (1) wildtype control crosses; (2) test crossings
331 with *Bt-ebony* males vs. wildtype females; (3) reciprocal crossings with wildtype males
332 vs. *Bt-ebony* females; and (4) *Bt-ebony* crosses. All data were collected from F1
333 generations (Supplementary Table 5). For fecundity, we collected and counted eggs daily
334 for five days. There were no significant differences in fecundity across all combinations.
335 However, outcrossings (i.e., *Bt-ebony* vs. wildtype) and *ebony* crosses generally
336 produced fewer eggs than wildtype control crosses (Fig. 6a). To assess hatchability, we
337 counted eclosed larvae three days after egg collection. The percentage of hatched eggs
338 from *ebony* crosses (median \pm SE; $36.4 \pm 5.2\%$) was significantly lower than in wildtype
339 crosses ($80.2 \pm 5.5\%$; $p = 0.04$, one-way ANOVA Tukey HSD), while outcrossings
340 produced intermediate values (Fig. 6b). Pupation, adult emergence, and partial adult
341 emergence did not drastically differ between crossing combinations (Fig. 6c-e). Yet,
342 *ebony* parents showed a tendency to produce offspring with more partially emerged
343 adults (Fig. 6d, e). Additionally, the percentage of deformed adults was significantly higher
344 among *ebony* progeny ($3.86 \pm 0.71\%$) compared to wildtype ($0.58 \pm 0.26\%$; $p = 0.02$, one-
345 way ANOVA Tukey HSD; Fig. 6f).

346

347 Discussion

348

349 In this study, we combined classical and modern genetics to uncover the molecular basis
350 of the black pupae phenotype (bp) in tephritid fruit flies. We adopted the Mexican fruit fly
351 *Anastrepha ludens* as our model—since stable bp mutants for the species exist as part
352 of the GUA10 genetic sexing strain¹⁴. Genetic mapping and genome differentiation
353 analysis allowed for the relative localization of the *black pupae* mutation (bp) within a ~8.7
354 Mb interval on the mitotic chromosome 2 of *A. ludens*. Gene set enrichment analysis
355 narrowed this causal region to two candidate loci: *ebony* and *yellow-f2*, which are key
356 genes in the insect pigmentation pathway^{21,23}. Comparative transcriptomics revealed that
357 *ebony* expression is silenced in GUA10 females (homozygous recessive for bp) but not
358 males (heterozygous for bp). This observation suggested that loss of *ebony* expression
359 leads to the bp phenotype in GUA10 females, while the linkage of a functional allele to
360 the Y-chromosome rescues the wildtype phenotype in males—since the bp is a recessive
361 trait¹³. Supporting this model, cytogenetics of chromosomal translocations in GUA10
362 determined the locus responsible for the bp trait on the polytene chromosome 3 (mitotic
363 chromosome 2) of *A. ludens*, and the fragment translocated into the Y-chromosome
364 containing region 24^{13,14}; the same region where we located *ebony* by *in situ* hybridization.
365 DNA variant calling identified several small SNPs and indels surrounding *ebony* but none
366 within its protein-coding region. A close examination of the short-read mapping revealed
367 a large interval within the *ebony* locus lacking coverage from black pupae individuals of
368 the mapping population, indicating the absence of the entire *ebony* gene in these flies.

369 HiFi sequencing confirmed a 20,182 bp indel variant within the *ebony* locus, resulting in
370 the removal of the entire protein-coding region of the gene. Finally, functional validation
371 of *ebony* orthologues via CRISPR/Cas9-mediated KO generates analogous bp
372 phenotypes in *A. ludens* and diverse tephritid species spanning over 50 Ma of divergent
373 evolution. Collectively, these results provide strong evidence that *ebony* is the
374 responsible gene for the bp phenotype in GUA10 and possibly other tephritids in which
375 parallel phenotypes have been described. In addition to these findings, the creation of
376 *ebony*-null mutants across distantly related species allowed for fundamental insights into
377 the contribution of Ebony to color patterning and development in tephritids, which have
378 significant importance for dipteran evolutionary developmental biology¹⁹, and thus
379 discussed below. We hope that these thoughts will spark renewed interest in the evolution
380 of pigmentation patterns and phenotypic diversity within the family Tephritidae.

381

382 **A pathway to black puparium**

383

384 Ebony is crucial for insect pigmentation and sclerotization (hardening). It conjugates
385 dopamine (DA) with β -alanine to produce N- β -alanyldopamine (NBAD), the precursor of
386 yellow-tan sclerotin in insect cuticles³²⁻³⁴. Null mutants for *ebony* cannot produce NBAD,
387 leading to an excess of DA, which in turn is diverted into the melanization branch of the
388 pigmentation biosynthesis pathway (as reviewed by Massey and Wittkopp³⁵), resulting in
389 individuals with darker cuticles^{32,36,37}. Consequently, a failure to encode Ebony leads to
390 an increase in melanin (dark pigments) and a decrease in light pigmentation production²³.
391 In the classical example of *D. melanogaster*, *ebony* loss-of-function causes darkening of
392 larval mouthparts and posterior spiracles, and adults much darker in appearance²². Our
393 KO experiments yielded similar phenotypes, illustrating the functional conservation of
394 Ebony across higher Diptera. Nonetheless, it's worth mentioning a phenotypic difference
395 between *ebony* mutants in *D. melanogaster* and the tephritids we studied. In the former,
396 the loss of Ebony results in an unpigmented or pale pupal case³⁷, while in the latter, it
397 leads to an unusual black puparium. Naturally, the black pupae trait is not unique to
398 tephritids, and similar phenotypes exist in *ebony* mutants of moths³⁸, mosquitoes^{39,40},
399 and—to some extent—other *Drosophila* species⁴¹.

400

401 The molecular mechanism driving this phenotypic divergence remains unknown (but see
402 Sherald³⁷), but it may involve the preferential utilization of DA during pupal cuticle
403 formation, akin to the concept of strengths of the pathway (discussed by Spana et al.⁴²).
404 In insects, it's accepted that N-acetyldopamine (NADA) serves as the primary precursor
405 for colorless sclerotin, produced through the conjugation of DA by the *speck* gene. In
406 contrast, brown cuticles predominantly originate from NBAD³³. Thus, the NADA-to-NBAD
407 ratio is expected to be a determinant factor for the final cuticle color intensity. Using the
408 medfly as an example, NBAD is the primary precursor of sclerotization, giving rise to an

409 opaque reddish-brown pupal case. In the absence of NBAD, as seen in *ebony* mutants,
410 NADA is utilized instead^{36,43}. However, the branch of the pigmentation pathway leading
411 to NADA-sclerotin may not be as dominant as the one leading to NBAD-sclerotin. This
412 difference in strengths would allow the conversion of excess DA into melanin, leading to
413 the production of black pupal cases in *C. capitata*. In *D. melanogaster*, the branch leading
414 to NADA-sclerotin is likely dominant, as evidenced by their clear, light-brown pupal cases.
415 Therefore, this branch could be strong enough to prevent free DA from entering the
416 melanization route in *ebony* mutants. Supporting this idea, the differential expression of
417 *speck* may be solely responsible for the contrast between the black pupae of *Drosophila*
418 *virilis* and the brown pupae of *Drosophila americana*⁴⁴. Interestingly, it has been
419 suggested that while DA can be directly converted into black melanin (mediated by
420 Yellow), the conversion of DA into NBAD and then back into DA (mediated by Tan) seems
421 necessary for the production of dark brown melanin^{23,35}. The requirement for this indirect
422 route could potentially explain why tephritid *ebony* mutants develop black pupae rather
423 than darker brown ones. Finally, it should be noted that similar melanization phenotypes
424 in *C. capitata* can also arise from the inability to produce β-alanine⁴³, a condition that can
425 be induced by mutations in the *black* locus⁴⁵.

426

427 **Contributions of Ebony to wing pigmentation**

428

429 Most tephritid flies are adorned with brightly contrasting body colors, and their wings often
430 display elaborate patterns once described as both “lovely and mysterious”⁴⁶. Wing
431 pigmentation in tephritids can take various forms: from almost completely clear
432 (*Bactrocera*), across relatively simple spots and blotches (*Zeugodacus*), and winding
433 stripes shaded in black and brown (*Anastrepha*) to complex colored pictured wings with
434 many patterns (*Ceratitis*). After a brief inspection, one could argue that such diversity is
435 perhaps as enigmatic as in *Drosophila* and yet much less studied.

436

437 Here, we showed that Ebony is essential to generate and maintain this diversity. In
438 *Zeugodacus*, Ebony inhibits melanization of the wing lamina, but it does not directly
439 contribute to the pigmentation of the apical spot or crossvein blotches. Therefore, it is
440 possible that Ebony is uniformly distributed in the species’ wings but less expressed in
441 melanized patterns, and other genes (probably including *yellow*) are responsible for
442 promoting their black pigmentation. This regulatory model is found in drosophilids
443 exhibiting wing spots, where spatial downregulation of Ebony and upregulation of Yellow
444 are—at least in part—responsible for their melanized patterns^{23,47,48}. By masking
445 melanization, Ebony also contributes to the expressivity of specific phenotypes, including
446 the black crossvein blotch in *Z. cucurbitae* and the fuscous black edges of the S- and V-
447 bands in the *Anastrepha* wings. Interestingly, ectopic pigmentation of the wing lamina,
448 resembling that in *D. melanogaster* *ebony* mutants²³, is also observed in *ebony* mutants

449 of *Zeugodacus* and *Bactrocera* but not *Ceratitis* and *Anastrepha*. The mechanism behind
450 this effect is unclear, but it seems to follow a phylogenetic pattern and therefore could be
451 related to a species-specific distribution of pigment precursors through their wing veins.
452

453 The role of Ebony in the pigmentation of *C. capitata* wings was investigated by Pérez et
454 al.⁴⁹. Using biochemical assays, the authors showed that Ebony is spatially pre-patterned
455 in the yellowish-brown bands of the medfly wings during early adult development,
456 maintaining an extracellular activity long after epithelial cells disappear from the lamina.
457 As observed in *Drosophila*²⁸, pigment precursors present in hemolymph circulation
458 gradually diffuse out from wing veins and are conjugated into NBAD by the pre-patterned
459 Ebony to promote the coloration of these bands. Ebony activity is detectable in the
460 yellowish-brown spots of *C. capitata* wing but not in the silver-paint lamina⁴⁹, suggesting
461 that the enzyme is only responsible for the pigmentation of the former. Our results provide
462 functional evidence to their findings, showing that Ebony is necessary to produce the
463 normal coloration of *C. capitata* wing bands and, in its absence, their appearance
464 changes from yellowish-brown to dark brown—but their pattern remains the same, and
465 no effects appear in the lamina. Notably, *Anastrepha ebony* mutants exhibit similar
466 phenotypic changes in their wings, including the transformation of their once brownish-
467 yellow S- and V-bands into a deep brown shade. The appearance of a dark-brown color
468 in the wings of these *ebony* mutants can be explained by DA being shunted to the
469 melanization branch of the pigmentation pathway and used to produce brown melanin
470 through a mechanism open to debate. Some authors propose that the production of black
471 and brown melanins occurs depending on the activity of different members of the Yellow
472 gene family⁵⁰. Others suggest that DA can be converted into brown melanin through a
473 process involving phenol oxidases (POs; responsible for the oxidation of pigment
474 precursors in the cuticle) but not the *yellow* gene^{23,35}, and thus the indirect route must be
475 taken (as discussed before). Our results seem to confront the latter idea, suggesting that
476 brown pigmentation can be achieved through different molecular mechanisms in pupae
477 and adults. These observations illustrate that the regulation of wing coloration in tephritid
478 flies can be as mysterious as their pattern, and thus deserves more attention.
479

480 **Contributions of Ebony to adult body pigmentation**

481 Natural populations of *B. dorsalis* exhibit extreme variation in adult pigment patterns^{29,51}.
482 This intraspecific diversity is particularly noticeable in their thorax (scutum), which ranges
483 from pale reddish-brown to black, often with lanceolate-patterned intermediates. Similarly,
484 their abdomen can vary from predominantly pale to predominantly black due to the
485 expressivity of the typical 'T' pattern and the dark markings on tergites 4 and 5. The
486 difference between morphological variants (morphs) is so dramatic that invasive
487 populations of *B. dorsalis* in Africa were classified as a new species (*Bactrocera invadens*)
488 and later synonymized⁵². Although the ecological relevance—if any—of these melanin

490 patterns remains unknown, the geographic distribution of morphs seems to form irregular
491 pigmentation clines²⁹. The ectopic melanization in *ebony* mutants fairly overlap with some
492 of these natural patterns, suggesting that this diversity in *B. dorsalis* may, in part, result
493 from variations in the spatial expression of Ebony. The genetic background for ectopic
494 expression also seems to contribute to the depth of these new patterns. For example,
495 *ebony* mutants of the *B. dorsalis* Punador exhibit enlarged but distinct abdominal
496 markings, which are nearly unrecognizable in predominantly black natural morphs⁵¹. In
497 contrast, both thorax and abdominal segments of *ebony* mutants of the *B. tryoni*
498 Ourimbah turn entirely black.

