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1 Abstract

Reliable, quantitative information on the presence and severity of crop diseases
is critical for site-specific crop management and resistance breeding. Successful
analysis of leaves under naturally variable lighting, presenting multiple disor-
ders, and across phenological stages is a critical step towards high-throughput
disease assessments directly in the field.

Here, we present a dataset comprising 422 high resolution images of flattened
leaves captured under variable outdoor lighting with polygon annotations of
leaves, leaf necrosis and insect damage as well as point annotations of Septoria
tritici blotch (STB) fruiting bodies (pycnidia) and rust pustules. Based on this
dataset, we demonstrate the capability of deep learning for keypoint detection
of pycnidia (F1 = 0.76) and rust pustules (F1 = 0.77) combined with semantic
segmentation of leaves (IoU = 0.96), leaf necrosis (IoU = 0.77) and insect
damage(IoU = 0.69) to reliably detect and quantify the presence of STB, leaf
rusts, and insect damage under natural outdoor conditions. An analysis of
intra- and inter-annotator agreement on selected images demonstrated that the
proposed method achieved a performance close to that of annotators in the
majority of the scenarios.

We validated the generalization capabilities of the proposed method by test-
ing it on images of unstructured canopies acquired directly in the field and with-
out manual interaction with single leaves. The corresponding imaging procedure
can be adapted to support automated data acquisition. Model predictions were
in good agreement with visual assessments of in-focus regions in these images,
despite the presence of new challenges such as variable orientation of leaves and
more complex lighting. This underscores the principle feasibility of diagnos-
ing and quantifying the severity of foliar diseases under field conditions using
the proposed imaging setup and image processing methods. By demonstrating
the ability to diagnose and quantify the severity of multiple diseases in highly
natural complex scenarios, we lay out the groundwork for a significantly more ef-
ficient, non-invasive in-field analysis of foliar diseases that can support resistance
breeding and the implementation of core principles of precision agriculture.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/


2 Introduction

Modern mitigation of plant diseases in agriculture relies heavily on pesticides
and resistant plant varieties [22]. Unfortunately, pathogens can adapt to both
host resistance and pesticides used to control them [21] which poses a recurrent
threat to global food security. Resistant plant varieties typically contain a com-
bination of resistance genes or even just a single resistance gene [25] [13] which
can prompt boom-and-bust cycles where the pathogen overcomes the resistance
mechanism. Cases of pathogens overcoming resistance genes within only a few
years of their introduction have been well documented [16] [41] [47].

One of the tools that modern breeders commonly employ is qualitative, ma-
jor resistance genes [36] [38]. The presence of a major resistance gene can be
readily ascertained using inoculation assays under controlled conditions. Once
a major resistance gene has been identified, isolated and introgressed into com-
mercial germplasm, it can be deployed in the field with a high confidence of
success because the underlying mechanism involves the direct interaction be-
tween the pathogen and the host. In the case of Quantitative Resistance (QR),
multiple genes with minor effects typically contribute to resistance [36] [38]. The
mechanisms underlying QR can have varying degrees of complexity. In contrast
to gene-for-gene mechanisms, hosts typically do not exhibit the same boom-and-
bust cycles but rather a gradual decrease in QR efficiency as pathogens slowly
adapt to QR. Thereby leading to a much longer lasting resistance effect [13] [36]
[38] [37].

The search for QR requires a precise and quantitative assessment of the
disease intensity when the host is interacting with pathogen populations in a
natural environment. These interactions vary depending on the crop growth
stage, many environmental factors, some of which some can be influenced by
field management practices, existing disease pressure, and co-infections with
other diseases, amongst other factors [35] [44] [1]. It is therefore not feasible to
evaluate QR reliably under controlled conditions [45]. Moreover assessments of
disease escape and disease tolerance are determined based largely on yield or
require realistic canopy structure and plant morphology for reliable assessment,
also calling for field-based evaluation of disease.

Since QR leads to a reduction rather than an absence of the disease symp-
toms, evaluating symptoms at a single time point does not describe the full
impact of QR because it has the potential to alter epidemic progression through
many effects, including by reducing pathogen reproduction. Therefore, it is im-
portant to measure the effect of QR at the right time [23]. In addition, the
tolerance of many host plants to diseases is influenced by the developmental
stage at the time point of exposure to the pathogen [49], so when assessing
the potential yield loss it is necessary to describe the extent of the epidemics
with respect to the phenological stage of the crop [10]. Repeated measurements
during a growing season not only ensure that the cultivars are assessed at the
appropriate time, but also allow modelling of the epidemics progression over
time and reduce measurement variance through having multiple observations.

A lack of accurate phenotypic data is the main reason for the current under-
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utilization of QR in breeding programs [26] [38] [50] [15]. The gain of a breeding
program with respect to QR scales directly with the experiment size as larger
experiments allow for a larger volume of genetic material to be tested [9] [26].
Unfortunately, evaluating the necessary field experiments is associated with an
enormous amount of phenotypic variance coming from many sources including
weather patterns, spatial dependence, and co-exposure to other stresses, which
cannot be controlled by breeders. According to [42] in a multi environment
field trial for disease resistance in wheat varieties, the variance coming from
environment × genotype accounted for more than 50% of the overall genotypic
variance. This underlines the need for new assessment methodologies capable
of evaluating large volumes of data to separate the effects of QR from other
factors while processing large amounts of genetic material.

