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Throughout an organism’s life, a multitude of complex and interdepen-
dent biological systems transition through biophysical processes that serve
as indicators of the underlying biological states. Inferring these latent, un-
observed states is a goal of modern biology and neuroscience. However, in
many experimental setups, we can at best obtain discrete snapshots of the sys-
tem at different times and for different individuals. This challenge is partic-
ularly relevant in the study of Alzheimer’s Disease (AD) progression, where
we observe the aggregation of pathology in brain donors, but the underly-
ing disease state is unknown. This paper proposes a biophysically motivated
Bayesian framework (B-BIND: Biophysical Bayesian Inference for Neurode-
generative Dynamics), where the disease state is modeled and continuously
inferred from observed quantifications of multiple AD pathological proteins.
Inspired by biophysical models, we describe pathological burden as an ex-
ponential process. The progression of AD is modeled by assigning a latent
score, termed pseudotime, to each pathological state, creating a pseudotem-
poral order of donors based on their pathological burden. We study the theo-
retical properties of the model using linearization to reveal convergence and
identifiability properties. We provide Markov chain Monte Carlo estimation
algorithms, illustrating the effectiveness of our approach with multiple sim-
ulation studies across various data conditions. Applying this methodology to
data from the Seattle Alzheimer’s Disease Brain Cell Atlas, we infer the pseu-
dotime ordering of donors. Finally, we analyze the information within each
pathological feature to refine the model, focusing on the most informative
pathologies. This framework lays the groundwork for continuous pseudotime
modeling in the analysis of neurodegenerative diseases.

1. Introduction. Modeling how cellular processes change in time due to endogenous or
exogenous effects, in the context of discrete observation, is a fundamental problem in the
biological sciences. Central to this problem is the longstanding goal of inferring a longitu-
dinal trajectory delineating the dynamic evolution of each system. A wealth of research has
cast this problem as learning a latent unobserved variable -termed pseudotime- dictating the
progression of events where relevant measured quantitites are expressed as functions of this
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latent variable (Campbell and Yau, 2018, 2016; Hou et al., 2023; Street et al., 2018; Reid and
Wernisch, 2016). Pseudotime inference was first motivated by the famous metaphor of Con-
rad Waddington in which undifferentiated cells progress along a continuum developmental
trajectory to reach their committed cell fates (Waddington, 1940, 1957). Inference of such
models is challenging for two reasons. Firstly, the lack of a universal definition of time ren-
ders the problem unidentifiable unless constraints are imposed. Secondly, and more critically,
the successful inference of the parameters governing the system’s evolution requires the in-
ference of the pseudotime variable as well, adding an additional layer of complexity. These
are particular challenges in modern biological applications, where measurements describ-
ing progression can only be collected once per individual, providing only a cross-sectional
snapshot of the system’s state. Aligning cross-sections along the pseudotime axis poses an
additional inferential challenge, potentially impacting our ability to recover underlying dy-
namics in comparison with scenarios having multiple time measurements per individual or
when pseudotimes are known beforehand.

Accurate temporal modeling is essential in the study of neurodegenerative diseases, in
which we observe the aggregation of pathology in brain donors, but where the underlying
disease state and its progression is unknown. Here, we focus on the study of neurodegener-
ation in Alzheimer’s Disease (AD) and consider biophysically-inspired models for protein
pathology accumulation and the pseudo-temporal dynamics of diseases progression. Pseudo-
time dynamics of disease progression and relevant parameters are inferred by using data from
the recently released Seattle AD Brain Cell Atlas consortium (SEA-AD, https://portal.brain-
map.org/explore/seattle-alzheimers-disease). Crucially, these cross-sectional measurements
encompass a diverse set of pathophysiological markers that provide information on different
stages of disease progression.

1.1. Relation to prior work. Pseudotime or ordering methods are widely applied due
to their practical significance across various domains. While both share the goal of inferring
data’s inherent order, pseudotime goes a step further than simple ordination by attributing sig-
nificant importance to the pseudotime latent variable, quantifying the system’s progression
along an inferred dynamic trajectory. Here, we offer a concise overview of related methods.
In the analysis of cellular development using single-cell RNA-seq data, pseudotime is classi-
cally derived by computing a low-dimensional representation of each cell, inferring principal
curves, followed by computing suitable minimum spanning trees (Magwene, Lizardi and
Kim, 2003; Trapnell et al., 2014; Street et al., 2018). In contrast to these non-parametric
methods, another line of methods frames the problem from a model-based, parametric per-
spective. For example, in the context of ecological niches and species modeling (Hui et al.,
2015; O’Hara and van der Veen, 2024; Hui et al., 2023; Popovic, Hui and Warton, 2022;
van der Veen et al., 2023; Roberts, 2020; Hoegh and Roberts, 2020), measurements of rel-
ative abundances of species are sorted along sites of greater abundance. There, generalized
latent variable models are used to represent ordination as latent variables, and no true ordina-
tion occurs, but instead, multivariate latent variable ordination is used to represent underlying
gradients that influenced species composition. In Political Science, the related problem of
sorting latent preferences of agents (such as judges) given observed votes appears under the
name of ‘ideal point’ models (Gelman and Hill, 2006) and this latent individual ordering is
inferred by stating random-effects variables. In the field of psychometrics, models of changes
in ability level over time utilize Item Response Theory (Kim and Camilli, 2014; Crane et al.,
2006) to approximate non-linear growth.

Model-based approaches facilitate the simultaneous inference of the pseudotimes as well
as any other relevant parameters. The method by Campbell and Yau (2018) models pseudo-
time inference in the context of single-cell omics as a matrix factorization problem where
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parameters are inferred through Bayesian methods. Then, it is possible to characterize both
the timing of events as well as the progression of each feature (genes). While their setup is
like ours, their work focuses on modeling, and it doesn’t study in-depth the interplay of the
different variables (such as the number of samples and dimension of cross-sections), the ef-
fects of pooling or shrinkage, and it omits rigorous consistency and performance guarantees
as we do here.

Finally, a growing line of research applies pseudotime-based analysis to the context of
aging (Pierson et al., 2019) and disease progression analysis, notably, to the study of can-
cer progression (Gupta and Bar-Joseph, 2008; Huang et al., 2023) and neural degeneration,
including AD (Mukherjee et al., 2020). However, most studies fail to address a fundamen-
tal degeneracy present in latent variable inference problems, wherein pseudotime solutions
can be scaled or affine transformed while still producing a valid solution—a mathematical
indeterminacy inherent in many proposed frameworks. Our work attempts to resolve such
degeneracy by imposing relevant mathematical constraints and is unique in that it addresses
both the theoretical and applied aspects. We expect that this approach will help better inform
the deployment of pseudotime inference methods for disease progression analysis.

1.2. Organization. This paper is organized as follows. In Section 2, we review the study
of neurodegeneration and protein aggregation caused by AD pathology, and describe the data
on which we based our work. In Section 3, we introduce a biophysically-inspired model
to describe AD neuropathology aggregation. Biophysical considerations justify the use of
generalized linear models with an exponential link function tying the unobserved timing of
events to observations. We supplement this likelihood specification with priors that constrain
the parameter space and represent complex dependency structures across measurements. We
then obtain a family of Hierarchical Bayesian models that can be inferred using modern
computational tools. In Section 4 we provide a mathematical analysis of a simplified lin-
ear model under which we can make precise statements regarding the identifiability, consis-
tency, and convergence rates of our model as the number of individuals and measurements
increase. Central to this analysis is the observation that the underlying inferential target can
be understood at the most fundamental level as an instance of noisy matrix factorization.
These theoretical results are supplemented with extensive simulations in Section 5, that show
that in most aspects the theoretical results presented in the linear case also manifest in the
generalized-linear setup. Simulations also show a few distinctive phenomena of generalized
linear models that are not well captured by theoretical results on the linear case. In section 6,
we apply our method to the SEA-AD dataset, and building on previous sections and special-
ized biological knowledge, we demonstrate that pseudotime and progression parameters can
be reliably estimated. In Section 6.2, we extend our modeling framework to inform future
experimental design. Finally, in Section 7, we discuss the significance and limitations of our
work, and sketch future directions.

