

1 **Title:**

2 Prevalent fast evolution of genes involved in heterochromatin functions

3

4 Leila Lin¹, Yuheng Huang¹, Jennifer McIntyre¹, Ching-Ho Chang², Serafin Colmenares³, Yuh

5 Chwen G. Lee^{1*}

6

7 1. Department of Ecology and Evolutionary Biology, University of California, Irvine

8 2. Division of Basic Sciences, Fred Hutchinson Cancer Center, United States

9 3. Department of Cell and Molecular Biology, University of California, Berkeley

10

11 *Author for Correspondence:

12 Grace Yuh Chwen Lee

13 Department of Ecology and Evolutionary Biology

14 Center for Complex Biological Systems

15 University of California, Irvine

16 grylee@uci.edu

1 **Abstract**

2 Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in
3 eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in
4 maintaining genome stability, organizing chromosomes, and suppressing transposable
5 elements (TEs). Given the importance of these functions, it is expected that the genes involved
6 in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were
7 found to evolve rapidly. To investigate whether these previous findings are anecdotal or general
8 to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes
9 involved in heterochromatin functions and investigate their evolution over short and long
10 evolutionary time scales in *Drosophila*. Our analyses find that these genes exhibit significantly
11 more frequent evolutionary changes, both in the forms of amino acid substitutions and gene
12 copy number change, when compared to genes involved in Polycomb-based repressive
13 chromatin. While positive selection drives amino acid changes within both structured domains
14 with diverse functions and intrinsically disordered regions (IDRs), purifying selection may have
15 maintained the proportions of IDRs of these proteins. Together with the observed negative
16 associations between evolutionary rates of these genes and genomic TE abundance, we
17 propose an evolutionary model where the fast evolution of genes involved in heterochromatin
18 functions is an inevitable outcome of the unique functional roles of heterochromatin, while the
19 rapid evolution of TEs may be an effect rather than cause. Our study provides an important
20 global view of the evolution of genes involved in this critical cellular domain and provides
21 insights into the factors driving the distinctive evolution of heterochromatin.

22

23

24

1 **Introduction**

2 Heterochromatin, first discovered as the darkly stained chromosomal regions that remain
3 condensed throughout the cell cycle (Heitz 1928), is a distinct cytological domain that is
4 conserved across eukaryotic cells (Liu et al. 2020). While a small fraction of heterochromatin
5 was found to be cell-type specific, or “facultative”, the majority of these chromosomal blocks
6 remain condensed across different cell types and are known as “constitutive” heterochromatin
7 (Heitz 1928). Constitutive heterochromatin (referred to as “heterochromatin” for simplicity
8 hereafter) is usually located around centromeres and telomeres (Janssen et al. 2018), and its
9 underlying DNA is depleted of functional genes. Instead, heterochromatin is mainly composed
10 of repetitive sequences, including satellite repeats (Peacock et al. 1978) and transposable
11 elements (TEs) (Hoskins et al. 2007; Hoskins et al. 2015). Accordingly, heterochromatin is
12 oftentimes assumed to be functionally inert and nicknamed the “dark matter” of the genome.
13 Yet, studies have found heterochromatin playing critical roles in many chromosomal functions,
14 such as maintaining genome stability, mediating chromosome segregation, and ensuring proper
15 DNA repair of repeat-rich sequences, across eukaryotes (reviewed in (Feng and Michaels 2015;
16 Allshire and Madhani 2018; Janssen et al. 2018; Kendek et al. 2021)). Not surprisingly,
17 disruption of heterochromatin functions has been linked to various diseases (Hahn et al. 2010),
18 aging progression (Villeponteau 1997; J.-H. Lee et al. 2020), and cancer (Janssen et al. 2018).
19
20 The critical functions and inter-species conservation of heterochromatin domains would
21 naturally lead to the expectation that genes modulating the function of heterochromatin should
22 be highly conserved. Surprisingly, however, a handful of these genes show non-neutral
23 evolution of their amino acid sequence and rapid turnover of gene copy number, both of which
24 are consistent with a history of positive selection. The evolution of some of these genes was of
25 interest due to them being core structural components of heterochromatin, such as the

1 Heterochromatin Protein (HP1) family (Levine et al. 2012; Helleu and Levine 2018) and its
2 paralogs (Vermaak et al. 2005; Ross et al. 2013). The rest of the genes were observed to have
3 roles in the evolution of small RNA pathways (Obbard et al. 2006; Obbard et al. 2009),
4 transcription factors (Kasinathan et al. 2020), or germline stem cells (Flores et al. 2015), as well
5 as speciation (Barbash et al. 2003). Because satellite repeats (Henikoff et al. 2001) and TEs
6 (Cosby et al. 2019) are enriched in heterochromatic sequence and can defy Mendel's law to
7 increase their transmission to the next generation, an arms race between heterochromatic
8 sequence and host genes suppressing such selfish behaviors has been a common theme
9 explaining the rapid evolution of these genes (e.g., (Vermaak et al. 2005; Satyaki et al. 2014;
10 Helleu and Levine 2018; Brand and Levine 2021)). Further supporting such conjecture, the
11 composition, abundance, and location of repetitive sequences in heterochromatin are found to
12 diverge rapidly even between closely related species (Wei et al. 2014; Wei et al. 2018; Kim et
13 al. 2021; de Lima and Ruiz-Ruano 2022).

14

15 However, this handful of genes represents only a small fraction of genes involved in modulating
16 heterochromatin functions. The unique and essential functions of heterochromatin depend on its
17 specific enrichment of repressive di- and tri-methylation at histone H3 Lysine 9 (H3K9me2/3,
18 (Allshire and Madhani 2018)) and the “reader” of these marks, HP1a, which serves as the
19 foundational structural component of heterochromatin (Eissenberg and Elgin 2014) and leads to
20 DNA compaction (Verschure et al. 2005) and transcriptional suppression (Li et al. 2003).
21 Interestingly, the binding of HP1a to H3K9me2/3 further recruits “writers” of H3K9me (histone
22 methyltransferase, (Schotta 2002)), and this positive feedback mechanism between readers and
23 writers leads to the propagation of such repressive epigenetic marks independent of the
24 underlying DNA sequence (Allshire and Madhani 2018). This unique ability of heterochromatin
25 to “spread” is best exemplified by the Position Effect Variegation (PEV) first discovered in
26 *Drosophila* (Muller 1930)—the mosaic expression of euchromatic genes translocated to

1 heterochromatin-proximal regions due to the stochastic spreading of repressive H3K9me2/3
2 from heterochromatin (Girton and Johansen 2008; Elgin and Reuter 2013). By studying mutants
3 that either enhance or weaken PEV, many genes involved in heterochromatin functions were
4 identified. These include not only the structural (e.g., (Shaffer et al. 2006)) and enzymatic (e.g.,
5 (Czermin et al. 2001)) components for heterochromatin, but also those that antagonize the
6 initiation and/or maintenance of heterochromatin (e.g., writers of antagonizing histone
7 modifications; (Bao et al. 2007)). Still, other genes were discovered through their co-localization
8 with heterochromatin domain either cytologically (e.g., (Swenson et al. 2016)) or epigenomically
9 (e.g., (Alekseyenko et al. 2014)) and were subsequently identified to be involved in
10 heterochromatin function.

11
12 Given the large numbers and vastly diverse functional roles of genes involved in
13 heterochromatin function, we conducted an expansive survey to determine whether the
14 previously reported rapid evolution of a small subset of these genes is anecdotal or a common
15 feature of proteins involved in the functions of this unique chromatin environment. To do so, we
16 compiled an exhaustive list of candidate genes that have been shown, or are likely, to be
17 involved in heterochromatin functions, including PEV modifiers, histone-modifying enzymes
18 influencing H3K9me2/3 enrichment, and genes whose protein products localize to
19 heterochromatin. Our investigation finds that these genes evolve exceptionally fast, a pattern
20 that is not general to genes interacting with other repressive chromatin marks and suggests
21 selective pressure unique to constitutive heterochromatin. We further dissect the domains and
22 protein properties targeted by positive selection and specifically test the premise that the rapid
23 evolution of genes involved in heterochromatin functions could be driven by fast-changing
24 repetitive sequences. Based on our findings, we propose an evolutionary model where the rapid
25 changes in these genes are the unavoidable consequence of the unique functional roles of
26 heterochromatin, and that the evolution of repetitive sequences may be the consequence,

1 instead of the cause. Our study provides an important global view of the evolution of genes
2 involved in this critical cellular domain and sheds light on the drivers behind the unique evolution
3 of heterochromatin.

1 **Results**

2 **Identification of candidate genes involved in heterochromatin functions**

3 With the goal of identifying the global evolutionary patterns for genes involved in the functions of
4 heterochromatin, we selected candidate genes based on three criteria to maximize inclusivity
5 (**Table S1**). The first category contains genes demonstrated to modulate PEV (Girton and
6 Johansen 2008; Elgin and Reuter 2013; Swenson et al. 2016). Genes with mutations weaken
7 PEV and, therefore, heterochromatin functions are known as Suppressors of Variegation
8 (*Su(var)*), while those that augment PEV are Enhancers of Variegation (*E(var)*). Here, we
9 included 59 and seven previously identified *Su(var)*s and *E(var)*s, respectively.

10 The second category focuses on histone-modifying enzymes that can influence the
11 enrichment levels of H3K9me2/3. Enrichment of H3K9me2/3 requires “eraser” proteins that first
12 remove antagonizing active marks, such as H3K9ac (deacetylases, (Czermin et al. 2001)) and
13 H3K4me3 (demethylase, (Rudolph et al. 2007)). This is followed by writer proteins depositing
14 H3K9me2/3 (H3K9 methyltransferases, (Schotta 2002)). We consider these histone-modifying
15 enzymes to enhance H3K9me2/3 enrichment and, thus, heterochromatin functions. On the
16 contrary, erasers for H3K9me2/3 (H3K9 demethylase, (Herz et al. 2014)), as well as writers for
17 acetylation (acetyltransferase, (Kuo and Andrews 2013)) and S10 kinase (Deng et al. 2008), are
18 known to antagonize the deposition and maintenance of H3K9me2/3. H4K20me3 is another
19 conserved hallmark of heterochromatin (Schotta et al. 2004), and we included the
20 corresponding methyltransferases. In total, our list contains 16 and seven histone-modifying
21 enzymes that enhance or weaken heterochromatin functions, respectively.

22 The last category includes genes whose protein products co-localize with
23 heterochromatin, suggesting they play roles in this subnuclear compartment. We surveyed the
24 literature for cytology-based evidence of co-localization with HP1a through either
25 immunofluorescence (e.g., (Greil et al. 2007)) or live imaging (e.g., (Swenson et al. 2016)) as

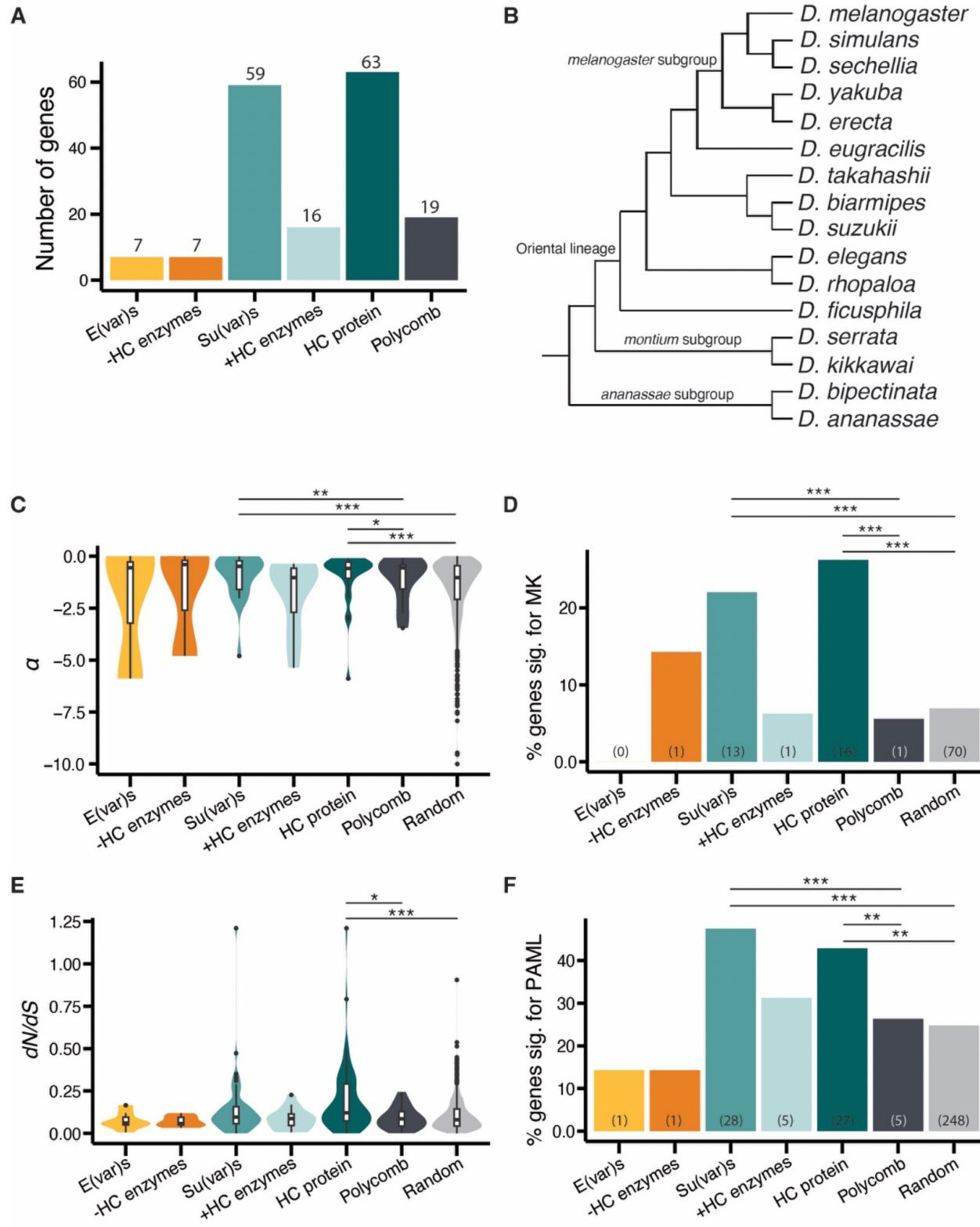
1 well as epigenomics through Chromatin Immunoprecipitation (ChIP, e.g., (Alekseyenko et al.
2 2014; Kasinathan et al. 2020)). Because a previous comprehensive survey found that some
3 HP1a-binding proteins identified through Immunoprecipitation-Mass Spectrometry (IP-Mass
4 Spec) are not necessarily enriched in heterochromatin cytologically (Swenson et al. 2016),
5 genes implicated in HP1a-binding but lacking localization evidence are not included in our
6 analysis. Hereafter, we referred to this largest category with 63 genes as “heterochromatin
7 proteins.”