The goal of this work was to investigate Septoria Tritici Blotch (STB),
the most damaging wheat disease in Europe, caused by the fungal pathogen
Zymoseptoria tritici, as a model disease for acquiring quantitative phenotype
dataset under field conditions. More specifically, we aim to develop a high
throughput method capable of diagnosis and accurate assessment of STB in un-
controlled outdoor lighting during co-infection with other naturally occurring
diseases. The underlying task consists of assessing the Percentage of Leaf Area
Covered by Lesions (PLACL) as a quantification of the host damage and the
pycnidia density as a measure of reproductive potential for STB. The latter is
especially important as STB epidemics are driven by secondary inoculum involv-
ing asexual spores originating from pycnidia [53] which determine the overall
damage and resulting yield loss potential. The measures of PLACL and pycnidia
are largely independent in natural field infections and thus both need to be mea-
sured [30]. Several different approaches in terms of sensor modality, resolution
and throughput have already been explored. The oldest and still most widely
used assessment relies on visual scoring by trained personnel, where the PLACL
and pycnidia density are each assigned to a class based on a visually estimated
severity [40] [43] [20] [14]. As these measurements are time intensive, significant
efforts have been invested into achieving higher throughput. The developed
methods can be grouped based on the level of detail that they achieve, with
many methods sacrificing the ability to resolve individual pycnidia to achieve
higher throughput by using RGB or multispectral imagery with lower physical
resolution [48] [8] [11] or one dimensional spectral measurements on a small plot
basis [52] [3] [6]. On the other side of the detail spectrum, methods utilizing
very high resolution of more than 0.01 mm per pixel, were developed to detect
individual pycnidia in addition to the necrotic lesions [30] [45] [34]. However,
these latter methods require invasive, tedious sample preparation to capture
high resolution images, greatly limiting the potential throughput. None of the
mentioned methods is capable of handling naturally occurring co-infections due
to missing data or an inability to distinguish among the diseases due to the
underlying evaluation method. Novel methods increasingly utilize data driven
deep learning methods [34] [8] instead of color thresholding and visual indices
[30] [45] [48]. To the best of our knowledge, no prior work has attempted large
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scale STB assessments that can resolve individual pycnidia under natural field
conditions. We believe that conducting STB phenotyping under natural field
conditions represents the next key step to improving qunatitatice STB resis-
tance in breeding programs. Our aim is to achieve throughput without sacrific-
ing quality in order to enable scoring of STB resistance in non-invasive manner
or even in a fully autonomous manner without any human input.

3 Materials and Methods

3.1 Data Acquisition

To achieve a representative sample of STB symptoms under natural conditions,
we conducted a field experiment using a set of 16 wheat genotypes exposed
to various treatments, including inoculation with a mixture of Zymoseptoria
tritici strains. Wheat cultivars were chosen to maximise variation in terms of
morphology and STB susceptibility based on data from [2] and [30]. The key
selection factors were planophile and erectophile leaves, high and low levels of
flag leaf glaucousness and degree of STB resistance or susceptibility. A mixture
of 10 Swiss Z. Tritici isolates named 1A5, 1E4, 3A1, 3A8, 3B2, 3B8, 3D1, 3D7,
3G3, 3F5 were selected to maximise symptom diversity based on data from [19].
Three treatments consisting of different combinations of fungicide applications
and artificial inoculations were applied. For more extensive information about
the experimental design see [8].

One of the key challenges in acquiring highly detailed images in an outdoor
environment is the trade-off between maximizing the scanned area whilst guar-
anteeing sufficient ground sampling distance. The limiting factor in our task is
the appropriate imaging of pycnidia which are around 0.1 mm in diameter. For
very small features such as pycnidia, a high physical resolution of the imaging
setup is required to achieve sufficient resolution. Our data was collected using
a full-frame mirrorless digital camera (EOS R5, Canon Inc., Tokyo, Japan; 45
megapixel, 36×24 mm sensor) combined with a macro lens (RF 35 mm f/1.8
IS Macro STM, Canon Inc., Tokyo, Japan). The camera was mounted on a
custom-made stand to ensure a consistent working distance of 23cm. Such close
up imaging with a high-resolution sensor led to challenging behaviour in terms
of exposure and blur, due to the small size of a pixel on the sensor, in our case
4.39µm. Our imaging setup resulted in a physical resolution of approximately
0.03 mm/px. For comparison, the earlier flatbed scanning technique [45] using
1200dpi provided a resolution of approximately 0.02 mm/px.

During the image acquisition, the F-stop was fixed at 10 to provide a rea-
sonable trade off between depth-of-field, amount of incoming light and lens
diffraction. Concerning the sensor gain (ISO), the lowest possible values are
preferred because the sensor gain amplifies the sensor noise as well. In the
scope of resolving small objects, the resulting size of noise peaks operates on a
similar scale as pycnidia due to the effect of de-bayering where one noisy pixel
influences its neighbours as well. ISO was kept under 3200 to prevent high
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levels of background noise. The upper bound for ISO was determined exper-
imentally by observing the noise dynamics with respect to resulting contrast
between pycnidia and background noise. The F-stop and ISO settings led to a
typical exposure times between 1/100 and 1/1000 sec depending on the lighting
conditions during acquisition.