499

500 Within its genus, *Z. cucurbitae* is one-of-a-kind regarding adult morphology. Adults
501 display a pale reddish-brown scutum and narrow abdominal bands, showing little
502 intraspecific variability in natural populations⁵³. These traits become completely distorted
503 in *ebony* mutants; the scutum turns almost entirely black, and abdominal markings extend
504 to a point where it resembles other related species (e.g., *Zeugodacus tau*). These shifts
505 further illustrate how changes in Ebony expression may also confer phenotypic
506 divergence between fruit fly species.

507

508 How do these phenotypic variations arise and how are they maintained? Based on our
509 observations, and other more comprehensive studies²³, we speculate these phenotypes
510 are largely determined by the coordinated expression of Ebony and other pigmentation
511 genes (such as *yellow* and *tan*), and changes in their expression patterns result in
512 pigmentation diversity. Expression differences within and between species often arise
513 from changes in either *cis*- or *trans*-acting elements important to these genes. In
514 *Drosophila*, changes in *cis*-regulatory regions of *ebony* are responsible for the naturally
515 occurring variation in abdominal coloration^{54,55} and, at some degree, to the intensity of
516 the thoracic ‘trident’ phenotype³⁵. Similarly, differences in expression levels of *ebony* and
517 *tan* contribute to pigmentation divergence between the dark-bodied *Drosophila*
518 *americana* and its light-colored sister species *Drosophila novamexicana*, which seems to
519 be controlled in part by noncoding changes in these loci⁵⁶. While divergence of pigment
520 patterns within and among species might arise due to ecological and sexual selection
521 pressures³, it remains uncertain whether it serves as raw material for speciation in species
522 complexes with varying pigmentation, such as *B. dorsalis*.

523

524 **Potential pleiotropic effects of Ebony**

525

526 The initial difficulties in establishing an *ebony* mutant line for *B. tryoni* could have been
527 caused by off-target mutagenesis or genetic linkage. To mitigate and potentially eliminate
528 these effects, we backcrossed Ebony mutants to wildtype flies for three consecutive
529 generations before evaluating their relative fitness in terms of fecundity and development.

530 Despite the effort, we found that *Bt-ebony* mutants exhibited a significant reduction in
531 egg-hatching rates across three generations. Presumably, one disruption causes the
532 other, suggesting that loss-of-function mutations in *ebony* impact traits other than
533 pigmentation in the species. In insects, pleiotropy (a single gene affecting multiple traits)
534 is often associated with pigmentation genes, and effects on behavior, physiology, and life-
535 history traits have been extensively documented (reviewed by True¹, Wittkopp and
536 Beldade², and Takahashi⁵⁷). Although pleiotropic effects are difficult to prove, our results
537 indicate that disruption of Ebony might compromise embryo viability in *B. tryoni*. Lower
538 egg-hatching rates have also been reported in *ebony* mutants of the diamondback moth⁵⁸
539 and silkworm⁵⁹. In the latter, larvae seem to develop normally—but have trouble breaking
540 out from their eggshell. It's unclear whether *ebony* mutants of *B. tryoni* have impairments
541 regarding larvae development or eclosion capabilities. Nevertheless, similar effects were
542 observed in early adulthood, where *Bt-ebony* mutants appear to have difficulty emerging
543 from their pupa, and a significant number of flies emerge with wing deformities.
544 Interestingly, heterozygous individuals displayed intermediate egg-hatching and
545 deformity rates, indicating semi-dominant phenotypes contrasting the apparent complete
546 dominance of Ebony in pigmentation.

547
548 We also cannot discard the possibility of a higher frequency of copulation failure by *ebony*
549 mutants, thus leading to an increased number of unfertilized eggs. Mutations in *ebony*
550 have been correlated to abnormal mating behavior in *Drosophila*, likely due to defects in
551 circadian rhythm and visual system (two well-known phenotypes of *ebony* mutants) and
552 perhaps courtship behavior (for which ambiguous phenotypes exist)⁵⁷. Furthermore, their
553 relative abundance of cuticular hydrocarbons—that can function as conspecific short-
554 range pheromones⁶⁰—is also influenced by Ebony^{41,61}. Additional studies, including more
555 replicates and monitoring of mating trials, are needed to elucidate the influence of Ebony
556 on the mating behavior of *B. tryoni*.

557
558 Further experiments are also needed to investigate whether additional backcrossings to
559 wildtype could alleviate these deleterious effects and if the linkage of *ebony* to the male
560 Y-chromosome could rescue them. In the same context, it's reasonable to think that
561 genome modifications at regulatory sequences could lead to the development of lines
562 with fewer fitness costs—as regulatory mutations might minimize pleiotropic effects
563 relative to coding mutations¹. Therefore, there is a need to investigate the regulatory
564 networks governing the spatiotemporal expression of pigmentation genes in tephritids.
565 New technologies for profiling the transcriptome and epigenome at single-cell resolution
566 (single-cell ATAC-Seq + RNA-Seq) could facilitate the identification of regulatory factors
567 associated with their spatiotemporal expression. In theory, such investigation could help
568 us manipulate the temporal expression patterns of these genes, thereby bypassing the
569 downsides associated with their disruption. Fitness costs are also likely to arise from

570 random radiation-induced mutagenesis. Potentially, this could be overcome by
571 CRISPR/Cas9-mediated knock-in or chromosomal translocation of the rescue allele into
572 the Y-chromosome—as previously proposed^{17,62}—for which standardized protocols
573 remain to be established.

574

575 **Methods**

576

577 **Flies**

578

579 *Anastrepha ludens* flies (wildtype) used for microinjections were obtained from the USDA-
580 APHIS Moore Air Base Facility in Edinburg, TX, USA. Flies are reared at 23 °C and 60%
581 RH under a 14/10 h light/dark cycle. Adults are fed with a standard dry diet (1 yeast: 3
582 sugar) and water. Larvae are reared on a meridic diet consisting of 15.6% pelletized
583 corncob, 8.4% granulated white sugar, 2.8% torula yeast, 7% wheat germ, 4.6% toasted
584 soy flour, 2.8% corn flour, 0.2% vitamin mix, 1.9% citric acid, 0.1% sodium benzoate,
585 0.2% methylparaben, and 0.2% bravo WS (1%), all dissolved in water. Samples of the *A.*
586 *ludens* GUA10 strain and F4 mapping populations, used for WGS, RNA-Seq, and HiFi
587 sequencing, were obtained from the USDA-APHIS MOSCAMED San Miguel Petapa Fruit
588 Fly Rearing and Quarantine facility in San Miguel Petapa, Guatemala.

589

590 *Anastrepha fraterculus* sp. 1 flies (Vacaria strain) were obtained from the Insect Pest
591 Control Laboratory in Seibersdorf, Austria. Flies are maintained at 25 °C and 48% RH
592 under a 12/12 h light/dark cycle. Adults are fed with a standard dry diet (1 yeast: 3 sugar)
593 and water. Larvae are reared on a carrot diet consisting of 8.06% brewer's yeast, 0.76%
594 sodium benzoate, 0.8% (v/w) HCl, 23.9% carrot powder, and 67.17% fresh carrots, all
595 dissolved in water.

596

597 *Ceratitis capitata* (rearing strain), *Bactrocera dorsalis* (Punador strain), and *Zeugodacus*
598 *cucurbitae* (rearing strain) were obtained from the USDA-ARS-PBARC in Hilo, HI, USA.
599 All species are maintained at 25 °C and 60% RH under a 12/12 h light/dark cycle. Adults
600 are fed with a standard dry diet (1 yeast: 3 sugar) and water. Larvae are reared on a
601 species-specific diet. The *C. capitata* larval diet consists of 59% wheat mill feed, 27.3%
602 granulated white sugar, 7.6% torula yeast, 5.2% citric acid, and 0.5% each of the
603 preservatives nipagen and sodium benzoate. The *B. dorsalis* larval diet consists of 63%
604 wheat mill feed, 28.5% granulated white sugar, 8% torula yeast, 0.3% nipagen, and 0.2%
605 sodium benzoate. The *Z. cucurbitae* larval diet consists of 73.7% wheat mill feed, 17.4%
606 granulated white sugar, 8.4% torula yeast, and 0.3% each of the preservatives nipagen
607 and sodium benzoate. All diets are dried and mixed with water before being provided to
608 larvae.

609

610 *Bactrocera tryoni* flies (Ourimbah strain) were obtained from the New South Wales
611 Department of Primary Industries in Ourimbah, Australia. Flies are reared at 25 °C and
612 65% RH under a 14/10 h light/dark cycle. Adults are fed with a standard dry diet (1 yeast:
613 3 sugar) and water. Larvae are reared on a gel diet containing 20.4% brewer's yeast,
614 12.1% sugar, 0.2% methyl p-hydroxy benzoate, 2.3% citric acid, 0.2% wheat germ oil,
615 0.2% sodium benzoate, and 1% agar.

616

617 **Mapping population**

618

619 The crossing scheme shown in Fig. 1b was used to introgress the mexfly *black pupae*
620 mutation into a wildtype reference genetic background and generate a mapping
621 population for genome-wide genetic differentiation analysis. Briefly, mexfly black pupae
622 females were isolated from the GUA10 strain¹⁴ during pupal stage and individually
623 outcrossed to wildtype males to produce hybrid offspring with non-sex-linked variation in
624 pupal color. The resulting F1 population displayed the wildtype brown pupae phenotype
625 and was allowed to intercross freely to recover the black pupae phenotype in the next
626 generation. Resulting F2 black pupae females were individually backcrossed to wildtype
627 males. Heterozygous flies at F3 were let to inbreed, and black and brown pupae siblings
628 were selected at F4. Individuals were separated by pupae color, snap frozen in liquid
629 nitrogen upon adult emergence, fixed in absolute ethanol and kept at -80 °C until further
630 analysis.

631

632 **Association mapping**

633

634 Total DNA was extracted from brown ($n = 18$) and black ($n = 18$) pupae individuals of the
635 F4 mapping population using the NucleoMag Tissue kit (Macherey Nagel) on a Kingfisher
636 Flex system. Extractions were quantified by Qubit dsDNA BR assay (Invitrogen),
637 normalized to 50 ng on a 96-well plate, and subjected to library preparation using the
638 RipTide High Throughput Rapid DNA Library Preparation kit (iGenomX). Libraries were
639 pooled and sequenced on a single lane of HiSeq 4000 (Illumina) in a 150 bp paired-end
640 run. Raw data was demultiplexed and processed in-line to remove barcodes using the
641 fgbio toolkit (<https://github.com/fulcrumgenomics/fgbio>).

