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Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting
coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of
adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is
common, direct infection of the placenta is rare. This suggests that pathophysiology associated
with maternal COVID-19, rather than direct placental infection, is responsible for placental
dysfunction and alteration of the placental transcriptome. We hypothesized that maternal
circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to
placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs
from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell
physiology in vitro. We found that the gestational timing of COVID-19 is a major determinant
of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients
with an active infection at the time of delivery, but not EVs isolated from Controls, altered key
trophoblast functions including hormone production and invasion. Thus, circulating EVs from
participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital
trophoblast functions. EV cargo differed between participants with COVID-19 and Controls,

which may contribute to the disruption of the placental transcriptome and morphology. Our
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findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and

circulating EVs are likely to participate in placental dysfunction induced by COVID-19.

INTRODUCTION

Maternal SARS-CoV-2 infection and resulting coronavirus disease (COVID-19) is
associated with an increased risk of pregnancy complications including preterm birth,
hypertensive disorders of pregnancy, fetal growth restriction, and pregnancy loss (/, 2).
Placental dysfunction is known to contribute to these complications, and placental pathology,
including vasculopathies and inflammation, is frequently reported following an acute or even
resolved infection during pregnancy (3-6). This suggests COVID-19 has a long-lasting effect on
pregnancy by altering placenta function. Despite extensive reports of placental abnormalities
following COVID-19, little is known about the underlying mechanisms contributing to placental
dysfunction and the related subsequent pregnancy complications. Direct infection of the
placenta is rare, which suggests that placental dysfunction is caused by the maternal response to
SARS-CoV-2 infection (6-8).

Circulating extracellular vesicles (EVs) are altered by SARS-CoV-2 infection and
contribute to COVID-19-induced organ damage (9-13). EVs are a means of cell-to-cell
communication resulting from their ability to carry and transfer bioactive cargo that elicits
signaling events in recipient cells. Compared to uninfected individuals, EV cargo composition in
patients with COVID-19 is significantly different, eliciting downstream systemic effects such as
coagulopathy (/4-17) and inflammation (10, 11, 14, 18). For example, tissue factor protein

abundance in EVs is increased in COVID-19 and correlates with inflammation and disease
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severity demonstrating the influence that circulating EVs have on the systemic response to
COVID-19, thereby leading to organ dysfunction (9, 12, 13).

During normal pregnancy, the placenta releases EVs into the maternal circulation (19,
20). Placental-derived EVs promote maternal adaptation to support a healthy pregnancy
including a shift in the maternal immune system to a tolerant state and the promotion of
angiogenesis (21, 22). Placental-derived EVs also affect trophoblast function through autocrine
and paracrine signaling. Trophoblasts are a specialized cell type of the placenta that are
responsible for invasion into maternal tissue to anchor the placenta, vascular remodeling for
adequate placental blood flow, nutrient transport, and hormone production for maternal and fetal
signaling. EV signaling impairs normal trophoblast function which is thought to contribute to
the placental dysfunction underlying pregnancy complications (21, 23-26).

Therefore, we hypothesized that COVID-19 alters circulating EV cargo which has a
functional consequence in the placenta. Similar to previous studies, we found that COVID-19
during pregnancy induced marked placental histologic and transcriptomic changes that were
dependent on the gestational timing of maternal SARS-CoV-2 infection. Importantly, we found
that COVID-19 altered EV cargo, and trophoblast exposure to these EVs resulted in reduced
trophoblast invasion and hormone production.

RESULTS
Pregnancy outcomes following active and resolved SARS-CoV-2 infection

Participants were enrolled at the time of delivery between July 2020-August 2022.
Controls had no known SARS-CoV-2 infection during pregnancy. COVID-19 cases were
divided based on the gestational timing of infection and either had a resolved infection that

occurred in the 1%, 2", or 3™ trimester (R1, R2, R3), or had an active infection at the time of
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delivery (AI) (Table 1). All patients admitted to the labor and delivery unit underwent PCR
testing for SARS-CoV-2 at admission. There were no significant differences in maternal age
between groups, but there were significantly more Black participants with an infection in the
third trimester (resolved or active) compared to non-infected individuals (Controls) (R3 p=0.046,
Al p=0.011). Participants with an infection in the third trimester, resolved or active, also had an
earlier gestational age at delivery than Controls (R3 p<0.001, AI p=0.034) (Table 1). Not
surprisingly, the Al group, which underwent universal screening for SARS-CoV-2 at admission
for delivery, had a higher incidence of asymptomatic infection than those with resolved infection
(p<0.0001).