2. SEA-AD dataset. The present work is motivated by the need to understand the impact
of pathological protein aggregation on cellular vulnerability across individuals spanning the
complete spectrum of AD pathology. Quantitative neuropathological analysis was performed
on the middle temporal gyrus (MTG) (Fig. 1A), a region of the cerebral cortex organized
in a layered structure (from layers 1 to 6), of d = 84 postmortem brain donors included in
the Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) study (Gabitto et al., 2023).
Donors from the SEA-AD cohort were drawn from two ongoing longitudinal studies: the
Adult Changes in Thought (ACT) and the University of Washington Alzheimer’s Disease
Research Center (ADRC). We note that the SEA-AD cohort consists of donors with age dis-
tribution skewed towards advanced age (average age at death 88, SD=8) (Fig. 1B), which
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suggests a priori that high AD pathology values might be overrepresented in the cohort. The
publicly available quantitative neuropathology dataset (accessible at sea-ad.org) comprises
M = 35 total phenotypic measurements derived from 6 immunohistochemical stains target-
ing pathological proteins (hyperphosphorylated tau (pTau) and amyloid beta (A-β), along
with additional markers selected for examining cellular changes in neurons, astrocytes, and
microglia. Table 1 presents key markers used in this study and their corresponding extracted
features. Immunostains for each protein and cellular marker are processed by a machine
learning algorithm (https://indicalab.com/halo-ai/) that creates masks for each protein pathol-
ogy, segments positive areas, and quantifies the burden of each pathology (Fig. 1A). Next, we
provide a brief overview of general AD pathophysiology and elucidate how these pertinent
variables contribute to understanding AD progression.

AD is the most common cause of age-related dementia and is characterized neuropatho-
logically by the stereotyped spatiotemporal progression of two pathological proteins, intra-
cellular hyperphosphorylated tau (pTau) in the form of neurofibrillary tangles (NFTs) and
amyloid beta (Aβ) in the form of extracellular plaques. In AD, pTau and Aβ follow opposite
progression patterns throughout the brain. Neuropathologists have mapped the progression
of these pathological proteins and established discrete staging scales for each of them. These
staging protocols order donors based on the presence or absence of pathological proteins in
defined brain regions; Braak stages (I-VI) semi-quantitatively assess pTau NFTs (Braak and
Braak, 1991), while Thal Phasing (1-5) semiquantitatively assesses Aβ plaques (Thal et al.,
2002). A higher score on any scale indicates the presence of the relevant pathology across
a greater number of brain regions. The AD neuropathologic change score (ADNC) (Hyman
et al., 2012), attempts to integrate both scores into a general scale of AD progression. The
two hallmark AD pathological proteins spatially overlap for the first time in the temporal lobe
of the cerebral cortex, specifically the inferior and middle temporal gyrus (MTG). The MTG
is thought to represent a key transition zone which delineates normal aging and preclinical
AD from advanced stages of AD associated with widespread neocortical spread of pathology
(Braak and Braak, 1991).

TABLE 1
Measurements used named by markers and the measured quantity

Feature name Biological measurement Type of marker

Percent 6e10 positive area Amyloid-beta immunoreactive area Pathological peptide
Number of 6e10 positive objects per
area

Number of amyloid-beta plaques Pathological peptide

Average 6e10 positive object area Size of amyloid-beta plaques Pathological peptide
Number of AT8 positive cells per area Number of pTau positive cells Pathological peptide
Percent AT8 positive area pTau immunoreactive area Pathological peptide
Average AT8 positive cell area pTau immunoreactive area Pathological peptide
Number of NeuN strong positive cells
per area

NeuN immunoreactive area (mature
neurons)

Cellular

Percent NeuN positive area
NeuN immunoreactive area (mature
neurons)

Cellular

Percent of Iba1 and 6e10 positive co-
localized objects

Iba1 immunoreactive area (microglia)
Cellular-pathological
colocalization

Number of Iba1 and 6e10 positive co-
localized objects per area

Iba1 immunoreactive area (microglia)
Cellular-pathological
colocalization

Average Iba1 positive process area per
cell

Iba1 immunoreactive area (microglia)
Cellular-pathological
colocalization

Percent GFAP positive area
GFAP immunoreactive area (astro-
cytes)

Cellular marker
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FIG 1. Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) data sets profiling neuropathology in AD brain
donors. (A) Left, image of the middle temporal gyrus of a representative brain donor in which pathology data was
stained and imaged over L= 5 cortical layers of MTG (middle box). Right, amyloid-beta aggregates stained with
6e10 stain are segmented by using ML algorithms (green masks) and quantified. (B) Histogram depicting age dis-
tribution of donors at death, average age at death = 88, median age = 90. (C) Histogram depicting the distribution
of ADNC and CASI scores for SEA-AD donors ordered on the x-axis. (D1-D4) Neuropathological measurements,
percentage AT8 (measuring phosphorylated Tau pathology) and 6e10 (measuring amyloid β pathology) positive
stain area, for each MTG cortical layer organizing donors by (1) BRAAK stages, (2) THAL phases, (3) ADNC
scores, and (4) CASI scores.
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In addition to pathology measurements, the SEA-AD dataset encompasses a range of sup-
plementary metadata pertaining to each brain donor, including clinical, cognitive, and de-
mographic information. Established pathological assessments, previously described, such as
Braak staging, Thal phasing, and ADNC are part of the repertoire of variables included, to-
gether with the last Cognitive Abilities Screening Instrument (CASI) (Teng et al., 1994a)
test, administered during the donor’s lifetime to evaluate cognitive function (Fig. 1C). We
used these per-donor-metrics to provide initial descriptions of the data and performed data-
entry quality controls. Illustrative quantitative neuropathology measurements, categorized by
staging and cognitive criteria, are depicted in Fig. 1D1-D4, which depicts a notable increment
in pathological burden as metrics increase in value. While the full dataset consists of M = 35
pathological markers, we use a subset of those in our model. We considered M = 12 markers
(described in Table 1), removing noisy biomarkers that have low signal-to-noise ratio or that
were sparse, i.e. data was available just for a few donors.

3. Model Description. We aim to elucidate the challenge of modeling the inherent vari-
ability in a biological process by using a latent variable that represents pseudotime. The
latent variable is named pseudotime because it not only orders observations but also gov-
erns the progression of the biological process. While we specifically focus on AD pathology
aggregation (see Section 2), this framework has broader applications, such as investigating
aging-related phenotypes or studying different cell types in cellular development.