642

643 Demultiplexed whole-genome sequencing (WGS) reads were then filtered using fastp
644 v0.23.2⁶³ and mapped against the mexfly reference genome using BWA-MEM v.2.2.1⁶⁴.
645 SAMtools v1.17⁶⁵ *fixmate* was used to update mate information and duplicated pairs were
646 marked using SAMBLASTER v0.1.26⁶⁶. Alignments were filtered using SAMtools *view*
647 with the following parameters: skip alignments with mapping quality ≤ 30 , only keep reads
648 mapped in a proper pair (-f 0x0002), and discard unmapped reads (-F 0x0004), reads
649 with unmapped mates (-F 0x0008), and reads marked as duplicates (-F 0x0400). Genome

650 Analysis Toolkit v4.4 (GATK, <https://gatk.broadinstitute.org/>) *RealignerTargetCreator* and
651 *IndelRealigner* were used to locally realign reads around insertions and deletions (InDels)
652 in filtered alignments. Variant calling was performed using GATK *HaplotypeCaller*,
653 *CombineGVCFs*, and *GenotypeGVCFs* with default parameters. Variants were hard
654 filtered using GATK *SelectVariants* and *VariantFiltration* following the recommended
655 parameters for SNPs and InDels to pass. Remaining variants were further filtered using
656 VCFtools v0.1.16-9⁶⁷ with the following parameters: maf 0.05, mac 2, min-alleles and
657 max-alleles 2, min-meanDP 0.2 and max-meanDP 1.8 (based on 5th and 95th percentiles
658 of mean depth per site), hwe 1e-5, max-missing 0.5, and minQ 30. Genome-wide genetic
659 differentiation index (F_{ST}) between black and brown pupae siblings from the mapping
660 population were calculated in 100 Kb windows at 20 Kb sliding intervals using VCFtools
661 and visualized with the *qqman* package in R v4.3.2. The final, filtered VCF (Variant Call
662 Format) file was examined in the Integrative Genomics Viewer (IGV) tool v2.16.2-0⁶⁸.

663

664 **Genome annotation**

665

666 RepeatModeler v2.0.4⁶⁹ was used to identify repetitive sequences and construct a *de*
667 *novo* repeat library for the *A. ludens* reference genome. This library was combined with
668 *Drosophila* repetitive sequences extracted from RepBase (RepeatMasker Edition
669 v.20181026, <https://www.girinst.org/server/RepBase/index.php>) and used with
670 RepeatMasker v4.1.5 (<https://www.repeatmasker.org/>) to mask repetitive sequences in
671 the genome. Gene prediction was carried out using RNA-Seq alignment data as extrinsic
672 evidence for gene models. Publicly available RNA-Seq raw reads, encompassing most
673 of *A. ludens* development stages (Supplementary Table 6), were filtered using fastp
674 v0.23.2⁶³ and mapped to the masked genome with STAR v2.7.10b⁷⁰ in two-pass spliced
675 alignment mode. The resulting alignments were used as input for BRAKER2 pipeline⁷¹.
676 The longest isoform of each predicted gene model was retrieved using AGAT v0.8.0
677 (<https://github.com/NBISweden/AGAT>) function *agat_sp_keep_longest_isoform.pl*
678 resulting in an initial set of 18,230 protein coding genes. BUSCO v5.4.5 analysis⁷² found
679 96.9% of the 3,285 single-copy orthologues (in the diptera_odb10 database) to be
680 complete (96.3% single-copied and 0.6% duplicated genes), 0.8% fragmented, and 2.3%
681 missing. Functional annotations were performed by mapping this gene set against the
682 UniProtKB database (<https://www.uniprot.org/>) using BLASTp (e-value $\leq 1e-6$), and the
683 Pfam, PANTHER, Gene3D, SUPERFAMILY, SMART, and CDD databases using
684 InterProScan v5.64-96.0⁷³. Orthology assignments were performed with the DIAMOND
685 (e-value $\leq 1e-5$) mapping mode implemented in eggNOG-mapper v2.1.12-0⁷⁴ in the
686 context of Diptera taxonomic scope. The final gene set for *A. ludens* genome contained
687 13,114 full-length protein-coding genes with annotated gene ontology (GO) terms.

688

689 **Enrichment analysis**

690
691 Gene ontology (GO) enrichment analysis of biological processes terms was performed
692 using the Bioconductor package topGO v2.54.0-0
693 (<https://bioconductor.org/packages/topGO>) on the gene set within the black pupae causal
694 region on mexfly chromosome 2, using all genes with annotated GO terms in the genome
695 as the background set. The *elim* method was used to reduce redundancy and searches
696 were limited to categories containing at least 10 annotated genes. Overrepresentation
697 significance of GO terms was calculated using the classical Fisher test adopting a cutoff
698 threshold of *p*-value ≤ 0.05 .

699
700 **RNA isolation**
701
702 Specimens were euthanized at -20 °C, fixed in RNAlater (Invitrogen) and stored at 4 °C
703 until further processing. Before extractions, samples were mixed with one volume of 1x
704 PBS (pH 7.4) and centrifuged at top speed for 10 min at 4 °C, allowing removal of solution
705 excess by pipetting. Pre-processed samples were homogenized in TRISure (Bioline
706 Meridian Bioscience), and total RNA was isolated using Direct-zol-96 MagBead RNA kit
707 (Zymo Research). Extractions were DNase treated in a 50 µL reaction containing 2 U of
708 TURBO DNase (Invitrogen), 50 U of RiboGuard RNase Inhibitor (Lucigen), 1x TURBO
709 reaction buffer and 5-10 µg of total RNA. Reactions were performed at 37 °C for 30 min,
710 stopped by the addition of 15 mM of EDTA (pH 8.0) followed by an incubation at 75 °C for
711 10 min, and purification using the RNA Clean & Concentrator-5 kit (Zymo Research).

712
713 **RNA-Seq**
714
715 RNA sequencing (RNA-Seq) libraries were generated from 250 ng of DNase-treated RNA
716 with the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB) following the
717 Poly(A) mRNA Magnetic Isolation Module protocol. Sequencing was performed on a
718 AVITI platform (Element Biosciences) in a 150 bp paired-end run. Raw reads were filtered
719 using fastp v0.23.2⁶³ and mapped against the *A. ludens* reference genome with STAR
720 v2.7.10b⁷⁰ using the two-pass spliced alignment mode along with gene models generated
721 by BRAKER2. Mapped reads were quantified by featureCounts⁷⁵ implemented in subread
722 v2.0.4 (<https://subread.sourceforge.net/>) and resulting count matrix used as input for
723 differential expression analysis with the Bioconductor package edgeR v4.0.12⁷⁶. Briefly,
724 counts were first filtered by the *filterByExpr* function and normalized using the TMM-
725 method (Trimmed mean of *M*-values). Differences between brown (*n* = 3) and black (*n* =
726 3) pupae samples were estimated with the quasi-likelihood (QL) F-test against the
727 threshold of log₂ fold-change (logFC) > 2 using the *glmTreat* function. Genes were
728 considered differentially expressed when false discovery rate (FDR) < 0.05. Read counts

729 were converted to RPKM (reads per kilobase of transcript per million reads mapped) with
730 the *rpkm* function and used as a descriptive measure of gene expression for visualization.
731

732 ***HiFi long-read mapping***

733

734 High molecular weight (HMW) DNA was extracted from single adult flies using the
735 MagAttract HMW DNA Kit (QIAGEN). Samples were quantified using the Qubit dsDNA
736 BR assay (Invitrogen) and size checked in the Femto Pulse System (Agilent
737 Technologies). Extractions were further subjected to a 2x bead cleanup, and their purity
738 determined on the basis of OD 260/230 and 260/280 ratios estimated in a DS-11
739 spectrophotometer (DeNovix). Clean HMW DNA samples were sheared to a mean size
740 of 20 kb using the Megaruptor 2 (Diagenode), and size checked on the Fragment analyzer
741 (Agilent Technologies) with the HS Large Fragment kit. SMRTBell libraries were prepared
742 using approximately 1 µg of sheared DNA with the SMRTBell Prep Kit 3.0 (Pacific
743 Biosciences). The prepared libraries were bound and sequenced on a 24M SMRT Cell
744 on a Revio system (Pacific Biosciences) using a 24 h movie collection time. Circular
745 consensus sequences were obtained using SMRTLink v13.0 on the Revio instrument.
746 Highly accurate long-reads (HiFi reads) were filtered for adapter contamination with
747 HiFiAdapterFilt v.3.0.1⁷⁷ and mapped to the *A. ludens* reference genome with minimap2
748 v.2.24⁷⁸ (-ax map-hifi). Mapping files were examined in the IGV tool v2.16.2-0⁶⁸.
749

750

Manual gene annotation

751

752 Gene models for *ebony* orthologues (Supplementary Data 1) were manually curated by
753 mapping the *D. melanogaster* Ebony peptide sequence (FlyBase: FBgn0000527) against
754 each reference genome using tBLASTn (BLOSUM45 matrix, e-value ≤ 1e-5). Highly
755 similar genomic regions were retrieved with BEDTools v2.31.1-0⁷⁹ and intron-exon
756 boundaries modelled using Exonerate v2.4.0-7⁸⁰ protein2genome mode (--refine full).
757 Intron-exon boundaries were manually annotated, coding sequences were translated
758 using the ExPASy translate tool (<https://web.expasy.org/translate/>), and signature motifs
759 identified using DELTA-BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) against the
760 NCBI's non-redundant protein database.

761

Semiquantitative RT-PCR and qualitative end-point PCR

763

764 For RT-PCRs, first-strand cDNAs were synthesized from 1 µg of DNase-treated RNA
765 using the MMLV Reverse Transcriptase Synthesis Kit (Lucigen) protocol with the
766 Oligo(dT)₂₁ primer. Reverse transcriptions were performed at 37 °C for 1 h, terminated at
767 85 °C for 5 min and stored at -20 °C. Reverse Transcription PCRs (RT-PCR) were carried
768 out for a final volume of 12.5 µL containing 1x OneTaq HS Quick-Load Master Mix with

769 Standard Buffer (NEB), 0.2 μ M of each forward and reverse Intron-flanking primers
770 (Supplementary Table 7), and an equivalent amount of cDNA synthetized from 50 ng of
771 total RNA. Amplifications were carried out in the following conditions: 94 °C for 3 min, 40
772 cycles of [94 °C for 30 s, 55 °C for 30 s and 68 °C for 1 min], and a final extension at 68
773 °C for 5 min. All experiments included independent biological ($n = 3$) and technical ($n =$
774 3) replicates, no template controls (cDNA omitted from the reaction and volume adjusted
775 with nuclease-free water), and a genomic DNA control (total DNA extraction from a single
776 *A. ludens* wildtype individual). Amplifications were resolved in 1% agarose gels stained
777 with Midori Green Advance DNA Stain (at 1:15000 dilution factor; Nippon Genetics) in
778 0.5x TBE buffer. Images were acquired in a Gel Doc XR+ Gel Documentation System
779 (Bio-Rad) using predefined setups in the software Image Lab v.6.0.1. Contrast and light
780 corrections were made in the same software. For end-point PCRs, genomic DNA was
781 extracted from whole adult flies using the NucleoMag Tissue Kit (Macherey-Nagel), and
782 a total of 50 ng was used as a template for PCR amplifications encompassing *ebony*
783 exons e1 and e2 with OneTaq HS Quick-Load Master Mix with Standard Buffer (NEB) as
784 described before.

785

786 **Cytogenetics**

787

788 Third-instar larvae salivary glands of wildtype *A. ludens* were dissected in 45% acetic acid
789 and fixed in glacial acetic acid: water: lactic acid (3:2:1) solution for about 5 min.
790 Preparations were stored overnight at -20 °C and dipped into liquid nitrogen in the next
791 day. Slides were dehydrated in absolute ethanol, air dried, and stored at 4 °C. DNA probes
792 for fluorescent *in situ* hybridization (FISH) of *ebony* were prepared by PCR for a final
793 volume of 25 μ L containing 1x Platinum II Hot-Start Green PCR Master Mix (Invitrogen),
794 0.2 μ M of each forward and reverse primer (Supplementary Table 7), and 100 ng of total
795 DNA. Amplifications were carried out as follows: 94 °C for 5 min, 35 cycles of [94 °C for
796 45 s, 56 °C for 30 s and 72 °C for 1.5 min], and a final extension at 72 °C for 1 min. Probe
797 labeling was performed according to the DIG DNA Labelling Kit (Roche) protocol, and
798 slides were prepared for fluorescence detection as previously described¹⁷. Hybridizations
799 in isolated chromosomes were photographed in a Leica DM2000 LED microscope using
800 a Leica DMC5400 digital camera and analyzed with the LAS X software v3.7.0 in the
801 context of the mexfly salivary gland chromosome maps⁸¹.

