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ABSTRACT

Genomic DNA is constantly subjected to oxidative damage, which is thought to be one of

]
2 the major drivers of cancer and age-dependent decline. The most prominent consequence
3 is the modification of guanine into 8-hydroxyguanine (8-oxo-dG), which has important
4 mutagenic potential and plays a role in methylation-mediated gene regulation. Methods to
5 simultaneously detect and quantify 8-oxo-dG within its genomic context have been lacking;
6 mainly because these methods rely on indirect detection or are based on hydrolysis of the
7 DNA. Nanopore sequencing has been deployed for the direct detection of base-modifications
8 like cytosine methylation during sequencing. However, currently there is no model to detect
9 8-0x0-dG by nanopore sequencing due to the lack of training data. Here, we developed a

10 strategy based on synthetic oligos to create long DNA molecules with context variability

11 for effective deep learning and nanopore sequencing. Moreover, we showcase a training

12 approach suitable to deal with the extreme scarceness of 8-oxo-dG compared to canonical

13 G to enable specific 8-0xo-dG detection. Applied to an inducible tissue culture system for

14 oxidative DNA damage, our approach reveals variable 8-oxo-dG distribution across the

15 genome, a dissimilar context pattern to C>A mutations, and concurrent 5-mC depletion

16 within a 2-kilobase window surrounding 8-oxo-dG sites. These findings not only underscore

17 the potential of nanopore sequencing in epigenetic research, but also shed light on 8-oxo-

18 dG’s role in genomic regulation. By simultaneously measuring 5-mC and 8-oxo-dG at

19 single molecule resolution, our study provides insights into the functional interplay between

20 these DNA modifications. Moreover, our approach using synthetic oligos to generate a

21 ground truth from machine learning modification calling could be applied to any other

22 DNA modification. Overall, our work contributes to advancing the field of epigenetics and

23 highlights nanopore sequencing as a powerful tool for studying DNA modifications.
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24 Introduction

25  Genomic DNA is under constant assault from various damaging agents, leading to breaks and chemical
26 modifications such as oxidation. Among the oxidized base adducts that have been identified [1} 2], 8-oxo-
27 7,8-dihydro-2’-deoxyguanosine (8-0xo0-dG), is the most abundant, since guanine, out of the four bases, has
28 the lowest redox potential [3]]. Oxidation of G to 8-0x0-dG can occur both directly in the DNA or in the free
29 nucleotide pool by several processes, including the formation of hydroxyl radicals derived from endogenous
30 reactive oxygen species [4]], as well as exogenous sources like ionizing radiation [5], and incorporated into
31 the DNA by several polymerases [6]. Its most pivotal characteristic is its ability to both pair with cytosine
32 (forming a regular Watson-Crick base pair) and adenine (forming a Hoogsteen base pair). 8-oxo-dG, when
33 paired with cytosine, is proactively excised from the DNA in humans by the DNA glycosylases OGG1 [7]],
34 and adenine, when paired with 8-0x0-dG, is excised by MUTYH [8]], but also via preemptive sanitisation of
35 the nucleotide pool by MTH1 (also known as NUDT1) [9]. However, upon failure to repair a 8-oxo-dG:C
36 pair prior to replication, it can lead to a 8-0xo-dG:A pair, which upon a second round of replication would
37 become T:A, leading to a C>A transversion [10, [11]If 8-ox0-dG is incorporated from the nucleotide pool
38 opposite of adenine, then a T>G transversion can also occur after replication [12]].Mutations downstream of
39 8-0x0-dG have significant implications in the development of cancer [13}[14}15]. 8-0x0-dG is the proposed
40 mechanism underlying COSMIC [16] signatures 18 and 36 [17,118,|19], and has been recognized as a potential
41 disease biomarker in the field [20} 21]. 8-oxo-dG has also been linked to transcriptional and epigenetic
42 regulation [22]], in particular in the context of DNA (de)methylation at cytosine (5-methylcytosine, 5S-mC):
43 8-0x0-dG passively inhibits methyltransferases [23]], and OGG1 recruits TET enzymes which convert 5-mC to
44 5-hydroxymethylcytosine (5-hmC) as the first step in the demethylation process [24].

45 Due to its potential as a disease biomarker, several efforts have been made to quantify 8-oxo-dG in urine
46 [25,126], blood [27]], genomic material [28]], and several other tissues [21]]. The absolute quantification of
47 8-0x0-dG has predominantly relied on highly sensitive methods such as liquid or gas chromatography followed
48 by mass spectrometry or electrochemical detection, or enzyme-linked immunosorbent assays [21]. However,
49 its accuracy has been subject to debate due to large discrepancies between reported levels [29, 30, 31} 21,
so and high variability between laboratories [32]. Furthermore, these methods fail to provide insights into the
51 genomic location of 8-0x0-dG, which precludes unveiling the mechanisms underlying heterogeneous mutation
52 rates, repair mechanisms, and the role of 8-o0xo-dG in epigenetic regulation. For this reason, recently several
53 innovative genomics-based methods have attempted to investigate 8-0xo-dG in a genome-wide manner. These
54 approaches include the detection of apurinic sites created by 8-0x0-dG repair enzymes (Click-code-seq [33]]
55 and OGG1-AP-seq [34]), ChIP-seq techniques employing an 8-0x0-dG antibody (OxiDIP-seq [35])), pull-down
s6 of cross-linked biotin tags attached to 8-oxo-dG (OG-seq [36] and CLAPS-seq [37]), and pull-down of 8-oxo-
57 dG repair enzymes (enTRAP-seq [38]]). Collectively, these methods have revealed that 8-oxo-dG, and its repair,
58 is not uniformly distributed throughout the genome, although with some contradictory results between the
59 methods [39,22]]. Current genomic approaches have three main downsides: first, they lack single nucleotide
60 resolution (with the exception of Click-code-seq), which hampers the study of the relationship between
61 8-0x0-dG and its associated mutational signatures; secondly, these methods rely on short-read sequencing
62 methods and therefore cannot properly investigate genomic repetitive regions; and lastly, indirect detection
63 1s associated frequently with false positive (FP) signals due to suboptimal antibody specificity, enzymatic
64 or chemical reactivity [39]. The latter is especially important given the reported rarity of 8-oxo-dG (1-100
65 8-0x0-dG per 1 million G [21]]). For example, even with a usually considered low false positive rate (FPR) of
66 1%, the ratio between false and true positives would be approximately 10:1, which would quickly obfuscate
67 any real signal and preclude meaningful conclusions [40].

68 Nanopore sequencing operates by threading a DNA (or RNA) molecule through a membrane-embedded pore
69 while measuring fluctuations in the electrical current over the membrane, and is currently commercialized by
70 Oxford Nanopore Technologies (ONT) [41]. Changes in the electrical current are indicative of the molecule’s
71 chemical properties, which holds the potential to detect base modifications. This enabled the detection of
72 5-mC using a-Hemolysin pores [42]], and later using ONT devices [43},144]]. Since then, base modification
73 detection models have been developed both by ONT and the community for detecting both naturally occurring
74 and synthetic modifications [45]. But so far, there is no model available for the detection of 8-0xo0-dG by
75 nanopore sequencing. Developing modification detection models presents substantial challenges, especially
76 for rare modifications. Firstly, obtaining sequencing data where the precise location of a rare modification is
77 known is not trivial, as these modifications cannot be verified with other technologies to establish a ground
78 truth. Moreover, the context of the modification must exhibit sufficient diversity to prevent the model from
79 learning sequence biases. The effect of the modification passing through the pore on the electrical current must
go be pronounced enough to distinguish it from inherent noise and other bases. And finally, the model must be
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81 extremely precise to accommodate detection of rare modifications, e.g. while for 5-mC it is acceptable to have
g2 a 1% FPR, it would be prohibitively high for rare modifications such as 8-oxo-dG due to its low abundance
83 [40].

s+ Keeping these considerations in mind, we devised an approach to generate a library of long synthetic DNA
85 molecules that each contain §-oxo-dG in a known, specific, but variable sequence context. Utilizing this ground
g6 truth dataset, we demonstrate that 8-oxo-dG has a discernible impact on the nanopore raw signal, leading to
g7 systematic errors using the ONT provided basecaller. We trained a deep learning model capable of detecting
88 8-0x0-dG from the raw signal with single-nucleotide resolution, high specificity, and employed it in a cell line
so with inducible, localized oxidative stress in the nucleus. Our experiments show genome wide variability in
90 8-0x0-dG levels, with increased levels in complex and repetitive regions which were uncharted by previous
o1 short-read based methods. For the first time, we are able to simultaneously measure 5-mC and 8-oxo-dG
92 at single molecule resolution, revealing a strong 5-mC depletion within a 2-kilobase window surrounding
93 8-0x0-dG. Collectively, our approach showcases a methodology widely applicable to any synthesizable DNA
94 base modification.

ss  8-0x0-dG is detectable using nanopore sequencing

96 To generate a ground truth dataset, we designed a set of 110 short synthetic oligos (46 base pairs each) that
o7 contained 8-0xo-dG in different genomic contexts. The oligo design (Figure Tj) consists of three barcodes
98 (7 base pairs each) to enable multiplexing. In addition, these barcodes have been optimized to facilitate
99 signal segmentation. The oligos were designed to contain complementary overhangs (10 base pairs) enabling
100 concatenation via hybridization and ligation to create long reads that can efficiently be sequenced on the
101 nanopore platform (Methods, oligo design). The 8-oxo-dG base is surrounded by two predefined bases on
102 either side (K, K, K3, K4), and five additional random bases (2 bases on the 5’ end (N, N;), and 3 bases on
103 the 3” end (N3, Ny, Ns)) to ensure context diversity. We decided to use predefined bases next to the 8-oxo-dG
104 base, instead of random bases, because the effect of the modification would make it impossible to accurately
105 determine which true bases corresponded to each oligo (Figure Ib). Knowing the true sequence of an oligo is
106 necessary to train a basecaller. Finally the oligos include an unmodified guanine base surrounded by the same
107 bases as the 8-0x0-dG base to serve as a built-in control (Figure Th, [Supplementary table 1)) .