In modeling AD progression, we assume donors traverse a single disease trajectory span-
ning the entire disease spectrum, from no disease to the end stage, yet this trajectory remains
unknown. Donors are randomly selected across the disease spectrum, driven in practice by
donor availability, and we lack prior knowledge of the sampling distribution, p(t). For each
of the donors, we collect multiple measurements reflecting the state along the disease tra-
jectory, including varying levels of pathological protein aggregates. Lastly, observations are
corrupted by observational noise (Fig. 2). Notable previous work in aging studies has ob-
served that to ensure identifiability of the link function between the latent pseudotime and
the observational process (represented by f(t) in Fig. 2) should be monotonic and injective
(Pierson et al., 2019). However, in their work, time was a known variable, compared to our
case in which nothing is known about latent pseudotime.

In the next sections we construct a model for cross-sectional SEA-AD donor data, Xd
m,l,

comprising quantitative neuropathological measurements from d= 1 . . .D = 84 donors, en-
compassing m = 1 . . .M = 12 distinct protein measurements taken across l = 1 . . .L = 5
cortical layers in MTG. These measurements reflect the accumulation of various pathologi-
cal proteins within each donor. We define a donor-specific one-dimensional latent variable,
referred to as td ∈ [0,1]. This variable represents the pseudo-temporal score that organizes
donors according to their varying disease burdens, from low (td = 1) to high (td = 1). In-
spired by biophysical principles of protein aggregation, and the cited aging-related studies
(Pierson et al., 2019), we will find that a monotonic and injective exponential link function
best accommodates our data. We will infer all model parameters through Bayesian inference.

3.1. Deterministic Biophysical model of Pathology Aggregation. Alzheimer’s Disease
is characterized by the proliferation of misfolded protein aggregates. As mentioned before,
amyloid-Beta (Aβ) aggregates and Tau neurofibrillary tangles (τ -NFT) are two examples of
well-studied protein aggregates that have been widely used as pathological markers to study
the spread and severity of AD (Braak and Braak, 1991; Thal et al., 2002). Several mechanistic
models, chiefly rooted in polymer kinetics, have been used to study the aggregation and
seeding dynamics of protein aggregates (Vaquer-Alicea and Diamond, 2019; Davis and Sindi,
2016). In our work, we will leverage the Nucleated Polymerization Model (NPM), which is
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FIG 2. Schematic representing the modeling of a general biological process by a latent variable, t, termed pseu-
dotime. In this work, pseudotime represents a scale that describes the trajectory of Alzheimer’s Disease along the
entire disease spectrum. Donors are sampled along AD trajectory from distribution p(t). Then, multiple observed
biophysical processes x are measured from each donor. These measurements can be linked to the underlying
pseudotime by a mean function, f(t), and when observed, are corrupted by noise (described by the distribution
p(x|t) of observational noise.

the most widely accepted model used to describe protein aggregate propagation dynamics
(Masel, Jansen and Nowak, 1999), to describe the temporal progression of AD-associated
pathology markers.

The NPM model describes a cycle of aggregate growth followed by multiplication, lead-
ing to the dominance and growth of toxic protein aggregates. The growth of such aggregates
occurs through attachment with surrounding ‘healthy’ monomeric units, which is then fol-
lowed by a fragmentation process that multiplies the number of ‘seeds’ capable of growing
into many more misfolded aggregates (Fig. 3A). Once the monomers are incorporated, they
become a part of the "unhealthy" or misfolded population. The misfolded aggregates also
tend to be more stable than their healthy counterparts, such as in the case of prionic proteins
(Tompa et al., 2001). In an aggregation model for a spatially limited domain (e.g. a single
anatomical region of the brain), the important dynamical parameters to consider are the ini-
tial seeding levels, denoted by β0, and the rate of multiplication through aggregation and
division, denoted by β1 ((Fig. 3B). In the ‘early’ time regime, i.e. when the available pool
of healthy protein monomers is not limiting, we will describe the evolution of a pathological
protein Xm,l for measurement m in layer l with the following dynamics arising from the
NPM biophysical model (Masel, Jansen and Nowak, 1999):

(1) Xm,l(t) = eβ
m,l
0 +βm,l

1 t

where t denotes the latent pseudotemporal variable describing the progression of AD
severity. The details of the kinetic model of pathology propagation, and the simplifying as-
sumptions used to arrive at such functional form, are included in Supplementary Material,
Appendix Section A.

3.2. Modeling the Generative Distribution of Observed Pathology. The above biophys-
ical argument suggests to consider a trajectory that is an exponential transformation of an
affine function of the latent pseudotime variable. To account for observation noise, we cou-
ple this latent trajectory with a sampling model where observed counts Xd

m,l ∈N0 describ-
ing pathological proteins follow a negative binomial distribution. Specifically, we consider a
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FIG 3. We assume that AD protein pathology aggregation can be described by an exponential process. A)
Schematic representing protein aggregation process. Due to protein misfolding, an initial seeding event is trig-
gered which later leads to aggregate growth. Randomly, protein aggregates break down multiplying in number.
The conjunction of growth and multiplication events can be described by exponential dynamics. B) Scatterplot
depicting measurement for Aβ burden, the percentage area stained positive by 6e10 antibody, in each cortical
layer ordered according to our model. For each protein pathology, the model fits an initial seeding variable, β0,
and a growth aggregation rate β1.

count parameter Am,l ∈N+, and a probability of success in the (negative) logit scale ρ ∈R

such that the likelihood of Xd
m,l given Am,l and ρ= βm,l

0 + βm,l
1 td is given as

(2) p(Xd
m,l = x|Am,l, β

m,l
1 , βm,l

0 , td) =

(
x+Am,l − 1

x

)(
1

1 + e−ρ

)x( 1

1 + eρ

)Am,l

.

The mean and variance of the above distribution are given by µ = Am,le
ρ, σ2 = µ+ µ2

Am,l
.

This implies that the conditional mean of Xd
m,l given βm,l

0 , βm,l
1 and td is exactly the quantity

Xm,l(t) defined in Eq. (1), up to the Am,l factor that can be absorbed into βm,l
0 . Consequently,

the negative binomial model can be understood as providing a noisy version of the underlying
dynamics. As customary, we understand A as an overdispersion parameter A (Gelman, Hill
and Vehtari, 2021) modulating different levels of observation noise whereby in the limit A→
∞ we recover the usual Poisson regression. Eq. (2) is one instance of a generalized linear
model with a logarithmic link function. Still, other choices could be made if observations
were of a different nature. For example, logistic regression could be used if observations
were binary.

3.2.1. Priors. In addition to the likelihood in Eq. (2), we must specify priors for the
model parameters Θ = {t, β0, β1,A}. First, we specify a sequence of independent donor-
specific pseudotimes following a Beta distribution with parameters ta, tb:

td ∼Beta(ta, tb).(3)

In particular, td ∈ [0,1]. The decision to choose such a bounded interval is two-fold. At
the conceptual level, biological systems are constrained in space and time. This implies in
our application to AD that protein propagation and disease trajectory do not last indefinitely.
When looking at a particular brain region, the accumulation of pathological proteins will
range from 0 to a high number, with the last case implying that the pathological protein
has covered the entire region. At the mathematical level, as we will later show in Section 4,
choosing a bounded interval enables identifiability of the entire system, a desired property in
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our setup where our latent variable represents not only ordination but also pseudo time. The
case ta = tb = 1 corresponds to a uniform prior. Although this prior may seem unbiased, it
encodes strong beliefs about the phenotypical diversity of the sample; for example, that the
average severity level is 0.5. This justifies the use of a more general Beta prior to encode
information on the sampling process. We will see in Section 4 that we can benefit from
suitable choices of this prior.

