

1 **Title: The roles of an extended N-terminal region and ETD motif in a pump-like cation
2 channelrhodopsin discovered in a lake microbiome**

3

4 Authors:

5 Shunki Takaramoto¹, Shai Fainsod², Takashi Nagata¹, Andrey Rozenberg², Oded Béjà^{2,3}, Keiichi
6 Inoue^{1,*}

7

8 Affiliations:

9 1. The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
10 2. Faculty of Biology, Technion — Israel Institute of Technology, Haifa 3200003, Israel
11 3. The Nancy and Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of
12 Technology, Haifa 3200003, Israel

13

14 Corresponding author:

15 Correspondence to Keiichi Inoue. E-mail: inoue@issp.u-tokyo.ac.jp; telephone: +81-4-7136-3230;
16 postal address: Room A401, The Institute for Solid State Physics, The University of Tokyo, 5-1-5,
17 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.

18

19

20 **Abstract**

21 Channelrhodopsins are light-gated ion channels consisting of seven-transmembrane helices and a
22 retinal chromophore, which are used as popular optogenetic tools for modulating neuronal activity.
23 Cation channelrhodopsins (CCRs), first recognized as the photoreceptors in the
24 chlorophyte *Chlamydomonas reinhardtii*, have since been identified in diverse species of green

25 algae, as well in other unicellular eukaryotes. The CCRs from non-chlorophyte species are
26 commonly referred to as bacteriorhodopsin-like channelrhodopsins, or BCCRs, as most of them
27 feature the three characteristic amino acid residues of the “DTD motif” in the third transmembrane
28 helix (TM3 or helix C) matching the canonical DTD motif of the well-studied archaeal light-driven
29 proton pump bacteriorhodopsin. Here, we report characterization of HulaCCR1, a novel BCCR
30 identified through metatranscriptomic analysis of a unicellular eukaryotic community in Lake Hula,
31 Israel. Interestingly, HulaCCR1 has an ETD motif in which the first residue of the canonical motif
32 is substituted for glutamate. Electrophysiological measurements of the wild-type and a mutant with
33 a DTD motif of HulaCCR1 suggest the critical role of the first glutamate in spectral tuning and
34 channel gating. Additionally, HulaCCR1 exhibits long extensions at the N- and C-termini.
35 Photocurrents recorded from a truncated variant without the signal peptide predicted at the N-
36 terminus were diminished, and membrane localization of the truncated variant significantly
37 decreased, indicating that the signal peptide is important for membrane trafficking of HulaCCR1.
38 These characteristics of HulaCCR1 would be related to a new biological significance in the original
39 unidentified species, distinct from those known for other BCCRs.

40

41 **Introduction**

42 Microbial rhodopsins are a family of photoreactive membrane proteins that have seven
43 transmembrane helices and a retinal chromophore covalently binding to a conserved lysine residue
44 in the 7th transmembrane helix (called TM7 or helix G) [1–3]. Among them, channelrhodopsins
45 (ChRs) are light-induced ion channels and are extensively utilized in optogenetics [4, 5].
46 Channelrhodopsins were first discovered in green algae when the photoreceptors responsible for
47 phototactic behavior in *Chlamydomonas reinhardtii* were identified as microbial rhodopsin
48 channels transporting cations, or cation channelrhodopsins (CCRs) [6–8]. In contrast to

49 *Chlamydomonas*, two different types of ChRs were subsequently identified in the cryptophyte
50 *Guillardia theta*: a distinct family of CCRs, as well as a family of anion-transporting ChRs, or
51 anion channelrhodopsins (ACRs), which was the first indication of the high diversity of ChRs
52 among unicellular eukaryotes [9, 10]. Natural and engineered CCRs and ACRs have since been
53 used as molecular tools in optogenetic research to stimulate or inhibit neuronal firing by light,
54 respectively [11–14].

55 Many microbial rhodopsins, including the well-characterized light-driven proton pump
56 bacteriorhodopsin from *Halobacterium salinarum* (*HsBR*), feature three characteristic amino acid
57 residues together constituting the canonical “DTD motif” in the third transmembrane helix (called
58 TM3 or helix C). This motif is composed of two aspartic acid residues and a threonine residue:
59 D85/D96 and T89 in *HsBR*, respectively [15]. One remarkable feature of the cryptophyte CCRs
60 from *Guillardia theta* was the presence of the DTD motif identical to that of *HsBR* [10, 16].
61 Following the discovery of the CCRs from *G. theta*, many CCRs possessing the DTD or similar
62 motifs were found in other species, collectively referred to as the bacteriorhodopsin-like
63 channelrhodopsins (BCCRs). Among them, ChRmine from the cryptophyte *Rhodomonas lens*
64 exhibiting high photocurrents and high light sensitivity has emerged as the model BCCR and has
65 found its application in deep transcranial optogenetics [17–19]. Recent years have also witnessed
66 the discovery of highly potassium selective BCCRs, the kalium channelrhodopsins (KCRs) from
67 the stramenopiles *Hyphochytrium catenoides* (*HcKCR1* and *HcKCR2*) [20] and *Wobblia lunata*
68 (WiChR) [21], as well as other heterotrophic flagellates. Since KCRs efficiently induce
69 hyperpolarization by K^+ efflux, they are used for precise optogenetic inhibition.

70 Here, we characterize HulaCCR1, a novel microbial rhodopsin identified through
71 metatranscriptomic analysis of the unicellular eukaryotic community of Lake Hula, Israel. This
72 rhodopsin has an ETD motif in TM3 and belongs to the family of stramenopile and other

73 heterotrophic flagellate CCRs (SoHF CCRs) which includes KCRs and other CCRs from cultured
74 unicellular eukaryotes and environmental sources [21, 22] (Figs. 1a and b). While uncommon
75 among BCCRs, the ETD motif is not an idiosyncrasy of HulaCCR1 and is found in the related
76 proteins mgCCR1 [22] and P1ChR1 [21]. The structure of HulaCCR1 predicted with AlphaFold2
77 Colab [23] features an unusually long N-terminal extension with a signal peptide and a prominent
78 partially structured long C-terminal extension (Fig. 1c).

79 In this study, we investigated the function of HulaCCR1 using electrophysiological techniques.
80 As a result, it was revealed that this rhodopsin exhibits non-specific cation channel activity. To
81 understand the role of the substitution of glutamate for the ancestral aspartate at the first position
82 of the TM3 motif in HulaCCR1, we examined the effects of this residue on the channel activity. In
83 addition, we investigated the role of the long extensions at the N- and C-termini of HulaCCR1.
84 Analyses of the distribution and origins of the clade of ChRs to which HulaCCR1 belongs, show
85 that it can be subdivided into six subclades with the freshwater subclades found in lakes on both
86 sides of the Atlantic and originating from the heterotrophic flagellate group of kathablepharids.

87

88 **Results**

89 **Identification of HulaCCR1**

90 HulaCCR1 was identified as part of an ongoing metatranscriptomic study of the unicellular
91 eukaryotic community of Lake Hula in Northern Israel. This protein is representative of a distinct
92 clade within the family of stramenopile and other heterotrophic flagellate CCRs (SoHF CCRs) to
93 which the partially characterized ChRs mgCCR1–3 [22] also belong (Fig. 1b, Figs. 2a and b).
94 Proteins from this clade were found in a number of other metatranscriptomic and metagenomic
95 datasets and their diversity could be circumscribed to four subclades appearing in freshwater
96 datasets and two subclades in marine datasets: freshwater subclades A to C include mgCCR1,

97 HulaCCR1 and mgCCR2, respectively and marine subclade A includes mgCCR3 (see Fig. 2b).
98 Freshwater subclades A and B are the closest relatives, with a modest overall pairwise sequence
99 identity of 48% between HulaCCR1 and mgCCR1, least similar in the N-terminal extension. Ideal
100 for the study of the role of the carboxylate amino acid at the first position of the TM3 motif, this
101 clade demonstrates both DTD and ETD variants, with the mgCCR1 and HulaCCR1 subclades
102 having the otherwise uncommon glutamate.

103 Since none of the members of the mgCCR1-3 clade are known from cultured creatures and
104 the available genomic fragments from the metagenomic datasets provide only a meager genomic
105 background for the ChR genes, we attempted to identify their origin by focusing on potential
106 mobile elements which might be shared with sequenced genomes. To achieve this, we took DNA
107 sequences immediately upstream and downstream of the ChR genes and recruited other genomic
108 fragments with high nucleotide similarity from the same environmental samples. This strategy
109 indeed yielded multiple genomic fragments containing retrotransposons, all of which belonged to
110 the Ty3/gypsy group. While one of the contigs containing a ChR gene from the freshwater subclade
111 D itself contained a fragment of such retrotransposon, related retrotransposons were also found in
112 contigs recruited with regions flanking subclade-A and C genes as well, which indicates that they
113 might overlap retrotransposon integration sites. Phylogenetic analysis showed all of these elements
114 to belong to the same pool of retrotransposons shared with Ty3 elements from four marine
115 kathablepharid single amplified genomes (SAGs) [24] (Fig. S1a). This strongly indicates that at
116 least the freshwater subclades originate from kathablepharids, a group of cryptist heterotrophic
117 flagellates related to cryptomonads [25, 26]. Analysis of the small subunit rRNA (SSU) gene
118 fragments revealed that kathablepharids are widely attested in the samples in which the mgCCR1-
119 3 clade is found and are one of the most typical components of the eukaryotic communities in them
120 (Fig. S2). Phylogenetic analysis of a representative complete kathablepharid SSU type dominant

121 in these samples, places it in the freshwater kathablepharid clade [27] (Fig. S1b). While among
122 cryptist groups, ChRs are known from the photosynthetic cryptophyceans (cryptophyte ACRs [9]
123 and CCRs [10]) as well as from the heterotrophic *Hemiarma marina* (same two families) and
124 *Goniomonas pacifica* (an mgR2-like ChR and the unique *GpACR1* [28]), the very limited genetic
125 data available for kathablepharids have thus revealed only a putative mgR2-like CCR in the
126 transcriptome of *Roombia truncata* [29] (Fig. S1b). The kathablepharid origin of the mgCCR1-3
127 clade significantly expands both the repertoire of the ChRs among cryptists and the distribution of
128 the SoHF CCRs.

129

130 **Ion transport activity of HulaCCR1**

131 Upon establishing the expression of HulaCCR1 in COS-1 cells, we investigated the absorption
132 spectra of the protein solubilized from the membrane fraction of the cells with a solution containing
133 *n*-dodecyl- β -D-maltoside (DDM). The absorption maximum wavelength (λ_{max}) of HulaCCR1 was
134 determined to be 545 nm by a hydroxylamine (HA) bleaching method [30] (Fig. 3a). To investigate
135 the molecular function of HulaCCR1, electrophysiological measurements were conducted. Based
136 on the strong EYFP fluorescence in the outlines of transfected cultured cells, we determined that
137 HulaCCR1 was well expressed in the plasma membrane (Fig. 3b). Whole-cell patch clamp
138 recordings were performed using these cells. With standard pipette ($[\text{K}^+] = 128$ mM) and
139 extracellular ($[\text{Na}^+] = 142$ mM) solutions, a significant photocurrent appeared upon illumination
140 with 542-nm light (Fig. 3c, left). The photocurrent depended on the holding potential and exhibited
141 an inversion from positive to negative currents along with increasing the holding potential from
142 -80 to 60 mV, indicating that HulaCCR1 exhibits light-dependent ion channel activity. Changing
143 the cations in both the patch pipette and extracellular solutions to N-methyl-D-glucamine (NMG)
144 resulted in a profound decrease in photocurrent intensity (Fig. 3c, right). Furthermore, in this

145 measurement, despite the anion conditions being asymmetric between the external and internal side
146 of the membrane, where the pipette and extracellular solutions contained 90 mM glutamate and
147 151 mM Cl⁻, respectively, the reversal potential remained at around 0 mV, excluding the possibility
148 of anion channel activity and indicating H⁺ channel activity. We conclude that HulaCCR1 possesses
149 cation channel transport activity.

150 Next, to investigate the ion selectivity of HulaCCR1, photocurrents were measured in
151 extracellular solutions containing different cations (Fig. 4a), and current–voltage (*I*–*V*) curves were
152 plotted based on peak current intensities (Fig. 4b). The *I*–*V* curves were fitted by a quadratic
153 function, then the reversal potentials (*E*_{rev}) of the photocurrents were estimated. Taking the results
154 with NMG-containing extracellular solution as a reference, the reversal potential shift (ΔE_{rev}) was
155 calculated. ΔE_{rev} values increased with monovalent cations, while only low values were observed
156 with divalent cations, Mg²⁺ and Ca²⁺. Hence, Mg²⁺ and Ca²⁺ hardly permeate through the channel
157 pore in HulaCCR1. Assuming that only monovalent cations in the extracellular/pipette solutions
158 permeate, the relative cation permeability (P_{X+}/P_{H+}) was calculated using Goldman–Hodgkin–Katz
159 (GHK) equation (eq. 1) from ΔE_{rev} values,

$$160 \quad \Delta E_{rev} = \frac{RT}{F} \ln \left(\frac{P_X[X^+]_o + P_H[H^+]_o}{P_H[H^+]_o} \right), \quad (1)$$

161 where *R* is the gas constant, *T* is the temperature, and *F* is the Faraday constant. The obtained
162 values P_{X+}/P_{H+} are shown in Fig. 4c. $P_{Mg^{2+}}/P_{H+}$ and $P_{Ca^{2+}}/P_{H+}$ were not determined by GHK flux
163 equation [31] for divalent cations at equilibrium (eq. 2) because the calculated values of $P_{Mg^{2+}}/P_{H+}$
164 and $P_{Ca^{2+}}/P_{H+}$ were considerably smaller than the experimental error.

$$165 \quad 4P_{Mg} \frac{[Mg^{2+}]_i \exp \left(\frac{2E_{rev}F}{RT} \right) - [Mg^{2+}]_o}{1 - \exp \left(\frac{2E_{rev}F}{RT} \right)} + 4P_{Ca} \frac{[Ca^{2+}]_i \exp \left(\frac{2E_{rev}F}{RT} \right) - [Ca^{2+}]_o}{1 - \exp \left(\frac{2E_{rev}F}{RT} \right)} + P_H \frac{[H^+]_i \exp \left(\frac{E_{rev}F}{RT} \right) - [H^+]_o}{1 - \exp \left(\frac{E_{rev}F}{RT} \right)} = 0 \\ 166 \quad (2)$$

167 From these results, it can be concluded that HulaCCR1 exhibits a strong ion selectivity for

168 monovalent cations, and this property is similar to those of *GtCCR4* [32] and ChRmine [33].
169 Moreover, there was not much difference in the selectivity among monovalent alkali metal cations
170 (Fig. 4c).

171

172 **Mutational analysis of spectral tuning and gating kinetics in HulaCCR1**

173 Many BCCRs share the DTD motif in TM3 identical to the residues D85, T89, and D96 of *HsBR*.
174 As mentioned above, in HulaCCR1, a glutamate (E176) is present at the position of the first motif
175 residue, forming an ETD motif (Figs. 1a, 2b and S3). To investigate the roles of the amino acid
176 residues near the retinal chromophore, including E176 (Fig. 5a), photocurrents of several single
177 mutants were measured (Figs. 5b–e and S4a). While the E176D mutant, in which the DTD motif
178 is restored, exhibited photocurrents similar to those of the wild-type protein (WT), its action
179 spectrum slightly blue-shifted compared to the WT spectrum (Fig. 5b), indicating the red-shifting
180 spectral-tuning effect of E176 in HulaCCR1. To determine whether this residue is crucial for
181 channel gating, photocurrents were measured with a higher time resolution using nanosecond-
182 pulsed laser flashes (Fig. 5c). The time course of photocurrents due to channel opening and closing
183 was reproduced with a quadruple-exponential function. The obtained time constants were shown
184 in Fig. 5d. Notably, the closing rate of outward current in E176D was significantly slower compared
185 to that of the WT, suggesting the importance of E176 in the closing kinetics.