8 In total, we studied the evolution of 106 genes involved in heterochromatin functions,
9 which we termed “heterochromatin-related genes” hereafter (see **Figure 1A** for the number of
10 genes in each category and **Table S1** for a full list of genes and references). It is worth noting
11 that 43 candidate genes belong to more than one category because these three categorizations
12 are not mutually exclusive (**Table S1**). We consider genes in categories of *Su(var)s*, histone
13 modifying enzymes enhancing H3K9me2/3 or H4K20me3 enrichment, or heterochromatin
14 proteins as “mediating” heterochromatin functions, while those defined as *E(var)s* or histone
15 modifying enzymes weakening H3K9me2/3 enrichment as “antagonizing” heterochromatin
16 functions. To determine whether the evolutionary histories of heterochromatin-related genes are
17 exceptional, we compared them with Polycomb group genes (Kassis et al. 2017), whose protein
18 products are enriched at facultative heterochromatin. Even though also generally associated
19 with transcriptional suppression, facultative heterochromatin is restricted to developmentally
20 regulated genes in euchromatin and is enriched for another type of repressive histone
21 modification (H3K27me3) (Bannister and Kouzarides 2011; Bell et al. 2023). Polycomb genes
22 thus allowed us to determine whether the exceptional evolutionary histories, if any, of
23 heterochromatin-related genes are due to their involvement in a repressive chromatin
24 environment or specifically for heterochromatin structure.

25

26

1 **Heterochromatin-related genes experience pervasive positive selection on protein**
2 **sequences across short and long-time scales**
3 We performed evolutionary genetic tests to identify heterochromatin-related genes with
4 signatures of positive selection at two time scales—contrasting the polymorphism within *D.*
5 *melanogaster* and divergence between *D. melanogaster* and *D. simulans* (~4 million years
6 divergence between lineages) under the framework of unpolarized McDonald-Kreitman tests
7 (MK tests, (McDonald and Kreitman 1991)), and phylogenetic analysis by maximum likelihood
8 (PAML) tests (Yang 2007) using 16 *Drosophila* species with an estimated divergence time of
9 ~25 million years (Suvorov et al. 2022) (see **Figure 1B** for studied species). In addition to
10 comparing the evolution of heterochromatin-related genes to that of polycomb genes, we made
11 the contrast to the evolution of a thousand randomly sampled genes to represent genome-wide
12 estimates (referred to as “random genes” hereafter).


13 On a short evolutionary time scale, we first estimated the proportion of amino acid
14 substitutions that might have been driven by positive selection (α , (Smith and Eyre-Walker
15 2002)). Heterochromatin-related genes, as a group, have significantly larger α than those of
16 Polycomb (*Mann-Whitney U tests*, $p = 0.0244$, *median* = 0.0847 (heterochromatin-related
17 genes) and -0.424 (Polycomb)) and random genes (*Mann-Whitney U tests*, $p < 10^{-8}$, *median* = -
18 0.516 (random genes)). Breaking down our candidate genes according to functions revealed
19 that most categories have larger α than Polycomb control or random genes, even though the
20 comparisons are statistically significant only for *Su(var)* and heterochromatin protein (**Figure**
21 **1C**). These observations suggest the possibility that heterochromatin-related genes experienced
22 frequent positive selection. Consistently, we identified that 21 out of 104 (20.2%)
23 heterochromatin-related genes with sufficient polymorphism data to perform MK tests have
24 evidence of adaptive evolution (rejection of the null hypothesis and an excess of
25 nonsynonymous fixed differences between species). This is a significantly larger proportion than
26 that of the Polycomb genes (5.56%; *Fisher's Exact Test*, $p = 0.191$; *Binomial test*, $p < 10^{-6}$, odds

1 ratio = 4.30) and random genes(6.94%, *Fisher's Exact Test*, $p < 10^{-3}$; *Binomial test*, $p < 10^{-5}$,
2 odds ratio = 2.90), while we found no difference in this proportion between Polycomb genes and
3 random genes (*Fisher's Exact Test* and *Binomial test*, $p = 1$). Specifically, *Su(var)* (22.0%) and
4 heterochromatin proteins (26.2%), both of which are expected to mediate heterochromatin
5 functions, have much larger proportions of genes with evidence of positive selection than either
6 Polycomb or random genes (**Figure 1D**). Indeed, candidate genes mediating heterochromatin
7 functions, as a group, show significantly more evidence of adaptive evolution than the Polycomb
8 (20.2%, *Fisher's Exact Test*, $p = 0.190$; *Binomial test*, $p < 10^{-6}$, odds ratio = 4.30) as well as
9 random genes (*Fisher's Exact Test*, $p < 10^{-3}$; *Binomial test*, $p < 10^{-4}$, odds ratio = 2.91). It is
10 worth noting that the number of codons involved in the MK tests is similar across categories of
11 genes (*Mann-Whitney U tests*, $p > 0.05$ for all comparisons), suggesting that these observations
12 are unlikely driven by differences in the statistical power of the MK tests.

13 On a long evolutionary time scale, we estimated the relative rates of amino acid
14 substitution (nonsynonymous divergence/synonymous divergence, dN/dS) across 16 studied
15 *Drosophila* species. There is an overall trend that heterochromatin-related genes have larger
16 dN/dS ratios than the Polycomb control genes (medians = 0.0974 (heterochromatin-related
17 genes) v.s. 0.0852 (Polycomb controls)) and random genes (medians = 0.0802), and this
18 difference is statistically significant for comparisons to random genes (*Mann-Whitney U test*, $p =$
19 0.167 (compared to Polycomb control) and 0.0032 (compared to random genes). Nevertheless,
20 only the category of "heterochromatin protein," the largest category, has a statistically larger
21 dN/dS ratio than that of the Polycomb genes (*Mann-Whitney U test*, $p = 0.0204$) and random
22 genes (*Mann-Whitney U test*, $p < 10^{-5}$, **Figure 1E**). To test whether the changes in dN/dS ratios
23 of heterochromatin-related genes over the phylogenetic tree might have been driven by positive
24 selection, we compared the log-likelihood for two alternative models estimating dN/dS at each
25 site: the null model that assumes dN/dS ratio is beta-distributed and not greater than one (M8a)
26 and the alternative model in which dN/dS ratio is allowed to be greater than one (M8 models);

1 (Yang 2007)). A significantly larger likelihood of the alternative model is consistent with a history
2 of positive selection acting on the gene (Swanson et al. 2003). We found that the substitution
3 patterns of 42 heterochromatin-related genes (39.6%) better fit the alternative model,
4 suggesting frequent positive selection acting on them. This proportion is significantly larger than
5 that of Polycomb genes (26.3%; *Fisher's Exact Test*, $p = 0.314$; *Binomial test*, $p = 0.00276$,
6 odds ratio = 1.84) and the random genes (24.8%; *Fisher's Exact Test*, $p = 0.00159$; *Binomial*
7 *test*, $p = 0.000975$, odds ratio = 1.99), while there was no difference in this proportion between
8 the Polycomb and random genes (*Fisher's Exact Test*, $p = 0.795$; *Binomial test*, $p = 0.796$).
9 Similar to observations made on a short evolutionary time scale, *Su(var)s* and heterochromatin
10 proteins have stronger evidence of positive selection compared to Polycomb and random genes
11 (**Figure 1F**), as do all genes mediating heterochromatin functions (41.4%, *Fisher's Exact Test*, p
12 = 0.305; *Binomial test*, $p = 0.00125$, odds ratio = 1.97 (compared to Polycomb control) and
13 *Fisher's Exact Test*, $p = 0.0115$; *Binomial test*, $p = 0.000272$, odds ratio = 1.67 (compared to
14 random genes)). Interestingly, while histone-modifying enzymes that enhance heterochromatin,
15 as a group, do not exhibit exceptional rates of protein evolution, likely due to the low statistical
16 power associated with its small number of genes, *all* methyltransferases for H3K9me2/3
17 (*Su(var)3-9*, *egg*, *G9a*) show accelerated rates of protein evolution (**Table S1**), which provides
18 clues for the possible source of positive selection acting on heterochromatin-related genes (see
19 Discussion). Overall, we found that heterochromatin-related genes, especially those mediating
20 heterochromatin functions, experienced frequent positive selection on their protein sequence at
21 both short- and long-time scales, even when compared to Polycomb genes. This observation
22 suggests that the widespread adaptive evolution of heterochromatin-related genes is likely
23 driven by selection acting on their functions specific to the heterochromatin environment, rather
24 than by general selective pressure acting on genes interacting with repressive epigenetic marks.

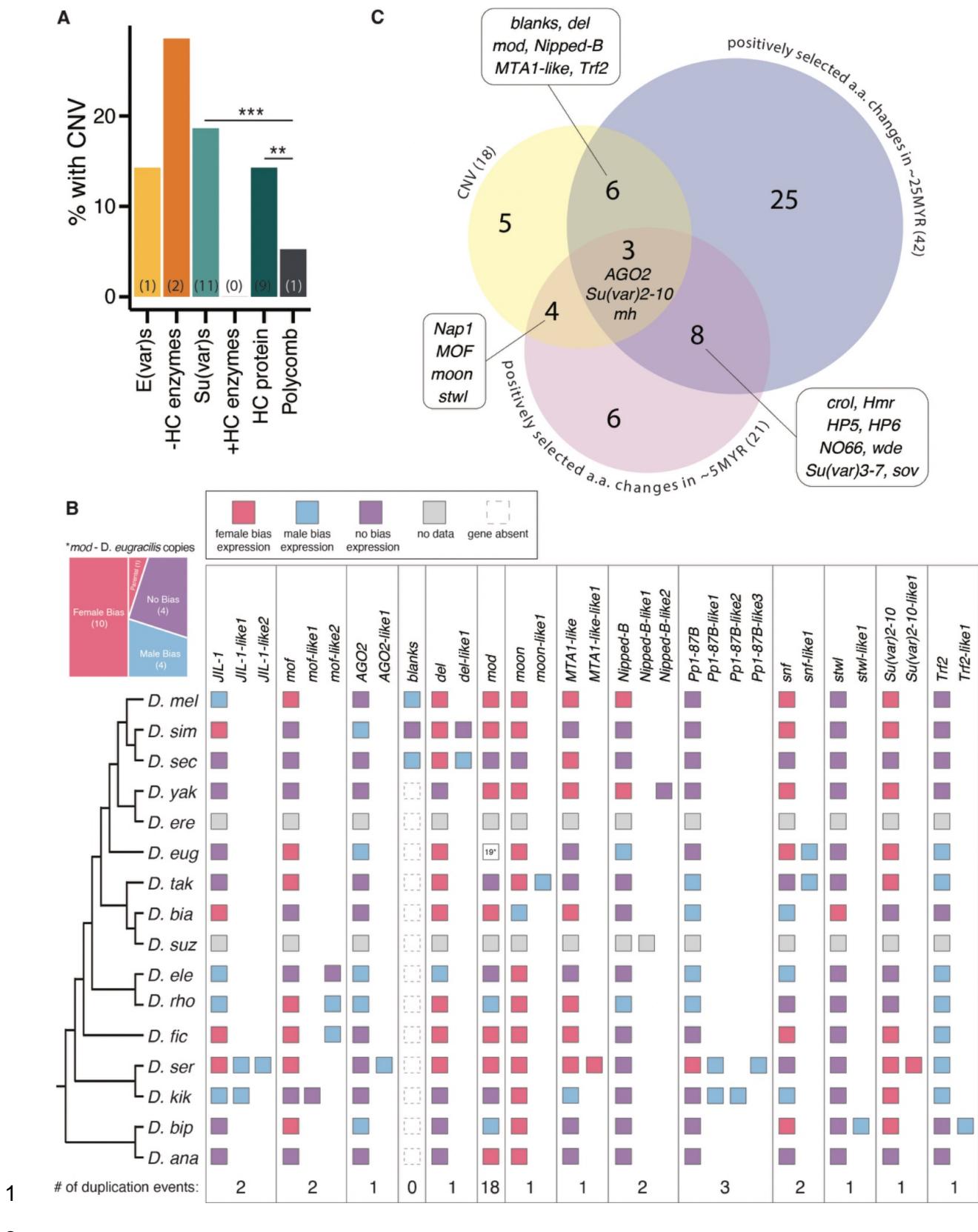
1 **Figure 1. Positive selection on protein sequences of heterochromatin-related genes**
2 **found by evolutionary tests at both short- and long- evolutionary time scales.** (A) Barplot
3 showing the number of genes in each category of heterochromatin-related genes, the Polycomb
4 control genes, and a set of one thousand random genes. Those expected to mediate or
5 antagonize heterochromatin functions are in hues of green and orange, respectively. -HC
6 enzyme: histone-modifying enzymes weakening H3K9me2/3 enrichment; +HC enzyme: histone-
7 modifying enzymes enhancing H3K9me2/3 enrichment. (B) Phylogenetic tree for the species
8 included in the study. Note that the branch lengths are not to scale. (C and E) Violin plots for α ,
9 the proportion of amino acid substitutions fixed by positive selection inferred by the MK test (C)
10 and dN/dS ratio, the relative rates of nonsynonymous substitutions (E), for different categories
11 of genes. Numbers of significant genes are in parentheses. (D and F) Barplots showing the
12 proportion of genes with significant MK tests (D) and accelerated rates of dN/dS driven by
13 positive selection (F). The number of genes in each category is either on top of the barplot (A)
14 or in parenthesis (D and F). *Mann-Whitney Test* (C and E) and *Binomial test* (D and F):
15 * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

1 **Rapid evolution of heterochromatin-related genes also manifests as changes in gene
2 copy number**

3 In addition to changes in amino acid sequences, the rapid evolution of genes can be in the form
4 of changes in gene copy number (Hastings et al. 2009), and dramatic turnover of gene copy
5 number for a small set of heterochromatin-related genes was previously reported (Levine et al.
6 2012; Lewis et al. 2016; Lee et al. 2017; Helleu and Levine 2018). Changes in gene copy
7 number may hold particular significance for heterochromatin functions—several enzymatic and
8 structural proteins of heterochromatin have been shown to exhibit dosage-dependent effects
9 (Elgin and Reuter 2013). Accordingly, changes in gene copy number of heterochromatin-related
10 genes could have immediate functional consequences.