We must also specify priors on βm,l
0 , βm,l

1 , parameters that represent the baseline level
of pathology, and the exponential rate of pathological growth of each of the markers. We
will consider two models, one with measurement and layer-independent priors on βm,l

1 and
the second with hierarchical priors pooling information across layers. In the former case,
we are assuming that only the protein aggregation rate (through its parameter β1) can be
related across layers, and for each measurement, we will infer a covariance matrix across
layers. Finally, we consider priors for the over-dispersion parameters Am,l since they are not
revealed to us. In this case, we impose half-normal distributions.

In summary, the plate diagrams of our hierarchical and fully factorized models are depicted
in Fig. 4, and we detail next the entire generative process of our model:

1. For each donor, d
a) Choose td ∼ Beta(1, 1)

2. For each measurement, m
a) If Hierarchical

Then βm
1 ∼ Normal(0, 1)

Lm
Σ ∼ LKJ(M, 1)

dmσ ∼HalfCauchy(1)
Σm =

√
dmσ Lm

Σ
Else Pass

b) For each layer, l
i. Choose Am,l ∼HalfNormal(0, 1)

ii. Choose βm,l
0 ∼ Normal(0, 1)

iii. If Hierarchical
Then Choose βm,l

1 ∼ Normal(βm
1 ,Σm)

Else Choose βm,l
1 ∼ Normal(0, 1)

3.3. Posterior Bayesian Inference through HMC sampling. To perform posterior infer-
ence from our models we used numpyro version 0.13.0 (Bingham et al. (2019); Phan, Prad-
han and Jankowiak (2019)), a Python based probabilistic programming environment. Sim-
ilar to the more traditional probabilistic language, Stan (Carpenter et al. (2017)), numpyro
is equipped with effective posterior sampling algorithms such as Hamiltonian Monte Carlo
(HMC, Duane et al. (1987); Neal et al. (2011)). In particular, we utilized the implementa-
tion of the No-U-Turn Sampler (NUTS) (Hoffman et al. (2014)) kernel to obtain posterior
samples, and monitored convergence using R-hat and effective sample size metrics (Gelman
et al. (2021)).

To infer the posterior parameters of our models (Fig. 4) using the SEA-AD dataset, we
sampled from the posterior with 5 HMC chains run sequentially for 5000 warm-up iterations,
and then 1000 samples were collected in each chain. We randomly rotate the seed for the
pseudo-random number generator in each chain. To ensure convergence, we discarded the
chains that had an R-hat below 1.05 or had an effective sample size below 50. The results from
these fits are described in Section 6. For experiments with synthetic data, we used different
parameters to the ones described above (see Supplement Section on Proofs for details).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.06.10.597236doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.597236
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

d = 1... D

t

X

β
0

l = 1 . . . L

m,l
Am,l

m,l

m = 1 . . . M

β
1

m,l

d = 1... D

t

X

β
0

l = 1 . . . L

m,l
Am,l

m,l

m = 1 . . . M

A B

β
1

m,l

Σ
m

β
1

m

d d

dd

FIG 4. Plate diagram depicting a model in which parameters are inferred independently in each measurement
and each layer (A), and model with hierarchical priors pooling information across layers in each measurement
(B). In both models, pathological measurements are depicted by X

m,l
d , where m = 1 . . .M index each of the

measurements and l = 1 . . .L each layer. The latent pseudotime variable is denoted by td, where d = 1 . . .D
index the brain donor. Measurement and layer-specific initial-seeding, growth-rate, and total-counts parameters
are denoted by β

m,l
0 , βm,l

1 , and Am,l . In the case of the hierarchical model in (B), we pool information across
layers and infer covariance matrices Σm, assuming that each layer has its own initial seeding events but their
growth rates are similar.

4. Model analysis. Our problem departs from the classical regression setup in that we
not only estimate the regression parameters β but also must infer the latent parameter t.
Here, we delve into the inferential implications of the joint estimation of t and β; we study
the fundamental statistical limitations to our problem and argue that our modeling choices
are well-justified in that they enable efficient use of all available sources of information to
counter these limitations.

Results in this section are statements regarding conditions for identifiability and the best
possible convergence rates for the mean squared error (MSE) of estimators of β and t. Al-
though we keep our Bayesian estimators in mind, this analysis is rather concerned with the
properties of the problem itself than with our particular method. We will later show in Section
5 that our Bayesian estimators (understood as posterior means) exhibit the behavior of the
best possible estimators.

Instead of the generalized linear model in Eq. (2), here we consider the simpler linear
model where a rich theoretical understanding of statistical limits is readily available:

(4) Xn
d = βn

0 + βn
1 td + ϵnd .

We understand X as a D × N matrix by vectorizing layer and feature information and
treating them as a unique column ‘feature’ indexed by n = 1, . . . ,N where N = L × M .
Here, ϵnd are i.i.d. Gaussian centered variables with variance ϕ2. These noise variances play
an analog role to the overdispersion parameter A in Eq. (2).

The key observation is that Eq. (4) corresponds to a rank-two noisy factorization problem,
so that at the most elementary level, the estimation limits of β and t are the limits of this
low-rank factorization. Although the theory is general enough to enable the analysis of (4),
for simplicity we will neglect the βn

0 term and study the rank-one noise matrix factorization

(5) X = βt⊤ + ϵ.

To apply existing statistical results, we divide the estimation of t and β into the estimation
of the normalized parameters β′ = β/||β||2, t′ = t/||t||2 and the individual signal strengths
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B-BIND: BAYESIAN INFERENCE MODEL 11

||t||22 and ||β||2. To state consistency results, we conceive limiting experiments consisting
of sequences of true {t}d, {β}n (for example, obtained by sampling from their population
distributions), and of matrices X and ϵ that are revealed as either D or N (or both) get
larger. For our asymptotic statements on D or N we must assume that t2∞ := limD t

2
D and

β̄2
∞ := limN β

2
N exist, where t

2
D := ||t||22/D and β̄2

N := ||β||22/N ,respectively.

4.1. Subspace estimation. We first study the ability to estimate the normalized parame-
ters t′ and β′. We use the standard Frobenius metric for comparing subspaces U1 and U2(see
Appendix for details), which in the one-dimensional case reduces to

DF (U1,U2) := min{
∥∥U1 −U2∥2,

∥∥U1 +U2∥2}.
To obtain estimation bounds, we turn to specialized, best-known risk analysis for subspace

estimation Cai and Zhang (2018) based on variants of the well-known Wedin’s sinΘ pertur-
bation theorem Wedin (1972). Let β̂ and t̂ be the first left and right singular vectors of X (in
particular, they have unit norm).

PROPOSITION 1. As a consequence of Theorems 3 and 4 in Cai and Zhang (2018), we
have

1

N
EDF (β̂, β

′)2 ≲
ϕ2

ND

(
β
2
N t

2
D + ϕ2

N

)
(
β
2
N t

2
D

)2 ∧ 1

1

D
EDF (t̂, t

′)2 ≲
ϕ2

ND

(
β
2
N t

2
D + ϕ2

D

)
(
β
2
N t

2
D

)2 ∧ 1

These estimators are rate-optimal in the sense that the risk of any other estimators of β′ and
t′ have risk lower bounded by the right sides above (up to constants).