186 In chlorophyte channelrhodopsins and BCCRs, a cysteine residue is conserved at the position
187 corresponding to T90 in *HsBR* in TM3 (Fig. 1a). This cysteine together with D156 in TM4
188 constitutes the “DC gate” in *CrChR2* [34], and HulaCCR1 mutants in which C181 were substituted
189 with alanine or serine (C181A and C181S) exhibited significantly slower channel closing after 200-
190 ms illumination (Fig. S4a). Both mutants showed a highly prolonged channel closing rate in the
191 nanosecond-pulse excitation experiments (Fig. 5e), as observed in cysteine mutants of other

192 channelrhodopsins [35, 36].

193 Next, we attempted to tune the spectrum of HulaCCR1 by mutating amino acid residues near
194 the retinal chromophore. First we noticed that HulaCCR1 has C303 adjacent to K304 that forms
195 the Schiff-base linkage with the retinal chromophore in TM7 (Fig. 5a), a trait shared most notably
196 with the KCRs (Fig. S3) [20], while most of the other BCCRs have alanine at this position similarly
197 to *HsBR*. Importantly, in the case of *CrChR2*, substituting alanine for serine at this position causes
198 a red shift in the absorption spectrum [37]. Nevertheless, the action spectrum of the photocurrents
199 of the HulaCCR1 C303A mutant showed no significant red shift compared to the WT (Fig. S4c).
200 Taking a different approach, we attempted to introduce negative charges on the β -ionone ring side
201 of the retinal which is known to stabilize the electronically excited state, thus leading to a red shift
202 in the absorption spectrum [38]. Hence, the action spectra of mutants of residues shown in Fig. S4b,
203 L208M, A232C, A232S, and P276T were measured. This strategy did result in significantly red-
204 shifted action spectra compared to that of the WT (Fig. S4c).

205 Although the expected spectral shift did not occur in C303A, we found a significant difference
206 in other photocurrent behaviors in this mutant. The decay rate of photocurrents after light-off in
207 C303A was slower compared to that of the WT (Figs. S4a and d). The slower channel closing might
208 be the result of a slower photocycle, as seen for example in DC-gate mutants of *CrChR2* [35, 39].
209 The dependence of photocurrent intensity on excitation light power was also investigated under
210 continuous light illumination. In this case, it is anticipated that for channelrhodopsins with slower
211 photoreaction cycles, the photocurrent intensity will saturate at a lower light intensity compared to
212 those with faster photocycles. Hence, photocurrent intensities for the WT and C303A were
213 measured during continuous light illumination for 100 ms and were plotted against power density
214 of the excitation light (Fig. 5f). As a result, the C303A mutant with the slower channel closing rates
215 exhibited a lower EC₅₀ value than that of the WT. Additionally, when compared to another BCCR,

216 ChRmine, which has a slower closing rate than that of the HulaCCR1 WT (Fig. S4d), the trend that
217 longer closing rates lead to lower EC₅₀ values was maintained (Fig. 5f).

218 Previous studies on BCCRs suggested that amino acid residues on the intracellular side are
219 also crucial for the gating mechanism. In *GtCCR2*, a mutant in which D98 (equivalent to D96 in
220 *HsBR*) in TM3 was mutated to asparagine showed no significant channel current [40]. The effect
221 of an identical mutation has been investigated in other BCCRs, including ChRmine [33] and
222 *HcKCR1* [41], where the motif residues DTD are changed to DTN. This resulted in a decrease in
223 cation channel activity. Moreover, it has been previously suggested for *GtCCR2* that proton transfer
224 from D98 (corresponding to D96 in BR) to an unknown cytoplasmic residue and back govern the
225 opening and closing of the channel, respectively [40]. We notice that BCCRs have characteristic
226 well-conserved acidic amino acids on the C-terminal side of TM7 (Fig. S3). We thus hypothesized
227 that a potential proton exchange between the third motif residue (D) in TM3 and acidic amino acid
228 residues at the cytoplasmic side of TM7 in BCCRs plays a critical role in the channel gating. To
229 test this hypothesis, we generated mutants corresponding to these residues in HulaCCR1: D187N
230 in TM3, and E319Q, D320N, and E322Q, in TM7, and analyzed their photocurrents (Figs. S5a–c).
231 The D187N and D320N mutants exhibited low expressions in the plasma membrane probably due
232 to a significant decrease in protein stability, resulting in no observable photocurrents (Fig. S5c).
233 Whereas E319Q exhibited photocurrent intensity and opening/closing rates similar to that of the
234 WT (Figs. S5b and c), a decrease in the closing rate after 200-ms illumination was indeed observed
235 for E322Q (17 ± 2 ms, 15 ± 1 ms, and 38 ± 2 ms for the WT, E319Q, and E322Q at -60 mV holding
236 potential, respectively, $n = 5$, Fig. S5b).

237 Next, we compared photocurrent signals upon nanosecond laser-pulse illumination to precisely
238 determine the difference in the time constants of opening and closing (Figs. S5d and e).
239 Additionally, to clarify the relationship between the proton transfer reaction and channel dynamics,

240 the kinetic isotope effect (KIE) in heavy water (D_2O) was investigated by calculating a ratio
241 between the time constants with D_2O and H_2O solutions with respect to the channel opening and
242 closing kinetics. If a proton transfer is the rate-limiting elementary reaction step, the reaction rate
243 decreases in D_2O , thereby exhibiting a significant KIE value [42–44]. For the HulaCCR1 WT and
244 E322Q, the time courses of photocurrents at membrane potentials of -60 mV and 40 mV are shown
245 in Fig. S5d. The photocurrent kinetic traces of E322Q were fitted with a quadruple-exponential
246 function, similar to the WT, to determine the time constants of channel opening and closing (Fig.
247 S5e). By calculating the ratio of closing time constants in D_2O to those in H_2O , the KIE was
248 determined to be 1.61 ± 0.06 for the WT and 1.18 ± 0.03 for E322Q, respectively. Hence, E322Q
249 showed a smaller KIE for channel closing compared to that of the WT. Unfortunately, information
250 about D187, which is homologous to *HsBR* D96 and thought to be involved in the proton transfer
251 with E322, could not be obtained due to the lack of significant photocurrents for D187N. However,
252 considering the proton transfer mechanism proposed in the previous study for *GtCCR2*, where
253 protonation of the cytoplasmic D in TM3 controls channel closing, we hypothesized that a similar
254 mechanism might occur in HulaCCR1 and the proton transfer from E322 to D187 governs the
255 channel closing there as well.

256

257 **Long N/C-terminal extension of HulaCCR1**

258 One of the prominent structural features of HulaCCR1 is the long N-terminal extension. A careful
259 comparison of HulaCCR1 to other BCCRs, revealed that the first 12 residues of the expressed
260 construct might not belong to the ORF. Expression and photocurrent of the N-terminally truncated
261 variant (13–428) were recorded and those were similar to the full-length protein (1–428) (Figs. S6a
262 and b). Even excluding the first 12 residues from consideration, there are still 79 residues before
263 the first helix of the rhodopsin domain, which exceeds the length of this region in any other BCCR.

264 The N-terminus harbors a distinctive amino acid sequence, which is predicted as signal peptides
265 by signal peptide prediction methods. The exact cleavage site varied depending on the software
266 used: SignalP 6.0 [45] predicted it to be between residues 43 and 44, while TOPCONS [46]
267 predicted the cleavage site between 30 and 31. Similar signal peptides were found in other members
268 of the mgCCR1–3 clade. To investigate the role of the N-terminal extension in HulaCCR1, two
269 truncated variants were constructed: variant I without the predicted signal sequence region
270 (residues 41–428) and variant II lacking most of the N-terminal region (residues 72–428).

271 No stop codon was observed in the 1285-nt contig encoding HulaCCR1, yet the 108
272 residues of the C-terminal extension were available for analysis. Similarly to other BCCRs, no
273 homology could be detected to known functional domains in the C-terminal extension of
274 HulaCCR1, but the structure modeled using AlphaFold2 exhibited two additional helices (Fig. 6a).
275 Based on the structural model, two C-terminal truncations: variants III and IV, were produced by
276 truncating immediately after the predicted TM7 helix (residues 1–341) and after the first additional
277 helix after TM7 (residues 1–376), respectively. Patch-clamp measurements were conducted for
278 these four truncated variants (I–IV).

279 Based on the fluorescence images (Fig. 6b), truncated variant I (residues 41–428) exhibited
280 significantly decreased plasma membrane trafficking in cells. When cells showing strong
281 fluorescence were used, no significant photocurrent was obtained. However, significant
282 photocurrents were observed with cells showing relatively lower fluorescence intensity, indicating
283 that mild protein expression improves membrane trafficking of the protein (Fig. 6c). The shape of
284 photocurrents of the truncated variant I did not differ from that of the full-length protein. Hence,
285 the N-terminal extension appears to actually function as a signal peptide enhancing the membrane
286 trafficking of HulaCCR1. Intriguingly, truncated variant II, which has a further truncated N-
287 terminus (residues 72–428), membrane translocation was restored, showing an expression pattern

288 and photocurrents similar to those of the full-length protein. We conclude that the region 41–71
289 between the predicted secretion signal and the rhodopsin domain appears to reduce the localization
290 in the plasma membrane. However, the decreased membrane localization is compensated by the
291 secretion signal peptide (residues 1–41) in the full-length protein. The region spanning the residues
292 41–71 is predicted by AlphaFold2 to have a disordered structure and is not conserved even among
293 mgCCR1-like ChRs.

294 For the C-terminal truncated variants, truncated variant III, which is composed of the residues
295 1–341 and truncated immediately after TM7, showed an increase in fluorescence intensity inside
296 the cells (Fig. 6b), indicating a decreased membrane localization compared to that of the full-length
297 HulaCCR1. Truncated variant IV, in which a predicted disordered region beyond an additional
298 cytoplasmic helix was removed, exhibited higher membrane localization than that of truncated
299 variant III. The photocurrents of truncated variants III and IV were similar to that of the full-length
300 HulaCCR1, indicating that the C-terminal extended region is not as essential as the N-terminal one
301 (Fig. 6c).

302

303 **HulaCCR1 is able to drive neuronal firing**

304 Our findings suggest that HulaCCR1 exhibits cation conductance and ion selectivity similar to
305 those of *Gt*CCR4 and ChRmine, indicating its potential as an optogenetic tool to induce neuronal
306 firing using light as other CCRs. To assess the practical utility of HulaCCR1 as an optogenetic tool,
307 primary cultures of rat hippocampal neurons were transfected with HulaCCR1, and its expression
308 was confirmed based on the fluorescence signal (Fig. 7a). HulaCCR1 was well expressed
309 throughout the neuronal cells, including the axon. Patch-clamp recordings were performed on
310 neurons expressing HulaCCR1 (Fig. 7b), and upon 200 ms light stimulation, neuronal firings were
311 elicited. Additionally, even with 5 ms light stimulation at 10 Hz, continuous neuronal firing was

312 observed, demonstrating HulaCCR1's ability to control neuronal activity through light stimulation.
313 This is likely facilitated by the relatively high conductance of HulaCCR1 to sodium.

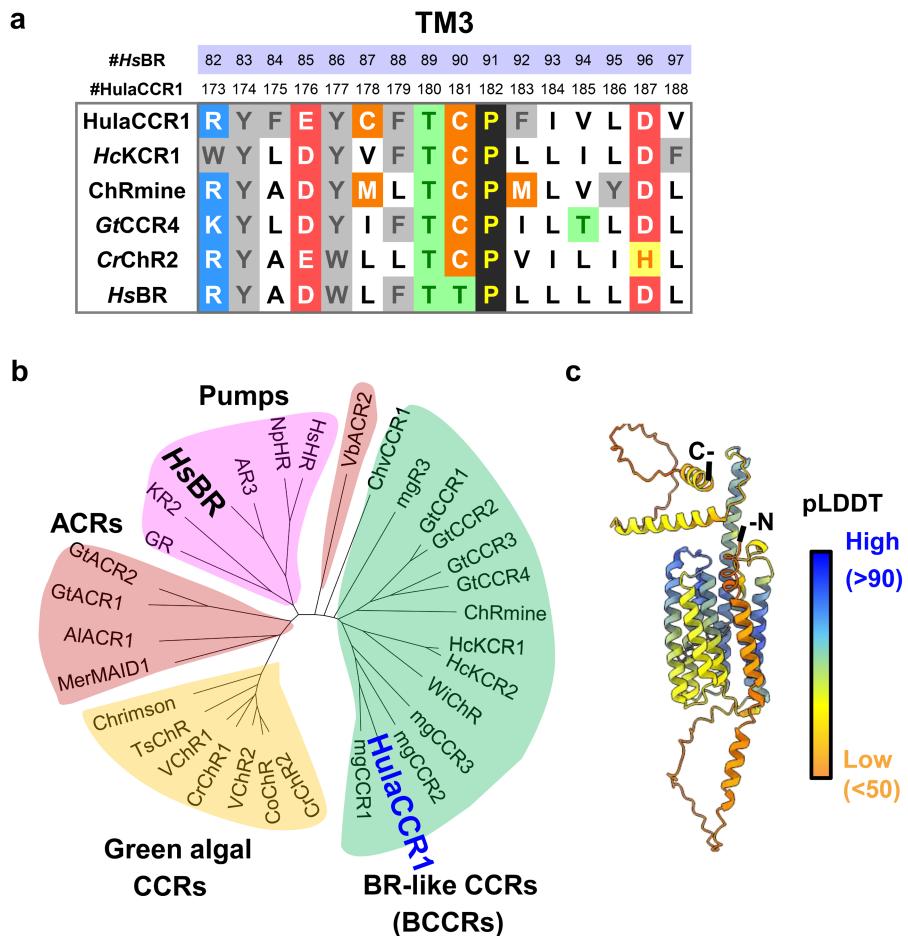
314

315 **Discussion**

316 In this study, HulaCCR1 was identified as a new CCR featuring the ETD motif. Considering cation
317 selectivity, $P_{\text{Na}^+}/P_{\text{H}^+}$ was previously estimated for *CrChR2* and several other CCRs. While
318 HulaCCR1 exhibits a $P_{\text{Na}^+}/P_{\text{H}^+}$ value of $(1.5 \pm 0.1) \times 10^{-5}$, $P_{\text{Na}^+}/P_{\text{H}^+}$ of *CrChR2* is approximately
319 1×10^{-6} [8]. *GtCCR4*, with a value of about 5×10^{-5} , has been reported as a CCR with low proton
320 selectivity [32], suggesting that HulaCCR1 also has relatively low proton selectivity like *GtCCR4*
321 among CCRs. The $P_{\text{X}^+}/P_{\text{H}^+}$ values obtained for HulaCCR1 do not differ significantly between the
322 different alkali-metal monovalent cations, indicating similar permeability levels for all of them.
323 The photocurrents derived from Cs^+ in HulaCCR1 do not significantly differ from that of Na^+ ,
324 whereas the photocurrents from Cs^+ are approximately half of that from Na^+ in *GtCCR4* [32].
325 Hence, HulaCCR1 likely possesses a relatively large channel pore facilitating the transport of large
326 monovalent cations. This is further supported by the fact Li^+ , which is strongly hydrated in solution
327 [47], showed permeability comparable to other monovalent cations. Considering the expected large
328 pore size capable of efficient Cs^+ transport, it is likely that partially hydrated Li^+ is stabilized within
329 the pore rather than undergoing complete dehydration. *mgCCR1* despite sharing the ETD motif
330 with HulaCCR1 and having a 48% amino acid sequence identity, exhibits relatively high proton
331 selectivity compared to HulaCCR1 [22]. The significant difference in ion selectivity despite the
332 relatively high amino acid sequence identity is intriguing. A comparison of predicted structures
333 using AlphaFold2 and cavities potentially involved in channel gating did not suggest significant
334 differences in the size of channel pore (Fig. S6). Hence, although it is anticipated that the structural
335 changes in the open state of HulaCCR1 are larger than that in *mgCCR1*, leading an opening of a

336 larger channel that is capable of conducting large monovalent cations, further investigation is
337 needed to clarify the reason of different cation selectivity between HulaCCR1 and mgCCR1.