11 We performed reciprocal *BLAST* searches using *D. melanogaster* amino acid sequences
12 as queries to identify homologs and paralogs in other species, followed by manual curations
13 (see Materials and Methods). With these, we found 18 heterochromatin-related genes having
14 differences in gene copy number among 16 *Drosophila* species studied (17.0% of the
15 heterochromatin-related genes), with 17 genes having gains of copies and one gene loss when
16 compared to *D. melanogaster*. Similar to our analyses for the evolution of amino acid
17 sequences (Figure 1), the proportion of heterochromatin-related genes with copy number
18 variation (CNV) is significantly more than that of Polycomb genes (5.26%, *Fisher's Exact Test*, p
19 = 0.302, *Binomial test*, $p < 10^{-4}$, odds ratio = 3.68). *Su(var)* genes and heterochromatin proteins
20 again exhibit exceptionally large proportions of genes with CNV (Figure 2A). CNV of several of
21 these genes have been studied before (e.g., *HP1* (Levine et al. 2012), *AGO2* (Lewis et al.
22 2016), *Cav* and *Nap-1* (Lee et al. 2017), and *mh* (Brand et al. 2024)) and our following
23 discussions mainly focused on those first identified by our study.

24 By using synteny to infer the orthologous relationships between duplicates in different
25 species (see Materials and Methods), we found that most observed CNVs for heterochromatin-
26 related genes involve a single or two duplication events (Figure 2B, Figure S1, and Table S2).


1 The most notable exception is the nucleolin homolog, *mod*, which has 18 duplications in *D.*
2 *eugracilis* alone. *mod* plays important roles in morphogenesis (Graba et al. 1994) and
3 spermatogenesis (Park et al. 2023) and has been shown as a dosage-dependent *Su(var)*
4 (Garzino et al. 1992), suggesting these identified CNVs could readily alter heterochromatin
5 functions. In addition, we observed complex duplication/loss events leading to the CNV
6 observed in *mof* (**Figure S2**), an acetyltransferase that influences H3K9me2/3 enrichment
7 (Feller et al. 2015) and is known to be involved in dosage compensation (Hilfiker et al. 1997). In
8 addition to the duplication happening on the lineage leading to *D. kikkawai*, there is likely a
9 duplication event of *mof* in the common ancestor of the oriental lineage (see **Figure 1B**),
10 followed by a subsequent loss in the subsets of lineages that leads to the paraphyletic presence
11 of a *mof* duplicate (**Figure S2**).

12 Duplicated genes are commonly found to have male-biased expression, which is
13 suggested as a resolution to sexual genetic conflicts (Gallach and Betrán 2011). We are
14 interested in examining whether duplicates of heterochromatin-related genes exhibit similar
15 trends of sex-biased expression. By using publicly available transcriptome data for the species
16 studied, we categorized the parental ortholog and duplicated paralog (with respect to *D.*
17 *melanogaster*) as male-biased, female-biased, or unbiased in expression (see Materials and
18 Methods). With the exception of *MTA-like* and *Su(var)2-10*, most identified duplicates indeed
19 show male-biased expression, irrespective of whether the parental copy is male or female-
20 biased in expression (**Figure 2B**). Interestingly, for *mod* in *D. eugracilis*, the parental copy has a
21 female-biased expression, while the 18 duplicates exhibit a mixture of male-biased, female-
22 biased, and unbiased expression. Another notable case is *del*, which is part of a germline
23 complex enabling the transcriptions of TE-targeting small RNAs from loci in pericentromeric
24 heterochromatin (Mohn et al. 2014) and shows female-biased expression. While the *del*/
25 duplicate in *D. simulans* shows male-biased expression, the *orthologous* duplicated copy in the
26 sister species *D. sechellia* has no biases in expression. In summary, the rapid evolution of

- 1 heterochromatin-related genes, when compared to Polycomb genes, is also reflected in their
- 2 changes in gene copy number.

1 **Figure 2. Rapid evolution of heterochromatin-related genes manifested in multiple forms.**

2 (A) Barplot showing the proportion of heterochromatin-related genes and Polycomb control
3 genes with CNV. The numbers of genes with CNV are in parentheses. (B) Summary of the
4 duplication and loss events as well as sex-biased expression for heterochromatin-related genes
5 identified to have CNV. Each column represents one orthologous copy. The number of
6 duplication events is noted at the bottom. The colors of each square represent sex-biased
7 expression, except for the 19 copies of *mod* duplicates in *D.eugracilis*, which is shown at the top
8 left of figure B. (C) Venn diagram depicting the number of genes identified to have exceptional
9 evolution with one of the three evolutionary tests as well as their overlaps, with those identified
10 by more than one test listed. a.a.: amino acid. *Binomial tests*: ** $p < 0.01$; *** $p < 0.001$.

1 **Heterochromatin-related genes with diverse functions are recurrent targets of positive
2 selection**

3 The three evolutionary tests we conducted detect signals of positive selection at different time
4 scales and in different forms (amino acid sequences *v.s.* gene copy number). We are interested
5 in investigating whether some heterochromatin-related genes may exhibit rapid evolution with
6 multiple tests. Consistent with analyses conducted separately for different evolutionary tests,
7 *Su(var)s* and heterochromatin proteins have an especially large proportion of genes with
8 evidence of rapid evolution in any one of the tests (*Binomial test*, $p < 0.001$ for both
9 comparisons; **SFigure 3A**), and this difference becomes even more prominent when
10 considering genes with exceptional evolution for *more than one test* (*Binomial test*, $p < 0.001$ for
11 both comparisons; **SFigure 3B**). Three genes show evidence of rapid evolution for *all* three
12 tests (**Figure 2C**): AGO2, the core effector in endogenous siRNA silencing pathway that
13 silences TEs in somatic cells (Ghildiyal et al. 2008), *Su(var)2-10*, which critically links piRNA
14 targeting and the transcriptional silencing of TEs (Ninova et al. 2020), and *mh*, whose evolution
15 is the focus of a recent study (Brand et al. 2024). Other heterochromatin-related genes with
16 more than one evidence of rapid evolution (**Figure 2C**) include those related to silencing of TEs
17 (e.g., *del*, *moon*, *sov*, *Trf2*, *wde*), dosage compensation (e.g., *Su(var)3-7*), maintenance of
18 chromatin structure (e.g., *Nipped-B*), and structural components of heterochromatin (e.g., *HP5*).
19 While most of these genes are either *Su(var)* or heterochromatin proteins, several histone-
20 modifying enzymes were also found to undergo positive selection with multiple evolutionary
21 tests, such as the H3K4me3 demethylase *NO66* and acetyltransferase *mof*. These observations
22 suggest that positive selection recurrently acts on heterochromatin-related genes with diverse
23 functions.

24

25

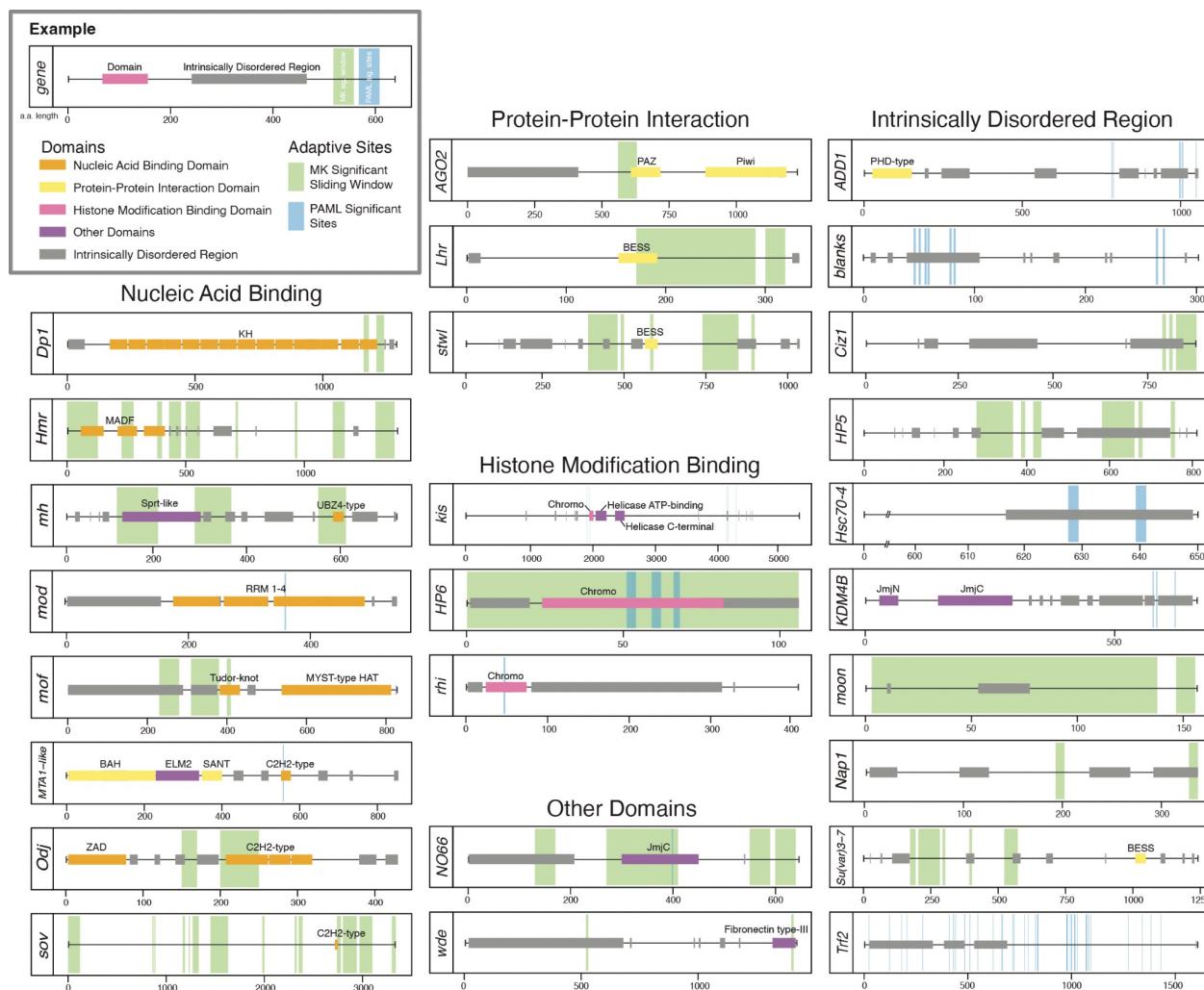
26

1 **Positive selection targets both ordered domains and intrinsically disordered regions of**
2 **proteins encoded by heterochromatin-related genes**

3 To identify the potential evolutionary drivers for the observed rapid evolution of heterochromatin-
4 related genes, we investigated the locations of positive selection within windows of each rapidly
5 evolving gene. We identified windows with evidence of adaptive evolution by performing sliding
6 MK tests and located sites with high Bayes Empirical Bayes (BEB) posterior probability of
7 positive selection under the PAML framework (Yang et al. 2005). Locations of these windows or
8 sites with evidence of positive selection were then contrasted with the annotated and/or
9 predicted domains of heterochromatin-related genes (see Materials and Methods). We found
10 that signatures of positive selection are present in domains with diverse functions (**Figure 3**),
11 and several of them are especially pertinent to heterochromatin functions. These include
12 chromo domains that directly interact with histone methylation (in *HP6*, *rhi*, *Kis*) and Jmjc
13 demethylase domain in *NO66*, the H3K4me3 demethylase. We also found signatures of positive
14 selection located within various nucleic acid binding domains (e.g., C2H2 type and UBZ4-type
15 Zinc-Finger DNA binding domain) and domains mediating protein-protein interactions (e.g.,
16 BESS domains).

