
DIRECT DETECTION OF 8-OXO-DG USING NANOPORE SEQUENCING

Marc Pagès-Gallego^{1,2}, Daan M. K. van Soest¹, Nicolle J. M. Besselink^{1,2,§}, Roy Straver^{1,2}, Janneke P. Keijer¹, Carlo Vermeulen^{1,2}, Alessio Marcozzi³, Markus J. van Roosmalen^{2,4}, Ruben van Boxtel^{2,4}, Boudewijn M. T. Burgering^{1,2,§}, Tobias B. Dansen^{1,§}, Jeroen de Ridder^{1,2,§}

¹Center for Molecular Medicine University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands

²Oncode Institute, 3521 AL Utrecht, the Netherlands

³Cyclomics, 3584 CG Utrecht, The Netherlands

⁴Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands

[§] Currently at Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands

[§]Corresponding authors

j.deridder-4@umcutrecht.nl, t.b.dansen@umcutrecht.nl, b.m.t.burgering@umcutrecht.nl

ABSTRACT

1 Genomic DNA is constantly subjected to oxidative damage, which is thought to be one of
2 the major drivers of cancer and age-dependent decline. The most prominent consequence
3 is the modification of guanine into 8-hydroxyguanine (8-oxo-dG), which has important
4 mutagenic potential and plays a role in methylation-mediated gene regulation. Methods to
5 simultaneously detect and quantify 8-oxo-dG within its genomic context have been lacking;
6 mainly because these methods rely on indirect detection or are based on hydrolysis of the
7 DNA. Nanopore sequencing has been deployed for the direct detection of base-modifications
8 like cytosine methylation during sequencing. However, currently there is no model to detect
9 8-oxo-dG by nanopore sequencing due to the lack of training data. Here, we developed a
10 strategy based on synthetic oligos to create long DNA molecules with context variability
11 for effective deep learning and nanopore sequencing. Moreover, we showcase a training
12 approach suitable to deal with the extreme scarceness of 8-oxo-dG compared to canonical
13 G to enable specific 8-oxo-dG detection. Applied to an inducible tissue culture system for
14 oxidative DNA damage, our approach reveals variable 8-oxo-dG distribution across the
15 genome, a dissimilar context pattern to C>A mutations, and concurrent 5-mC depletion
16 within a 2-kilobase window surrounding 8-oxo-dG sites. These findings not only underscore
17 the potential of nanopore sequencing in epigenetic research, but also shed light on 8-oxo-
18 dG's role in genomic regulation. By simultaneously measuring 5-mC and 8-oxo-dG at
19 single molecule resolution, our study provides insights into the functional interplay between
20 these DNA modifications. Moreover, our approach using synthetic oligos to generate a
21 ground truth from machine learning modification calling could be applied to any other
22 DNA modification. Overall, our work contributes to advancing the field of epigenetics and
23 highlights nanopore sequencing as a powerful tool for studying DNA modifications.

24 Introduction

25 Genomic DNA is under constant assault from various damaging agents, leading to breaks and chemical
26 modifications such as oxidation. Among the oxidized base adducts that have been identified [1, 2], 8-oxo-
27 7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), is the most abundant, since guanine, out of the four bases, has
28 the lowest redox potential [3]. Oxidation of G to 8-oxo-dG can occur both directly in the DNA or in the free
29 nucleotide pool by several processes, including the formation of hydroxyl radicals derived from endogenous
30 reactive oxygen species [4], as well as exogenous sources like ionizing radiation [5], and incorporated into
31 the DNA by several polymerases [6]. Its most pivotal characteristic is its ability to both pair with cytosine
32 (forming a regular Watson-Crick base pair) and adenine (forming a Hoogsteen base pair). 8-oxo-dG, when
33 paired with cytosine, is proactively excised from the DNA in humans by the DNA glycosylases OGG1 [7],
34 and adenine, when paired with 8-oxo-dG, is excised by MUTYH [8], but also via preemptive sanitisation of
35 the nucleotide pool by MTH1 (also known as NUDT1) [9]. However, upon failure to repair a 8-oxo-dG:C
36 pair prior to replication, it can lead to a 8-oxo-dG:A pair, which upon a second round of replication would
37 become T:A, leading to a C>A transversion [10, 11]. If 8-oxo-dG is incorporated from the nucleotide pool
38 opposite of adenine, then a T>G transversion can also occur after replication [12]. Mutations downstream of
39 8-oxo-dG have significant implications in the development of cancer [13, 14, 15]. 8-oxo-dG is the proposed
40 mechanism underlying COSMIC [16] signatures 18 and 36 [17, 18, 19], and has been recognized as a potential
41 disease biomarker in the field [20, 21]. 8-oxo-dG has also been linked to transcriptional and epigenetic
42 regulation [22], in particular in the context of DNA (de)methylation at cytosine (5-methylcytosine, 5-mC):
43 8-oxo-dG passively inhibits methyltransferases [23], and OGG1 recruits TET enzymes which convert 5-mC to
44 5-hydroxymethylcytosine (5-hmC) as the first step in the demethylation process [24].

45 Due to its potential as a disease biomarker, several efforts have been made to quantify 8-oxo-dG in urine
46 [25, 26], blood [27], genomic material [28], and several other tissues [21]. The absolute quantification of
47 8-oxo-dG has predominantly relied on highly sensitive methods such as liquid or gas chromatography followed
48 by mass spectrometry or electrochemical detection, or enzyme-linked immunosorbent assays [21]. However,
49 its accuracy has been subject to debate due to large discrepancies between reported levels [29, 30, 31, 21],
50 and high variability between laboratories [32]. Furthermore, these methods fail to provide insights into the
51 genomic location of 8-oxo-dG, which precludes unveiling the mechanisms underlying heterogeneous mutation
52 rates, repair mechanisms, and the role of 8-oxo-dG in epigenetic regulation. For this reason, recently several
53 innovative genomics-based methods have attempted to investigate 8-oxo-dG in a genome-wide manner. These
54 approaches include the detection of apurinic sites created by 8-oxo-dG repair enzymes (Click-code-seq [33]
55 and OGG1-AP-seq [34]), ChIP-seq techniques employing an 8-oxo-dG antibody (OxiDIP-seq [35]), pull-down
56 of cross-linked biotin tags attached to 8-oxo-dG (OG-seq [36] and CLAPS-seq [37]), and pull-down of 8-oxo-
57 dG repair enzymes (enTRAP-seq [38]). Collectively, these methods have revealed that 8-oxo-dG, and its repair,
58 is not uniformly distributed throughout the genome, although with some contradictory results between the
59 methods [39, 22]. Current genomic approaches have three main downsides: first, they lack single nucleotide
60 resolution (with the exception of Click-code-seq), which hampers the study of the relationship between
61 8-oxo-dG and its associated mutational signatures; secondly, these methods rely on short-read sequencing
62 methods and therefore cannot properly investigate genomic repetitive regions; and lastly, indirect detection
63 is associated frequently with false positive (FP) signals due to suboptimal antibody specificity, enzymatic
64 or chemical reactivity [39]. The latter is especially important given the reported rarity of 8-oxo-dG (1-100
65 8-oxo-dG per 1 million G [21]). For example, even with a usually considered low false positive rate (FPR) of
66 1%, the ratio between false and true positives would be approximately 10:1, which would quickly obfuscate
67 any real signal and preclude meaningful conclusions [40].

68 Nanopore sequencing operates by threading a DNA (or RNA) molecule through a membrane-embedded pore
69 while measuring fluctuations in the electrical current over the membrane, and is currently commercialized by
70 Oxford Nanopore Technologies (ONT) [41]. Changes in the electrical current are indicative of the molecule's
71 chemical properties, which holds the potential to detect base modifications. This enabled the detection of
72 5-mC using α -Hemolysin pores [42], and later using ONT devices [43, 44]. Since then, base modification
73 detection models have been developed both by ONT and the community for detecting both naturally occurring
74 and synthetic modifications [45]. But so far, there is no model available for the detection of 8-oxo-dG by
75 nanopore sequencing. Developing modification detection models presents substantial challenges, especially
76 for rare modifications. Firstly, obtaining sequencing data where the precise location of a rare modification is
77 known is not trivial, as these modifications cannot be verified with other technologies to establish a ground
78 truth. Moreover, the context of the modification must exhibit sufficient diversity to prevent the model from
79 learning sequence biases. The effect of the modification passing through the pore on the electrical current must
80 be pronounced enough to distinguish it from inherent noise and other bases. And finally, the model must be

81 extremely precise to accommodate detection of rare modifications, e.g. while for 5-mC it is acceptable to have
82 a 1% FPR, it would be prohibitively high for rare modifications such as 8-oxo-dG due to its low abundance
83 [40].

84 Keeping these considerations in mind, we devised an approach to generate a library of long synthetic DNA
85 molecules that each contain 8-oxo-dG in a known, specific, but variable sequence context. Utilizing this ground
86 truth dataset, we demonstrate that 8-oxo-dG has a discernible impact on the nanopore raw signal, leading to
87 systematic errors using the ONT provided basecaller. We trained a deep learning model capable of detecting
88 8-oxo-dG from the raw signal with single-nucleotide resolution, high specificity, and employed it in a cell line
89 with inducible, localized oxidative stress in the nucleus. Our experiments show genome wide variability in
90 8-oxo-dG levels, with increased levels in complex and repetitive regions which were uncharted by previous
91 short-read based methods. For the first time, we are able to simultaneously measure 5-mC and 8-oxo-dG
92 at single molecule resolution, revealing a strong 5-mC depletion within a 2-kilobase window surrounding
93 8-oxo-dG. Collectively, our approach showcases a methodology widely applicable to any synthesizable DNA
94 base modification.

95 **8-oxo-dG is detectable using nanopore sequencing**

96 To generate a ground truth dataset, we designed a set of 110 short synthetic oligos (46 base pairs each) that
97 contained 8-oxo-dG in different genomic contexts. The oligo design (**Figure 1a**) consists of three barcodes
98 (7 base pairs each) to enable multiplexing. In addition, these barcodes have been optimized to facilitate
99 signal segmentation. The oligos were designed to contain complementary overhangs (10 base pairs) enabling
100 concatenation via hybridization and ligation to create long reads that can efficiently be sequenced on the
101 nanopore platform (**Methods, oligo design**). The 8-oxo-dG base is surrounded by two predefined bases on
102 either side (K₁, K₂, K₃, K₄), and five additional random bases (2 bases on the 5' end (N₁, N₂), and 3 bases on
103 the 3' end (N₃, N₄, N₅)) to ensure context diversity. We decided to use predefined bases next to the 8-oxo-dG
104 base, instead of random bases, because the effect of the modification would make it impossible to accurately
105 determine which true bases corresponded to each oligo (**Figure 1b**). Knowing the true sequence of an oligo is
106 necessary to train a basecaller. Finally the oligos include an unmodified guanine base surrounded by the same
107 bases as the 8-oxo-dG base to serve as a built-in control (**Figure 1a, Supplementary table 1**).

108 Using the concatenated synthetic oligos, we first established whether 8-oxo-dG has an effect on the basecalling
109 performance of ONT's standard base calling model. We found that there was a substantial increase in
110 basecalling errors specifically at the site of 8-oxo-dG (not basecalling 8-oxo-dG as G) and its neighboring
111 bases (**Figure 1b**). The basecaller's most likely mistakes, regarding 8-oxo-dG, are deletions (16.4%) or
112 incorrect calls as cytosine (13.5%) or adenine (12.5%) (**Supplementary figure 1**). Moreover, the basecalling
113 error rate is not uniform across different contexts, varying from 1.4% to 91% (**Supplementary table 2**). This
114 variability suggests that the signal alterations are 5-mer context dependent. To establish that the increased
115 error rate was not an artifact of our oligo generated data, we also assessed the error rate on the reverse strand,
116 which is devoid of any modified bases. As expected, here we did observe a consistently low error rate, which
117 was much more uniformly distributed across the different bases and contexts (**Supplementary figure 2**).
118 Interestingly, the cytosine opposite to the 8-oxo-dG base exhibited a slightly higher error rate (median 12.3%)
119 compared to the other bases (median 5.0%) (**Supplementary table 3**). Note that the DNA is unwound when
120 it enters the pore, and hence this cytosine is no longer bound to 8-oxo-dG when it is being sequenced. We
121 hypothesized that the unwinding of the DNA by the helicase might be affected by 8-oxo-dG. We therefore
122 compared the speed (based on raw to expected signal alignment) between cytosines paired to 8-oxo-dG and
123 cytosines paired to G in the same 5-mer contexts. We observed that on average cytosines paired to 8-oxo-dG
124 had fewer measurements, suggesting faster translocation of the DNA, than cytosines paired to G (77% of
125 evaluated 5-mers) (**Supplementary figure 3**). This suggests that, despite only sequencing one DNA strand,
126 the opposite strand can have an impact on translocation speed via structural effects that impact the proteins in
127 the pore, thus affecting base calling accuracy.

128 We then evaluated what specific effect 8-oxo-dG has on the raw signal. To this end, we aligned the measured
129 raw signal to the expected signal (obtained from ONT's k-mer model) based on the known underlying sequence
130 (**Methods, Raw data alignment, Supplementary note 1**). We observed a significant difference between
131 the expected (which assumes an unmodified guanine) and measured signals. For example, in **Figure 1c** it
132 can be seen that the measured signal is higher than expected when 8-oxo-dG is present. This effect is also
133 clear when evaluating other sequence contexts (**Figure 1d**), indicating that 8-oxo-dG has a clear effect on
134 the measured signal. The measured signal is also significantly different from the other 3 bases (A, C and T)
135 (**Supplementary figure 4, Supplementary figure 5**) and is most dissimilar to the pyrimidines. Considering

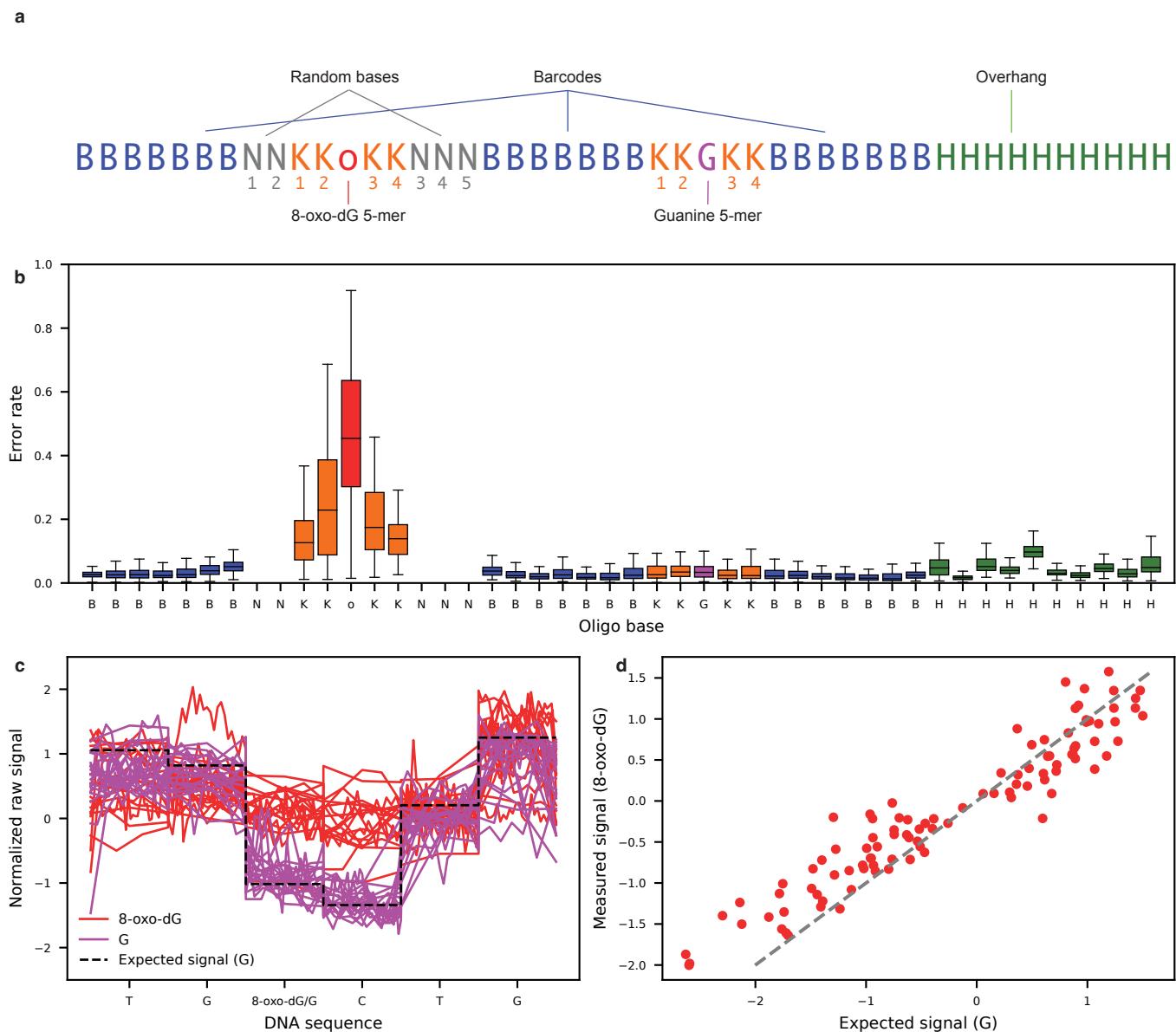


Figure 1: 8-oxo-dG has a detectable effect on the nanopore raw signal. **a**, Schematic of the design of the 8-oxo-dG containing oligos. **b**, Error rate per oligo base across all sequenced 8-oxo-dG containing repeats. Random bases are excluded from the analysis as we do not know their true reference. Horizontal bar represents the median, boxplots minimum and maximum bounds represent the 25th and 75th percentiles, respectively, and whiskers extend to 1.5 times the interquartile range. **c**, Example of 8-oxo-dG (red) and G (purple) signal in the TG(8-oxo-dG/G)CTG context. Dashed black line indicates the expected signal value based on the G containing sequence. **d**, Average measured normalized G signal and 8-oxo-dG signal per measured 5-mer as segmented using Tombo. Identity line indicated as the dashed gray line.

136 these observations, we concluded that 8-oxo-dG is discernible from the other four canonical bases, suggesting
137 that training a machine learning algorithm for its detection would be feasible.

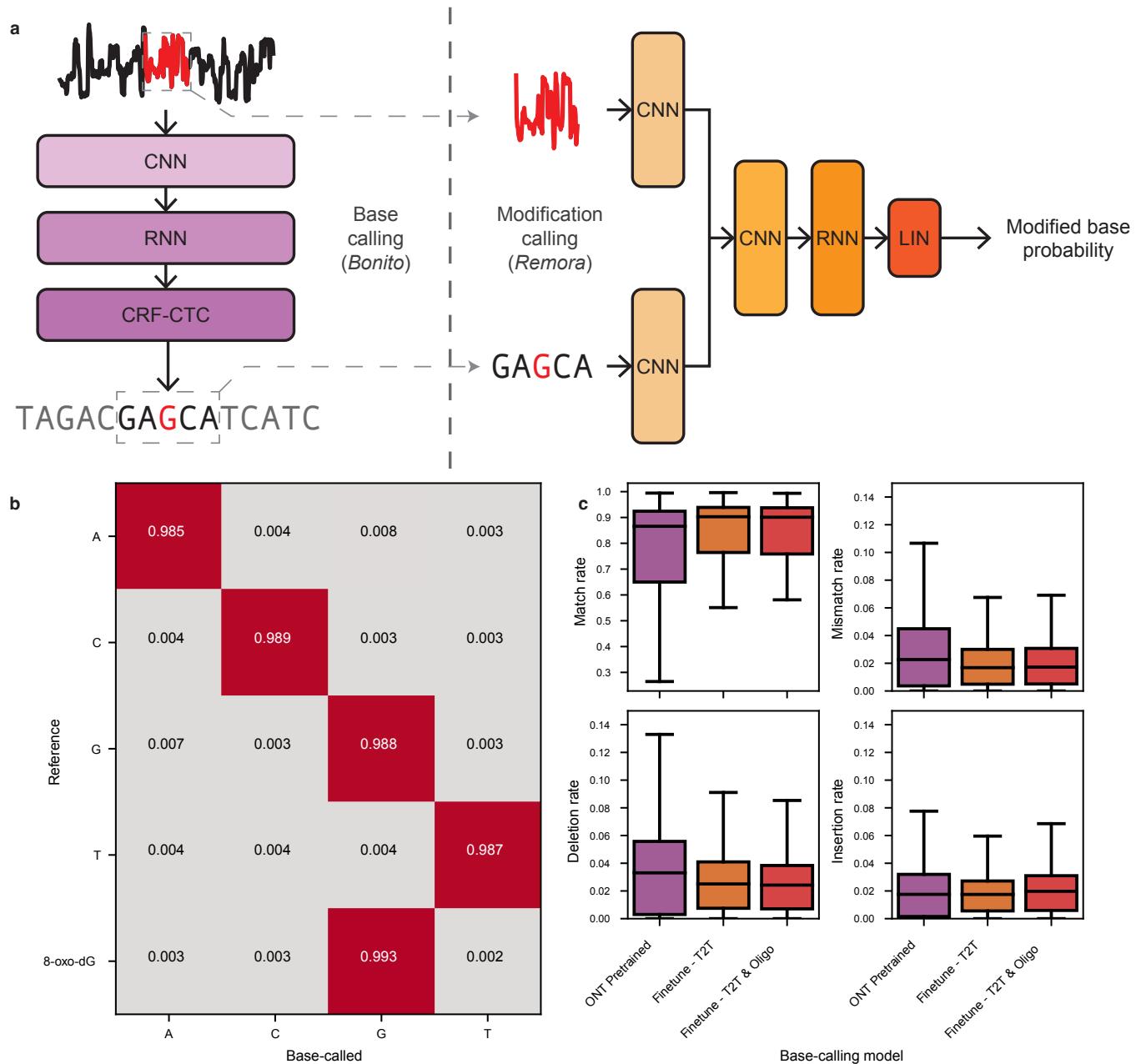


Figure 2: Fine-tuning of a *Bonito* model to basecall 8-oxo-dG. **a**, Schematic of a two step approach to call modified bases in nanopore sequencing. First, the raw signal is basecalled to a DNA sequence. Upon basecalling the (potentially modified) base of interest, a small window of raw signal that corresponds to that particular base is cut; and together with a portion of the basecalled sequence, is given as input to a second model that predicts whether the base is modified or not. **b**, Confusion matrix of the fine-tuned *Bonito* base caller. Values indicate the fraction of outcomes for each ground truth base. **c**, Match, mismatch, deletion and insertion rates of the pre-trained and different fine-tuned models using different datasets on the T2T human reference genome nanopore data. Horizontal bar represents the median, boxplots minimum and maximum bounds represent the 25th and 75th percentiles, respectively, and whiskers extend to 1.5 times the interquartile range.