338 Considering the role of the first motif residue E, it was found to influence the absorption
339 spectrum and gating (Figs. 5b–d). In the E176D mutant, the time constants of channel opening and
340 closing were altered compared to the WT, and regarding the fast channel closing component, the
341 closing time constant was 1.8 and 1.3 times slower than that of the wild type at a +40 mV and a
342 –60 mV membrane potential, respectively, indicating the difference in the closing rate between
343 HulaCCR1 E176D and the WT becomes larger at positive membrane potential. Hence, in the WT,
344 E187 appears to enhance inward rectification. Indeed, when observing the photocurrent upon 200
345 ms illumination, the positive photocurrent intensity in the WT is slightly suppressed compared to
346 E176D (Fig. S4a). This suggests that the glutamate is one of the important residues defining the
347 rectification properties of HulaCCR1.

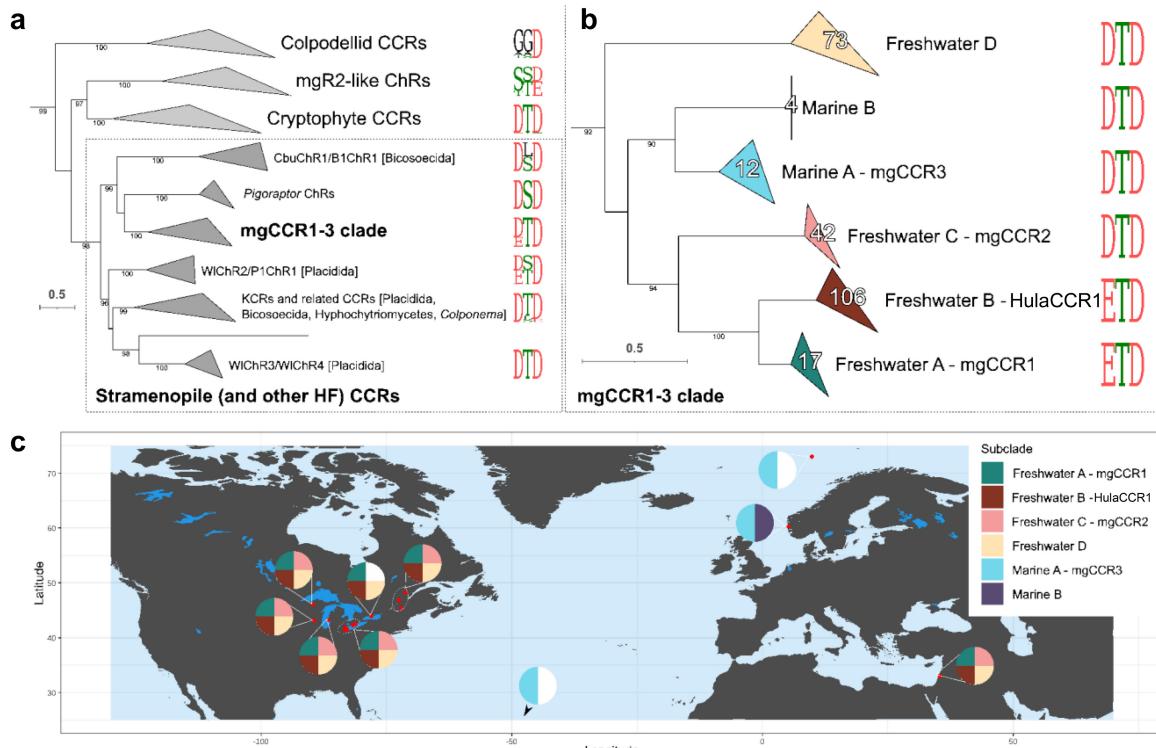

348 Looking at the photocurrents of the C303A mutant involving the residue immediately before
349 the retinal-binding lysine residue in TM7 at 200 ms light illumination, we find that the decay rate
350 after light off is significantly slower compared to that of the WT (WT = 17 ± 2 ms, C303A = 130 ± 20 ms, at –60 mV, $n = 5$) (Fig. S4a). *GtACR1*, a member of the cryptophyte ACR family, also
352 has a cysteine at this position, C237, and an analogous mutation, C237A, was reported to eliminate
353 one of the two closing components and to show approximately 1.8 times slower closing rate for the
354 remaining component [48]. However, the retardation effect of the corresponding mutation on the
355 closing rate is much higher in HulaCCR1 (7.6 times slower), indicating that C303 is likely to
356 influence the closing rate through a mechanism different from that of *GtACR1*. Since C303 is
357 located close to the retinal Schiff base, the mutation of this residue may affect the photochemical
358 reactions around the chromophore. Nevertheless, we observed no significant red shift in HulaCCR1
359 C303A based on the action spectra of the photocurrent (Fig. S4c), contrasting with the red shift in

360 C237A of *GtACR1* [48]. Hence, the interaction between the retinal chromophore and C303 in
361 HulaCCR1 is different from that in *GtACR1*, and the effect on the closing process differs even with
362 the identical mutation.

363 The N-terminal extension, outside the seven TM helices constituting the rhodopsin domain,
364 contains a sequence predicted as a secretion signal sequence, and our results suggest that this
365 secretion signal sequence rescues the decrease in membrane translocation caused by the sequence
366 between residues 41 and 71. mgCCR1 has a similarly long N-terminal extension, although it is
367 shorter and demonstrates low homology to that of HulaCCR1. Analogously, the N-terminal
368 extension of mgCCR1 is predicted to have signal peptide cleaved between positions 24 and 25
369 (according to SignalP 6.0). Hence, it is anticipated that a similar mechanism maintains protein
370 membrane translocation in mgCCR1 as well. Regarding the extension at the C-terminus, although
371 not as prominent as the N-terminus, a slight decrease in membrane translocation compared to the
372 full-length protein was observed in variant III (residues 1–341) (Fig. 6b). Hence, the C-terminal
373 region may contribute to maintaining the stability of proteins in the membrane by interacting with
374 the cytoplasmic surface of the rhodopsin part. The long C-terminal extensions of green algal CCRs,
375 prasinophyte ACRs and labyrinthulean ACRs have been found to contain response regulator-like
376 domains [49] as well as additional conserved domains of unknown function [49, 50], but we could
377 not identify any such functional domains in HulaCCR1 or other BCCRs. It has been previously
378 reported that multiple arginines within the C-terminal extension interact with the rhodopsin part
379 and regulate the closing rate in the channelrhodopsin *KnChR* derived from a green alga
380 *Klebsormidium nitens* [51]. HulaCCR1 also has several arginines between residues 352 and 358
381 that were truncated in variant III. Moreover, a slightly slower decay rate after light off was observed
382 in variant III compared to that of the WT upon 200 ms light illumination (WT = 17 ± 2 ms, variant
383 III = 21 ± 1 ms, at -60 mV, $n = 5$), exhibiting behavior similar to *KnChR*. Hence, it is conceivable

384 that in structural stabilization in the membrane is facilitated by electrostatic interactions between
385 the C-terminal extension and the cytoplasmic side of the rhodopsin domain mediated by the
386 arginines, potentially influencing gating kinetics.

387 **Figures**

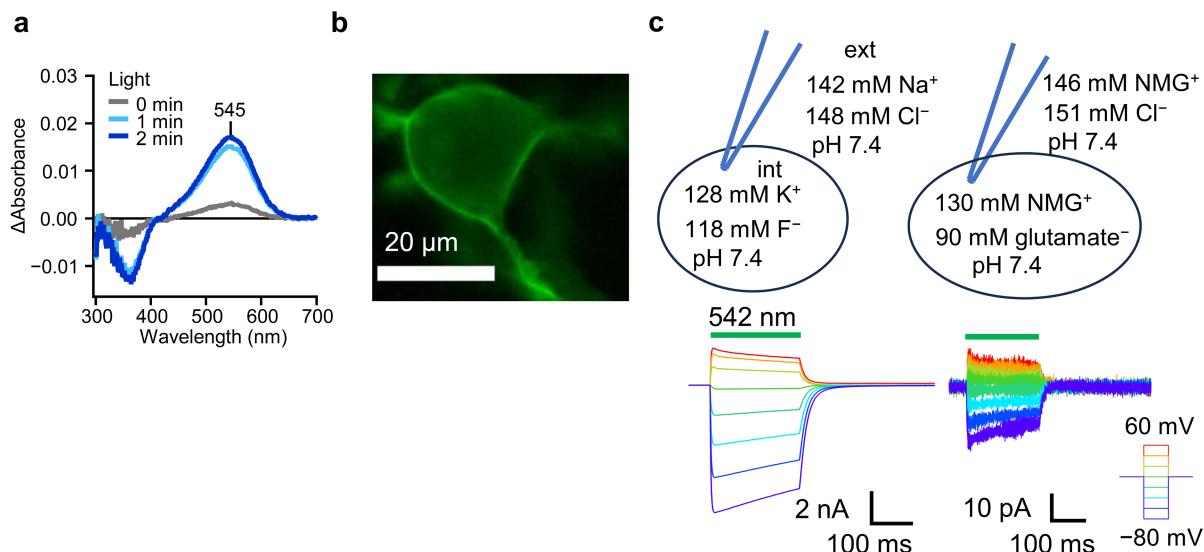


388

389 **Fig. 1. Amino acid sequence alignment of HulaCCR1, phylogenetic relationship, and**
390 **predicted structure**

391 **a** Amino acid alignment of TM3 of HulaCCR1 with *HcKCR1*, *ChRmine*, *GtCCR4*, *CrChR2*, and
392 *HsBR*. **b** The phylogenetic tree of representative channelrhodopsins, ion-pumping rhodopsins, and
393 HulaCCR1. The phylogenetic tree was inferred using the neighbor-joining method of MEGA X
394 software (version 11.0.13). **c** Schematic illustration of HulaCCR1 structure based on AlphaFold2
395 prediction.

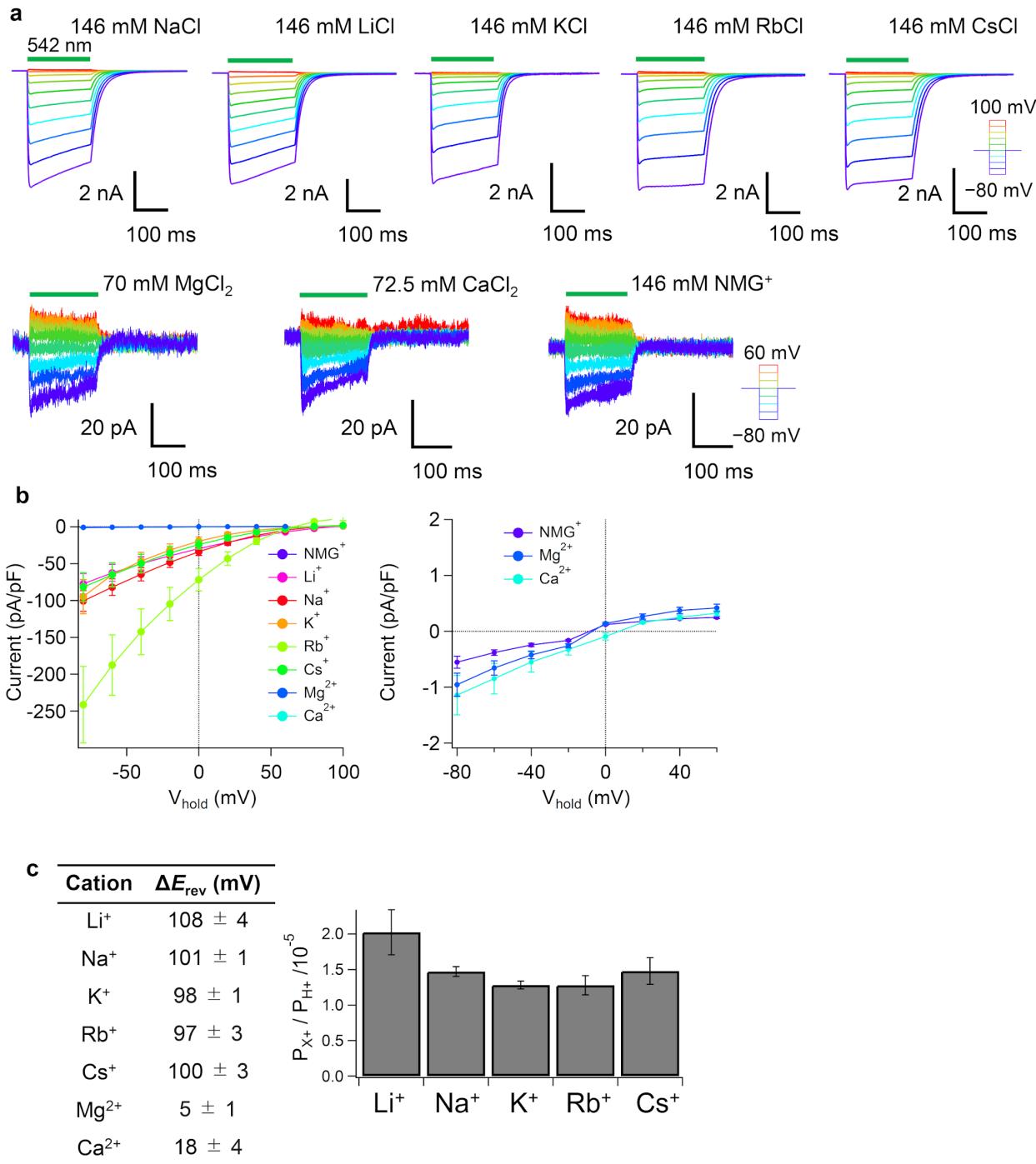
396



397

398 **Fig. 2. Phylogenetic relationships of HulaCCR1 and the mgCCR1-3 clade and their**
399 **geographical distribution.**

400 **a** Position of the mgCCR1-3 clade among the stramenopile (and other heterotrophic flagellate)
401 CCRs and BCCRs. The BCCR superclade was extracted from the ChR phylogeny in [28], numbers
402 below the branches indicate ultra-fast bootstrap support values ≥ 95 . **b** Fine phylogenetic
403 relationships among the six subclades of the mgCCR1-3 clade. The tree is outgroup-rooted with
404 the outgroups not shown. Numbers below the branches connecting subclades indicate rapid
405 bootstrap support values ≥ 50 . Numbers inside the triangles correspond to the number of the
406 metagenomic sequences placed on the tree (see Materials and Methods for details). Weblogos of
407 the TM3 motif are provided for the BCCR clades and subclades in **a** and **b**. **c** Distribution of the
408 four freshwater and two marine subclades of the mgCCR1-3 clade based on environmental
409 assemblies in JGI/IMG and Lake Hula. The pie charts show presence/absence of the corresponding
410 four (freshwater locations) or two (marine locations) subclades. For the list of the datasets see Fig.
411 S2.