108 Using the concatenated synthetic oligos, we first established whether 8-oxo-dG has an effect on the basecalling
109 performance of ONT’s standard base calling model. We found that there was a substantial increase in
110 basecalling errors specifically at the site of 8-0x0-dG (not basecalling 8-oxo-dG as G) and its neighboring
111 bases (Figure Ib). The basecaller’s most likely mistakes, regarding 8-oxo-dG, are deletions (16.4%) or
112 incorrect calls as cytosine (13.5%) or adenine (12.5%) (Supplementary figure 1). Moreover, the basecalling
113 error rate is not uniform across different contexts, varying from 1.4% to 91% (Supplementary table 2)). This
114 variability suggests that the signal alterations are 5-mer context dependent. To establish that the increased
115 error rate was not an artifact of our oligo generated data, we also assessed the error rate on the reverse strand,
116 which is devoid of any modified bases. As expected, here we did observe a consistently low error rate, which
117 was much more uniformly distributed across the different bases and contexts (Supplementary figure 2).
118 Interestingly, the cytosine opposite to the 8-oxo-dG base exhibited a slightly higher error rate (median 12.3%)
119 compared to the other bases (median 5.0%) (Supplementary table 3). Note that the DNA is unwound when
120 it enters the pore, and hence this cytosine is no longer bound to 8-ox0-dG when it is being sequenced. We
121 hypothesized that the unwinding of the DNA by the helicase might be affected by 8-oxo-dG. We therefore
122 compared the speed (based on raw to expected signal alignment) between cytosines paired to 8-0xo-dG and
123 cytosines paired to G in the same 5-mer contexts. We observed that on average cytosines paired to 8-oxo-dG
124 had fewer measurements, suggesting faster translocation of the DNA, than cytosines paired to G (77% of
125 evaluated 5-mers) (Supplementary figure 3)). This suggests that, despite only sequencing one DNA strand,
126 the opposite strand can have an impact on translocation speed via structural effects that impact the proteins in
127 the pore, thus affecting base calling accuracy.

128 We then evaluated what specific effect 8-0xo-dG has on the raw signal. To this end, we aligned the measured
129 raw signal to the expected signal (obtained from ONT’s k-mer model) based on the known underlying sequence
130 (Methods, Raw data alignment, Supplementary note 1). We observed a significant difference between
131 the expected (which assumes an unmodified guanine) and measured signals. For example, in it
132 can be seen that the measured signal is higher than expected when 8-ox0-dG is present. This effect is also
133 clear when evaluating other sequence contexts (Figure Td), indicating that 8-0x0-dG has a clear effect on
134 the measured signal. The measured signal is also significantly different from the other 3 bases (A, C and T)
135 (Supplementary figure 4] [Supplementary figure 5) and is most dissimilar to the pyrimidines. Considering
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Figure 1: 8-0x0-dG has a detectable effect on the nanopore raw signal. a, Schematic of the design of the
8-0x0-dG containing oligos. b, Error rate per oligo base across all sequenced 8-oxo-dG containing repeats.
Random bases are excluded from the analysis as we do not know their true reference. Horizontal bar represents
the median, boxplots minimum and maximum bounds represent the 25th and 75th percentiles, respectively,
and whiskers extend to 1.5 times the interquartile range. ¢, Example of 8-0xo-dG (red) and G (purple) signal
in the TG(8-0x0-dG/G)CTG context. Dashed black line indicates the expected signal value based on the G
containing sequence. d, Average measured normalized G signal and 8-o0xo-dG signal per measured 5-mer as
segmented using Tombo. Identity line indicated as the dashed gray line.

these observations, we concluded that 8-oxo-dG is discernible from the other four canonical bases, suggesting
that training a machine learning algorithm for its detection would be feasible.
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Figure 2: Fine-tuning of a Bonito model to basecall 8-o0xo-dG. a, Schematic of a two step approach to
call modified bases in nanopore sequencing. First, the raw signal is basecalled to a DNA sequence. Upon
basecalling the (potentially modified) base of interest, a small window of raw signal that corresponds to that
particular base is cut; and together with a portion of the basecalled sequence, is given as input to a second
model that predicts whether the base is modified or not. b, Confusion matrix of the fine-tuned Bonito base
caller. Values indicate the fraction of outcomes for each ground truth base. ¢, Match, mismatch, deletion and
insertion rates of the pre-trained and different fine-tuned models using different datasets on the T2T human
reference genome nanopore data. Horizontal bar represents the median, boxplots minimum and maximum
bounds represent the 25th and 75th percentiles, respectively, and whiskers extend to 1.5 times the interquartile
range.

13s  Bonito basecaller fine-tuning

139 The nanopore signal originating from 8-oxo-dG containing sequences appears to have several context dependent
140 distinctive features. We therefore sought to train a neural network model that could distinguish 8-oxo-dG

5
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141 from G. We opted for a two step approach, similar to ONT’s Bonito + Remora combination (Figure 2h). First,
142 Bonito performs regular basecalling (A, C, G, T); and afterwards, Remora classifies the base of interest (e.g. C
143 vs 5-mC, or in our case G vs 8-0xo0-dG) as modified or not, using a small data window (e.g. 100 data points).

144 Since we already observed that the basecaller provided by ONT is not 8-oxo-dG aware, (Figure 2b), we first
145  fine-tuned a Bonifo model to basecall 8-oxo-dG as G. To that end, we used a publicly available pre-trained
146 version of Bonito from ONT, and fine-tuned it by training it with oligo concatemers containing 8§-oxo-dG and
147 publicly available human data from the telomere-to-telomere (T2T) reference dataset (Methods, Genomic
148 DNA: Telomere-to-telomere). We also fine-tuned a model with only data from the T2T dataset to assess
149 the effect of fine-tuning itself on basecalling performance. We then evaluated the basecalling performance
150 of these models on human genomic data, and their capacity to basecall 8-0x0-dG as G, in a cross-validated
151 manner (Methods, Base calling cross-validation). We observed that after fine-tuning the models with oligo
152 data, 8-0x0-dG was basecalled as G (~3% median error rate), and immediate neighboring bases are basecalled
153 correctly at error rates similar to the rest of the bases (Figure 2p, [Supplementary figure 6)). To ensure that
154 the model did not overfit to the oligo data, we also evaluated the basecalling performance on human genomic
155 data. We observed that basecalling was slightly more accurate on the fine-tuned model than on the pre-trained
156 model (median error rate decreased from 14% to 10%); and that the addition of oligo data in the training did
157 not have a negative effect on regular genomic basecalling (Figure 2). Our Bonito fine-tuned model can now
158 accurately basecall 8-0x0-dG as G, and is also capable of regular genomic basecalling.

159 Detecting 8-0x0-dG with high specificity

160 We then trained a Remora-like model to distinguish 8-oxo-dG from unmodified guanine. We started by
161 training a base model which takes as input both 100 data points of signal and the basecalled 7-mer. Both
162 features were centered around the guanine of interest. The model then outputs a score between zero and
163 one for the likeliness of that particular guanine being 8-oxo-dG (Supplementary figure 7). We trained the
164 model on both positive and negative examples of 8-0xo-dG from our synthetic oligo dataset, as well as on
165 T2T data (Methods, Modification calling cross-validation, Remora training). This initial model achieved
166 93.3% accuracy and 94% specificity at the 0.5 score threshold, with an area under the curve (AUC) of 0.97
167 (Figure 3p). This level of performance is comparable to state-of-the-art 5-mC calling [46]. Problematically,
168 8-0x0-dG is not as prevalent as 5-mC, and requires a model with near perfect specificity to ensure reasonable
169 FDRs (Supplementary table 4)). For example, assuming 1-100 8-oxo0-dG per million guanines [21]], the base
170 model (specificity of 98.6% at the 0.9 score threshold), would be making 100-10000 false positive (FP) calls
171 per true positive call, thus obscuring any real signal. Ideally, we would have a specificity of at least an order of
172 magnitude lower than the prevalence of 8-oxo-dG (Q50-Q70, i.e. 1 false positive per 0.1-10 million guanine
173 calls; (Methods, Specificity Q-Scoring notation)). We subsequently explored whether candidate filtering
174  based on basecall errors, or metric learning approaches would improve performance, but we did not observe
175 any major improvements (Supplementary note 2).

176 To further improve the specificity of our Remora-like model, we explored the use of class weights during
177 training to emphasize the importance of true negatives (TN). For this purpose, we trained two additional
178 models in which the positive class (8-0xo-dG) had a weight of 10% or 1%, relative to the negative class (G).
179 Using a lower weight on the positive class had a negative impact on global performance, as the AUC was
180 reduced to 0.96 and 0.92, respectively (Figure 3a). However, it increased specificity from Q12 to Q27 when
181 using the 0.5 cutoff; and is further increased from Q20 to Q38 when using the more stringent 0.95 cutoff.
182 However, the true positive rates (TPR) decreased from 88% to 56%, and from 66% to only 38% respectively
183 (Figure 3p). These results indicate that reducing the weight of the positive class leads to a significant increase
184 in specificity at the cost of an increase of false negatives.

