

1 **Association of diet and inflammation with the vaginal microbiota of pregnant**
2 **individuals with or without IBD**

3

4 Daniela Vargas-Robles¹, Yan Rou Yap¹, Biplab Singha¹, Joyce Tien², Mallika Purandare², Mayra Rojas-
5 Correa¹, Camilla Madziar¹, Mellissa Picker³, Tina Dumont⁴; Heidi Leftwich⁴, Christine F. Frisard⁵, Doyle
6 V. Ward¹, Inga Peter³, Barbara Olendzki⁵, Ana Maldonado-Contreras^{1*}

7

8 ¹ Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics; ² School of
9 Medicine; ⁵ Department of Population and Quantitative Health Science. University of Massachusetts
10 Chan Medical School, Worcester, MA, 01655

11 ³ Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York,
12 NY, 10029

13 ⁴ Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of
14 Massachusetts Chan Medical School, Worcester, MA, 01655

15

16 *Corresponding author: Ana Maldonado-Contreras.

17 **Email:** ana.maldonado@umassmed.edu

18 **Telephone:** +1 774-455-3697

19

20 **Short title:** Inflammation, diet, and the vaginal microbiota.

21

22 The authors report no conflict of interest.

23

24

25

26

27 **Why was the study conducted?**

28 An altered vaginal microbiota has been implicated in preterm birth. There is no research on the vaginal
29 microbiome and the factors that influence it in pregnant individuals with Inflammatory Bowel Disease
30 (IBD) at a higher risk of preterm delivery.

31

32 **Key findings**

33 Pregnant individuals with IBD exhibit a comparable vaginal microbiome to healthy pregnant individuals.
34 However, pregnant individuals with IBD present a vaginal immune profile characterized by increased
35 levels of Th17 pro-inflammatory cytokines. High dietary quality, and optimal consumption of vegetables
36 and added sugars were associated with vaginal dominance by the beneficial *L. crispatus*.

37

38 **What does this add to what is known?**

39 Our results indicate that the vaginal immune environment and not the microbiome might explain poor
40 pregnancy outcomes for individuals with IBD. Moreover, our study supports the importance of diet to favor
41 *L. crispatus*, a bacterium associated with a lower risk of preterm birth.

42

43 **Abstract**

44 **Background and aims:** Vaginal dysbiosis has been associated with adverse pregnancy outcomes. Here,
45 we characterized the vaginal microbiota of pregnant individuals with inflammatory bowel disease (IBD) and
46 investigated whether gut or vaginal inflammation and diet influence the vaginal microbiota diversity of these
47 individuals.

48 **Study Design:** We recruited 48 individuals in their third trimester of pregnancy (IBD=23 and HC=18). We
49 characterized the vaginal microbiota by 16S rRNA sequencing and the gut microbiota by shotgun
50 sequencing. We measured fecal calprotectin in stool and pro-inflammatory cytokines in vaginal fluids. We
51 determine dietary quality using validated 24-hour dietary recalls.

52 **Results:** Pregnant individuals with IBD exhibit higher levels of fecal calprotectin and increased expression
53 of Th17 pro-inflammatory cytokines (i.e., IL-6, IL-8, IL-17) in the vaginal mucosa compared to healthy
54 pregnant individuals. High fecal calprotectin correlated with high vaginal microbiota diversity. Also, IL-4
55 (reduced in IBD) was associated with vaginal microbial composition. Regardless of IBD status, pregnant
56 individuals with healthier diets and particularly optimal servings of vegetables and sugars exhibited a
57 vaginal microbiota dominated by *Lactobacillus crispatus*, a species associated with a lower risk of preterm
58 birth and bacterial vaginosis.

59 **Conclusion:** Besides gut inflammation, pregnant individuals with IBD also exhibit a Th17 immune tone in
60 the vaginal mucosa. The vaginal microbiota diversity or composition, particularly high in the beneficial *L.*
61 *crispatus*, is positively associated with healthier diets, regardless of IBD status.

62
63 **Keywords:** Vaginal, microbiota, IBD, inflammation, pregnancy

64 Introduction

65 The vaginal microbiota composition of pregnant individuals with IBD is stable throughout pregnancy but
66 has not been directly compared to a healthy cohort (1). Only one study has reported that pregnant
67 individuals with IBD were more likely to have vaginal infections compared to healthy pregnant individuals
68 (2). In general, healthy pregnancies are characterized by vaginal microbiotas with low bacterial diversity
69 and dominant *Lactobacillus* species (3). For instance, pregnant individuals with a vaginal microbiota
70 dominated by *L. crispatus* have a lower risk of preterm birth compared to individuals with low-lactobacilli
71 abundance (4). Moreover, vaginal microbial communities dominated by *L. crispatus* are better protected
72 against infections than those dominated by *L. iners* (5). Therefore, understanding *Lactobacillus* species
73 dominance in individuals with IBD is important to predicting their risk of poor pregnancy outcomes. Our
74 goal is to characterize and compare the vaginal microbiota of pregnant individuals with and without IBD
75 using high-throughput microbiota sequencing.

76

77 Moreover, we sought to determine the role of environmental factors, such as diet and local inflammation
78 on the vaginal microbiota composition. To our knowledge, there have been only a few studies evaluating
79 the influence of diet on the vaginal microbiota of pregnant individuals using high throughput microbiota
80 sequencing (6-8), yet none of the studies included all the relevant diet components from validated
81 instruments aiming at measuring dietary intake. Additionally, the immune tone of the vaginal mucosa in
82 pregnant women with IBD remains understudied. Hence, we will test whether diet influences the vaginal
83 microbiota makeup thus diet can be potentially used as a strategy to revert vaginal dysbiosis during
84 pregnancy, and whether an inflammatory environment in the gut and vagina are linked to vaginal
85 microbiota profiles.