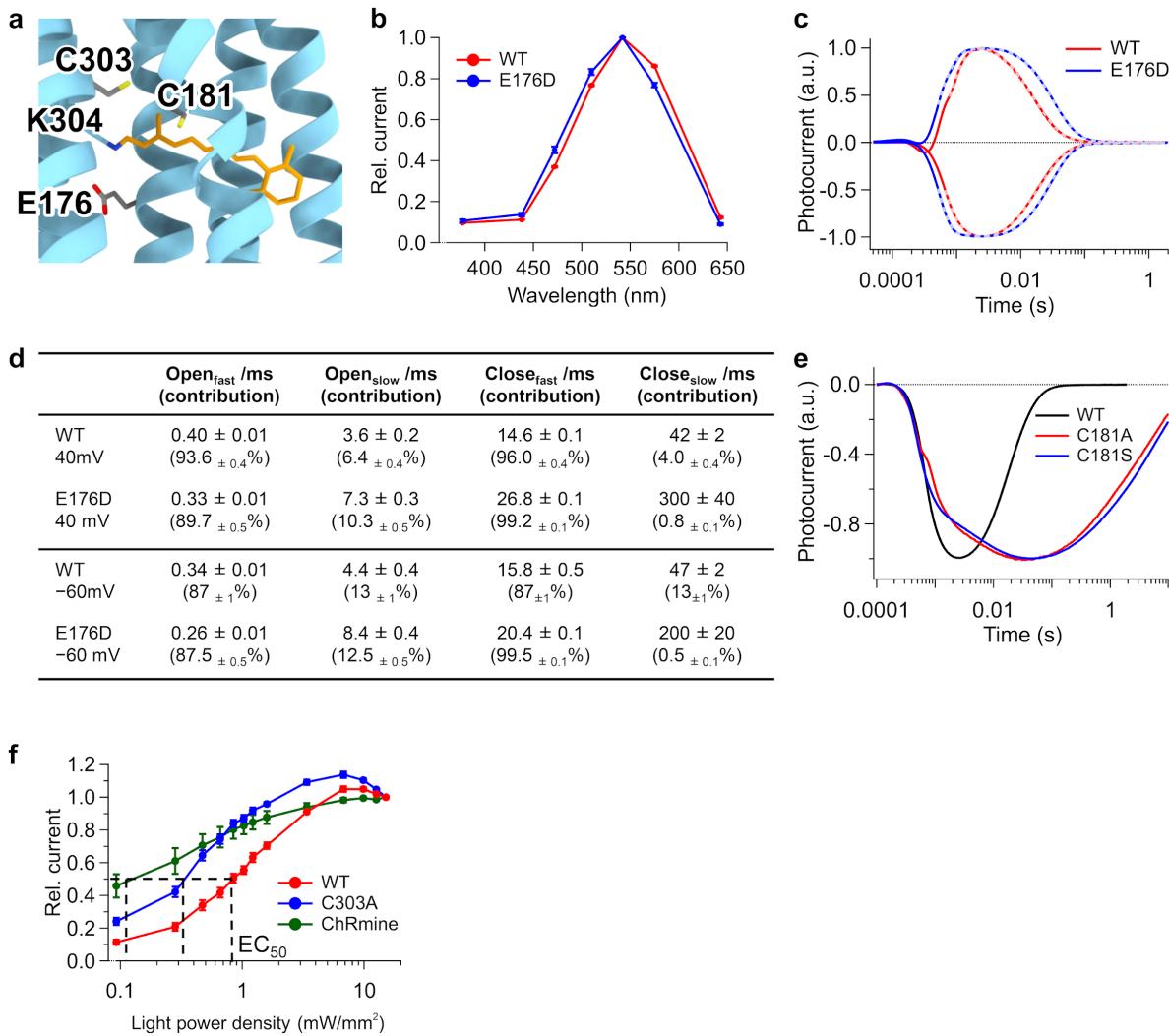

412

413

414 **Fig. 3. Characterization of HulaCCR1**

415 **a** Difference UV–visible absorption spectra between before and after the hydroxylamine bleach of
416 the HulaCCR1 showing the λ_{max} at 545 nm. The difference spectra were measured upon the
417 hydrolysis reaction of the retinal Schiff-base linkage induced by hydroxylamine with visible light
418 illumination (0, 1, or 2 min). **b** Fluorescence image of ND7/23 cell expressing HulaCCR1 which
419 is C-terminally labeled with EYFP (Scale bar: 20 μm). **c** Photocurrents of HulaCCR1 at 142 mM
420 $[\text{Na}^+]_{\text{out}}$ and 128 mM $[\text{K}^+]_{\text{in}}$ at pH = 7.4 (left) and at 146 mM $[\text{NMG}^+]_{\text{out}}$ and 130 mM $[\text{NMG}^+]_{\text{in}}$ at
421 pH = 7.4 (right).

422


423 **Fig. 4. Ion selectivity of HulaCCR1**

424 **a** Representative photocurrent traces of HulaCCR1 at 146 mM $[X^+]_{\text{out}}$ and 130 mM $[NMG^+]_{\text{in}}$ (top),
425 and at 70 mM $[Mg^{2+}]_{\text{out}}$ / 72.5 mM $[Ca^{2+}]_{\text{out}}$ / 146 mM $[NMG^+]_{\text{out}}$ and 130 mM $[NMG^+]_{\text{in}}$ (bottom).

426 **b** The $I-V$ plot of HulaCCR1 photocurrents with different extracellular cations (mean \pm S.E., $n =$
427 6). **c** Difference in E_{rev} between different cations and H^+ (ΔE_{rev}) (left) and relative permeability of

428 different cations against H⁺ (P_{X+}/P_{H+}) (right) (mean \pm S.E., $n = 6$).

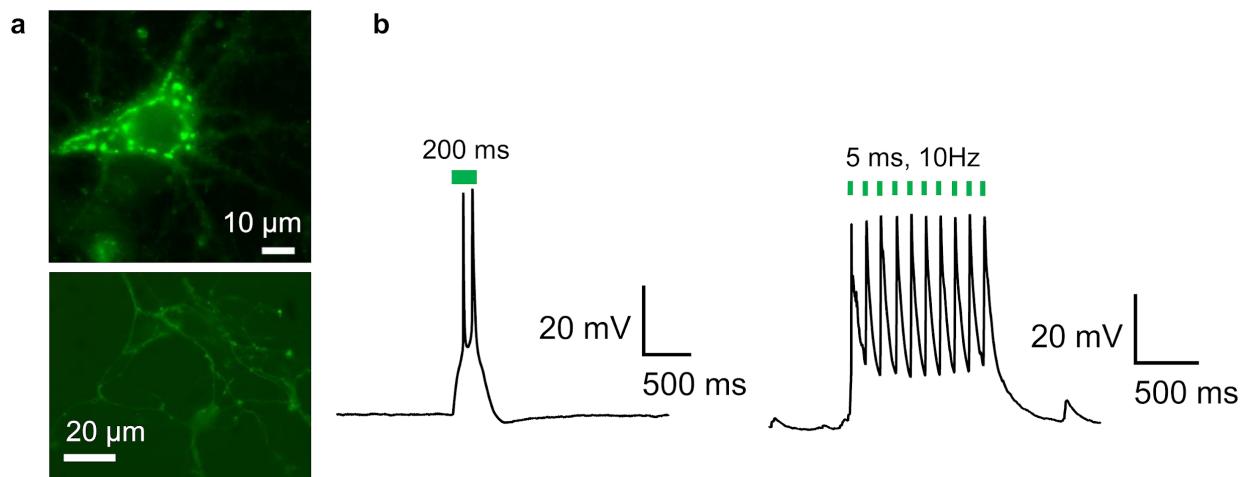
429



430

431 Fig. 5. Effect of point mutations

432 **a** AlphaFold2 predicted structural model for HulaCCR1 showing the mutated residues. The retinal
 433 structure (orange) and the side chain of conjugated lysine are of *HcKCR1* (PDB ID: 8H86). **b**
 434 Normalized action spectra of the HulaCCR1 WT and E176D (mean ± S.E., $n = 5$). **c** Photocurrent
 435 traces of the WT and E176D upon nanosecond laser flash excitation at holding potentials of 40 mV
 436 (positive) and -60 mV (negative). Photocurrents were recorded at 133 mM $[\text{Na}^+]_{\text{out}}$ and 120 mM
 437 $[\text{Na}^+]_{\text{in}}$ at pH = 7.4. Fitting curves are shown by broken lines. **d** Time constants of channel opening
 438 and closing of the WT HulaCCR1 and E176D (mean ± S.E., $n = 9$). **e** Photocurrent traces of the
 439 HulaCCR1 WT, C181A, and C181S upon nanosecond laser flash excitation recorded with standard
 440 pipette and extracellular solutions. **f** Light-power dependency of the photocurrent of HulaCCR1


441 WT, C303A, and ChRmine at -40 mV with standard pipette and extracellular solutions (mean \pm
442 S.E., $n = 5$).

443

444 **Fig. 6. The long N/C-terminal extensions of HulaCCR1**

445 **a** Truncated sites shown in the AlphaFold2 predicted structural model of HulaCCR1. **b**
446 Fluorescence images of truncated variants expressed in ND7/23 cells. Scale bars: 20 μ m. **c**
447 Representative photocurrent traces of truncated variants recorded with standard pipette and
448 extracellular solutions.

449

450 **Fig. 7. Light stimulation of hippocampal neurons expressing HulaCCR1**

451 **a** Fluorescence images of the cell body (top) and the axon (bottom) of a hippocampal neuron
452 expressing HulaCCR1. **b** Voltage traces showing depolarization and spikes of the neuron in
453 response to 200 ms green (542 nm) light stimulation (left) and to 10 Hz stimulation with 5 ms
454 pulses (right).

455 **Materials and Methods**

456

457 **Sampling, RNA extraction, and metatranscriptome assembly**

458 Peat lake sampling was performed on February 23rd, 2021 in The Hula Nature Reserve, Israel
459 (33°04'33.8"N 35°36'40.8"E). 20 L of water from the surface and 0.5 m depth was filtered through
460 a 50 µm mesh net to remove large particles, filtered onto a GF/D filter (Whatman), and flash-frozen
461 using liquid nitrogen on-site.

462 Total RNA was extracted from frozen filters, corresponding to ~5 L per sample (RNeasy
463 PowerSoil Total RNA Kit; Qiagen). The RNA was tested with Bioanalyzer, and PolyA-selected
464 libraries were constructed and sequenced at the Weizmann Institute of Science, on the NovaSeq
465 platform (300 cycles, PE).

466 *De-Novo* assembly was done post trimming (Trimgalore; v. 0.6.6)[52], Cutadapt v. 3.4 [53]
467 with MEGAHIT (v. 1.2.9) [54] and then clustered to reduce redundancy with cd-hit-est v. 4.8.1
468 [55]. An initial rhodopsin screening was done with HMMsearch (v. 3.3.2) [56] with the microbial
469 rhodopsin profiles from <https://github.com/BejaLab/RhodopsinProfiles>.

470

471 **Bioinformatic analyses**

472 mgCCR1, mgCCR2, mgCCR3, HulaCCR1, and other members of the mgCCR1-3 clade from the
473 Hula lake were used to search for additional datasets from JGI Integrated Microbial Genomes and
474 Microbiomes (IMG) [57] containing members of the clade. An initial search for such datasets was
475 performed using two strategies: a large collection of proteins assigned in IMG to PFAM family
476 pf01036 from a broad set of environmental assemblies was searched using blastp from NCBI blast
477 package v. 2.12.0+ [58] and a narrower collection of entire aquatic eukaryotic metatranscriptome
478 assemblies was searched directly using tblastn. For the matching assembled and unrestricted
479 datasets, as well as the lake Hula assembly, the entire assemblies were searched against a database

480 of rhodopsin domains of BCCRs and curated representatives of the mgCCR1-3 clade using blastx
481 with an e-value threshold of 1e-5. The contigs were assigned to the mgCCR1-3 clade if they had
482 best hits to one of the mgCCR1-3 clade representatives with at least 25 amino acid alignment length
483 and a minimal identity of 65%. ORFs in the matching transcript fragments and exons in the
484 genomic fragments were predicted manually based on multiple sequence alignment for each
485 subclade. To resolve phylogenetic relationships between the ChRs of the mgCCR1-3 clade, the
486 most complete representative sequences were chosen and combined with other members of the
487 stramenopile CCR family. The protein sequences were aligned with mafft v. 7.526 [59] and
488 trimmed to include the region between the transmembrane helices 1–7 (A–G) using the structure
489 of *HcKCR1* (PDB: 8H86) [41] as a template. Maximum likelihood phylogeny was reconstructed
490 with RAxML v. 8.2.13 [60] under the PROTCATLG model and with 1000 fast bootstrap replicates.
491 The rest of the environmental sequences were placed on the resulting tree using pplacer v.
492 1.1.alpha19 [61] by adding them to the alignment with mafft. The phylogenetic placements were
493 resolved with gappa v. 0.8.0 [62].

494 Analysis of retrotransposons associated with the ChR-possessing genomes was performed
495 as follows. Regions upstream and downstream of the start and stop codons of the genes from the
496 four freshwater ChR subclades were extracted and sufficiently long sequences (≥ 150 nt) were
497 clustered with CD-HIT v. 4.8.1 [63] at 90% identity level and used as a database to search for
498 related matches in the same environmental assemblies with blastn. Contigs matching the regions
499 flanking the rhodopsin genes with E value $\leq 1e-12$ were extracted and searched for
500 (retro)transposons using TransposonPSI v. 1.0.0 (<https://transposonpsi.sourceforge.net/>) with an E
501 value threshold of 1e-10. Related retrotransposons were searched for using the resulting protein
502 sequences of the *pol* genes using blastp in three eukaryotic databases: EukProt v. 3 [64], Tara
503 Oceans Single-Cell and Metagenome Assembled Genomes (SMAGs) [65] and single-cell

504 assembled genomes from bioproject PRJNA379597 [24]. Matches passing the empirical bitscore
505 threshold of 250 were clustered with cd-hit at 62% identity level, combined with non-redundant
506 query *pol* genes (clustered at 95% protein identity level), aligned with mafft (automatic mode
507 selection) and trimmed with trimAl v. 1.4.1 (-automated1 method) [66]. Trimmed sequences longer
508 than 200 amino acids were taken to phylogenetic reconstruction with RAxML under the
509 PROTCATLG model, with 1000 fast bootstrap replicates. The shorter sequences were placed on
510 the resulting tree with pplacer.

511 For the analysis of the eukaryotic community composition, SSU rRNA fragments were
512 extracted from the assemblies using metaxa v. 2.2.3. Taxonomy was assigned to the resulting
513 sequences using sintax from usearch v. 11.0.667 [67] with Protist Ribosomal Reference (PR²)
514 database v. 5.0.0 [68], with the default cut-off 0.8. Only matches to Eukaryota excluding animals
515 were considered. For SSU rRNA phylogenetic tree of the kathablepharids, non-chimeric
516 kathablepharid sequences and sequences from chosen outgroups longer than 1400 nt were extracted
517 from PR², clustered at 99% identity level with cd-hit and combined with SSU sequences from the
518 deep-sea kathablepharid SAGs and one of the complete kathablepharid SSU sequences from the
519 assemblies containing mgCCR1-3 genes. The phylogenetic analysis was performed by aligning the
520 sequences with mafft, trimming the alignment with trimAl (-automated1 method) and
521 reconstructing the phylogeny using RAxML under the GTRCAT model, with 1000 fast bootstrap
522 replicates.

523 The snakemake workflow implemented for the bioinformatic analyses is available at
524 <https://github.com/BejaLab/hulaccr>.

525

526 **DNA constructs**

527 Coding sequence (Table S1) of full-length HulaCCR1 and ChRmine were cloned into pCMV3.0-
528 enhanced fluorescent yellow protein (EYFP) vector between EcoRI and BamHI sites with a Kir2.1

529 membrane trafficking signal, EYFP, and an ER-export signal [69] fused at the C-terminus of
530 HulaCCR1. For point mutations, the QuikChange site-directed mutagenesis method (Agilent
531 Technologies, CA) was employed according to a manufacturer standard protocol. The truncated
532 mutants were PCR-based cloned using EcoRI-BamHI restriction sites into the pCMV3.0-EYFP
533 vector. Primers used in DNA work are listed in Table S2.