Two flag leaves per plot were detached and photographed outdoors under
both diffuse and direct lighting when possible. The leaves were fixed onto a
blue background plate by gently pressing them onto a temporary glue. This
process was repeated for three separate time points leading to 432 leaves imaged
mostly under both diffuse and direct lighting. As the whole imaging process
was conducted in the field, direct lighting was available only under clear skies.
Diffuse lighting, on the other hand, was achieved by the operator casting a
shadow over the imaging setup. The scanned leaves were not moved between
the diffuse and direct light images, so the images were identical except for the
different forms of lighting. After the field imaging, the leaves were flattened and
additional flatbed scanner images were obtained according to the protocol in
Stewart et al. [45].

Figure 1: Sample image pair from the described imaging setup. The top image
was taken under diffuse lighting. The bottom image was taken under direct
sunlight.

3.2 From Images to Deep Learning Dataset

Each collected image was cropped to form 8 smaller patches of 1024×1024 px.
From the resulting set of cropped images a subset of 422 images was selected
at random for annotation, forming the Eschikon Foliar Disease (EFD) dataset.
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Completely healthy or completely necrotic samples were removed because leaves
were not useful for symptoms training, whilst completely necrotic leaves tended
to be senescent rather than heavily diseased. All images were annotated using
the CVAT [17]. The annotated classes were: necrotic tissue, leaf, insect damage,
STB pycnidia and leaf rust pustules. To simplify the annotation process, STB
pycnidia and leaf rust pustules were annotated as points placed at the object’s
centroid. The remaining classes were annotated on a pixel level using polygons.
Annotated images covered a wide range of scenarios (see Figure 2) due to dif-
ferent lighting conditions, varying symptoms, different symptom severities, the
occurrence of chlorosis and different host genotypes at different phenological
stages as described in subsection 3.1.

The semantic meaning of the annotations leaves room for potential mis-
takes due to overlapping regions such as a pycnidium on top of a necrotic lesion
which itself is located on top of a leaf. To ensure reproducible results, the
annotated polygons were exported as pixel-level segmentation masks. The in-
dividual masks from the polygon annotations were stacked using the following
order where the previous labels are overwritten by the ones with higher priority.
First, the polygon annotations are converted: the base layer is the leaf, followed
by necrosis and insect damage. Regarding the point annotations for pycnidia
and rust pustules, the point annotations are denoted in a YOLO-Pose dataset
format1. The annotations of keypoints were extended by estimated bounding
boxes of size 8×8px for pycnidia and 32×32px for rust pustules. This combina-
tion of formats should ensure repeatable and flexible use of the dataset.

3.2.1 Label Uncertainties

Utilizing manual human annotations is the gold standard for creating the ground
truth data for training and validation. Unfortunately, outdoor-grown leaf sam-
ples exhibit many ambiguities due to ill-defined symptom boundaries, incon-
clusive diagnosis of symptoms, and occasional images with lower quality. To
put performance metrics into perspective, we quantified the uncertainty of the
labels by conducting multiple independent annotations on the same images and
investigating the resulting differences. For this, we selected 10 images from the
validation set where we annotated lesions and pycnidia. Each of five annota-
tors annotated each image twice, leading to a set of 10 labelled sets per image.
This data enabled a quantification of the inter-annotator and intra-annotator
reliability. [12] By utilizing a one-vs-rest crossvalidation, we computed IoU for
lesions and F1 scores for pycnidia, where detection of pycnidia is considered
correct when its placement is within 5px of the reference. Finally, to put the
annotators’ performance into perspective, we compared the performance of the
proposed method with respect to the annotator statistics by computing the
metrics for each annotation attempt separately.

1https://docs.ultralytics.com/datasets/pose/

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/


Figure 2: Samples from the proposed dataset which demonstrate the diversity
of the images.

3.3 Image Processing Method

The overall goal of the image processing method can be summarized as keypoint
detection and semantic segmentation. For the sake of simplicity both tasks are
handled separately by individual models. For the task of semantic segmentation,
a SegFormer backbone network [51] was used in combination with the FPN de-
coder [31]. The utilization of self-attention in this novel architecture allows for
a significantly wider effective receptive field compared to convolutional neural
networks [51]. In the context of disease diagnosis, this feature can be advan-
tageous when context from a distant region is needed for diagnosis. Especially
under changing light it might be beneficial to be able to get a reference for
chlorosis in order to assess whether a given segment is already necrotic or not.
The proposed combination of backbone and head enables inference on arbitrary
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resolution which can differ from the training set. In our case we can train on
diverse small image crops while the inference can be done on full resolution
images without a loss of performance. In addition, the SegFormer Backbone is
significantly more robust to distortions such as blur, or noise which naturally
occur during outdoor computer vision tasks [51]. Keypoint Detection is achieved
by using the YOLOv8 Pose model [29] which utilizes an anchor-free detection
head. This allows for effortless change of input size resolution without the need
for tuning of anchor-boxes. During training the extensive data augmentation
pipeline from ultralytics has been used.