17 In addition to structured domains with well-characterized functions, proteins also contain
18 regions that lack fixed three-dimensional structures, known as Intrinsically Disordered Regions
19 (IDRs). IDRs are increasingly appreciated for playing critical roles in protein functions (Forman-
20 Kay and Mittag 2013) and are frequently found in proteins enriched in phase-separated cellular
21 compartments (Nott et al. 2015; Pak et al. 2016; Lin et al. 2017). Indeed, IDR-mediated phase
22 properties have been suggested to be critical for heterochromatin functions (Larson et al. 2017;
23 Strom et al. 2017). Accordingly, we investigated whether IDRs in heterochromatin-related genes
24 may also have signatures of positive evolution by using fIDPnn (Hu et al. 2021) to predict IDRs
25 in *D. melanogaster* protein sequences. Interestingly, we found that signatures of rapid evolution
26 also frequently fall within IDRs (**Figure 3**), and, for multiple rapidly evolving heterochromatin-

1 related genes, fast-evolving sites/windows only fall within IDRs, but not other structured
2 domains (**Figure 3**, right column).

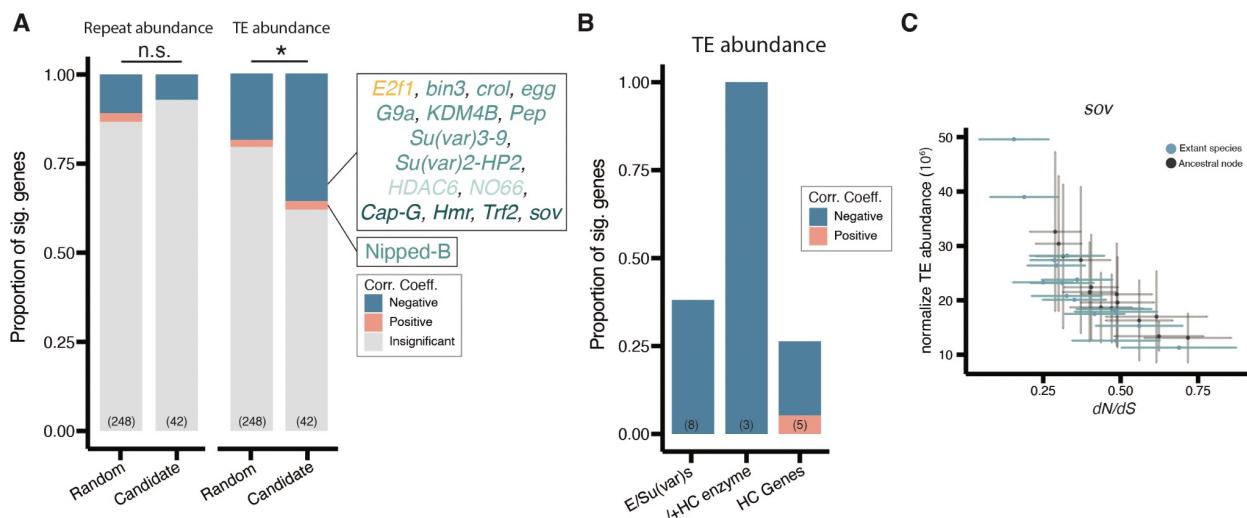

3 We also investigated whether varying IDR properties of heterochromatin-related genes
4 contribute to the evolutionary differences between gene categories by estimating the
5 percentage of amino acids falling within predicted IDR domains (% of IDRs). A higher % of IDRs
6 has been found in proteins involved in the formation of phase-mediated cellular domains (e.g.,
7 membrane-less organelles (Sawyer et al. 2019) and the heterochromatin domain (Guthmann et
8 al. 2019)). We found that the % of IDR for heterochromatin-related genes in *D. melanogaster* is
9 significantly greater than that of random genes (*Mann-Whitney U test*, $p = 0.00214$), which is
10 especially true for *Su(var)* and heterochromatin proteins (*Mann-Whitney U test*, $p = 0.0448$
11 (*Su(var)s*) and 0.0141 (heterochromatin proteins); **SFigure 4A**). There is a lack of difference in
12 % of IDR between our candidate genes and Polycomb control (*Mann-Whitney U test*, $p > 0.05$
13 for all tests, **SFigure 4A**), which may be due to the fact that Polycomb proteins were shown to
14 also undergo phase separation (Tatavosian et al. 2019). Surprisingly, despite previous reports
15 on the reduced evolutionary constraints in IDRs (Brown et al. 2002; Khan et al. 2015), the % of
16 IDRs does not differ between heterochromatin-related genes with or without evidence of positive
17 selection (*Mann-Whitney U test*, $p > 0.05$; **SFigure 4B**).

18 To further investigate the possible associations between % of IDRs and the evolution of
19 candidate genes, we estimated the phylogenetic signals (Blomberg and Garland Jr 2002) of %
20 of IDRs across studied species. A small *Blomberg's K* (Blomberg et al. 2003), our chosen index
21 for phylogenetic signal, suggests % of IDR evolves faster than that of random expectation
22 (Brownian motion of trait evolution; (Kamilar and Cooper 2013)). Intriguingly, we found no
23 difference in *K* values between heterochromatin-related genes and control genes, among
24 categories of heterochromatin-related genes that showed different rates of adaptive evolution,
25 and between heterochromatin-related genes with and without evidence of positive selection
26 over long evolutionary time scales (**SFigure 4C and 4D**; *Mann-Whitney U test*, $p > 0.05$ for all

1 comparisons). These observations indicate that, despite the observed pervasive adaptive
2 evolution of heterochromatin-related genes, their % of IDRs evolves similarly to that of other
3 genes in the genome. In summary, positive selection acts on both structured domains with
4 diverse functions as well as IDRs of heterochromatin-related genes, while stabilizing selection
5 might have maintained the IDR content of these genes in the face of rapidly changing amino
6 acid sequences.

7
8

1 **Figure 3. Signatures of positive selection fall within domains with diverse functions and**
2 **IDRs of heterochromatin-related genes.** Genes with evidence of positive selection on protein
3 sequences are categorized according to which types of domains/regions their signatures of
4 positive selection fall within. Annotated and/or predicted structured domains are shown as
5 horizontal lines with the following functional categories: nucleic acid binding (orange), protein-
6 protein interaction (yellow), histone modification binding (pink), and other domains (purple).
7 IDRs are marked with gray. Highlighted vertical windows represent those under positive
8 selection as identified by sliding MK tests (green) and PAML inferences (blue). Note that genes
9 with no positively selected windows/sites overlapping with either annotated domains or IDRs
10 were not shown.


1 **Rates of protein evolution of heterochromatin-related genes significantly associate with**
2 **genomic TE abundance**
3 The antagonistic interaction with repetitive sequences enriched in heterochromatin was
4 suggested as the driver for the rapid evolution of a handful of heterochromatin-related genes
5 (Vermaak et al. 2005; Satyaki et al. 2014; Helleu and Levine 2018). To test whether this
6 conjecture may be broadly applicable to heterochromatin-related genes, we estimated the
7 correlation between the rates of amino acid substitution (dN/dS) of heterochromatin-related
8 genes and the changes in abundance of heterochromatic repetitive sequences using methods
9 developed in (Lartillot and Poujol 2011). This approach corrects for the phylogenetic
10 nonindependence of the quantitative traits of interest (here, repeat abundance) and models their
11 evolution following the Brownian process. To estimate repeat abundance, we performed
12 Illumina sequencing with PCR-free library preparation to avoid the sequencing bias against AT-
13 rich sequences, which is commonly found in repetitive sequences (Wei et al. 2018). Using these
14 sequencing data, we quantified the genomic abundance of satellite repeats (both simple and
15 complex satellites) and TEs, both of which should be dominated by the DNA content of
16 heterochromatin (see Materials and Methods).

17 Among the 42 heterochromatin-related genes with evidence of positive selection over
18 the long evolutionary time scale, nearly forty percent (38.1%) of them have rates of protein
19 evolution tracking changes in TE abundance across species, with significant ($p < 0.05$)
20 phylogenetically controlled correlations between dN/dS and TE abundance (**Table S3**). This
21 proportion is much higher than that of the 248 random genes with accelerated rates of protein
22 evolution (20.5%, *Fisher's Exact test*, $p = 0.0173$, *Binomial test*, $p = 0.0112$, **Figure 4A**).
23 Intriguingly, 93.8% of these correlations of the heterochromatin-related genes are in the
24 negative direction, which indicates that these genes evolved faster in species with lower TE
25 abundance (see **Figure 4C** for an example). We also examined this proportion separately for
26 each category of heterochromatin-related genes (**Figure 4B**). Quite strikingly, even though only

1 a small number of histone-modifying enzymes were found to have evidence of positive selection
2 (26.1%), *all* of their rates of protein evolution were significantly associated with TE abundance
3 (**Figure 4B**). These histone-modifying enzymes include all three H3K9me2/3 methyltransferase
4 (egg, *G9a*, and *Su(var)3-9*), *NO66* (H3K4me3 demethylase), *KDM4B* (H3K9me2/3
5 demethylase), and *HDAC6* (zinc-dependent deacetylase) (**Table S3**). In stark contrast to
6 analysis focusing on TE abundance, only 7.14% of heterochromatin-related genes with
7 evidence of positive selection show a significant correlation between *dN/dS* and the abundance
8 of total satellite repeats, a proportion that is not significantly different from that of randomly
9 sampled genes (**Figure 4A**, *Fisher's Exact Test* $p = 0.322$ and *Binomial test* $p = 0.360$).
10 Analysis focusing on the abundance of only simple satellites gave consistent results (**Figure S5**,
11 $p > 0.05$ for both *Fisher's Exact Test* and *Binomial test*). Overall, we found that the rates of
12 protein evolution of heterochromatin-related genes negatively correlated with the abundance of
13 TEs, but not total repeats, across species, suggesting a possible source of selective force
14 shaping the evolution of these genes (see Discussions).

1 **Figure 4. Extensive negative associations between dN/dS of heterochromatin-related
2 genes and genomic TE abundance.** (A) Stacked bar plots showing the proportion of positively
3 selected genes whose dN/dS correlates with repeat abundance (left) or TE abundance (right)
4 for heterochromatin-related genes and randomly sampled genes. The color of the genes in the
5 side box represents the gene's category: *E(var)s* (yellow), *Su(var)s* (green), histone-modifying
6 enzyme enhancing heterochromatin (light green), and heterochromatin protein (dark green). (B)
7 Bar plots showing the proportion of positively selected heterochromatin-related genes whose
8 dN/dS significantly coevolve with TE abundance for different gene categories. (C) X-Y plots
9 showing the associations between dN/dS (X-axis) and normalized TE abundance for an
10 example gene (*sov*). Blue points are estimates for the extant species, and gray points are for
11 internal nodes. Lines across each dot denote 95% confidence intervals for dN/dS (extant
12 species and internal nodes) and normalized TE content (internal nodes). *Binomial test: n.s. p >*
13 0.05 , $^*p < 0.05$.

14

15

16

1 Discussion

2 Heterochromatin is a highly conserved cellular compartment with essential functions across
3 complex eukaryotes (Allshire and Madhani 2018; Janssen et al. 2018). Nevertheless, our
4 evolutionary analyses revealed that genes involved in heterochromatin function are highly labile,
5 exhibiting pervasive evidence of rapid evolution both in the forms of amino acid substitutions
6 and gene copy number changes at both short and long evolutionary time scales. Importantly,
7 the rapid evolution of these genes is likely driven by functions specific to constitutive
8 heterochromatin, instead of mechanisms general to proteins interacting with repressive
9 chromatin. Evidence of positive selection on protein evolution is especially prominent for
10 heterochromatin-related genes that should enhance heterochromatin function and, strikingly, *all*
11 three methyltransferases responsible for the enrichment of H3K9me2/3, the characteristic
12 histone modification of heterochromatin, are under positive selection. Our further
13 characterization of the various aspects of the evolution of heterochromatin-related genes
14 provided an important avenue to identify the possible source of selective forces acting on
15 heterochromatin, which we discussed below.

16

17 Close examinations of the signatures of positive selection of heterochromatin-related genes
18 found them not only located within structured domains with well-known functions, but also inside
19 unstructured IDRs (**Figure 3**). IDRs were recently found to be critical for the phase properties
20 and thus functions of heterochromatin (Larson et al. 2017; Strom et al. 2017), and our
21 observation suggests that positive selection could also act on heterochromatin functions
22 mediated by such properties. Interestingly, despite the previous suggestions that IDRs are
23 evolutionarily less constrained (Brown et al. 2002; Khan et al. 2015), the proportion of IDR
24 sequences in positively selected heterochromatin-related genes is similar to other candidate
25 genes (**Figure 4B**). Even more, we identified strong phylogenetic signals that are consistent

1 with the presence of stabilizing selection preserving the % of IDRs even for heterochromatin-
2 related genes under strong positive selection. Such findings may indicate that the % of IDRs of
3 a protein, but not the underlying amino acid sequence, is evolutionarily constrained and plays
4 an essential role in the function of studied heterochromatin-related genes. Indeed, a few IDRs
5 with rapidly evolving sequences were found to possess conserved molecular features (Moesa et
6 al. 2012; Zarin et al. 2019), with some of them experimentally demonstrated to be functionally
7 equivalent (Zarin et al. 2017). This raises another question of *why* the underlying amino acid
8 sequences rapidly evolve, considering the need to maintain the IDR content of heterochromatin-
9 related genes (see below).