We can use Proposition 1 to understand how estimation performance for β′ and t′ improve
as we increase either D or N (or both). We observe that for fixed N , the average MSE in
the estimation of β′ decreases at the rate D if t2D is assumed to remain bounded away from
zero (we are excluding sparse non-informative sequences of donors), which is the same rate
that would be achieved if D were known. Therefore, adding more donors is helpful in the
estimation of β′. Likewise, if D is fixed, then the average MSE over t′ decreases at the rate
1/N if β

2
N (i.e. we are not adding too many non-informative features), implying that adding

more features help. Also, larger magnitudes β
2
N are beneficial for the estimation of t′ and

larger magnitudes of t2D are beneficial for the estimation of β′.

4.2. Signal strength estimation. Proposition 1 suggests that the spaces spanned by t′ and
β′ can be estimated as easily as in the usual regression case (t known). We now turn to
the problem of estimating the signal strengths ||β|| and ||t||. The ability to estimate these
parameters consistently is critical since otherwise, we are at risk of inflating the significance
of our estimators of β: for example, if ||β|| is grossly overestimated, we may come to falsely
detect many βn as significant features explaining the severity of the pathology.

Estimating the signal strengths is more delicate since identifiability issues might be at play.
The main result is that by imposing the constraint that severity levels belong to [0,1] (or any
other compact interval defined beforehand), we can identify ||β|| and ||t|| if both N and D
simultaneously grow to infinity.
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PROPOSITION 2. Let td be sampled from a distribution t supported on [0,1]. Suppose
that both t∞ and β∞ exist. Then, there are estimators of t2D and β

2
N converging almost surely

to t2∞ and β2
∞ as N and D grow to infinity.

The mathematical details are presented in the Appendix. At a high level, the proof con-
sists of first showing that we can first identify the product β∞ × t∞. Then, we can use the
information on the support of t to re-scale the principal vector t̂ so that it will lie in [0,1].
This re-scaling enables the identifiability of each of the terms β∞ and t∞. The statement
in Proposition (2) holds whether or not ϕ2 is known: in the latter case, we can estimate it
incurring an asymptotically negligible bias.

Proposition 2 gives the optimistic result that the entire system can be identified, but the
main downside is that we are forced to consider simultaneous asymptotics in N and D.
Unfortunately, as we will show, this heavy requirement cannot be relaxed, and the estimation
of ||β|| will be biased. In other words, the estimation of ||β|| will be biased even if a cohort
of infinite donors were available. We will comment on strategies to overcome this limitation.
Even if these biases persist, the overall message of Proposition 2 is that if multiple informative
features β are available, they should all be used to inform inferences.

5. Simulation studies. The previous results provide us with tools to reason about infer-
ential capabilities in our model. In this section, we complement these results with a com-
prehensive set of simulations. These simulations not only give an empirical validation to the
theory in Section 4; more importantly, we use them to understand our procedure’s behavior
in cases not covered by the theory.

This gap arises in three aspects: First, results in Section 4 are concerned with the estimation
problem and not with our particular estimator. Second, they concern a simplified model that
doesn’t incorporate the effect of a nonlinear link function and a non-Gaussian likelihood,
and where coefficients β are not assumed to possess a hierarchical structure that we could
possibly benefit from. From the experiments in this section, we can make the following claims

• Our Bayesian estimator exhibits the behavior anticipated by Propositions 1 and 2 in that
simplified setup (Sections 5.1, 5.2)

• The use of suitable priors on t can be helpful to overcome the identifiability issues de-
scribed in Section 4 (Section 5.1)

• Beyond the simplified linear model, the qualitative behavior of estimators still matches the
phenomena described in the previous section, although some additional new phenomena
emerge:
– In non-linear/non-Gaussian models, hierarchical models for β are beneficial if such

structure is present in the data. We don’t observe a benefit from using hierarchical mod-
els in linear Gaussian models (Section 5.3)

– Non-linearities in the link function imply that different features can be differentially
informative at different levels of severity. This implies the need for careful choice of
features and donor experimental design (Section 5.4)

Here, we only describe the main features of each experiment but defer a more comprehensive
explanation of each setup and parameter and sampler values to the Appendix.

5.1. Elementary simulations in the linear model. We start by studying the empirical per-
formance of our Bayesian estimators in the setup of the linear model in Eq. (4). Unlike the full
hierarchical model of Section 3, we consider a flat prior over β. We study different choices
of true pseudotime distribution t and pseudotime priors p(t). The most elementary choice
on pseudotimes td consists of them being sampled equispaced in [0,1]. We also consider
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B-BIND: BAYESIAN INFERENCE MODEL 13

sampling from a Beta(0.2,0.2) distribution and from a “cubic” distribution; i.e., where t is
proportional to t3 on [0,1]. As priors we consider the uniform distribution in [0,1] (repre-
senting the equispaced sampling) and the Beta(0.2,0.2).

We study the performance in estimation of β comparing against the regression estimator
that would be obtained if the pseudotimes were known. If that was the case, β = (β0, β1)
could be inferred via least squares with closed-form expressions.

As shown in Fig. 5 and Supplementary Fig. S4, pseudotime inference signifies a sizable
increase in the MSE of the posterior mean of β over the baseline where pseudotimes are
known. As expected, the MSE decreases as the variance parameter ϕ2 increases (here, as-
sumed known). Proposition 2 anticipates that β may be biased even if D is arbitrarily large.
This is consistent with Fig. 5A, where the MSE of β doesn’t converge to the baseline, indi-
cating this persisting bias. Although uncertainty quantification is not the main intent of our
work, we show that similar behavior occurs when we compare the posterior variance of our
estimator with the posterior variance of the usual linear regression estimator (Supplementary
Fig. S4).

In Fig. 5A, we also illustrate the effect of the relationship between true pseudotime distri-
bution t and priors p(t). The MSE of β is the closest to the regression baseline if the prior
matches the true distribution of the data. However, if there is a disagreement, the MSE of
β can even grow with D. One pessimistic interpretation is that the prior has a too sizable
influence on the outcomes even for large donor sample size D. While this is true, at the same
time, there is no way to get around this problem because of the inherent lack of identifiabil-
ity when N < ∞. More optimistically, these results show that it is possible to encode our
understanding of how donor sampling occurred if that knowledge is available.

FIG 5. Effect of choices of pseudotime priors (A) number of features N (B) and in the linear model (Eq.
(4) on estimation error (MSE) of β = (β0, β1). (A): Priors p(t)∼ Uniform(0,1) and p(t)∼Beta(0.1,0.1)
are shown on different rows and population distribution of pseudotimes t on different columns. Colors indicate
noise levels ϕ2. We used a single feature for this experiment (N = 1). (B): Different rows correspond to different
observation noise levels ϕ2, and columns indicate the true distribution of times t. Colors indicate the number of
features N . Features were chosen to be equal, specifically, we used βn0 = 0 and βn0 = 1. In both A and B, dashed
lines correspond to the baseline where pseudotimes are known.

5.2. Using multiple features. Fig. 5B shows that we can benefit from including informa-
tive features: as we increase N , the average MSE for each feature decreases, converging to
the linear regression (known pseudotimes) baseline. For many features (e.g., N = 100), di-
vergences from this baseline are observed only for many donors D, where MSEs are already
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low. This phenomenon can be understood in the light of our theoretical results: By virtue of
Proposition 1, a higher number of features (with the same β) adding more features will lead
to a more precise estimation of the (normalized) vector of pseudotimes t. These more precise
estimates will, in turn, lead to estimates β̂ that are closer to the ones that would be obtained
if pseudotimes were known.