Regarding the semantic segmentation, the very basis of hyperparameter tun-
ing was the selection of an appropriate backbone network, responsible for the
feature extraction. The palette of tested models was limited to one model family.
The rationale behind this is to limit the extensiveness of the resulting hyperpa-
rameter search space in favor of exploring various depths of the models from the
same model family rather then testing completely different model families. For
semantic segmentation the tested models are of the SegFormer Backbone [51]
architecture at different depths. The selection of a backbone’s depth has a major
impact on the overall performance of the model in terms of performance, run-
time and GPU Memory consumption. All tested models were trained with the
Adam optimizer, batch size 4, images with full resolution of 1024×1024px for 50
epochs. All semantic segmentation models were trained using the cross entropy
loss in a finetuning manner starting from Imagenet [18] pretrained weights while
using the FPN [31] head. The results for semantic segmentation are reported
in Table 1. The same approach was also applied to the keypoint detection net-
work which uses the YOLOv8-pose architecture which offers different depths of
the backbone [29]. The keypoint detection models were pretrained on COCO
2017 keypoint dataset [33]. For the training, we used YOLOv8’s default data
augmentation.

Reported numbers correspond to the randomly sampled validation split of
the dataset leading to 354 training images (80%) and 88 validation images (20%).
The same split was applied to both, semantic segmentation and keypoint detec-
tion.

3.3.1 Generalization Capabilities

Due to the small dataset size, additional datasets from other domains were
evaluated to quantify the robustness and transferability of the trained mod-
els. Sections 4.3.1 and 4.3.2 illustrate the performance based on very different
scenarios. The inference on images captured with flatbed scanners showcase
the capabilities of dealing with another imaging sensor (LiDE 400, Canon Inc.,
Tokyo, Japan), a different background and artificial lighting. This imaging setup
corresponds to the method proposed by [45]. Following the analysis protocol a
white background color is used on the images. More importantly, the scanned
leaves were detached from wheat plants and pressed flat prior to the imaging,
hence the visual appearance of the leaves has been altered compared to the EFD
images. As a second test domain, field images of the canopy were selected. This
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corresponds to a scenario much closer to the target application. However it con-
tains several different aspects, not covered by the proposed dataset. The canopy
images are acquired from a side sngle and cover approximately the two topmost
leaf layers. Besides the expected leaves, the images contain ears, stems and no
clear background. The images suffer from large amounts of blur for objects that
are not in the focus plane. In contrast to the previous two setups, the leaves
are freely oriented in space rather than fixed onto a flat surface. Finally, the
lighting is much more complex due to occluding plant organs and leaves being
semi-transparent, especially when illuminated from the back.

4 Results

4.1 Model Performance

To achieve for an optimal encoder depth, we benchmarked various depths of
SegFormer [51] for semantic segmentation (Table 1) and of YOLOv8 [29] for
keypoint detection (Table 2). The evaluation in Table 1 indicated that an
increase in backbone complexity led to an improvement in performance. The
more complex backbones mitb1 and mitb2 outperformed mitb0 mostly due to
the large gap in IoU of insect damage. Comparing the performance of mitb1 and
mitb2 showed only a minor difference in IoU of lesions but a modest difference
in performance regarding insect damage in favor of the less complex mitb1. This
left mitb1 as the best candidate for a backbone offering best performance whilst
avoiding unnecessary computational complexity. Generally, a large discrepancy
in performance of individual classes was observed, where the class ”leaf” always
achieved a very high score whilst ”lesions” and ”insect damage” produced much
lower scores. This effect can be attributed to a large imbalance in the number of
pixels assigned to the different labels, where the classes lesion and insect damage
are under-represented compared to leaves. Under-represented classes provide
less information for training which can lead to worse performance. In addition,
smaller objects have higher boundary to area ratios making the achievement of
high metric scores more challenging.

Similar behaviour in performance and model complexity can be observed in
keypoint detection. Optimal performance was achieved with model YOLOv8m-
pose, which performs on par with its more complex counterpart YOLOv8l-
pose, whilst outperforming the less complex variants (Table 2). Interestingly,
pycnidia exhibit a similar F1 Score as rust pustules (F1pycnidia = 0.76 and
F1rust = 0.77), whilst there were approximately three times more instances of
pycndia than rust pustules. Both pycnidia and rust pustules are confused with
background but not with one another, leading to high confidence of disease
assignment to the symptoms (see Supplementary Table A1).
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Model Backbone # param. mIoU IoU Leaf IoU Lesion IoU Insect Damage
mitb0 3.7M 0.76 0.96 0.77 0.53
mitb1 14.0M 0.81 0.96 0.77 0.69
mitb2 25.4M 0.79 0.95 0.76 0.64

Table 1: Overview of the performance of different backbones for Semantic Seg-
mentation.

Model # param. mAP50 mAP50-95 F1 score
YOLOv8n-pose 3.3M 0.78 0.77 0.72
YOLOv8s-pose 11.6M 0.80 0.79 0.75
YOLOv8m-pose 26.4M 0.82 0.81 0.76
YOLOv8l-pose 44.4M 0.82 0.81 0.76

Table 2: Overview of the performance of different YOLOv8 models for keypoint
detection.