185 We finally explored if additional signal and sequence features could improve model performance. For example,
186 a signal feature would be the expected signal given the basecalled sequence, and a sequence feature would be
187 the base calling quality scores (Methods Remora feature-engineering). We evaluated these features in a
188 feature expansion experiment in which we sequentially added one additional feature at a time. We trained these
189 models with a 1% weight on positive samples since our objective was to further reduce the FPR. Our results
190 indicate that, after adding the expected signal as a feature, the specificity increased from Q38 to Q47 with only
191 a mild 5% reduction of the TPR. Adding additional features, such as the difference between measured and
192 expected signal, and the phred quality scores further increased specificity (to Q48) but with a TPR reduction
13 from 40% to 20% (Figure 3k, red). We then added the same features, but based on the pre-trained Bonito
194 base calling model, since its base calls would differ mostly if an 8-o0xo-dG was involved. By adding the
195 pre-trained model basecalls and expected signal, the TPR increased by 3%, but did not achieve any specificity
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Figure 3: Performance of a Remora model. a, ROC curves on three Remora models with different positive
class weights (100%, 10% and 1%), values indicate the AUC. The straight line shape of the receiver operator
characteristic (ROC) curve for the 1% weight model was due to a small number of negative samples with a
high 8-ox0-dG score, which reduces granularity in the ROC curve thresholds (Supplementary figure 8)). b,
TPR and Q-Score specificity evaluated on the test fold for two different thresholds (0.5, and 0.95) on the three
Remora models with different positive class weights (100%, 10% and 1%). ¢, TPR and Q-Score specificity
evaluated on the test fold for the experiment in which additional features were added sequentially. Metrics
are calculated using a 0.95 threshold. Models include additional features in a cumulative manner, from left
to right: basecalls, expected signal, difference between expected and measured signal, and basecall phred
quality scores. Red bars include features from the fine-tuned model, purple bars also include features from the
Bonito pre-trained model, blue bars include the difference between the features of the Bonito fine-tuned and
pre-trained models. d, Performance of the Remora model with expected signal as feature per 5-mer at the
>(.95 score threshold. Red colored dots indicate 5-mers for which there were no false positive calls, for these
5-mers the QScore was annotated as if a single false positive call was made.

196 improvements (Figure 3, purple). We finally added the difference between the features of the fine-tuned

197 and pre-trained models. These models had similar performance (specificity Q47) and the TPR was at similar

198 levels as the previous models (21%) (Figure 3, blue). Models which contained the expected signal achieved

199 significantly worse TPRs, and we observed that these models greatly overfit during training
h

200 [fig J). We hypothesize that some of these features are predictive but easy to overfit to. For example, just
201 by using the difference of expected signal based on the basecalls from the two models, one can achieve an
202 AUC of 0.79 (Supplementary figure 10). In conclusion, the largest improvement was derived by adding the

o
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203 expected signal based on the basecalled sequence as it increased specificity the most without compromising
204 the TPR too much, which also holds true for the less stringent threshold of 0.5 (Supplementary figure 11).

205 Our models have demonstrated an FPR within the same order of magnitude as the expected 8-oxo-dG levels.
206 However, we hypothesized that this error may not be distributed uniformly across the different k-mers, and
207 some k-mers might have an increased FPR. We decided to use k=5 since it is the maximum number of bases
208 with a known reference around 8-0x0-dG in our oligo data. Indeed, four 5-mers demonstrated an AUC of
209 approximately 0.5, equivalent to random guessing. In contrast, 73 other 5-mers exhibited an AUC exceeding
210 0.9, with the remaining 5-mers falling in between (Supplementary figure 12). We also observed that there is
211 alarge spread in terms of specificity, ranging from Q24 to Q56 (median Q47) (Figure 3d). Notably, for some
212 5-mers (58 out of 110, indicated in red in[Figure 3d), we did not detect any false positives, and we calculated
213 their specificity as a single false positive pseudocount. We also observe that the performance spread is also
214 large in terms of sensitivity (average 0.33 + 0.22 s.d.), meaning that on average, one out of three 8-0x0-dG
215 molecules will be detected. Because of the low abundance of 8-o0x0-dG, we decided to only consider 5-mers
216 that reached a minimum specificity of Q40 (87 out of 110) for subsequent analysis to ensure that the signal to
217 noise ratio is maximized, which corresponds to ~35% of the guanines in the human genome.

215 H,O, production close to the DNA increases 8-0x0-dG levels

219 Using our nanopore based 8-0x0-dG modification caller, we sought to explore 8-0x0-dG’s locations genome-
220 wide, including repetitive regions previously unexplored by short-read sequencing techniques. To this end we
221 used hTert-immortalized RPEI cells that express D-amino acid oxidase (DAAQO) from R. gracilis as a fusion
222 with Histone H2B (RPE1-hTERT-DAAO™B). Upon administration of D-Alanine (D-Ala), DAAO produces
223 H,O; in the vicinity of DNA, given its fusion to H2B . Exposure to D-Ala has been shown to give rise to C>A
224 mutations in this mode (in a p53 KO background), suggesting that DAAOM?B activation leads to formation of
225  8-0x0-dG in the genome [47]]. RPE1-hTERT-DAAOM?E cells were exposed to a 2 hour pulse of 20 mM D-Ala,
226 after which we harvested and sequenced the DNA and analyzed it using our 8-oxo-dG model (Methods, Cell
227 line sequencing).

228 We observed that H,O, production at the chromatin resulted, somewhat unexpectedly, only in a modest increase
229 of 12 additional detected 8-0x0-dG modifications per a million guanines (16% increase, p-value=0.016) as
230 compared to control ). We noted that RPE1-hTERT-DAAO!?B p537 cells had overall higher
231 levels of 8-0x0-dG already in control treated cells, compared to RPE1-hTERT-DAAOM?E p53 wild-type,
232 suggesting that the loss of p53 leads to general higher levels of 8-0xo0-dG, either by enhanced oxidative stress
233 or slower removal of the modification. After induction of H,O, production, both p53” and wild-type cells
234 reach similar total 8-oxo-dG levels (Supplementary figure 13)). We correlated 8-oxo-dG levels to GC content
235 in 1kb bins (Figure 4b). We observed that GC content was highly correlated with 8-0x0-dG levels in all
236 conditions (Supplementary figure 14). Although this might be expected, we noticed that the rate between
237 8-0x0-dG and GC content changed at approximately 50%. This indicates that high GC content regions get
238 more easily oxidized, or less effectively repaired, based on the rates measured at lower GC content regions
233 (Supplementary figure 15). We next evaluated whether 8-oxo-dG levels were depleted or enriched in specific
240 regions in the genome (Figure 4fc). Overall, we observed differences in 8-0x0-dG levels depending on the DNA
241 strand (Supplementary figure 16) and the chromosomal arm (Supplementary figure 17). The forward strands
242 of chromosomes 5, 18 and 19 (p-arms) and chromosomes 1 and 19 (g-arms) have a significant (p-value<0.05)
243 14% or more 8-oxo-dG compared to their reverse strand counterparts, and the reverse strands of chromosomes
244 12, 14, 15 (p-arms) and chromosome 16 (g-arm) have 9% or more 8-0x0-dG compared to their forward strand
245 counterpart. These particular differences are treatment and p53 status independent (Supplementary figure|
246 [Supplementary figure 19, Supplementary figure 20} [Supplementary figure 21). We then analyzed
247 the relative 8-oxo-dG levels across different genomic regions iFigure 4d). Again, we observed a global
248 dincrease in 8-0xo-dG levels after H,O, production, irrespective of genomic region (Supplementary figure|
249 [22). Non-repetitive and centromeric genomic regions showed 8-oxo-dG levels that roughly align with the
250 overall rate of ~80 8-0x0-dG per 1 million G (Figure 4d, gray dashed line); with the exception of the
251 5’-UTR, which has the highest median levels, as also previously reported by Ding et al [36]]. On the other
252 hand, complex repetitive and satellite regions contained, relatively, the most 8-0xo-dG with high variance
253 between chromosomes (Figure 4d). We fitted a linear model to evaluate whether 5-mer content, or the relative
254 abundance of the different genomic regions, were causative for these observations, however none could explain
255 the observed variability (Supplementary note 3)).

256 Finally, we evaluated 8-0x0-dG at telomeric regions since they are guanine rich, and their oxidation has
257 been linked to senescence and telomere shortening [48,149]]. To that end, we combined the sequencing data
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Figure 4: 8-0x0-dG distribution across the genome. a, Overall 8-oxo-dG molecules per 1 million G
molecules per L-Alanine and D-Alanine treated cells. Error bars indicate minimum and maximum calculated
values. Dots indicate the values per sequenced condition. b, 8-oxo-dG levels across different GC (%) content
bins. Blue and red lines indicate values for L-Alanine and D-Alanine treated cells respectively. Grey dashed
line indicates the distribution of measured GC content bins. ¢, 8-0xo-dG levels per chromosome, chromosome
arm and DNA strand. Bars indicate average values. Error bars indicate the minimum and maximum calculated
values across all conditions. Asterisks indicate a significant p-value (<0.05) derived from a two-sided t-test
between the values of the forward and reverse strands. d, Distribution of 8-0x0-dG levels per genomic region
type across all conditions and chromosomes. The dashed gray horizontal line indicates the overall §-oxo-dG
level across all conditions, irrespective of genomic region. Horizontal bar represents the median, boxplots
minimum and maximum bounds represent the 25th and 75th percentiles, respectively, and whiskers extend to
1.5 times the interquartile range. Black dots indicate the underlying data.

258 from all experimental conditions, and obtained a total of 487 reads that primarily mapped to the telomeres.
259  We observed a strong bias towards reads mapping on the p-arm reverse strand and g-arm forward strand

260 (Supplementary figure 23)); which can be explained by blunt end requirement of the ligation mechanism in
261 the library preparation (Supplementary note 4)). Notably, we only detected 2 high confidence 8-0x0-dG calls
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262 on the g-arm telomeres of chromosomes 16 and 19 (Supplementary figure 24)), a value ten times lower than
263 expected, given the 50% GC content of the region. This result might indicate that 8-oxo-dG is very efficiently
264 repaired at telomeres as a preventive measure to downstream complications.