802

803 **CRISPR/Cas9**

804

805 Knockout experiments in *A. ludens*, *C. capitata*, *B. dorsalis*, and *Z. cucurbitae* were
806 performed according to a proposed standard protocol for Cas9-mediated gene disruption
807 in non-model tephritids⁶². Briefly, single guide RNAs (sgRNAs) were designed against the
808 *ebony* gene using CRISPOR v.5.01⁸² and their reference genomes (Supplementary Table

809 7). Templates for sgRNAs were generated by PCR with Phusion High-Fidelity DNA
810 Polymerase (NEB), purified using the QIAquick PCR purification kit (QIAGEN), and used
811 for T7 *in-vitro* transcription with MEGAshortscript Kit (Invitrogen). Purified Cas9 protein
812 conjugated with a nuclear localization signal (NLS) was obtained commercially (PNA Bio).
813 Microinjection mixes contained end-concentrations of 360 ng/μL Cas9, 200 ng/μL sgRNA,
814 1x injection buffer (0.1 mM Sodium phosphate buffer, 5 mM KCl), and 300 mM KCl in a
815 final volume of 10 μL in nuclease-free water. Ribonucleoprotein (RNP) complexes were
816 pre-assembled at 37 °C for 15 min and delivered through the chorion into the posterior
817 end of preblastoderm embryos within the first 60 min after egg-laying (AEL). Mosaic
818 black-brown puparia at G₀ were inbred to establish biallelic mutant lines.
819

820 Microinjections in *A. fraterculus* followed the same protocol with minor modifications. The
821 sgRNA was designed using CHOPCHOP v.3⁸³ in combination with Geneious v.2023.0.2
822 (<https://www.geneious.com/>) in the context of *A. fraterculus* draft genome. Both sgRNA
823 (Merck) and purified Cas9 protein (PNA Bio) were obtained commercially. RNPs were
824 pre-assembled at 37 °C for 15 min, followed by 5 min at room temperature. Embryos were
825 collected every 30 min, dechorionated with a 30% hypochlorite solution for 80 s, and
826 microinjected within 120 min AEL. Injected G₀ flies were individually backcrossed to
827 wildtype flies. The resulting G₁ offspring were inbred, and all G₂ displaying the bp
828 phenotype were intercrossed. Adult individuals at G₃ were genotyped using non-lethal
829 methods, and flies harboring the -7 bp deletion allele were inbred to establish a
830 homozygous mutant strain at G₄.
831

832 For knockout experiments in *B. tryoni*, purified Cas9 protein (IDT Alt-R S.p. Cas9
833 Nuclease 3NLS) and guide RNAs (IDT customized Alt-R crRNAs and universal Alt-R
834 tracrRNA) were obtained commercially. Two customized crRNAs were designed using
835 CRISPOR v.5.01⁸² in the context of the species reference genome and a multiple
836 sequence alignment of target regions to avoid polymorphisms in the injection population.
837 Two dual-guide RNA (dgRNA) duplexes were annealed separately by mixing 40 μM of
838 each specific crRNA with 40 μM of universal tracrRNA in Nuclease-Free Duplex Buffer
839 and heating at 95 °C for 5 min before cooling to room temperature. The final injection mix
840 contained 300 ng/μL Cas9 protein, 10 μM of each dgRNA, and 1x injection buffer (0.1 mM
841 sodium phosphate buffer pH 6.8, 5 mM KCl) in a final volume of 10 μL in Nuclease-Free
842 Duplex Buffer. The injection mix was incubated at room temperature for 5 minutes to allow
843 RNP formation and delivered into the posterior end of embryos within 60 min AEL.
844 Surviving G₀ adult flies were individually backcrossed to wildtype flies, and their G₁
845 progeny were combined and allowed to interbreed. Biallelic *ebony* mutants were
846 recovered at G₂ and used to establish the *Bt-ebony* homozygous mutant strain
847 (Supplementary Fig. 7, 8).
848

849 **Genotyping**

850

851 Mosaic knockouts (mKO) of *A. ludens*, *C. capitata*, *B. dorsalis*, and *Z. cucurbitae* were
852 genotyped by deep-sequencing of indexed amplicons surrounding the Cas9 cut sites, as
853 previously described⁶². Briefly, total DNA was extracted from whole adult flies using the
854 NucleoMag Tissue Kit (Macherey-Nagel) and used as a template for a two-step PCR with
855 Phusion High-Fidelity DNA polymerase (NEB) and primers in Supplementary Table 7.
856 Indexed amplicons were purified with the QIAquick PCR purification kit (QIAGEN), pooled
857 in equimolar ratios, and sequenced on Illumina iSeq 100 system (150 bp paired-end
858 reads). Targeted genome modifications were inspected using CRISPResso2 v2.2.14-0⁸⁴.
859 Biallelic KO mutants examined in phenotypic analysis were genotyped in the same way.
860

861

862 Total DNA from whole G₂ adults of *A. fraterculus* was extracted using the ExtractMe
863 Genomic DNA kit (QIAGEN) and used as a template for PCR amplifications with Platinum
864 Green Hot Start PCR Master Mix (Invitrogen) and primers in Supplementary Table 7.
865 Reactions were cycled as follows: 94 °C for 2 min, 34 cycles of [94 °C for 15 s, 59 °C for
866 15 s, and 68 °C for 15 s], and a final extension at 68 °C for 5 min. Amplification products
867 were purified using the ZR-96 DNA Clean-up kit (Zymo Research) and Sanger sequenced
868 on an ABI 3730XL DNA Analyzer system (Applied Biosystems). Site-specific modifications
869 were inspected in a multiple sequence alignment produced by Geneious v.2023.0.2. Non-
870 lethal genotyping of G₃ flies was carried out using single adult legs with Platinum Direct
871 PCR Universal Master Mix (Invitrogen).

872

873 Amplification of DNA surrounding the Cas9 cut sites in *B. tryoni* was performed directly
874 from single adult legs using the Phire Animal Tissue Direct PCR Kit (Thermo Scientific)
875 and primers in Supplementary Table 7. Amplification conditions were as follows: 98 °C for
876 5 min, 35 cycles of [98 °C for 5 s, 60 °C for 5 s, and 72 °C for 20 s], and a final extension
877 at 72 °C for 1 min. For the identification of heterozygous G₂ brown pupal flies,
878 amplifications were submitted to cleavage assays using the T7 Endonuclease 1 (T7E1)
879 enzyme protocol (NEB). PCR products of confirmed G₂ heterozygous ($n = 48$) and final
880 ebony-null mutants ($n = 30$) were Sanger sequenced on an ABI 3730XL DNA Analyzer
881 system (Applied Biosystems). Targeted genome modifications were inspected in a
882 multiple sequence alignment produced by Geneious v.2023.0.2.

883

Performance assays

884

885 Segregation analysis was performed to measure the viability of *B. tryoni* individuals
886 carrying ebony-null alleles. To account for environmental variations, data were collected
887 after the 1st and 2nd rounds of mass backcrossing between ebony males and wildtype
888 females during the establishment of the *Bt*-ebony strain (Supplementary Fig. 8). All F1

889 individuals were interbred, and phenotypic segregation at F2 was tested against the 3:1
890 Mendelian inheritance ratio of phenotypes. A subset of phenotypically wildtype F2 flies
891 were further genotyped by T7E1 assays, and the segregation of wildtype to heterozygous
892 was tested against a 1:2 inheritance ratio of genotypes. Pearson's chi-square goodness-
893 of-fit tests were used to determine significant deviation from expected ratios as
894 implemented in the *stats* package in R v4.3.2.

895

896 Fitness analysis was performed to measure the relative fecundity and development of
897 *B. tryoni* *ebony* mutants. Virgin females and naive males from the *Bt*-*ebony* and wildtype
898 Ourimbah strains were sorted within three days after adult emergence and kept separated
899 until experimentation. The following crosses were performed using 8-to-11-days-old flies
900 (10 males and 10 females): (1) wildtype males vs. wildtype females; (2) *ebony* males vs.
901 wildtype females; (3) wildtype males vs. *ebony* females; and
902 (4) *ebony* males vs. *ebony* females. Assays were performed over three consecutive
903 generations to account for environmental variations (Supplementary Fig. 8). The first
904 batch of eggs was collected 48 h after experiment setups. Eggs were collected for 24 h,
905 and the number of eggs laid was counted daily for 5 days to assess fecundity ratios.
906 Collected eggs were placed on larval diet and resulting larvae were counted 3 days after
907 incubation to estimate embryonic hatching rates. The number of larvae that reached the
908 pupal stage was used to estimate pupariation rates. Emerging adults were recorded daily
909 until no new eclosions were observed and categorized as fully emerged, partially
910 emerged (remaining in the puparium), and deformed (emerged flies with twisted or
911 deformed wings). Significant differences between groups at $p \leq 0.05$ were determined by
912 one-way ANOVA followed by a Tukey's Honest Significant Difference (HSD) tests using
913 the *stats* package in R v.4.3.2.

914

915 **Data availability**

916

917 The following reference genome assemblies were used in this study: *A. ludens* (GenBank:
918 GCA_028408465.1), *C. capitata* (GenBank: GCA_000347755.4), *B. dorsalis* (GenBank:
919 GCA_023373825.1), *B. tryoni* (GenBank: GCA_016617805.2), and *Z. cucurbitae*
920 (GenBank: GCA_028554725.2). All raw sequencing data generated in this study are
921 deposited in the NCBI Sequence Read Archive (SRA) database under the BioProject
922 PRJNA1139181. SRA accession numbers for each sample are detailed in Supplementary
923 Table 6. Final de novo genome annotation files for *A. ludens* are archived on figshare
924 repository at <https://doi.org/10.6084/m9.figshare.26376841>. Manually curated
925 annotations of *ebony* orthologues can be found in Supplementary Data 1. All primers used
926 in this study are listed in Supplementary Table 7. The source data for fitness analysis of
927 the *Bt*-*ebony* strain is available as Supplementary Table 5.

928

929 **References**

930

931 1. True, J. R. Insect melanism: the molecules matter. *Trends in ecology & evolution* **18**,
932 640–647 (2003).

933 2. Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation:
934 genetic mechanisms and the potential consequences of pleiotropy. in *Seminars in*
935 *cell & developmental biology* vol. 20 65–71 (Elsevier, 2009).

936 3. Wittkopp, P. J., Carroll, S. B. & Kopp, A. Evolution in black and white: genetic control
937 of pigment patterns in *Drosophila*. *TRENDS in Genetics* **19**, 495–504 (2003).

938 4. Duyck, P., Jourdan, H. & Mille, C. Sequential invasions by fruit flies (Diptera:
939 Tephritidae) in Pacific and Indian Ocean islands: A systematic review. *Ecology and*
940 *evolution* **12**, e8880 (2022).

941 5. Malacrida, A. R. *et al.* Globalization and fruitfly invasion and expansion: the medfly
942 paradigm. *Genetica* **131**, 1–9 (2007).

943 6. Clarke, A. R. Why so many polyphagous fruit flies (Diptera: Tephritidae)? A further
944 contribution to the ‘generalism’debate. *Biological Journal of the Linnean Society*
945 **120**, 245–257 (2017).

946 7. White, I. M. & Elson-Harris, M. M. *Fruit Flies of Economic Significance: Their*
947 *Identification and Bionomics*. (CAB international, 1992).