Multiple studies have shown that SARS-CoV-2 infection during pregnancy is associated
with adverse pregnancy outcomes. However, to date, no study has examined the relationship
between the timing of infection and pregnancy complications in a single cohort. Our study is
limited by relatively small numbers (n=15-32) in each participant group, but we found that the
type of adverse outcome differed depending on the gestational timing of infection. The
incidence of gestational hypertension (gHTN) was increased in R1 (p=0.016), whereas
spontaneous preterm birth (SPTB) was increased in R2 (p=0.008) compared to Controls.
Preeclampsia (PE) and medically indicated preterm birth (MPTB) were increased in R3 and Al
compared to Controls (PE: R3 p=0.032, Al p=0.010, MPTB: R3 p=0.005, AI p=0.010) (Table
1). In our cohort, there was no increase in intrauterine growth restriction (IUGR) or intrauterine
fetal demise (IUFD) which have been reported in pregnancies complicated by COVID-19 (27-
29).

Placental pathology in COVID-19
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Abnormal placental pathology is commonly reported in patients with active and resolved
SARS-CoV-2 infections (3). However, there has yet to be a comprehensive assessment of
placenta morphology following maternal infection at various gestational ages. Similar to
previous reports (3-6, 30, 31), we found maternal and fetal vascular malperfusion (MVM &
FVM) lesions were increased among patients with pregnancies complicated by COVID-19
(Table 1). Interestingly, high-grade MVM and perivillous fibrin deposition were increased in
participants with a resolved infection that occurred in the second or third trimester, but not the
first trimester or with an active infection. This suggests that it takes a substantial amount of time
for the placenta to recover from the impact of COVID-19. Alternatively, it is possible that the
first trimester placenta was more resilient. The lack of high-grade MVM and perivillous fibrin
deposition in placenta collected from participants with an active infection suggests these lesions
may take weeks to manifest.

Timing of COVID-19 impacts the placental transcriptome

To gain insight into potential novel pathways that might be affected by COVID-19 during
pregnancy, we performed RNA-seq on the placental transcriptome using biopsies from placenta
collected at delivery in COVID-19 cases and controls. Not surprisingly, active infection was
associated with significant differences in gene expression in the placenta. There were 72
upregulated genes and 384 downregulated genes in Al compared to Control placentas. (Figure 1,
Supplemental Table 1). Gene expression was also altered in recovered infections, but the
magnitude of change was smaller; 28, 2, and 56 differentially expressed genes (DEGs)
comparing R1, R2, and R3 to Controls, respectively. It's worth noting that in each of the 4
groups, there was differential expression of genes that regulate mitochondria activity, which

implies a common dysfunctional pathway resulting from COVID-19.
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In addition, several other genes were differentially expressed in one or more COVID-19
groups. There were several transcripts that were increased in placenta from R1 and Al groups
compared to Controls. Several of these genes regulate fibrosis (RORB, FNI, IGFB6, MMP12,
and AC027288.3) (32-36) suggesting that this pathway plays an important role in placenta
pathology in COVID-19. Moreover, MMP12 regulates spiral artery remodeling and reduced
MMP12 activity contributes to the development of preeclampsia (37). Similarly, increased
expression of FN/ slice variants containing Extra Domain A promotes inflammation via Toll-
like receptor 4 (TLR4) activation (38, 39) and is associated with an increased risk of
preeclampsia (32, 38, 39). Dysregulation of these pathways may contribute to the pathogenesis
of preeclampsia in pregnant individuals with COVID-19. Finally, GREBI was upregulated in R1
and Al placenta compared to Controls. GREBI interacts with the progesterone (P4) receptor to
regulate P4 responsive genes (40, 41) and GREBI1 promotes maternal tissue remodeling (40).