86

87

88

89

90 Materials and Methods

91 **Recruitment:** We conducted a case–control study nested into our ongoing MELODY Trial (9) including
92 participants with 27th–29th weeks of gestation before any dietary intervention. Pregnant women with and
93 without IBD were recruited nationwide under approved IRB protocol (IRB # H00016462) as previously
94 described (10) (see supplementary methods). IBD disease activity was evaluated using validated scoring
95 systems, namely the Harvey Bradshaw index (11) for participants with CD and the 6-point Mayo score (12)
96 for participants with UC.

97

98 **Sample collection:** Vaginal and stool samples were self-collected using the OMNIgeneVAGINAL
99 collection tube (DNA Genotek, Canada) or the ALPCO EasySampler kit (ALPCO, USA) following
100 manufacturer instructions. Samples were received in the lab frozen 30h after sample collection.

101

102 **Nucleic acid isolation:** DNA from both vaginal and stool samples was isolated with Dneasy PowerSoil
103 Pro kit (QIAGEN, Germany) and the RNA from vaginal samples was isolated with PowerMicrobiome kit
104 (QIAGEN, Germany) following the manufacturer's protocol.

105

106 **Cytokine expression:** RNA from vaginal samples was subjected to qRT–PCRs (see supplementary
107 methods). Oligonucleotides used to estimate cytokine expression are listed in **Table S1** (Integrated DNA
108 Technology, USA).

109

110 **Fecal calprotectin quantification** was performed using the CalproLab ELISA ALP (Svar Life Sciences,
111 Norway) according to the manufacturer's instructions. Total protein was quantified using the Pierce BCA
112 Protein Assay kit (Thermo Fisher Scientific, USA). Calprotectin was normalized to initial stool weight (ng
113 calprotectin/mg stool).

114 **Vaginal microbiota sequencing and profiling** was performed by 16S rRNA sequencing of the V3-V4
115 hypervariable region as previously described (13). Sequencing libraries were sequenced on 600 cycles

116 using the MiSeq platform (Illumina, CA, USA). QIIME2 was used to process paired-end sequences. The
117 DADA2 (14) algorithm was used for quality control and to obtain representative sequences (Amplicon
118 Sequence Variant or ASV). We used a custom database (15, 16) for taxonomy classification. Only taxa
119 with at least 0.10% abundance and present in a minimum of one sample were used for the analyses, as
120 previously done (17, 18). **Table S2** describes the sequence counts included in the analyses.

121

122 **Gut microbiota sequencing and profiling** were performed using whole genome sequencing.
123 Specifically, library generation and 150bp paired-end sequencing were carried out on the Illumina NextSeq
124 500 platform. KneadData (dec_v0.1, <http://huttenhower.sph.harvard.edu/kneaddata>) was used to
125 eliminate human sequences and for quality control. MetaPhlAn4 database (vOct22)(19) was used for
126 taxonomic assignment. **Table S2** describes the sequence counts included in the analyses.

127

128 **Vaginal and gut microbiota diversity analyses** were done in R, particularly the Phyloseq package (20).
129 We performed data imputation for two individuals lacking BMI information (IBD=2), and four individuals
130 (IBD=2, HC=2) without fecal calprotectin measurements using the median values for the IBD or HC group,
131 respectively. All analyses were performed at the ASV level. Microbial alpha diversity was estimated using
132 the Shannon and Simpson's Indexes (1-D) with rarefied sequencing data. Shannon and Simpson's Index
133 were log-transformed to reach 'normality' of the residuals when necessary. To determine associations in
134 alpha diversity we used linear regression models corrected by cofounders as age, body mass index (BMI),
135 antibiotic use, and gestational diabetes. Results for the best-fitted model are reported.

136

137 We used Permutational Multivariate Analysis of Variance (PERMANOVA (21)) with adonis2 function to
138 evaluate beta diversity (measured by Aitchison distance) of non-rarefied sequencing data.

139

140 We only assessed the associations between the vaginal microbiota and cytokines that were significantly
141 different between IBD and HC. When assessing the association with dietary components, we only included

142 dietary components with no collinearity (Spearman correlation $>|0.5|$). One participant did not complete
143 dietary recalls and thus was excluded from diet analyses.

144

145 **Discriminant taxa analysis:** Microbial taxa and their association with clinical variables were assessed
146 using MaAsLin2's (22), also including the previously named confounding variables.

147

148 **Community State Types (CST):** Each vaginal sample was classified into CST as described before (23).
149 To compare CST by discrete variables (health status) we use Fisher exact test (24); and by continuous
150 variables (i.e., fecal calprotectin, cytokine expression, or diet score) Kruskal-Wallis test.

151

152 **Dietary assessment:** We conducted 24-hour dietary recalls (24HDRs) around the same time as
153 vaginal/stool collection and estimated the Healthy Eating index-2015 (HEI-2015) as previously described
154 by us (10) (see supplementary methods). Wilcoxon test was used to compare HEI-2015 and its dietary
155 components by health status and CST.

156

157

158

159

160

161

162

163

164 **Results**

165 A total of 48 pregnant individuals were enrolled in the study: 23 with diagnosed IBD (n=18 CD, and n=5,
166 UC) and 25 HC without IBD. Participants' demographics and clinical information are summarized in **Table**
167 **1**. Briefly, participants' mean age was 33.8 years, most had normal BMI (41.7%) or were overweight
168 (37.5%), and most self-identified as White (93.8%). Only a few participants reported gestational diabetes
169 or the use of antibiotics currently or previously during pregnancy. None of the clinical and demographic
170 variables differed by health status (IBD vs. HC, **Table 1**) or IBD diagnosis (CD vs. UC, **Table S3**). More
171 than 50% of the IBD participants were in self-reported remission (**Table 1**).
172

173 ***Vaginal microbiota diversity is associated with gut and vaginal inflammation, regardless of health***
174 ***status.***

175 We first determined whether the vaginal microbiota diversity and composition differed by health status and
176 found no significant differences (**Figure S1**). We also found no significant differences in the vaginal
177 microbiota by IBD medications or when comparing individuals with IBD not on medication with the HC
178 (**Figure S2**).
179