10

11 Several of our findings suggest that TEs, but not satellite repeats, must be involved in the
12 pervasive rapid evolution of heterochromatin-related genes. First, the associations between
13 rates of protein evolution of heterochromatin-related genes and repeat abundance were mainly
14 observed for TEs. In addition, many heterochromatin-related genes under positive selection
15 have functions related to TE suppression. In particular, the interactions between the protein
16 products of several of these genes (e.g., *del*, *moon*, *rhi*, *Trf2*, and *sov* (Klattenhoff et al. 2009;
17 Mohn et al. 2014; Andersen et al. 2017; Andreev et al. 2022)) and repressive H3K9me2/3 are
18 responsible for licensing piRNA clusters, which are TE-enriched loci generating the majorities of
19 piRNAs targeting TEs and located within pericentromeric heterochromatin. Similar to the rapid
20 evolution of the DNA and protein components of centromeres (i.e., the centromeric drive
21 hypothesis, (Henikoff et al. 2001; Malik et al. 2002)), changes in heterochromatic TE sequences
22 may alter their interactions with proteins encoded by heterochromatin-related genes.
23 Consequently, selection may favor evolutionary changes in proteins that revert the strength of
24 DNA-protein interaction to that prior to the alteration of TE sequences. Subsequent changes in
25 TE sequences could initiate another cycle of this interaction and ultimately drive the fast
26 evolution of genes involved. However, only some of the identified signatures of positive

1 selection fall within nucleic acid binding domains (**Figure 3**), and the majority of the positively
2 selected heterochromatin-related genes lack sequence specificity. Moreover, unlike viruses, the
3 “success” of TEs is tightly intertwined with host fitness, owing to the fact that they propagate in
4 the host germline and are inherited vertically (Haig 2016). Accordingly, an arms race between
5 TEs and host proteins suppressing them was suggested to be unlikely to drive the pervasive
6 adaptive evolution of host genes (Blumenstiel et al. 2016; Cosby et al. 2019).

7
8 What might have driven the fast evolution of heterochromatin-related genes then? The genomic
9 autoimmunity hypothesis (Blumenstiel et al. 2016) provides a plausible explanation—molecular
10 mechanisms suppressing TE activities are expected to be constantly juggling between
11 maximizing TE silencing while minimizing inadvertent off-target suppression of functional genes,
12 and this alternating selective pressure could drive the rapid evolution of genes involved. Under
13 this model, for example, variants of heterochromatin-related genes that enhance the generation
14 of piRNAs from piRNA clusters, and thus strengthen TE silencing, may lead to the inadvertent
15 production of piRNAs that target other functional elements, a possibility with empirical support
16 (Andersen et al. 2017; Kelleher 2021). Selection will then instead favor variants increasing the
17 stringency of this licensing to avoid fitness costs of the off-target effect. The repeated alternation
18 of selective targets could accordingly drive the rapid evolution of heterochromatin-related genes.

19
20 The genomic autoimmunity hypothesis is even more suitable to explain the rapid evolution of
21 heterochromatin-related genes involved in modulating the intrinsic and unique molecular
22 properties of heterochromatin—a tendency to “spread” to nearby loci in a sequence-
23 independent manner. The positive feedback between writers and readers of H3K9me2/3
24 promotes the propagation of repressive chromatin marks (Allshire and Madhani 2018; Bell et al.
25 2023), and the extent of this spreading depends on the concentrations of readers and writers at
26 the suppressed loci (Locke et al. 1988). Heterochromatin-mediated silencing thus needs to be

1 carefully balanced to prevent inadvertent silencing of functional elements while maintaining
2 sufficient suppression at the euchromatin-heterochromatin boundaries. Interestingly, such a
3 balance needs to be maintained not only at the ends of chromosomes (around pericentromeric
4 and subtelomeric heterochromatin), but also around epigenetically silenced, H3K9me2/3-
5 enriched TEs in the euchromatic genome. The spreading of repressive marks from silenced
6 euchromatic TEs into functional genes is widely documented (reviewed in (Choi and Lee 2020))
7 and has been inferred to impair individual fitness (Lee 2015; Lee and Karpen 2017; Huang et al.
8 2022). Consistently, several genes known to directly mediate TE epigenetic silencing are found
9 to be under positive selection in our analysis (e.g., *wde*, *Su(var)2-10*, (Ninova et al. 2020)). In
10 addition, histone-modifying enzymes, which are directly involved in the reader-writer positive
11 feedback loops, should frequently be caught in cycles of alternating selection for enhanced or
12 weakened TE epigenetic silencing. Indeed, we found that *all* three writers for H3K9me2/3 show
13 evidence of rapid evolution (*Su(var)3-9*, *egg*, *G9a*) and *all* histone-modifying enzymes with
14 accelerated rates of protein evolution have evidence of coevolving with genomic TE abundance
15 (**Figure 4**). Furthermore, the deleterious off-target effects of TE silencing could result from the
16 long-range spatial interactions between H3K9me2/3-enriched euchromatic TEs and
17 pericentromeric heterochromatin, which is mediated by phase separation mechanisms and is
18 selected against (Y.C.G. Lee et al. 2020). Repeated alteration in selective pressure to ensure
19 these proteins confer sufficient phase properties for proper heterochromatin functions while
20 avoiding such off-target effects may similarly drive rapid changes in protein sequences while
21 preserving the % of IDR for proteins encoded by heterochromatin-related genes, as we have
22 observed.

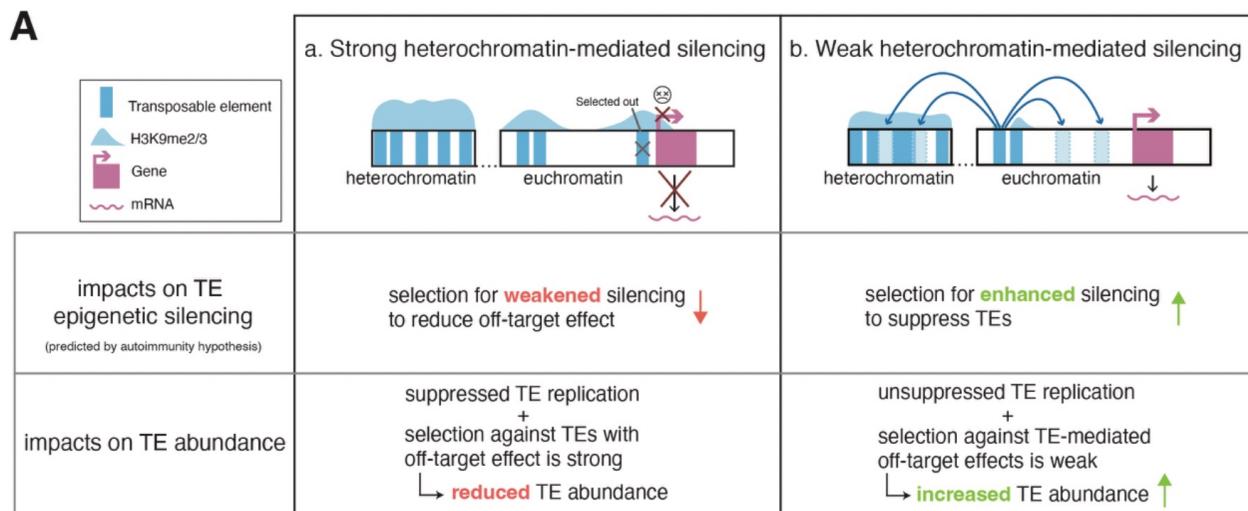
23

24 Intriguingly, we found predominantly negative associations between TE abundance and rates of
25 protein evolution of heterochromatin-related genes, which may initially seem counterintuitive.
26 However, this pattern can be explained by our proposed model that augments the genomic

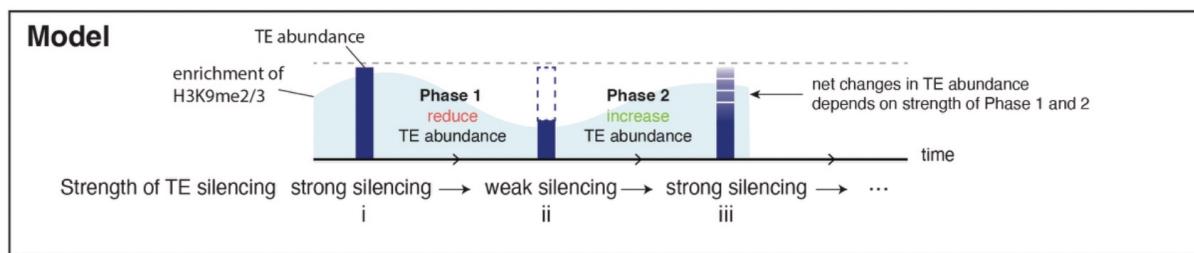
1 autoimmunity hypothesis by incorporating how the alternating selective pressure on
2 heterochromatin-mediated silencing may concurrently influence genomic TE abundance (**Figure**
3 **5A**). Strong heterochromatin-mediated silencing should lead to rampant off-target effects, which
4 not only select *for* variants that weaken the strength of silencing (Huang and Lee 2024), but also
5 select *against* individual TE copies due to the deleterious spreading of repressive marks to TE-
6 adjacent functional sequences. TE abundance should accordingly decrease (**Figure 5A - a**,
7 (Huang et al. 2022)). When variants that reduce heterochromatin-mediated silencing become
8 fixed, the maintenance of heterochromatin at epigenetically silenced TEs weakens, resulting in
9 increased TE replication and more new TE insertions (**Figure 5A - b**). The consequentially
10 increased TE abundance should then drive selection *for* enhanced heterochromatin-mediated
11 silencing, returning to the initial state of strong silencing (**Figure 5B**). Accordingly, as
12 heterochromatin-related genes experience cycles of alternating selection targets and gaining
13 amino acid substitutions, genomic TE abundance also fluctuates. Yet, whether TE abundance
14 eventually increases or decreases depends on the relative strength of selection against TEs
15 with off-target effects and the changes in TE replication rates (**Figure 5B**). Selection coefficients
16 for the harmful off-target effects of TE epigenetic silencing are yet to be estimated, but they
17 could be strong if such effects perturb the expression of nearby vital genes (e.g., (Coronado-
18 Zamora and González 2023)) or disrupt global 3D genome organization (e.g., (Y.C.G. Lee et al.
19 2020)). On the other hand, replication rates of *Drosophila* TEs are generally low ($10^{-5}\sim10^{-4}$;
20 (Charlesworth and Langley 1989; Adrion et al. 2017; Wang et al. 2023)). Changes in these rates
21 are likely weaker than selection removing TEs through their off-target effects, leading to
22 decreased TE abundance over cycles of alternating selective pressure on the strength of
23 heterochromatin-mediated silencing and thus giving rise to negative associations between
24 genomic TE abundance and rates of protein evolution between species. It is worth noting that
25 many other processes, such as recent demographic changes (e.g., (Mérel et al. 2021)), also
26 contribute to between-species differences in TE abundance. If these forces systematically

1 influence genomic TE abundance in the species studied (e.g., correlate with the evolution of
2 heterochromatin-related genes), similar associations could arise in the absence of the proposed
3 model.

4

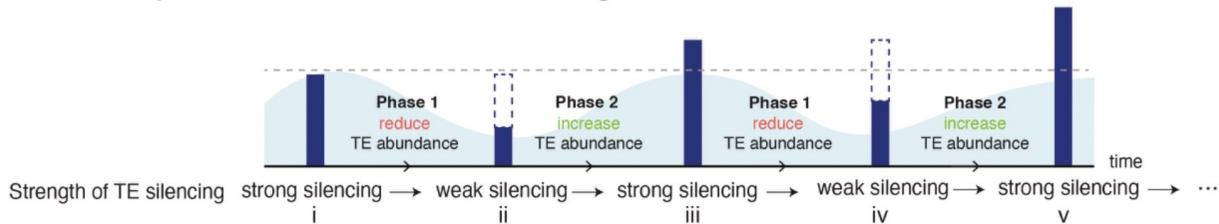

5 Our proposed model for how the need of maintaining a balanced TE silencing drives the fast
6 evolution of heterochromatin-related genes might help explain some intriguing patterns we
7 observed. Majorities of our identified duplicates of heterochromatin-related genes (48.78%)
8 have male-biased expression (**Figure 2**), indicating their potential functional significance in male
9 germlines. While the resolution of sexual genetic conflict (Gallach and Betrán 2011; Wyman et
10 al. 2012), a common explanation for male-biased expression of newly duplicated genes, may
11 underlie such an observation, it may also stem from the need to properly silence the male-
12 specific TE landscape (Chen et al. 2021), resulting in sexually dimorphic chromatin
13 environment. Another intriguing observation is the limited evidence of positive selection for
14 heterochromatin-antagonizing genes (**Figure 1**), which is in stark contrast to the pervasive
15 signatures of adaptive evolution of genes mediating heterochromatin functions. Protein products
16 of heterochromatin-antagonizing genes are not only found at heterochromatin-euchromatin
17 boundaries, but broadly distributed throughout the euchromatic genome (Dimova et al. 2003;
18 Kellner et al. 2012), playing diverse roles in transcriptional regulation (Meignin and Davis 2008;
19 Regnard et al. 2011; Crona et al. 2013). The pleiotropic functional roles of heterochromatin-
20 antagonizing proteins, in both euchromatin and heterochromatin, should constrain their
21 evolution, making them less likely to be caught up in alternating selection for the sensitivity or
22 the specificity of TE silencing. Nevertheless, the small sample size of heterochromatin-
23 antagonizing genes (only 12 genes) could limit our ability to detect positive selection among
24 these genes.

25


1 Our observed frequent positive selection acting on heterochromatin-related genes points out the
2 high lability of the molecular feature of this functionally conserved genomic compartment.
3 Instead of the usually assumed “arms race” with the changing repeatome, we proposed that the
4 selective pressure of heterochromatin-related genes might mainly come from a need to maintain
5 a delicate balance of its unique ability to “suppress” and to “spread,” which also consequently
6 influence the evolutionary dynamics of TEs. Signatures of positive selection identified here
7 could serve as an entry point to further investigate how the delicate balance of heterochromatin-
8 mediated silencing may be conferred by vastly changing components between species (e.g.,
9 (Rosin and Mellone 2016; Parhad et al. 2017)), providing a fruitful opportunity to further dissect
10 the molecular mechanisms shaping heterochromatin functions and evolution.