948 8. Suckling, D. M. *et al.* Eradication of tephritid fruit fly pest populations: outcomes and
949 prospects. *Pest management science* **72**, 456–465 (2016).

950 9. Knipling, E. F. Possibilities of insect control or eradication through the use of
951 sexually sterile males. *Journal of Economic Entomology* **48**, 459–462 (1955).

952 10. Robinson, A. S. & Van Heemert, C. *Ceratitis capitata*—a suitable case for genetic
953 sexing. *Genetica* **58**, 229–237 (1982).

954 11. McInnis, D. O. *et al.* Development of a pupal color-based genetic sexing strain of the
955 melon fly, *Bactrocera cucurbitae* (Coquillett)(Diptera: Tephritidae). *Annals of the*
956 *Entomological Society of America* **97**, 1026–1033 (2004).

957 12. McCombs, S. D. & Saul, S. H. Translocation-Based Genetic Sexing System for the
958 Oriental Fruit Fly (Diptera: Tephritidae) Based on Pupal Color Dimorphism. *Annals of*
959 *the Entomological Society of America* **88**, 695–698 (1995).

960 13. Zepeda-Cisneros, C. S. *et al.* Development, genetic and cytogenetic analyses of
961 genetic sexing strains of the Mexican fruit fly, *Anastrepha ludens* Loew (Diptera:
962 Tephritidae). *BMC Genomic Data* **15**, 1–11 (2014).

963 14. Ramírez-Santos, E. *et al.* A novel genetic sexing strain of *Anastrepha ludens* for
964 cost-effective sterile insect technique applications: improved genetic stability and
965 rearing efficiency. *Insects* **12**, 499 (2021).

966 15. Meza, J. S., Bourtzis, K., Zacharopoulou, A., Gariou-Papalexiou, A. & Cáceres, C.
967 Development and characterization of a pupal-colour based genetic sexing strain of
968 *Anastrepha fraterculus* sp. 1 (Diptera: Tephritidae). *BMC genetics* **21**, 1–9 (2020).

969 16. Rendón, P., Lance, D. & Stewart, J. Medfly (Diptera: Tephritidae) genetic sexing:
970 large-scale field comparison of males-only and bisexual sterile fly releases in
971 Guatemala. *Journal of economic entomology* **97**, 1547–1553 (2004).

972 17. Ward, C. M. *et al.* White pupae phenotype of tephritids is caused by parallel
973 mutations of a MFS transporter. *Nature Communications* **12**, 491 (2021).

974 18. Wappner, P. *et al.* White pupa: a *Ceratitis capitata* mutant lacking catecholamines for
975 tanning the puparium. *Insect biochemistry and molecular biology* **25**, 365–373
976 (1995).

977 19. Dion, W. A., Steenwinkel, T. E. & Werner, T. From *Aedes* to *Zeugodacus*: A review of
978 dipteran body coloration studies regarding evolutionary developmental biology, pest
979 control, and species discovery. *Current opinion in genetics & development* **69**, 35–
980 41 (2021).

981 20. Morgan, T. H. & Bridges, C. B. *Sex-Linked Inheritance in Drosophila*. (Carnegie
982 institution of Washington, 1916).

983 21. Han, Q. *et al.* Identification of *Drosophila melanogaster* yellow-f and yellow-f2
984 proteins as dopachrome-conversion enzymes. *Biochemical Journal* **368**, 333–340
985 (2002).

986 22. Bridges, C. B. & Morgan, T. H. *The Third-Chromosome Group of Mutant Characters*
987 of *Drosophila Melanogaster*. (Carnegie Institution of Washington, 1923).

988 23. Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the *Drosophila*
989 yellow and ebony proteins in the development and evolution of pigment patterns.
990 (2002).

991 24. Zhang, Y. *et al.* Mitochondrial phylogenomics reveals the evolutionary and
992 biogeographical history of fruit flies (Diptera: Tephritidae). *Entomologia Generalis*
993 (2022).

994 25. Rössler, Y. & Koltin, Y. The Genetics of the Mediterranean Fruitfly, *Ceratitis capitata*:
995 Three Morphological Mutations. *Annals of the Entomological Society of America* **69**,
996 604–608 (1976).

997 26. McCombs, S. D. & Saul, S. H. Linkage analysis of three new alleles affecting
998 puparium morphology in the oriental fruit fly, *Bactrocera dorsalis* (Diptera:
999 Tephritidae). *Annals of the Entomological Society of America* **85**, 799–804 (1992).

1000 27. McCombs, S. D., McInnis, D. O. & Saul, S. H. Genetic studies of the melon fly,
1001 *Bactrocera cucurbitae*. in *Fruit Fly Pests* 237–241 (CRC Press, 1996).

1002 28. True, J. R., Edwards, K. A., Yamamoto, D. & Carroll, S. B. *Drosophila* wing melanin
1003 patterns form by vein-dependent elaboration of enzymatic prepatterns. *Current
1004 Biology* **9**, 1382–1391 (1999).

1005 29. Schutze, M. K. *et al.* One and the same: integrative taxonomic evidence that *B*
1006 *actrocera invadens* (Diptera: Tephritidae) is the same species as the *O*riental fruit
1007 fly *B actrocera dorsalis*. *Systematic Entomology* **40**, 472–486 (2015).

1008 30. Zhang, Y. *et al.* Genomes of the cosmopolitan fruit pest *Bactrocera dorsalis* (Diptera:
1009 Tephritidae) reveal its global invasion history and thermal adaptation. *Journal of
1010 advanced research* **53**, 61–74 (2023).

1011 31. Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J.
1012 Potential impacts of climate change on habitat suitability for the Queensland fruit fly.
1013 *Scientific Reports* **7**, 13025 (2017).

1014 32. Wright, T. R. The genetics of biogenic amine metabolism, sclerotization, and
1015 melanization in *Drosophila melanogaster*. *Advances in genetics* **24**, 127–222 (1987).

1016 33. Hopkins, T. L. & Kramer, K. J. Insect cuticle sclerotization. *Annual review of
1017 entomology* **37**, 273–302 (1992).

1018 34. Walter, M. F. *et al.* Catecholamine metabolism and in vitro induction of premature
1019 cuticle melanization in wild type and pigmentation mutants of *Drosophila*

1020 melanogaster. *Archives of Insect Biochemistry and Physiology: Published in*
1021 *Collaboration with the Entomological Society of America* **31**, 219–233 (1996).

1022 35. Massey, J. H. & Wittkopp, P. J. The genetic basis of pigmentation differences within
1023 and between Drosophila species. *Current topics in developmental biology* **119**, 27–
1024 61 (2016).

1025 36. Wappner, P., Kramer, K. J., Manso, F., Hopkins, T. L. & Quesada-Allue, L. A. N-β-
1026 alanyldopamine metabolism for puparial tanning in wild-type and mutant Niger
1027 strains of the Mediterranean fruit fly, *Ceratitis capitata*. *Insect Biochemistry and*
1028 *Molecular Biology* **26**, 585–592 (1996).

1029 37. Sherald, A. F. Sclerotization and coloration of the insect cuticle. *Experientia* **36**, 143–
1030 146 (1980).

1031 38. Futahashi, R. *et al.* yellow and ebony are the responsible genes for the larval color
1032 mutants of the silkworm *Bombyx mori*. *Genetics* **180**, 1995–2005 (2008).

1033 39. Li, M. *et al.* Germline Cas9 expression yields highly efficient genome engineering in
1034 a major worldwide disease vector, *Aedes aegypti*. *Proceedings of the National*
1035 *Academy of Sciences* **114**, E10540–E10549 (2017).

1036 40. Feng, X. *et al.* Evaluation of gene knockouts by CRISPR as potential targets for the
1037 genetic engineering of the mosquito *Culex quinquefasciatus*. *The CRISPR Journal*
1038 **4**, 595–608 (2021).

1039 41. Lamb, A. M., Wang, Z., Simmer, P., Chung, H. & Wittkopp, P. J. ebony affects
1040 pigmentation divergence and cuticular hydrocarbons in *Drosophila americana* and
1041 *D. novamexicana*. *Frontiers in ecology and evolution* **8**, 184 (2020).

1042 42. Spana, E. P. *et al.* speck, first identified in *Drosophila melanogaster* in 1910, is
1043 encoded by the arylalkalamine N-acetyltransferase (AANAT1) gene. *G3: Genes,*
1044 *Genomes, Genetics* **10**, 3387–3398 (2020).

1045 43. Wappner, P. *et al.* Role of catecholamines and β-alanine in puparial color of wild-
1046 type and melanic mutants of the Mediterranean fruit fly (*Ceratitis capitata*). *Journal*
1047 *of insect physiology* **42**, 455–461 (1996).

1048 44. Ahmed-Braimah, Y. H. & Sweigart, A. L. A Single Gene Causes an Interspecific
1049 Difference in Pigmentation in *Drosophila*. *Genetics* **200**, 331–342 (2015).

1050 45. Phillips, A. M., Smart, R., Strauss, R., Brembs, B. & Kelly, L. E. The *Drosophila* black
1051 enigma: the molecular and behavioural characterization of the black1 mutant allele.
1052 *Gene* **351**, 131–142 (2005).

1053 46. Sivinski, J. & Pereira, R. DO WING MARKINGS IN FRUIT FLIES (DIPTERA:
1054 TEPHRITIDAE) HAVE SEXUAL SIGNIFICANCE? *flen* **88**, 321–324 (2005).

1055 47. Gompel, N., Prud'homme, B., Wittkopp, P. J., Kassner, V. A. & Carroll, S. B. Chance
1056 caught on the wing: cis-regulatory evolution and the origin of pigment patterns in
1057 *Drosophila*. *Nature* **433**, 481–487 (2005).

1058 48. Arnoult, L. *et al.* Emergence and Diversification of Fly Pigmentation Through
1059 Evolution of a Gene Regulatory Module. *Science* **339**, 1423–1426 (2013).

1060 49. Pérez, M. M., Bochicchio, P. A., Rabassi, A. & Quesada-Allué, L. A. Extracellular
1061 activity of NBAD-synthase is responsible for colouration of brown spots in *Ceratitis*
1062 *capitata* wings. *Journal of Insect Physiology* **107**, 224–232 (2018).

1063 50. Futahashi, R. & Osanai-Futahashi, M. Pigments in Insects. in *Pigments, Pigment*
1064 *Cells and Pigment Patterns* (eds. Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R.

1065 & Akiyama, T.) 3–43 (Springer, Singapore, 2021). doi:10.1007/978-981-16-1490-
1066 3_1.

1067 51. Leblanc, L., Hossain, M. A., Khan, S. A., San Jose, M. & Rubinoff, D. A Preliminary
1068 Survey of the Fruit Flies (Diptera: Tephritidae: Dacinae) of Bangladesh. (2013).

1069 52. Schutze, M. K. *et al.* Synonymization of key pest species within the Bactrocera
1070 dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a
1071 review of 20 years of integrative morphological, molecular, cytogenetic, behavioural
1072 and chemoecological data. *Systematic Entomology* **40**, 456–471 (2015).

1073 53. De Meyer, M. *et al.* A review of the current knowledge on *Zeugodacus cucurbitae*
1074 (Coquillett) (Diptera, Tephritidae) in Africa, with a list of species included in
1075 *Zeugodacus*. *Zookeys* 539–557 (2015) doi:10.3897/zookeys.540.9672.

1076 54. Rebeiz, M., Pool, J. E., Kassner, V. A., Aquadro, C. F. & Carroll, S. B. Stepwise
1077 modification of a modular enhancer underlies adaptation in a *Drosophila* population.
1078 *Science* **326**, 1663–1667 (2009).

1079 55. Pool, J. E. & Aquadro, C. F. The genetic basis of adaptive pigmentation variation in
1080 *Drosophila melanogaster*. *Molecular Ecology* **16**, 2844–2851 (2007).