138 **Bonito basecaller fine-tuning**

139 The nanopore signal originating from 8-oxo-dG containing sequences appears to have several context dependent
 140 distinctive features. We therefore sought to train a neural network model that could distinguish 8-oxo-dG

141 from G. We opted for a two step approach, similar to ONT's *Bonito* + *Remora* combination (**Figure 2a**). First,
142 *Bonito* performs regular basecalling (A, C, G, T); and afterwards, *Remora* classifies the base of interest (e.g. C
143 vs 5-mC, or in our case G vs 8-oxo-dG) as modified or not, using a small data window (e.g. 100 data points).
144 Since we already observed that the basecaller provided by ONT is not 8-oxo-dG aware, (**Figure 2b**), we first
145 fine-tuned a *Bonito* model to basecall 8-oxo-dG as G. To that end, we used a publicly available pre-trained
146 version of *Bonito* from ONT, and fine-tuned it by training it with oligo concatemers containing 8-oxo-dG and
147 publicly available human data from the telomere-to-telomere (T2T) reference dataset (**Methods, Genomic**
148 **DNA: Telomere-to-telomere**). We also fine-tuned a model with only data from the T2T dataset to assess
149 the effect of fine-tuning itself on basecalling performance. We then evaluated the basecalling performance
150 of these models on human genomic data, and their capacity to basecall 8-oxo-dG as G, in a cross-validated
151 manner (**Methods, Base calling cross-validation**). We observed that after fine-tuning the models with oligo
152 data, 8-oxo-dG was basecalled as G (~3% median error rate), and immediate neighboring bases are basecalled
153 correctly at error rates similar to the rest of the bases (**Figure 2b, Supplementary figure 6**). To ensure that
154 the model did not overfit to the oligo data, we also evaluated the basecalling performance on human genomic
155 data. We observed that basecalling was slightly more accurate on the fine-tuned model than on the pre-trained
156 model (median error rate decreased from 14% to 10%); and that the addition of oligo data in the training did
157 not have a negative effect on regular genomic basecalling (**Figure 2c**). Our *Bonito* fine-tuned model can now
158 accurately basecall 8-oxo-dG as G, and is also capable of regular genomic basecalling.

159 Detecting 8-oxo-dG with high specificity

160 We then trained a *Remora*-like model to distinguish 8-oxo-dG from unmodified guanine. We started by
161 training a base model which takes as input both 100 data points of signal and the basecalled 7-mer. Both
162 features were centered around the guanine of interest. The model then outputs a score between zero and
163 one for the likeliness of that particular guanine being 8-oxo-dG (**Supplementary figure 7**). We trained the
164 model on both positive and negative examples of 8-oxo-dG from our synthetic oligo dataset, as well as on
165 T2T data (**Methods, Modification calling cross-validation, Remora training**). This initial model achieved
166 93.3% accuracy and 94% specificity at the 0.5 score threshold, with an area under the curve (AUC) of 0.97
167 (**Figure 3a**). This level of performance is comparable to state-of-the-art 5-mC calling [46]. Problematically,
168 8-oxo-dG is not as prevalent as 5-mC, and requires a model with near perfect specificity to ensure reasonable
169 FDRs (**Supplementary table 4**). For example, assuming 1-100 8-oxo-dG per million guanines [21], the base
170 model (specificity of 98.6% at the 0.9 score threshold), would be making 100-10000 false positive (FP) calls
171 per true positive call, thus obscuring any real signal. Ideally, we would have a specificity of at least an order of
172 magnitude lower than the prevalence of 8-oxo-dG (Q50-Q70, i.e. 1 false positive per 0.1-10 million guanine
173 calls; (**Methods, Specificity Q-Scoring notation**)). We subsequently explored whether candidate filtering
174 based on basecall errors, or metric learning approaches would improve performance, but we did not observe
175 any major improvements (**Supplementary note 2**).

176 To further improve the specificity of our *Remora*-like model, we explored the use of class weights during
177 training to emphasize the importance of true negatives (TN). For this purpose, we trained two additional
178 models in which the positive class (8-oxo-dG) had a weight of 10% or 1%, relative to the negative class (G).
179 Using a lower weight on the positive class had a negative impact on global performance, as the AUC was
180 reduced to 0.96 and 0.92, respectively (**Figure 3a**). However, it increased specificity from Q12 to Q27 when
181 using the 0.5 cutoff; and is further increased from Q20 to Q38 when using the more stringent 0.95 cutoff.
182 However, the true positive rates (TPR) decreased from 88% to 56%, and from 66% to only 38% respectively
183 (**Figure 3b**). These results indicate that reducing the weight of the positive class leads to a significant increase
184 in specificity at the cost of an increase of false negatives.

185 We finally explored if additional signal and sequence features could improve model performance. For example,
186 a signal feature would be the expected signal given the basecalled sequence, and a sequence feature would be
187 the base calling quality scores (**Methods Remora feature-engineering**). We evaluated these features in a
188 feature expansion experiment in which we sequentially added one additional feature at a time. We trained these
189 models with a 1% weight on positive samples since our objective was to further reduce the FPR. Our results
190 indicate that, after adding the expected signal as a feature, the specificity increased from Q38 to Q47 with only
191 a mild 5% reduction of the TPR. Adding additional features, such as the difference between measured and
192 expected signal, and the phred quality scores further increased specificity (to Q48) but with a TPR reduction
193 from 40% to 20% (**Figure 3c, red**). We then added the same features, but based on the pre-trained Bonito
194 base calling model, since its base calls would differ mostly if an 8-oxo-dG was involved. By adding the
195 pre-trained model basecalls and expected signal, the TPR increased by 3%, but did not achieve any specificity

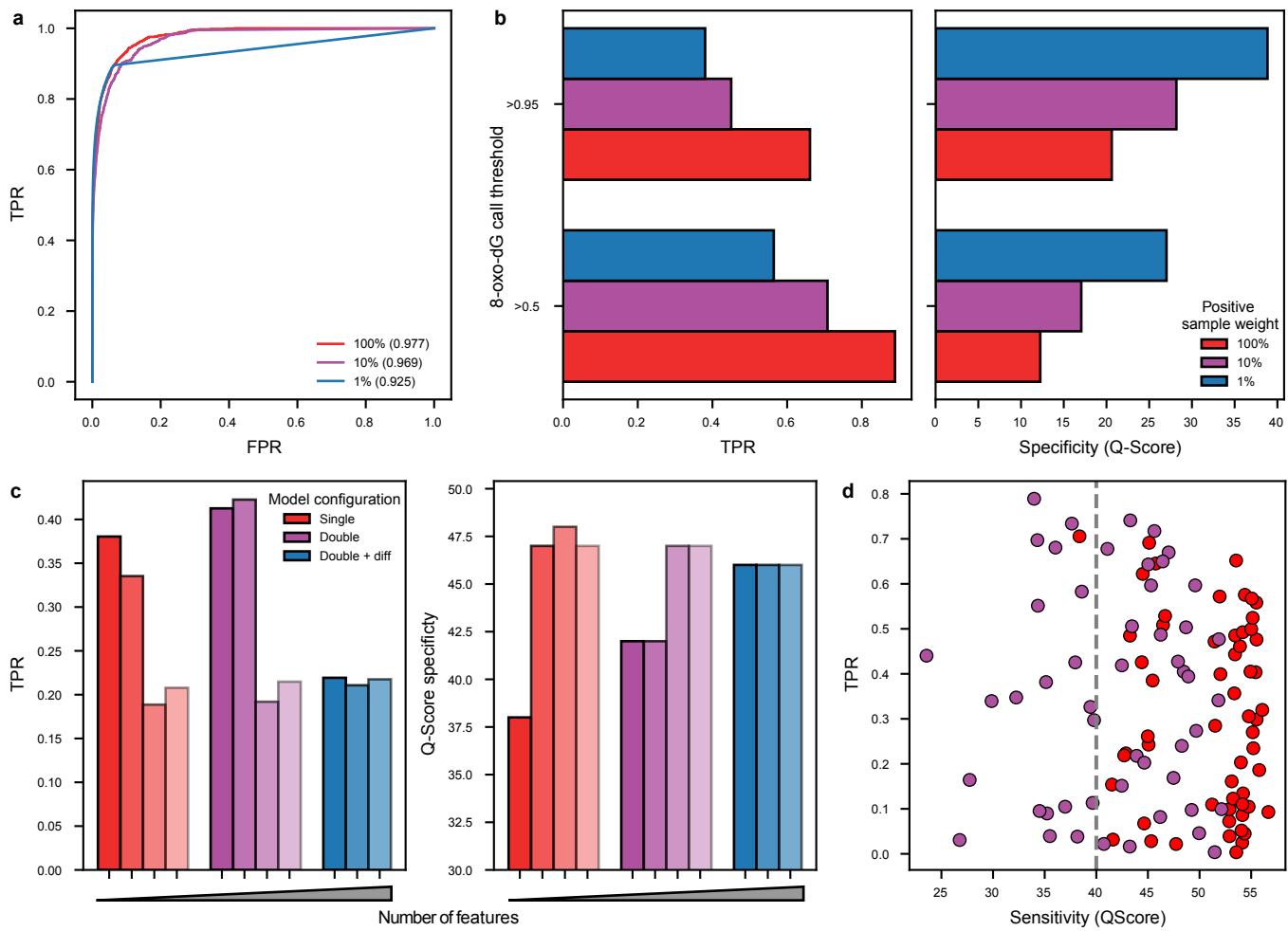


Figure 3: Performance of a Remora model. **a**, ROC curves on three Remora models with different positive class weights (100%, 10% and 1%), values indicate the AUC. The straight line shape of the receiver operator characteristic (ROC) curve for the 1% weight model was due to a small number of negative samples with a high 8-oxo-dG score, which reduces granularity in the ROC curve thresholds (**Supplementary figure 8**). **b**, TPR and Q-Score specificity evaluated on the test fold for two different thresholds (0.5, and 0.95) on the three Remora models with different positive class weights (100%, 10% and 1%). **c**, TPR and Q-Score specificity evaluated on the test fold for the experiment in which additional features were added sequentially. Metrics are calculated using a 0.95 threshold. Models include additional features in a cumulative manner, from left to right: basecalls, expected signal, difference between expected and measured signal, and basecall phred quality scores. Red bars include features from the fine-tuned model, purple bars also include features from the Bonito pre-trained model, blue bars include the difference between the features of the Bonito fine-tuned and pre-trained models. **d**, Performance of the Remora model with expected signal as feature per 5-mer at the >0.95 score threshold. Red colored dots indicate 5-mers for which there were no false positive calls, for these 5-mers the QScore was annotated as if a single false positive call was made.

improvements (**Figure 3c, purple**). We finally added the difference between the features of the fine-tuned and pre-trained models. These models had similar performance (specificity Q47) and the TPR was at similar levels as the previous models (21%) (**Figure 3c, blue**). Models which contained the expected signal achieved significantly worse TPRs, and we observed that these models greatly overfit during training (**Supplementary figure 9**). We hypothesize that some of these features are predictive but easy to overfit to. For example, just by using the difference of expected signal based on the basecalls from the two models, one can achieve an AUC of 0.79 (**Supplementary figure 10**). In conclusion, the largest improvement was derived by adding the

203 expected signal based on the basecalled sequence as it increased specificity the most without compromising
204 the TPR too much, which also holds true for the less stringent threshold of 0.5 (**Supplementary figure 11**).

205 Our models have demonstrated an FPR within the same order of magnitude as the expected 8-oxo-dG levels.
206 However, we hypothesized that this error may not be distributed uniformly across the different k-mers, and
207 some k-mers might have an increased FPR. We decided to use k=5 since it is the maximum number of bases
208 with a known reference around 8-oxo-dG in our oligo data. Indeed, four 5-mers demonstrated an AUC of
209 approximately 0.5, equivalent to random guessing. In contrast, 73 other 5-mers exhibited an AUC exceeding
210 0.9, with the remaining 5-mers falling in between (**Supplementary figure 12**). We also observed that there is
211 a large spread in terms of specificity, ranging from Q24 to Q56 (median Q47) (**Figure 3d**). Notably, for some
212 5-mers (58 out of 110, indicated in red in **Figure 3d**), we did not detect any false positives, and we calculated
213 their specificity as a single false positive pseudocount. We also observe that the performance spread is also
214 large in terms of sensitivity (average 0.33 ± 0.22 s.d.), meaning that on average, one out of three 8-oxo-dG
215 molecules will be detected. Because of the low abundance of 8-oxo-dG, we decided to only consider 5-mers
216 that reached a minimum specificity of Q40 (87 out of 110) for subsequent analysis to ensure that the signal to
217 noise ratio is maximized, which corresponds to $\sim 35\%$ of the guanines in the human genome.

218 **H₂O₂ production close to the DNA increases 8-oxo-dG levels**

219 Using our nanopore based 8-oxo-dG modification caller, we sought to explore 8-oxo-dG's locations genome-
220 wide, including repetitive regions previously unexplored by short-read sequencing techniques. To this end we
221 used hTert-immortalized RPE1 cells that express D-amino acid oxidase (DAAO) from *R. gracilis* as a fusion
222 with Histone H2B (RPE1-hTERT-DAAO^{H2B}). Upon administration of D-Alanine (D-Ala), DAAO produces
223 H₂O₂ in the vicinity of DNA, given its fusion to H2B. Exposure to D-Ala has been shown to give rise to C>A
224 mutations in this mode (in a p53 KO background), suggesting that DAAO^{H2B} activation leads to formation of
225 8-oxo-dG in the genome [47]. RPE1-hTERT-DAAO^{H2B} cells were exposed to a 2 hour pulse of 20 mM D-Ala,
226 after which we harvested and sequenced the DNA and analyzed it using our 8-oxo-dG model (**Methods, Cell**
227 **line sequencing**).

228 We observed that H₂O₂ production at the chromatin resulted, somewhat unexpectedly, only in a modest increase
229 of 12 additional detected 8-oxo-dG modifications per a million guanines (16% increase, p-value=0.016) as
230 compared to control (**Figure 4a**). We noted that RPE1-hTERT-DAAO^{H2B} p53^{-/-} cells had overall higher
231 levels of 8-oxo-dG already in control treated cells, compared to RPE1-hTERT-DAAO^{H2B} p53 wild-type,
232 suggesting that the loss of p53 leads to general higher levels of 8-oxo-dG, either by enhanced oxidative stress
233 or slower removal of the modification. After induction of H₂O₂ production, both p53^{-/-} and wild-type cells
234 reach similar total 8-oxo-dG levels (**Supplementary figure 13**). We correlated 8-oxo-dG levels to GC content
235 in 1kb bins (**Figure 4b**). We observed that GC content was highly correlated with 8-oxo-dG levels in all
236 conditions (**Supplementary figure 14**). Although this might be expected, we noticed that the rate between
237 8-oxo-dG and GC content changed at approximately 50%. This indicates that high GC content regions get
238 more easily oxidized, or less effectively repaired, based on the rates measured at lower GC content regions
239 (**Supplementary figure 15**). We next evaluated whether 8-oxo-dG levels were depleted or enriched in specific
240 regions in the genome (**Figure 4c**). Overall, we observed differences in 8-oxo-dG levels depending on the DNA
241 strand (**Supplementary figure 16**) and the chromosomal arm (**Supplementary figure 17**). The forward strands
242 of chromosomes 5, 18 and 19 (p-arms) and chromosomes 1 and 19 (q-arms) have a significant (p-value<0.05)
243 14% or more 8-oxo-dG compared to their reverse strand counterparts, and the reverse strands of chromosomes
244 12, 14, 15 (p-arms) and chromosome 16 (q-arm) have 9% or more 8-oxo-dG compared to their forward strand
245 counterpart. These particular differences are treatment and p53 status independent (**Supplementary figure**
246 **18**, **Supplementary figure 19**, **Supplementary figure 20**, **Supplementary figure 21**). We then analyzed
247 the relative 8-oxo-dG levels across different genomic regions (**Figure 4d**). Again, we observed a global
248 increase in 8-oxo-dG levels after H₂O₂ production, irrespective of genomic region (**Supplementary figure**
249 **22**). Non-repetitive and centromeric genomic regions showed 8-oxo-dG levels that roughly align with the
250 overall rate of ~ 80 8-oxo-dG per 1 million G (**Figure 4d, gray dashed line**); with the exception of the
251 5'-UTR, which has the highest median levels, as also previously reported by Ding et al [36]. On the other
252 hand, complex repetitive and satellite regions contained, relatively, the most 8-oxo-dG with high variance
253 between chromosomes (**Figure 4d**). We fitted a linear model to evaluate whether 5-mer content, or the relative
254 abundance of the different genomic regions, were causative for these observations, however none could explain
255 the observed variability (**Supplementary note 3**).

256 Finally, we evaluated 8-oxo-dG at telomeric regions since they are guanine rich, and their oxidation has
257 been linked to senescence and telomere shortening [48, 49]. To that end, we combined the sequencing data

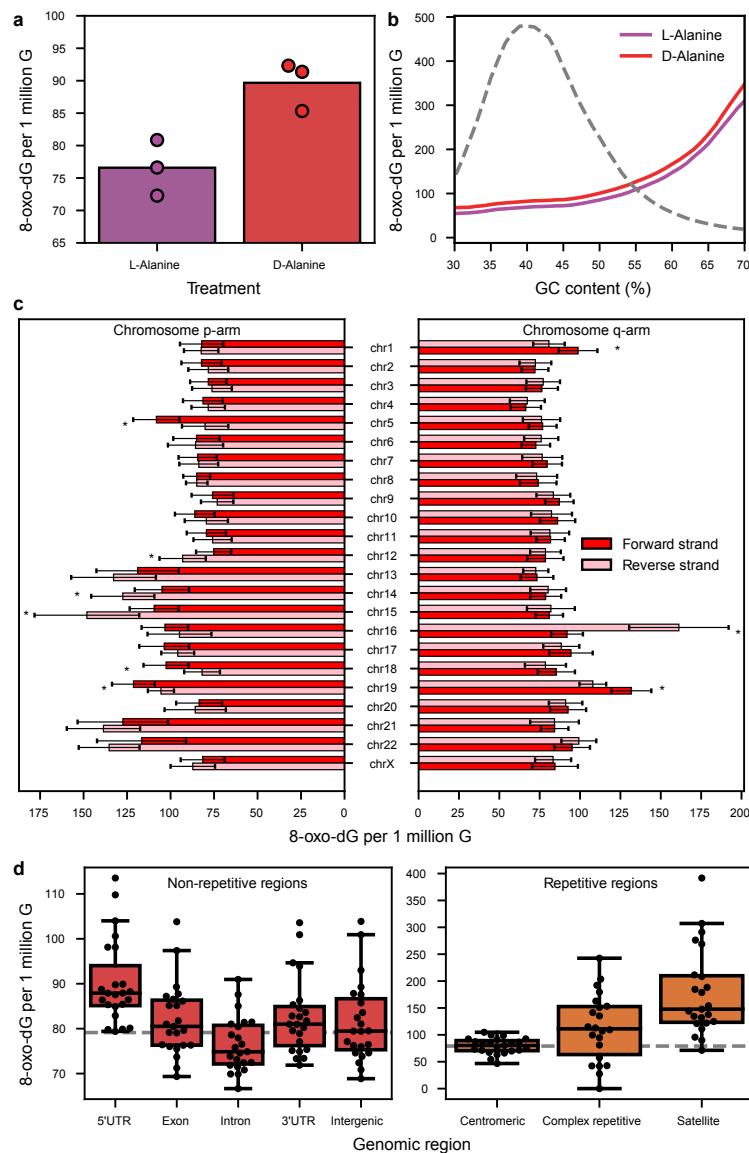


Figure 4: 8-oxo-dG distribution across the genome. **a.** Overall 8-oxo-dG molecules per 1 million G molecules per L-Alanine and D-Alanine treated cells. Error bars indicate minimum and maximum calculated values. Dots indicate the values per sequenced condition. **b.** 8-oxo-dG levels across different GC (%) content bins. Blue and red lines indicate values for L-Alanine and D-Alanine treated cells respectively. Grey dashed line indicates the distribution of measured GC content bins. **c.** 8-oxo-dG levels per chromosome, chromosome arm and DNA strand. Bars indicate average values. Error bars indicate the minimum and maximum calculated values across all conditions. Asterisks indicate a significant p-value (<0.05) derived from a two-sided t-test between the values of the forward and reverse strands. **d.** Distribution of 8-oxo-dG levels per genomic region type across all conditions and chromosomes. The dashed gray horizontal line indicates the overall 8-oxo-dG level across all conditions, irrespective of genomic region. Horizontal bar represents the median, boxplots minimum and maximum bounds represent the 25th and 75th percentiles, respectively, and whiskers extend to 1.5 times the interquartile range. Black dots indicate the underlying data.

258 from all experimental conditions, and obtained a total of 487 reads that primarily mapped to the telomeres.
 259 We observed a strong bias towards reads mapping on the p-arm reverse strand and q-arm forward strand
 260 (**Supplementary figure 23**); which can be explained by blunt end requirement of the ligation mechanism in
 261 the library preparation (**Supplementary note 4**). Notably, we only detected 2 high confidence 8-oxo-dG calls

262 on the q-arm telomeres of chromosomes 16 and 19 (**Supplementary figure 24**), a value ten times lower than
 263 expected, given the 50% GC content of the region. This result might indicate that 8-oxo-dG is very efficiently
 264 repaired at telomeres as a preventive measure to downstream complications.

265 **The 8-oxo-dG trinucleotide context profile does not match the C>A mutational
 266 signatures**

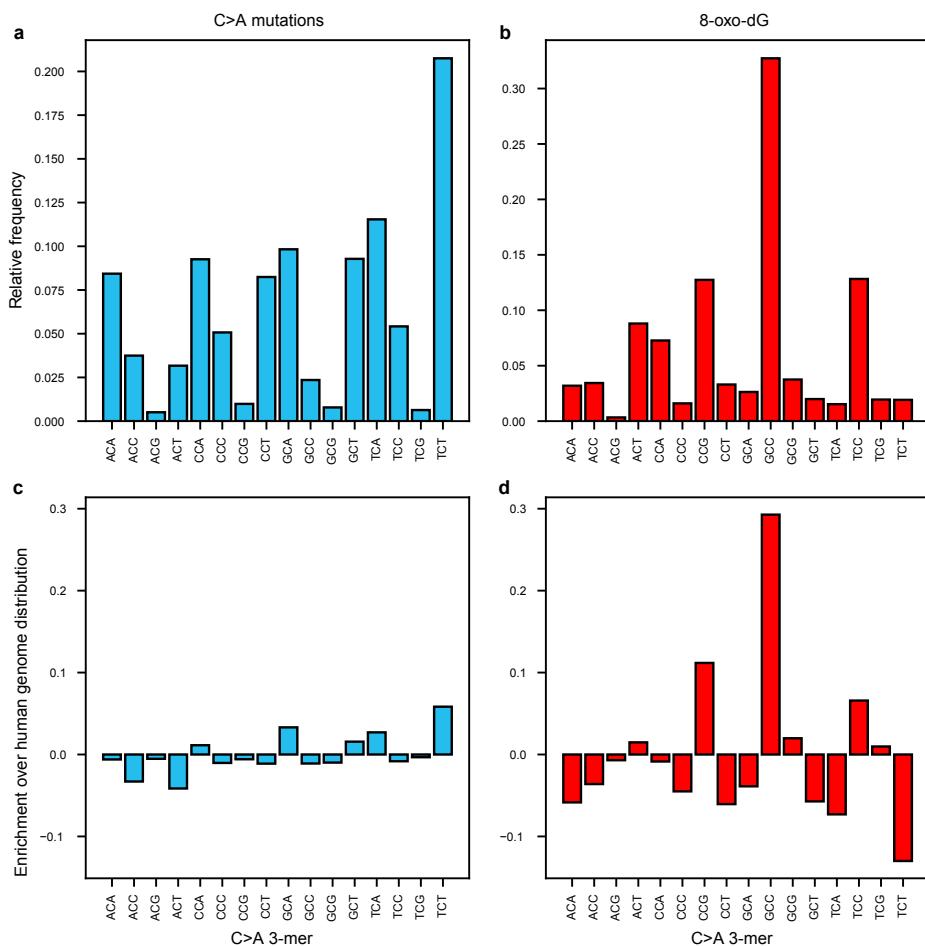


Figure 5: Mutational and 8-oxo-dG signatures. a, Combined mutational signature (C>A or G>T) from all the cell lines derived from Illumina sequencing. b, 8-oxo-dG normalized abundance profile for each 3-mer. Note that the 3-mers are annotated as the reverse opposite strand of 8-oxo-dG (e.g. ACT would be equivalent to AXT, where X denotes 8-oxo-dG). c, Mutation enrichment of each 3-mer normalized to the abundance of each 3-mer in the human genome. d, 8-oxo-dG enrichment of each 3-mer normalized to the abundance of each 3-mer in the human genome.