Several of the downregulated genes in Al compared to Controls were also
downregulated in R3 placenta compared to Controls (PRELP, MEGY, VSTM4, CLIC2, C7, and
CNNI). Interestingly, CNNI, which encodes calponin, is expressed by smooth muscle cells and
expression changes are associated with spiral artery remodeling (42, 43). Further, SARS-CoV-2
infection is known to disrupt complement pathways (44) and the gene encoding complement C7
was downregulated in R3 and Al placenta compared to Controls. The complement system plays
a dual role in pregnancy in that it protects the placenta from pathogen infection and participates
in spiral artery remodeling (45). While the effect of decreased C7 in the placenta is unknown, it
may indicate that an imbalance in the complement system contributes to placental pathology
observed in R3 and Al placentas. S7A474, which encodes the signal transducer and activator of

transcription 4, is a key activator of immune regulating genes and was upregulated in R3 and Al
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placentas compared to Controls. STAT4 mediated pathways are disrupted in preeclampsia and
circulating levels are elevated in patients with preeclampsia (46, 47). This differential gene
expression was only seen in the placenta if the maternal infection was active or recently resolved,
suggesting a long period of time is necessary to attenuate these pathways.

Statistically significant disruptions in canonical pathways, as determined by Ingenuity
Pathway Analysis (IPA), include inflammation and fibrosis in the placentas from R1, R3, and Al
compared to Controls (Supplemental Table 2). This unbiased approach based on differential
gene expression supported our placental histopathology findings of inflammation and fibrosis in
these placentas. Thus, despite the long period of time following the resolution of maternal
SARS-CoV-2 infection, genes that regulate fibrosis and inflammation were altered, and
pathological evidence of fibrosis and inflammation were apparent in the placenta regardless of
the timing of infection.

We also used IPA to predict transcriptional regulators of genes differentially expressed in
the placenta from pregnancies complicated by COVID-19. Interestingly, genes that encode for
growth factors (IGF1, IGF2, FGF3, FGF19, TGFBI), immune-regulating proteins (JUN, TNF,
ILIB, IL13, IL6, IL10, IL4, IFNG) and hormone-regulating proteins (PRLH, LEPR, ESRI, and
PGR) were the top predicted transcriptional regulators (Supplemental Table 3).

Sustained effects on circulating EVs following COVID-19 in early pregnancy

As discussed above, SARS-CoV-2 rarely infects the placenta, implying a distal signal.
We hypothesized that maternal circulating EVs play a role in mediating placental dysfunction
associated with COVID-19. Therefore, we characterized EVs isolated from maternal plasma
collected at delivery to determine if COVID-19 altered the EV profile. We isolated large (LEV)

and small (SEV) EVs as they carry distinct cargo with distinct functional effects. We confirmed
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the presence of large and small EVs in isolated particles by electron microscopy (Supplemental
Figure 1A). Large and small EVs had the expected size distribution of EVs (Supplemental
Figure 1B) and abundant expression of the EV-related tetraspanin CD9 (Supplemental Figure
1C).

EV characteristics, including concentration and size distribution, revealed long-lasting
alterations in patients with a resolved infection. The diameter of small EVs was significantly
increased in resolved infections compared to Controls (108.7nm vs. 117.2nm, p=0.023).
However, the difference in concentration was not significant (2.15x108 vs. 1.56 x108 EVs/uL
plasma, p=0.074). When resolved infections were categorized by timing during gestation, we
found that small EVs isolated from R2 participants had an increased diameter and reduced
concentration, but small EVs isolated from R1 and R3 participants were not different from
Controls (Figure 2 D&E). The diameter of large EVs isolated from R2 patients was decreased
but there was no change in their number (Figure 2 A&B). COVID-19 in the second trimester was
uniquely associated with alterations in circulating EV concentration and size at the time of
delivery.

Altered cell of origin of EVs in patients with COVID-19 in early pregnancy

Characterizing the source of circulating EVs provides biological information about the
tissue and cell-type of origin and its functional state. We used flow cytometry to detect cell-
specific vesicle membrane protein expression and identified the relative contribution of each EV
tissue-cellular source. We identified EVs that originated from maternal endothelial cells (CD31+
CD34-), fetal endothelial cells (CD31+ CD34+), platelets (CD41a+), immune cells (CD45+), and

trophoblasts (PLAP+) (Figure 2 C&F).


https://doi.org/10.1101/2024.02.17.580824
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.17.580824; this version posted May 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

203 Trophoblast-derived PLAP+ EVs comprised the largest proportion of circulating large
204  EVs (Figure 2C). The percentage of PLAP+ EVs was increased in the circulation of R2

205  compared to Controls suggesting the placenta secreted more large EVs into circulation.

206  Interestingly, we found a subset of endothelial-derived EVs that also express CD34, suggesting
207  that these EVs originated from fetal endothelial cells (48). Fetal endothelial cell-derived large
208 EVs (CD34+ CD31+) were also elevated in R1 and R2 compared to Controls. The percentage of
209  small EVs from the placenta was not altered by COVID-19 (Figure 2F). In fact, there was no
210  difference in the percentage of small EVs from any cell type measured. This suggests that

211 placenta-derived large, but not small EVs, were altered by COVID-19 in early pregnancy.