180 Given that most of the study participants were in remission or with mild disease we sought to further
181 determine inflammatory markers that could influence the vaginal microbiota. We observed significantly
182 higher levels of fecal calprotectin in IBD participants compared to their HC counterparts. Concomitantly,
183 fecal calprotectin levels were positively associated with vaginal microbiota Simpson diversity but not with
184 Shannon index (**Figure 1 and S1**) or for the beta diversity (**Figure S1**). Additionally, there were no
185 significant associations between fecal calprotectin and vaginal microbiota diversity by health status (**Figure**
186 **S1**).
187

188 We then assessed inflammation in the vaginal mucosae. We observed that pregnant individuals with IBD
189 exhibited higher gene expression of Th17 pro-inflammatory cytokines, specifically IL-6, IL-8, and IL-17 than

190 HC. Conversely, expression of Th1 and Th2 cytokines IFN- γ and IL-4 respectively, was lower in pregnant
191 individuals with IBD compared to HC (**Figure 1**). We observe that the vaginal microbiota composition – not
192 its alpha diversity- correlated with the expression of IL-4 in the vaginal mucosa (**Figures 1 and S3**).
193

194 There were no specific bacteria associated with any of the inflammatory markers studied. We only identify
195 *Dialister* sp. and WAL 1855D (an uncultured bacterium from the *Tissierellaceae* family) increased in
196 pregnant individuals with high BMI (**Figure S4**).
197

198 Finally, we examined the gut microbiota of the pregnant individuals included in the study. There were no
199 significant differences in the gut microbiota diversity and composition by health status or fecal calprotectin
200 levels (**Figure S5**). However, we observed that *Collinsella* was lower in pregnant individuals with IBD
201 compared to HC (**Figure S5**).
202

203 ***Vaginal microbial diversity is associated with the consumption of vegetables and added sugars.***
204 Pregnant individuals in this cohort had a HEI-2015 score of 63.8, comparable to the average of 63.0
205 reported by pregnant individuals in the USA (25, 26). There were no significant differences in the HEI-2015
206 score by health status (**Table S5**). Similarly, there were no significant differences in vaginal microbial
207 diversity or composition by HEI-2015 score (**Figure S6**).
208

209 We further investigated the associations between each dietary component included in the HEI-2015 score
210 and the vaginal microbiota diversity. Consumption of each dietary component was similar between
211 pregnant individuals with IBD and HC (**Table S5**). Whole fruit, fatty acid, and seafood/plant protein were
212 excluded from the analysis due to collinearity (Spearman score $>|0.5|$). We observed that high scores of
213 total vegetables (high vegetable intake) were predictive of a high vaginal microbiota diversity (**Figure 2**)
214 along with increasing abundance of *L. crispatus* (**Figure 3**). *L. iners* showed an opposite trend, although
215 not significant (**Figures 3 and S7**). We observed that vaginal microbial composition differed by added
216 sugar score, although no bacterial taxon was significantly associated with it (**Figure 2**).
217

217 **Higher *Lactobacillus crispatus* dominance (CST-I) is associated with higher dietary quality and**
218 **vegetable consumption.**

219 We determine the vaginal CST for each participant. More than 40% exhibited CST-I (*L. crispatus*
220 dominance), followed by CST-III (*L. iners* dominance), CST-II (*L. gasseri* dominance), CST-IV (non-
221 *Lactobacillus*-dominated), and CST-V (*L. jensenii* dominance. **Table S4**) (27). We did not observe
222 differences in CSTs by health status, IBD diagnosis (CD vs. UC), levels of fecal calprotectin, or any of the
223 vaginal cytokines assessed (**Table S3 and S4**).

224

225 Pregnant individuals with CST-I (*L. crispatus*-dominated, N=21) showed a higher HEI-2015 score,
226 reflective of better dietary quality than CST-III individuals (*L. iners*-dominated, N=14. **Figure 3**). Moreover,
227 scoring for vegetable and added sugar intakes was significantly higher in individuals with CST-I than those
228 with CST-III (**Figure 3**).

229

230 **Discussion**

231 **Principal findings**

232 The vaginal and gut microbiota composition of pregnant individuals with IBD was comparable to HC during
233 the third trimester of pregnancy. Yet pregnant individuals with IBD presented gut inflammation linked to
234 high vaginal microbial diversity and a vaginal pro-inflammatory immune tone. Pregnant individuals with
235 higher dietary quality and optimal consumption of vegetables exhibited a vaginal microbiota profile
236 dominated by the beneficial *L. crispatus*.

237

238 **Results in the context of what is known.**

239 Reduced levels of IFN- γ and IL-4 and elevated levels of IL-8 and IL-6, as seen in the pregnant individuals
240 with IBD in this study, have been associated with an increased risk of preterm birth (28). To the best of our
241 knowledge, our study is the first one to assess vaginal inflammatory markers in IBD pregnant patients and
242 might explain the increased risk of preterm birth of pregnant individuals with IBD, even when in remission

243 or with mild disease (29, 30). Despite differences in the vaginal immune profile, the vaginal microbiota of
244 pregnant individuals with IBD was comparable to healthy controls. This result is unexpected as
245 inflammation relates to alteration in the microbiota in the vaginal mucosa (31, 32). Here, the vaginal
246 immune profile was assessed by gene expression (by RT-qPCR) and no protein/cytokine levels; thus,
247 further studies are required to accurately evaluate the immune tone in the vaginal mucosa.

248

249 We observe that gut inflammation in IBD individuals is positively associated with increased vaginal
250 microbial diversity. Of note, contrary to the gut microbiota, high microbial diversity in the vagina relates to
251 unhealthy states with increased risk for bacterial vaginosis (reviewed in (33)) and preterm birth (34, 35).