4.2 Data Quality and Labels Uncertainty

The annotator agreement and the resulting metrics seem to be consistent for
the majority of the images with both the lesion IoU mean and pycnidia F1
score mean achieving values around 0.85 with typically lower values for lesion
Iou compared to pycnidia F1 scores (see Figure 3). To quantify the potential
for improvement, differences between annotation score median and prediction
scores median was computed. For Lesion IoU the mean error was 0.05 and the
error standard deviation was 0.03. Similarly, for Pycnidia F1 score the mean
error was 0.03 and standard deviation was 0.04.

Generally, two types of ambiguities were discovered: 1) perturbations along
the annotation contours; 2) entire regions which were assigned a different class.
The former arose due to annotation inaccuracies or ill-defined lesion edges (see
Figure 3.b.2 and Figure 3.b.3). After considering conflicting annotations of en-
tire regions, a negative impact due to early or late stage rust symptoms could be
identified (see e.g. Figure 3.b.5). In addition, damaged regions without pycni-
dia, especially on the rolled up bottom part of the leaf, showed lower annotator
agreement (see e.g. Figure 3.a.3). A similar behavior can be observed for newly
forming lesions which partially contain pycnidia whilst not being clearly necrotic
(see Figure 3.a.4).

4.2.1 Diseases Evaluation

The most intuitive parameter of the assessment of the disease analysis is its
performance with respect to the indicators that breeding programs can utilize.
In the case of STB analysis, this corresponds to the Percent Leaf Area Covered
by Lesions (PLACL) and the number or density of pycnidia on leaves. Our
proposed method achieved Mean Squared Error (MSE) of 4.0e-3 for PLACL
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Figure 3: Selected 10 images organized in panels a) and b). The top row of each
panel corresponds to an annotation overlay where blue color denotes a 100%
agreement of all annotation runs. The disagreement among the annotation
attempts is denoted in shades red where white denotes high agreement (many
annotator attempts classified the region as lesion) and saturated red denotes
low agreement (e.g. single annotator attempt classified the region as lesion).
The middle row of the panels shows the original RGB images. The bottom row
of each panel shows a boxplot of IoU score for lesions and F1 score for pycnidia.
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and F1 Score of 0.76 for pycnidia. Figure 4 shows a success case under diffuse
lighting and a failure case under direct lighting. Visual inspection of Figure 4
a) reveals that the vast majority of pycnidia and rust pustules were correctly
predicted. The necrotic lesion is correctly separated from healthy leaf tissue
and chlorotic regions. In Figure 4 b) the method achieves a solid performance
in the upper part of the leaf, whilst the negative impact of the hard shadows
can be observed based on the inconsistent boundaries of lesions in the bottom
part of the leaf.

Evaluating the validation dataset with respect to the annotated and pre-
dicted number of pycnidia and rust pustules showed that the annotated and
predicted values are highly correlated (see Figure 5). Unfortunately, the range
in terms of the numbers of pycnidia and rust pustules differed for direct and
diffuse lighting conditions. Nonetheless, in the overlapping regions no signifi-
cant differences were observed between the performance under diffuse and direct
lighting. The same behaviour was observed with PLACL with the exception of
multiple outliers under direct lighting where the proposed method overestimated
the PLACL values.
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Figure 4: Sample images from EFD dataset and corresponding predictions.
Blue masks denote necrotic lesions, purple masks denote leaf and green masks
denote insect damage. Red circles denote pycnidia and green circles denote rust
pustules. Transparent areas denote the background and regions where the con-
fidence of predictions is below 0.5. Panel a) showcases a success scenario where
the method achieves a good performance on all classes. Panel b) demonstrates
the performance on an edge scenario with complex lighting resulting in hard
shadows and directly illuminated regions at the same time.
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Figure 5: Computed values for number of pycnidia (left panel), number of rust
pustules (middle panel) and PLACL (right panel) for each individual image
of the validation dataset. Datapoints from images under diffuse lighting are
denoted in red whereas images under direct light are denoted in blue.

4.3 Generalization Capabilities

4.3.1 Flatbed Scanners Compatibility

Automated image analysis of STB symptoms with flatbed scanners has been the
dominant method of symptoms quantification until now. Thus, in the following
experiment, images from flatbed scanners were predicted with models trained on
the EFD dataset to demonstrate the backwards compatibility of the proposed
method. The predictions on images from flatbed scanners are shown in Figure
6. Generally, the major regions are predicted accurately, but the boundaries of
individual classes are less smooth and more prone to error (see bottom leaf bor-
der of row b) in Figure 6). The already worse performing class of insect damage
(see Section 4.1) seems to continue this trend as it is misclassified as leaf in the
image row a) in Figure 6. On the other hand, the detection of pycnidia reaches
a comparable performance, managing to correctly detect pycnidia even outside
of lesions (see row a) in Figure 6). Generally, the proposed method proved to be
applicable on images from flatbed scanners, rendering it backwards compatible
with existing datasets acquired according to the protocol from Stewart et al.
[45].
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Figure 6: Sample images from flatbed scanners following the protocol of Stew-
art et al. [45] and the corresponding predictions. Blue masks denote necrotic
lesions, purple masks denote leaf and green masks denote insect damage. Red
circles denote pycnidia and green circles denote rust pustules. Transparent areas
denote the background and regions where the confidence of predictions is below
0.5.