1 **Figure 5. Model for the correlated evolution of heterochromatin-related genes and**
2 **genomic TE abundance. (A)** The predicted impacts of different strengths of heterochromatin-
3 mediated silencing on TE epigenetic silencing and genomic TE abundance. **(A-a)** Strong
4 heterochromatin-mediated silencing results in strong off-target effects due to the spreading of
5 repressive marks from silenced euchromatic TEs, leading to positive selection for variants of
6 heterochromatin-related genes that weaken the strength of silencing. In addition, because of the
7 low rates of TE replication from strong silencing and negative selection against TEs with off-
8 target effects, TE abundance should reduce. **(A-b)** On the other hand, when heterochromatin-
9 mediated silencing is weak, selection against TE-mediated off-target effects is weak and rates
10 of TE replication should be high, leading to increased TE abundance. At the same time,
11 selection may favor variants that enhance TE silencing to reduce rates of TE replication. **(B)**
12 Proposed sequences of events that lead to correlated evolution of heterochromatin-related
13 genes and genomic TE abundance. The model should be applicable to any of the states and the
14 following description starts with strong heterochromatin-mediated silencing (i). TE abundance is
15 expected to reduce due to the suppressed rates of TE replication and selection against TEs with
16 off-target effects (Phase 1). Concurrently, there should be selection for variants of
17 heterochromatin-related genes that weaken heterochromatin-mediated silencing to reduce
18 deleterious off-target effects. When variants that weaken silencing are fixed, the maintenance of
19 TE epigenetic silencing decreases (ii), leading to both reduced occurrence of off-target effects
20 and increased rates of TE replication. TE abundance should thus increase (Phase 2). The high
21 TE abundance and replicative activity would select for variants of heterochromatin-related
22 genes that enhance TE silencing, going back to the initial state of strong heterochromatin-
23 mediated silencing (e.g., iii here). The relative strength of a decrease in TE abundance through
24 selection against off-target effects and increase in TE abundance through TE replication
25 determines whether there are negative (scenario 1) or positive (scenario 2) associations
26 between TE abundance and the evolution of heterochromatin-related genes across species.


1


B

Scenario 1: negative correlation between rates of gene evolution & TE abundance

Scenario 2: positive correlation between rates of gene evolution & TE abundance

2

1 Materials and Methods

2 Evolutionary analyses of protein sequences

3 Coding sequences and genome annotations for 16 studied species (**Figure 1B**) were
4 downloaded from NCBI, with GenBank ID listed in **Table S4**. Because we compiled the list of
5 candidate genes based on *D. melanogaster* literature, we used orthologous information from
6 OrthoDB (Kuznetsov et al. 2023)(last accessed 12/10/2022) to retrieve one-to-one orthologs for
7 *D. melanogaster* candidate genes. For genes without one-to-one ortholog according to
8 OrthoDB, we performed *BLAST* search (see below). The retrieved coding sequences were
9 translated to amino acid sequences, aligned using Clustal Omega (version 1.2.4; (Sievers et al.
10 2011)), and converted back to codon alignments using PAL2NAL (version 14; (Suyama et al.
11 2006)).

12

13 We performed unpolarized McDonald-Kreitman (MK) tests (McDonald and Kreitman 1991)
14 using polymorphism within a *D. melanogaster* Zambian population (197 strains, (Lack et al.
15 2015)) and divergence between *D. melanogaster* and *D. simulans*. Following the
16 recommendation of (Lack et al. 2015), we treated genomic regions with non-African ancestry or
17 identity-by-descent as missing data, and only included sites with at least 100 non-missing
18 alleles. To count the number of nonsynonymous and synonymous changes, we used the
19 mutational paths that minimize the number of amino acid changes. Codons with more than two
20 alleles, considered both within species polymorphism and between species divergence, were
21 excluded. Genes with fewer than 100 codons were excluded from the analysis due to
22 insufficient statistical power. A gene is deemed under positive selection if the MK test, whose
23 significance was assessed using *Fisher's Exact* test, rejected the null hypothesis and the ratio of
24 nonsynonymous to synonymous changes is greater for between-species substitutions than for

1 within-species polymorphism. Sliding window MK tests were performed with windows of 100
2 codons and 10-codon steps.

3
4 We conducted phylogenetic analysis by maximum likelihood (PAML) (Yang 2007) using 16
5 species to identify candidate genes experiencing positive selection over a long evolutionary time
6 scale. We compared two site models, M8a (dN/dS ratio is beta-distributed and not greater than
7 one) and M8 ($dN/dS > 1$), and determined the significance using likelihood ratio tests. The
8 species tree reported in (Suvorov et al. 2022) was used. Sites with > 0.95 BEB posterior
9 probability of coming from the site class with $dN/dS > 1$ (Yang et al. 2005) are considered under
10 recurrent adaptive evolution.

11
12 **Evolutionary analysis for gene copy number**
13 To identify genes with varying gene copy numbers, we first used a genome-wide, high
14 throughput search with liberal parameters to identify many potential candidates, followed by
15 careful manual curations. We first used tblastn and reciprocal blastx (Camacho et al. 2009) to
16 search for homologs and paralogs of candidate genes in studied species using *D. melanogaster*
17 amino acid sequence as queries, with the following parameter: e-value $< 10^{-2}$, amino acid
18 identity $> 20\%$, and blast score > 10 . We required the best reciprocal blastx hit to be the original
19 *D. melanogaster* query. Each potential CNV was manually validated using reciprocal best blast
20 with more stringent criteria (e-value $< 10^{-5}$), and orthologs and paralogs were distinguished
21 using synteny of flanking genes (**Figure S1**). We further examined the expression levels of
22 candidate CNVs using RNA-seq exon coverage tracks of NCBI Data Viewer and removed those
23 with no expression. Several duplicates identified in *D. suzukii* were filtered due to redundant
24 contigs. For gene loss, we followed the procedures detailed in (King et al. 2019) to confirm the
25 true absence of a gene.

26

1 To examine the sex-biased expression, we deemed a gene male-biased if the log2 fold change
2 of the ratio of male and female expression (TPM or FPKM) is >1 , female-biased if such value is
3 < -1 , and otherwise unbiased. For *D. melanogaster*, we used Insect Genome database
4 (<http://www.insect-genome.com/Sexdb/>, last retrieved November 2023) and FlyAtlas2 RNA-seq
5 data (Krause et al. 2022) for whole adult males and whole adult females. For the other 15
6 species, we mapped publicly available transcriptome datasets (**Table S5**) to publicly available
7 genome assemblies with gene annotations using HiSAT2 (v2.2.1 with parameters –exon and –
8 ss to specify the exon positions and splice sites; RRID:SCR_015530; (Kim et al. 2019)), and
9 estimated the expression levels using Stringtie (v2.1.4 with parameters -dta -G to specify
10 annotation files; RRID:SCR_016323; (Kovaka et al. 2019)). Candidate duplicates identified by
11 manual curation but have no annotation or show no expression were excluded from the
12 analysis.

13

14 **Domain annotations**

15 We used UniProt (The UniProt Consortium 2023) to annotate known structured domains within
16 the *D. melanogaster* allele of heterochromatin-related genes. We used fIDPnn (Hu et al. 2021),
17 which performed superior in the previous benchmark study (Necci et al. 2021), and the
18 predicted binary index for IDRs (disorder propensity cutoff = 0.3) to annotate IDRs for all studied
19 species. To detect the phylogenetic signal of the % of IDR, we computed Blomberg's *K* statistic
20 using the phylosig function from phytools R package (Blomberg et al. 2003; Revell 2012). The
21 tree structure and branch lengths were obtained from (Suvorov et al. 2022) and generated by
22 treeio R package (Wang et al. 2020).

23

24 **Analyses of repetitive sequences and their coevolution with candidate genes**

25 DNA for each studied species was extracted from 40 females using DNeasy Blood & Tissue Kit
26 (Qiagen), following the manufacturer's protocol. To avoid PCR amplification bias during the

1 preparation of sequencing libraries, which was found to skew the quantification of repeats (Wei
2 et al. 2018), extracted DNA was prepared into Illumina sequencing library with PCR-free
3 protocol and sequenced with 150bp paired-end reads by Novogene (Sacramento, CA).

4

5 We used Satellite Repeat Finder (Zhang et al. 2023) to estimate the abundance of total satellite
6 repeat in the Illumina short-read sequencing data. Following the suggested procedures, we first
7 counted K-mers (K=21) in each sample using KMC (ver. 3.2.4; (Kokot et al. 2017)). Contigs of
8 satellites were then generated and mapped back to the source Illumina sequences to estimate
9 the abundance (in bases) of each satellite using minimap (ver. 2.24; (Li 2018)) and Satellite
10 Repeat Finder. We also used K-seek (Wei et al. 2014) to estimate the abundance of simple
11 repeats and reached similar conclusions (see Results).

12

13 TE abundance was estimated as the total TE reads from the Illumina sequencing data, with the
14 assumption that TEs in the heterochromatin mainly originated from jumping events of
15 euchromatic TEs and TE abundances in the heterochromatin and euchromatin are highly
16 correlated. To minimize TE annotation bias across species, repetitive sequences from each of
17 the 16 genomes (**Table S4**) were identified using RepeatMasker (version 4.1.0;
18 <http://www.repeatmasker.org/>) with the Dfam database (Storer et al. 2021), using the command
19 “RepeatMasker -q [genome sequence file] -species drosophila -e hmmer”. TE sequences
20 annotated as LTR, LINE, DNA element, and Unknown categories were obtained from all 16
21 genomes to create a master TE library. Illumina reads from each species were then mapped to
22 the library with bwa-mem (version 0.7.17; (Li and Durbin 2009)) and viewed by samtools
23 (version 1.15.1, (Li 2011)). The total number of reads mapped to the library, regardless of
24 mapping quality, was considered the number of TE reads. It is worth noting that very few TEs
25 were classified as Unknown category, and inclusion/exclusion of such TEs did not change the
26 results. To compare the abundance of satellite repeats and TEs across samples/species, these

1 estimates were normalized. Illumina reads from each species were mapped to its repeat-
2 masked genome using bwa-mem, with sites with mapping quality lower than 30 filtered (using
3 samtools -q 30). The median read depth for the unmasked regions for each sample was then
4 used to normalize the number of bases for satellite repeats and TEs.

5

6 We used Coevolve (Lartillot and Poujol 2011) to estimate the correlation between dN/dS and
7 repeat abundance (satellite repeats or TEs) given the tree structure. For each gene, the
8 analysis was performed in duplicate to assess convergence (relative difference < 0.1) and a
9 burn-in of 300 with at least 3,000 MCMC chains to get the final estimated correlation between
10 dN/dS and repeat abundance. Because the number of Polycomb genes with significant PMAL
11 tests is small, we only compared the coevolution results of candidate genes to those of 248
12 randomly chosen genes with accelerated rates of amino acid evolution (i.e., significant for PAML
13 analysis).

14

15 **Data and script availability**

16 PCR-free Illumina data has been deposited to SRA under the accession number
17 PRJNA1113679. Scripts used in this study can be found at
18 https://github.com/YuhengHuang87/HC_gene_evo and
19 https://github.com/hilynano/Homology_detection.

20

21 **Acknowledgments**

22 We thank the High Performance Cluster at UC Irvine for computational resources and Harsh
23 Shukla for helping with the fIDPnn software. We appreciate Aniek Janssen, Andrea Betancourt,
24 and Adriana Ludwig for their helpful comments on the manuscript. CHC was supported by
25 Damon-Runyon Cancer Research Foundation postdoctoral fellowship DRG 2438-21 and NIH

- 1 R01-GM74108 (to Hamit S Malik), SUC was supported by NIH R35GM139653 (to Gary H.
- 2 Karpen), YH, LL, JM, and YCGL were supported by NIH R35-GM14292 (to YCGL).

1 **Supplementary Materials**

2 **Table S1. List of candidate and control genes**

3 Names, FBgn, categories, and references of candidate heterochromatin-related genes and
4 Polycomb control genes. Results of evolutionary tests of each of the genes are also included.

5

6 **Table S2. Duplicates of heterochromatin-related genes identified in this study**

7

8 **Table S3. Correlation between repeat abundance and dN/dS ratio for positively selected**
9 **heterochromatin-related genes**

10 * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

11

12 **Table S4. NCBI assembly number of reference genomes used in this study**

13

14 **Table S5. Transcriptome resources and information used in this study**

15

16 **Figure S1. Synteny information for genes with duplicates found in more than one species**

17 The following figures show the NCBI genome browser tracks for genes with duplicates (red
18 boxes) found in more than one species. Genes flanking the duplicates (either dark or light blue
19 boxes) were used to infer the synteny of duplicates between species.

20

21 **Figure S2. Evolutionary history of *mof* duplicates**

22 The generation of *mof* CNVs likely involved a duplication in the common ancestor of the oriental
23 lineage (green), followed by a subsequent loss in the subsets of lineages (red) and a lineage-
24 specific duplication event (green leading to *D. kikkawai*), resulting in the paraphyletic presence
25 of a *mof* duplicate. Numbers next to species indicate the number of gene copies; species
26 without labeled numbers have one gene copy.

1
2 **Figure S3. Proportion of genes with more than one significant evolutionary tests**
3 Barplots showing the proportion of genes found to be under positive selection and/or fast evolve
4 with at least one (A) or at least two (B) conducted evolutionary tests. The numbers of genes in
5 each category are shown in parentheses. -HC enzyme: histone-modifying enzymes weakening
6 H3K9me2/3 enrichment; +HC enzyme: histone-modifying enzymes enhancing H3K9me2/3
7 enrichment. *Binomial test*: *** $p < 0.001$.

8
9 **Figure S4. The percentage of intrinsically disordered regions (% of IDRs) among gene**
10 **categories.**

11 (A and B) Violin plots comparing the % IDR of *D. melanogaster* proteins for heterochromatin-
12 related genes and the Polycomb control (A) and for heterochromatin-related genes with and
13 without evidence of positive selection over both long and short evolutionary time scales (B). (C
14 and D) Violin plots comparing *Blomberg's K* for % of IDR across species for heterochromatin-
15 related genes and the Polycomb control (C) and between heterochromatin-related genes with
16 and without evidence of positive selection over a long evolutionary time scale (D). *Mann-*
17 *Whitney U test*: * $p < 0.05$ and n.s. $p > 0.05$.