265 The 8-0x0-dG trinucleotide context profile does not match the C>A mutational
266 signatures
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Figure 5: Mutational and 8-oxo-dG signatures. a, Combined mutational signature (C>A or G>T) from all
the cell lines derived from Illumina sequencing. b, 8-oxo-dG normalized abundance profile for each 3-mer.
Note that the 3-mers are annotated as the reverse opposite strand of 8-0x0-dG (e.g. ACT would be equivalent
to AXT, where X denotes 8-0x0-dG). ¢, Mutation enrichment of each 3-mer normalized to the abundance of
each 3-mer in the human genome. d, 8-0xo-dG enrichment of each 3-mer normalized to the abundance of
each 3-mer in the human genome.

267 Because of its ability to mispair with A, unrepaired 8-oxo-dG present at the time of DNA replication, oxidative
268  stress has been the proposed mechanism behind the COSMIC mutational signatures 18 and 36 [17, [18} [19].
269 We therefore wanted to compare C:G>A:T (here mentioned solely as C>A) mutations to the derived 8-0x0-dG
270 profile to establish if the resulting mutations had the same trinucleotide context as the detected 8-oxo-dG.
271 Using the same RPE1-hTERT-DAAOM?B-p53~ cell lines, van Soest et al. [47] performed Illumina sequencing
272 to analyze the mutational profile caused by H2B-DAAO-derived H,O,. This analysis was also performed in
273 a p53 WT background in a parallel experiment not shown in van Soest et al. [47]. We therefore used these
274 mutational profiles and compared them to the 8-0xo-dG profile. It must be noted that the mutational profiles
275 were obtained after 4 rounds of 20mM D-Ala treatment and recovery; while for our 8-oxo-dG analysis, we did
276 a single 20mM D-Ala pulse followed by immediate DNA harvesting. We therefore abstain from drawing any
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277 strong conclusions regarding the relationship between number of mutations and 8-o0xo-dG due to the treatment
278 difference.

279 The mutational profiles were highly similar in terms of COSMIC mutational signatures present (minimum
280 cosine similarity of 0.95) (Supplementary figure 25), irrespective of H,O, induction and p53 status. The
281 only major difference between the samples was the amount of mutations [47]. Since our aim is to compare
282 the mutational signatures, we combined the mutational profiles of all the sequenced conditions (Figure 5h).
283 To make the mutational profile comparable to the 8-oxo-dG profile, we recalculated the mutational profile
284 including only mutations in the 5-mer contexts in which our model performed with at least Q40 specificity,
285 which reduced the total number of C>A variants from 6880 to 2506. We also normalized the relative
286 contribution of each 3-mer based on the number of 5-mers that passed the specificity threshold
287 [figure 26). We observed that these limitations did not drastically change the originally derived mutational
288 profile (Supplementary figure 27).

289 We detected many more 8-0x0-dG bases than C>A mutations in every analyzed 3-mer context despite the
200 shorter treatment (Supplementary figure 28). The C>A mutational profile (Figure 5a) and the 8-oxo-dG
201 profile (Figure 5b) however only moderately agree (cosine similarity of 0.33). Our results do therefore not
292 discard the hypothesis that 8-oxo0-dG is the underlying cause of C>A mutations, but rather that the rate at which
293 8-0x0-dG leads to a C>A mutation is 3-mer context specific. Notably, the C>A mutational profile has a high
294 similarity (cosine similarity of 0.95) with the 3-mer abundance profile of the human genome
295 and the observed mutation profile thus seems to more closely relate to 3-mer abundance than to
206  8-0x0-dG location itself (Figure 5¢). This suggests that C>A mutations are likely driven by other or additional
297 mechanisms such as replication timing [S0]. Interestingly, we do observe strong 8-oxo-dG enrichment and
208 depletion for certain 3-mers (Figure 5d), in particular 3-mers that contain a CG or a GG motif. This result
299 coincides with our previous observation of 8-0xo-dG enrichment in high GC content regions, but might hint at
300 other mechanisms such as a relationship with CpG methylation.

a1 8-0x0-dG levels negatively correlate with methylation levels

302 Previous work has linked 8-oxo-dG with both inhibition of DNA methylation [23} [51], as well as active
303 demethylation via TET enzyme recruitment by OGG1 [52} 24]. Whereas previous methods for genomic
304 8-0x0-dG detection precluded the simultaneous assessment of 8-0xo-dG and other base modifications, our
305 approach can, for the first time, look at 8-0xo-dG, 5-mC and 5-hmC on the same DNA molecule. We
so6 therefore compared the methylation and hydroxymethylation status of the surrounding CpG sites between G
307 and 8-0x0-dG containing regions in a 10 kilo-base window in the same DNA molecule.

308  We observed that there is a significant general decrease in methylation levels around oxidized guanines
s09 compared to non-oxidized (Figure 6a, Methods, 8-0x0-dG related methylation analysis). The decrease
sto in methylation levels correlates with distance to the oxidized base: it is lowest close to 8-0xo0-dG (~45%
311 methylation), and recovers to average genome-wide methylation levels at approximately 2000 base from
a1z 8-0x0-dG (~54% methylation). This effect was observed irrespective of p53 status and DAAO"?B-derived
313 HpO, production, suggesting a DNA damage independent relationship (Supplementary figure 30). We then
314 grouped the data by 3-mer analogous to the profile analysis and observed that the decrease in methylation
a5 levels correlated with the 3-mer enrichment for 8-oxo-dG (Figure 6b-c). The decrease in methylation is
st largest for 3-mers with a CG motif, with the exception of CGT. A decrease in methylation is also observed
317 for 3-mers without a CG motif, this is most apparent for GGA, which has a similar decrease in methylation
s1e  level as compared to CG containing 3-mers. Interestingly, in 3-mers without a CG motif the methylation
st9 levels reached average genome wide levels at approximately 1 thousand base-pairs from 8-oxo-dG, while
s20 methylation levels in 3-mers with a CG motif did not return to baseline within 5kb from 8-oxo-dG [Figure
321 6c]. Strangely, the AGG was the only 3-mer that displayed overall higher methylation levels for 8-oxo-dG
322 containing molecules (Figure Gc). We observed that 5-hmC levels were slightly higher in 8-0x0-dG vs guanine
323 containing regions (average ~3.5% vs ~3%) (Supplementary figure 31). Similarly to 5-mC, we did not
324 observe p53 or H,O, dependent effects (Supplementary figure 32). However, upon inspection of the 5-hmC
325 levels per 3-mer, we observed that there is no difference in 5-hmC levels per 3-mer with the exception of
326 two cases (Supplementary figure 33). First, 5-hmC levels are highest around the GGA context, reaching an
327 average of 6% in regions containing 8-0x0-dG. And secondly, the opposite effect happens in the CGA context,
328 where 5-hmC levels are highest for regions with G (average ~5,8%) (Supplementary figure 33).

320 Our approach enabled simultaneous assessment of 8-0x0-dG, 5-mC, and 5-hmC on the same DNA molecule
330 for the first time. Together with our analysis of the mutational signatures, our results suggest that 8-oxo-dG
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331 abundance has a primary role in epigenetic regulation, and that its mutagenic effect would play a secondary
332 role.
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Figure 6: Genomic de-methylation surrounds 8-oxo-dG. a, Methylation levels for 8-0x0-dG (red) and
Guanine (black) containing reads. Reads are centered around (position zero) the 8-oxo-dG or Guanine.
Methylation levels are obtained from the same molecule. The transparent red line indicates the underlying
data, the dark gray line is the result of an 11 base average convolution. Data from all experimental conditions
is included, see (Supplementary figure 30) for the per condition analysis b, Correlation between 8-oxo-dG
enrichment as in Figure 5d and the methylation difference at position zero. ¢, Similar to panel a, but data has
been split based on the 3-mer (reverse complement) surrounding the guanine.

sz Discussion

334 Nanopore sequencing holds the potential to detect any base modification, both on DNA and RNA. However,
335 due to technical challenges, accurate models have only been established for a limited number of modifications
sss [45)]. Available models focus on highly prevalent modifications, like 5-mC or 6mA because they can be
337 generated enzymatically, are highly stable, and therefore training data can be easily obtained and verified
sss through alternative sequencing technologies [45]. However, these approaches are not widely applicable to
339 less abundant modified bases [33]. In this study, we leverage synthetic DNA to bridge this gap, enabling the
340 generation of a fully controlled ground truth dataset. We show that our approach can successfully be used to
a41  detect 8-0x0-dG, and has the potential to be expanded to nanopore-based detection of other base modifications.
s42  Furthermore, compared to existing 8-oxo-dG detection methods, our approach does not require any complex
343 sample preparation, chemical reactions or antibody pull-downs, and can be readily applied to existing nanopore
344 data.