4.3.2 Inference in the Wild

In order to assess the performance in the target environment, the models trained
on the proposed dataset were applied to images taken directly in the field with-
out interacting with the plants. We analyzed the performance of the proposed
method in regions which corresponded to the appropriate regions of interest
with sufficient quality. Within these regions, many additional challenges were
present, including different orientations, more complex lighting, backlit leaves,
continuous scaling of objects due to the changes in perspective and varying de-
grees of blur. Under closer examination, necrotic lesions that are in focus are
predicted properly (see cyan and red rectangles in Figure 7), however with the
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decreasing image quality due to factors such as focus blur or direct lighting
the prediction quality decreases to favor an incorrect assignment into the back-
ground or insect damage classes (see blurred regions of cyan and red rectangles
in Figure 7).

A similar behaviour was observed for pycnidia predictions. Areas with high
image quality generally show better performance (see cyan rectangle in Figure
7.a), though some areas showed dysfunctional performance in spite of sufficient
image quality (see cyan rectangle in row b) in Figure 7). In this case the entire
region yielded poor pycnidia prediction. More interestingly, other areas within
the same image did yield correct pycnidia predictions associated with them (see
red rectangle in row b) in Figure 7). Up- and down-scaling the image as well
as lowering the confidence threshold for predictions did not change the poor
performance for pycnidia in this region. Besides the aforementioned aspects,
the authors could not identify an objective image quality factor that would
cause this behaviour and therefore suspect insufficient representation of such a
scenario in the EFD dataset.
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Figure 7: Two images of unstructured canopy directly from the field with their
corresponding predictions. The red and cyan rectangles denote specific areas
for closer observation. Zoom into the image for sufficient scaling. Blue masks
denote necrotic lesions, purple masks denote leaf and green masks denote insect
damage. Red circles denote pycnidia and green circles denote rust pustules.
Transparent areas denote the background and regions where the confidence of
predictions is below 0.5.
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5 Discussion

We demonstrated a feasible approach to imaging detached leaves at a sub-
millimeter resolution in an uncontrolled outdoor environment. We achieved
sufficient resolution to allow accurate imaging of extreme features such as py-
cnidia which are one of the smallest symptoms on the foliar disease spectrum.
The approach of imaging detached leaves outdoors introduces new sources of
variance in the form of more variable lighting intensity and potential blur due
to a shallow depth of field and potentially curling leaves compared to existing
STB evaluation methods which utilize leaves which were pressed flat [45] [34].
The proposed imaging approach allows for imaging of freshly detached leaves,
avoiding visual changes in symptoms appearance often caused by the delay be-
tween leaf sampling and leaf imaging. However, the proposed imaging approach
does not yield any significant benefit in terms of throughput as both the flatbed
scanner imaging and the proposed method are bottlenecked by the time needed
to identify and detach infected leaves and manipulation of the detached leaves
prior to imaging.

The collected images and resulting annotated dataset created an authentic
set of disease symptoms under natural field conditions. In contrast to the more
common experiments conducted on seedlings that are inoculated with a high
concentration of Z. tritici spores under highly controlled environmental condi-
tions, the EFD dataset provides a much more representative picture of the real
world complexity needed to develop applications that will be useful for breeders
and farmers. The additional symptoms variance comes from including different
host-pathogen interactions associated with the selected sets of cultivars, a set
of different Z. tritici strains, as well as naturally occurring co-infections with
brown rust and insect damage.
Despite the great complexity of the task and the challenging size of the EFD
dataset, we were able to deliver a proof of concept for field STB imaging and
quantification by utilizing deep neural networks. Within the scope of model
families, the hyperparameter search delivered rather shallow variants of the re-
spective models (see Section 4.1) which can indicate that deeper models are too
complex for the underlying dataset, while more shallow models offer a way of
regularization.

Our proposed method achieves a similar segmentation performance for le-
sions F1necrosis = 0.87 as a similar deep learning based method for STB eval-
uation F1necrosis = 0.9 [34] in spite of including much more diverse imaging
conditions. However, we achieved significantly higher performance on pycnidia
detection F1pycnidia = 0.76 compared to F1pycnidia = 0.36 [34]. We speculate
that this might be due to the older, anchor-based architecture of YOLOv5 [28]
in combination with high resolution images with large aspect ratio and small
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objects to be detected.
We argue that color based methods for STB analysis such as [45] [30] are

incapable of conducting the same task of analysis under uncontrolled lighting
because they cannot inherently adjust their decision thresholds when conditions
change dynamically.

Furthermore, other methods focusing on the quantification of necrosis [48]
[8] [11] [52] [3] [6] can be successful in quantifying the necrotic material but due
to their lower resolution cannot keep up with the diagnosis aspect, while the
high resolution approach can not only detect but also diagnose the damage.

Mathieu et al. [34] concluded that a small dataset was sufficient to deliver
a solid performance on their task under controlled conditions. We believe that
for the task of field foliar disease analysis, it is essential to provide a large
dataset to reach a robust performance because many more scenarios are present
when conducting analyses in the field. This can be observed in the disparity of
performance on different segmentation classes (see Table 1) probably due to the
insufficient representation of the insect damage class. The same reasoning can be
applied based on the samples from section 4.2.1 and section 4.3.2 where an image
region shows much worse performance for pycnidia detection. This indicates the
need to provide more training samples in order to reach a stable performance.
Anderegg et al. [7] were able to accurately track disease development in field-
based image time series of leaves after extending the dataset by about 10%. This
data set represented another season, different genotypes, multiple leaf layers,
and contrasting phenological stages. This further underlined the robustness,
flexibility, and adaptability of the proposed method.