267 Because of its ability to mispair with A, unrepaired 8-oxo-dG present at the time of DNA replication, oxidative
 268 stress has been the proposed mechanism behind the COSMIC mutational signatures 18 and 36 [17, 18, 19].
 269 We therefore wanted to compare C:G>A:T (here mentioned solely as C>A) mutations to the derived 8-oxo-dG
 270 profile to establish if the resulting mutations had the same trinucleotide context as the detected 8-oxo-dG.
 271 Using the same RPE1-hTERT-DAAO^{H2B}-p53^{-/-} cell lines, van Soest et al. [47] performed Illumina sequencing
 272 to analyze the mutational profile caused by H2B-DAAO-derived H₂O₂. This analysis was also performed in
 273 a p53 WT background in a parallel experiment not shown in van Soest et al. [47]. We therefore used these
 274 mutational profiles and compared them to the 8-oxo-dG profile. It must be noted that the mutational profiles
 275 were obtained after 4 rounds of 20mM D-Ala treatment and recovery; while for our 8-oxo-dG analysis, we did
 276 a single 20mM D-Ala pulse followed by immediate DNA harvesting. We therefore abstain from drawing any

277 strong conclusions regarding the relationship between number of mutations and 8-oxo-dG due to the treatment
278 difference.

279 The mutational profiles were highly similar in terms of COSMIC mutational signatures present (minimum
280 cosine similarity of 0.95) (**Supplementary figure 25**), irrespective of H₂O₂ induction and p53 status. The
281 only major difference between the samples was the amount of mutations [47]. Since our aim is to compare
282 the mutational signatures, we combined the mutational profiles of all the sequenced conditions (**Figure 5a**).
283 To make the mutational profile comparable to the 8-oxo-dG profile, we recalculated the mutational profile
284 including only mutations in the 5-mer contexts in which our model performed with at least Q40 specificity,
285 which reduced the total number of C>A variants from 6880 to 2506. We also normalized the relative
286 contribution of each 3-mer based on the number of 5-mers that passed the specificity threshold (**Supplementary**
287 **figure 26**). We observed that these limitations did not drastically change the originally derived mutational
288 profile (**Supplementary figure 27**).

289 We detected many more 8-oxo-dG bases than C>A mutations in every analyzed 3-mer context despite the
290 shorter treatment (**Supplementary figure 28**). The C>A mutational profile (**Figure 5a**) and the 8-oxo-dG
291 profile (**Figure 5b**) however only moderately agree (cosine similarity of 0.33). Our results do therefore not
292 discard the hypothesis that 8-oxo-dG is the underlying cause of C>A mutations, but rather that the rate at which
293 8-oxo-dG leads to a C>A mutation is 3-mer context specific. Notably, the C>A mutational profile has a high
294 similarity (cosine similarity of 0.95) with the 3-mer abundance profile of the human genome (**Supplementary**
295 **figure 29**) and the observed mutation profile thus seems to more closely relate to 3-mer abundance than to
296 8-oxo-dG location itself (**Figure 5c**). This suggests that C>A mutations are likely driven by other or additional
297 mechanisms such as replication timing [50]. Interestingly, we do observe strong 8-oxo-dG enrichment and
298 depletion for certain 3-mers (**Figure 5d**), in particular 3-mers that contain a CG or a GG motif. This result
299 coincides with our previous observation of 8-oxo-dG enrichment in high GC content regions, but might hint at
300 other mechanisms such as a relationship with CpG methylation.

301 **8-oxo-dG levels negatively correlate with methylation levels**

302 Previous work has linked 8-oxo-dG with both inhibition of DNA methylation [23, 51], as well as active
303 demethylation via TET enzyme recruitment by OGG1 [52, 24]. Whereas previous methods for genomic
304 8-oxo-dG detection precluded the simultaneous assessment of 8-oxo-dG and other base modifications, our
305 approach can, for the first time, look at 8-oxo-dG, 5-mC and 5-hmC on the same DNA molecule. We
306 therefore compared the methylation and hydroxymethylation status of the surrounding CpG sites between G
307 and 8-oxo-dG containing regions in a 10 kilo-base window in the same DNA molecule.

308 We observed that there is a significant general decrease in methylation levels around oxidized guanines
309 compared to non-oxidized (**Figure 6a, Methods, 8-oxo-dG related methylation analysis**). The decrease
310 in methylation levels correlates with distance to the oxidized base: it is lowest close to 8-oxo-dG (~45%
311 methylation), and recovers to average genome-wide methylation levels at approximately 2000 base from
312 8-oxo-dG (~54% methylation). This effect was observed irrespective of p53 status and DAAO^{H2B}-derived
313 H₂O₂ production, suggesting a DNA damage independent relationship (**Supplementary figure 30**). We then
314 grouped the data by 3-mer analogous to the profile analysis and observed that the decrease in methylation
315 levels correlated with the 3-mer enrichment for 8-oxo-dG (**Figure 6b-c**). The decrease in methylation is
316 largest for 3-mers with a CG motif, with the exception of CGT. A decrease in methylation is also observed
317 for 3-mers without a CG motif, this is most apparent for GGA, which has a similar decrease in methylation
318 level as compared to CG containing 3-mers. Interestingly, in 3-mers without a CG motif the methylation
319 levels reached average genome wide levels at approximately 1 thousand base-pairs from 8-oxo-dG, while
320 methylation levels in 3-mers with a CG motif did not return to baseline within 5kb from 8-oxo-dG [Figure
321 6c]. Strangely, the AGG was the only 3-mer that displayed overall higher methylation levels for 8-oxo-dG
322 containing molecules (**Figure 6c**). We observed that 5-hmC levels were slightly higher in 8-oxo-dG vs guanine
323 containing regions (average ~3.5% vs ~3%) (**Supplementary figure 31**). Similarly to 5-mC, we did not
324 observe p53 or H₂O₂ dependent effects (**Supplementary figure 32**). However, upon inspection of the 5-hmC
325 levels per 3-mer, we observed that there is no difference in 5-hmC levels per 3-mer with the exception of
326 two cases (**Supplementary figure 33**). First, 5-hmC levels are highest around the GGA context, reaching an
327 average of 6% in regions containing 8-oxo-dG. And secondly, the opposite effect happens in the CGA context,
328 where 5-hmC levels are highest for regions with G (average ~5.8%) (**Supplementary figure 33**).

329 Our approach enabled simultaneous assessment of 8-oxo-dG, 5-mC, and 5-hmC on the same DNA molecule
330 for the first time. Together with our analysis of the mutational signatures, our results suggest that 8-oxo-dG

331 abundance has a primary role in epigenetic regulation, and that its mutagenic effect would play a secondary
 332 role.

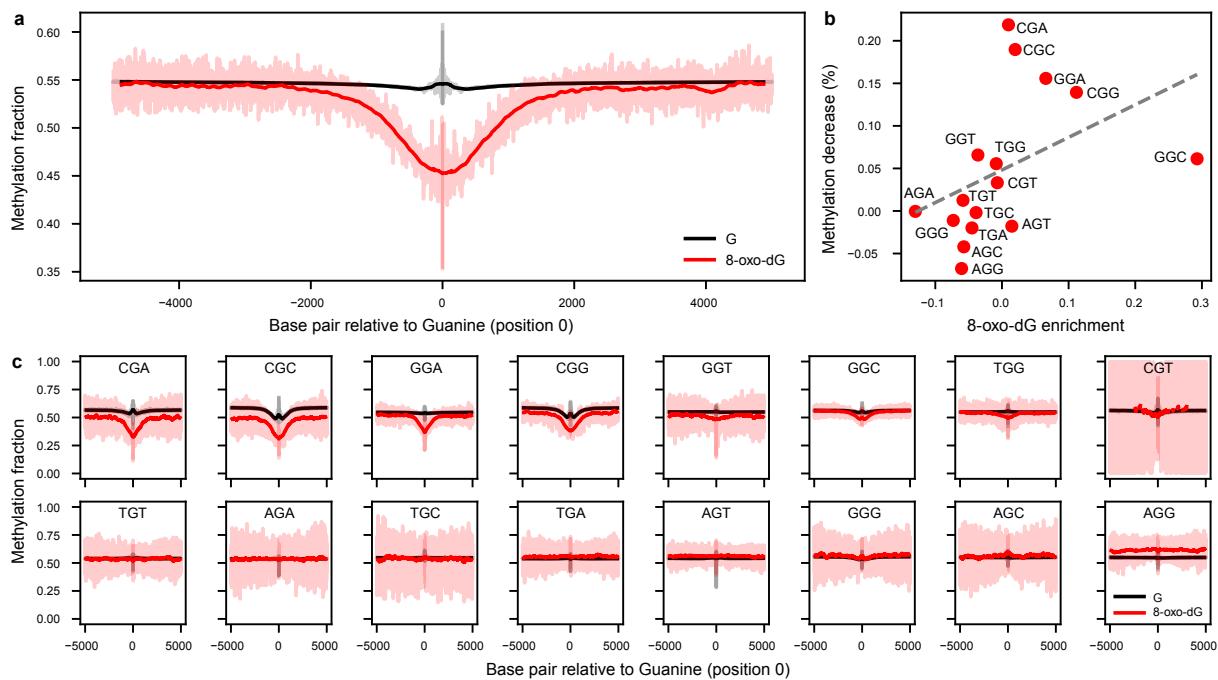


Figure 6: Genomic de-methylation surrounds 8-oxo-dG. **a**, Methylation levels for 8-oxo-dG (red) and Guanine (black) containing reads. Reads are centered around (position zero) the 8-oxo-dG or Guanine. Methylation levels are obtained from the same molecule. The transparent red line indicates the underlying data, the dark gray line is the result of an 11 base average convolution. Data from all experimental conditions is included, see (Supplementary figure 30) for the per condition analysis **b**, Correlation between 8-oxo-dG enrichment as in Figure 5d and the methylation difference at position zero. **c**, Similar to panel a, but data has been split based on the 3-mer (reverse complement) surrounding the guanine.

333 Discussion

334 Nanopore sequencing holds the potential to detect any base modification, both on DNA and RNA. However,
 335 due to technical challenges, accurate models have only been established for a limited number of modifications
 336 [45]. Available models focus on highly prevalent modifications, like 5-mC or 6mA because they can be
 337 generated enzymatically, are highly stable, and therefore training data can be easily obtained and verified
 338 through alternative sequencing technologies [45]. However, these approaches are not widely applicable to
 339 less abundant modified bases [53]. In this study, we leverage synthetic DNA to bridge this gap, enabling the
 340 generation of a fully controlled ground truth dataset. We show that our approach can successfully be used to
 341 detect 8-oxo-dG, and has the potential to be expanded to nanopore-based detection of other base modifications.
 342 Furthermore, compared to existing 8-oxo-dG detection methods, our approach does not require any complex
 343 sample preparation, chemical reactions or antibody pull-downs, and can be readily applied to existing nanopore
 344 data.

345 Our work showcases that developing deep-learning models required for detecting rare modifications from
 346 the raw nanopore squiggles is not trivial. False positives drastically decrease the signal-to-noise ratio and, if
 347 not low enough, will mask any inherent biological signal [40]. We address this by using label weighting and
 348 feature engineering. However, while we achieved a major increase in specificity, this comes at the price of
 349 reduced sensitivity of the model. Rare base modifications also pose a challenge in regular base calling. As we
 350 have shown, 8-oxo-dG naive basecallers have a significantly increased error rate on molecules that contain
 351 an 8-oxo-dG modification. Therefore, until these rare modifications are integrated in the basecaller training
 352 pipelines, perfect accuracy for all natively sequenced molecules will not be achievable.

353 Using our highly specific model, we show differential 8-oxo-dG levels across the different chromosomes
354 and genomic regions of RPE1-hTERT cells. Our observations fit with the variability shown in OGG1 driven
355 apurinic sites [34]; and we also observe a similar distribution of 8-oxo-dG over non-repetitive regions as
356 reported in Ding et al. [36]. For the first time, we can evaluate 8-oxo-dG abundance on highly repetitive
357 sequences, which show high levels of 8-oxo-dG, indicating either increased susceptibility to oxidation or less
358 efficient repair. Surprisingly, we observed very low 8-oxo-dG levels at the telomeres despite their oxidation
359 susceptibility [54]. This might suggest that telomeric 8-oxo-dG is very efficiently repaired to avoid telomere
360 shortening and the downstream induction of cellular senescence [48, 49]. However, our coverage was limited,
361 and further research using telomere enrichment techniques [55] might advance our understanding of the repair
362 mechanisms of 8-oxo-dG at telomeres [56].

363 The mutational process behind C>A mutations in COSMIC signatures 18 and 36 has been long attributed to
364 oxidative stress and unrepaired 8-oxo-dG [17, 18, 19]. Our results show that, primarily, 8-oxo-dG does not
365 strongly correlate with the same nucleotide context of the signatures. Rather, these signatures strongly follow
366 the human 3-mer genomic content, which indicate that the mutational rate of 8-oxo-dG is 3-mer specific, and
367 could be driven by other mechanisms such as replication timing [50]. Importantly, our results do not discard
368 8-oxo-dG as the cause of C>A mutations, since the modified base is far more abundant than the resulting
369 mutations. Rather, we envision that these mutations are secondary to the role of 8-oxo-dG in epigenetic
370 regulation.

371 We observed a distinct decrease in CpG methylation levels around 8-oxo-dG, however it is unclear whether CpG
372 demethylation precedes guanine oxidation, or vice-versa. It has been shown that 8-oxo-dG inhibits methyl-
373 transferase enzymes [23, 51, 52], which would indicate that oxidation happens in already de-methylated
374 regions. Another possibility would be that active demethylation is promoted via the recruitment of TET
375 enzymes by OGG1 [24]. At first sight, this model suggests that, 8-oxo-dG then would have been removed
376 by OGG1, and therefore would not be detected in the first place. However, OGG1 oxidation can block its
377 glycosylase and lyase activity, but not its binding to 8-oxo-dG [57], which would explain why we still measure
378 8-oxo-dG, and indicate that oxidation happens before de-methylation. Finally, some histone demethylases
379 are known to produce H₂O₂ as part of the histone demethylation reaction (e.g. H3K9 [58] and H3K4 [59],
380 which could cause the formation of multiple 8-oxo-dGs while oxidatively inhibiting the recruited OGG1. This
381 model would link histone and DNA epigenetics through redox regulation. Perturbation experiments on OGG1,
382 in combination with TET and histone demethylases, would provide valuable insights to further elucidate the
383 underlying regulatory mechanism.

384 In conclusion, our work showcases a viable methodology for rare modification detection using nanopore
385 sequencing, which could be applicable to detect any synthesizable base modification. These models can then
386 be later used to decipher and further understand epigenetic regulatory mechanisms and the interplay between
387 DNA modifications, as well as potential implications for disease mechanisms and biomarker detection.

388 Methods

389 Oligo design

390 A total of 110 oligos were designed in complementary pairs, wherein each forward oligo contains an 8-oxo-dG
391 base and was paired with its complementary reverse strand oligo devoid of any base modifications. Oligos are
392 46 base pairs long and contain three barcodes, two 8-oxo-dG/G k-mer regions of 10 and 5 bases respectively,
393 and a 10 base overhang. The barcodes are 7 bases long and were defined to have the lowest basecalling
394 error rate possible (based on the T2T dataset (**Methods, Genomic DNA: Telomere-to-telomere**)) and a high
395 sequence entropy (meaning that the same base was never repeated sequentially). The 10 base overhangs are
396 complementary between the forward and reverse strands, which allow concatenation via hybridization and
397 ligation to create long molecules that are more readily sequenced on the nanopore platform. Between the first
398 and second barcode lies an 8-oxo-dG that is immediately surrounded by two known bases at either side, which
399 provides the known sequence context. Similarly, between the second and third barcode a guanine is surrounded
400 by the same four bases. To maximize sequence variability around 8-oxo-dG, five additional random bases
401 were added: two on the 5' end, and three on the 3' end.

402 Oligo concatenation

403 Oligos were first annealed in a thermocycler by mixing the two complementary oligos in equimolar rates.
404 Oligos were diluted in 1X T4 ligase buffer (NEB REF #B0202S) in a total volume of 10µL. The mixture was

405 heated to 95°C for 5 minutes, and then the temperature was decreased by 0.1°C per second until 4°C. After
406 hybridization, oligos were concatenated by ligation. 9µL of 1X T4 ligase buffer (NEB REF #B0202S) and 1
407 µL of T4 ligase (NEB REF #M0202S) were added to the solution. Afterwards, the mixture was incubated
408 at 16°C for 18h. T4 ligase was then inactivated at 65°C for 10 min. The resulting DNA was cleaned using
409 the Qiagen PCR & Gel Cleanup Kit (Qiagen REF #28506) according to the manufacturer's instructions, and
410 eluted from the column using Milli-Q water. This process was repeated 3 times to increase the concatemers
411 length (**Supplementary figure 34**). Oligo concatemer concentrations were then quantified via Nanodrop
412 (Thermo Scientific NanoDrop 2000 #ND-2000) and multiplexed prior to library preparation in equimolar rates
413 as indicated in **Supplementary table 1**.

414 **Genomic DNA: Telomere-to-telomere**

415 We used existing nanopore sequencing data from the reference genome (NA12878/GM12878, Ceph/Utah
416 pedigree) dataset [60]. This human dataset contains many different sequencing runs. We arbitrarily chose
417 three experiments so that each different ligation kit (rapid, ligation and ultra) would be included: FAB42828,
418 FAF09968 and FAF04090. We assumed all the sequenced DNA did not contain any 8-oxo-dG as it had
419 been prepared using the standard library preparation protocol, which contains a repair step with Fpg, a DNA
420 glycosylase that removes 8-oxo-dG.

421 **Library preparation**

422 Oligo concatemers and genomic DNA samples were library prepared using the SQK-LSK109 ligation kit
423 according to the manufacturer's instructions, with the exception that the FFPE repair step was skipped. The
424 exclusion of this step was deliberate and meant to preserve 8-oxo-dG in our samples since the enzymatic
425 function of Fpg as a DNA glycosylase is responsible for removing 8-oxo-dG from DNA.

426 **Nanopore sequencing**

427 Samples were sequenced using MinION R9.4.1 flow cells for 72h using the GridION device. MinKNOW
428 v22.12.5 or earlier was used to ensure that all our samples were sequenced using 4KHz sampling. Oligo
429 concatemers were multiplexed as indicated in **Supplementary table 1**. Each genomic DNA sample was
430 sequenced individually in a single MinION flow cell.

431 **De-multiplexing and reference assignment**

432 Although oligos were concatenated separately, the library preparation protocol contains a ligation step in which
433 all oligo concatemers are pooled together. Therefore, it is possible to get oligo hybrids that contain different
434 reference sequences. For this reason, oligo samples were de-multiplexed using a custom algorithm to detect the
435 individual oligo repeats and barcodes within a read. Given the basecalls of a read, all possible oligo reference
436 sequences within that batch are aligned to the basecalled sequence using a semi-global alignment algorithm
437 (as implemented in the parasail library [61]). The reference sequence with the highest number of matches is
438 considered as the true underlying sequence for that portion of the basecalls. However, only matches to the
439 barcode and guanine 5-mer portions of the reference sequence are considered (max of 26 matches), since the
440 overhang sequence is common for all oligos and the basecalls surrounding 8-oxo-dG cannot be trusted. Then,
441 the aligned portion of the basecalled sequence is masked to avoid further alignment in subsequent iterations.
442 This process is repeated until there are fewer than 15 non-masked bases or more than a set maximum number
443 of iterations is exceeded, which is dependent on the length of the basecalled sequence.

444 **Raw data alignment**

445 Raw data was aligned to the expected signal based on the reference sequence of the read. We used a custom
446 script that featured Tombo's API [62] to align the two sequences. Notably, the expected signal model is based
447 solely on non-modified bases and therefore, we expected the raw signal corresponding to the 8-oxo-dG and
448 surrounding bases to contain mis-alignments. Because our oligos contain random bases, for which we do not
449 know their true reference, we used their aligned basecalls instead.

450 **Base calling cross-validation**

451 The oligo concatemers dataset was first split into train and test sets. The test set consisted of 100 reads (chosen
452 at random) per different oligo sequence (total of 22000 reads). To assess model performance during training, a
453 portion of the train set was split into the validation set at random, and kept constant throughout the epochs
454 (10% of the total training examples). The human dataset was first split into train and test sets. The train set
455 consisted of 40000 reads, chosen at random, from odd numbered chromosomes. The test set consisted of
456 10000 reads, chosen at random, from even numbered chromosomes. In the same manner as the oligo data,
457 10% of the total training examples was used as a validation set to assess model performance during training.

458 **Raw signal normalization**

459 A common approach to normalize the nanopore raw signal is to center and scale its values based on the set of
460 measurements from the whole read (**Equation 1**).

$$x = \frac{x - \text{median}(x)}{\text{mad}(x)} \quad (1)$$

$$\text{mad} = \text{median}(|x - \text{median}(x)|) \quad (2)$$

461 We observed that both the T2T and oligo data had a consistent shift between expected and measured values
462 (**Supplementary figure 35**,**Supplementary figure 36**). We attributed this larger shift in the oligo data to the
463 consistently repetitive nature of the oligo sequences, which overall, do not have enough sequence variability
464 to guarantee that the standard normalization approach would work as expected. To avoid normalization
465 bias, which could already distinguish genomic from oligo data at the signal level, we performed a second
466 normalization step. In this second normalization, we calculate what would be the optimal median and mad
467 (**Equation 2**) values to minimize the distance between measured and expected values after alignment. We do
468 this by first fitting a linear model using least squares regression between the aligned measured and expected
469 values. We then re-scale the initially calculated med and mad values based on the fitted model. Using this
470 second normalization step, we noted that the previously observed signal shift was corrected, and average
471 6-mer values match between genomic and oligo data (**Supplementary figure 37**). We applied this 2-step
472 normalization approach on all our data both before training and inference.

473 **Bonito fine-tuning**

474 We fine-tuned a *Bonito* model to basecall 8-oxo-dG as G. We started from a pre-trained open source state
475 provided by ONT in their public bonito repository. We fine-tuned the model for a total of 43000 training
476 steps using a batch size of 256. The model was fine-tuned using an unbalanced combination of oligo (25% of
477 all training examples) and T2T data (75% of all training examples). We used the Adam [63] optimizer with
478 a constant learning rate of 0.0005. Other parameters of the optimizer were: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1e-8$
479 and $\lambda = 0.0$. We used a dropout of 0.1 in between CNN layers, and a dropout of 0.5 in between RNN layers
480 (**Supplementary figure 38**).

481 **Modification calling cross-validation**

482 To avoid any potential data leakage between the fine-tuning of the base calling model and the training of the
483 modification calling model, we used the same (based on read id) train, validation and test data splits in both
484 steps.