345 Our work showcases that developing deep-learning models required for detecting rare modifications from
a6 the raw nanopore squiggles is not trivial. False positives drastically decrease the signal-to-noise ratio and, if
347 not low enough, will mask any inherent biological signal [40]. We address this by using label weighting and
a4s feature engineering. However, while we achieved a major increase in specificity, this comes at the price of
s49 reduced sensitivity of the model. Rare base modifications also pose a challenge in regular base calling. As we
350 have shown, 8-0xo0-dG naive basecallers have a significantly increased error rate on molecules that contain
351 an 8-0x0-dG modification. Therefore, until these rare modifications are integrated in the basecaller training
352 pipelines, perfect accuracy for all natively sequenced molecules will not be achievable.
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353 Using our highly specific model, we show differential 8-oxo-dG levels across the different chromosomes
354 and genomic regions of RPE1-hTERT cells. Our observations fit with the variability shown in OGG1 driven
355 apurinic sites [34]; and we also observe a similar distribution of 8-0x0-dG over non-repetitive regions as
ss6 reported in Ding et al. [36]. For the first time, we can evaluate 8-0xo-dG abundance on highly repetitive
357 sequences, which show high levels of 8-0x0-dG, indicating either increased susceptibility to oxidation or less
ss8 efficient repair. Surprisingly, we observed very low 8-ox0-dG levels at the telomeres despite their oxidation
359 susceptibility [54]. This might suggest that telomeric 8-oxo-dG is very efficiently repaired to avoid telomere
360 shortening and the downstream induction of cellular senescence [48l49]. However, our coverage was limited,
ss1 and further research using telomere enrichment techniques [55]] might advance our understanding of the repair
362 mechanisms of 8-0xo0-dG at telomeres [56]].

363 The mutational process behind C>A mutations in COSMIC signatures 18 and 36 has been long attributed to
se4 oxidative stress and unrepaired 8-oxo-dG [17, 18} [19]. Our results show that, primarily, 8-oxo-dG does not
35  strongly correlate with the same nucleotide context of the signatures. Rather, these signatures strongly follow
se6 the human 3-mer genomic content, which indicate that the mutational rate of 8-oxo-dG is 3-mer specific, and
367 could be driven by other mechanisms such as replication timing [50]. Importantly, our results do not discard
368 8-0x0-dG as the cause of C>A mutations, since the modified base is far more abundant than the resulting
sso mutations. Rather, we envision that these mutations are secondary to the role of 8-oxo-dG in epigenetic
370 regulation.

a71  We observed a distinct decrease in CpG methylation levels around 8-oxo-dG, however it is unclear whether CpG
372 demethylation precedes guanine oxidation, or vice-versa. It has been shown that 8-0xo-dG inhibits methyl-
a73  transferase enzymes [23| |51} 152]], which would indicate that oxidation happens in already de-methylated
374 regions. Another possibility would be that active demethylation is promoted via the recruitment of TET
a7s  enzymes by OGG1 [24]. At first sight, this model suggests that, 8-0xo-dG then would have been removed
s76 by OGGI, and therefore would not be detected in the first place. However, OGG1 oxidation can block its
377 glycosylase and lyase activity, but not its binding to 8-oxo-dG [57]], which would explain why we still measure
378 8-0x0-dG, and indicate that oxidation happens before de-methylation. Finally, some histone demethylases
a79  are known to produce H,O; as part of the histone demethylation reaction (e.g. H3K9 [58]] and H3K4 [39],
380 which could cause the formation of multiple 8-oxo-dGs while oxidatively inhibiting the recruited OGG1. This
38t model would link histone and DNA epigenetics through redox regulation. Perturbation experiments on OGG1,
ss2 in combination with TET and histone demethylases, would provide valuable insights to further elucidate the
383 underlying regulatory mechanism.

384 In conclusion, our work showcases a viable methodology for rare modification detection using nanopore
385 sequencing, which could be applicable to detect any synthesizable base modification. These models can then
sss be later used to decipher and further understand epigenetic regulatory mechanisms and the interplay between
387 DNA modifications, as well as potential implications for disease mechanisms and biomarker detection.

sss  Methods

ss9  Oligo design

390 A total of 110 oligos were designed in complementary pairs, wherein each forward oligo contains an 8-0xo0-dG
391 base and was paired with its complementary reverse strand oligo devoid of any base modifications. Oligos are
392 46 base pairs long and contain three barcodes, two 8-0x0-dG/G k-mer regions of 10 and 5 bases respectively,
393 and a 10 base overhang. The barcodes are 7 bases long and were defined to have the lowest basecalling
394 error rate possible (based on the T2T dataset (Methods, Genomic DNA: Telomere-to-telomere)) and a high
395 sequence entropy (meaning that the same base was never repeated sequentially). The 10 base overhangs are
396 complementary between the forward and reverse strands, which allow concatenation via hybridization and
397 ligation to create long molecules that are more readily sequenced on the nanopore platform. Between the first
ses and second barcode lies an 8-0xo-dG that is immediately surrounded by two known bases at either side, which
399 provides the known sequence context. Similarly, between the second and third barcode a guanine is surrounded
400 by the same four bases. To maximize sequence variability around 8-oxo-dG, five additional random bases
401 were added: two on the 5° end, and three on the 3’ end.

402 Oligo concatenation

403 Oligos were first annealed in a thermocycler by mixing the two complementary oligos in equimolar rates.
404 Oligos were diluted in 1X T4 ligase buffer (NEB REF #B0202S) in a total volume of 10uL. The mixture was
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405 heated to 95°C for 5 minutes, and then the temperature was decreased by 0.1°C per second until 4°C. After
406 hybridization, oligos were concatenated by ligation. 9uL of 1X T4 ligase buffer (NEB REF #B0202S) and 1
407 uL of T4 ligase (NEB REF #M0202S) were added to the solution. Afterwards, the mixture was incubated
408 at 16°C for 18h. T4 ligase was then inactivated at 65°C for 10 min. The resulting DNA was cleaned using
409 the Qiagen PCR & Gel Cleanup Kit (Qiagen REF #28506) according to the manufacturer’s instructions, and
410 eluted from the column using Milli-Q water. This process was repeated 3 times to increase the concatemers
411 length (Supplementary figure 34). Oligo concatemer concentrations were then quantified via Nanodrop
412 (Thermo Scientific NanoDrop 2000 #ND-2000) and multiplexed prior to library preparation in equimolar rates
413 as indicated in [Supplementary table 1}

414 Genomic DNA: Telomere-to-telomere

415 We used existing nanopore sequencing data from the reference genome (NA12878/GM 12878, Ceph/Utah
416 pedigree) dataset [60]]. This human dataset contains many different sequencing runs. We arbitrarily chose
417 three experiments so that each different ligation kit (rapid, ligation and ultra) would be included: FAB42828,
418 FAF09968 and FAF04090. We assumed all the sequenced DNA did not contain any 8-oxo-dG as it had
419 been prepared using the standard library preparation protocol, which contains a repair step with Fpg, a DNA
420 glycosylase that removes 8-oxo0-dG.

421 Library preparation

422 Oligo concatemers and genomic DNA samples were library prepared using the SQK-LSK109 ligation kit
423 according to the manufacturer’s instructions, with the exception that the FFPE repair step was skipped. The
424 exclusion of this step was deliberate and meant to preserve 8-oxo-dG in our samples since the enzymatic
425 function of Fpg as a DNA glycosylase is responsible for removing 8-0x0-dG from DNA.

426 Nanopore sequencing

427 Samples were sequenced using MinION R9.4.1 flow cells for 72h using the GridION device. MinKNOW
428 v22.12.5 or earlier was used to ensure that all our samples were sequenced using 4KHz sampling. Oligo
429 concatemers were multiplexed as indicated in [Supplementary table 1| Each genomic DNA sample was
430 sequenced individually in a single MinION flow cell.

431 De-multiplexing and reference assignment

432 Although oligos were concatenated separately, the library preparation protocol contains a ligation step in which
433 all oligo concatemers are pooled together. Therefore, it is possible to get oligo hybrids that contain different
434 reference sequences. For this reason, oligo samples were de-multiplexed using a custom algorithm to detect the
435 individual oligo repeats and barcodes within a read. Given the basecalls of a read, all possible oligo reference
436 sequences within that batch are aligned to the basecalled sequence using a semi-global alignment algorithm
437 (as implemented in the parasail library [61]). The reference sequence with the highest number of matches is
438 considered as the true underlying sequence for that portion of the basecalls. However, only matches to the
439 barcode and guanine 5-mer portions of the reference sequence are considered (max of 26 matches), since the
440 overhang sequence is common for all oligos and the basecalls surrounding 8-oxo-dG cannot be trusted. Then,
441 the aligned portion of the basecalled sequence is masked to avoid further alignment in subsequent iterations.
as2  This process is repeated until there are fewer than 15 non-masked bases or more than a set maximum number
443 of iterations is exceeded, which is dependent on the length of the basecalled sequence.

444  Raw data alignment

445 Raw data was aligned to the expected signal based on the reference sequence of the read. We used a custom
446 script that featured Tombo’s API [62] to align the two sequences. Notably, the expected signal model is based
447 solely on non-modified bases and therefore, we expected the raw signal corresponding to the 8-0xo-dG and
a8 surrounding bases to contain mis-alignments. Because our oligos contain random bases, for which we do not
449 know their true reference, we used their aligned basecalls instead.
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450 Base calling cross-validation

451 The oligo concatemers dataset was first split into train and test sets. The test set consisted of 100 reads (chosen
452 at random) per different oligo sequence (total of 22000 reads). To assess model performance during training, a
453 portion of the train set was split into the validation set at random, and kept constant throughout the epochs
454 (10% of the total training examples). The human dataset was first split into train and test sets. The train set
455 consisted of 40000 reads, chosen at random, from odd numbered chromosomes. The test set consisted of
456 10000 reads, chosen at random, from even numbered chromosomes. In the same manner as the oligo data,
457 10% of the total training examples was used as a validation set to assess model performance during training.