534

535 **UV-visible spectroscopy**

536 Cell culture and transfection for UV-visible spectroscopy were conducted as described elsewhere
537 [70]. Briefly, COS-1 cells (cell number: JCRB9082; Japanese Collection of Research Bioresources
538 Cell Bank, Osaka, Japan) were transfected by the polyethyleneimine method [71]. Cells were
539 supplemented with 2.5 μ M all-*trans*-retinal (ATR) on the following day and harvested after 48 h
540 of transfection. The cell membranes were solubilized with a phosphate buffer (pH 7.0) containing
541 (in mM) 66.5 phosphate, 133 NaCl with 3% *n*-dodecyl- β -D-maltoside. After centrifugation (21,600
542 \times g, 20°C, 5 min), the supernatant was subjected for the measurement of UV-visible absorption
543 spectra using a spectrophotometer (V-730, JASCO, Japan). Rhodopsin was bleached by
544 hydroxylamine (50 mM) and illumination with visible light from a 1-kW Xe lamp (MAX-303,
545 Asahi Spectra, Japan) through a long-pass filter (Y52, AGC Techno Glass, Japan). Difference
546 spectra were calculated by subtracting post-illumination spectra from the pre-illumination spectrum.
547 To correct for spectral changes derived from non-rhodopsin components in the sample, the
548 corresponding spectra of untransfected cell membranes that underwent the same treatment as the
549 sample were subtracted from the sample spectra.

550

551

552 **Cell culture and transfection for electrophysiology**

553 ND7/23 cells were grown in Dulbecco's modified Eagle's medium (D-MEM, FUJIFILM Wako
554 Pure Chemical Co., Japan) supplemented with 5% fetal bovine serum (FBS) under a 5% CO₂
555 atmosphere at 37°C. ND7/23 cells were attached onto a collagen-coated 12-mm coverslips (IWAKI,
556 cat. 4912-010, Japan) placing in a 4-well cell culture plate (SPL Life Sciences, cat. 30004, Korea).
557 The expression plasmids were transiently transfected in ND7/23 cells using Lipofectamine 3000
558 transfection reagent (Thermo Fisher Scientific Inc., MA). Seven to eight hours after the transfection,
559 the medium was replaced with D-MEM containing 10% horse serum (New Zealand origin, Thermo
560 Fisher Scientific Inc., MA), 50 ng mL⁻¹ nerve growth factor-7S (Sigma-Aldrich, MO), 1 mM N⁶,2'-
561 O-dibutyryladenosine-3',5'-cyclic monophosphate sodium salt (Nacalai tesque, Japan), 1 μM
562 cytosine-1-β-D(+)-arabinofuranoside (FUJIFILM Wako Pure Chemical Co., Japan), and 2.5 μM
563 all-trans-retinal. Electrophysiological recordings were conducted at 1–3 days after the transfection.
564 The transfected cells were identified by observing the EYFP fluorescence under an up-right
565 microscope (BX50WI, Olympus, Japan).

566 Hippocampi were isolated from postnatal day 1 (P1) Wistar-ST rats (by Sankyo Labo
567 Service Co., Japan) and treated with papain dissociation system (Worthington Biochemical Co.,
568 NJ) according to the company protocol. Briefly, dissected hippocampi were treated with papain for
569 1 h at 37°C. The dissociated cells were washed with Earle's Balanced Salt Solution (EBSS)
570 supplemented with ovomucoid protease inhibitor with bovine serum albumin. The dissociated cells
571 were resuspended in culture medium (Neurobasal A containing 2% B-27 plus (Thermo Fisher
572 Scientific Inc., MA)). Approximately 150,000 cells were plated on 12-mm poly-L-lysine-coated
573 glass coverslips (IWAKI, cat. 4912-040, Japan) in the 4-well cell culture plate. Transfection was
574 done by adeno-associated virus (AAV), and the plasmid and virus packaging were synthesized by
575 Vectorbuilder Inc. The plasmid pAAV vector has a CaMKIIa promotor containing the sequence of
576 HulaCCR1, C-terminally fused to the Kir2.1 membrane trafficking signal followed by EYFP and

577 the ER export signal. For transfection, AAV8 was added to each well ($4\text{--}8 \times 10^8$ genome copies
578 well $^{-1}$) 7 days after plating. The electrophysiological recordings were performed 15–22 days after
579 transfection.

580

581 **Electrophysiology**

582 All experiments were carried out at room temperature (20–22°C). Currents were recorded using an
583 EPC-8 amplifier (HEKA Electronic, Germany) under a whole-cell patch clamp configuration. The
584 data were filtered at 1 kHz, sampled at 50 kHz (Digidata1440 A/D, Molecular Devices Co., CA)
585 and stored in a computer (pClamp11.1, Molecular Devices). The standard internal pipette solutions
586 for the whole-cell voltage clamp recordings from the ND7/23 cells contained (in mM) 119 KF, 10
587 KOH, 5 Na₂EGTA, 14 HEPES, 0.0025 ATR (pH 7.4 adjusted with HCl). The standard extracellular
588 solution contained (in mM): 138 NaCl, 3 KCl, 2.5 CaCl₂, 1 MgCl₂, 10 HEPES, 4 NaOH, and 11
589 glucose (pH 7.4 adjusted with HCl). In the ion selectivity measurement, extracellular solution
590 contained (in mM) 146 XCl (X = Na⁺, K⁺, Li⁺, Rb⁺, Cs⁺), 6 N methyl-D-glucamine (NMG), 2.5
591 CaCl₂, 10 HEPES, 11 glucose (pH 7.4 adjusted with HCl). For the divalent cation selectivity,
592 extracellular solution contained (in mM) 70 XCl₂ (X = Ca²⁺, Mg²⁺), 6 NMG, 2.5 CaCl₂, 10 HEPES,
593 11 glucose (pH 7.4 adjusted with HCl). The NMG-extracellular solution contained (mM) 146 NMG,
594 146 HCl, 2.5 CaCl₂, 10 HEPES, and 11 glucose (pH 7.4 adjusted with NMG). The NMG-pipette
595 solution contained (in mM) 130 NMG, 90 glutamate, 6 (NMG)₂EGTA, 50 HEPES, 2.5 MgSO₄, 2.5
596 MgATP, 0.0025 ATR (pH 7.4 adjusted with H₂SO₄). The liquid junction potentials (LJPs) were
597 calculated by pClamp 11.1 software (Table. S3) and estimated reversal potentials were
598 compensated by calculated LJPs.

599 For whole-cell voltage clamp, illumination at 377 ± 25 , 438 ± 12 , 472 ± 15 , 510 ± 5 , 542
600 ± 13 , 575 ± 12 or 643 ± 10 nm was carried out using a SpectraX light engine (Lumencor Inc., OR)

601 controlled by pClamp 11.1 software. HulaCCR1 was illuminated through an objective lens
602 (LUMPlan FL 40x, NA 0.80W, Olympus, Japan). For the standard photocurrent detection, the
603 power of the 542-nm light was directly measured under a microscope using a visible light-sensing
604 thermopile (MIR178 101Q, SSC Co., Ltd., Japan) and was adjusted to 13.3 mW mm^{-2} . The action
605 spectrum was measured at a holding potential of -40 mV at wavelengths with equivalent power
606 density of 0.8 mW mm^{-2} . Each action spectrum was estimated by the maximal amplitude of the
607 photocurrent scaled by the light power density under the assumption of a linear relationship
608 between the photocurrent intensity and the light power density.

609 For Laser-flash patch clamp experiment, a laser flash (3–5 ns) at 532 nm (Nd:YAG laser,
610 Minilite II, Continuum, CA) was used [44]. For measuring the KIE on the gating dynamics, the
611 internal pipette solutions were made of H_2O or D_2O solutions containing (in mM) 60 Na_2SO_4 , 25
612 NMG, 60 mannitol, 5 EGTA, 10 HEPES, 2.5 MgSO_4 , 2.5 MgATP, and 0.0025 ATR adjusting pH
613 to 7.4 with HCl or DCl, respectively. The extracellular solutions were made of H_2O or D_2O
614 solutions containing (in mM) 133 NaCl , 3 KCl , 5 NMG, 10 HEPES, 5 CaCO_3 (solved by HCl or
615 DCl solutions), 2.5 MgSO_4 and 11 glucose, adjusting pH to 7.4 with HCl or DCl, respectively. The
616 pipette resistance was adjusted to 3–5 $\text{M}\Omega$ with a series resistance of 7–19 $\text{M}\Omega$ (WT; 12 ± 1 , $n = 9$
617 for H_2O ; 16 ± 1 , $n = 9$ for D_2O , E176D; 9 ± 1 , $n = 9$ for H_2O , E322Q; 10 ± 1 , $n = 9$ for H_2O ; $15 \pm$
618 1 , $n = 9$ for D_2O) and a cell capacitance of 30–90 pF (WT; 63 ± 4 , $n = 9$ for H_2O ; 58 ± 3 , $n = 9$ for
619 D_2O , E176D; 50 ± 2 , $n = 9$ for H_2O , E322Q; 43 ± 3 , $n = 9$ for H_2O ; 44 ± 2 , $n = 9$ for D_2O). In every
620 experiment, the series resistance was compensated for by 70%. Obtained signals had electrical
621 noise from the laser system. Therefore, the noise signal recorded without light excitation was
622 subtracted from raw photocurrent traces.

623 For whole-cell recordings in cultured hippocampal neurons, patch pipettes were filled with
624 (in mM) 90 potassium gluconate, 30 KOH, 49 HEPES, 2.5 MgCl_2 , 2.5 MgATP, 5 Na_2EGTA , and

625 0.0025 ATR, titrated to pH 7.4. The extracellular solution contained (in mM) 138 NaCl, 3 KCl, 2.5
626 CaCl₂, 1 MgCl₂, 11 glucose, and 10 HEPES, 2 kynurenic acid, titrated to pH 7.4.

627 **Acknowledgements**

628 We thank Ariel Chazan, Shirley Larom, David Iluz, Said Abu-Ghosh, and the park rangers David
629 Zaguri and Ido Shaked for help in sampling, and the Israel Nature and Parks Authority for the
630 permit to sample in The Hula Nature Reserve. This work was supported by JSPS KAKENHI
631 Grants-in-Aid (grant JP23K14151 to S.T., JP21H01875, JP23K18090, and JP23H04404 to K.I.),
632 JST CERST (grant JPMJCR22N2 to K.I.), and MEXT Promotion of Development of a Joint Usage/
633 Research System Project: Coalition of Universities for Research Excellence Program (CURE)
634 (grant JPMXP1323015482 to K.I.), the European Commission, under Horizon Europe's research
635 and innovation programme (Bluetools project, Grant Agreement No 101081957 to O.B.), the Israel
636 Science Foundation (Research Center grant 3131/20 to O.B.), and the Nancy and Stephen Grand
637 Technion Energy Program (GTEP). O.B. holds the Louis and Lyra Richmond Chair in Life
638 Sciences.

639 **References**

640 [1] A. Rozenberg, K. Inoue, H. Kandori, O. Béjà, Microbial rhodopsins: The last two decades, Annu. Rev. Microbiol. 75 (2021) 427–447.

641 [2] O.P. Ernst, D.T. Lodowski, M. Elstner, P. Hegemann, L.S. Brown, H. Kandori, Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev. 114 (2014) 126–163.

642 [3] T. Nagata, K. Inoue, Rhodopsins at a glance, J. Cell Sci. 134 (2021) jcs258989.

643 [4] K. Deisseroth, P. Hegemann, The form and function of channelrhodopsin, Science 357 (2017) eaan5544.

644 [5] V. Emiliani, E. Entcheva, R. Hedrich, P. Hegemann, K.R. Konrad, C. Lüscher, M. Mahn, Z.-H. Pan, R.R. Sims, J. Vierock, O. Yizhar, Optogenetics for light control of biological systems, Nat. Rev. Methods Primers 2 (2022) 55.

645 [6] O.A. Sineshchekov, K.-H. Jung, J.L. Spudich, Two rhodopsins mediate phototaxis to low- and high-intensity light in *Chlamydomonas reinhardtii*, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 8689–8694.

646 [7] G. Nagel, D. Ollig, M. Fuhrmann, S. Kateriya, A.M. Musti, E. Bamberg, P. Hegemann, Channelrhodopsin-1: a light-gated proton channel in green algae, Science 296 (2002) 2395–2398.

647 [8] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 13940–13945.

648 [9] E.G. Govorunova, O.A. Sineshchekov, R. Janz, X. Liu, J.L. Spudich, Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics, Science 349 (2015) 647–650.

649 [10] E.G. Govorunova, O.A. Sineshchekov, J.L. Spudich, Structurally distinct cation channelrhodopsins from cryptophyte algae, Biophys. J. 110 (2016) 2302–2304.

650 [11] H. Hagio, W. Koyama, S. Hosaka, A.D. Song, J. Narantsatsral, K. Matsuda, T. Shimizu, S. Hososhima, S.P. Tsunoda, H. Kandori, M. Hibi, Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases, eLife 12 (2023) e83975.

651 [12] M. Mahn, L. Gibor, P. Patil, K. Cohen-Kashi Malina, S. Oring, Y. Printz, R. Levy, I. Lampl, O. Yizhar, High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins, Nat. Commun. 9 (2018) 4125.

652 [13] S. Huang, M. Ding, M.R.G. Roelfsema, I. Dreyer, S. Scherzer, K.A.S. Al-Rasheid, S. Gao, G. Nagel, R. Hedrich, K.R. Konrad, Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel *GtACR1*, Sci. Adv. 7 (2021) eabg4619.

653 [14] Y. Zhou, M. Ding, S. Gao, J. Yu-Strzelczyk, M. Krischke, X. Duan, J. Leide, M. Riederer, M.J. Mueller, R. Hedrich, K.R. Konrad, G. Nagel, Optogenetic control of plant growth by a microbial rhodopsin, Nat. Plants 7 (2021) 144–151.

654 [15] H. Kandori, Ion-pumping microbial rhodopsins, Front. Mol. Biosci. 2 (2015) 52.

655 [16] Y. Yamauchi, M. Konno, S. Ito, S.P. Tsunoda, K. Inoue, H. Kandori, Molecular properties of a DTD channelrhodopsin from *Guillardia theta*, Biophys Physicobiol. 14 (2017) 57–66.

656 [17] J.H. Marshel, Y.S. Kim, T.A. Machado, S. Quirin, B. Benson, J. Kadmon, C. Raja, A. Chibukhchyan, C. Ramakrishnan, M. Inoue, J.C. Shane, D.J. McKnight, S. Yoshizawa, H.E. Kato, S. Ganguli, K. Deisseroth, Cortical layer-specific critical dynamics triggering perception, Science 365 (2019) eaaw5202.

686 [18] R. Chen, F. Gore, Q.-A. Nguyen, C. Ramakrishnan, S. Patel, S.H. Kim, M. Raffiee, Y.S.
687 Kim, B. Hsueh, E. Krook-Magnusson, I. Soltesz, K. Deisseroth, Deep brain optogenetics
688 without intracranial surgery, *Nat. Biotechnol.* 39 (2021) 161–164.

689 [19] H.E. Kato, Structure–Function Relationship of Channelrhodopsins, in: H. Yawo, H. Kandori,
690 A. Koizumi, R. Kageyama (Eds.), *Optogenetics: Light-sensing proteins and their*
691 *applications in neuroscience and beyond*, Springer Singapore, Singapore, 2021: pp. 35–53.

692 [20] E.G. Govorunova, Y. Gou, O.A. Sineshchekov, H. Li, X. Lu, Y. Wang, L.S. Brown, F. St-
693 Pierre, M. Xue, J.L. Spudich, Kalium channelrhodopsins are natural light-gated potassium
694 channels that mediate optogenetic inhibition, *Nat. Neurosci.* 25 (2022) 967–974.

695 [21] J. Vierock, E. Shiewer, C. Grimm, A. Rozenberg, I.-W. Chen, L. Tillert, A.G. Castro Scalise,
696 M. Casini, S. Augustin, D. Tanese, B.C. Forget, R. Peyronnet, F. Schneider-Warme, V.
697 Emiliani, O. Béjà, P. Hegemann, WiChR, a highly potassium-selective channelrhodopsin for
698 low-light one- and two-photon inhibition of excitable cells, *Sci. Adv.* 8 (2022) eadd7729.