485 **Remora training**

486 We trained a *Remora* model to distinguish 8-oxo-dG from a regular G. We used a neural network architecture
487 that first encodes the signal and sequence features via convolution, concatenates the encoded vectors, forwards
488 the concatenated vector through a convolution layer and two recurrent layers, and a final linear layer for
489 classification (**Supplementary figure 7**). We trained several models with balanced (via upsampling of the
490 positive label samples, or downsampling of the negative label samples) and unbalanced datasets. We also
491 trained models with different positive label weights: 100% 10% or 1%, with different features (**Methods**,
492 **Remora feature-engineering**), and a model using metric learning (**Methods**, **Remora metric learning**). All
493 models were trained as described in the following paragraph.

494 We trained the model as a classical classification problem using cross-entropy as loss function for a total of
495 235000 training steps using a batch size of 256. We used the Adam [63] optimizer with a variable learning
496 rate, which started at 0.00005 and increased linearly for 5000 training steps until 0.001, and then decreased
497 using a cosine function until 0.00005. Other parameters of the optimizer were: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1e-8$
498 and $\lambda = 0.0$. We used a dropout of 0.2 between all layers of the model.

499 **Remora feature engineering**

500 Traditional *Remora* models from ONT include the raw signal and base calls, centered around the base of
501 interest as input features for the model. We explored the use of additional features, both at the signal and
502 base call level. At the signal level, we used the following features: expected signal aligned to the measured
503 signal based on the base calls from the fine-tuned *Bonito* model (8-oxo-dG aware), or from the pre-trained
504 *Bonito* model (not 8-oxo-dG aware); the difference between the measured and expected signals (from both
505 models); the difference between the aforementioned differences. At the sequence level, we used the following
506 features: base calls from both the fine-tuned and pre-trained *Bonito* models, phred quality scores from both
507 the fine-tuned and pre-trained *Bonito* models. To ensure local feature information, features (both signal and
508 sequence level) that were further than 3 bases, on either side, of the target G (based on the basecalls) were
509 masked with zeros.

510 **Remora metric learning**

511 We trained a *Remora* model using Multi-Similarity loss ($\alpha=2$, $\beta=50$, $\text{base}=0.5$) and Multi-Similarity miner
512 ($\epsilon=0.1$) [64] as implemented in PyTorch-Metric-learning. Triplets provided by the miner were filtered to only
513 contain samples from the same 5-mer in an effort to force the model to compare the two labels in the same
514 sequence context. Cosine similarity was calculated on the embedding vector output of the last LSTM layer
515 (**Supplementary figure 7**) and used as a distance metric to calculate the loss. Triplet loss and cross-entropy
516 loss were added together with equal weights before backpropagation.

517 **Specificity Q-Scoring notation**

518 Due to the low prevalence of 8-oxo-dG, it is necessary to achieve a near-zero false positive rate (10^{-5} - 10^{-7}). To
519 make the annotation of these very small values easier, we convert these using the phred quality score (Q) [65].

520 **Cell line sequencing**

521 RPE1-hTERT-DAAO^{H2B} wild type (WT) and p53^{-/-} cells were treated for 2h with 20mM L-Alanine or D-
522 Alanine. Afterwards, genomic DNA was harvested using the DNeasy blood and tissue kit (Qiagen REF #69504)
523 according to the manufacturer's protocol. Nanopore sequencing libraries were prepared and sequenced in the
524 same manner as described for the oligo concatemers (**Methods, Library preparation, Nanopore sequencing**).
525 For additional information regarding DAAO constructs and Illumina sequencing of these cell lines see van
526 Soest et al [47].

527 **Illumina derived mutation profile**

528 Clones were sequenced at 30x base coverage using an Illumina Novaseq 6000 or an Illumina Hiseq X10
529 sequencing machine. Sequencing reads from all samples were mapped to the human reference GRCh38 genome
530 using the Burrows-Wheeler Aligner v0.7.17. Duplicate sequencing reads were marked using Sambamba
531 MarkDup v0.6.8. Variants in the mapped data were called using GATK Haplotypecaller version 4.1.3.0 using
532 default settings. Variants were filtered using GATK 4.1.3.0 using several filter settings **Supplementary table**
533 **5**. To filter out mutations induced during sequencing, clonal expansion or library preparation, we filtered
534 genomic variants using an in-house filtering pipeline, SMuRF v2.1.1. Briefly, the variant allele frequency
535 (VAF) was calculated for each variant by pileup of all bases mapped at the mutation position. Variant data
536 derived from cell clones were filtered for the following criteria: VAF ≥ 0.3 , base coverage ≥ 10 and an MQ
537 quality ≥ 60 . To select only mutations occurring during in-vitro culture, variants present in the clonal parental
538 cell line were removed. Recurrent mapping or sequencing artifacts were removed by filtering against a blacklist
539 containing variants present in healthy bone marrow mesenchymal stromal cells.

540 **8-oxo-dG mutational profile analysis**

541 High confidence 8-oxo-dG calls (score > 0.95) from >Q40 5-mers were grouped based on the 3-mer of the
542 opposite strand to facilitate comparison with the C>A profile as described in the COSMIC signatures database.
543 Relative frequencies were calculated as the fraction of counts of each 3-mer given the total amount of counts.
544 Counts per 3-mer were normalized to the amount of training 5-mers per 3-mer. Enrichment was calculated by
545 subtracting the relative frequency of 8-oxo-dG calls from the relative frequency of 3-mers in the T2T reference
546 genome.

547 **8-oxo-dG genomic regions analysis**

548 Genomic region annotations were downloaded for the CHM13v2 telomere-to-telomere (T2T) reference
549 genome (<https://github.com/marbl/CHM13>). Base calls were aligned to the T2T reference genome using
550 minimap2 [66]. 8-oxo-dG counts (score > 0.95) were normalized per coverage as well as per 5-mer relative
551 abundance per region. 8-oxo-dG counts on 5'-UTR, 3'-UTR, exon and intron regions were only considered if
552 the molecule was found on the same DNA strand as the annotated region; in intergenic, satellite, centromeres
553 and complex repetitive regions 8-oxo-dG counts were considered regardless of the DNA strand. 5'UTR was
554 annotated as the upstream 5000 base pairs before the start of all annotated coding sequences. 3'UTR was
555 annotated as the downstream 5000 base pairs of all annotated coding sequences. Intergenic regions were
556 considered as all intervals that had no annotation.

557 **8-oxo-dG related methylation analysis**

558 All nanopore sequencing data was methylation called using the guppy tool and ONT's model
559 *dna_r9.4.1_e8.1_modbases_5mc_5hmc_cg_hac.cfg*. Methylation calls were mapped to the T2T refer-
560 ence genome assembly, and then extracted using the modkit tool. Analysis was restricted to only 5-mers in the
561 training set. We evaluated the methylation status within a 10 kilobase window centered around any guanine
562 (canonical or 8-oxo-dG). Methylation prediction scores were then averaged per base pair position to calculate
563 the average methylation status. Methylation scores within a 10 base window around 8-oxo-dG were masked
564 out from the analysis because we assume that the methylation calling model is not aware of signal effects that
565 might be caused by a close proximity 8-oxo-dG molecule.

566 **8-oxo-dG telomere analysis**

567 Reads whose mapping was primarily to the annotated T2T telomere regions were used for analysis. Based on
568 the reference T2T genome, annotated telomere regions were further constrained to the last TTAGGG repetitive
569 element.

570 **Declarations**

571 **Data availability**

572 Nanopore sequencing data for the synthetic oligos and the cell lines has been uploaded to the European
573 Nucleotide Archive under accession code PRJEB76712. Nanopore human data from the Telomere-to-Telomere
574 can be found at: <https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md> [60]. Data
575 availability details regarding Illumina sequencing data can be found at van Soest et al [47].

576 **Code availability**

577 Source code for the 8-oxo-dG caller as a Python package can be found at <https://github.com/marcpaga/esox>.
578 The following Python v3.7 packages were used during the development of the 8-oxo-dG caller: fast-ctc-decode
579 (v0.3.2), jupyterlab (v3.6.1), mappy (v2.22), matplotlib (v3.5.3), numba (v0.54.1), numpy (v1.18.5), ont-
580 fast5-api (v4.1.1), ont-tombo (v1.5.1), pandas (v1.3.5), parasail (v1.3.3), polars (v0.18.3), pytorch (v1.12.1),
581 pytorch-metric-learning (v2.3.0), scikit-learn (v1.0.2), seaborn (v0.12.2), tqdm (v4.65.0). The following tools
582 were used for data processing and analysis: guppy (v6.3.8), minimap2 (v2.25), modkit (v0.2.0). Nextflow
583 pipeline for Illumina raw data alignment alignment can be found at <https://github.com/UMCUGenetics/NF-IAP>.
584 The pipeline for variant filtering can be found at <https://github.com/ToolsVanBox/SMuRF>.

585 **Acknowledgements**

586 We acknowledge the Utrecht Sequencing Facility (USEQ) for providing sequencing service and data. USEQ is
587 subsidized by the University Medical Center Utrecht and The Netherlands X-omics Initiative (NWO project
588 184.034.019). We thank Edwin C. A. Stiger and Mehmet C. Gülersönmez for their help on mass-spectrometry
589 validation of the synthetic oligos.

590 **Contributions**

591 M.P.-G., T.B.D., B.M.T.B. and J.d.R. conceived the project. M.P.-G developed the 8-oxo-dG caller. M.P.-G
592 and N.J.M.B performed the experiments to ligate the synthetic oligos. D.M.K.v.S performed the cell lines
593 experiments. J.P.K and M.J.v.R performed analysis on Illumina derived mutational signatures. A.M. provided
594 feedback on oligo design. R.S and C.V provided feedback in algorithm implementations. R.v.B provided
595 feedback on mutational analysis. M.P.-G drafted the first version of the manuscript with guidance from J.d.R,
596 T.B.D and B.M.T.B. J.d.R, T.B.D and B.M.T.B contributed to major parts of the manuscript and revised the
597 manuscript. All authors read and approved of the final manuscript.

598 **Competing interests**

599 J.d.R and A.M are co-founders and directors of Cyclomics, a genomics company, they declare no competing
600 interests. M.P-G, D.M.K.v.S, N.J.M.B, R.S, J.P.K, C.V, M.J.v.R, R.v.B, B.M.T.B, and T.B.D declare no
601 competing interests.

602 **Funding**

603 This work was funded by Health Holland (No. LSHM19029). B.M.T.B, J.d.R and R.v.B are members of the
604 Oncode Institute, which is partly funded by the Dutch Cancer Society (KWF Kankerbestrijding). T.B.D was
605 funded by the Dutch Cancer Society (KWF Kankerbestrijding, KWF grant 14798).

606 References

607 [1] Jean Cadet, Thierry Delatour, Thierry Douki, Didier Gasparutto, Jean-Pierre Pouget, Jean-Luc Ravanat,
608 and Sylvie Sauvaigo. Hydroxyl radicals and DNA base damage. *Mutation Research/Fundamental and*
609 *Molecular Mechanisms of Mutagenesis*, 424(1):9–21, March 1999.

610 [2] Marcus S. Cooke, Mark D. Evans, Miral Dizdaroglu, and Joseph Lunec. Oxidative DNA damage:
611 mechanisms, mutation, and disease. *FASEB journal: official publication of the Federation of American*
612 *Societies for Experimental Biology*, 17(10):1195–1214, July 2003.

613 [3] N. S. Hush and Agnes S. Cheung. Ionization potentials and donor properties of nucleic acid bases and
614 related compounds. *Chemical Physics Letters*, 34(1):11–13, July 1975.

615 [4] François Bergeron, Frédéric Auvré, J. Pablo Radicella, and Jean-Luc Ravanat. HO• radicals induce an
616 unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. *Proceedings*
617 *of the National Academy of Sciences*, 107(12):5528–5533, March 2010. Publisher: Proceedings of the
618 National Academy of Sciences.

619 [5] Julie A. Reisz, Nidhi Bansal, Jiang Qian, Weiling Zhao, and Cristina M. Furdui. Effects of Ionizing
620 Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection.
621 *Antioxidants & Redox Signaling*, 21(2):260–292, July 2014.

622 [6] Enni Markkanen. Not breathing is not an option: How to deal with oxidative DNA damage. *DNA Repair*,
623 59:82–105, November 2017.

624 [7] Arne Klungland, Ian Rosewell, Stephan Hollenbach, Elisabeth Larsen, Graham Daly, Bernd Epe, Erling
625 Seeberg, Tomas Lindahl, and Deborah E. Barnes. Accumulation of premutagenic DNA lesions in mice
626 defective in removal of oxidative base damage. *Proceedings of the National Academy of Sciences of the*
627 *United States of America*, 96(23):13300–13305, November 1999.

628 [8] M M Slupska, C Baikalov, W M Luther, J H Chiang, Y F Wei, and J H Miller. Cloning and sequencing a
629 human homolog (hMYH) of the *Escherichia coli* mutY gene whose function is required for the repair of
630 oxidative DNA damage. *Journal of Bacteriology*, 178(13):3885–3892, July 1996. Publisher: American
631 Society for Microbiology.

632 [9] Mutsuo Sekiguchi. MutT-related error avoidance mechanism for DNA synthesis. *Genes to Cells*,
633 1(2):139–145, 1996. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2443.1996.d01-232.x>.

635 [10] Y. Kuchino, F. Mori, H. Kasai, H. Inoue, S. Iwai, K. Miura, E. Ohtsuka, and S. Nishimura. Misreading
636 of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues.
637 *Nature*, 327(6117):77–79, May 1987. Number: 6117 Publisher: Nature Publishing Group.

638 [11] Shinya Shibutani, Masaru Takeshita, and Arthur P. Grollman. Insertion of specific bases during DNA
639 synthesis past the oxidation-damaged base 8-oxodG. *Nature*, 349(6308):431–434, January 1991. Number: 6308
640 Publisher: Nature Publishing Group.

641 [12] Mizuki Ohno, Kunihiko Sakumi, Ryutaro Fukumura, Masato Furuchi, Yuki Iwasaki, Masaaki Hokama,
642 Toshimichi Ikemura, Teruhisa Tsuzuki, Yoichi Gondo, and Yusaku Nakabeppu. 8-oxoguanine causes
643 spontaneous de novo germline mutations in mice. *Scientific Reports*, 4(1):4689, April 2014. Number: 1
644 Publisher: Nature Publishing Group.

645 [13] Yusaku Nakabeppu, Kunihiko Sakumi, Katsumi Sakamoto, Daisuke Tsuchimoto, Teruhisa Tsuzuki,
646 and Yoshimichi Nakatsu. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids.
647 *Biological Chemistry*, 387(4):373–379, April 2006.

648 [14] Marlinde L. van den Boogaard, Rurika Oka, Anne Hakkert, Linda Schild, Marli E. Ebus, Michael R. van
649 Gerven, Danny A. Zwijnenburg, Piet Molenaar, Lieke L. Hoyng, M. Emmy M. Dolman, Anke H. W.
650 Essing, Bianca Koopmans, Thomas Helleday, Jarno Drost, Ruben van Boxtel, Rogier Versteeg, Jan
651 Koster, and Jan J. Molenaar. Defects in 8-oxo-guanine repair pathway cause high frequency of C > A
652 substitutions in neuroblastoma. *Proceedings of the National Academy of Sciences of the United States of*
653 *America*, 118(36):e2007898118, September 2021.

654 [15] Mizuki Ohno, Noriko Takano, Kyoko Hidaka, Fumiko Sasaki, Kazumi Yamauchi, Yasunobu Aoki,
655 Takehiko Nohmi, Yusaku Nakabeppu, Yoshimichi Nakatsu, and Teruhisa Tsuzuki. Oxidative stress
656 accelerates intestinal tumorigenesis by enhancing 8-oxoguanine-mediated mutagenesis in MUTYH-
657 deficient mice. *Genome Research*, 34(1):47–56, February 2024.

658 [16] S. Bamford, E. Dawson, S. Forbes, J. Clements, R. Pettett, A. Dogan, A. Flanagan, J. Teague, P. A.
659 Futreal, M. R. Stratton, and R. Wooster. The COSMIC (Catalogue of Somatic Mutations in Cancer)
660 database and website. *British Journal of Cancer*, 91(2):355–358, July 2004. Publisher: Nature Publishing
661 Group.

662 [17] Camilla Pilati, Jayendra Shinde, Ludmil B Alexandrov, Guillaume Assié, Thierry André, Zofia Hélias-
663 Rodzewicz, Romain Ducoudray, Delphine Le Corre, Jessica Zucman-Rossi, Jean-François Emile, Jérôme
664 Bertherat, Eric Letouzé, and Pierre Laurent-Puig. Mutational signature analysis identifies MUTYH
665 deficiency in colorectal cancers and adrenocortical carcinomas. *The Journal of Pathology*, 242(1):10–15,
666 2017. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/path.4880>.

667 [18] Alessandra Viel, Alessandro Bruselles, Ettore Meccia, Mara Fornasarig, Michele Quaia, Vincenzo Can-
668 zonieri, Eleonora Policicchio, Emanuele Damiano Urso, Marco Agostini, Maurizio Genuardi, Emanuela
669 Lucci-Cordisco, Tiziana Venesio, Aline Martayan, Maria Grazia Diodoro, Lupe Sanchez-Mete, Vittoria
670 Stigliano, Filomena Mazzei, Francesca Grasso, Alessandro Giuliani, Marta Baiocchi, Roberta Maestro,
671 Giuseppe Giannini, Marco Tartaglia, Ludmil B. Alexandrov, and Margherita Bignami. A Specific
672 Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal
673 Cancer. *EBioMedicine*, 20:39–49, April 2017.

674 [19] Jill E. Kucab, Xueqing Zou, Sandro Morganella, Madeleine Joel, A. Scott Nanda, Eszter Nagy, Celine
675 Gomez, Andrea Degasperis, Rebecca Harris, Stephen P. Jackson, Volker M. Arlt, David H. Phillips,
676 and Serena Nik-Zainal. A Compendium of Mutational Signatures of Environmental Agents. *Cell*,
677 177(4):821–836.e16, May 2019.

678 [20] Kemal Sami Korkmaz, Bilge Debelec Butuner, and Dirk Roggenbuck. Detection of 8-OHdG as a
679 diagnostic biomarker. *Journal of Laboratory and Precision Medicine*, 3(0), November 2018. Number: 0
680 Publisher: AME Publishing Company.

681 [21] Ana-Maria Chiorcea-Paquim. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA
682 Damage: A Review on HPLC–ECD Determination. *Molecules*, 27(5):1620, March 2022.

683 [22] Ja Young Hahm, Jongyeun Park, Eun-Sook Jang, and Sung Wook Chi. 8-Oxoguanine: from oxida-
684 tive damage to epigenetic and epitranscriptional modification. *Experimental & Molecular Medicine*,
685 54(10):1626–1642, October 2022. Number: 10 Publisher: Nature Publishing Group.

686 [23] S A Weitzman, P W Turk, D H Milkowski, and K Kozlowski. Free radical adducts induce alterations
687 in DNA cytosine methylation. *Proceedings of the National Academy of Sciences*, 91(4):1261–1264,
688 February 1994. Publisher: Proceedings of the National Academy of Sciences.

689 [24] Xiaolong Zhou, Ziheng Zhuang, Wentao Wang, Lingfeng He, Huan Wu, Yan Cao, Feiyan Pan, Jing Zhao,
690 Zhigang Hu, Chandra Sekhar, and Zhigang Guo. OGG1 is essential in oxidative stress induced DNA
691 demethylation. *Cellular Signalling*, 28(9):1163–1171, September 2016.

692 [25] Allan Weimann, Dorthe Belling, and Henrik E. Poulsen. Quantification of 8-oxo-guanine and guanine
693 as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid
694 chromatography–electrospray tandem mass spectrometry. *Nucleic Acids Research*, 30(2):e7, January
695 2002.

696 [26] Krzysztof Roszkowski, Wojciech Jozwicki, Piotr Blaszczyk, Anna Mucha-Malecka, and Agnieszka
697 Siomek. Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. *Medical
698 Science Monitor : International Medical Journal of Experimental and Clinical Research*, 17(6):CR329–
699 CR333, June 2011.

700 [27] Takeshi Sato, Hiroaki Takeda, Sayaka Otake, Junji Yokozawa, Shoichi Nishise, Shoichiro Fujishima,
701 Tomohiko Orii, Tadahisa Fukui, Jun Takano, Yu Sasaki, Ko Nagino, Daisuke Iwano, Takao Yaoita, and
702 Sumio Kawata. Increased Plasma Levels of 8-Hydroxydeoxyguanosine Are Associated with Development
703 of Colorectal Tumors. *Journal of Clinical Biochemistry and Nutrition*, 47(1):59–63, 2010.

704 [28] J. Musarrat, J. Arezina-wilson, and A. A. Wani. Prognostic and aetiological relevance of 8-
705 hydroxyguanosine in human breast carcinogenesis. *European Journal of Cancer*, 32(7):1209–1214, June
706 1996.

707 [29] A. Collins, J. Cadet, B. Epe, and C. Gedik. Problems in the measurement of 8-oxoguanine in human DNA.
708 Report of a workshop, DNA oxidation, held in Aberdeen, UK, 19–21 January, 1997. *Carcinogenesis*,
709 18(9):1833–1836, September 1997.

710 [30] Luke W. Garratt, Vilas Mistry, Rajinder Singh, Jatinderpal Kaur Sandhu, Barbara Sheil, Marcus S. Cooke,
711 and Peter D. Sly. Interpretation of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine is adversely affected

712 by methodological inaccuracies when using a commercial ELISA. *Free Radical Biology and Medicine*,
713 48(11):1460–1464, June 2010.

714 [31] Jean Cadet, Thierry Douki, and Jean-Luc Ravanat. Measurement of oxidatively generated base damage
715 in cellular DNA. *Mutation Research*, 711(1-2):3–12, June 2011.

716 [32] Lars Barregard, Peter Møller, Trine Henriksen, Vilas Mistry, Gudrun Koppen, Pavel Rossner, Radim J
717 Sram, Allan Weimann, Henrik E Poulsen, Robert Nataf, Roberta Andreoli, Paola Manini, Tim Marczylo,
718 Patricia Lam, Mark D Evans, Hiroshi Kasai, Kazuaki Kawai, Yun-Shan Li, Kazuo Sakai, Rajinder
719 Singh, Friederike Teichert, Peter B Farmer, Rafal Rozalski, Daniel Gackowski, Agnieszka Siomek,
720 Guillermo T Saez, Concha Cerda, Karin Broberg, Christian Lindh, Mohammad Bakhtiar Hossain,
721 Siamak Haghdoost, Chiung-Wen Hu, Mu-Rong Chao, Kuen-Yuh Wu, Hilmie Orhan, Nilufer Senduran,
722 Raymond J Smith, Regina M Santella, Yali Su, Czarina Cortez, Susan Yeh, Ryszard Olinski, Steffen Loft,
723 and Marcus S Cooke. Human and methodological sources of variability in the measurement of urinary
724 8-oxo-7,8-dihydro-2'-deoxyguanosine. *Antioxidants & redox signaling*, 18(18):2377–2391, June 2013.

725 [33] Junzhou Wu, Maureen McKeague, and Shana J. Sturla. Nucleotide-Resolution Genome-Wide Mapping of
726 Oxidative DNA Damage by Click-Code-Seq. *Journal of the American Chemical Society*, 140(31):9783–
727 9787, August 2018. Publisher: American Chemical Society.

728 [34] Anna R Poetsch, Simon J Boulton, and Nicholas M Luscombe. Genomic landscape of oxidative DNA
729 damage and repair reveals regioselective protection from mutagenesis. *Genome Biology*, 19(1):215,
730 December 2018.