1081 56. Cooley, A. M., Shefner, L., McLaughlin, W. N., Stewart, E. E. & Wittkopp, P. J. The
1082 ontogeny of color: developmental origins of divergent pigmentation in *Drosophila*
1083 *americana* and *D. novamexicana*. *Evolution & Development* **14**, 317–325 (2012).

1084 57. Takahashi, A. Pigmentation and behavior: potential association through pleiotropic
1085 genes in *Drosophila*. *Genes & Genetic Systems* **88**, 165–174 (2013).

1086 58. Xu, X., Harvey-Samuel, T., Yang, J., You, M. & Alphey, L. CRISPR/Cas9-based
1087 functional characterization of the pigmentation gene ebony in *Plutella xylostella*.
1088 *Insect Molecular Biology* **30**, 615–623 (2021).

1089 59. Sun, J., Zheng, X., Ouyang, G., Qian, H. & Chen, A. Ebony plays an important role
1090 in egg hatching and 30k protein expression of silkworm (*Bombyx mori*). *Archives of*
1091 *Insect Biochemistry and Physiology* **113**, e22014 (2023).

1092 60. Billeter, J.-C. & Levine, J. The role of cVA and the Odorant binding protein Lush in
1093 social and sexual behavior in *Drosophila melanogaster*. *Frontiers in Ecology and*
1094 *Evolution* **3**, (2015).

1095 61. Massey, J. H. *et al.* Pleiotropic Effects of ebony and tan on Pigmentation and
1096 Cuticular Hydrocarbon Composition in *Drosophila melanogaster*. *Frontiers in*
1097 *Physiology* **10**, (2019).

1098 62. Paulo, D. F. *et al.* A Unified Protocol for CRISPR/Cas9-Mediated Gene Knockout in
1099 Tephritid Fruit Flies Led to the Recreation of White Eye and White Puparium
1100 Phenotypes in the Melon Fly. *Journal of Economic Entomology* **115**, 2110–2115
1101 (2022).

1102 63. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
1103 preprocessor. *Bioinformatics* **34**, i884–i890 (2018).

1104 64. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration
1105 of BWA-MEM for multicore systems. in *2019 IEEE international parallel and*
1106 *distributed processing symposium (IPDPS)* 314–324 (IEEE, 2019).

1107 65. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**,
1108 giab008 (2021).

1109 66. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural
1110 variant read extraction. *Bioinformatics* **30**, 2503–2505 (2014).

1111 67. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–
1112 2158 (2011).

1113 68. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer
1114 (IGV): high-performance genomics data visualization and exploration. *Briefings in
1115 bioinformatics* **14**, 178–192 (2013).

1116 69. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable
1117 element families. *Proceedings of the National Academy of Sciences* **117**, 9451–9457
1118 (2020).

1119 70. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
1120 (2013).

1121 71. Brúna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2:
1122 automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS
1123 supported by a protein database. *NAR genomics and bioinformatics* **3**, lqaa108
1124 (2021).

1125 72. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO
1126 update: novel and streamlined workflows along with broader and deeper
1127 phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes.
1128 *Molecular biology and evolution* **38**, 4647–4654 (2021).

1129 73. Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.
1130 *Bioinformatics* **30**, 1236–1240 (2014).

1131 74. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.
1132 eggNOG-mapper v2: functional annotation, orthology assignments, and domain
1133 prediction at the metagenomic scale. *Molecular biology and evolution* **38**, 5825–
1134 5829 (2021).

1135 75. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program
1136 for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930
1137 (2014).

1138 76. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
1139 differential expression analysis of digital gene expression data. *bioinformatics* **26**,
1140 139–140 (2010).

1141 77. Sim, S. B., Corpuz, R. L., Simmonds, T. J. & Geib, S. M. HiFiAdapterFilt, a memory
1142 efficient read processing pipeline, prevents occurrence of adapter sequence in
1143 PacBio HiFi reads and their negative impacts on genome assembly. *BMC genomics*
1144 **23**, 1–7 (2022).

1145 78. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
1146 3094–3100 (2018).

1147 79. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
1148 genomic features. *Bioinformatics* **26**, 841–842 (2010).

1149 80. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological
1150 sequence comparison. *BMC bioinformatics* **6**, 1–11 (2005).

1151 81. Garcia-Martinez, V. *et al.* Mitotic and polytene chromosome analysis in the Mexican
1152 fruit fly, *Anastrepha ludens* (Loew) (Diptera: Tephritidae). *Genome* **52**, 20–30 (2009).

1153 82. Conordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for
1154 CRISPR/Cas9 genome editing experiments and screens. *Nucleic Acids Research*
1155 **46**, W242–W245 (2018).

1156 83. Labun, K. *et al.* CHOPCHOP v3: expanding the CRISPR web toolbox beyond
1157 genome editing. *Nucleic acids research* **47**, W171–W174 (2019).

1158 84. Clement, K. *et al.* CRISPResso2 provides accurate and rapid genome editing
1159 sequence analysis. *Nat Biotechnol* **37**, 224–226 (2019).

1160

1161 **Acknowledgements**

1162

1163 The authors would like to thank N. Barr, E. Braswell, T. Todd, H. Conway, K. Pina, and A.
1164 Arellano for their support with microinjections and rearing of *A. ludens* at the USDA-
1165 APHIS Moore Air Base Facility (Texas, USA). We thank D. Rubinoff and C. Doorenweerd
1166 for their insights into the adult color patterns of *B. dorsalis*. We would also like to
1167 acknowledge C. Sylva for her assistance in fly rearing at the USDA-ARS-PBARC (Hawaii,
1168 USA), M. Okamoto for confirming *Bt*-ebony genotypes, and A. Spengler for the scientific
1169 illustrations displayed in Fig. 1b. This research was supported by the in-house
1170 appropriated USDA-ARS project *Advancing Molecular Pest Management, Diagnostics,*
1171 *and Eradication of Fruit Flies and Invasive Species* (no. 2040-22430-028-000-D), the
1172 USDA Plant Protection Act Section 7721 project *Develop Techniques to Rapidly Generate*
1173 *Non-Transgenic Female Lethal Genetic Sexing Strains in Tephritid Pests* (no. 6.0179),
1174 the HSF 18-6 Hermon Slade Foundation grant, and the Insect Pest Control
1175 Subprogramme of the Joint FAO/IAEA Centre of Nuclear Techniques in Food and
1176 Agriculture. This study also benefitted from discussions at meetings for the Coordinated
1177 Research Project *Generic Approach for the Development of Genetic Sexing Strains for*
1178 *SIT Applications* (no. D44003), funded by the International Atomic Energy Agency (IAEA),
1179 and used resources provided by the SCINet project of the USDA-ARS projects no. 0201-
1180 88888-003-000D and 0201-88888-002-000D. USDA is an equal opportunity provider and
1181 employer. Mention of trade names does not imply an endorsement from USDA or the
1182 Federal Government.

1183

1184 **Contributions**

1185

1186 The initial evidence linking *ebony* to the black pupae phenotype in the *A. ludens* GUA10
1187 strain was independently conceived by DFP and SMG at the USDA-ARS-PBARC
1188 (Hawaii, USA) and by CMW, TNMN and SWB at the University of Melbourne (Melbourne,
1189 AUS). This work combines and expands the data of these two preliminary studies. DFP,
1190 TNMN, CMW, AC, PC, KB, SWB, SBS and SMG conceptualized this study. SBS and
1191 SMG designed and supervised the establishment of the *A. ludens* F4 mapping population
1192 in Guatemala. PR and REYR established the mexfly mapping population, collected and
1193 pre-processed samples for WGS and RNA-Seq. RLC prepared samples and libraries for
1194 WGS, RNA-Seq, and HiFi sequencing with the assistance of ANK. DFP performed the
1195 bioinformatics analyses with insights from SBS and SMG. GG performed the *in situ*
1196 hybridization of *ebony* in *A. ludens* chromosomes. DFP performed microinjections in *A.*

1197 *ludens* with support from ANK. CRISPR experiments in *A. fraterculus* were made by
1198 AASC, and strains were maintained by AASC. DFP performed CRISPR experiments in
1199 *C. capitata*, *B. dorsalis*, and *Z. cucurbitae*. DFP established and maintained KO strains
1200 with the assistance of ANK. TNMN performed CRISPR experiments in *B. tryoni*. The *Bt-*
1201 *ebony* mutant strain was established and maintained by AO, AC, EF and TNMN. TNMN,
1202 AO, AC, and EF performed segregation and fitness analysis of *Bt-ebony* mutants. PC,
1203 KB, SBS, SWB, and SMG supervised, administered, and/or secured funding for this work.
1204 The same authors assisted with data interpretation and manuscript revision. DFP wrote
1205 the manuscript with substantial insights from the initial draft written by TNMN. All authors
1206 read and approved the final version of the manuscript.
1207

1208 Competing interests

1210 The authors declare no competing interests.
1211

1212 Figure Legends

1214 **Fig. 1: The *ebony* gene is linked to the black pupae phenotype in GUA10.** **a** The bp
1215 phenotype is the sex-linked trait used for sex-sorting the mexfly GUA10 strain. Females
1216 from GUA10 exhibit black larval anal lobes (al) and pupal cases, developing into darker
1217 adults. Mutant adults are noticeable due to their darker wing stripes (wg), abdomen (ab),
1218 and ovipositor (ov). **b** To identify the loci responsible for the bp phenotype, we
1219 introgressed the GUA10 *bp* mutation (*bp*^{-(GUA10)}) into a common wildtype genetic
1220 background. Subsequently, we established and whole-genome sequenced a F4 mapping
1221 population where siblings develop either wildtype brown (wt) or mutant black (bp) pupal
1222 cases. **c** Genetic differentiation (F_{ST}) between black and brown pupae siblings (calculated
1223 for 100 Kb windows at 20 Kb sliding intervals across the reference genome) located a
1224 large interval within the *A. ludens* chromosome 2 showing significant differentiation. The
1225 horizontal line indicates the top 0.25th percentile threshold for significant intervals. **d**
1226 Enriched gene sets within this causal region include the genes *yellow-f2* and *ebony* from
1227 the melanin biosynthesis pathway; two promising candidates to explain the bp phenotype
1228 in GUA10. **e** RNA-Seq coverage revealed the silencing of *ebony* expression in black
1229 pupae females from GUA10. **f** The *ebony* gene is differentially expressed between black
1230 (homozygous females) and brown (heterozygous males) pupae siblings from GUA10,
1231 while no difference is detectable for *yellow-f2*. The expression of the *white pupae* gene,
1232 an MFS transporter required to provide pigment precursors to the pupal cuticle, is shown
1233 as a reference. Dots represent biologically independent replicates ($n = 3$), * = FDR < 0.05
1234 and $\log_{2}FC > 2$, and ns = non-significant. **g** Semiquantitative RT-PCR assays further
1235 validated the RNA-Seq results. Amplifications of *Rpl18* are internal controls. L = 100 bp