18
19 **Figure S5. Associations between dN/dS of heterochromatin-related genes and the**
20 **abundance of simple repeats.**

21 Stacked bar plots showing the proportion of positively selected genes whose dN/dS correlates
22 with the abundance of simple satellite repeats for heterochromatin-related genes and randomly
23 sampled genes. The numbers of genes in each category are in parentheses. *Binomial test*: n.s.
24 $p > 0.05$.

1 References

2 Adrion JR, Song MJ, Schrider DR, Hahn MW, Schaack S. 2017. Genome-Wide Estimates of
3 Transposable Element Insertion and Deletion Rates in *Drosophila Melanogaster*.
4 *Genome Biol Evol* 9:1329–1340.

5 Alekseyenko AA, Gorchakov AA, Zee BM, Fuchs SM, Kharchenko PV, Kuroda MI. 2014.
6 Heterochromatin-associated interactions of *Drosophila* HP1a with dADD1, HIPP1, and
7 repetitive RNAs. *Genes Dev* 28:1445–1460.

8 Allshire RC, Madhani HD. 2018. Ten principles of heterochromatin formation and function.
9 *Nature Reviews Molecular Cell Biology* 19:229–244.

10 Andersen PR, Tirian L, Vunjak M, Brennecke J. 2017. A heterochromatin-dependent
11 transcription machinery drives piRNA expression. *Nature* 549:54–59.

12 Andreev VI, Yu C, Wang J, Schnabl J, Tirian L, Gehre M, Handler D, Duchek P, Novatchkova
13 M, Baumgartner L, et al. 2022. Panoramix SUMOylation on chromatin connects the
14 piRNA pathway to the cellular heterochromatin machinery. *Nat Struct Mol Biol* 29:130–
15 142.

16 Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. *Cell*
17 *Research* 21:381–395.

18 Bao X, Deng H, Johansen J, Girton J, Johansen KM. 2007. Loss-of-function alleles of the JIL-1
19 histone H3S10 kinase enhance position-effect variegation at pericentric sites in
20 *Drosophila* heterochromatin. *Genetics* 176:1355–1358.

21 Barbash DA, Siino DF, Aaron M, Roote J. 2003. A rapidly evolving MYB-related protein causes
22 species isolation in *Drosophila*. *Proc. Natl. Acad. Sci. U.S.A* 100:5302–5307.

23 Bell O, Burton A, Dean C, Gasser SM, Torres-Padilla M-E. 2023. Heterochromatin definition and
24 function. *Nat Rev Mol Cell Biol* 24:691–694.

25 Blomberg SP, Garland Jr T. 2002. Tempo and mode in evolution: phylogenetic inertia,
26 adaptation and comparative methods. *Journal of Evolutionary Biology* 15:899–910.

27 Blomberg SP, Garland T, Ives AR. 2003. TESTING FOR PHYLOGENETIC SIGNAL IN
28 COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. *Evolution* 57:717–
29 745.

30 Blumenstiel JP, Erwin AA, Hemmer LW. 2016. What Drives Positive Selection in the *Drosophila*
31 piRNA Machinery? The Genomic Autoimmunity Hypothesis. *Yale J Biol Med* 89:499–
32 512.

33 Brand CL, Levine MT. 2021. Functional Diversification of Chromatin on Rapid Evolutionary
34 Timescales. *Annual Review of Genetics* 55:401–425.

35 Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. 2024. Recurrent Duplication and
36 Diversification of a Vital DNA Repair Gene Family Across *Drosophila*. *Molecular Biology*
37 and Evolution

41 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
42 BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

43 Charlesworth B, Langley CH. 1989. The Population Genetics of *Drosophila* Transposable
44 Elements. *Annual Review of Genetics* 23:251–287.

45 Chen P, Kotov AA, Godneeva BK, Bazylev SS, Olenina LV, Aravin AA. 2021. piRNA-mediated
46 gene regulation and adaptation to sex-specific transposon expression in *D.*
47 *melanogaster* male germline. *Genes Dev* 35:914–935.

48 Choi JY, Lee YCG. 2020. Double-edged sword: The evolutionary consequences of the
49 epigenetic silencing of transposable elements. *PLOS Genetics* 16:e1008872.

50 Coronado-Zamora M, González J. 2023. The epigenetics effects of transposable elements are

1 context dependent and not restricted to gene silencing. :2023.11.27.568862. Available
2 from: <https://www.biorxiv.org/content/10.1101/2023.11.27.568862v1>

3 Cosby RL, Chang N-C, Feschotte C. 2019. Host–transposon interactions: conflict, cooperation,
4 and cooption. *Genes Dev.* 33:1098–1116.

5 Crona F, Dahlberg O, Lundberg LE, Larsson J, Mannervik M. 2013. Gene regulation by the
6 lysine demethylase KDM4A in *Drosophila*. *Developmental Biology* 373:453–463.

7 Czermin B, Schotta G, Hülsmann BB, Brehm A, Becker PB, Reuter G, Imhof A. 2001. Physical
8 and functional association of SU(VAR)3-9 and HDAC1 in *Drosophila*. *EMBO Rep* 2:915–
9 919.

10 Deng H, Bao X, Cai W, Blacketer MJ, Belmont AS, Girton J, Johansen J, Johansen KM. 2008.
11 Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in
12 *Drosophila*. *Development* 135:699–705.

13 Dimova DK, Stevaux O, Frolov MV, Dyson NJ. 2003. Cell cycle-dependent and cell cycle-
14 independent control of transcription by the *Drosophila* E2F/RB pathway. *Genes Dev.*
15 17:2308–2320.

16 Eissenberg JC, Elgin SCR. 2014. HP1a: a structural chromosomal protein regulating
17 transcription. *Trends in Genetics* 30:103–110.

18 Elgin SCR, Reuter G. 2013. Position-effect variegation, heterochromatin formation, and gene
19 silencing in *Drosophila*. *Cold Spring Harb Perspect Biol* 5:a017780.

20 Feller C, Forné I, Imhof A, Becker PB. 2015. Global and Specific Responses of the Histone
21 Acetylome to Systematic Perturbation. *Molecular Cell* 57:559–571.

22 Feng W, Michaels SD. 2015. Accessing the Inaccessible: The Organization, Transcription,
23 Replication, and Repair of Heterochromatin in Plants. *Annu. Rev. Genet.* 49:439–459.

24 Flores HA, DuMont VLB, Fatoo A, Hubbard D, Hijji M, Barbash DA, Aquadro CF. 2015. Adaptive
25 evolution of genes involved in the regulation of germline stem cells in *Drosophila*
26 *melanogaster* and *D. simulans*. *G3 (Bethesda)* 5:583–592.

27 Forman-Kay JD, Mittag T. 2013. From sequence and forces to structure, function, and evolution
28 of intrinsically disordered proteins. *Structure* 21:1492–1499.

29 Gallach M, Betrán E. 2011. Intralocus sexual conflict resolved through gene duplication. *Trends*
30 *Ecol Evol* 26:222–228.

31 Garzino V, Pereira A, Laurenti P, Graba Y, Levis RW, Le Parco Y, Pradel J. 1992. Cell lineage-
32 specific expression of modulo, a dose-dependent modifier of variegation in *Drosophila*.
33 *EMBO J* 11:4471–4479.

34 Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler ELW, Zapp ML, Weng Z, et al.
35 2008. Endogenous siRNAs Derived from Transposons and mRNAs in *Drosophila*
36 Somatic Cells. *Science* 320:1077–1081.

37 Girton JR, Johansen KM. 2008. Chapter 1 Chromatin Structure and the Regulation of Gene
38 Expression: The Lessons of PEV in *Drosophila*. In: Genetics B-A in, editor. Vol. 61.
39 Long-Range Control of Gene Expression. Academic Press. p. 1–43. Available from:
40 <http://www.sciencedirect.com/science/article/pii/S0065266007000016>

41 Graba Y, Laurenti P, Perrin L, Aragnol D, Pradel J. 1994. The modifier of variegation modulo
42 gene acts downstream of doroventral and HOM-C genes and is required for
43 morphogenesis in *Drosophila*. *Dev Biol* 166:704–715.

44 Greil F, de Wit E, Bussemaker HJ, van Steensel B. 2007. HP1 controls genomic targeting of
45 four novel heterochromatin proteins in *Drosophila*. *The EMBO Journal* 26:741–751.

46 Guthmann M, Burton A, Torres-Padilla M. 2019. Expression and phase separation potential
47 of heterochromatin proteins during early mouse development. *EMBO Rep* 20:e47952.

48 Hahn M, Dambacher S, Schotta G. 2010. Heterochromatin dysregulation in human diseases.
49 *Journal of Applied Physiology* 109:232–242.

50 Haig D. 2016. Transposable elements: Self-seekers of the germline, team-players of the soma.
51 *Bioessays* 38:1158–1166.

1 Hastings P, Lupski JR, Rosenberg SM, Ira G. 2009. Mechanisms of change in gene copy
2 number. *Nat Rev Genet* 10:551–564.

3 Heitz E. 1928. Das Heterochromatin der Moose. *Jahrb Wiss Botanik* 69:762–818.

4 Helleu Q, Levine MT. 2018. Recurrent Amplification of the Heterochromatin Protein 1 (HP1)
5 Gene Family across Diptera. *Molecular Biology and Evolution* 35:2375–2389.

6 Henikoff S, Ahmad K, Malik HS. 2001. The Centromere Paradox: Stable Inheritance with
7 Rapidly Evolving DNA. *Science* 293:1098–1102.

8 Herz H-M, Morgan M, Gao X, Jackson J, Rickels R, Swanson SK, Florens L, Washburn MP,
9 Eissenberg JC, Shilatifard A. 2014. Histone H3 lysine-to-methionine mutants as a
10 paradigm to study chromatin signaling. *Science* 345:1065–1070.

11 Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC. 1997. mof, a putative acetyl transferase
12 gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is
13 required for dosage compensation in *Drosophila*. *EMBO J* 16:2054–2060.

14 Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S,
15 Mendez-Lago M, Rossi F, et al. 2007. Sequence Finishing and Mapping of *Drosophila*
16 melanogaster Heterochromatin. *Science* 316:1625–1628.

17 Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, George
18 RA, Svirskas R, et al. 2015. The Release 6 reference sequence of the *Drosophila*
19 melanogaster genome. *Genome Res.*:gr.185579.114.

20 Hu G, Katuwawala A, Wang K, Wu Z, Ghadermarzi S, Gao J, Kurgan L. 2021. fIDPnn: Accurate
21 intrinsic disorder prediction with putative propensities of disorder functions. *Nat Commun*
22 12:4438.

23 Huang Y, Lee YCG. Blessing or curse: how the epigenetic resolution of host-transposable
24 element conflicts shapes their evolutionary dynamics. *Proc Biol Sci* 291:20232775.

25 Huang Y, Shukla H, Lee YCG. 2022. Species-specific chromatin landscape determines how
26 transposable elements shape genome evolution. Nordborg M, Przeworski M, editors.
27 *eLife* 11:e81567.

28 Janssen A, Colmenares SU, Karpen GH. 2018. Heterochromatin: Guardian of the Genome.
29 *Annual Review of Cell and Developmental Biology* 34:265–288.

30 Kamilar JM, Cooper N. 2013. Phylogenetic signal in primate behaviour, ecology and life history.
31 *Philos Trans R Soc Lond B Biol Sci* 368:20120341.

32 Kasinathan B, Colmenares SU III, McConnell H, Young JM, Karpen GH, Malik HS. 2020.
33 Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF
34 genes in *Drosophila*. Wittkopp PJ, editor. *eLife* 9:e63368.

35 Kassis JA, Kennison JA, Tamkun JW. 2017. Polycomb and Trithorax Group Genes in
36 *Drosophila*. *Genetics* 206:1699–1725.

37 Kelleher ES. 2021. Protein–Protein Interactions Shape Genomic Autoimmunity in the Adaptively
38 Evolving Rhino-Deadlock-Cutoff Complex. Betran E, editor. *Genome Biology and*
39 *Evolution* 13:evab132.

40 Kellner WA, Ramos E, Bortle KV, Takenaka N, Corces VG. 2012. Genome-wide
41 phosphoacetylation of histone H3 at *Drosophila* enhancers and promoters. *Genome*
42 *Res.* 22:1081–1088.

43 Kendek A, Wensveen MR, Janssen A. 2021. The Sound of Silence: How Silenced Chromatin
44 Orchestrates the Repair of Double-Strand Breaks. *Genes* 12:1415.

45 Khan T, Douglas GM, Patel P, Nguyen Ba AN, Moses AM. 2015. Polymorphism Analysis
46 Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in
47 Intrinsically Disordered Protein Regions. *Genome Biology and Evolution* 7:1815–1826.

48 Kim BY, Wang JR, Miller DE, Barmina O, Delaney E, Thompson A, Comeault AA, Peede D,
49 D'Agostino ER, Pelaez J, et al. 2021. Highly contiguous assemblies of 101 drosophilid
50 genomes. Coop G, Wittkopp PJ, Sackton TB, editors. *eLife* 10:e66405.

51 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and

1 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* 37:907–915.

2 King TD, Leonard CJ, Cooper JC, Nguyen S, Joyce EF, Phadnis N. 2019. Recurrent Losses
3 and Rapid Evolution of the Condensin II Complex in Insects. *Mol. Biol. Evol.* 36:2195–
4 2204.

5 Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS,
6 Nowosielska A, et al. 2009. The Drosophila HP1 homolog Rhino is required for
7 transposon silencing and piRNA production by dual-strand clusters. *Cell* 138:1137–
8 1149.