731 [35] Francesca Gorini, Giovanni Scala, Giacomo Di Palo, Gaetano Ivan Dellino, Sergio Cocozza,
732 Pier Giuseppe Pelicci, Luigi Lania, Barbara Majello, and Stefano Amento. The genomic landscape of
733 8-oxodG reveals enrichment at specific inherently fragile promoters. *Nucleic Acids Research*, 48(8):4309–
734 4324, May 2020.

735 [36] Yun Ding, Aaron M. Fleming, and Cynthia J. Burrows. Sequencing the mouse genome for the oxidatively
736 modified base 8-oxo-7,8-dihydroguanine by OG-Seq. *Journal of the American Chemical Society*,
737 139(7):2569–2572, February 2017.

738 [37] Jiao An, Mengdie Yin, Jiayong Yin, Sizhong Wu, Christopher P Selby, Yanyan Yang, Aziz Sancar,
739 Guo-Liang Xu, Maoxiang Qian, and Jinchuan Hu. Genome-wide analysis of 8-oxo-7,8-dihydro-2'-
740 deoxyguanosine at single-nucleotide resolution unveils reduced occurrence of oxidative damage at
741 G-quadruplex sites. *Nucleic Acids Research*, 49(21):12252–12267, December 2021.

742 [38] Yuxin Fang and Peng Zou. Genome-Wide Mapping of Oxidative DNA Damage via Engineering of
743 8-Oxoguanine DNA Glycosylase. *Biochemistry*, 59(1):85–89, January 2020.

744 [39] Anna R. Poetsch. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. *Computational and Structural Biotechnology Journal*, 18:207–219, January 2020.

745 [40] Yimeng Kong, Edward A. Mead, and Gang Fang. Navigating the pitfalls of mapping DNA and RNA
746 modifications. *Nature Reviews Genetics*, 24(6):363–381, June 2023. Number: 6 Publisher: Nature
747 Publishing Group.

748 [41] Franka J. Rang, Wigard P. Kloosterman, and Jeroen de Ridder. From squiggle to basepair: computational
749 approaches for improving nanopore sequencing read accuracy. *Genome Biology*, 19(1):90, July 2018.

750 [42] James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, Alpesh Patel, Stuart Reid, and Hagan Bayley. Continuous
751 base identification for single-molecule nanopore DNA sequencing. *Nature Nanotechnology*,
752 4(4):265–270, April 2009. Number: 4 Publisher: Nature Publishing Group.

753 [43] Jared T. Simpson, Rachael E. Workman, P. C. Zuzarte, Matei David, L. J. Dursi, and Winston Timp.
754 Detecting DNA cytosine methylation using nanopore sequencing. *Nature Methods*, 14(4):407–410, April
755 2017. Number: 4 Publisher: Nature Publishing Group.

756 [44] Arthur C. Rand, Miten Jain, Jordan M. Eizenga, Audrey Musselman-Brown, Hugh E. Olsen, Mark
757 Akeson, and Benedict Paten. Mapping DNA methylation with high-throughput nanopore sequencing.
758 *Nature Methods*, 14(4):411–413, April 2017. Number: 4 Publisher: Nature Publishing Group.

759 [45] Laura K. White and Jay R. Hesselberth. Modification mapping by nanopore sequencing. *Frontiers in
760 Genetics*, 13, 2022.

761 [46] Zaka Wing-Sze Yuen, Akanksha Srivastava, Runa Daniel, Dennis McNevin, Cameron Jack, and Eduardo
762 Eyras. Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing.
763 *Nature Communications*, 12(1):3438, June 2021. Number: 1 Publisher: Nature Publishing Group.

765 [47] Daan M. K. van Soest, Paulien E. Polderman, Wytze T. F. den Toom, Janneke P. Keijer, Markus J. van
766 Roosmalen, Tim M. F. Leyten, Johannes Lehmann, Susan Zwakenberg, Sasha De Henau, Ruben van
767 Boxtel, Boudewijn M. T. Burgering, and Tobias B. Dansen. Mitochondrial H2O2 release does not directly
768 cause damage to chromosomal DNA. *Nature Communications*, 15(1):2725, March 2024. Publisher:
769 Nature Publishing Group.

770 [48] Elise Fouquerel, Ryan P. Barnes, Shikhar Uttam, Simon C. Watkins, Marcel P. Bruchez, and Patricia L.
771 Opresko. Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss
772 and Crisis. *Molecular Cell*, 75(1):117–130.e6, July 2019.

773 [49] Ryan P. Barnes, Mariarosaria de Rosa, Sanjana A. Thosar, Ariana C. Detwiler, Vera Roginskaya, Bennett
774 Van Houten, Marcel P. Bruchez, Jacob Stewart-Ornstein, and Patricia L. Opresko. Telomeric 8-oxo-
775 guanine drives rapid premature senescence in the absence of telomere shortening. *Nature Structural &*
776 *Molecular Biology*, 29(7):639–652, July 2022. Publisher: Nature Publishing Group.

777 [50] Marketa Tomkova, Jakub Tomek, Skirmantas Kriaucionis, and Benjamin Schuster-Böckler. Mutational
778 signature distribution varies with DNA replication timing and strand asymmetry. *Genome Biology*,
779 19(1):129, September 2018.

780 [51] Patrick W. Turk, Ali Laayoun, Steven S. Smith, and Sigmund A. Weitzman. DNA adduct 8-hydroxyl-2'-
781 deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. *Carcinogenesis*,
782 16(5):1253–1255, May 1995.

783 [52] Diana V. Maltseva, Alexander A. Baykov, Albert Jeltsch, and Elizaveta S. Gromova. Impact of 7,8-
784 Dihydro-8-oxoguanine on Methylation of the CpG Site by Dnmt3a. *Biochemistry*, 48(6):1361–1368,
785 February 2009. Publisher: American Chemical Society.

786 [53] Ankur Jai Sood, Coby Viner, and Michael M. Hoffman. DNAmod: the DNA modification database.
787 *Journal of Cheminformatics*, 11(1):30, April 2019.

788 [54] Shinji Oikawa and Shosuke Kawanishi. Site-specific DNA damage at GGG sequence by oxidative stress
789 may accelerate telomere shortening. *FEBS Letters*, 453(3):365–368, June 1999.

790 [55] Tobias T. Schmidt, Carly Tyer, Preetyesh Rughani, Candy Haggblom, Jeffrey R. Jones, Xiaoguang
791 Dai, Kelly A. Frazer, Fred H. Gage, Sissel Juul, Scott Hickey, and Jan Karlseder. High resolution
792 long-read telomere sequencing reveals dynamic mechanisms in aging and cancer, November 2023. Pages:
793 2023.11.28.569082 Section: New Results.

794 [56] Ryan P. Barnes, Elise Fouquerel, and Patricia L. Opresko. The impact of oxidative DNA damage and
795 stress on telomere homeostasis. *Mechanisms of ageing and development*, 177:37–45, January 2019.

796 [57] Katarina Wang, Marah Maayah, Joann B. Sweasy, and Khadijeh S. Alnajjar. The role of cysteines in the
797 structure and function of OGG1. *Journal of Biological Chemistry*, 296:100093, January 2021.

798 [58] Bruno Perillo, Maria Neve Ombra, Alessandra Bertoni, Concetta Cuozzo, Silvana Sacchetti, Annarita
799 Sasso, Lorenzo Chiariotti, Antonio Malorni, Ciro Abbondanza, and Enrico V. Avvedimento. DNA
800 oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. *Science*
801 (New York, N.Y.), 319(5860):202–206, January 2008.

802 [59] S. Amenta, A. Bertoni, A. Morano, L. Lania, E. V. Avvedimento, and B. Majello. LSD1-mediated
803 demethylation of histone H3 lysine 4 triggers Myc-induced transcription. *Oncogene*, 29(25):3691–3702,
804 June 2010.

805 [60] Miten Jain, Sergey Koren, Karen H. Miga, Josh Quick, Arthur C. Rand, Thomas A. Sasani, John R.
806 Tyson, Andrew D. Beggs, Alexander T. Dilthey, Ian T. Fiddes, Sunir Malla, Hannah Marriott, Tom Nieto,
807 Justin O’Grady, Hugh E. Olsen, Brent S. Pedersen, Arang Rhie, Hollian Richardson, Aaron R. Quinlan,
808 Terrance P. Snutch, Louise Tee, Benedict Paten, Adam M. Phillippy, Jared T. Simpson, Nicholas J.
809 Loman, and Matthew Loose. Nanopore sequencing and assembly of a human genome with ultra-long
810 reads. *Nature Biotechnology*, 36(4):338–345, April 2018. Number: 4 Publisher: Nature Publishing
811 Group.

812 [61] Jeff Daily. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
813 *BMC Bioinformatics*, 17(1):81, February 2016.

814 [62] Marcus Stoiber, Joshua Quick, Rob Egan, Ji Eun Lee, Susan Celniker, Robert K. Neely, Nicholas
815 Loman, Len A. Pennacchio, and James Brown. De novo Identification of DNA Modifications Enabled
816 by Genome-Guided Nanopore Signal Processing, April 2017. Pages: 094672 Section: New Results.

817 [63] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, December 2014.

818 [64] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-Similarity Loss
819 with General Pair Weighting for Deep Metric Learning, March 2020. arXiv:1904.06627 [cs].

820 [65] B Ewing and P Green. Base-calling of automated sequencer traces using phred. ii. error probabilities.
821 *Genome Research*, 8(3):186–194, Mar 1998.

822 [66] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18):3094–3100,
823 September 2018.

824 [67] Kayarash Karimian, Aljona Groot, Vienna Huso, Ramin Kahidi, Kar-Tong Tan, Samantha Sholes,
825 Rebecca Keener, John F. McDyer, Jonathan K. Alder, Heng Li, Andreas Rechtsteiner, and Carol W.
826 Greider. Human telomere length is chromosome end–specific and conserved across individuals. *Science*,
827 0(0):eado0431, April 2024. Publisher: American Association for the Advancement of Science.

828 **Supplementary material**

829 **List of Supplementary Notes**

830 1	8-oxo-dG signal alignment	3
831 2	Unsuccessful strategies	3
832 3	Chromosomal variability of 8-oxo-dG levels	3
833 4	Telomere ligation	3

834 **List of Supplementary Figures**

835 1	8-oxo-dG error rate ONT pre-trained <i>Bonito</i>	4
836 2	Reverse oligo strand error rate	4
837 3	Cytosine speed changes, 8-oxo-dG vs G	5
838 4	8-oxo-dG versus canonical bases signals	5
839 5	8-oxo-dG signal examples	6
840 6	8-oxo-dG error rate after <i>Bonito</i> fine-tuning	6
841 7	<i>Remora</i> model architecture	7
842 8	<i>Remora</i> model classification score distributions	8
843 9	<i>Remora</i> model during training performance with increased number of features	8
844 10	Single feature classifier	9
845 11	<i>Remora</i> model performance with additional features	9
846 12	AUC per 5-mer	10
847 13	8-oxo-dG levels per cell line and treatment	10
848 14	8-oxo-dG levels per GC content	11
849 15	8-oxo-dG levels normalized to GC content	11
850 16	8-oxo-dG levels normalized to GC content	12
851 17	8-oxo-dG levels normalized to GC content	12
852 18	8-oxo-dG levels wild-type L-alanine treated cells	13
853 19	8-oxo-dG levels wild-type D-alanine treated cells	13
854 20	8-oxo-dG levels p53 KO L-alanine treated cells	14
855 21	8-oxo-dG levels p53 KO D-alanine treated cells	14
856 22	8-oxo-dG levels per genomic region and treatment	15
857 23	Number of reads mapped to telomeres	15
858 24	8-oxo-dG molecules detected at telomeres	15
859 25	8-oxo-dG molecules detected at telomeres	16
860 26	3-mer completeness	17
861 27	Mutational profile normalization	17
862 28	8-oxo-dG to mutation ratio	18
863 29	Human genome 3-mer content	18
864 30	Methylation levels per line relative to 8-oxo-dG	19

865	31	Hydroxy-methylation levels relative to 8-oxo-dG	20
866	32	Hydroxy-methylation levels per line relative to 8-oxo-dG	21
867	33	Hydroxy-methylation levels split by 3-mer relative to 8-oxo-dG	22
868	34	Oligo ligation length	22
869	35	Canonical 6-mer normalization T2T	23
870	36	Canonical 6-mer normalization oligo	23
871	37	Canonical 6-mer comparison between T2T and oligo	24
872	38	Neural network architecture of a <i>Bonito</i> model	25
873	39	Metrics during training	26
874	40	Metrics during training, metric learning	26
875	41	Linear model 5-mer coefficients	26
876	42	Linear model genomic regions coefficients	27

877 **List of Supplementary Tables**

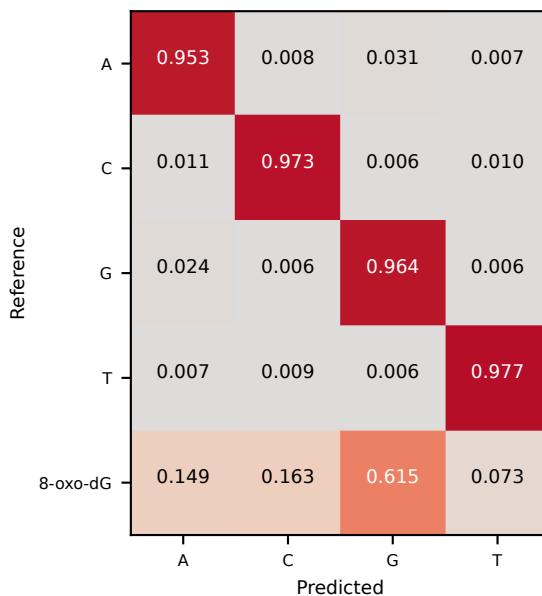
878	1	Oligo sequences	28
879	2	Error rate 8-oxo-dG containing oligos	28
880	3	Error rate non-8-oxo-dG containing oligos	28
881	4	Performance metrics base <i>Remora</i> model	28
882	5	Variant filtering configuration	28

Supplementary note 1: 8-oxo-dG signal alignment. The measured to expected signal alignment is not optimal because the expected signal of 8-oxo-dG is unknown. We use the expected signal of G instead, which will likely produce misassignment of data points to neighboring bases to optimize for the minimum distance between the two sequences. For example, as seen in **Figure 1c**, the signal produced by 8-oxo-dG is clearly different from G, but the number of measurements in the 8-oxo-dG and previous G bases are low compared to the rest.

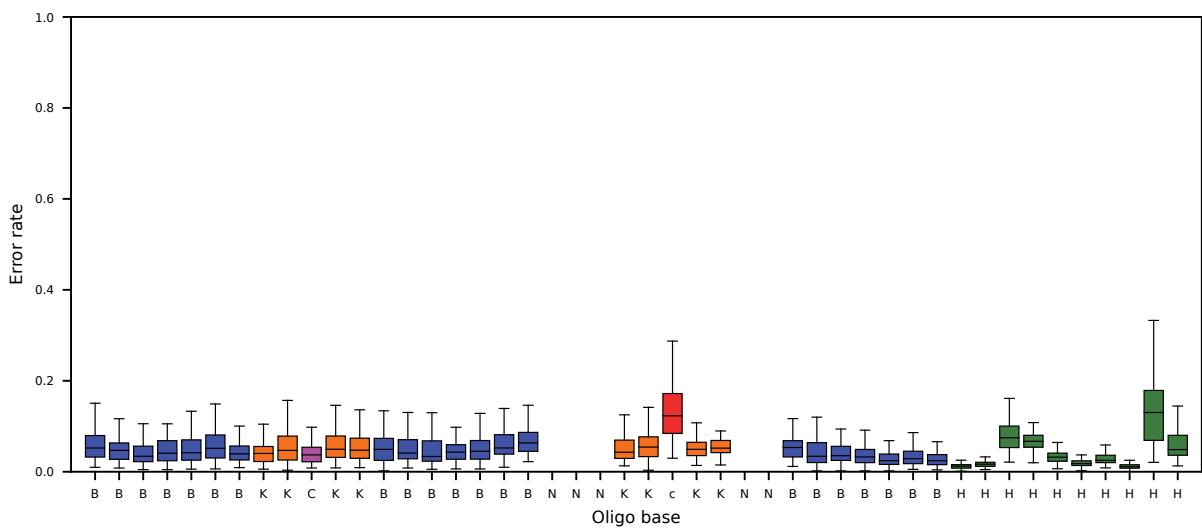
Supplementary note 2: Unsuccessful strategies. We explored whether we could increase the specificity by filtering potential false positive calls. For example, the *Remora* model depends on accurate G calls from the Bonito model. We therefore evaluated if inaccurate G calls from Bonito would lead to FP 8-oxo-dG calls in the *Remora* model. However, we observed that filtering miscalls had a minimal impact (0.1%) in 8-oxo-dG FP reduction. We also explored the use of metric learning in an effort to facilitate the learning process of the model by defining triplets of examples in which the 5-mer context of the examples was the same. However, this strategy quickly led to an overfitting of the model, and was deemed non-viable (**Supplementary figure 39**, **Supplementary figure 40**)

Supplementary note 3: Chromosomal variability of 8-oxo-dG levels. We evaluated whether the observed differences in 8-oxo-dG levels across chromosome arms could be explained by their 5-mer content, and fitted a linear model with 5-mer relative abundances as independent variables and 8-oxo-dG levels as response variables. However, none of the regression coefficients was significant based on a permutation test (**Supplementary figure 41**), indicating that sequence alone does not explain these differences in 8-oxo-dG levels. Since we observed different 8-oxo-dG levels per genomic region, we then hypothesized whether these could explain the observed chromosomal variability. We evaluated if the relative abundance of the different genomic regions could explain the observed chromosomal differences. However, we obtained a similar result, with none of the coefficients being significant (**Supplementary figure 42**).

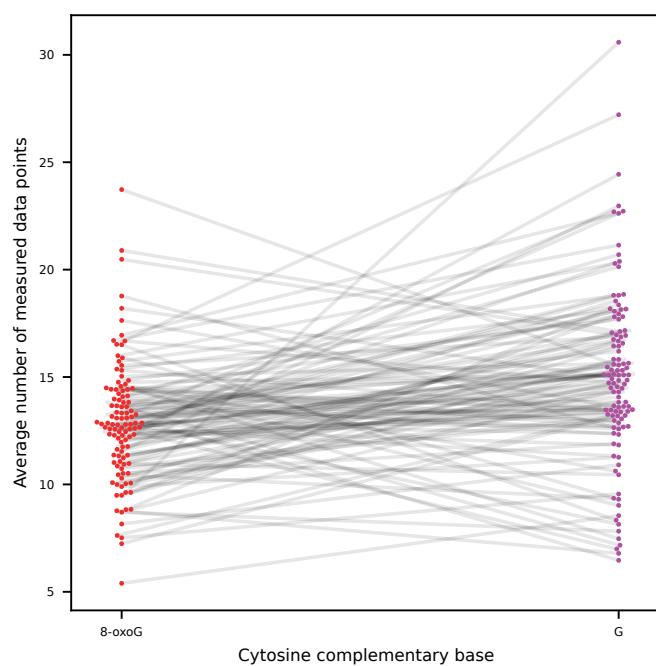
Supplementary note 4: Telomere ligation. DNA molecules prepped for nanopore sequencing require the ligation of sequencing adapters that contain the motor protein that will thread the DNA molecule through the pore. Adapter ligation can only be successful on a blunt end of a double strand DNA molecule. Telomere DNA has a long overhang to prevent chromosome unwinding. This overhang prevents the adapter ligation, unless the opposite strand is elongated to the length of the overhang [55, 67]. That means that the forward strand (p-arm) and reverse strand (q-arm) cannot be sequenced using nanopore sequencing, unless a break occurs somewhere within the double stranded sequence of the telomere. On the other hand, the reverse strand (p-arm) and forward strand (q-arm), can be sequenced when a break occurs somewhere within the chromosome as long as the DNA molecule is long enough. The latter is more likely given the relative short length of telomeres compared to the rest of the chromosome.



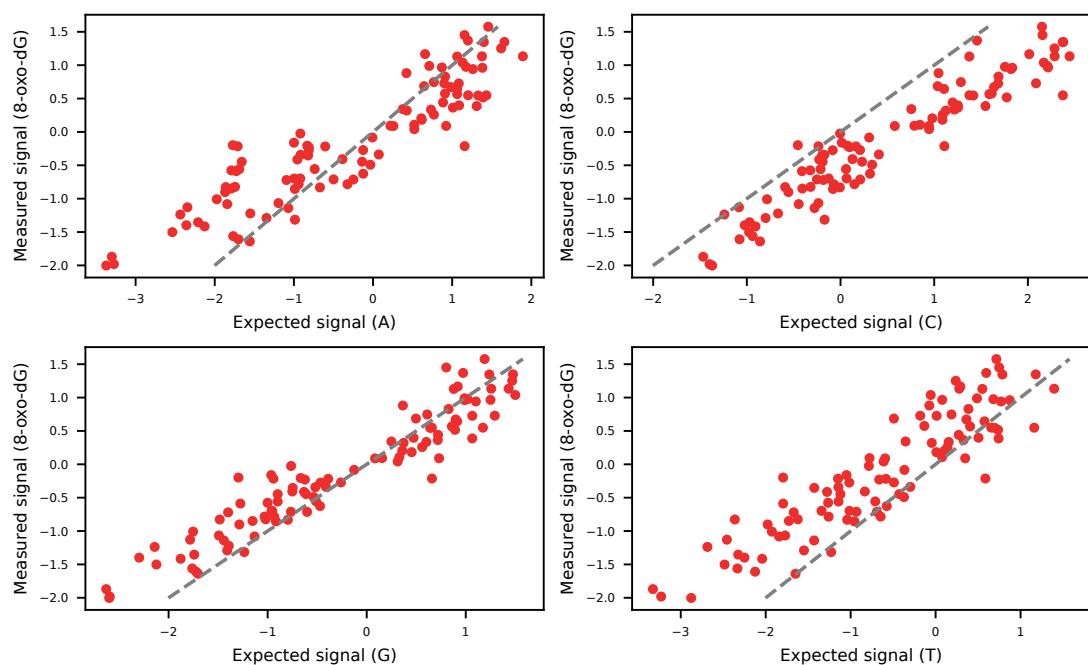
Supplementary figure 1: 8-oxo-dG error rate ONT pre-trained *Bonito*. Confusion matrix of the ONT Bonito pre-trained model evaluated on the test fold of the 8-oxo-dG containing oligo dataset. Values indicate the fraction of outcomes for each ground truth base.



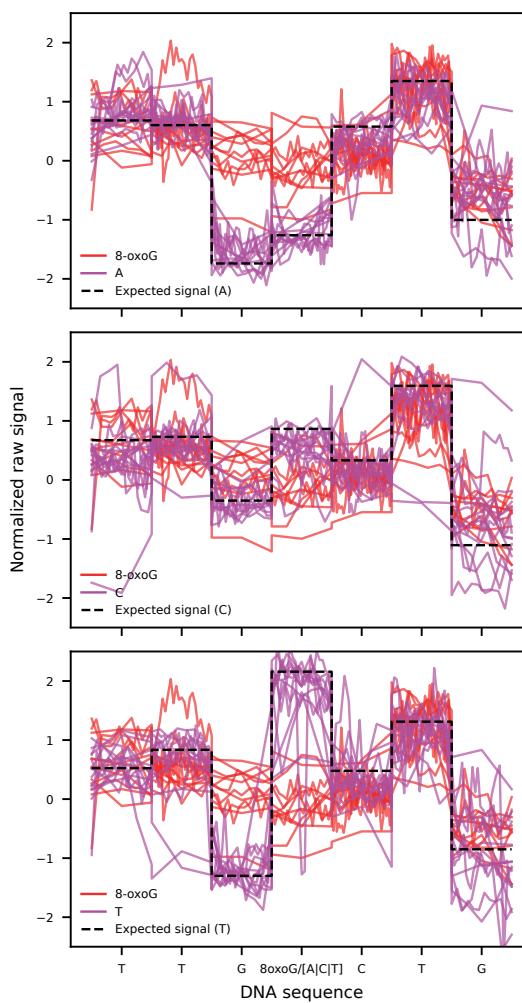
Supplementary figure 2: Reverse oligo strand error rate. Error rate per oligo base across all sequenced non-8-oxo-dG containing repeats. Random bases are excluded from the analysis as we do not know their true reference.