252

253 We then investigated whether diet impacts the vaginal microbiota. Pregnant individuals with higher dietary
254 quality exhibited a vaginal microbiota profile dominated by the beneficial *L. crispatus*, whereas the vaginal
255 microbiota profile of those with lower dietary quality was dominated by *L. iners*. For individual dietary
256 components, our findings showed that high vegetable consumption was associated with greater microbial
257 diversity (linked to vaginal dysbiosis (36)), similar to what previous studies have found for non-pregnant
258 vegetarians compared to non-vegetarians (37). However, our results also showed that, despite the higher
259 diversity, high vegetable intake resulted in a greater abundance of the beneficial *L. crispatus*. This indicates
260 the importance of not only considering a diversity index but identifying members of the vaginal microbiome
261 at the species level to understand the potential implications of the microbiota in vaginal health.

262

263 Additionally, we found that lower added sugar intake resulted in decreased microbial alpha diversity and
264 increased *L. crispatus*. Concomitantly, high vegetable consumption and low intake of sweetened
265 beverages, has been also positively associated with abundance of *L. crispatus* in White and Black pregnant
266 women (8).

267

268 Importantly, *L. crispatus* is believed to offer the most protective benefits to the host compared to other
269 *Lactobacillus* species, with *L. iners* offering the least protective benefits (reviewed in (5)). *L. crispatus*

270 creates a highly acidic vaginal niche (pH<4.5) inhospitable to non-beneficial microbes, such as bacterial
271 vaginosis-related bacteria (38).

272

273 **Clinical implications**

274 We find that intestinal inflammation correlates with high vaginal microbiota diversity, indicative of unhealthy
275 states with increased risk for bacterial vaginosis and preterm birth. Thus, our results highlight the
276 importance of continuing therapy during pregnancy to reduce IBD-related intestinal inflammation.
277 Moreover, we found that diet can influence the dominance of a beneficial *L. crispatus* associated with
278 decreased risk of pre-term birth and bacterial vaginosis. Hence, emphasizing dietary quality during
279 pregnancy is a must, not only for the sustainment of pregnancy but to fuel a healthy vaginal microbiota.

280

281 **Research implications**

282 Our results highlight the need for a large prospective study that includes pregnant individuals with IBD
283 experiencing different disease activity (i.e., mild, moderate, severe). Future studies including dietary
284 interventions will unveil the role of diet as a strategy to support a healthy vaginal microbiome.

285

286 **Strengths and limitations**

287 Our study is constrained by a few key limitations. The modest sample size for both IBD and HC cohorts
288 curtails the statistical comparisons, particularly when several confounding variables, such as antibiotic use,
289 IBD medications, and gestational diabetes, are considered. This factor reduces the statistical power of the
290 study. Additionally, the IBD samples predominantly represent individuals in remission or with mild disease
291 with CD and only a few participants with UC, which narrows the scope of our conclusions to this specific
292 severity level of IBD and IBD diagnosis. Moreover, the ethnic/racial composition of our study sample, which
293 is mainly White, introduces a limitation since the vaginal microbiome is known to vary with race and
294 ethnicity (39). These limitations suggest the need for studies that include participants with severe disease,
295 an equal representation of IBD diagnosis (UC and CD), as well as individuals with diverse ethnic/racial
296 backgrounds.

297 **Conclusions**

298 Our results demonstrate that although the vaginal and gut microbiota of pregnant individuals with IBD and
299 HC is similar in the third trimester of pregnancy, it varies depending on the immune tone of each mucosa.
300 We show that pregnant individuals with IBD exhibit a pro-inflammatory cytokine profile that has been
301 associated with an increased risk of pre-term birth. Finally, a high-quality diet with optimal intakes of
302 vegetables and added sugars favors *L. crispatus* vaginal dominance.

303

304 **Acknowledgments**

305 We thank all the participants for their time and effort in collecting samples and responding to surveys. We
306 also thank Rafael Lopez Martinez for contributing to designing scripts for analysis automatization. This
307 work was supported by the Leona M. and Harry B. Helmsley Charitable Trust.

308

309 **Data availability statement**

310 The raw sequences and their associated metadata will be released at NCBI BioProject ID PRJNA915128
311 upon manuscript publication.

312

313

314

315

316

317

318

319

320

321

322

323

324 **References**

- 325 1. Hill JE, Pena-Sanchez JN, Fernando C, Freitas AC, Withana Gamage N, Fowler S. 2022. Composition and
326 Stability of the Vaginal Microbiota of Pregnant Women With Inflammatory Bowel Disease. *Inflamm Bowel
327 Dis* 28:905-911.
- 328 2. Rosta K, Mazzucato-Puchner A, Kiss H, Malik V, Mandl P, Petricevic L, Foessleitner P, Shafran I, Temsch
329 W, Farr A. 2021. Vaginal microbiota in pregnant women with inflammatory rheumatic and inflammatory
330 bowel disease: A matched case-control study. *Mycoses* 64:909-917.
- 331 3. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, Galuppi M, Lamont RF, Chaemsathong
332 P, Miranda J. 2014. The composition and stability of the vaginal microbiota of normal pregnant women is
333 different from that of non-pregnant women. *Microbiome* 2:1-19.
- 334 4. Gudnadottir U, Debelius JW, Du J, Hugerth LW, Danielsson H, Schuppe-Koistinen I, Fransson E,
335 Brusselaers N. 2022. The vaginal microbiome and the risk of preterm birth: a systematic review and
336 network meta-analysis. *Sci Rep* 12:7926.
- 337 5. France M, Alizadeh M, Brown S, Ma B, Ravel J. 2022. Towards a deeper understanding of the vaginal
338 microbiota. *Nat Microbiol* 7:367-378.
- 339 6. Sun H, Yamada P, Paetow A, Chan M, Arslan A, Landberg R, Dominguez-Bello MG, Young BK. 2022. A
340 randomized controlled trial of the effects of whole grains versus refined grains diets on the microbiome in
341 pregnancy. *Sci Rep* 12:7509.
- 342 7. Jefferson KK, Parikh HI, Garcia EM, Edwards DJ, Serrano MG, Hewison M, Shary JR, Powell AM, Hollis
343 BW, Fettweis JM. 2019. Relationship between vitamin D status and the vaginal microbiome during
344 pregnancy. *Journal of Perinatology* 39:824-836.
- 345 8. Rosen EM, Martin CL, Siega-Riz AM, Dole N, Basta PV, Serrano M, Fettweis J, Wu M, Sun S, Thorp Jr JM.
346 2022. Is prenatal diet associated with the composition of the vaginal microbiome? *Paediatric and Perinatal
347 Epidemiology* 36:243-253.
- 348 9. Peter I, Maldonado-Contreras A, Eisele C, Frisard C, Simpson S, Nair N, Rendon A, Hawkins K, Cawley C,
349 Debebe A. 2020. A dietary intervention to improve the microbiome composition of pregnant women with
350 Crohn's disease and their offspring: the MELODY (Modulating Early Life Microbiome through Dietary
351 Intervention in Pregnancy) trial design. *Contemporary clinical trials communications* 18:100573.