In the previous experiment, we assumed that all features were equal. We also show that
the same phenomenon still holds if features are not identical but are instead sampled from a
distribution. To this end, we consider the scenario where βn

0 = 0 and βn
1 are sampled from

a Gaussian distribution with mean β1 = 1 and variance σ2 ∈ {0,10}. Results in Fig. 6 show
that MSE for β is at a comparable scale independent of whether βn

1 is random or not (σ2 = 0
v.s. σ2 = 10).

However, unlike in the previous experiment, the added randomness in βn
1 is beneficial

for pseudotime estimation as we observe that time estimates in the σ2 = 10 case are con-
sistently closer to true values. This may seem paradoxical as the σ2 = 10 corresponds to a
noisier regime, and we may reasonably expect noisier results. Again, we can understand this
phenomenon in the light of Proposition 1: larger values of σ2 translate into larger values of
||β||2, which in turn lead to a lower upper bound on the discrepancy between true and esti-
mated pseudotimes, up to a normalization constant. This experiment highlights the relevance
of feature diversity (i.e., variability in β) in tasks where pseudo time is the primary inferential
goal. We will come back to this point when we discuss non-linearities.
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FIG 6. Effect of variability in β on estimation σ2 (colors) in linear model (Eq. (4) ) with N = 10 features on
parameter and pseudotime estimation (A) MSE of β = (β0, β1). Dashed lines correspond to the baseline where
the td’s are known). (B) comparison of pseudotime estimates (averages over experiments)

5.3. Shrinkage in Gaussian and non-Gaussian models with hierarchical priors. While
previous experiments address the multiple features case and the effect of variability in feature

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.06.10.597236doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.597236
http://creativecommons.org/licenses/by-nc-nd/4.0/


B-BIND: BAYESIAN INFERENCE MODEL 15

coefficients β on our estimates, none of the Bayesian models in those experiments explicitly
model the sampling structure in coefficients. One natural question is whether the James-
Stein phenomenon would manifest here, i.e., whether the MSE of β or t can be lowered
using shrinkage estimators. These estimators, in turn, are obtained by imposing a suitable
hierarchical structure on β. This question is not obvious since it depends on the interplay of β
and the “nuisance” parameter t. In this experiment, we not only consider the Gaussian-linear
model but include the more realistic non-linear negative binomial model with logarithmic
link function (Eq. (2)).

As in the previous experiment, we assume that β are sampled i.i.d. from a superpopula-
tion; i.e. βn

0 ∼N (β0, σ
2), βn

1 ∼N (β1, σ
2). We consider Bayesian estimators based on four

models: i) the one from previous experiments; i.e. a fully factorized independence prior on β
(Fig 4A), and two hierarchical models (similar, but simpler than Fig 4B) where each βn

0 , β
n
1

are sampled from a Gaussian distribution centered at β0, β1 and with variance σ2
model, where

σ2
model is either assumed known and equal to the true variance σ2 or treated as an additional

parameter for which we perform Bayesian inference, using a half-normal hyperprior.
Fig. 7 shows that whether we benefit from a hierarchical model depends on the link func-

tion and the target parameter. As shown by Fig. 7B,C the hierarchical model is beneficial for
the estimation of β in both the Gaussian and negative binomial case, although benefits tend
to be more significant in the negative binomial model. More interestingly, regarding pseu-
dotime estimation, benefits of shrinkage are observed only for the negative binomial model
(Fig. 7A,C).
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FIG 7. Estimation error of different hierarchical models for the linear-Gaussian model (Eq. (4)) and the neg-
ative binomial model (Eq. (2)). (A) MSE in pseudotime estimation. (B) MSE for β estimation. (C) Histograms
of relative error (log-scale) for the fully factorized model compared to the hierarchical model each sample is an
experiment). Each sample is an experiment

These results suggest that our framework can benefit from shared structure in β in two
ways. First, through the “classical” James-Stein phenomenon whereby MSE on β is de-
creased by a hierarchical model on β. Second, at least in the negative binomial case, observe
a less obvious “crossed’ shrinkage effect whereby estimation of pseudotime is benefited by
the structure that we imposed on β. This may, in turn, explain a more significant benefit in β
estimation in this case.
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Additionally, Figs. 7A, B show that regardless of the observation model (Gaussian or neg-
ative binomial) and the fitted model (hierarchical or fully factorized), our estimators produce
lower pseudotime MSE (average over different td’s) and β MSE for larger values of N . Also,
Supplementary Fig. S9 shows that a larger number of donors D has little impact on the aver-
age pseudotime MSE, but does help decreasing the β MSE. Moreover, Supplementary Fig.
S9 shows that benefits of the hierarchical model in pseudotime estimation for the negative
binomial model are constrained to a sufficiently small number of donors compared to the
number of features. Additional results are shown in Supplementary Figs. S7 and S8.

5.4. Combining features with stage-specific information in non-linear models. One main
feature distinguishing linear and non-linear models is that the signal-to-noise ratio SNR de-
pends nonlinearly on times, implying that individual features can be preferentially informa-
tive about particular levels of AD pathology severity. Indeed, if we define (see Hastie et al.
(2009))

SNR=
g−1 (V ar(ρ))

V ar(X|ρ)
,

where ρ is the linear response (ρ= βn
0 + βn

1 td in Eq. (2)) and g is the link function (logarith-
mic in Eq. (2)), we observe that if βn

1 > 0, the SNR can be much larger at high compared to
low severity levels, with an opposite behavior if βn

1 < 0.
We illustrate this phenomenon with an example of a negative binomial model with

two features and an overdispersion parameter A = 100. The first feature has parameters
β1
0 = 4, β1

1 = −4, so the mean counts E(X1
t ) are large at low severity levels but decrease

to eventually stabilize at high severity (see Supplementary Fig. S10 for examples of obser-
vations). The second feature has β2

0 =−4 and β2
1 ∈ {2,4,6} so the behavior is inverted, and

the overall strength of this feature can be smaller (β2
1 = 2), equal (β2

1 = 4) or larger (β2
1 = 6)

than the first feature.
We compare estimators based on each individual feature with the one based on both. Re-

sults are shown in Fig. 8. We observe that including both features leads to a lower MSE (on
t and β) than any individual feature (Fig. 8A), suggesting that that the cross-talk of infor-
mation between different features is beneficial for the estimation of each of them as they are
uniquely informative about different aspects of the disease progression.

We can better understand this phenomenon by looking at pseudotime sequences inferred
by each model. As shown in Fig. 8B, the model that only uses the first feature accurately
infers lower levels of severity but struggles in later-pseudotime inference, and the converse is
true for the model that only uses the second feature. In contrast, the model that combines both
accurately infers pseudotimes along the entire range. Fig. 8B also shows that this consensus
will be achieved even if there is asymmetry (one feature stronger than the other) as long
as there is enough signal in the system (i.e., if both β1

1 , β
2
1 are sufficiently large). These

observations are also supported by Fig. 8C, where we report MSE on pseudotime inference
by classifying each donor as being on an ‘early’ (t ≤ 0.5) or ‘late’ (t ≥ 0.5) stage. Models
with a single feature have the lowest MSE at the stages that the feature is informative about,
and the overall pseudotime MSE of models containing the second feature decreases with the
strength of this feature.