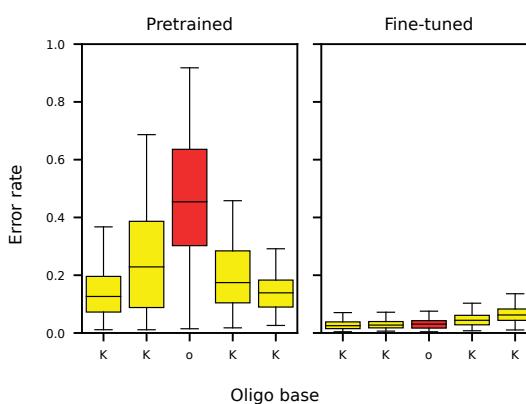
Supplementary figure 3: Cytosine speed changes, 8-oxo-dG vs G. Average number of measured data points (as segmented using Tombo) per cytosine ($n=1000$) when paired with 8-oxo-dG (red) or G (purple). Cytosines in the same 5-mer context (KKKKK) are connected via gray lines.



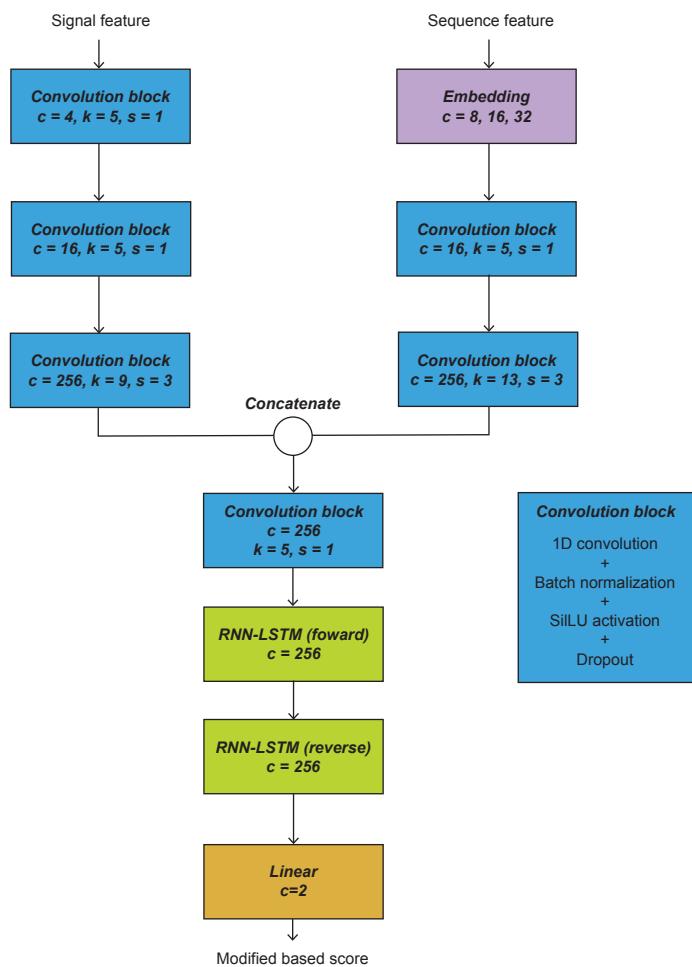
Supplementary figure 4: 8-oxo-dG versus canonical bases signals. Average measured normalized canonical base (A, C, G, T) signal and 8-oxo-dG signal per measured 5-mer as segmented using Tombo. Identity line indicated as the dashed gray line.



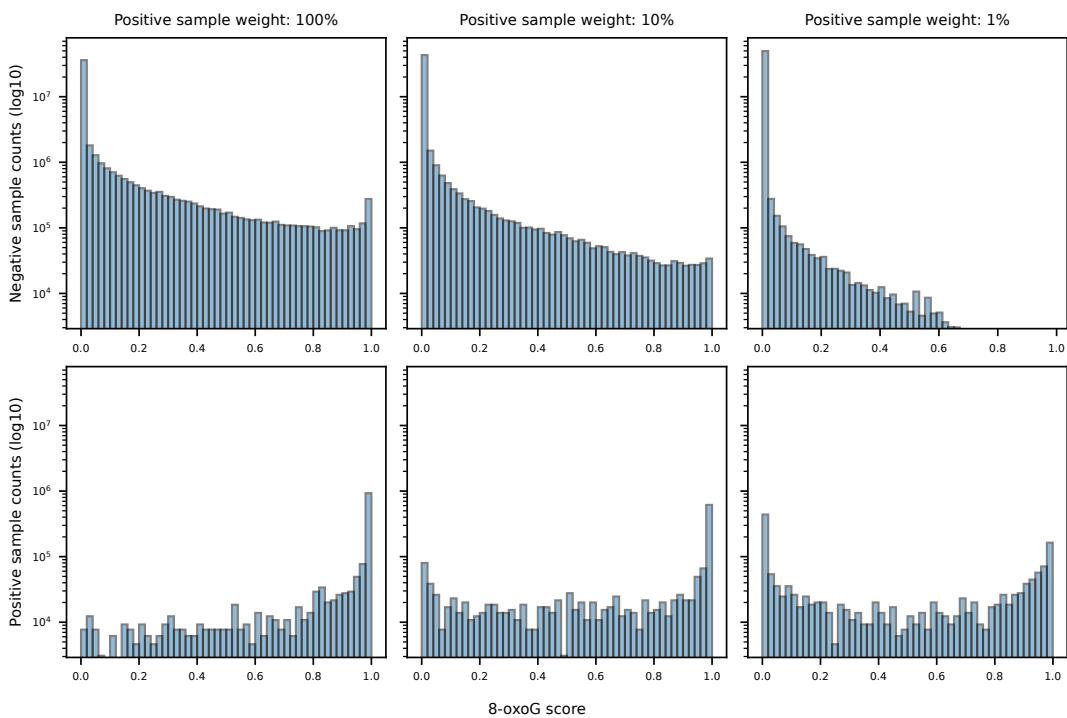
Supplementary figure 5: 8-oxo-dG signal examples. Example of 8-oxo-dG (red) and AIC'T (purple) signals in the TTG(8-oxo-dG/AIC'T)CTG context. Dashed black line indicates the expected signal value based on the AIC'T containing sequence.



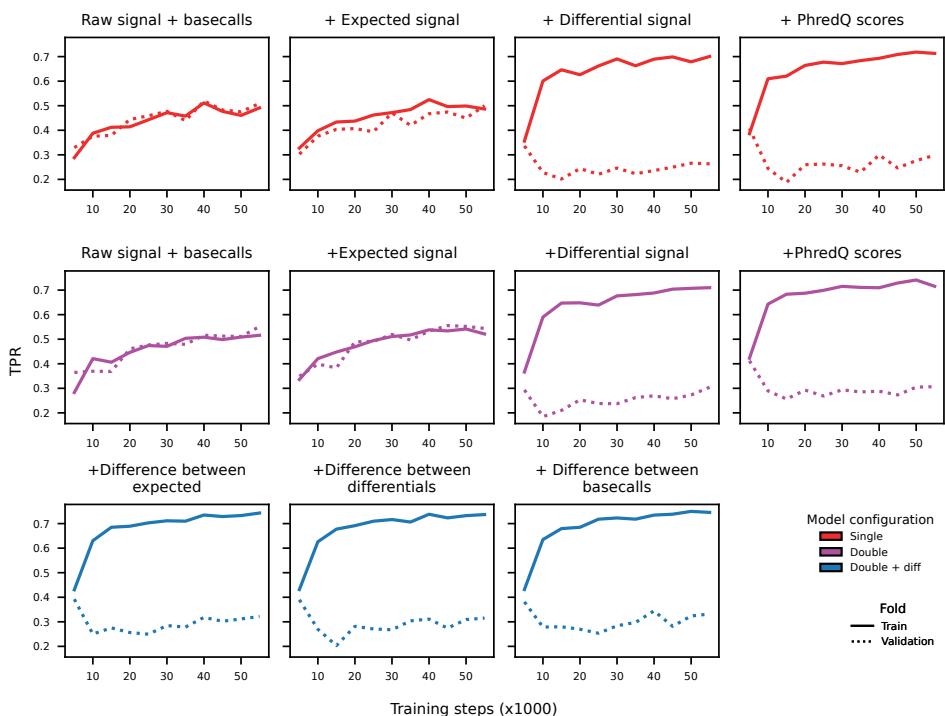
Supplementary figure 6: 8-oxo-dG error rate after *Bonito* fine-tuning. Error rate per base around 8-oxo-dG (o) in the ONT *Bonito* pre-trained model (left), and fine-tuned (right) model with both T2T and oligo data. Error rate includes mismatches and deletions.



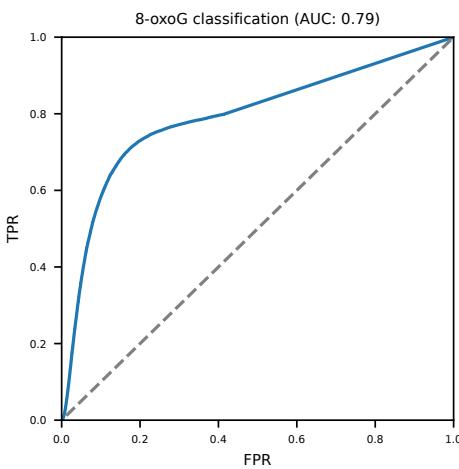
Supplementary figure 7: Remora model architecture. Schematic representation of the neural network architecture for a *Remora* model. Numbers indicate output dimension (c), kernel size (k), stride (s).



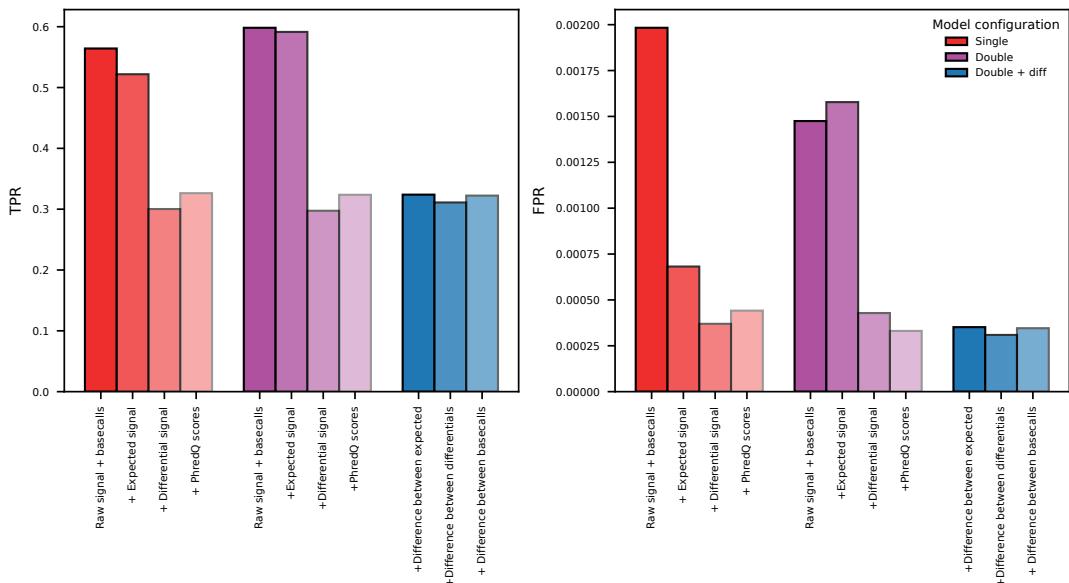
Supplementary figure 8: Remora model classification score distributions. Score distributions for the negative (top) and positive (samples) of the test fold, for each trained *Remora* base model with different positive sample weights: 100%, 10% and 1% from left to right.



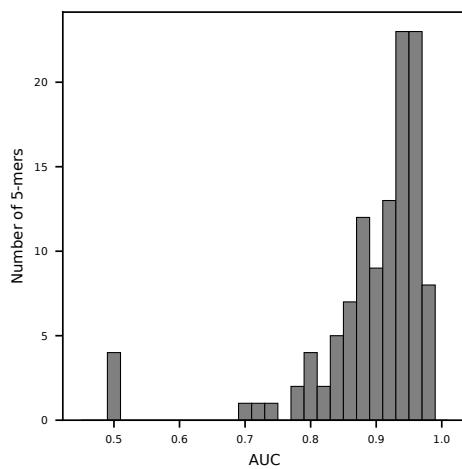
Supplementary figure 9: Remora model during training performance with increased number of features. True positive rate over training of a *Remora* model with different features. Each model contains one additional feature from top left to bottom right.



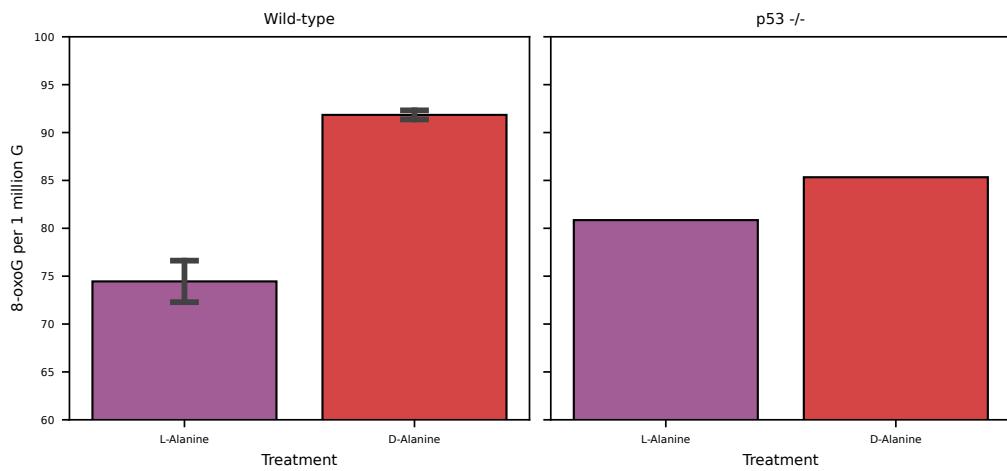
Supplementary figure 10: Single feature classifier. ROC curve (blue line) for a classifier solely based on the absolute sum of differences between measured raw signal and expected signal (Finetuned - Pretrained). This feature is highly differentiating since it achieves by itself an AUC of 0.79. Dashed gray line indicates the performance of a random classifier.



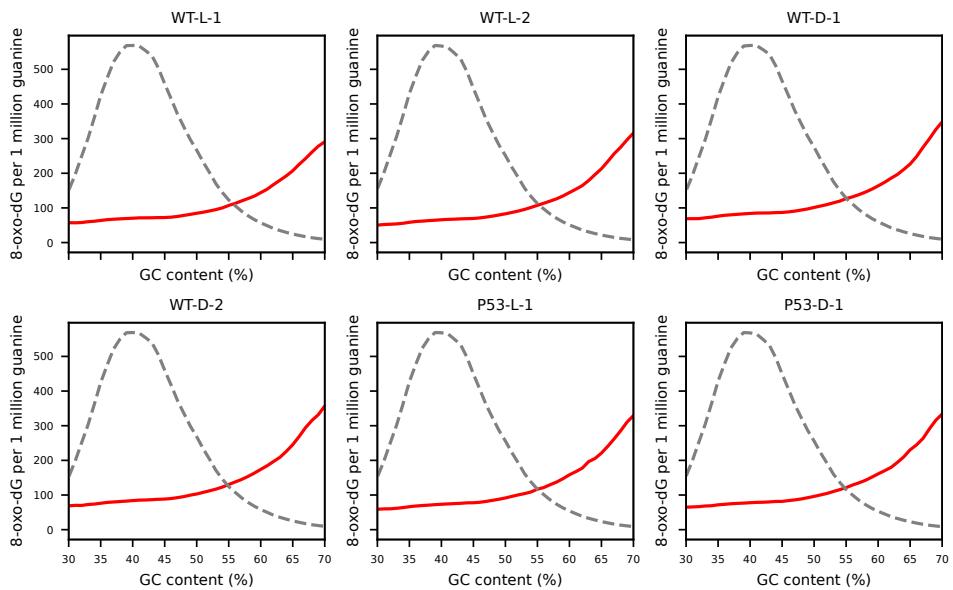
Supplementary figure 11: Remora model performance with additional features. TPR and Q-Score specificity evaluated on the test fold for the experiment in which additional features were added sequentially. Metrics are calculated using a 0.5 threshold. Models include additional features in a cumulative manner, from left to right: basecalls, expected signal, difference between expected and measured signal, and basecall phred quality scores. Red bars include features from the fine-tuned model, purple bars also include features from the *Bonito* pre-trained model, blue bars include the difference between the features of the *Bonito* fine-tuned and pre-trained models.



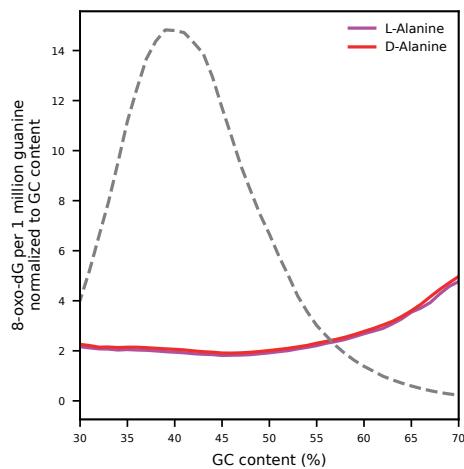
Supplementary figure 12: AUC per 5-mer. 8-oxo-dG classification performance for each 5-mer as area under the curve (AUC).



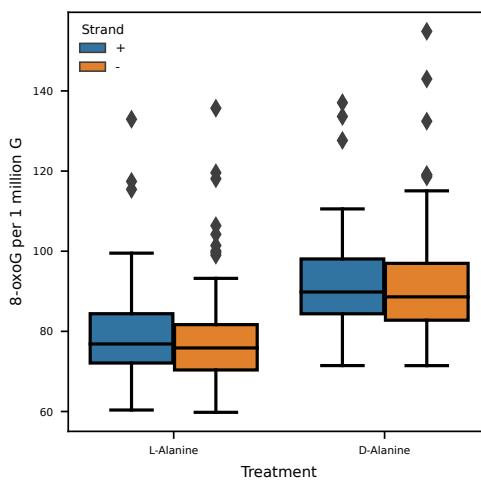
Supplementary figure 13: 8-oxo-dG levels per cell line and treatment. Overall 8-oxo-dG molecules per 1 million G molecules per L-Alanine and D-Alanine treated cells. Error bars indicate minimum and maximum calculated values per biological replicate.



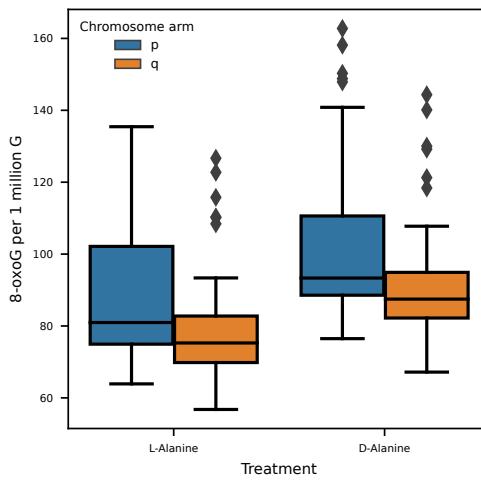
Supplementary figure 14: 8-oxo-dG levels per GC content. 8-oxo-dG levels across different GC (%) content bins. Red lines indicate 8-oxo-dG values per 1 million guanines. Grey dashed line indicates the distribution of measured GC content bins.



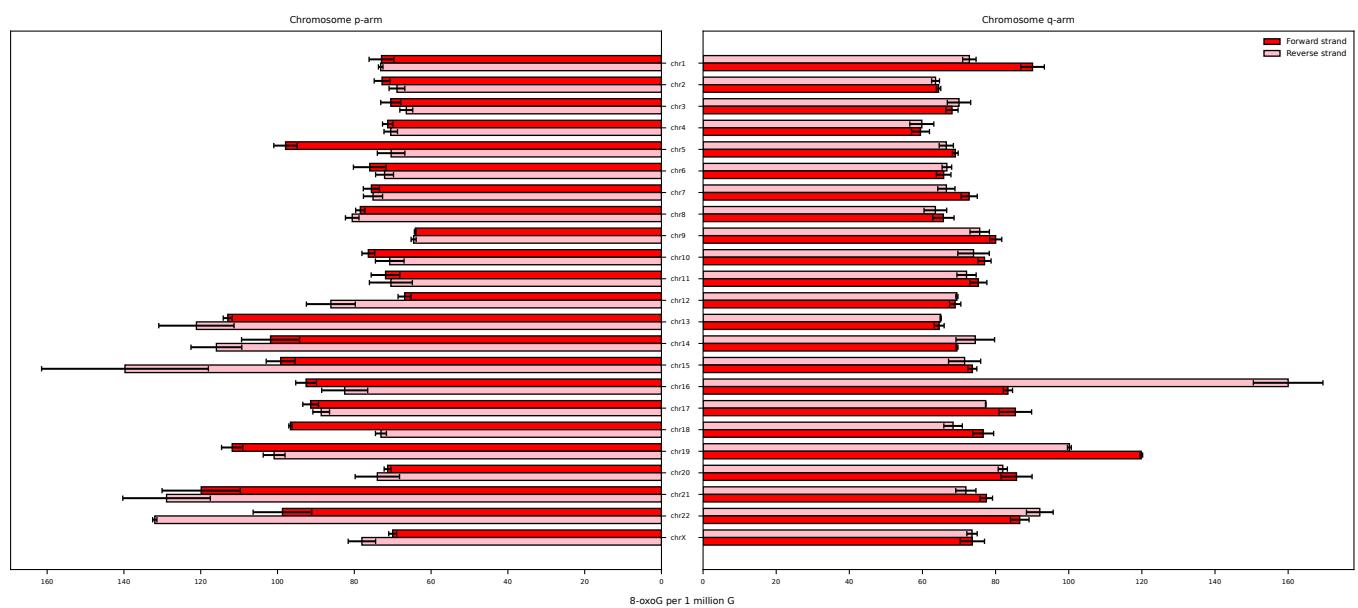
Supplementary figure 15: 8-oxo-dG levels normalized to GC content. 8-oxo-dG levels across different GC (%) content bins. Purple (L-Alanine) and red (D-Alanine) lines indicate 8-oxo-dG values per 1 million guanines normalized to GC content. Grey dashed line indicates the distribution of measured GC content bins.