458 Raw signal normalization

459 A common approach to normalize the nanopore raw signal is to center and scale its values based on the set of

s60 measurements from the whole read (Equation 1)).

s T median(x) )

mad(x)

mad = median(|x — median(z)|) )

461 We observed that both the T2T and oligo data had a consistent shift between expected and measured values
462 (Supplementary figure 35[Supplementary figure 36). We attributed this larger shift in the oligo data to the
463 consistently repetitive nature of the oligo sequences, which overall, do not have enough sequence variability
464 to guarantee that the standard normalization approach would work as expected. To avoid normalization
465 bias, which could already distinguish genomic from oligo data at the signal level, we performed a second
4s6 normalization step. In this second normalization, we calculate what would be the optimal median and mad
467 values to minimize the distance between measured and expected values after alignment. We do
4s8  this by first fitting a linear model using least squares regression between the aligned measured and expected
469 values. We then re-scale the initially calculated med and mad values based on the fitted model. Using this
470 second normalization step, we noted that the previously observed signal shift was corrected, and average
471 6-mer values match between genomic and oligo data (Supplementary figure 37). We applied this 2-step
472 normalization approach on all our data both before training and inference.

473 Bonito fine-tuning

474 We fine-tuned a Bonito model to basecall 8-oxo-dG as G. We started from a pre-trained open source state
475 provided by ONT in their public bonito repository. We fine-tuned the model for a total of 43000 training
476  steps using a batch size of 256. The model was fine-tuned using an unbalanced combination of oligo (25% of
477 all training examples) and T2T data (75% of all training examples). We used the Adam [63] optimizer with
478 a constant learning rate of 0.0005. Other parameters of the optimizer were: f1 =0.9, 32 =0.999, ¢ = 1e-8
479 and A = 0.0. We used a dropout of 0.1 in between CNN layers, and a dropout of 0.5 in between RNN layers
480 (Supplementary figure 38)).

481 Modification calling cross-validation

482 To avoid any potential data leakage between the fine-tuning of the base calling model and the training of the
483 modification calling model, we used the same (based on read id) train, validation and test data splits in both
484  steps.

485 Remora training

485 We trained a Remora model to distinguish 8-0xo0-dG from a regular G. We used a neural network architecture
4g7 that first encodes the signal and sequence features via convolution, concatenates the encoded vectors, forwards
ags  the concatenated vector through a convolution layer and two recurrent layers, and a final linear layer for
4g9 classification (Supplementary figure 7). We trained several models with balanced (via upsampling of the
490 positive label samples, or downsampling of the negative label samples) and unbalanced datasets. We also
491 trained models with different positive label weights: 100% 10% or 1%, with different features (Methods,
492 Remora feature-engineering), and a model using metric learning (Methods, Remora metric learning). All
493 models were trained as described in the following paragraph.
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494 We trained the model as a classical classification problem using cross-entropy as loss function for a total of
495 235000 training steps using a batch size of 256. We used the Adam [63] optimizer with a variable learning
496 rate, which started at 0.00005 and increased linearly for 5000 training steps until 0.001, and then decreased
497 using a cosine function until 0.00005. Other parameters of the optimizer were: 31 = 0.9, 32 =0.999, ¢ = 1e-8
498 and A = 0.0. We used a dropout of 0.2 between all layers of the model.

499 Remora feature engineering

s00 Traditional Remora models from ONT include the raw signal and base calls, centered around the base of
so1 interest as input features for the model. We explored the use of additional features, both at the signal and
s02  base call level. At the signal level, we used the following features: expected signal aligned to the measured
503 signal based on the base calls from the fine-tuned Bonito model (8-oxo-dG aware), or from the pre-trained
504 Bonito model (not 8-oxo-dG aware); the difference between the measured and expected signals (from both
505 models); the difference between the aforementioned differences. At the sequence level, we used the following
so6 features: base calls from both the fine-tuned and pre-trained Bonito models, phred quality scores from both
507 the fine-tuned and pre-trainedBonito models. To ensure local feature information, features (both signal and
soe  sequence level) that were further than 3 bases, on either side, of the target G (based on the basecalls) were
s09 masked with zeros.

510 Remora metric learning

511 We trained a Remora model using Multi-Similarity loss (a=2, 3=50, base=0.5) and Multi-Similarity miner
s12 (e=0.1) [64] as implemented in PyTorch-Metric-learning. Triplets provided by the miner were filtered to only
513 contain samples from the same 5-mer in an effort to force the model to compare the two labels in the same
514 sequence context. Cosine similarity was calculated on the embedding vector output of the last LSTM layer
515 (Supplementary figure 7)) and used as a distance metric to calculate the loss. Triplet loss and cross-entropy
s16 loss were added together with equal weights before backpropagation.

517 Specificity Q-Scoring notation

58 Due to the low prevalence of 8-oxo-dG, it is necessary to achieve a near-zero false positive rate (10°-107). To
519 make the annotation of these very small values easier, we convert these using the phred quality score (Q) [65].

520 Cell line sequencing

521 RPEI-hTERT-DAAOMB wild type (WT) and p53” cells were treated for 2h with 20mM L-Alanine or D-
522 Alanine. Afterwards, genomic DNA was harvested using the DNeasy blood and tissue kit (Qiagen REF #69504)
523 according to the manufacturer’s protocol. Nanopore sequencing libraries were prepared and sequenced in the
524 same manner as described for the oligo concatemers (Methods, Library preparation, Nanopore sequencing).
525 For additional information regarding DAAO constructs and Illumina sequencing of these cell lines see van
s26  Soest et al [47]].

527 Illumina derived mutation profile

s28 Clones were sequenced at 30x base coverage using an Illumina Novaseq 6000 or an Illumina Hiseq X10
529 sequencing machine. Sequencing reads from all samples were mapped to the human reference GRCh38 genome
530 using the Burrows-Wheeler Aligner v0.7.17. Duplicate sequencing reads were marked using Sambamba
531 MarkDup v0.6.8. Variants in the mapped data were called using GATK Haplotypecaller version 4.1.3.0 using
532 efault settings. Variants were filtered using GATK 4.1.3.0 using several filter settings [Supplementary table|

533 To filter out mutations induced during sequencing, clonal expansion or library preparation, we filtered
53 genomic variants using an in-house filtering pipeline, SMuRF v2.1.1. Briefly, the variant allele frequency
535 (VAF) was calculated for each variant by pileup of all bases mapped at the mutation position. Variant data
s36 derived from cell clones were filtered for the following criteria: VAF >0.3, base coverage >10 and an MQ
537 quality >60. To select only mutations occurring during in-vitro culture, variants present in the clonal parental
ssg  cell line were removed. Recurrent mapping or sequencing artifacts were removed by filtering against a blacklist
539 containing variants present in healthy bone marrow mesenchymal stromal cells.
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540 8-0x0-dG mutational profile analysis

541 High confidence 8-oxo0-dG calls (score > 0.95) from >Q40 5-mers were grouped based on the 3-mer of the
s42  opposite strand to facilitate comparison with the C>A profile as described in the COSMIC signatures database.
543 Relative frequencies were calculated as the fraction of counts of each 3-mer given the total amount of counts.
s44  Counts per 3-mer were normalized to the amount of training 5-mers per 3-mer. Enrichment was calculated by
s45 subtracting the relative frequency of 8-oxo-dG calls from the relative frequency of 3-mers in the T2T reference
546 genome.

547 8-0x0-dG genomic regions analysis

s48  Genomic region annotations were downloaded for the CHM13v2 telomere-to-telomere (T2T) reference
s49  genome (https://github.com/marbl/CHM13). Base calls were aligned to the T2T reference genome using
s50 minimap?2 [66]. 8-oxo-dG counts (score > 0.95) were normalized per coverage as well as per 5-mer relative
551 abundance per region. 8-0x0-dG counts on 5’-UTR, 3’-UTR, exon and intron regions were only considered if
s52  the molecule was found on the same DNA strand as the annotated region; in intergenic, satellite, centromeres
s53 and complex repetitive regions 8-0xo-dG counts were considered regardless of the DNA strand. 5’UTR was
ss4 annotated as the upstream 5000 base pairs before the start of all annotated coding sequences. 3°UTR was
ss5 annotated as the downstream 5000 base pairs of all annotated coding sequences. Intergenic regions were
ss6 considered as all intervals that had no annotation.

557 8-0x0-dG related methylation analysis

ss8  All nanopore sequencing data was methylation called using the guppy tool and ONT’s model
559 dna_r9.4.1_e8.1_modbases_bmc_bhmc_cg_hac.cfg. Methylation calls were mapped to the T2T refer-
s60 ence genome assembly, and then extracted using the modkit tool. Analysis was restricted to only 5-mers in the
s61  training set. We evaluated the methylation status within a 10 kilobase window centered around any guanine
s62 (canonical or 8-0x0-dG). Methylation prediction scores were then averaged per base pair position to calculate
563 the average methylation status. Methylation scores within a 10 base window around 8-oxo0-dG were masked
se4 out from the analysis because we assume that the methylation calling model is not aware of signal effects that
s65s might be caused by a close proximity 8-oxo-dG molecule.

s66  8-0x0-dG telomere analysis

567 Reads whose mapping was primarily to the annotated T2T telomere regions were used for analysis. Based on
ses the reference T2T genome, annotated telomere regions were further constrained to the last TTAGGG repetitive
569 element.
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s76  Code availability

577 Source code for the 8-0xo0-dG caller as a Python package can be found at https://github.com/marcpaga/esox.
578 The following Python v3.7 packages were used during the development of the §-o0xo-dG caller: fast-ctc-decode
579 (v0.3.2), jupyterlab (v3.6.1), mappy (v2.22), matplotlib (v3.5.3), numba (v0.54.1), numpy (v1.18.5), ont-
sgo  fast5-api (v4.1.1), ont-tombo (v1.5.1), pandas (v1.3.5), parasail (v1.3.3), polars (v0.18.3), pytorch (v1.12.1),
581 pytorch-metric-learning (v2.3.0), scikit-learn (v1.0.2), seaborn (v0.12.2), tqgdm (v4.65.0). The following tools
ss2  were used for data processing and analysis: guppy (v6.3.8), minimap2 (v2.25), modkit (v0.2.0). Nextflow
583 pipeline for [llumina raw data alignment alignment can be found at https://github.com/UMCUGenetics/NF-IAP.
s84 The pipeline for variant filtering can be found at https://github.com/ToolsVanBox/SMuRF.
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Supplementary note 1: 8-0x0-dG signal alignment. The measured to expected signal alignment is not
optimal because the expected signal of 8-0x0-dG is unknown. We use the expected signal of G instead, which
will likely produce misassignment of data points to neighboring bases to optimize for the minimum distance
between the two sequences. For example, as seen in [Figure Tk, the signal produced by 8-oxo0-dG is clearly
different from G, but the number of measurements in the 8-0x0-dG and previous G bases are low compared to
the rest.