699 [22] E.G. Govorunova, O.A. Sineshchekov, L.S. Brown, A.-N. Bondar, J.L. Spudich, Structural
700 foundations of potassium selectivity in channelrhodopsins, *MBio* 13 (2022) e0303922.

701 [23] M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, ColabFold:
702 making protein folding accessible to all, *Nat. Methods* 19 (2022) 679–682.

703 [24] J.G. Wideman, A. Monier, R. Rodríguez-Martínez, G. Leonard, E. Cook, C. Poirier, F.
704 Maguire, D.S. Milner, N.A.T. Irwin, K. Moore, A.E. Santoro, P.J. Keeling, A.Z. Worden,
705 T.A. Richards, Unexpected mitochondrial genome diversity revealed by targeted single-cell
706 genomics of heterotrophic flagellated protists, *Nat. Microbiol.* 5 (2020) 154–165.

707 [25] N. Okamoto, I. Inouye, The katablepharids are a distant sister group of the Cryptophyta: A
708 proposal for Katablepharidophyta divisio nova/ Kathablepharida phylum novum based on
709 SSU rDNA and beta-tubulin phylogeny, *Protist* 156 (2005) 163–179.

710 [26] N. Okamoto, C. Chantangsi, A. Horák, B.S. Leander, P.J. Keeling, Molecular phylogeny and
711 description of the novel katablepharid *Roombia truncata* gen. et sp. nov., and establishment
712 of the Hacrobia taxon nov, *PLoS One* 4 (2009) e7080.

713 [27] J. Slapeta, P. López-García, D. Moreira, Present status of the molecular ecology of
714 katablepharids, *Protist* 157 (2006) 7–11.

715 [28] J. Oppermann, A. Rozenberg, T. Fabrin, C. GonzalezCabrera, O. Béjà, M. Prigge, P.
716 Hegemann, Robust optogenetic inhibition with red-light-sensitive anion-conducting
717 channelrhodopsins, *eLife* (2023). <https://doi.org/10.7554/elife.90100.1>.

718 [29] A. Rozenberg, A catalog of natural channelrhodopsins. Zenodo.
719 <https://doi.org/10.5281/zenodo.11306563>

720 [30] K. Inoue, M. Karasuyama, R. Nakamura, M. Konno, D. Yamada, K. Mannen, T. Nagata, Y.
721 Inatsu, H. Yawo, K. Yura, O. Béjà, H. Kandori, I. Takeuchi, Exploration of natural red-
722 shifted rhodopsins using a machine learning-based Bayesian experimental design, *Commun.
723 Biol.* 4 (2021) 362.

724 [31] C.A. Lewis, Ion-concentration dependence of the reversal potential and the single channel
725 conductance of ion channels at the frog neuromuscular junction, *J. Physiol.* 286 (1979) 417–
726 445.

727 [32] S. Shigemura, S. Hososhima, H. Kandori, S.P. Tsunoda, Ion channel properties of a cation
728 channelrhodopsin, *Gt_CCR4*, *Appl. Sci.* 9 (2019) 3440.

729 [33] K.E. Kishi, Y.S. Kim, M. Fukuda, M. Inoue, T. Kusakizako, P.Y. Wang, C. Ramakrishnan,
730 E.F.X. Byrne, E. Thadhani, J.M. Paggi, T.E. Matsui, K. Yamashita, T. Nagata, M. Konno, S.
731 Quirin, M. Lo, T. Benster, T. Uemura, K. Liu, M. Shibata, N. Nomura, S. Iwata, O. Nureki,
732 R.O. Dror, K. Inoue, K. Deisseroth, H.E. Kato, Structural basis for channel conduction in the
733 pump-like channelrhodopsin ChRmine, *Cell* 185 (2022) 672–689.e23.

734 [34] M. Nack, I. Radu, M. Gossing, C. Bamann, E. Bamberg, G.F. von Mollard, J. Heberle, The
735 DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and
736 D156, *Photochem. Photobiol. Sci.* 9 (2010) 194–198.

737 [35] A. Berndt, O. Yizhar, L.A. Gunaydin, P. Hegemann, K. Deisseroth, Bi-stable neural state
738 switches, *Nat. Neurosci.* 12 (2009) 229–234.

739 [36] E.G. Govorunova, O.A. Sineshchekov, H. Li, Y. Wang, L.S. Brown, J.L. Spudich,
740 RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption, *Proc.*
741 *Natl. Acad. Sci. U. S. A.* 117 (2020) 22833–22840.

742 [37] S.A. Tennigkeit, R. Karapinar, T. Rudack, M.-A. Dreier, P. Althoff, D. Eickelbeck, T. Surdin,
743 M. Grömmke, M.D. Mark, K. Spoida, M. Lübben, U. Höweler, S. Herlitze, K. Gerwert,
744 Design of an ultrafast G protein switch based on a mouse melanopsin variant, *Chembiochem*
745 20 (2019) 1766–1771.

746 [38] A.A. Shtyrov, D.M. Nikolaev, V.N. Mironov, A.V. Vasin, M.S. Panov, Y.S. Tveryanovich,
747 M.N. Ryazantsev, Simple models to study spectral properties of microbial and animal
748 rhodopsins: Evaluation of the electrostatic effect of charged and polar residues on the first
749 absorption band maxima, *Int. J. Mol. Sci.* 22 (2021) 3029.

750 [39] K. Stehfest, E. Ritter, A. Berndt, F. Bartl, P. Hegemann, The branched photocycle of the
751 slow-cycling channelrhodopsin-2 mutant C128T, *J. Mol. Biol.* 398 (2010) 690–702.

752 [40] O.A. Sineshchekov, E.G. Govorunova, H. Li, J.L. Spudich, Bacteriorhodopsin-like
753 channelrhodopsins: Alternative mechanism for control of cation conductance, *Proc. Natl.*
754 *Acad. Sci. U. S. A.* 114 (2017) E9512–E9519.

755 [41] S. Tajima, Y.S. Kim, M. Fukuda, Y. Jo, P.Y. Wang, J.M. Paggi, M. Inoue, E.F.X. Byrne, K.E.
756 Kishi, S. Nakamura, C. Ramakrishnan, S. Takaramoto, T. Nagata, M. Konno, M. Sugiura, K.
757 Katayama, T.E. Matsui, K. Yamashita, S. Kim, H. Ikeda, J. Kim, H. Kandori, R.O. Dror, K.
758 Inoue, K. Deisseroth, H.E. Kato, Structural basis for ion selectivity in potassium-selective
759 channelrhodopsins, *Cell* 186 (2023) 4325–4344.

760 [42] L.S. Brown, R. Needleman, J.K. Lanyi, Origins of deuterium kinetic isotope effects on the
761 proton transfers of the bacteriorhodopsin photocycle, *Biochemistry* 39 (2000) 938–945.

762 [43] K. Inoue, S. Tahara, Y. Kato, S. Takeuchi, T. Tahara, H. Kandori, Spectroscopic study of
763 proton-transfer mechanism of inward proton-pump rhodopsin, *Parvularcula oceanii*
764 Xenorhodopsin, *J. Phys. Chem. B* 122 (2018) 6453–6461.

765 [44] K. Shibata, K. Oda, T. Nishizawa, Y. Hazama, R. Ono, S. Takaramoto, R. Bagherzadeh, H.
766 Yawo, O. Nureki, K. Inoue, H. Akiyama, Twisting and protonation of retinal chromophore
767 regulate channel gating of channelrhodopsin C1C2, *J. Am. Chem. Soc.* 145 (2023) 10779–
768 10789.

769 [45] F. Teufel, J.J. Almagro Armenteros, A.R. Johansen, M.H. Gíslason, S.I. Pihl, K.D. Tsirigos,
770 O. Winther, S. Brunak, G. von Heijne, H. Nielsen, SignalP 6.0 predicts all five types of
771 signal peptides using protein language models, *Nat. Biotechnol.* 40 (2022) 1023–1025.

772 [46] K.D. Tsirigos, C. Peters, N. Shu, L. Käll, A. Elofsson, The TOPCONS web server for
773 consensus prediction of membrane protein topology and signal peptides, *Nucleic Acids Res.*
774 43 (2015) W401–7.

775 [47] J. Mähler, I. Persson, A study of the hydration of the alkali metal ions in aqueous solution,
776 *Inorg. Chem.* 51 (2012) 425–438.

777 [48] Y.S. Kim, H.E. Kato, K. Yamashita, S. Ito, K. Inoue, C. Ramakrishnan, L.E. Fenno, K.E.
778 Evans, J.M. Paggi, R.O. Dror, H. Kandori, B.K. Kobilka, K. Deisseroth, Crystal structure of
779 the natural anion-conducting channelrhodopsin *GtACR1*, *Nature* 561 (2018) 343–348.

780 [49] A. Rozenberg, J. Oppermann, J. Wietek, R.G. Fernandez Lahore, R.-A. Sandaa, G. Bratbak,
781 P. Hegemann, O. Béjà, Lateral gene transfer of anion-conducting channelrhodopsins
782 between green algae and giant viruses, *Curr. Biol.* 30 (2020) 4910-4920.e5.

783 [50] A. Kianianmomeni, K. Stehfest, G. Nematollahi, P. Hegemann, A. Hallmann,
784 Channelrhodopsins of *Volvox carteri* are photochromic proteins that are specifically
785 expressed in somatic cells under control of light, temperature, and the sex inducer, *Plant*
786 *Physiol.* 151 (2009) 347–366.

787 [51] R. Tashiro, K. Sushmita, S. Hososhima, S. Sharma, S. Kateriya, H. Kandori, S.P. Tsunoda,
788 Specific residues in the cytoplasmic domain modulate photocurrent kinetics of
789 channelrhodopsin from *Klebsormidium nitens*, *Commun. Biol.* 4 (2021) 235.

790 [52] F. Krueger, F. James, P. Ewels, E. Afyounian, M. Weinstein, B. Schuster-Boeckler, G.
791 Hulselmans, FelixKrueger/TrimGalore: v0.6.10 - add default decompression path. Zenodo.
792 <https://doi.org/10.5281/zenodo.7598955>

793 [53] M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads,
794 *EMBnet.Journal* 17 (2011) 10–12.

795 [54] D. Li, C.-M. Liu, R. Luo, K. Sadakane, T.-W. Lam, MEGAHIT: an ultra-fast single-node
796 solution for large and complex metagenomics assembly via succinct de Bruijn graph,
797 *Bioinformatics* 31 (2015) 1674–1676.

798 [55] W. Li, A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or
799 nucleotide sequences, *Bioinformatics* 22 (2006) 1658–1659.

800 [56] L.S. Johnson, S.R. Eddy, E. Portugaly, Hidden Markov model speed heuristic and iterative
801 HMM search procedure, *BMC Bioinformatics* 11 (2010) 431.

802 [57] I.-M.A. Chen, K. Chu, K. Palaniappan, A. Ratner, J. Huang, M. Huntemann, P. Hajek, S.J.
803 Ritter, C. Webb, D. Wu, N.J. Varghese, T.B.K. Reddy, S. Mukherjee, G. Ovchinnikova, M.
804 Nolan, R. Seshadri, S. Roux, A. Visel, T. Woyke, E.A. Eloe-Fadrosh, N.C. Kyrpides, N.N.
805 Ivanova, The IMG/M data management and analysis system v.7: content updates and new
806 features, *Nucleic Acids Res.* 51 (2023) D723–D732.

807 [58] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L. Madden,
808 BLAST+: architecture and applications, *BMC Bioinformatics* 10 (2009) 421.

809 [59] K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7:
810 improvements in performance and usability, *Mol. Biol. Evol.* 30 (2013) 772–780.

811 [60] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
812 phylogenies, *Bioinformatics* 30 (2014) 1312–1313.

813 [61] F.A. Matsen, R.B. Kodner, E.V. Armbrust, pplacer: linear time maximum-likelihood and
814 Bayesian phylogenetic placement of sequences onto a fixed reference tree, *BMC*
815 *Bioinformatics* 11 (2010) 538.

816 [62] L. Czech, P. Barbera, A. Stamatakis, Genesis and Gappa: processing, analyzing and
817 visualizing phylogenetic (placement) data, *Bioinformatics* 36 (2020) 3263–3265.

818 [63] L. Fu, B. Niu, Z. Zhu, S. Wu, W. Li, CD-HIT: accelerated for clustering the next-generation
819 sequencing data, *Bioinformatics* 28 (2012) 3150–3152.

820 [64] D.J. Richter, C. Berney, J.F.H. Strassert, Y.-P. Poh, E.K. Herman, S.A. Muñoz-Gómez, J.G.
821 Wideman, F. Burki, C. de Vargas, EukProt: A database of genome-scale predicted proteins
822 across the diversity of eukaryotes, *Peer Community J.* 2 (2022) e56.

823 [65] T.O. Delmont, M. Gaia, D.D. Hinsinger, P. Fremont, C. Vanni, A.F. Guerra, A. Murat Eren,
824 A. Kourlaiev, L. d'Agata, Q. Clayssen, E. Villar, K. Labadie, C. Cruaud, J. Poulain, C. Da
825 Silva, M. Wessner, B. Noel, J.-M. Aury, T.O. Coordinators, C. de Vargas, C. Bowler, E.
826 Karsenti, E. Pelletier, P. Wincker, O. Jaillon, Functional repertoire convergence of distantly

827 related eukaryotic plankton lineages revealed by genome-resolved metagenomics, *BioRxiv*
828 (2021) 2020.10.15.341214. <https://doi.org/10.1101/2020.10.15.341214>.

829 [66] S. Capella-Gutiérrez, J.M. Silla-Martínez, T. Gabaldón, trimAl: a tool for automated
830 alignment trimming in large-scale phylogenetic analyses, *Bioinformatics* 25 (2009) 1972–
831 1973.

832 [67] R.C. Edgar, SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS
833 sequences, *BioRxiv* (2016) 074161. <https://doi.org/10.1101/074161>.

834 [68] L. Guillou, D. Bachar, S. Audic, D. Bass, C. Berney, L. Bittner, C. Boutte, G. Burgaud, C. de
835 Vargas, J. Decelle, J. Del Campo, J.R. Dolan, M. Dunthorn, B. Edvardsen, M. Holzmann,
836 W.H.C.F. Kooistra, E. Lara, N. Le Bescot, R. Logares, F. Mahé, R. Massana, M. Montresor,
837 R. Morard, F. Not, J. Pawlowski, I. Probert, A.-L. Sauvadet, R. Siano, T. Stoeck, D. Vaulot,
838 P. Zimmermann, R. Christen, The Protist Ribosomal Reference database (PR2): a catalog of
839 unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy, *Nucleic Acids
840 Res.* 41 (2013) D597-604.

841 [69] V. Gradinaru, F. Zhang, C. Ramakrishnan, J. Mattis, R. Prakash, I. Diester, I. Goshen, K.R.
842 Thompson, K. Deisseroth, Molecular and cellular approaches for diversifying and extending
843 optogenetics, *Cell* 141 (2010) 154–165.

844 [70] N. Morimoto, T. Nagata, K. Inoue, Reversible photoreaction of a retinal photoisomerase,
845 retinal G-protein-coupled receptor RGR, *Biochemistry* 62 (2023) 1429–1432.

846 [71] J.F. Fay, D.L. Farrens, Chapter fifteen - Purification of functional CB1 and analysis by site-
847 directed fluorescence labeling methods, in: P.H. Reggio (Ed.), *Methods in Enzymology*,
848 Academic Press, 2017: pp. 343–370.