The method proposed here is compatible with expanding the dataset to im-
prove its performance as well as potentially introducing additional diseases. A
larger dataset would unlock the potential for a deeper network that is capable of
extracting more complex features from the data and thus being able to achieve
superior performance.
Despite its many limitations, the proposed method at its current stage has
already achieved a satisfying performance in the context of quantifying STB
symptoms (see Section 4.2.1). We believe that the next milestone in the devel-
opment of a disease quantification tool will be to improve the throughput and
minimize the necessary human input. Since the leaf sampling and manipulation
requires the greatest time investment, the returns of faster inference are dimin-
ishing (see Section 4.2.1) and the method would greatly benefit from being able
to avoid direct sampling of individual leaves.

5.1 In Field Analysis

A key element to develop a high throughput evaluation pipeline is to make
images directly from crops in the field under natural conditions. Not only will
this eliminate the need for time consuming manual manipulation of individual
leaves but it will also render the analyses non-invasive [27]. The preliminary
requirement to achieve this goal is the ability to analyze images collected under
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diverse lighting conditions. The work described here has shown that the state
of the art computer vision is indeed capable of fine grained analysis of foliar
diseases under natural light. Furthermore, experiments on field images (see
Section 4.3.2) show that the analysis in this highly unstructured scene is indeed
possible, though it will require additional steps which should be the focus of
future research and development. The key missing capability is to robustly
identify the correct reference region that will be used to collect data. This
identification will depend on a mixture of parameters based on the goal of the
analysis. For STB the reference region should include parts of an image which
have sufficient quality to analyze the symptoms and especially identify pycnidia
whilst identifying leaf surfaces that are in the correct location within the plant
morphological structure.

With the appropriate dataset, such a pipeline will be capable of quantifying
not only STB and brown rust but also other common wheat diseases (e.g. yel-
low rust, powdery mildew, and fusarium head blight) and thus offer a powerful
new tool for plant breeders to conduct high-throughput screening of symptoms
associated with the most common cereal diseases.
In addition, such approaches will allow not only for disease detection and quan-
tification but also for assessment of specific symptom phenotypes which can
provide additional insights into pathogen-host interactions [46] [24] [32] [5].

5.2 Outlook

As indicated in Section 7, the proposed method trained solely on the EFD
dataset is already capable of a solid performance in some regions on field im-
ages with unstructured canopies. In order to achieve a more robust performance,
the training dataset will need to be extended by annotating samples containing
new scenarios, particularly including more complex lighting and partial blur.
Currently, the proposed method is incapable of selecting the appropriate re-
gions where the disease analysis should be conducted. Fortunately selecting the
appropriate regions prior to the symptoms analysis can be divided into separate
problems, including removing the out-of-focus regions, and recognizing wheat
leaves and the general background. The former can be achieved by abstracting
the task to focus estimation, depth estimation or texture analysis which are
disciplines of active research in the computer vision community. The latter is a
task of plant organs segmentation which was already applied in the context of
agriculture and foliar diseases [8] [4] [39].

Once these additional processing steps are available, the proposed method
will become arbitrarily scalable, since no direct interaction with plants will be
required for data acquisition. In addition, this allows in-field data acquisition to
be standardized and potential operator-induced measurement bias to be elimi-
nated by employing autonomous agricultural machines.

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/


6 Conclusion

The proposed method describes a novel approach for data-driven sub-millimeter
analysis of foliar diseases on detached wheat leaves under outdoor conditions.
Using the case study of STB we demonstrate the ability of the method to per-
form in complex and ambiguous scenarios induced by varying external factors
including lighting, visually different wheat cultivars and co-infection with other
diseases. The already solid performance of the proposed method can be fur-
ther improved by extending the datasets to include new samples and allows for
further extensions to additional new diseases. The proposed method lays the
groundwork for future applications in field conditions with the goal of eliminat-
ing the need for manual sampling and manipulation of leaves. Combining the
proposed method with focus estimation, organ segmentation and automation of
data acquisition will unlock its full potential for resistance breeding and disease
monitoring and management.

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/


7 Acknowledgements

We express our gratitude to J. Alassimone for providing guidance and hands-
on support in preparing the artificial pathogen inoculations. We also extend
our appreciation to the Group of Crop Science at ETH Zürich, particularly S.
Corrado for their expertise in crop husbandry and B. Herzog for their assistance
in seed preparation and management. We also would like to thank S. Vuillemin,
S. Gürkan, K. Gefe, and T. Khampo for assistance with image acquisition and
annotation.

8 Data availability

The datasets used in this study are available from the corresponding author on
reasonable request. Trained models and code for inference are available under:
https://github.com/RadekZenkl/leaf-toolkit

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/


References

[1] Araz S Abdullah, Caroline S Moffat, Francisco J Lopez-Ruiz, Mark R
Gibberd, John Hamblin, and Ayalsew Zerihun. Host–multi-pathogen war-
fare: pathogen interactions in co-infected plants. Frontiers in plant science,
8:290582, 2017.