5.5. Additional experiments. In the Appendix (see Section "Supplementary experiments
and experimental details", we present more experiments showing that the phenomena de-
scribed in linear models (Sections 5.1, 5.2, 4) also hold if we use Negative Binominal like-
lihood (Eq. (2)). Additionally, we present supplementary experiments to illustrate the per-
formance of the rate-optimal SVD-based estimators described in Sections 4 (Supplementary
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Figs. S1 and S2),as an alternative to the Bayesian estimators whose performance was studied
in this section . In this context, we also show that the benefit of shrinkage estimators can be
observed beyond the situations described here (see Supplementary Fig. S3).
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FIG 8. Inferring multiple features in the negative binomial non-linear model (Eq. (2)) (A): Average MSE for
pseudotimes, and MSE for the strength of the first and second features (β11 and β21 ) as a function of the strength
of the second feature β21 in models that only use individual features as well as the one that uses both (different
colors). (B) Comparison of true and inferred pseudotimes (average over experiments) for different strengths of
the second feature β21 . (C) Average MSE of inferred pseudotimes for the early and late stages, as well as their
combination, for different strengths of the second feature β21 .
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6. Inferring latent pseudotime in the SEA-AD cohort. Finally, we apply our genera-
tive models (Fig. 4) to the problem of describing the progression of pathology aggregation
in AD, and infer latent pseudotime for each donor in the SEA-AD cohort. As a reminder, our
dataset consists of D = 84 donors in which M = 12 pathological markers are measured in
each of L= 5 cortical layers of the MTG (as detailed in Section 2). After sampling from the
models’ posteriors (see Section 3.3), posterior pseudotime estimates, td, span the entire pro-
gression of disease (Fig. 9A), with an increased representation of later times, in accordance
with the cohort distribution that is biased towards older ages and higher disease metrics (such
as Braak, or ADNC, see Fig. 1B,C). Growth-rate parameter β1 and the parameter quantify-
ing the initial seed levels of pathology β0, revealed that canonical AD protein markers follow
increasing exponential dynamics from small values, while, as expected, a marker quantifying
the number of neuronal cells per unit area decreases as AD progresses (Fig. 9B,C).

Consistent with our predictions from simulation studies, we observed that for T = 84
donors, both the hierarchical model and the fully-factorized model result in similar posterior
distributions of model parameters. This is due to the size of the dataset in which a suffi-
cient number of donors compensate for the extra information provided by the layer and mea-
surement covariance incorporated by the hierarchical model. Quantitative metrics comparing
both models include the expected log posterior predictive distribution (Vehtari, Gelman and
Gabry, 2017) and the Watanabe Information Criteria (WAIC, Watanabe and Opper (2010)).
These metrics indicate that the hierarchical model better fits the data but the gain at this data
regime is marginal (Supplementary Figures S11 and S12).

Next, we evaluated our model through correlations of our posterior pseudotime estimates
with established neuropathological assessments, gaining the ability to independently vali-
date our estimates with orthogonal metadata not used to fit the model. We observe that the
pseudotime parameter is highly correlated with neuropathological assessments Braak, Thal,
and ADNC (positive correlation) and cognitive scores CASI (negative correlation, Teng et al.
(1994b)) (Fig. 9 E,F), These orthogonal metrics describe the brain-wide progression of mul-
tiple pathological proteins or quantify cognitive decline (see Section 2).

The definition of the Braak stages asserts that Braak stage IV (or higher) is identified by the
presence of pTau pathology in the MTG, as described by Braak et al. (2006). This relationship
aligns our inferred pseudotime, which is based on pTau measurements, with the Braak staging
system. Nevertheless, this correlation is only moderate (the Spearman correlation between the
inferred pseudotime and a binarized Braak score—0 for stages below 4 and 1 for stages 4 and
above—is 0.35) when compared to the correlation using all Braak stages (correlation >0.65).
This suggests that pseudotime is effectively ordering donors across the entire range of Braak
stages.

6.1. Exploring the importance of pathological markers as model regressors. We next in-
vestigated the contribution of each feature to our latent pseudotime. As our problem does
not map to a regression problem, in which variable importance has been extensively studied,
we resorted to multiple metrics to quantify each pathological marker contribution. To com-
pare the effect of each pathological marker as an explanatory variable, making an analogy to
regression problems, we first look at the growth-rate parameter β1. Parameter values differ
considerably across all M = 12 features, with six having the highest absolute value (Fig.
10A). However, in our case, parameter magnitude could be dependent on the signal-to-noise
ratio in each feature and be loosely related to pseudotime inference. To find a different way of
quantifying associations between pseudotime and each measurement, we utilized calculation
of the mutual information (MI), understanding MI as a means to identify feature importance
in nonlinear models (Beraha et al., 2019). MI identifies the 7 features as the most relevant
ones to inform pseudotime inference (Fig. 10B).
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FIG 9. Posterior distributions of model parameters for SEAD-AD data set of pathological proteins. (A) Inferred
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tial seeding model parameters. In each case, error bars denote the distribution of posterior means inferred for
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existing metrics for pathology progression. (E) Spearman correlation between the associated progression metric
and inferred pseudoprogression score td, as the number of measurements to infer td increase . Both models (fully
factorized and hierarchical) show high correlations with these metrics. However only a few measurements are
required to maximize the correlations. (F) All relevant metrics increase monotonically with the inferred pseudo-
progression score inferred from our model

As an additional feature importance computational experiment, we calculated pseudotime
posterior estimates for models using each feature in isolation. Then, we calculated the error
in the posterior pseudotime parameter td inferred from only one feature compared to all fea-
tures, (|td,M=1..12− td,Mi

| (Fig. 10 C) and the standard deviation in the posterior distribution
of each pseudotime parameter td, to show posterior uncertainty on pseudotime estimation
(Fig. 10D). Our previous simulation studies informed us that features with high growth-rate
parameter β1 would have a high-dynamic range of pathology and observations with high
pathological values. This in turn is more informative for obtaining identifiable estimates of
td. Our computational results are in accordance with our simulation studies, revealing that the
first seven pathological variables (order according to decreasing MI) have small pseudotime
error and variance (Fig. 10C-D). Taken together all these computational experiments suggest
that the seven most informative variables are a more compact subset able to create reliable
pseudotime posterior estimates.
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inference by comparing posterior times inferred using one feature vs all M = 12 features. (D) The standard
deviation of posterior estimate, td, for each single-feature model.

6.2. Informing Future Experimental Design. This section is driven by the aim of lever-
aging our models to guide the design of future experiments. While this aim could be framed
as a Bayesian optimization problem, we opt for a qualitative approach guided by several
principles. Firstly, the process of collecting, processing, and analyzing neuropathological
measurements, as presented here, is labor-intensive. Our objective is to utilize the insights
gained from the preceding section to identify a concise set of highly informative variables.
Although reducing the feature set could be in detriment of the quality of fit (as described
in our Simulated Studies Section 5), this will streamline the time required for future exper-
iments. Secondly, the selection criteria for brain donors in the SEA-AD cohort resulted in
a bias towards older donors and those at advanced pathological stages. Most donors are of
old age, mean age = 88 years old, and exhibit an inferred pseudotime greater than 0.5. In the
future, we would like to diversify the SEA-AD cohort by including donors that uniformly
span the entire pseudotime spectrum (from 0 to 1). A balanced cohort, representative of all
disease stages, facilitates downstream analysis of multiple disease epochs. Moreover, pseu-
dotime being an inferred parameter poses challenges in its use for donor preselection and
cohort balancing. To address this, we aim to enhance the model by incorporating other ob-
servable variables such as donor metadata or staging information. This approach will enable
us to strategically sample donors and mitigate biases.