Supplementary note 2: Unsuccessful strategies. We explored whether we could increase the specificity by
filtering potential false positive calls. For example, the Remora model depends on accurate G calls from the
Bonito model. We therefore evaluated if inaccurate G calls from Bonito would lead to FP 8-0x0-dG calls in
the Remora model. However, we observed that filtering miscalls had a minimal impact (0.1%) in 8-oxo-dG
FP reduction. We also explored the use of metric learning in an effort to facilitate the learning process of the
model by defining triplets of examples in which the 5-mer context of the examples was the same. However,
this strategy quickly led to an overfitting of the model, and was deemed non-viable (Supplementary figure 39}
[Supplementary figure 40)

Supplementary note 3: Chromosomal variability of 8-oxo-dG levels. We evaluated whether the observed
differences in 8-oxo-dG levels across chromosome arms could be explained by their 5-mer content, and fitted a
linear model with 5-mer relative abundances as independent variables and 8-0x0-dG levels as response variables.
However, none of the regression coefficients was significant based on a permutation test
figure 41)), indicating that sequence alone does not explain these differences in 8-oxo-dG levels. Since we
observed different 8-oxo-dG levels per genomic region, we then hypothesized whether these could explain the
observed chromosomal variability. We evaluated if the relative abundance of the different genomic regions
could explain the observed chromosomal differences. However, we obtained a similar result, with none of the
coefficients being significant (Supplementary figure 42).

Supplementary note 4: Telomere ligation. DNA molecules prepped for nanopore sequencing require the
ligation of sequencing adapters that contain the motor protein that will thread the DNA molecule through the
pore. Adapter ligation can only be successful on a blunt end of a double strand DNA molecule. Telomere DNA
has a long overhang to prevent chromosome unwinding. This overhang prevents the adapter ligation, unless
the opposite strand is elongated to the length of the overhang [55,167]]. That means that the forward strand
(p-arm) and reverse strand (q-arm) cannot be sequenced using nanopore sequencing, unless a break occurs
somewhere within the double stranded sequence of the telomere. On the other hand, the reverse strand (p-arm)
and forward strand (g-arm), can be sequenced when a break occurs somewhere within the chromosome as
long as the DNA molecule is long enough. The latter is more likely given the relative short length of telomeres
compared to the rest of the chromosome.
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Supplementary figure 1: 8-0xo0-dG error rate ONT pre-trained Bonito. Confusion matrix of the ONT
Bonito pre-trained model evaluated on the test fold of the 8-0x0-dG containing oligo dataset. Values indicate
the fraction of outcomes for each ground truth base.

1.0

0.8 o

0.6 o

Error rate

0.4 H

0.2 4

e,

T
H H H

0.0 T 1T TT 17 17 11717 17 T 1T 1T 1T T T T T°7T UL L LI
BBEBBBBKKCKKBBBBBBBNNNKKCKKNNEBBBBBBHHHHHH
Oligo base

BLLRRRSLELOtRRERaS  S8T4E  hhdhadi. *+++?

Supplementary figure 2: Reverse oligo strand error rate. Error rate per oligo base across all sequenced
non-8-0x0-dG containing repeats. Random bases are excluded from the analysis as we do not know their true
reference.
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Supplementary figure 3: Cytosine speed changes, 8-0x0-dG vs G. Average number of measured data points
(as segmented using Tombo) per cytosine (n=1000) when paired with 8-0xo0-dG (red) or G (purple). Cytosines
in the same 5-mer context (KKCKK) are connected via gray lines.

G ¥ % ;o G 3'.
kel [ ] ® ° kel [} [ ] [
S 1.0 A e ® S 104 //. @ O
S » 3 Y A
T 0.5 - O g T 05 7’ LA ] °
© /‘ Q @ ° [ // ) ’ °
T 00 'y X T 00 .0“
< ® ¥ 0/3'. ° < ° (. o °
& -05 - . e & —0.5 o L% c:
< o it o ‘e
O -1.0 [ 9 ,( 0 —10 ‘/. ° o
> o ° E »2°_o0
a 0% e 7] , t (]
© =15 o [ ] © -1.5 -
9] b ol 9 JRe ®
= o4 & s 204 27 %

T T T T T T T T T T T

-3 -2 -1 0 1 2 -2 -1 0 1 2

Expected signal (A) Expected signal (C)
4 ) 4
G o.. %,’ G ° o‘ .,/'
© e
g 7 ° /“ o 107 L Yol
X o020 o X o o000
? o054 [ 30 S 454 ° \6 °
© 9,:0 o J o 0%
= co ° = ) °
© 0.0 - ° c 0.0 o
5 c S o 5 L e A
& -05 - o o8°% & -0.5 o o & ..A.
3 o‘.oy 3 ° \* 8
L -1.0 . . g -1.0 ..~ ..‘,
8 -15 - 0q © R ° ’
© -15 ° ,"/ © -15 %0 o /(
Z 04 % 4 Z 50 % e s
T T T T T T T T T
-2 -1 0 1 -3 -2 -1 0 1
Expected signal (G) Expected signal (T)

Supplementary figure 4: 8-0x0-dG versus canonical bases signals. Average measured normalized canonical
base (A, C, G, T) signal and 8-oxo-dG signal per measured 5-mer as segmented using Tombo. Identity line
indicated as the dashed gray line.
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Supplementary figure 5: 8-0x0-dG signal examples. Example of 8-0x0-dG (red) and AICIT (purple) signals
in the TTG(8-0x0-dG/AICIT)CTG context. Dashed black line indicates the expected signal value based on the
AICIT containing sequence.
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Supplementary figure 6: 8-oxo-dG error rate after Bonito fine-tuning. Error rate per base around 8-oxo-dG
(o) in the ONT Bonito pre-trained model (left), and fine-tuned (right) model with both T2T and oligo data.
Error rate includes mismatches and deletions.
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Supplementary figure 7: Remora model architecture. Schematic representation of the neural network
architecture for a Remora model. Numbers indicate output dimension (c), kernel size (k), stride (s).
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Supplementary figure 8: Remora model classification score distributions. Score distributions for the
negative (top) and positive (samples) of the test fold, for each trained Remora base model with different
positive sample weights: 100%, 10% and 1% from left to right.
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Supplementary figure 9: Remora model during training performance with increased number of features.
True positive rate overt training of a Remora model with different features. Each model contains one additional
feature from top left to bottom right.
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Supplementary figure 10: Single feature classifier. ROC curve (blue line) for a classifier solely based on
the absolute sum of differences between measured raw signal and expected signal (Finetuned - Pretrained).
This feature is highly differentiating since it achieves by itself an AUC of 0.79. Dashed gray line indicates the
performance of a random classifier.
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Supplementary figure 11: Remora model performance with additional features. TPR and Q-Score
specificity evaluated on the test fold for the experiment in which additional features were added sequentially.
Metrics are calculated using a 0.5 threshold. Models include additional features in a cumulative manner, from
left to right: basecalls, expected signal, difference between expected and measured signal, and basecall phred
quality scores. Red bars include features from the fine-tuned model, purple bars also include features from the
Bonito pre-trained model, blue bars include the difference between the features of the Bonito fine-tuned and
pre-trained models.
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Supplementary figure 12: AUC per 5-mer. 8-0x0-dG classification performance for each 5-mer as area
under the curve (AUC).
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Supplementary figure 13: 8-0x0-dG levels per cell line and treatment. Overall 8-oxo-dG molecules per 1
million G molecules per L-Alanine and D-Alanine treated cells. Error bars indicate minimum and maximum
calculated values per biological replicate.
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Supplementary figure 14: 8-0x0-dG levels per GC content. 8-oxo-dG levels across different GC (%) content
bins. Red lines indicate 8-oxo0-dG values per 1 million guanines. Grey dashed line indicates the distribution of
measured GC content bins.
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Supplementary figure 15: 8-0x0-dG levels normalized to GC content. 8-0x0-dG levels across different

GC (%) content bins. Purple (L-Alanine) and red (D-Alanine) lines indicate 8-oxo-dG values per 1 million
guanines normalized to GC content. Grey dashed line indicates the distribution of measured GC content bins.
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Supplementary figure 16: 8-0xo0-dG levels normalized to GC content. 8-0oxo-dG counts per 1 million
guanine divided per DNA strand and L-alanine or D-alanine treated cells. Boxplot represents values per
chromosome for all cell lines. Horizontal bar represents the median, boxes indicate the 25th and 75th
percentiles, whiskers indicate the 10th and 90th percentiles, and diamonds indicate outliers.
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Supplementary figure 17: 8-0x0-dG levels normalized to GC content. 8-0xo-dG counts per 1 million
guanine divided per DNA chromosome arm and L-alanine or D-alanine treated cells. Boxplot represents
values per chromosome for all cell lines. Horizontal bar represents the median, boxes indicate the 25th and
75th percentiles, whiskers indicate the 10th and 90th percentiles, and diamonds indicate outliers.