849

Supporting information

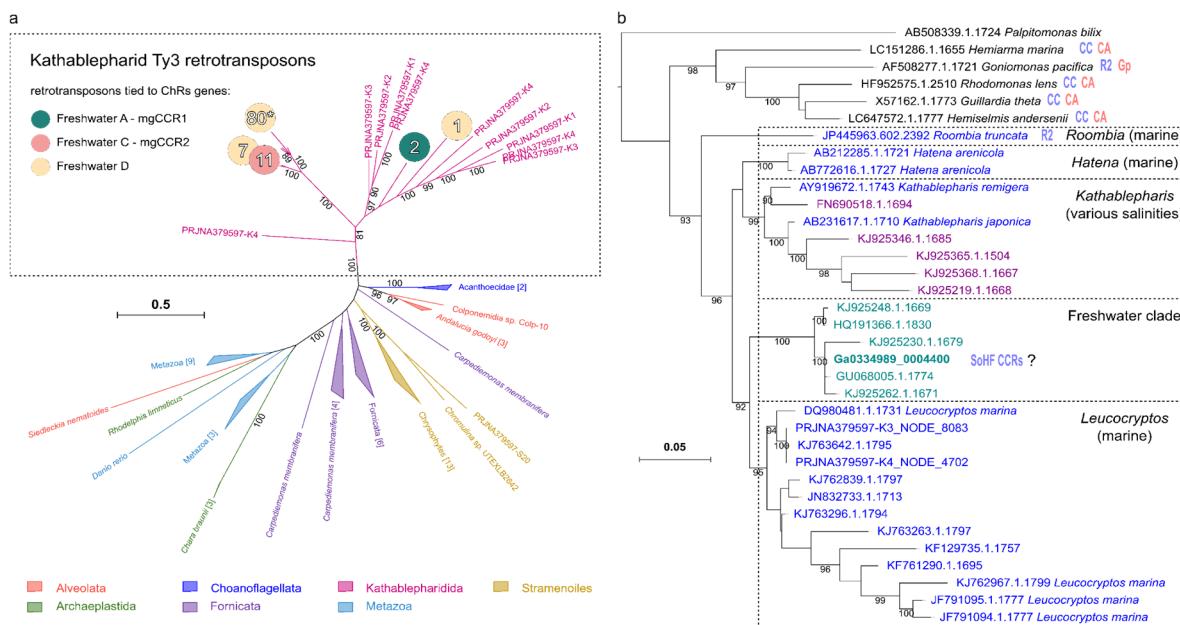
2

3 The roles of an extended N-terminal region and ETD motif in a pump-like
4 cation channelrhodopsin discovered in a lake microbiome

5

6 Authors

7 Shunki Takaramoto¹, Shai Fainsod², Takashi Nagata¹, Andrey Rozenberg², Oded Béja², Keiichi Inoue^{1,*}


8

9 Contents:

10 Supplementary Figures S1–S7

11 Supplementary Tables S1–S3

12 References

13

14

15 **Fig. S1. Evolutionary affinities of the uncultured eukaryotes possessing ChRs from the mgCCR1-**

16 **3 clade. a** Phylogenetic analysis of the Ty3/gypsy retrotransposons linked for three

17 freshwater subclades of the ChRs. Branches are labeled by the corresponding taxonomic group with the

18 kathablepharid genomes represented by four SAGs K1-K4 (bioproject PRJNA379597). Branches

19 containing *pol* genes from the metagenomic contigs are indicated with circles colored by the subclade

20 of the ChR genes linked to them (see Materials and Methods for details). Numbers inside indicate the

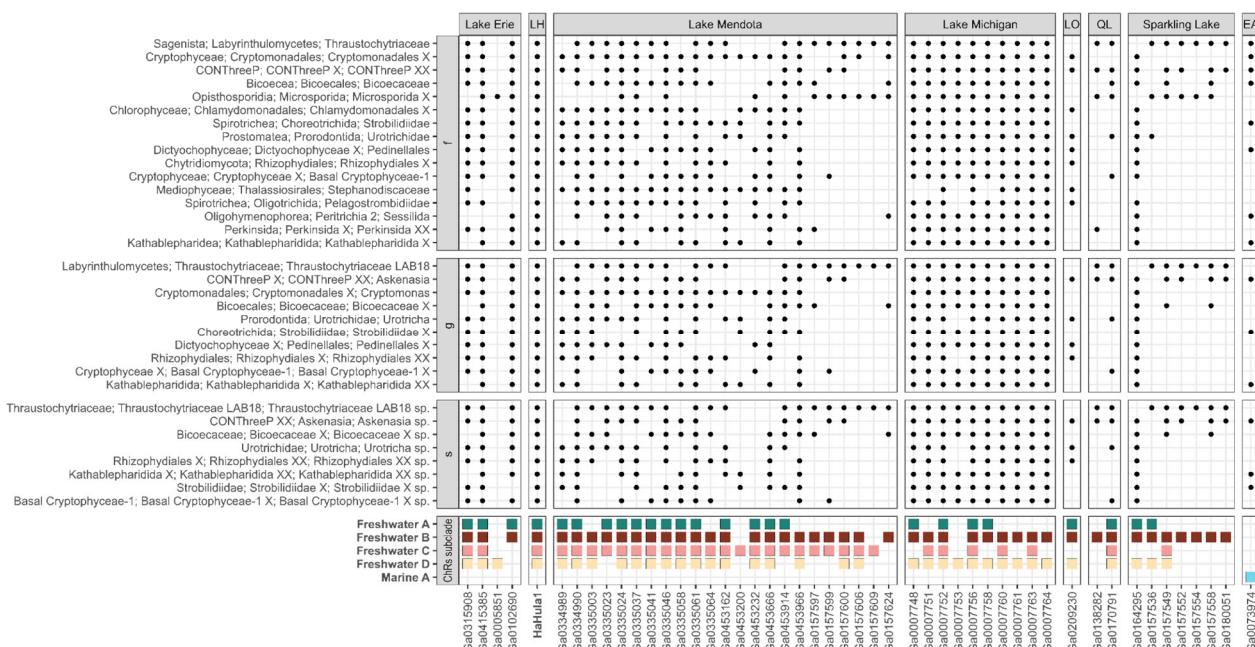
21 number of the individual contigs containing fragments of the corresponding retrotransposons. Asterisk

22 indicates position of the contig Ga0335041_0096840 which contains a fragment of a retrotransposon

23 upstream of a ChR gene. Numbers next to branches indicate fast bootstrap support values ≥ 80 . **b**

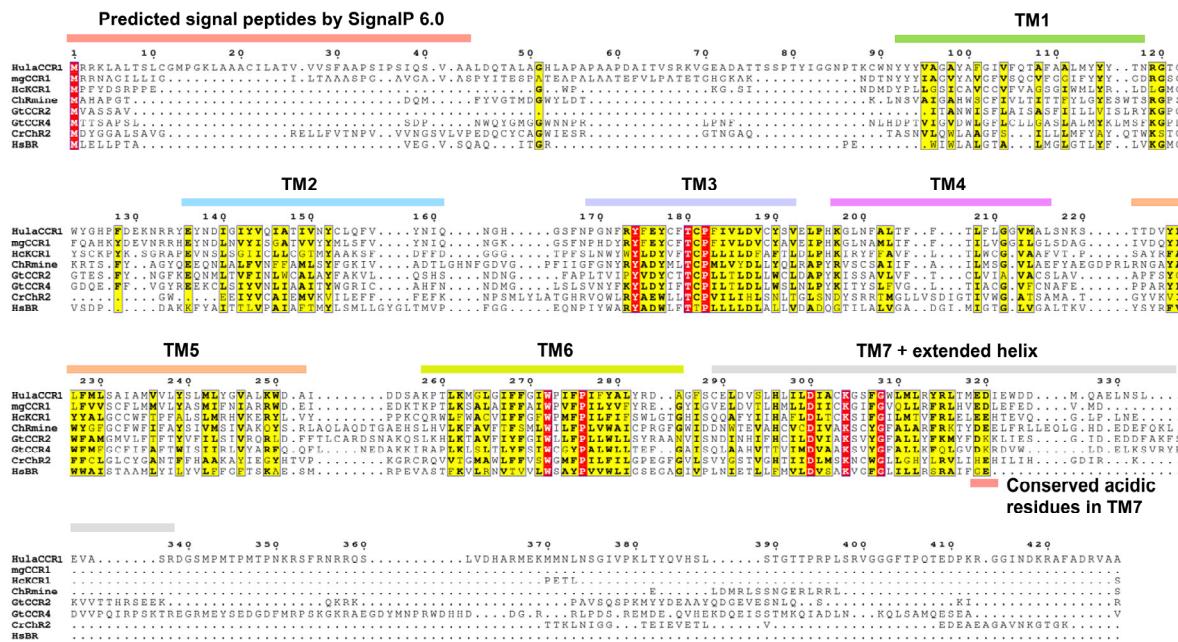
24 Phylogenetic tree of SSU rRNA genes from kathablepharids and other cryptists. Contig

25 Ga0334989_0004400 is a complete gene representative of a dominant kathablepharid SSU type found

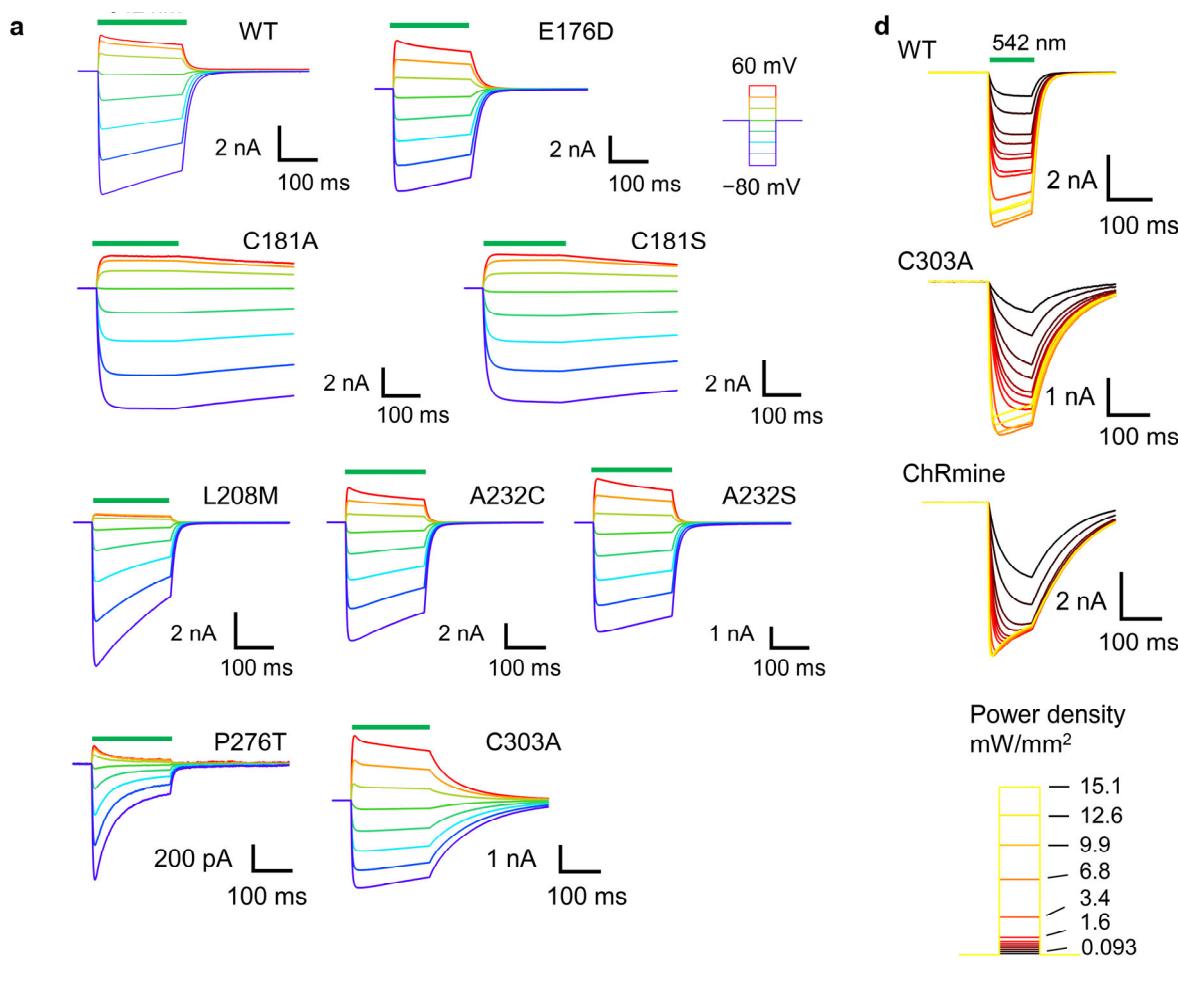

26 in datasets with ChRs from the mgCCR1-3 clade. Labels are colored by the sample environment: blue

27 — marine, cyan — freshwater, purple — estuarine. Red and blue abbreviated labels indicate the

28 presence of ACR and CCR families in the corresponding species: CA — cryptophyte ACRs, CC —

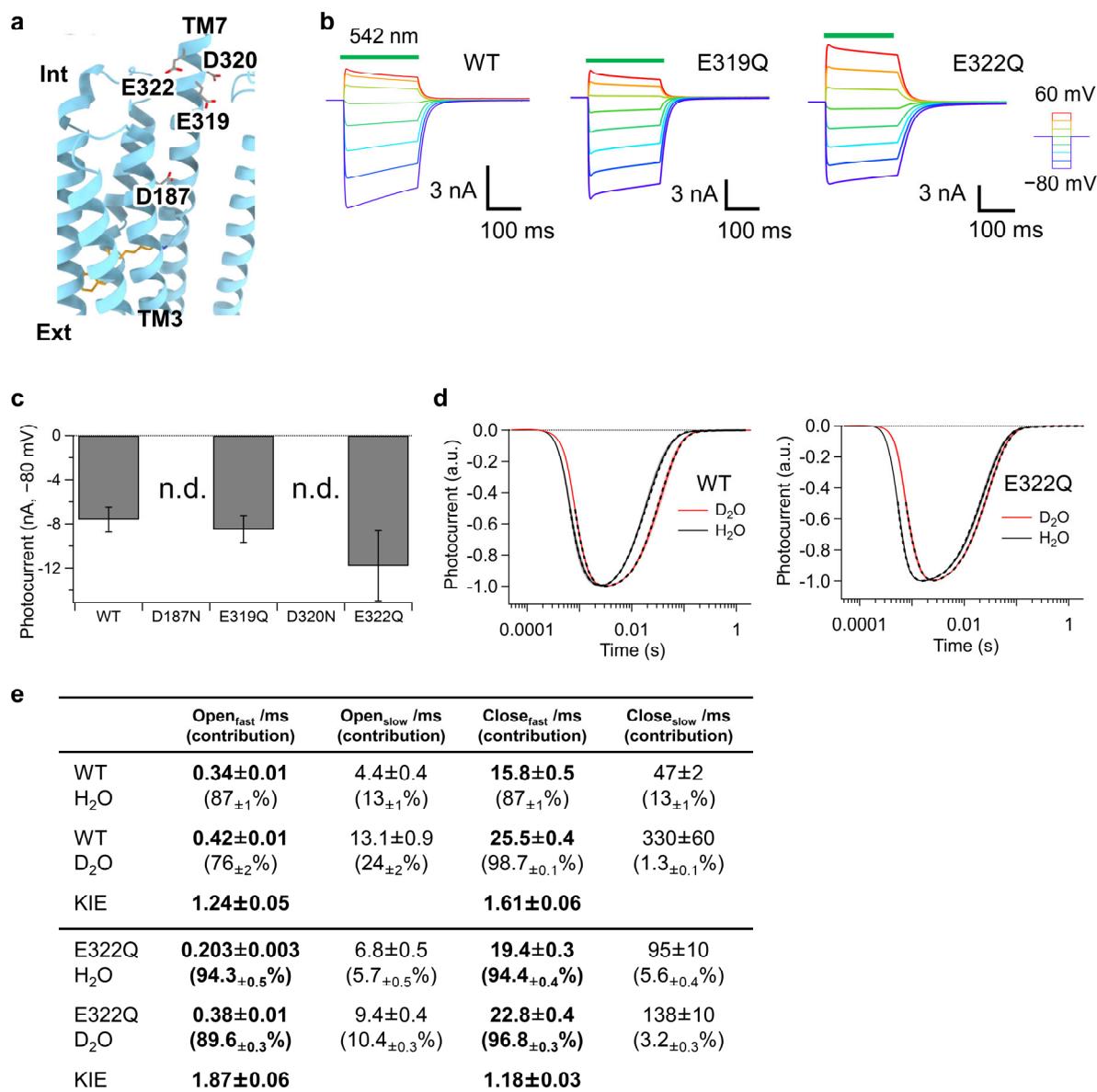

29 cryptophyte CCRs, Gp — GpACR1, R2 — mgR2-like ChRs, SoHF CCR — stramenopile (and other