352 10. Olendzki BC, Hsiao BS, Weinstein K, Chen R, Frisard C, Madziar C, Picker M, Pauplis C, Maldonado-
353 Contreras A, Peter I. 2023. Dietary Intake of Pregnant Women with and without Inflammatory Bowel
354 Disease in the United States. *Nutrients* 15.

355 11. Harvey RF, Bradshaw JM. 1980. A simple index of Crohn's-disease activity. *Lancet* 1:514.

356 12. Lewis JD, Chuai S, Nessel L, Lichtenstein GR, Aberra FN, Ellenberg JH. 2008. Use of the noninvasive
357 components of the Mayo score to assess clinical response in ulcerative colitis. *Inflamm Bowel Dis* 14:1660-
358 6.

359 13. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index
360 sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina
361 sequencing platform. *Appl Environ Microbiol* 79:5112-20.

362 14. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: High-resolution
363 sample inference from Illumina amplicon data. *Nat Methods* 13:581-3.

364 15. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J.
365 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-
366 classifier plugin. *Microbiome* 6:1-17.

367 16. Usyk M, Zolnik CP, Castle PE, Porras C, Herrero R, Gradissimo A, Gonzalez P, Safaeian M, Schiffman M,
368 Burk RD, Costa Rica HPVVTG. 2020. Cervicovaginal microbiome and natural history of HPV in a
369 longitudinal study. *PLoS Pathog* 16:e1008376.

370 17. Reitmeier S, Hitch TC, Treichel N, Fikas N, Hausmann B, Ramer-Tait AE, Neuhaus K, Berry D, Haller D,
371 Lagkouardos I. 2021. Handling of spurious sequences affects the outcome of high-throughput 16S rRNA
372 gene amplicon profiling. *ISME Communications* 1:1-12.

373 18. Linz AM, Crary BC, Shade A, Owens S, Gilbert JA, Knight R, McMahon KD. 2017. Bacterial community
374 composition and dynamics spanning five years in freshwater bog lakes. *MSphere* 2:e00169-17.

375 19. Blanco-Miguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD,
376 Thomas AM, Nickols WA, Piccinno G, Piperni E, Puncochar M, Valles-Colomer M, Tett A, Giordano F,
377 Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N.
378 2023. Extending and improving metagenomic taxonomic profiling with uncharacterized species using
379 MetaPhlAn 4. *Nat Biotechnol* doi:10.1038/s41587-023-01688-w.

380 20. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics
381 of microbiome census data. *PLoS one* 8:e61217.

382 21. Anderson MJ. 2014. Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref:
383 statistics reference online:1-15.

384 22. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, Tickle TL, Weingart G, Ren B, Schwager
385 EH, Chatterjee S, Thompson KN, Wilkinson JE, Subramanian A, Lu Y, Waldron L, Paulson JN, Franzosa
386 EA, Bravo HC, Huttenhower C. 2021. Multivariable association discovery in population-scale meta-omics
387 studies. *PLoS Comput Biol* 17:e1009442.

388 23. France MT, Ma B, Gajer P, Brown S, Humphrys MS, Holm JB, Waetjen LE, Brotman RM, Ravel J. 2020.
389 VALENCIA: a nearest centroid classification method for vaginal microbial communities based on
390 composition. *Microbiome* 8:166.

391 24. Hervé M, Hervé MM. 2020. Package 'RVAideMemoire'. See <https://CRAN.R-project.org/package=RVAideMemoire>.

393 25. Krebs-Smith SM, Pannucci TE, Subar AF, Kirkpatrick SI, Lerman JL, Tooze JA, Wilson MM, Reedy J.
394 2018. Update of the Healthy Eating Index: HEI-2015. *J Acad Nutr Diet* 118:1591-1602.

395 26. U.S. Department of Agriculture FaNS, Center for Nutrition Policy and Promotion 2021. Average Healthy
396 Eating Index-2015 Scores for Non-Pregnant Non-Lactating, Pregnant and Lactating Women 20-44 Years.
397 What We Eat in America, NHANES 2013-2018.

398 27. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket
399 CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. 2011. Vaginal microbiome of reproductive-age
400 women. *Proc Natl Acad Sci U S A* 108 Suppl 1:4680-7.

401 28. Kumar M, Murugesan S, Singh P, Saadaoui M, Elhag DA, Terranegra A, Kabeer BSA, Marr AK, Kino T,
402 Brummaier T, McGready R, Nosten F, Chaussabel D, Al Khodor S. 2021. Vaginal Microbiota and Cytokine
403 Levels Predict Preterm Delivery in Asian Women. *Front Cell Infect Microbiol* 11:639665.

404 29. Marild K, Soderling J, Stephansson O, Axelrad J, Halfvarson J, Group SS, Broms G, Marsal J, Olen O,
405 Ludvigsson JF. 2022. Histological remission in inflammatory bowel disease and risk of adverse pregnancy
406 outcomes: A nationwide study. *EClinicalMedicine* 53:101722.