9 Kokot M, Dlugosz M, Deorowicz S. 2017. KMC 3: counting and manipulating k-mer statistics.
10 *Bioinformatics* 33:2759–2761.

11 Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. 2019. Transcriptome
12 assembly from long-read RNA-seq alignments with StringTie2. *Genome Biology* 20:278.

13 Krause SA, Overend G, Dow JAT, Leader DP. 2022. FlyAtlas 2 in 2022: enhancements to the
14 Drosophila melanogaster expression atlas. *Nucleic Acids Res* 50:D1010–D1015.

15 Kuo Y-M, Andrews AJ. 2013. Quantitating the Specificity and Selectivity of Gcn5-Mediated
16 Acetylation of Histone H3. *PLOS ONE* 8:e54896.

17 Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, Zdobnov EM.
18 2023. OrthoDB v11: annotation of orthologs in the widest sampling of organismal
19 diversity. *Nucleic Acids Research* 51:D445–D451.

20 Lack JB, Cardeno CM, Crepeau MW, Taylor W, Corbett-Detig RB, Stevens KA, Langley CH,
21 Pool JE. 2015. The Drosophila Genome Nexus: A Population Genomic Resource of 623
22 Drosophila melanogaster Genomes, Including 197 from a Single Ancestral Range
23 Population. *Genetics:genetics*.115.174664.

24 Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA,
25 Redding S, Narlikar GJ. 2017. Liquid droplet formation by HP1 α suggests a role for
26 phase separation in heterochromatin. *Nature* 547:236–240.

27 Lartillot N, Poujol R. 2011. A phylogenetic model for investigating correlated evolution of
28 substitution rates and continuous phenotypic characters. *Mol Biol Evol* 28:729–744.

29 Lee J-H, Kim EW, Croteau DL, Bohr VA. 2020. Heterochromatin: an epigenetic point of view in
30 aging. *Exp Mol Med* 52:1466–1474.

31 Lee YCG. 2015. The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics
32 of Transposable Elements in Drosophila melanogaster. *PLoS Genet* 11:e1005269.

33 Lee YCG, Karpen GH. 2017. Pervasive epigenetic effects of Drosophila euchromatic
34 transposable elements impact their evolution. *eLife* [Internet] 6. Available from:
35 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505702/>

36 Lee YCG, Leek C, Levine MT. 2017. Recurrent Innovation at Genes Required for Telomere
37 Integrity in Drosophila. *Molecular Biology and Evolution* 34:467–482.

38 Lee YCG, Ogiyama Y, Martins NMC, Beliveau BJ, Acevedo D, Wu C-ting, Cavalli G, Karpen
39 GH. 2020. Pericentromeric heterochromatin is hierarchically organized and spatially
40 contacts H3K9me2 islands in euchromatin. *PLOS Genetics* 16:e1008673.

41 Levine MT, McCoy C, Vermaak D, Lee YCG, Hiatt MA, Matsen FA, Malik HS. 2012.
42 Phylogenomic Analysis Reveals Dynamic Evolutionary History of the Drosophila
43 Heterochromatin Protein 1 (HP1) Gene Family. *PLOS Genetics* 8:e1002729.

44 Lewis SH, Salmela H, Obbard DJ. 2016. Duplication and Diversification of Dipteran Argonaute
45 Genes, and the Evolutionary Divergence of Piwi and Aubergine. *Genome Biol Evol*
46 8:507–518.

47 Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and
48 population genetical parameter estimation from sequencing data. *Bioinformatics*
49 27:2987–2993.

50 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:3094–
51 3100.

1 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
2 *Bioinformatics* 25:1754–1760.

3 Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL. 2003. Effects of tethering HP1 to
4 euchromatic regions of the *Drosophila* genome. *Development* 130:1817–1824.

5 de Lima LG, Ruiz-Ruano FJ. 2022. In-Depth Satellitome Analyses of 37 *Drosophila* Species
6 Illuminate Repetitive DNA Evolution in the *Drosophila* Genus. *Genome Biology and*
7 *Evolution* 14:evac064.

8 Lin Y, Currie SL, Rosen MK. 2017. Intrinsically disordered sequences enable modulation of
9 protein phase separation through distributed tyrosine motifs. *J Biol Chem* 292:19110–
10 19120.

11 Liu J, Ali M, Zhou Q. 2020. Establishment and evolution of heterochromatin. *Ann N Y Acad Sci*
12 1476:59–77.

13 Locke J, Kotarski MA, Tartof KD. 1988. Dosage-dependent modifiers of position effect
14 variegation in *Drosophila* and a mass action model that explains their effect. *Genetics*
15 120:181–198.

16 Malik HS, Vermaak D, Henikoff S. 2002. Recurrent evolution of DNA-binding motifs in the
17 *Drosophila* centromeric histone. *Proc Natl Acad Sci U S A* 99:1449–1454.

18 McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the *Adh* locus in *Drosophila*.
19 *Nature* 351:652–654.

20 Meignin C, Davis I. 2008. UAP56 RNA helicase is required for axis specification and
21 cytoplasmic mRNA localization in *Drosophila*. *Developmental Biology* 315:89–98.

22 Mérél V, Gibert P, Buch I, Rodriguez Rada V, Estoup A, Gautier M, Fablet M, Boulesteix M,
23 Vieira C. 2021. The Worldwide Invasion of *Drosophila suzukii* Is Accompanied by a
24 Large Increase of Transposable Element Load and a Small Number of Putatively
25 Adaptive Insertions. *Molecular Biology and Evolution* [Internet]. Available from:
26 <https://doi.org/10.1093/molbev/msab155>

27 Mohn F, Sienski G, Handler D, Brennecke J. 2014. The Rhino-Deadlock-Cutoff Complex
28 Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in *Drosophila*. *Cell*
29 157:1364–1379.

30 Muller HJ. 1930. Types of visible variations induced by X-rays in *Drosophila*. *Journ. of Gen.*
31 22:299–334.

32 Necci M, Piovesan D, Tosatto SCE. 2021. Critical assessment of protein intrinsic disorder
33 prediction. *Nat Methods* 18:472–481.

34 Ninova M, Chen Y-CA, Godneeva B, Rogers AK, Luo Y, Fejes Tóth K, Aravin AA. 2020.
35 Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to
36 Chromatin Silencing. *Molecular Cell* 77:556–570.e6.

37 Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowitz A, Craggs TD, Bazett-Jones
38 DP, Pawson T, Forman-Kay JD, et al. 2015. Phase transition of a disordered nuage
39 protein generates environmentally responsive membraneless organelles. *Mol Cell*
40 57:936–947.

41 Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. 2009. The evolution of RNAi as a defence
42 against viruses and transposable elements. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.*
43 364:99–115.

44 Obbard DJ, Jiggins FM, Halligan DL, Little TJ. 2006. Natural selection drives extremely rapid
45 evolution in antiviral RNAi genes. *Curr. Biol.* 16:580–585.

46 Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, Yunus AA, Liu DR, Pappu RV,
47 Rosen MK. 2016. Sequence Determinants of Intracellular Phase Separation by Complex
48 Coacervation of a Disordered Protein. *Mol Cell* 63:72–85.

49 Parhad SS, Tu S, Weng Z, Theurkauf WE. 2017. Adaptive Evolution Leads to Cross-Species
50 Incompatibility in the piRNA Transposon Silencing Machinery. *Developmental Cell*
51 43:60–70.e5.

1 Park JI, Bell GW, Yamashita YM. 2023. Derepression of Y-linked multicopy protamine-like
2 genes interferes with sperm nuclear compaction in *D. melanogaster*. *Proc Natl Acad Sci*
3 *U S A* 120:e2220576120.

4 Peacock WJ, Lohe AR, Gerlach WL, Dunsmuir P, Dennis ES, Appels R. 1978. Fine structure
5 and evolution of DNA in heterochromatin. *Cold Spring Harb Symp Quant Biol* 42 Pt
6 2:1121–1135.

7 Regnard C, Straub T, Mitterweger A, Dahlsveen IK, Fabian V, Becker PB. 2011. Global Analysis
8 of the Relationship between JIL-1 Kinase and Transcription. *PLOS Genetics*
9 7:e1001327.

10 Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other
11 things). *Methods in Ecology and Evolution* 3:217–223.

12 Rosin L, Mellone BG. 2016. Co-evolving CENP-A and CAL1 Domains Mediate Centromeric
13 CENP-A Deposition across *Drosophila* Species. *Dev Cell* 37:136–147.

14 Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D, Cruz AFA de la, Imhof A, Mellone BG,
15 Malik HS. 2013. Stepwise Evolution of Essential Centromere Function in a *Drosophila*
16 Neogene. *Science* 340:1211–1214.

17 Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M,
18 Schmidt A, Jenuwein T, et al. 2007. Heterochromatin Formation in *Drosophila* Is Initiated
19 through Active Removal of H3K4 Methylation by the LSD1 Homolog SU(VAR)3-3.
20 *Molecular Cell* 26:103–115.

21 Satyaki PRV, Cuykendall TN, Wei KH-C, Brideau NJ, Kwak H, Aruna S, Ferree PM, Ji S,
22 Barbash DA. 2014. The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad
23 Range of Heterochromatic Repeats. *PLOS Genetics* 10:e1004240.

24 Sawyer IA, Sturgill D, Dundr M. 2019. Membraneless nuclear organelles and the search for
25 phases within phases. *WIREs RNA* 10:e1514.

26 Schotta G. 2002. Central role of *Drosophila* SU(VAR)3-9 in histone H3-K9 methylation and
27 heterochromatic gene silencing. *The EMBO Journal* 21:1121–1131.

28 Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T.
29 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive
30 heterochromatin. *Genes Dev* 18:1251–1262.

31 Shaffer CD, Cenci G, Thompson B, Stephens GE, Slawson EE, Adu-Wusu K, Gatti M, Elgin
32 SCR. 2006. The Large Isoform of *Drosophila melanogaster* Heterochromatin Protein 2
33 Plays a Critical Role in Gene Silencing and Chromosome Structure. *Genetics* 174:1189–
34 1204.

35 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M,
36 Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence
37 alignments using Clustal Omega. *Mol Syst Biol* 7:539.

38 Smith NGC, Eyre-Walker A. 2002. Adaptive protein evolution in *Drosophila*. *Nature* 415:1022–
39 1024.

40 Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. 2021. The Dfam community resource of
41 transposable element families, sequence models, and genome annotations. *Mob DNA*
42 12:2.

43 Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017. Phase
44 separation drives heterochromatin domain formation. *Nature* 547:241–245.

45 Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell PJ,
46 Lang M, Courtier-Orgogozo V, et al. 2022. Widespread introgression across a phylogeny
47 of 155 *Drosophila* genomes. *Current Biology* 32:111-123.e5.

48 Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence
49 alignments into the corresponding codon alignments. *Nucleic Acids Research* 34:W609–
50 W612.

51 Swanson WJ, Nielsen R, Yang Q. 2003. Pervasive Adaptive Evolution in Mammalian

1 Fertilization Proteins. *Molecular Biology and Evolution* 20:18–20.

2 Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. 2016. The composition and
3 organization of Drosophila heterochromatin are heterogeneous and dynamic. *eLife*
4 5:e16096.

5 Tatavosian R, Kent S, Brown K, Yao T, Duc HN, Huynh TN, Zhen CY, Ma B, Wang H, Ren X.
6 2019. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble
7 through phase separation. *J Biol Chem* 294:1451–1463.

8 The UniProt Consortium. 2023. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic
9 Acids Research* 51:D523–D531.

10 Vermaak D, Henikoff S, Malik HS. 2005. Positive selection drives the evolution of *rhino*, a
11 member of the heterochromatin protein 1 family in *Drosophila*. *PLoS Genet* 1:96–108.

12 Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van
13 Driel R. 2005. In Vivo HP1 Targeting Causes Large-Scale Chromatin Condensation and
14 Enhanced Histone Lysine Methylation. *Molecular and Cellular Biology* 25:4552–4564.

15 Villeponteau B. 1997. The heterochromatin loss model of aging. *Exp Gerontol* 32:383–394.

16 Wang L-G, Lam TT-Y, Xu S, Dai Z, Zhou L, Feng T, Guo P, Dunn CW, Jones BR, Bradley T, et
17 al. 2020. Treeio: An R Package for Phylogenetic Tree Input and Output with Richly
18 Annotated and Associated Data. *Molecular Biology and Evolution* 37:599–603.

19 Wang Y, McNeil P, Abdulazeez R, Pascual M, Johnston SE, Keightley PD, Obbard D. 2023.
20 Variation in mutation, recombination, and transposition rates in *Drosophila melanogaster*
21 and *Drosophila simulans*. *Genome Res.*:gr.277383.122.

22 Wei KH-C, Grenier JK, Barbash DA, Clark AG. 2014. Correlated variation and population
23 differentiation in satellite DNA abundance among lines of *Drosophila melanogaster*.
24 *PNAS* 111:18793–18798.

25 Wei KH-C, Lower SE, Caldas IV, Sless TJS, Barbash DA, Clark AG. 2018. Variable Rates of
26 Simple Satellite Gains across the *Drosophila* Phylogeny. *Mol. Biol. Evol.* 35:925–941.

27 Wyman MJ, Cutter AD, Rowe L. 2012. GENE DUPLICATION IN THE EVOLUTION OF
28 SEXUAL DIMORPHISM. *Evolution* 66:1556–1566.

29 Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* 24:1586–
30 1591.

31 Yang Z, Wong WSW, Nielsen R. 2005. Bayes empirical bayes inference of amino acid sites
32 under positive selection. *Mol Biol Evol* 22:1107–1118.

33 Zhang Y, Chu J, Cheng H, Li H. 2023. De novo reconstruction of satellite repeat units from
34 sequence data. *Genome Res.* [Internet]. Available from:
35 <https://genome.cshlp.org/content/early/2023/11/20/gr.278005.123>