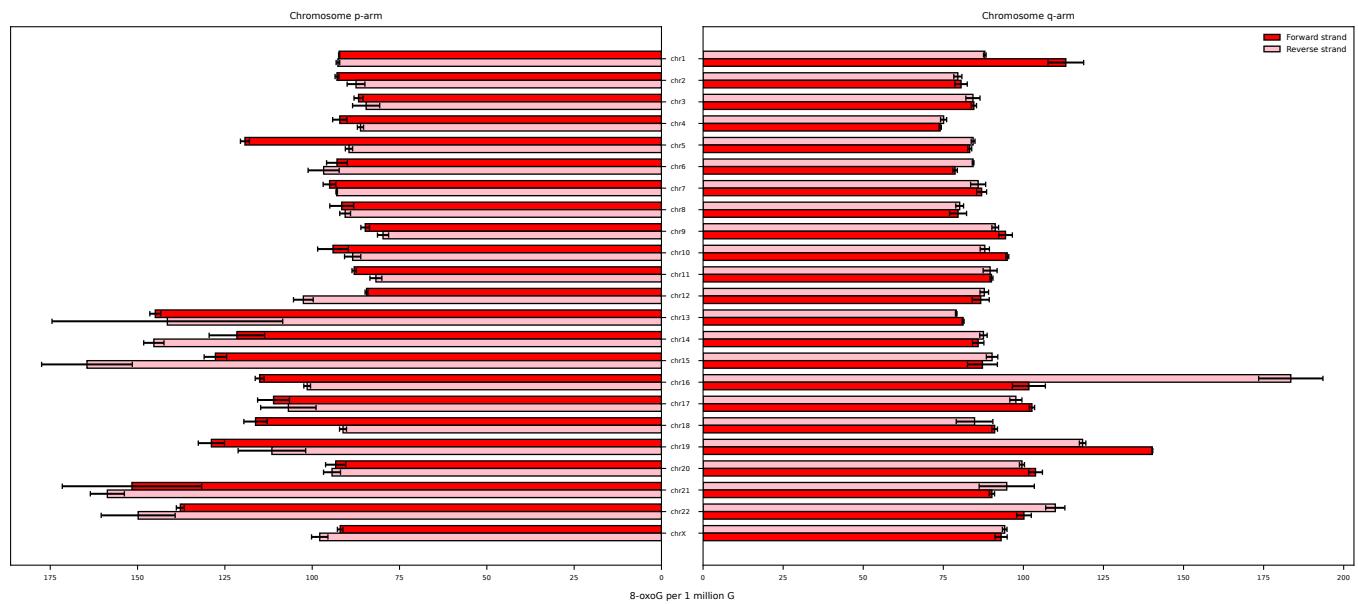
Supplementary figure 16: 8-oxo-dG levels normalized to GC content. 8-oxo-dG counts per 1 million guanine divided per DNA strand and L-alanine or D-alanine treated cells. Boxplot represents values per chromosome for all cell lines. Horizontal bar represents the median, boxes indicate the 25th and 75th percentiles, whiskers indicate the 10th and 90th percentiles, and diamonds indicate outliers.



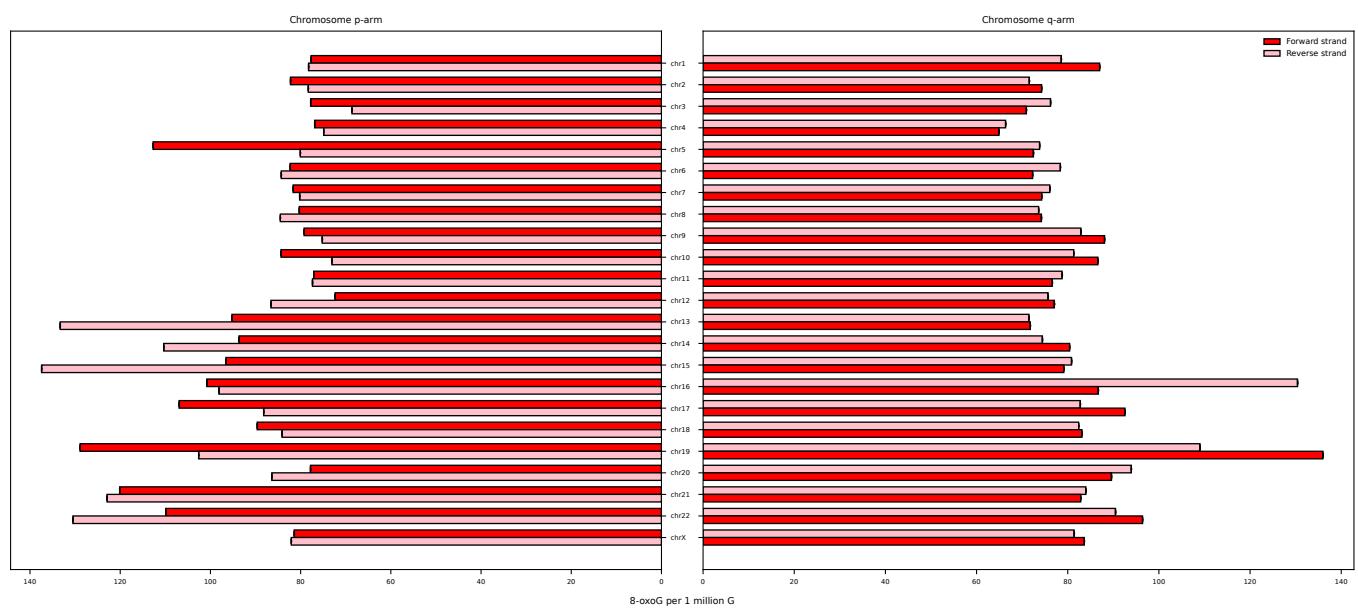
Supplementary figure 17: 8-oxo-dG levels normalized to GC content. 8-oxo-dG counts per 1 million guanine divided per DNA chromosome arm and L-alanine or D-alanine treated cells. Boxplot represents values per chromosome for all cell lines. Horizontal bar represents the median, boxes indicate the 25th and 75th percentiles, whiskers indicate the 10th and 90th percentiles, and diamonds indicate outliers.



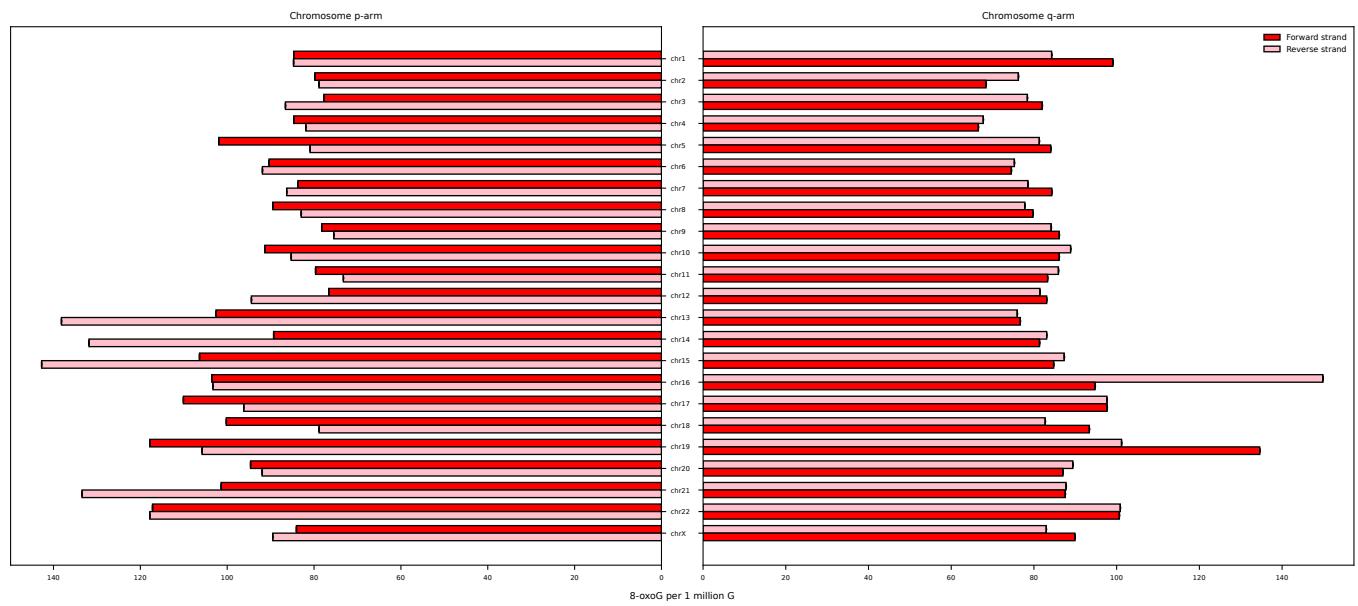
Supplementary figure 18: 8-oxo-dG levels wild-type L-alanine treated cells. 8-oxo-dG counts per 1 million guanines for the RPE wild-type cells treated with L-alanine. Counts are divided per chromosome, chromosome arm and DNA strand. Error bars indicate the values of the two biological replicates.



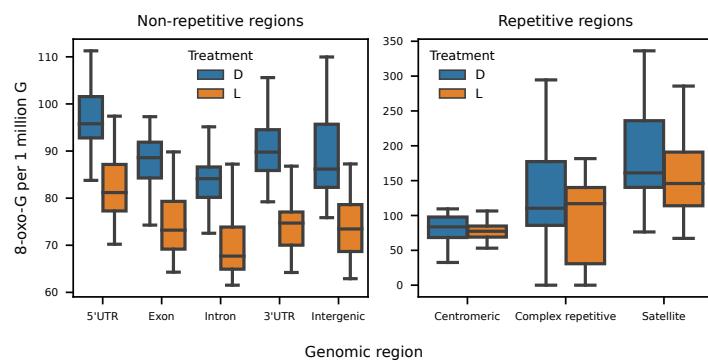
Supplementary figure 19: 8-oxo-dG levels wild-type D-alanine treated cells. 8-oxo-dG counts per 1 million guanines for the RPE wild-type cells treated with D-alanine. Counts are divided per chromosome, chromosome arm and DNA strand. Error bars indicate the values of the two biological replicates.



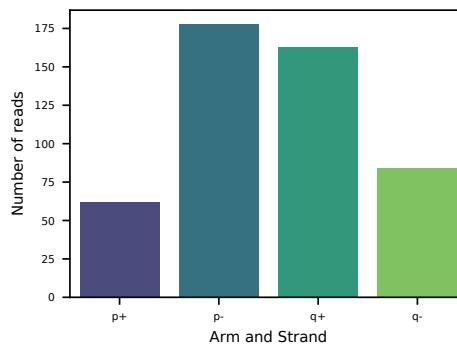
Supplementary figure 20: 8-oxo-dG levels p53 KO L-alanine treated cells. 8-oxo-dG counts per 1 million guanines for the RPE wild-type cells treated with L-alanine. Counts are divided per chromosome, chromosome arm and DNA strand.



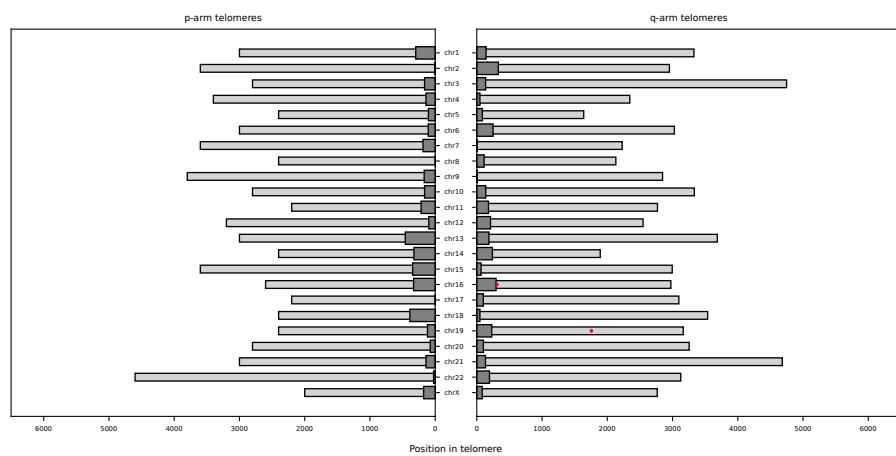
Supplementary figure 21: 8-oxo-dG levels p53 KO D-alanine treated cells. 8-oxo-dG counts per 1 million guanines for the RPE wild-type cells treated with D-alanine. Counts are divided per chromosome, chromosome arm and DNA strand.



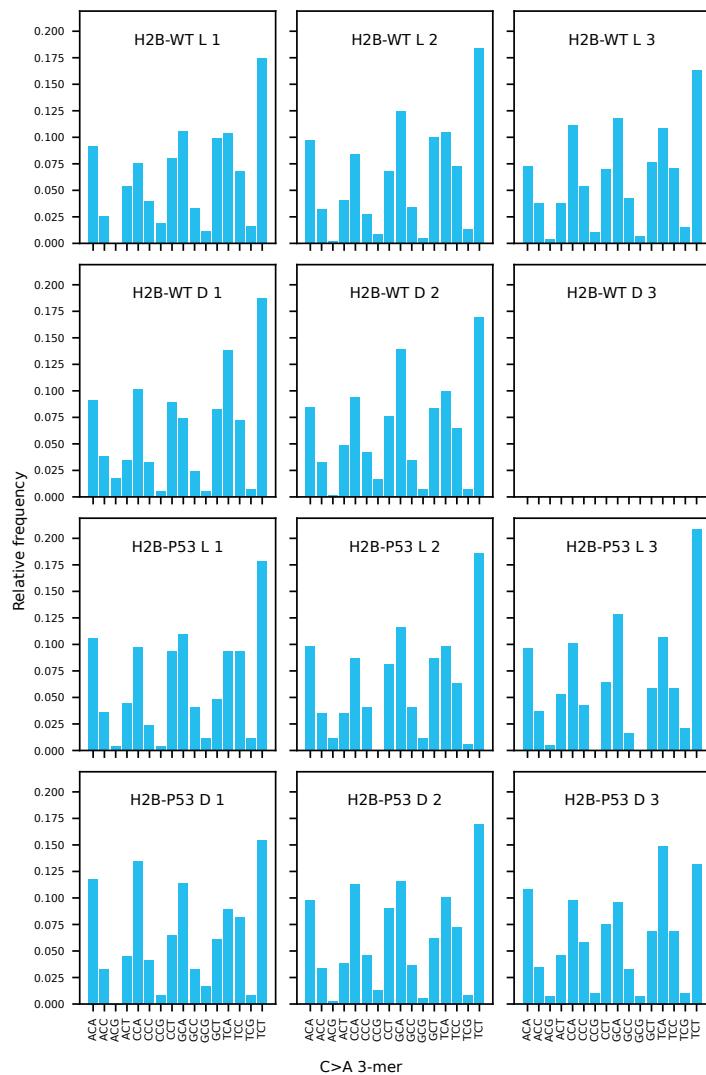
Supplementary figure 22: 8-oxo-dG levels per genomic region and treatment. 8-oxo-dG counts per 1 million guanine grouped per genomic region based on the T2T reference genome assembly. Data values are collected per chromosome. Colors indicate whether cells were treated with D-Alanine (blue) or L-Alanine (orange). Horizontal bar represents the median, boxes indicate the 25th and 75th percentiles, whiskers indicate the 10th and 90th percentiles.



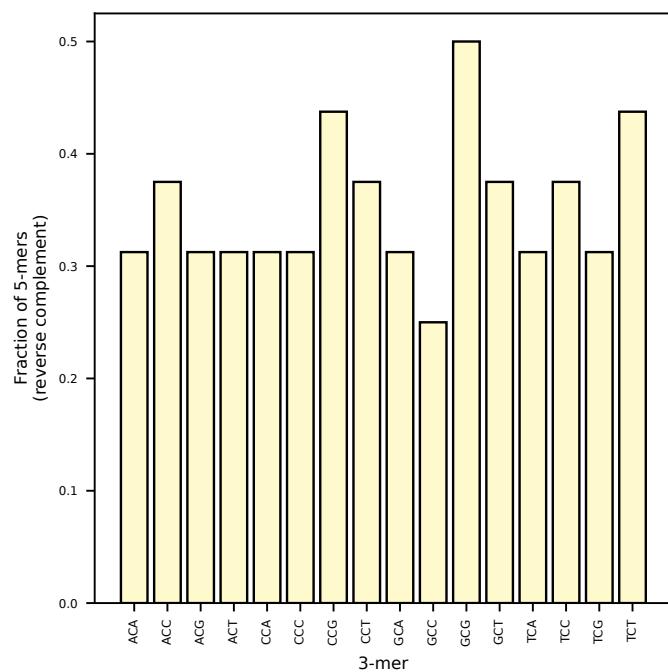
Supplementary figure 23: Number of reads mapped to telomeres. Number of mapped reads across all sequenced cell lines, split by chromosome arm and DNA strand. Only primarily mapped reads are included.



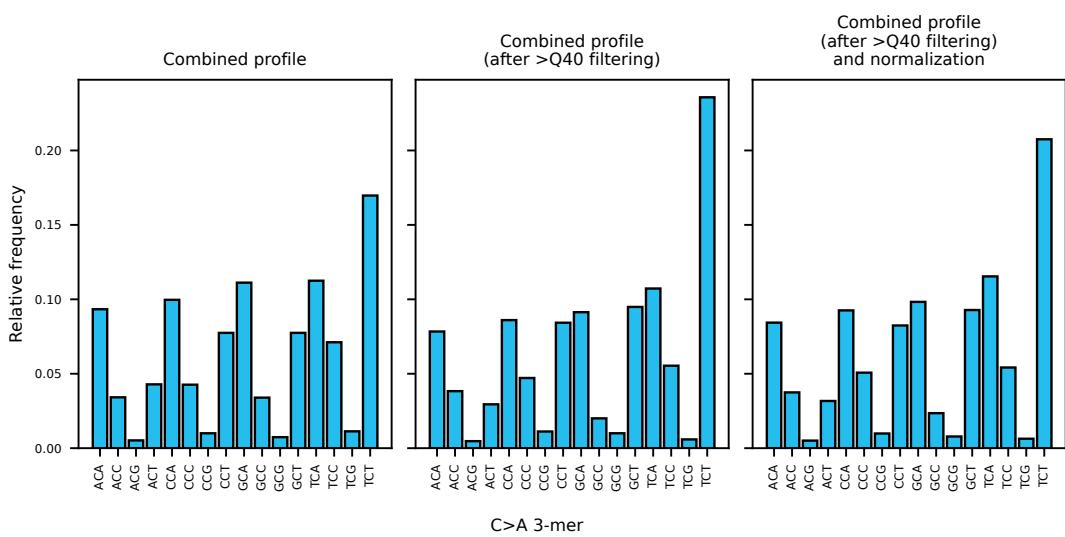
Supplementary figure 24: 8-oxo-dG molecules detected at telomeres. 8-oxo-dG calls (red) on reads that are primarily mapped to telomeric regions. Calls are combined from all the sequenced cell lines. Light gray bars indicate repetitive regions on each chromosome. Dark gray bars indicate non-repetitive regions, still annotated as telomeric regions on the T2T reference genome assembly.



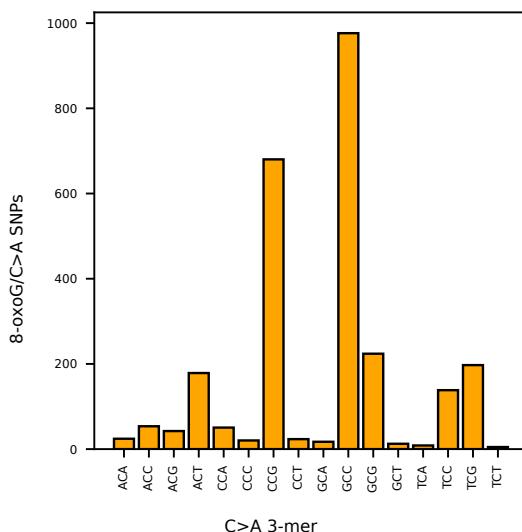
Supplementary figure 25: 8-oxo-dG molecules detected at telomeres. Mutational profile for C>A mutations. Mutations are grouped based on their 3-mer context and counts are relative to the total amount of C>A mutations. Text in the plot indicates the cell line (WT or p53^{-/-}), treatment (L-Alanine or D-Alanine), and the biological replicate number. H2B-WT-D3 was a failed sequencing run and therefore has no data.



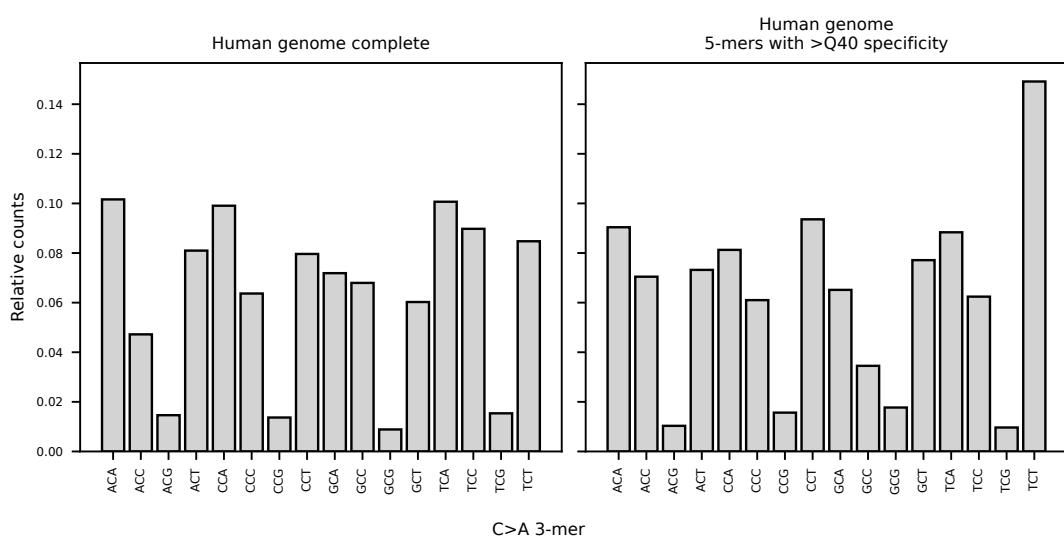
Supplementary figure 26: 3-mer completeness. Fraction of 5-mers with a specificity >Q40 for each 3-mer in the reverse complement strand.