1236 DNA ladder (NEB), gDNA = genomic DNA control, and NTC = non-template negative
1237 control.

1238

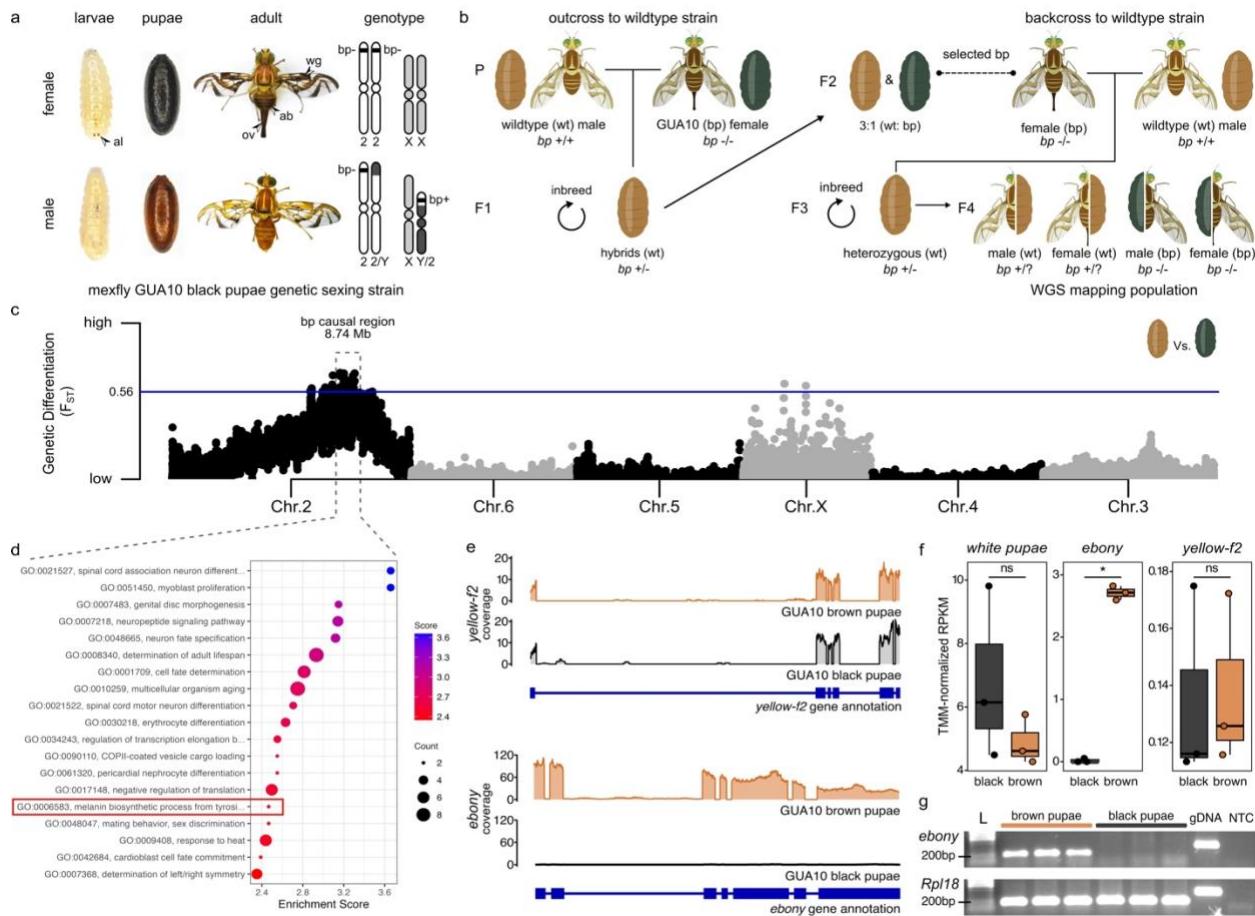
1239 **Fig. 2: The bp phenotype in *A. ludens* GUA10 results from a large indel at**
1240 **the ebony locus. a** Biallelic DNA variants between brown and black pupae individuals
1241 ($n = 18$ of each phenotype) from the F4 mapping population in the context of
1242 the *A. ludens* genome and GUA10 RNA-Seq read coverage ($n = 3$ males and females).
1243 No DNA variants are present within the *ebony* protein-coding sequence, coinciding with
1244 the absence of RNA-Seq reads from GUA10 females. **b** WGS read coverage (merged
1245 BAM files) from F4 population shows a large chromosomal interval with no coverage in
1246 black pupae individuals, suggesting the entire *ebony* coding sequence is missing in those
1247 flies. **c** Mapping of HiFi long-reads revealed a 20,182 bp DNA variant
1248 (NC_071498.1:g.135,665,293_135,685,474indel) within the *ebony* locus of *A. ludens*
1249 GUA10 ($bp^{-(GUA10)}$), resulting in the removal of the entire protein-coding region of the
1250 gene. The variant is homozygous in black pupae female ($bp^{(-)}$) and heterozygous in
1251 brown pupae male ($bp^{+/-}$), as expected based on the genotypes of GUA10 GSS (Fig. 1a).
1252 **d** Qualitative end-point PCR of a 360 bp between *ebony* exons e1 and e2 confirmed the
1253 absence of this region in the GUA10 female genome (arrowheads in Fig. 2c indicate
1254 primer locations). Amplifications of *Rp18* are internal controls. L = 100 bp DNA ladder
1255 (NEB), M = male, F = female, GUA10 = *A. ludens* GUA10 genetic sexing strain, WT =
1256 wildtype, and NTC = non-template negative control.

1257

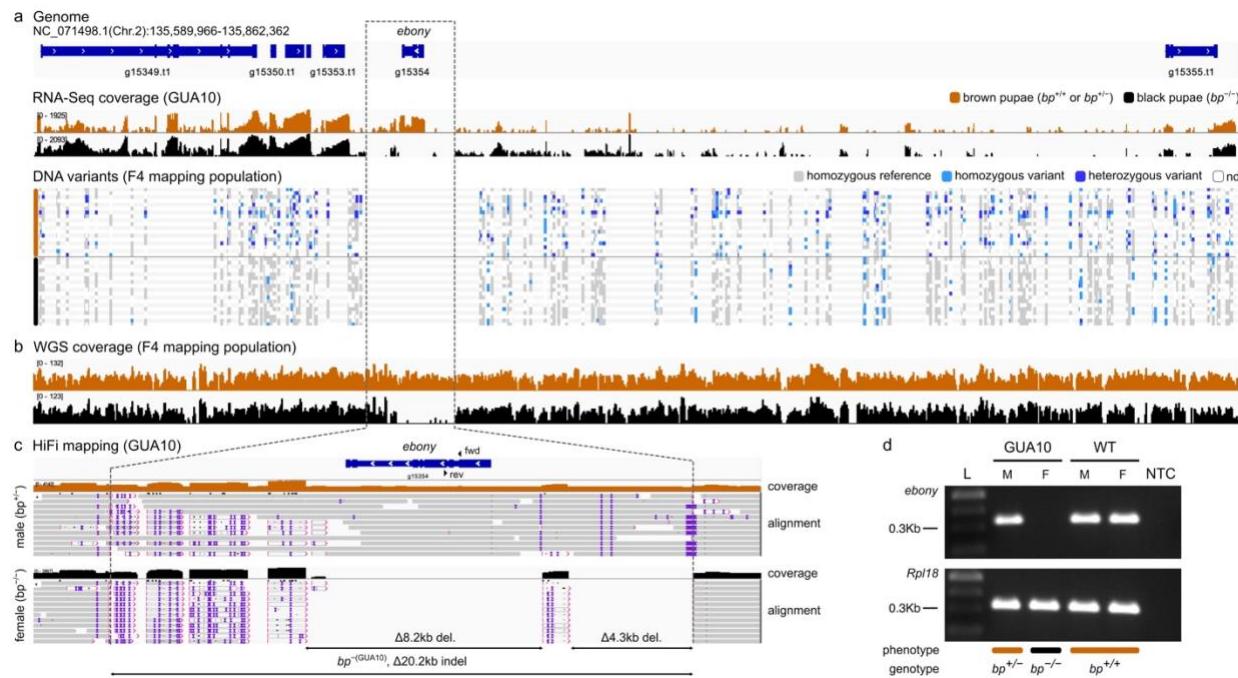
1258 **Fig. 3: Disruption of ebony leads to the black pupae phenotype in diverse**
1259 **tephritids. a** We used CRISPR/Cas9 to generate targeted loss-of-function mutations in

1260 the *ebony* gene, aiming to confirm its involvement in the bp phenotype of *A. ludens*.
1261 Surviving flies developed as either wildtype light-brown or mutant black puparia. Adults
1262 emerging from the latter also exhibited darker cuticles, mirroring the bp phenotype
1263 observed in GUA10. To assess the functional conservation of *ebony* in other tephritids,
1264 we extended our CRISPR experiments to include a close relative, *A. fraterculus* (**b**), as
1265 well as distantly related species, including *C. capitata* (**c**), *B. tryoni* (**d**), *B. dorsalis* (**e**),
1266 and *Z. cucurbitae* (**f**). Similar effects were observed in all species, demonstrating that the
1267 disruption of *ebony* is sufficient to induce the bp phenotype in diverse tephritids. wt =
1268 wildtype, mKO = mosaic knockout, KO = knockout, and Ma = million years. The
1269 evolutionary relationships among these species were estimated by Zhang et al.²⁴ using
1270 mitochondrial phylogenomics.

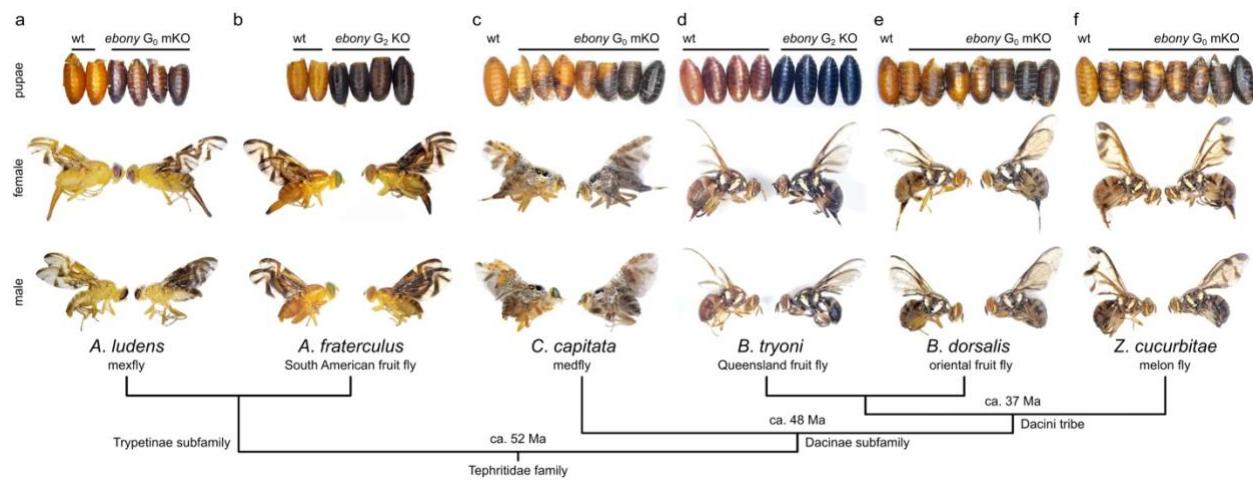
1271

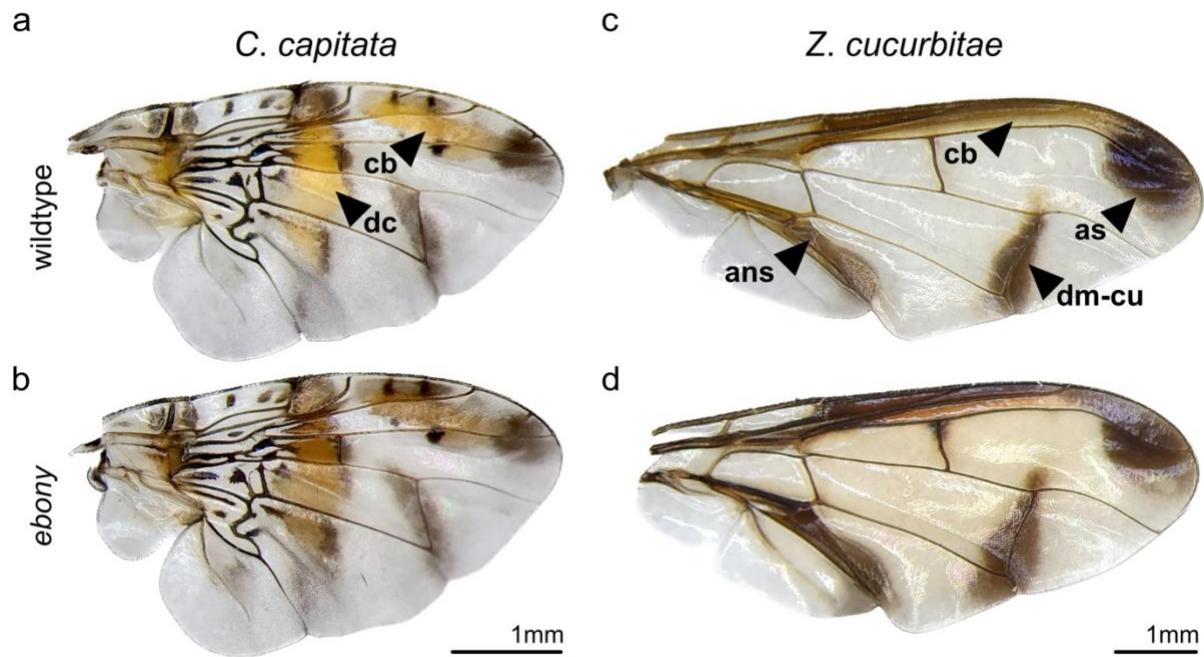

1272 **Fig. 4: Ebony is required for proper wing pigmentation patterning in tephritids. a**
1273 The wings of *C. capitata* are one of the most captivating examples of pictured
1274 pigmentation in tephritids. Among its intricate patterns, the dominant discal crossband
1275 (dc) and the costal band (cb) are particularly intriguing due to their uncommon yellowish-