30 HF) CCRs. Numbers next to branches indicate fast bootstrap support values ≥ 90 .



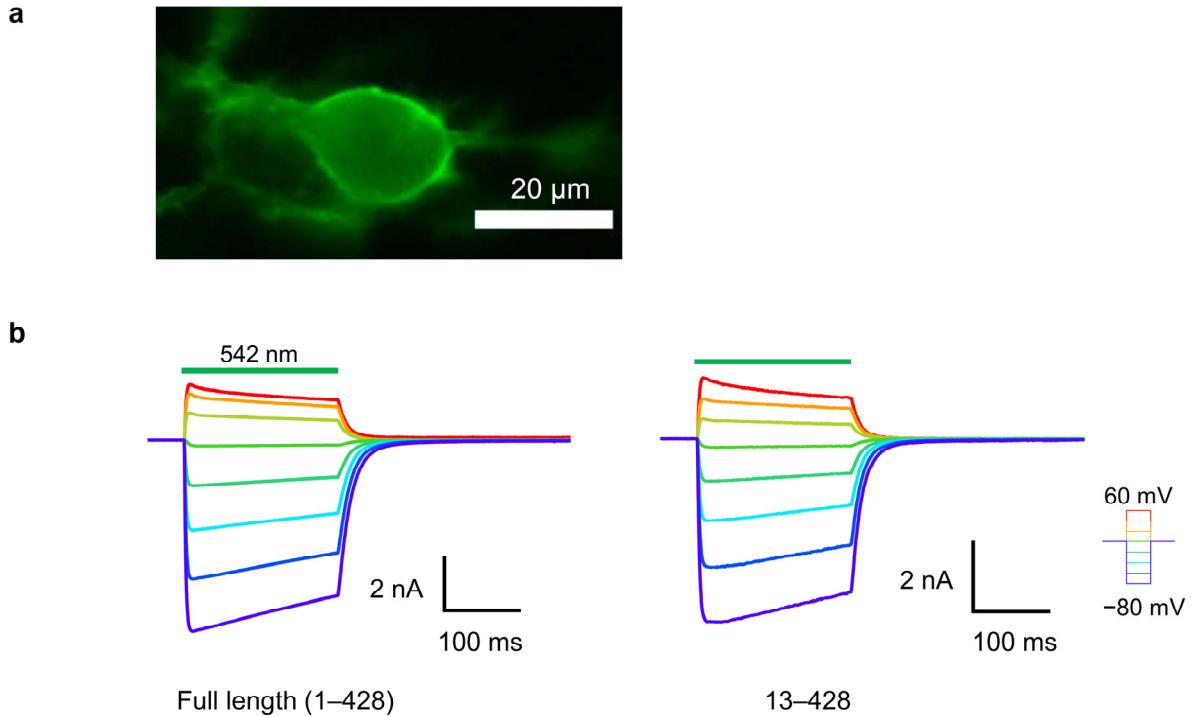
31
32 **Fig. S2. rRNA SSU taxonomic profiling of the environmental samples in which ChRs from the**
33 **mgCCR1-3 clade were found.**

34 Taxa are grouped by rank as defined in the Protist Ribosomal Reference database at three levels: s, g
35 and f. Shown are unicellular eukaryotic taxa present in at least 25 individual datasets at taxonomic levels.
36 Datasets with too few rRNA contigs are not shown. Location abbreviations are as follows: LH — Lake
37 Hula, LO — Lake Ontario, QL — Quebec Lakes, EA — equatorial Atlantic Ocean.


41 The sequence alignment was created using ClustalW [1] and ESPript 3 [2] servers. A predicted signal
42 sequence, transmembrane helices, and conserved acidic residues in TM7 based on the AlphaFold2
43 structural model of HulaCCR1 are highlighted by colored bars.

44

45 **Figure S4. Photocurrents of HulaCCR1 mutants**

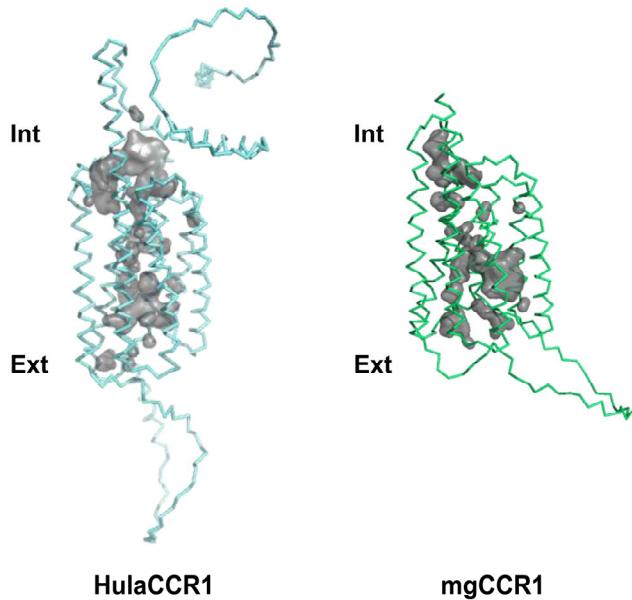

46 **a** Representative photocurrent traces of the HulaCCR1 WT and mutants recorded with standard pipette
47 and extracellular solutions. **b** Mutated residues close to the β -ionone ring side of the retinal. The retinal
48 structure (orange) and the side chain of conjugated lysine are of *HcKCR1* (PDB ID: 8H86). **c**
49 Normalized action spectra of the HulaCCR1 WT, C303A, L208M, A232S, A232C, and P276T (mean \pm
50 S.E., $n = 5$). **d** Light-power dependence of photocurrent traces of the HulaCCR1 WT, C303A, and
51 ChRmine at -40 mV with standard pipette and extracellular solutions.

52

53 **Figure S5. Effect of point mutations on intracellular acidic residues**

54 **a** Mutated acidic residues located in the intracellular region. **b** Representative photocurrent traces of the
 55 HulaCCR1 WT, E319Q, and E322Q. **c** Mean photocurrent amplitude recorded at -80 mV ($n = 5$). **d**
 56 Photocurrent traces of the HulaCCR1 WT and E322Q upon nanosecond laser-flash excitation recorded
 57 in H₂O/D₂O solutions. Fitting curves are shown as broken lines. **e** Time constants of channel opening
 58 and closing of the HulaCCR1 WT and E322Q (mean \pm S.E., $n = 9$)

59


60 **Figure S6. Comparison of the photocurrents between the full-length and the N-terminally**

61 **truncated variant (13-428).**

62 **a** Fluorescence image of the N-terminally truncated variant (13-428) expressed in an ND7/23 cell. Scale

63 bar: 20 μm . **b** Representative photocurrent traces of the full-length protein and the N-terminally

64 truncated variant (13-428) recorded with standard pipette and extracellular solutions.

65

66 **Figure S7. Internal cavities based on AlphaFold2 predicted structures of HulaCCR1 and mgCCR1.**

67 Calculated cavities by PyMOL software (version 2.6.0a0) are shown in gray.

68 **Table S1. DNA and protein sequences of HulaCCR1.**

DNA	ATGAGAAGGAAGCTGGCTCTGACATCTCTGTGCGGCATGCCGGCAAACGGCT sequence GCTGCTTGTATCCTGGCTACAGTGGTGGTCAGCTCGCCGCCCATCTATCCCCA GCATCCAAAGCGTGGCCGCTCTGGATCAGACAGCCCTGGCCGCCACCTGGCC CTGCCCCCGCCGCCCTGATGCCATCACCGTGAGCAGAAAGGTGGCGAAGCCG ATGCTACCAACATCCAGCCCTACCTACATCGCGGAAATCCTACAAAGTGTGGA ACTACTACTACGTGGCCGGCGCCTACGCCTCGGCATCGTGTCCAAACAGCTT CGCCGCCCTGATGTACTACTACACCAACCGCGGCACCGGCTGGTACGGCCATCC TTTCGACGAGAAAAACCGGAGATACGAGTACAATGACATCGGAATCTACGTGC AGATGCCACCATCGTAACTATTGCCTGCAGTCGTGTACAACATCCAGAACG GCCACGGCAGCTCAACCCCTGGCAATTCCGGTATTCGAGTACTGCTTCACCTG CCCCTTCATCGTGCTGGACGTTTGTACAGCGTGGAACTGCCTCACAGGGCCTG AACTTCGCCCTTACATTCTTACCCCTGTTCCCTGGCGGAGTGATGCCCTGAGCA ACAAAAGCACAACCGACGTGTACCTGCTGTTATGCTGAGCGCCATGCCATGG TGGTACTGTACAGCCTGATGCTGTATGGCGTGGCCCTGAAGTGGGACGCTATCG ACGACAGCGCCAAGCCCACCCCTCAAGATGGCCTCGGCATCTCTCGGCATCT GGCCTATCTTCCAATCTTACGCCCTGTACAGAGATGCCGGATTAGCTGCGA GCTGGATGTCTCCCTGCACCTGATCCTGGACATGCCGTGCAAGGGCTTTGGGA TGGCTGATGCTGAGATACCGGCTCACAATGGAAGACATCGAGTGGGATGACATG CAGGCCGAGCTGAACAGCCTGGAAGTGGCAGCCGGACGGCTCCATGCCAT GACCCCTATGACCCCCAACAAAGCGGAGCTTAGAAACAGACGGCAGTCTCTGGT GGACCACGCCAGAATGGAAAAAAATGATGAACCTGAACAGCGGCATTGTGCCAA AGCTGACTTACCAAGGTGCACAGCCTGAGCACCAGGACCCCTAGACCCCTGA GCAGAGTGGCGGGCTTCACCCCTCAGACCGAGGACCCCTAACCGTGGAGGA ATTAACGACAAGAGAGCCTTGCCGACAGAGTGGCTGCC
Protein	MRRKLALTSLCGMPGKLAACILATVVVSFAAPSIPSIQSVAALDQTALAGHLAPAP sequence AAPDAITVSRKVGEADATTSSPTYIGGNPTKCWNYYYYVAGAYAFGIVFQTAALM YYYTNRGWYGHPFDEKNRRYEYNDIGIYVQIATIVNYCLQFVYNIQNGHGSFNP GNFRYFEYCFTCPFIVLDVCYSVELPHKGLNFALTFFTLFLGGVMALSNKSTTDVYL LFMLSAIAMVVLYSMLYGVALKWDAIDDSAKPTLKMGLGIFFGIWPIFPIFYALYR DAGFSCELDVSLLHILDIACKGSFGWMLRYRLTMEDIEWDDMQAELNSLEVASRD GSMPMTPMTPNKRFRNRRQSLVDHARMEKMMNLNSGIVPKLTYQVHSLSTGTP RPLSRVGGGFTPQTEDPKRGGINDKRAFADRVAA

70 **Table S2. List of primer sequences used in DNA work.**

Type of DNA work	Sense primer	Anti-sense primer
Insertion of 41st–428th into pCMV3.0-EYFP vector	TGGTGAATTGCCACCATGGT GGCGCTCTGGATCAGAC	ACCAGGATCCCCGGCAGCCAC TCTGT
Insertion of 72nd–428th into pCMV3.0-EYFP vector	TGGTGAATTGCCACCATGGC CGATGCTACCACATCCAG	ACCAGGATCCCCGGCAGCCAC TCTGT
Insertion of 1st–341st into pCMV3.0-EYFP vector	TGGTGAATTGCCACCATGAG AAGGAAGCTGGCTC	TGGTGGATCCCCGGAGCCGTC CCGGCTGGCCA
Insertion of 1st–376th into pCMV3.0-EYFP vector	TGGTGAATTGCCACCATGAG AAGGAAGCTGGCTC	ACCAGGATCCCCGCCGCTGTT CAGGTTCATCA
Point mutation E176D	AATTCCGGTATTCGATTACTGGGCAGGTGAAGCAGTAATC GCTTCACCTGCC	GAAATACCGGAAATT
Point mutation C181A	CGAGTACTGCTTCACCGCCCC CTTCATCGTGCTG	CAGCACGATGAAGGGGGCGG TGAAGCAGTACTCG
Point mutation C181S	GAGTACTGCTTCACCAAGCCCC TTCATCGTGC	GCACGATGAAGGGGCTGGTG AAGCAGTACTC
Point mutation D187N	CCCCTTCATCGTGCTGAACGT TTGTTACAGCGT	ACGCTGTAACAAACGTTCAGC ACGATGAAGGGG
Point mutation L208M	GCCCTTACATTCTTACCATGTCTCCGCCAGGAACATGGTAA TCCTGGCGGAG	AGAATGTAAGGGC
Point mutation A232C	TGCTGTTATGCTGAGCTGCA TCGCCATGGTGGTAC	GTACCACCATGGCGATGCAGC TCAGCATAAACAGCA
Point mutation A232S	TGCTGTTATGCTGAGCAGCA TCGCCATGGTGGTAC	GTACCACCATGGCGATGCTGC TCAGCATAAACAGCA
Point mutation P276T	CGGCATCTGCCATCTTAC GATCTTCTACGCCCTGTAC	GTACAGGGCGTAGAAGATCGT AAAGATAGGCCAGATGCCG
Point mutation E319Q	GATACGGCTACAATGCAGGT ACATCGAGTGGATGA	GTCCACTCGATGTCCTGC ATTGTGAGCCGGTATC
Point mutation D320N	ATACCGGCTACAATGGAAAAC CATCGAGTGGATG	ATCCCACACTCGATGTTTCCAT TGTGAGCCGGTAT
Point mutation E322Q	TCACAATGGAAGACATCCAGT GGGATGACATGCAG	CTGCATGTCATCCACTGGAT GTCTTCCATTGTGA

72 **Table S3. Composition of extracellular solutions used for ion-selectivity measurements.**

	NMG	NMG	Li	Na	K	Rb	Cs	Mg	Ca
	pipette	ext							
HEPES	50	10	10	10	10	10	10	10	10
NMG	130	146	6	6	6	6	6	6	6
LiCl	—	—	146	—	—	—	—	—	—
NaCl	—	—	—	146	—	—	—	—	—
KCl	—	—	—	—	146	—	—	—	—
RbCl	—	—	—	—	—	146	—	—	—
CsCl	—	—	—	—	—	—	146	—	—
MgCl ₂	—	—	—	—	—	—	—	70	—
CaCl ₂	—	2.5	2.5	2.5	2.5	2.5	2.5	2.5	72.5
glutamate	90	—	—	—	—	—	—	—	—
NMG ₂	6	—	—	—	—	—	—	—	—
EGTA	—	—	—	—	—	—	—	—	—
MgSO ₄	2.5	—	—	—	—	—	—	—	—
MgATP	2.5	—	—	—	—	—	—	—	—
glucose	—	11	11	11	11	11	11	11	11
LJP (mV)	—	19.0	12.8	8	1.6	0.5	0.6	15.3	14

73 All concentrations are in mM. Liquid junction potentials (LJPs) between the NMG pipette and bath
74 solutions are listed.

75

76 **References**

77 [1] J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive
78 multiple sequence alignment through sequence weighting, position-specific gap penalties and
79 weight matrix choice, *Nucleic Acids Res.* 22 (1994) 4673–4680.

80 [2] X. Robert, P. Gouet, Deciphering key features in protein structures with the new ENDscript
81 pt server, *Nucleic Acids Res.* 42 (2014) W320-4.