407 30. Baird DD, Narendranathan M, Sandler RS. 1990. Increased risk of preterm birth for women with
408 inflammatory bowel disease. *Gastroenterology* 99:987-94.

409 31. Masson L, Barnabas S, Deese J, Lennard K, Dabee S, Gamieldien H, Jaumdally SZ, Williamson AL, Little
410 F, Van Damme L, Ahmed K, Crucitti T, Abdellati S, Bekker LG, Gray G, Dietrich J, Jaspan H, Passmore JS.
411 2019. Inflammatory cytokine biomarkers of asymptomatic sexually transmitted infections and vaginal
412 dysbiosis: a multicentre validation study. *Sex Transm Infect* 95:5-12.

413 32. Campisciano G, Zanotta N, Licastro D, De Seta F, Comar M. 2018. In vivo microbiome and associated
414 immune markers: New insights into the pathogenesis of vaginal dysbiosis. *Sci Rep* 8:2307.

415 33. Chen X, Lu Y, Chen T, Li R. 2021. The female vaginal microbiome in health and bacterial vaginosis.
416 *Frontiers in cellular and infection microbiology*:271.

417 34. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, Cotch MF, Edelman R, Pastorek
418 JG, Rao AV. 1995. Association between bacterial vaginosis and preterm delivery of a low-birth-weight
419 infant. *New England Journal of Medicine* 333:1737-1742.

420 35. Donders G, Van Calsteren K, Bellen G, Reybrouck R, Van den Bosch T, Riphagen I, Van Lierde S. 2009.
421 Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during
422 the first trimester of pregnancy. *BJOG: An International Journal of Obstetrics & Gynaecology* 116:1315-
423 1324.

424 36. Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, Ross FJ, McCoy CO, Bumgarner
425 R, Marrazzo JM, Fredricks DN. 2012. Bacterial communities in women with bacterial vaginosis: high
426 resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. *PLoS One* 7:e37818.

427 37. Song SD, Acharya KD, Zhu JE, Deveney CM, Walther-Antonio MRS, Tetel MJ, Chia N. 2020. Daily Vaginal
428 Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise.
429 mSphere 5.

430 38. Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, Li L, Nelson KE, Xia Y, Xiang C. 2010. Molecular analysis
431 of the diversity of vaginal microbiota associated with bacterial vaginosis. *BMC genomics* 11:1-16.

432 39. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket
433 CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. 2011. Vaginal microbiome of reproductive-age
434 women. *Proc Natl Acad Sci U S A* 108 Suppl 1:4680-7.

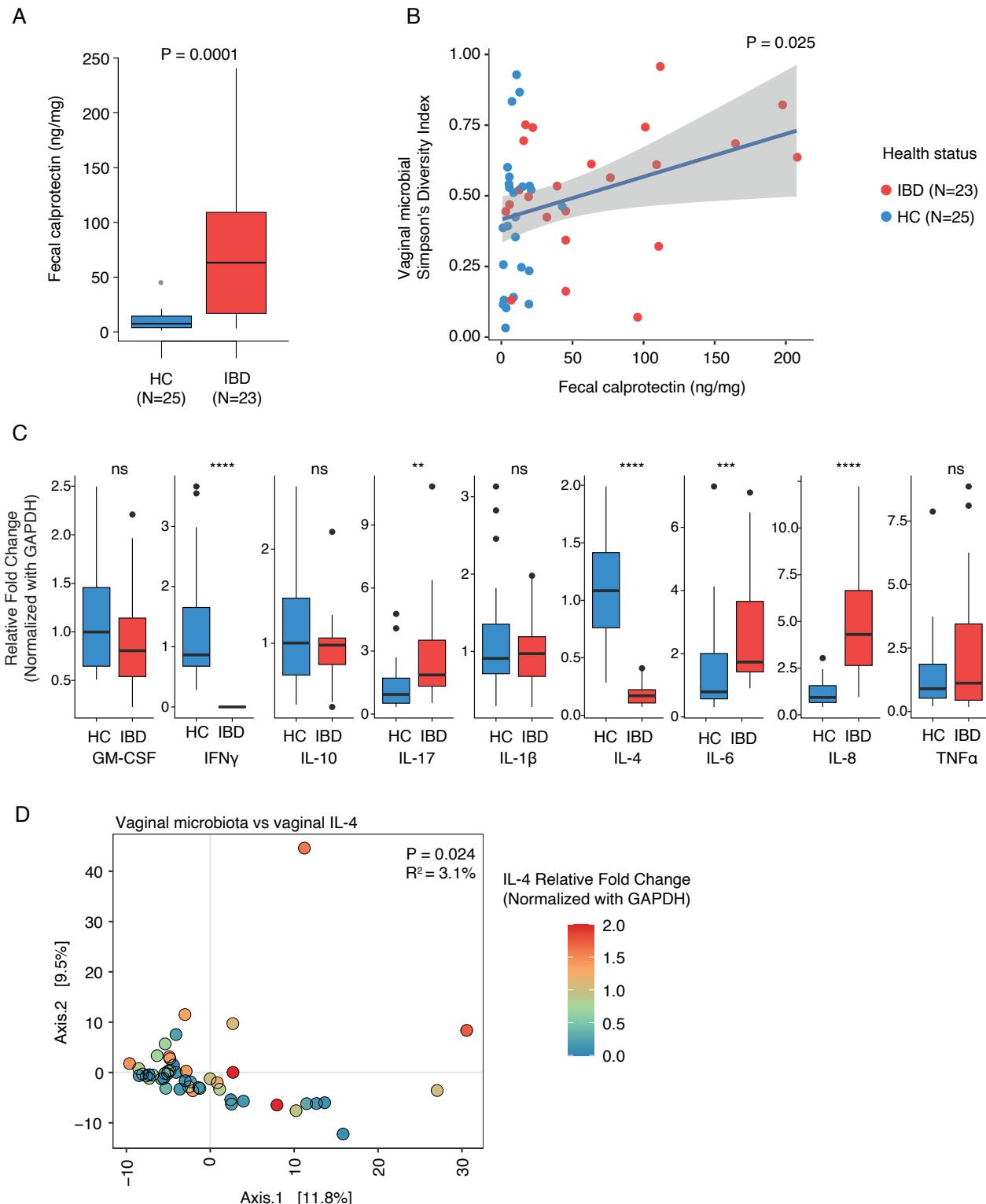
435

436 **Table 1.** Demographic and clinical variables for pregnant individuals with Inflammatory Bowel Disease
 437 (IBD) or Healthy Controls (HC) recruited for the study between 2019 and 2022.