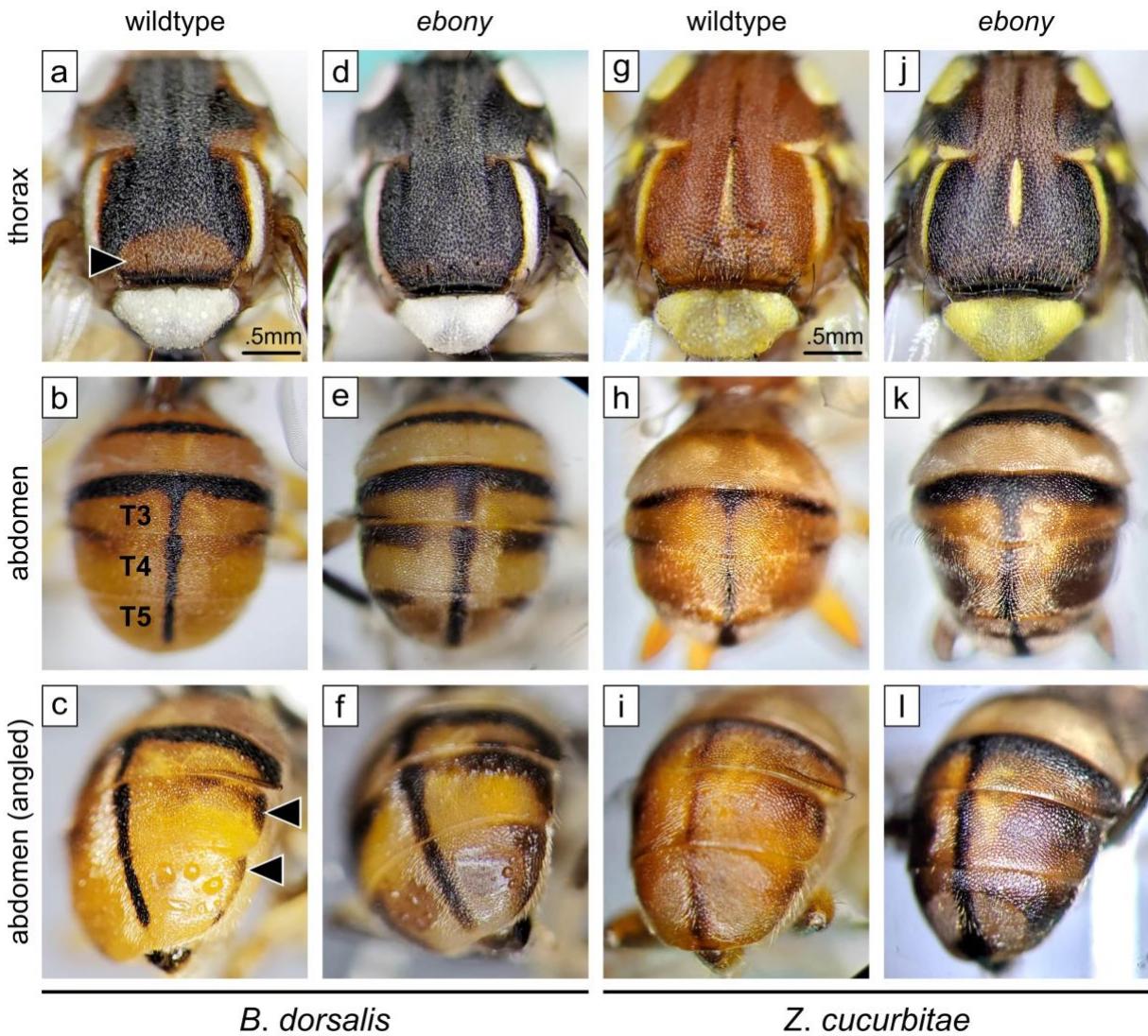
1276 brown color. **b** In *ebony* mutants, the appearance of these bands changes to dark-brown,
1277 yet their pattern remains the same, with no observable effects on the lamina. **c** In contrast,
1278 the wings of *Z. cucurbitae* appear nearly clear, except for a few distinct pigmentation
1279 patterns, such as the dark apical spot (as) and the dm-cu crossvein blotch. **d** While a
1280 subtle enlargement of the dm-cu blotch appears in *ebony* mutants of *Z. cucurbitae*, the
1281 most striking phenotype is the ectopic pigmentation of the wing lamina, resulting in a
1282 smoky brown appearance. On an interesting note, the appearance of the anal streak (ans)
1283 and costal band (cb) in *Zeugodacus* wings also seems to change from dark-brown to
1284 black. Terminology in accordance to White and Elson-Harris⁷.
1285


1286 **Fig. 5: Ebony is required for proper body pigmentation patterning in tephritids.** **a**
1287 Wildtype *B. dorsalis* (Punador strain) displays a predominantly black thorax with a
1288 particular reddish-brown area at the posterior edge of the scutum (arrowhead). **b, c** In
1289 contrast, its abdomen is predominantly reddish-brown with a distinct black T-shaped
1290 marking accompanied by narrow fuscous corners on tergites T4 and T5 (arrowheads). In
1291 *ebony* mutants, black pigmentation takes over the light areas of the thorax (**d**) while
1292 enlarging abdominal markings (**e, f**). Wildtype *Z. cucurbitae* displays a uniform light-brown
1293 color in the thorax (**g**) and abdomen (**h, i**), except for a few narrow black stripes in the
1294 latter. This overall appearance becomes completely distorted in *ebony* mutants. New
1295 pigmentation patterns appear as their thorax turns almost uniformly black (**j**), and their
1296 abdominal stripes become significantly enlarged (**k, l**). In both species, the absence of
1297 Ebony results in new pigmentation patterns. Terminology in accordance to White and
1298 Elson-Harris⁷.
1299

1300 **Fig. 6: Ebony affects normal development in the Queensland fruit fly.** We performed
1301 genetic crossings to evaluate whether *ebony*-null alleles would impose fitness costs over
1302 the development of *B. tryoni* expressed in terms of (**a**) relative fecundity (no. of eggs / no.
1303 of eggs in control experiments), (**b**) hatchability (no. of larvae / no. of eggs), (**c**) pupation
1304 (no. of pupae / no. of larvae), (**d**) adult emergence (no. of fully emerged adults / no. of
1305 pupae), (**e**) partial adult emergence (no. of partially emerged adults / no. of pupae), and
1306 (**f**) adult deformity (no. of deformed adults / no. pupae). Dots represent data collected
1307 from independent replicates ($n = 3$), box colors represent the pupae phenotype of their
1308 F1 offspring, and letters indicate significant differences (one-way ANOVA followed by
1309 Tukey's HSD). ctrl. = control crossings between wt flies, test = test crossings between *Bt-*
1310 *ebony* males and wt females, recip. = reciprocal crossings between wt males and *Bt-*
1311 *ebony* females, and *e*^{-/-} = crossings between *Bt-ebony* flies.


Figure 1.


Figure 2.


Figure 3.

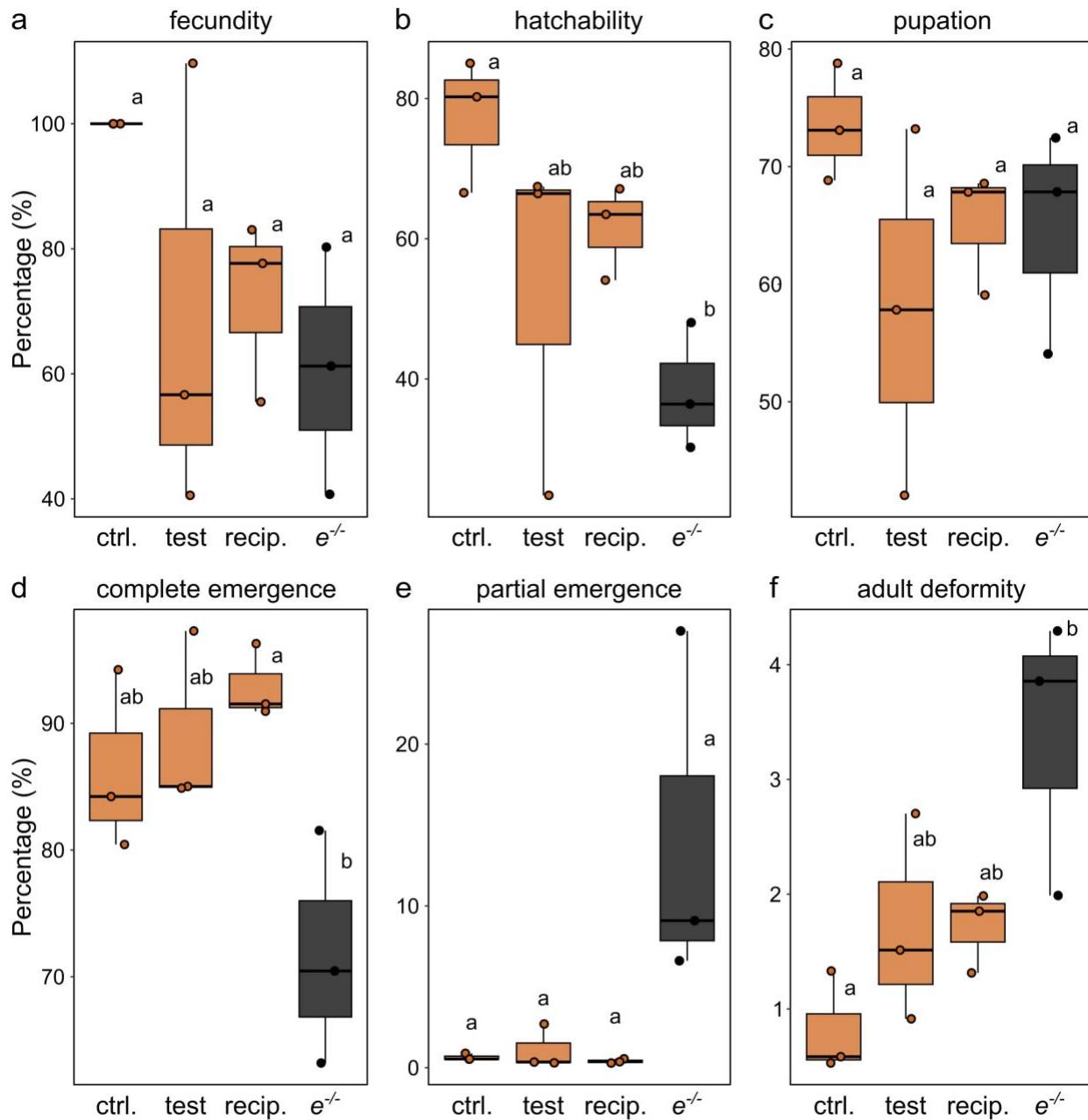

Figure 4.

Figure 5.

Figure 6.