To achieve these goals, we investigate a model incorporating M = 7 pathological features,
chosen for their high standardized beta coefficient, mutual information, and low error and
standard deviation in time inference (see Fig. 10). These features constitute a minimal set as
desired. To suggest future brain donors based on easily measurable variables, we augment the
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model with categorical staging metrics (Braak, Thal, and ADNC). Let m represent a staging
metric, d denote a donor, and k signify a one-hot encoded stage level, then the vector sd,mk
represents:

sd,mk =

{
1, if k = donor’s stage
0, if k ̸= donor’s stage

(6)

For example, Thal phases range from phase 0 to 5, with increasing phases indicating an
increasing number of brain regions containing amyloid-beta pathological burden. A donor
exhibiting phase-2 Thal phase would be represented as sd,Thal = [0,0,1,0,0,0]. We incorpo-
rate staging metrics into our formalism and model them as:

pd,mk =αk
0,m + αk

1,mtd

sd,m =DirichletMultinomial(cd,m = ep
d,m

, count = 1)(7)

Assuming that pseudotime td = 0 aligns with all staging metrics being zero and that their
values are monotonically higher, we assign prior parameters α0 and α1 for each stage k.

αk
0 ∼N (−10k,5)

αk
1 ∼N (2k− 10,5)(8)

II III IV V VI0 II III IV V0 I

Original distribution of stages across T=84 donors

Distribution of stages after resampling

(D) (E) (F)
(G)

II III IV V VI0 II III IV V0 I

(A) (B) (C)

FIG 11. Model augmented with staging metrics is able to effectively represent experimental data. (A) Compar-
ison of posterior time estimates predicted by models spanning all features and features plus staging metrics. (B)
Posterior β0 and β1 distributions (concatenating values from all layers and samples) in both models (C) Posterior
predictive estimates reveal effective modeling of staging metric (Braak, Thal and ADNC). Augmented Model in-
corporating staging information informs experimental design to balance SEA-AD cohort across disease stages
(D) To balance SEA-AD cohort, we used kernel density estimates to describe the distribution of inferred pseu-
dotime values. Next, we empirically calculate a pdf corresponding to the least probable time values. N = 1000
samples are drawn from this distribution and the resulting histogram is displayed (E) Pseudotime samples from
(D) are then converted to the associated Braak, Thal and ADNC stage. Top plot shows the distribution of stages
in the donor dataset, bottom plot shows the distribution of stages corresponding to the resampled times. (F,G)
Heatmaps showing the Braak/ADNC and Thal/ADNC joint histograms. The associated distribution of stages can
aid experimentalists in improving donor sampling to balance their cohort.

Next, we perform Bayesian posterior inference and compare posterior estimates of the
augmented model (Augmented, M = 7 + Staging metrics) against our model that includes
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all features (All Feats, M = 12) in Fig. 11 and Supplementary Fig. S15. Both models re-
sulted in similar posterior estimates, revealed by comparing posterior pseudotime estimates
for each donor and dynamic parameters (β0, β1) across measurements common to both set-
tings (Fig. 11A-B). In both cases, neuropathological data used to infer posterior parameters
results in concordant estimates and relatively small posterior standard deviations. We ob-
served that staging information does not significantly impact pseudotime posterior estimates,
both estimates concentrating around the same mean, when most informative neuropatholog-
ical features are selected. Although speculative, this may be indicative of the fact that the
staging information may be too coarse to provide any additional information on disease pro-
gression on top of the one already provided by neuropathological markers. At the same time,
the augmented model is able to effectively model staging metrics, observed when compar-
ing staging metrics’ posterior predictive distributions and observed data (Fig. 11C). Taken
together, these results highlights the ability of our augmented model together with the set of
informative features to accurately model pseudotime and AD staging metrics in concert.

Finally, we utilize our augmented model to guide experimental design, aiming to achieve
balance (equal representation of donors across pseudotime) in the SEA-AD cohort. To
accomplish this, we first estimate the distribution of posterior pseudotimes, p(t), by 1)
aggregating mean posterior pseudotime estimates for each donor, 2) constructing a his-
togram, and then 3) applying kernel density estimation. Next, we approximate the unnor-
malized distribution of under-sampled pseudotimes in the SEA-AD cohort by computing
punder(t) = 1− p(t). This approximation enables us to generate samples of under-sampled
pseudotimes (nsamples = 1000, see Fig. 11 D). These values can then be employed to com-
pute posterior predictive staging metrics based on the posterior estimates of staging parame-
ters (see Fig. 11E-G). These predictions inform the staging metrics of suggested new donors
that should be included in the study to achieve cohort balance. Given the current distribution
of our cohort, it is apparent that sampling from early and middle stages would be advanta-
geous.

7. Discussion. We introduced a Bayesian framework to model Alzheimer’s Disease pro-
gression, incorporating a latent pseudotime variable to depict disease evolution. We modeled
observations utilizing biophysically-inspired assumptions that posit pathological aggregation
follows exponential dynamics. Our inference method is useful for datasets restricted to cross-
sectional data, consolidating observations and inferring a single and common disease trajec-
tory. We demonstrated the utility of our framework using simulation studies and real datasets
originating from the SEA-AD consortium, profiling AD neuropathological proteins in a brain
region. Applying our model to the SEA-AD cohort dataset, consisting of 84 donors, allowed
us to infer donor pseudotime and pathological protein dynamics. Pseudotime estimates are
biased towards late values, in accordance with our observations that the SEA-AD cohort
is biased towards older donors and high pathology. Posterior predictive checks validate the
goodness of our fits. In addition, comparisons with existing neuropathological staging-based
metrics reveal that pseudotime ordering aligns well with brain-wide neuropathological as-
sessments, indicating that our model is able to map AD trajectory when detailed information
from only one brain region is used (the Middle Temporal Gyrus).

Next, we assembled a collection of metrics to assess the impact of each pathological pro-
tein on pseudotime inference, identifying the most informative features. These features ex-
hibited high growth rates, mutual information between their values and pseudotime, and indi-
vidually exhibited precise predictions of pseudotime with low prediction error. Incorporating
these highly informative variables alongside neuropathological assessments, we enhanced
our model to deduce the latter. When integrated with staging data, our enhanced model can
guide the identification of neuropathological stages for future donors to be included in the ex-
isting SEA-AD cohort, ensuring a balanced representation of donors across all pseudotimes
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and enhancing downstream analysis across the disease spectrum. While our work assumes
that the pathology markers align donors along the same pseudotime trajectory, which is true
for the MTG region of the brain, this assumption may not hold true for other brain regions.
This would require approaches that can overcome low-data regimes to successfully leverage
all regions in a combined overarching multi-regional pseudotime.

Our results demonstrated the success of our methodology, supported by our theoretical
explorations. In our work, we derived theoretical results on a simplified linear model to un-
derstand the best possible performance. A stimulating recent line of work has provided algo-
rithmic (Kidzinski et al., 2022) and statistical (Chen, Li and Zhang, 2020; Du, Wasserman
and Roeder, 2023) guarantees for matrix factorization problems in generalized-linear setups,
a setup akin to ours. However, these results by themselves are not sufficient to explain the
richness of phenomena manifesting in our setup. Future studies should study the simplified
model and extend Proposition 2 by deriving explicit rate bounds for the signal strength es-
timates, and also extend our theoretical results to a generalized linear model case. We made
contributions in this direction through extensive simulations and showed that whether or not
we benefit from hierarchical models for pseudotime estimation depends on the type of model
and error distribution, and benefits are only observed beyond linear models with Gaussian
errors. Future studies should develop a theoretical framework to explain this phenomenon.
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