Demographics and clinical variables	IBD	HC	Overall	P value ^{&}
	(N=23)	(N=25)	(N=48)	
Age				0.414
Mean (SD)	33.3 (4.63)	34.4 (4.97)	33.8 (4.79)	
Median [Min, Max]	33.0 [22.0, 41.0]	36.0 [22.0, 42.0]	34.0 [22.0, 42.0]	
BMI categories ^{¶¶}				0.179
Underweight	1 (4.3%)	0 (0%)	1 (2.1%)	
Normal	12 (52.2%)	8 (32.0%)	20 (41.7%)	
Overweight	8 (34.8%)	10 (40.0%)	18 (37.5%)	
Obese	2 (8.7%)	7 (28.0%)	9 (18.8%)	
Race				0.490
White	23 (100%)	22 (88.0%)	45 (93.8%)	
Asian	0 (0%)	1 (4.0%)	1 (2.1%)	
Other	0 (0%)	2 (8.0%)	2 (4.2%)	
Gestational diabetes				0.098
Yes	3 (13.0%)	0 (0%)	3 (6.3%)	
No	16 (69.6%)	21 (84.0%)	37 (77.1%)	
Information unavailable	4 (17.4%)	4 (16.0%)	8 (16.7%)	
Use of antibiotic during all pregnancy				0.468
No	19 (82.6%)	22 (88.0%)	41 (85.4%)	
Yes	3 (13.0%)	3 (12.0%)	6 (12.5%)	
Information unavailable	1 (4.3%)	0 (0%)	1 (2.1%)	
IBD diagnosis				-
Crohn's disease	18 (78.3%)	0 (0%)	18 (37.5%)	
Ulcerative colitis	5 (21.7%)	0 (0%)	5 (10.4%)	
Healthy controls	0 (0%)	25 (100%)	25 (52.1%)	
IBD disease activity ^{¶¶¶}				-
Mild disease	6 (26.1%)	0 (0%)	6 (12.5%)	
Remission	13 (56.5%)	0 (0%)	13 (27.1%)	
Information unavailable	4 (17.4%)	25 (100%)	29 (60.4%)	
Use of IBD medication				1.70E-06
No	9 (39.1%)	25 (100%)	34 (70.8%)	
Yes	14 (60.9%)	0 (0%)	14 (29.2%)	
Preterm				0.106
No	15 (65.2%)	17 (68.0%)	32 (66.7%)	
Yes	4 (17.4%)	0 (0%)	4 (8.3%)	
Information unavailable	4 (17.4%)	8 (32.0%)	12 (25.0%)	
Infant birth weight (g)				0.151
Mean (SD)	3150 (470)	3330 (662)	3240 (579)	
Median [Min, Max]	3230 [1810, 3710]	3290 [1080, 4520]	3230 [1080, 4520]	

[&]Fisher's exact test for categorical variables and Wilcoxon test for continuous variables.

^{¶¶}BMIs categories correspond to the WHO's classifications: Underweight (<18.5), normal weight (18.5–24.9), overweight (≥25.0), and obese (≥30).


^{¶¶¶}Disease activity was estimated using the Harvey Bradshaw Index and the Mayo score for individuals with Crohn's Disease or Ulcerative colitis, respectively.

438

439

440

441

442

443 **Figure 1.** Variation in inflammatory markers and microbial diversity by health status. (A) Fecal calprotectin
444 levels of individuals with Inflammatory Bowel Disease (IBD) or Healthy Controls (HC; Wilcoxon test). (B)
445 Linear regression correlation between vaginal microbial alpha diversity and fecal calprotectin levels. (C)
446 Expression of cytokines on the vaginal mucosa of IBD and HC participants (Wilcoxon test. Asterisks denote
447 ** <5E-2, *** <5E-3, ****<5E-4). (D) Principal Coordinates Analysis (PCoA) of vaginal microbial beta
448 diversity by IL-4 levels (Aitchison distance and PERMANOVA).