[2] Jonas Anderegg, Helge Aasen, Gregor Perich, Lukas Roth, Achim Walter,
and Andreas Hund. Temporal trends in canopy temperature and greenness
are potential indicators of late-season drought avoidance and functional
stay-green in wheat. Field Crops Research, 274:108311, 2021.

[3] Jonas Anderegg, Andreas Hund, Petteri Karisto, and Alexey Mikaberidze.
In-field detection and quantification of septoria tritici blotch in diverse
wheat germplasm using spectral–temporal features. Frontiers in plant sci-
ence, 10:1355, 2019.

[4] Jonas Anderegg, Norbert Kirchgessner, Helge Aasen, Olivia Zumsteg, Beat
Keller, Radek Zenkl, Achim Walter, and Andreas Hund. Thermal imaging
can reveal variation in stay-green functionality of wheat canopies under
temperate conditions. bioRxiv, pages 2023–11, 2023.

[5] Jonas Anderegg, Norbert Kirchgessner, Lukas Kronenberg, and Bruce A
McDonald. Automated quantitative measurement of yellow halos suggests
activity of necrotrophic effectors in septoria tritici blotch. Phytopathol-
ogy®, 112(12):2560–2573, 2022.

[6] Jonas Anderegg, Kang Yu, Helge Aasen, AchimWalter, Frank Liebisch, and
Andreas Hund. Spectral vegetation indices to track senescence dynamics
in diverse wheat germplasm. Frontiers in plant science, 10:1749, 2020.

[7] Jonas Anderegg, Radek Zenkl, Norbert Kirchgessner, and et al. Sympa-
thique: Image-based tracking of symptoms and monitoring of pathogenesis
to decompose quantitative disease resistance in the field. PREPRINT (Ver-
sion 1), 3 2024.

[8] Jonas Anderegg, Radek Zenkl, Achim Walter, Andreas Hund, and Bruce A
McDonald. Combining high-resolution imaging, deep learning, and dy-
namic modelling to separate disease and senescence in wheat canopies.
Plant Phenomics, 2023.
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Tobias Würschum, and Thomas Miedaner. Stability of adult-plant resis-
tance to septoria tritici blotch in 24 european winter wheat varieties across
nine field environments. Journal of Phytopathology, 159(6):411–416, 2011.

[43] G Shaner, RE Finney, and FL Patterson. Expression and effectiveness of
resistance in wheat to septoria leaf blotch. 1975.

[44] Brajesh K Singh, Manuel Delgado-Baquerizo, Eleonora Egidi, Emilio
Guirado, Jan E Leach, Hongwei Liu, and Pankaj Trivedi. Climate change
impacts on plant pathogens, food security and paths forward. Nature Re-
views Microbiology, 21(10):640–656, 2023.

[45] Ethan L Stewart, Christina H Hagerty, Alexey Mikaberidze, Christopher C
Mundt, Ziming Zhong, and Bruce A McDonald. An improved method
for measuring quantitative resistance to the wheat pathogen zymoseptoria
tritici using high-throughput automated image analysis. Phytopathology,
106(7):782–788, 2016.

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/


[46] SE Strelkov and L Lamari. Host–parasite interactions in tan spot
[pyrenophora tritici-repentis] of wheat. Canadian Journal of Plant Pathol-
ogy, 25(4):339–349, 2003.

[47] Angela P Van de Wouw, Anton J Cozijnsen, James K Hane, Patrick C
Brunner, Bruce A McDonald, Richard P Oliver, and Barbara J Howlett.
Evolution of linked avirulence effectors in leptosphaeria maculans is affected
by genomic environment and exposure to resistance genes in host plants.
PLoS pathogens, 6(11):e1001180, 2010.

[48] James Walter, James Edwards, Jinhai Cai, Glenn McDonald, Stanley J
Miklavcic, and Haydn Kuchel. High-throughput field imaging and basic
image analysis in a wheat breeding programme. Frontiers in plant science,
10:449, 2019.

[49] Maureen C Whalen. Host defence in a developmental context. Molecular
Plant Pathology, 6(3):347–360, 2005.

[50] Laetitia Willocquet, Serge Savary, and Jonathan Yuen. Multiscale pheno-
typing and decision strategies in breeding for resistance. Trends in Plant
Science, 22(5):420–432, 2017.

[51] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Al-
varez, and Ping Luo. Segformer: Simple and efficient design for semantic
segmentation with transformers. Advances in Neural Information Process-
ing Systems, 34:12077–12090, 2021.

[52] Kang Yu, Jonas Anderegg, Alexey Mikaberidze, Petteri Karisto, Fabio
Mascher, Bruce A McDonald, Achim Walter, and Andreas Hund. Hyper-
spectral canopy sensing of wheat septoria tritici blotch disease. Frontiers
in plant science, 9:1195, 2018.

[53] Jiasui Zhan, Chris C Mundt, and Bruce A McDonald. Measuring im-
migration and sexual reproduction in field populations of mycosphaerella
graminicola. Phytopathology, 88(12):1330–1337, 1998.

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2024. ; https://doi.org/10.1101/2024.05.10.593608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593608
http://creativecommons.org/licenses/by/4.0/