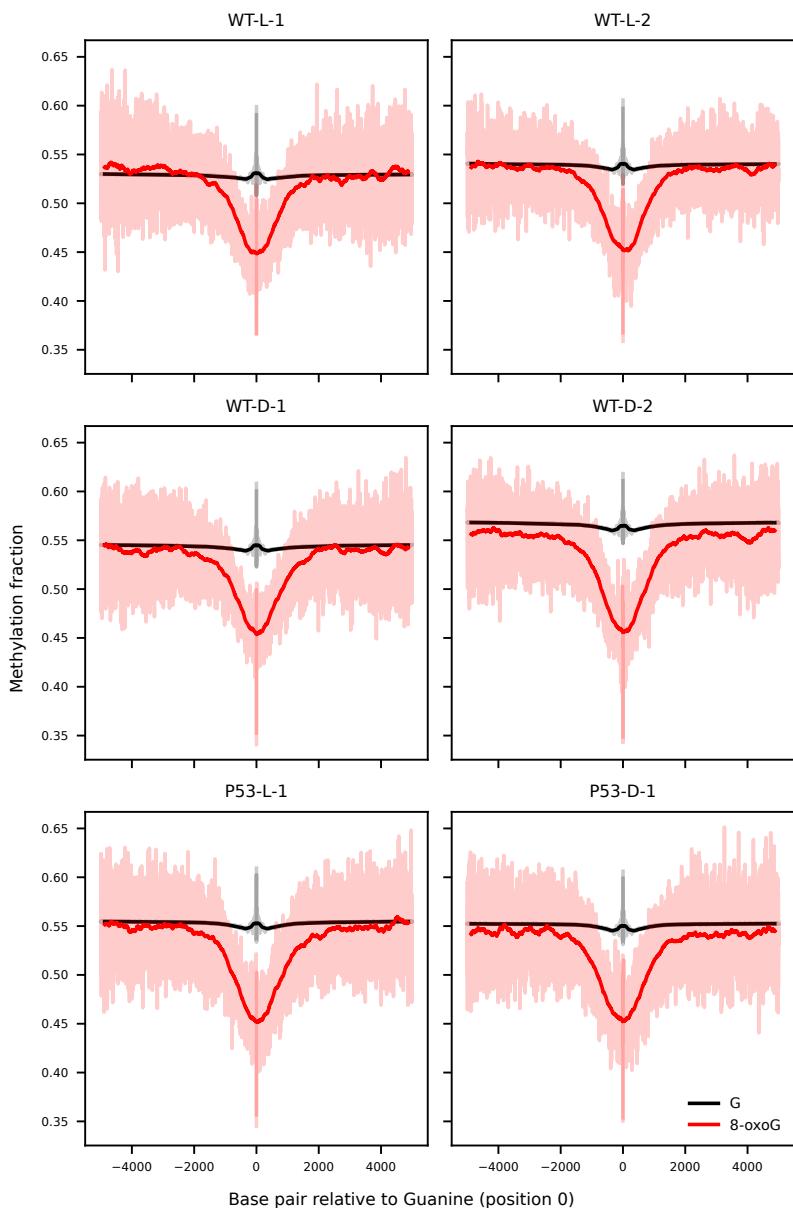
Supplementary figure 27: Mutational profile normalization. Mutational profile of C>A mutations of all cell lines and treatments joined. Left panel indicates the joined profiles without any correction. Middle panel includes only mutations in a 5-mer context with high specificity for 8-oxo-dG calling. Right panel includes corrections for the number of available 5-mers per 3-mer.



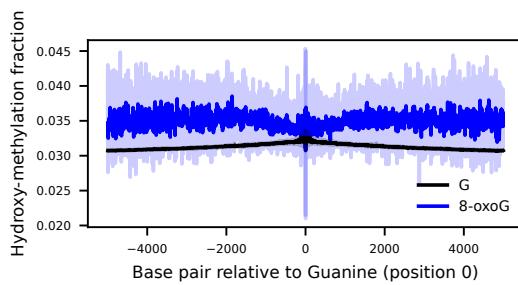
Supplementary figure 28: 8-oxo-dG to mutation ratio. Ratio between 8-oxo-dG calls and C>A/G>T mutations in each C>A 3-mer. Includes data aggregated from all the cell lines.



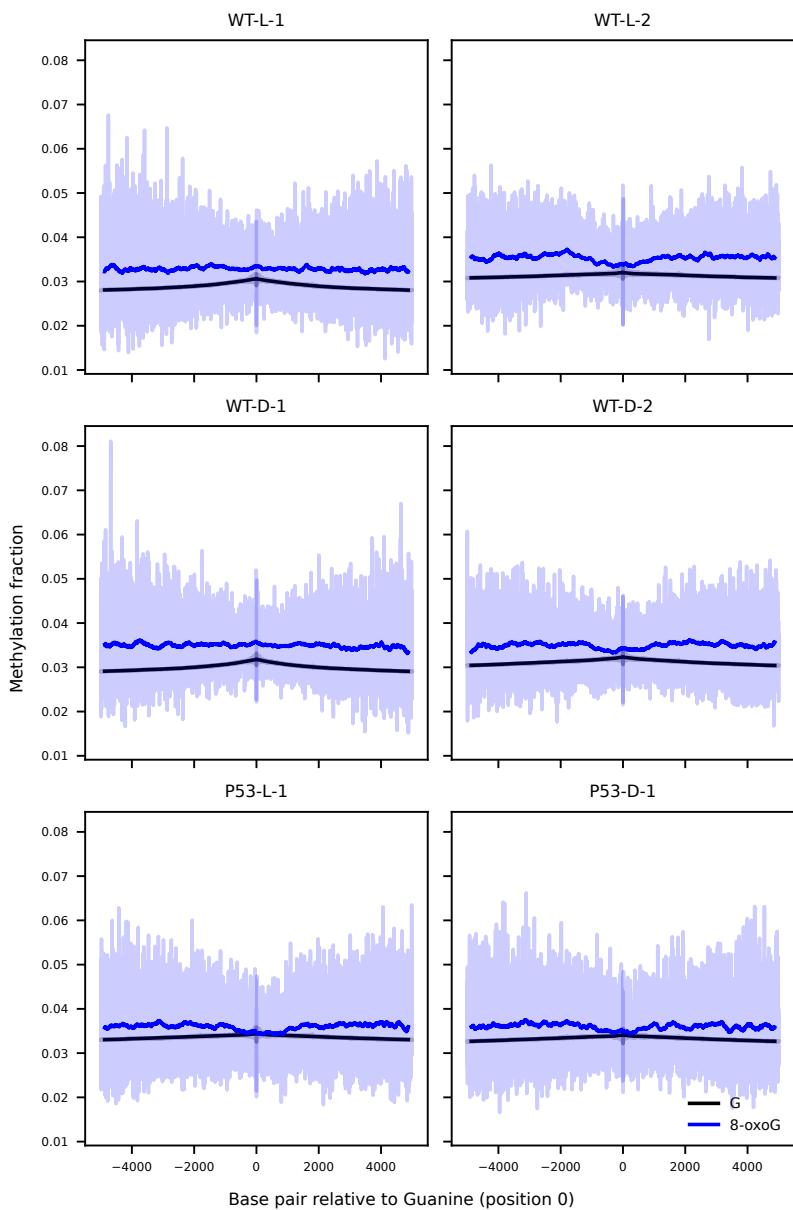
Supplementary figure 29: Human genome 3-mer content. Relative counts of all the 3-mers (with cytosine in the middle position) in the human genome. Left includes all the 3-mers, and right only includes counts of 5-mers with high specificity for 8-oxo-dG calling.



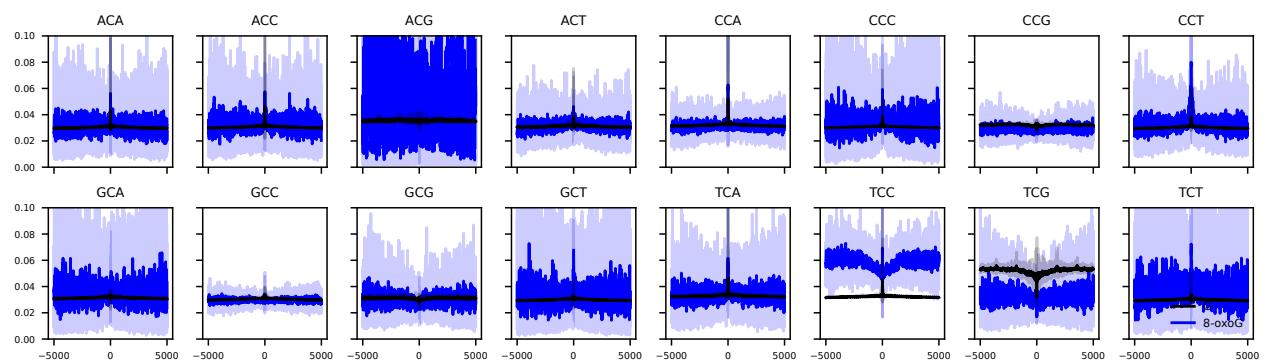
Supplementary figure 30: Methylation levels per line relative to 8-oxo-dG. Methylation levels for 8-oxo-dG (red) and Guanine (black) containing reads at position zero, methylation levels are obtained from the same molecule. Transparent colored line indicates the underlying data, the dark line is the result of an 11 base average convolution. Text in the plot indicates the cell line (WT or *p53*^{-/-}), treatment (L-Alanine or D-Alanine), and the biological replicate number.



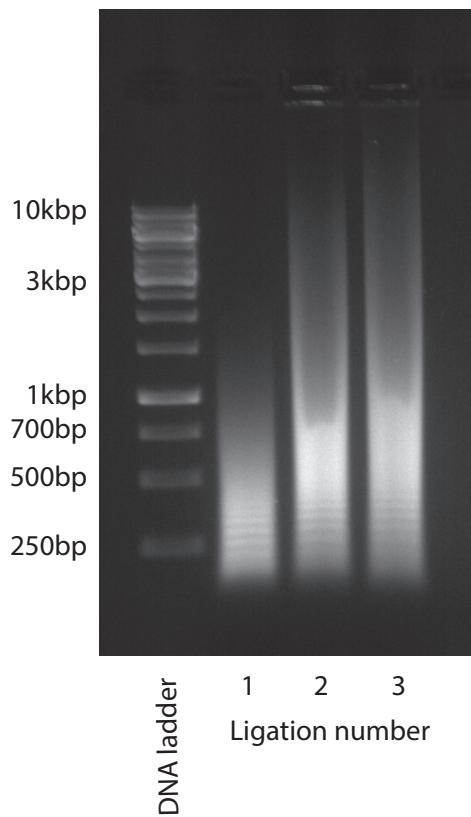
Supplementary figure 31: Hydroxy-methylation levels relative to 8-oxo-dG. Hydroxy-methylation levels for 8-oxo-dG (blue) and Guanine (black) containing reads at position zero, hydroxy-methylation levels are obtained from the same molecule. Transparent colored line indicates the underlying data, the dark line is the result of an 11 base average convolution.



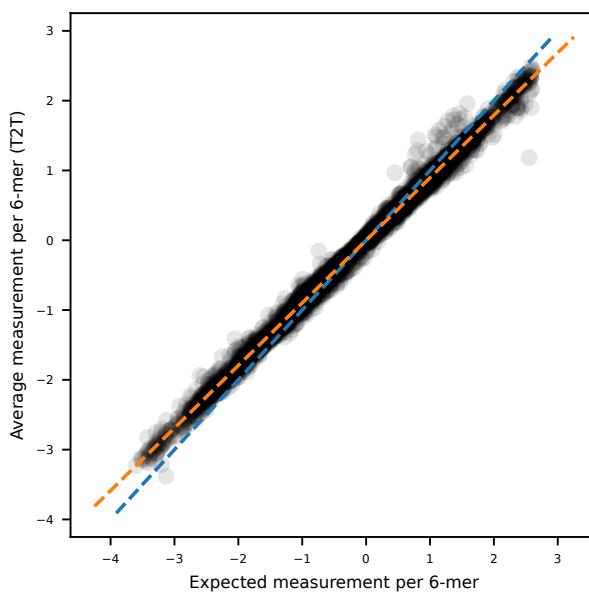
Supplementary figure 32: Hydroxy-methylation levels per line relative to 8-oxo-dG. Hydroxy-methylation levels for 8-oxo-dG (blue) and Guanine (black) containing reads at position zero, hydroxy-methylation levels are obtained from the same molecule. Transparent colored line indicates the underlying data, the dark line is the result of an 11 base average convolution. Text in the plot indicates the cell line (WT or $p53^{-/-}$), treatment (L-Alanine or D-Alanine), and the biological replicate number.



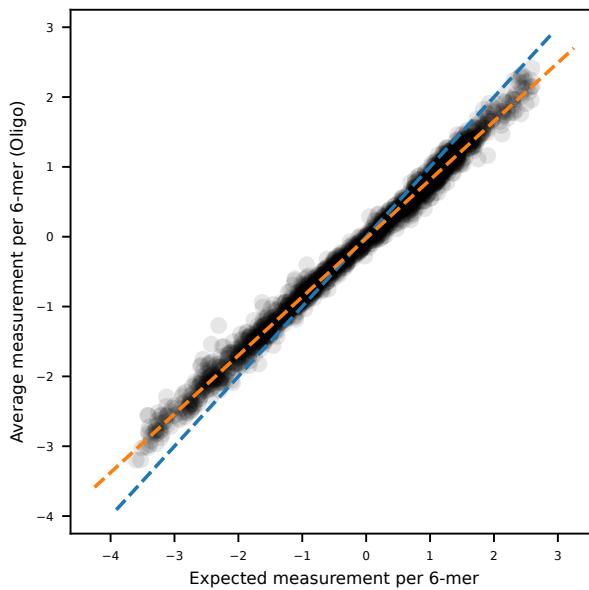
Supplementary figure 33: Hydroxy-methylation levels split by 3-mer relative to 8-oxo-dG. Hydroxy-methylation levels for 8-oxo-dG (blue) and Guanine (black) containing reads at position zero, hydroxy-methylation levels are obtained from the same molecule. Data from all conditions is included, and is split between the tri-nucleotide context of the opposite strand of Guanine. Transparent colored line indicates the underlying data, the dark line is the result of an 11 base average convolution.



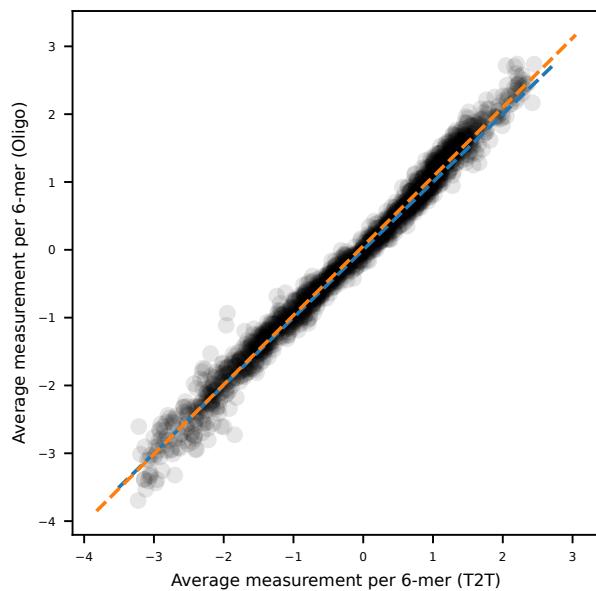
Supplementary figure 34: Oligo ligation length. Electrophoresis gel (1% agarose run at 80V for 1 hour) that shows that consecutive repetitive oligo ligations yield increasingly lengthy DNA concatemers.



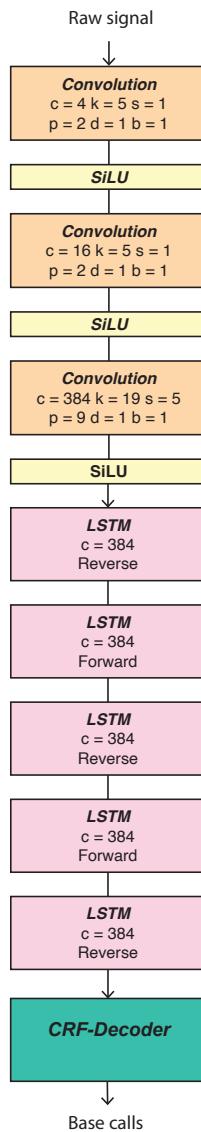
Supplementary figure 35: Canonical 6-mer normalization T2T. Measured 6-mer average levels on the T2T dataset before two step signal normalization, compared to expected 6-mer values for non-modified bases. Blue line indicates the identity line. Orange line indicates a linear fit model between the expected and oligo measurements.



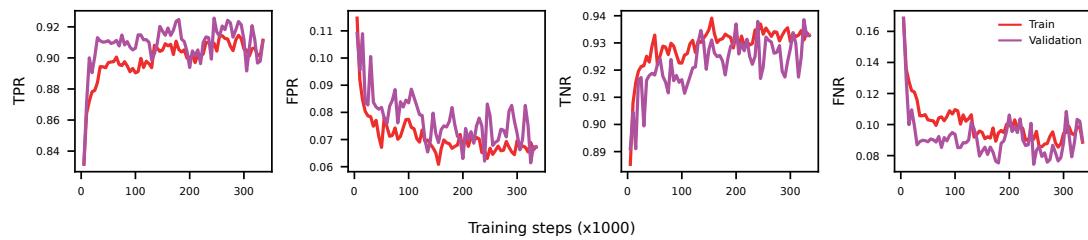
Supplementary figure 36: Canonical 6-mer normalization oligo. Measured 6-mer average levels on the oligo dataset before two step signal normalization, compared to expected 6-mer values for non-modified bases. Blue line indicates the identity line. Orange line indicates a linear fit model between the expected and oligo measurements.



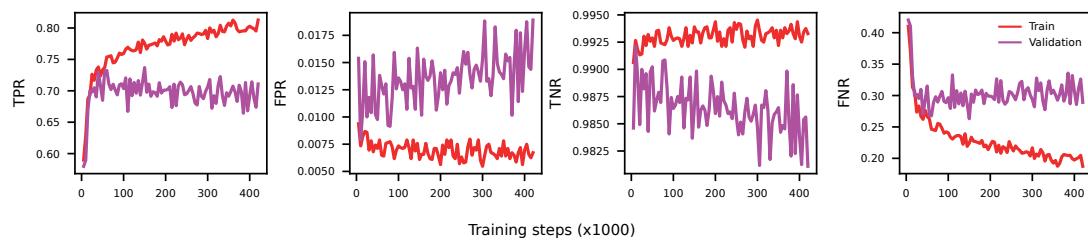
Supplementary figure 37: Canonical 6-mer comparison between T2T and oligo. Measured 6-mer average levels on the T2T and oligo datasets after two step signal normalization. Blue line indicates the identity line. Orange line indicates a linear fit model between the T2T and oligo measurements.



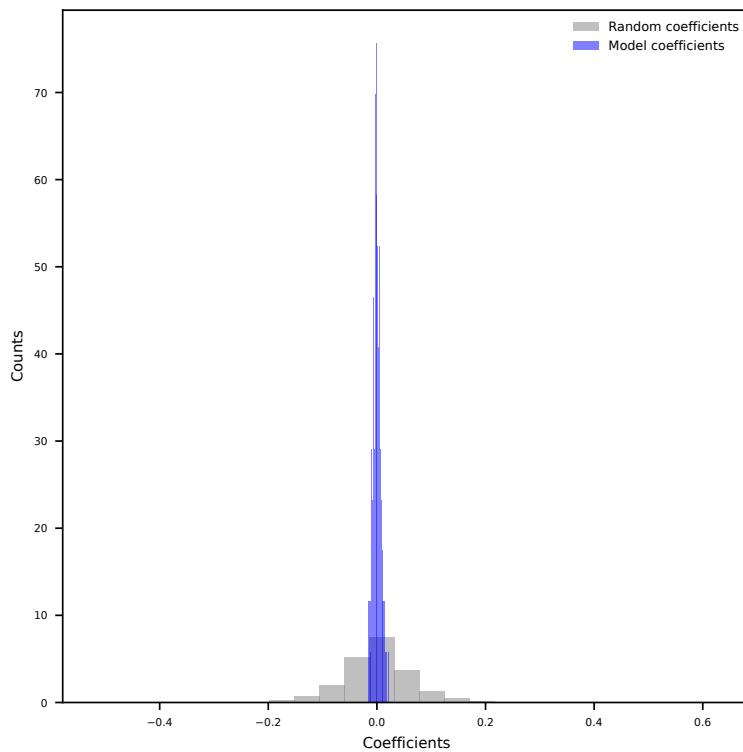
Supplementary figure 38: Neural network architecture of a *Bonito* model. Schematic representation of the neural network architecture for a *Bonito* model. Numbers indicate output dimension (c), kernel size (k), stride (s), padding (p), dilation (d) and bias (b).



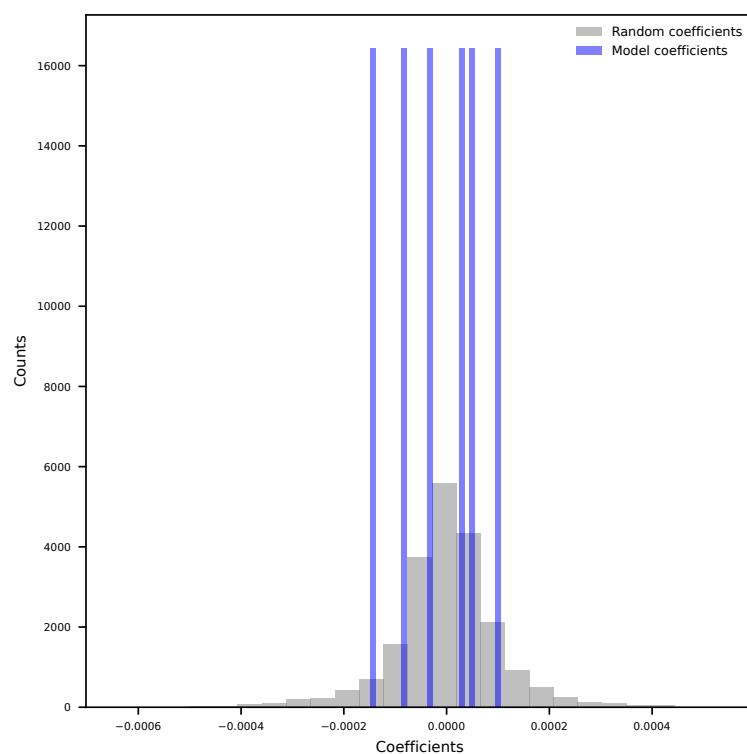
Supplementary figure 39: Metrics during training. Performance metrics of the Remora base model during training, trained using a metric learning approach during training. Each plot represents, from left to right, the TPR, FPR, TNR and FNR for the train (red) and validation (purple) folds.



Supplementary figure 40: Metrics during training, metric learning. Performance metrics of the Remora base model during training, trained using a metric learning approach during training. Each plot represents, from left to right, the TPR, FPR, TNR and FNR for the train (red) and validation (purple) folds.



Supplementary figure 41: Linear model 5-mer coefficients. Coefficient distribution after fitting a model to explain the observed 8-oxo-dG values per chromosome, chromosome arm and DNA strand based on the 5-mer content. Blue bars indicate the obtained coefficients after model fitting. Gray bars indicate obtained coefficient after label randomization.



Supplementary figure 42: Linear model genomic regions coefficients. Coefficient distribution after fitting a model to explain the observed 8-oxo-dG values per chromosome, chromosome arm and DNA strand based on the relative abundance of different genomic regions (exons, introns, intergenic, satellites, centromeres and complex repetitive regions). Blue bars indicate the obtained coefficients after model fitting. Gray bars indicate obtained coefficient after label randomization.

Supplementary table 1: Oligo sequences. All synthesized and sequenced oligo sequences. Names indicate the 5-mer in which 8-oxo-dG is. Random bases are indicated as “N” and 8-oxo-dG is indicated as “o”.

Supplementary table 2: Error rate 8-oxo-dG containing oligos. Calculated error rate per base in the 8-oxo-dG 5-mer across all sequenced oligos (which contain an 8-oxo-dG). ’base_3’ corresponds to 8-oxo-dG.

Supplementary table 3: Error rate non-8-oxo-dG containing oligos. Calculated error rate per base in the 8-oxo-dG 5-mer across all sequenced oligos (which do not contain an 8-oxo-dG). ’base_3’ corresponds to cytosine complementary to 8-oxo-dG.

Supplementary table 4: Performance metrics base *Remora* model. Performance metrics (TPR, FPR, TNR and FNR) calculated at different thresholds for the trained *Remora* base model, evaluated on the test fold.

Supplementary table 5: Variant filtering configuration. Per parameter configuration used for variant filtering for the mutational profile calculation derived from Illumina sequencing.