449

450

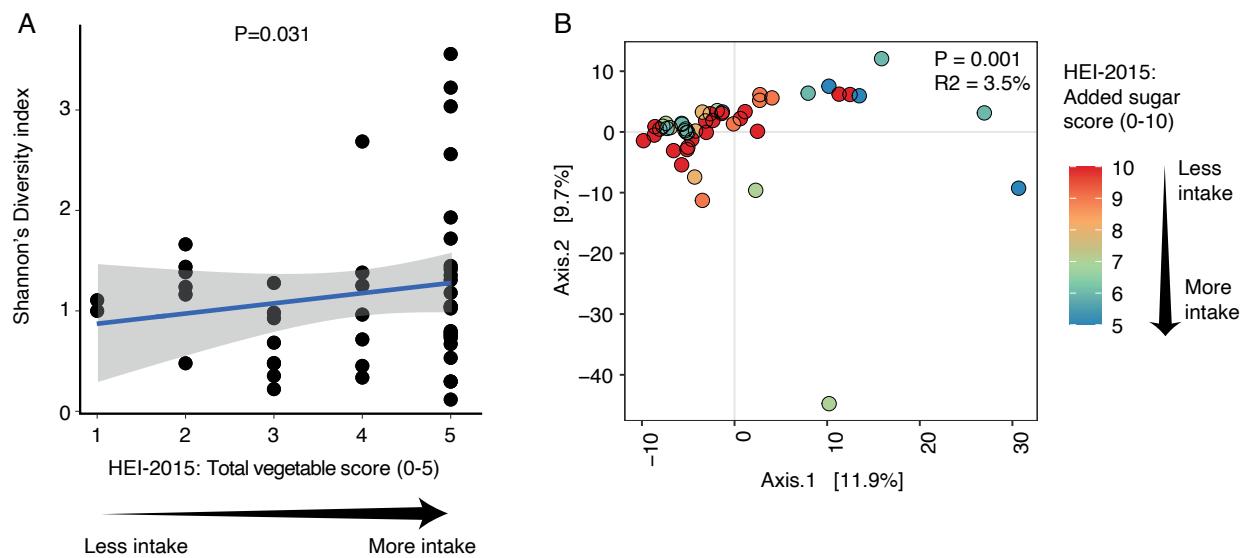
451

452

453

454

455

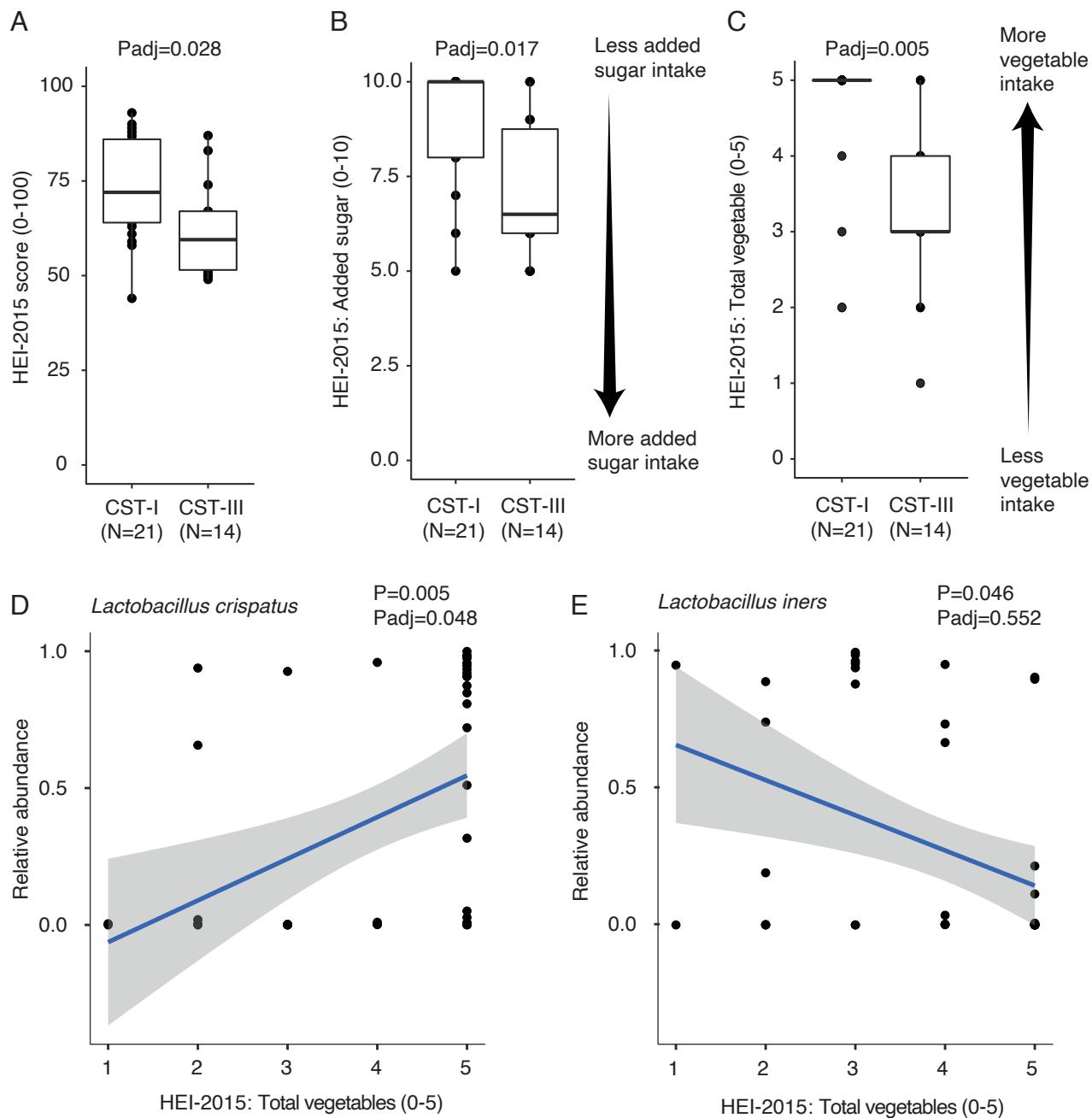

456

457

458

459

460



461

462

463 **Figure 2.** HEI-2015 total vegetable and added sugar components are significantly associated with vaginal
464 microbiota diversity or composition, respectively. (A) Linear regression of microbial alpha diversity and
465 HEI-2015 total vegetable score. Gray shades in the graphs represent the 95% confidence interval. (B)
466 Principal Coordinates Analysis (PCoA) demonstrates significance for vaginal microbial composition by
467 HEI-2015 added sugar score (Aitchison distance and PERMANOVA).

468

469

470 **Figure 3.** HEI-20215 added sugar and total vegetable correlate with CST classification. Pregnant
 471 individuals with CST-I (*L. crispatus*- dominated profile) exhibit higher scores for (A) HEI-2015, (B) added
 472 sugar, and (C) total vegetables (Wilcoxon-test, adjusting for multiple comparisons). The arrows indicate
 473 the direction of consumption of each dietary component. (D) Total vegetable score positively correlates
 474 with the abundance of *L. crispatus* and negatively correlates with the abundance of *L. iners* (E, Spearman
 475 Correlation).