12


https://doi.org/10.1101/2024.05.17.594638
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.17.594638; this version posted June 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

»—,ﬁm = R
e
—— ]
— ., ] =
Ce—— T
. —
e— ="
o "
————————————————————-"%
. =
——— =)
)
... e
————————— e =
N —— e
. —_
——— ., 1

|

8-0x0G per 1 million G

Supplementary figure 18: 8-0x0-dG levels wild-type L-alanine treated cells. 8-oxo-dG counts per 1 million
guanines for the RPE wild-type cells treated with L-alanine. Counts are divided per chromosome, chromosome
arm and DNA strand. Error bars indicate the values of the two biological replicates.
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Supplementary figure 19: 8-0x0-dG levels wild-type D-alanine treated cells. 8-oxo-dG counts per 1 million
guanines for the RPE wild-type cells treated with D-alanine. Counts are divided per chromosome, chromosome
arm and DNA strand. Error bars indicate the values of the two biological replicates.
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Supplementary figure 20: 8-0x0-dG levels p53 KO L-alanine treated cells. 8-oxo-dG counts per 1 million
guanines for the RPE wild-type cells treated with L-alanine. Counts are divided per chromosome, chromosome
arm and DNA strand.
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Supplementary figure 21: 8-0x0-dG levels p53 KO D-alanine treated cells. 8-oxo-dG counts per 1 million
guanines for the RPE wild-type cells treated with D-alanine. Counts are divided per chromosome, chromosome
arm and DNA strand.
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Supplementary figure 22: 8-oxo-dG levels per genomic region and treatment. 8-oxo-dG counts per 1
million guanine grouped per genomic region based on the T2T reference genome assembly. Data values are
collected per chromosome. Colors indicate whether cells were treated with D-Alanine (blue) or L-Alanine
(orange). Horizontal bar represents the median, boxes indicate the 25th and 75th percentiles, whiskers indicate
the 10th and 90th percentiles.
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Supplementary figure 23: Number of reads mapped to telomeres. Number of mapped reads across all
sequenced cell lines, split by chromosome arm and DNA strand. Only primarily mapped reads are included.
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Supplementary figure 24: 8-0x0-dG molecules detected at telomeres. 8-0x0-dG calls (red) on reads that are
primarily mapped to telomeric regions. Calls are combined from all the sequenced cell lines. Light gray bars
indicate repetitive regions on each chromosome. Dark gray bars indicate non-repetitive regions, still annotated
as telomeric regions on the T2T reference genome assembly.
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Supplementary figure 25: 8-0x0-dG molecules detected at telomeres. Mutational profile for C>A mutations.
Mutations are grouped based on their 3-mer context and counts are relative to the total amount of C>A
mutations. Text in the plot indicates the cell line (WT or p537), treatment (L-Alanine or D-Alanine), and the
biological replicate number. H2B-WT-D3 was a failed sequencing run and therefore has no data.
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Supplementary figure 26: 3-mer completness. Fraction of 5-mers with a specificity >Q40 for each 3-mer in
the reverse complement strand.
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Supplementary figure 27: Mutational profile normalization. Mutational profile of C>A mutations of all
cell lines and treatments joined. Left panel indicates the joined profiles without any correction. Middle panel
includes only mutations in a 5-mer context with high specificity for 8-oxo-dG calling. Right panel includes
corrections for the number of available 5-mers per 3-mer.
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Supplementary figure 28: 8-ox0-dG to mutation ratio. Ratio between 8-0xo0-dG calls and C>A/G>T
mutations in each C>A 3-mer. Includes data aggregated from all the cell lines.
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Supplementary figure 29: Human genome 3-mer content. Relative counts of all the 3-mers (with cytosine
in the middle position) in the human genome. Left includes all the 3-mers, and right only includes counts of
5-mers with high specificity for 8-oxo-dG calling.
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Supplementary figure 30: Methylation levels per line relative to 8-oxo-dG. Methylation levels for 8-oxo-dG
(red) and Guanine (black) containing reads at position zero, methylation levels are obtained from the same
molecule. Transparent colored line indicates the underlying data, the dark line is the result of an 11 base
average convolution. Text in the plot indicates the cell line (WT or p53'/ 7), treatment (L-Alanine or D-Alanine),
and the biological replicate number.

19


https://doi.org/10.1101/2024.05.17.594638
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.17.594638; this version posted June 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.045 —

0.040 —+

0.030 4

—_— G

0.025
= 8-0x0G

0.020

T T T T T
—4000 —2000 0 2000 4000

Base pair relative to Guanine (position 0)

Hydroxy-methylation fraction

Supplementary figure 31: Hydroxy-methylation levels relative to 8-oxo-dG. Hydroxy-methylation levels
for 8-0x0-dG (blue) and Guanine (black) containing reads at position zero, hydroxy-methylation levels are
obtained from the same molecule. Transparent colored line indicates the underlying data, the dark line is the
result of an 11 base average convolution.
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Supplementary figure 32: Hydroxy-methylation levels per line relative to 8-0xo0-dG. Hydroxy-methylation
levels for 8-0xo0-dG (blue) and Guanine (black) containing reads at position zero, hydroxy-methylation levels
are obtained from the same molecule. Transparent colored line indicates the underlying data, the dark line is
the result of an 11 base average convolution. Text in the plot indicates the cell line (WT or p537), treatment
(L-Alanine or D-Alanine), and the biological replicate number.
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Supplementary figure 33: Hydroxy-methylation levels split by 3-mer relative to 8-oxo-dG. Hydroxy-
methylation levels for 8-oxo-dG (blue) and Guanine (black) containing reads at position zero, hydroxy-
methylation levels are obtained from the same molecule. Data from all conditions is included, and is split
between the tri-nucleotide context of the opposite strand of Guanine. Transparent colored line indicates the
underlying data, the dark line is the result of an 11 base average convolution.
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Supplementary figure 34: Oligo ligation length. Electrophoresis gel (1% agarose run at 80V for 1 hour) that
shows that consecutive repetitive oligo ligations yield increasingly lengthy DNA concatemers.
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Supplementary figure 35: Canonical 6-mer normalization T2T. Measured 6-mer average levels on the
T2T dataset before two step signal normalization, compared to expected 6-mer values for non-modified bases.
Blue line indicates the identity line. Orange line indicates a linear fit model between the expected and oligo
measurements.
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Supplementary figure 36: Canonical 6-mer normalization oligo. Measured 6-mer average levels on the
oligo dataset before two step signal normalization, compared to expected 6-mer values for non-modified bases.
Blue line indicates the identity line. Orange line indicates a linear fit model between the expected and oligo
measurements.
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Supplementary figure 37: Canonical 6-mer comparison between T2T and oligo. Measured 6-mer average

levels on the T2T and oligo datasets after two step signal normalization. Blue line indicates the identity line.
Orange line indicates a linear fit model between the T2T and oligo measurements.
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Supplementary figure 38: Neural network architecture of a Bonito model. Schematic representation of the
neural network architecture for a Bonito model. Numbers indicate output dimension (c), kernel size (k), stride
(s), padding (p), dilation (d) and bias (b).
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Supplementary figure 39: Metrics during training. Performance metrics of the Remora base model during
training, trained using a metric learning approach during training. Each plot represents, from left to right, the
TPR, FPR, TNR and FNR for the train (red) and validation (purple) folds.
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Supplementary figure 40: Metrics during training, metric learning. Performance metrics of the Remora
base model during training, trained using a metric learning approach during training. Each plot represents,
from left to right, the TPR, FPR, TNR and FNR for the train (red) and validation (purple) folds.
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Supplementary figure 41: Linear model 5-mer coefficients. Coefficient distribution after fitting a model to
explain the observed 8-oxo-dG values per chromosome, chromosome arm and DNA strand based on the 5-mer
content. Blue bars indicate the obtained coefficients after model fitting. Gray bars indicate obtained coefficient
after label randomization.

26


https://doi.org/10.1101/2024.05.17.594638
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.17.594638; this version posted June 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Random coefficients
mmm Model coefficients
16000

14000 -

12000 -

10000 -

Counts

8000 -

6000 -

4000 —

2000 -

o T T T T T T
—0.0006 —0.0004 —0.0002 0.0000 0.0002 0.0004

Coefficients

Supplementary figure 42: Linear model genomic regions coefficients. Coefficient distribution after fitting a
model to explain the observed 8-0xo-dG values per chromosome, chromosome arm and DNA strand based on
the relative abundance of different genomic regions (exons, introns, intergenic, satellites, centromeres and
complex repetitive regions). Blue bars indicate the obtained coefficients after model fitting. Gray bars indicate
obtained coefficient after label randomization.
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Supplementary table 1: Oligo sequences. All synthesized and sequenced oligo sequences. Names indicate
the 5-mer in which 8-0x0-dG is. Random bases are indicated as “N” and 8-ox0-dG is indicated as “0”.

Supplementary table 2: Error rate 8-oxo-dG containing oligos. Calculated error rate per base in the
8-0x0-dG 5-mer across all sequenced oligos (which contain an 8-0xo0-dG). "base_3’ corresponds to 8-oxo-dG.

Supplementary table 3: Error rate non-8-0xo-dG containing oligos. Calculated error rate per base in the
8-0x0-dG 5-mer across all sequenced oligos (which do not contain an 8-oxo-dG). ’base_3’ corresponds to
cytosine complementary to 8-oxo-dG.

Supplementary table 4: Performance metrics base Remora model. Performance metrics (TPR, FPR, TNR
and FNR) calculated at different thresholds for the trained Remora base model, evaluated on the test fold.

Supplementary table 5: Variant filtering configuration. Per parameter configuration used for variant
filtering for the mutational profile calculation derived from [llumina sequencing.
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