212 Circulating EVs from COVID-19 pregnant patients alter trophoblast function in vitro

213 The placenta is made up of three main functional cell types; 1) syncytiotrophoblast cells,
214 which are responsible for nutrient transport and hormone production; 2) cytotrophoblast cells,
215 the replicating precursors of the syncytiotrophoblast; and 3) extravillous trophoblasts (EVT),

216  which invade deep into the uterus to anchor the placenta and enable blood and nutrient flow to
217  the fetus. EV signaling is known to influence trophoblast function (49). Therefore, we tested the
218  capacity of circulating EVs isolated from participants with an active infection or Controls to alter
219 the function of trophoblast cell types. We focused our in vitro experiments on EVs isolated from
220  participants with an active infection compared to Controls because the changes in placental

221  pathology and transcriptome were the greatest in Al cases compared to Controls.

222 To assess the effect of Al EVs on EVT function, we used primary EVTs isolated from
223 first-trimester placenta and quantified EVT invasion through a collagen gel. EVT invasion,

224 which is vital for anchoring the placenta to the uterus and the remodeling of maternal uterine

225  arteries providing blood to the villous trophoblasts, was significantly reduced by exposure to Al
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EVs compared to Control EVs (Figure 3A). Inadequate invasion and failure to completely
remodel maternal arteries increases the risk of preeclampsia, intrauterine growth restriction, and
fetal loss (50, 51).

To study syncytiotrophoblasts, we used the BeWo choriocarinoma cell line that is
commonly used to study this trophoblast lineage. After the addition of forskolin, BeWo cells
syncytialize forming cells that mimic the syncytiotrophoblast, including the production of
placental hormones (hCG and progesterone). Syncytiotrophoblast hormone production is
essential for the maintenance of pregnancy. The ratio of hCG to progesterone in the media of
syncytialized BeWo cells was significantly reduced following exposure to AI EVs compared to
Control EVs (Figure 3B). A reduction in the ratio of hCG to progesterone indicates that specific
pathways related to steroid hormone production were disrupted. These findings demonstrate that
EVs from the circulation of a pregnant individual with an active infection disrupt major
trophoblast functions including invasion and hormone production, which may have profound
effects on pregnancy maintenance.

To identify novel pathways that may contribute to trophoblast dysfunction, we analyzed
the BeWo transcriptome following EV exposure. Al EVs significantly altered gene expression
in BeWo cells compared to Control EVs. Multiple genes were dysregulated including genes that
encode for long non-coding RNA genes and histone proteins (Figure 3C). This suggests that
DNA packaging and transcription is disrupted in trophoblasts exposed to AI EVs compared to
Control EVs. Consistent with this, Biological Processes, determined by GO analysis, and top
canonical pathways, identified by IPA, were related to cellular transcription and DNA repair
(Figure 3D and Supplemental Table 4). The pathways disrupted by AI EVs suggest a

generalized effect on trophoblast gene expression that led to disrupted hormone production.
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249  Increased mtDNA content in LEVs following COVID-19 in early pregnancy

250 Analysis of the placental transcriptome following COVID-19 identified differentially
251  expressed genes indicative of mitochondrial dysfunction (Table 2). To determine if circulating
252 EVs were enriched in mitochondrial cargo, we measured mitochondrial DNA (mtDNA) content
253 (Figure 4A &C) and found that mtDNA was more abundant in large compared to small EVs. In
254 contrast, nuclear DNA was not consistently measurable in all samples. Additionally, the

255 abundance of mtDNA in large, but not small EVs, inversely correlated with the gestational

256  timing of COVID-19 (Figure 4 B&D). The increase in mtDNA released in large EVs following
257 COVID-19 during early pregnancy suggests that the mitochondrial function of cells producing
258  large EVs was persistently disrupted.

259  COVID-19 during pregnancy alters EV RNA cargo

260 EVs contain small and larger (mRNAs) and long noncoding RNAs, however, small

261  RNAs are the most commonly studied EV cargo (52). mRNAs encapsulated within EVs are

262 transferred to recipient cells and translated into proteins, altering the behavior of the recipient
263 cells (53-56). Therefore, we profiled the mRNA content of circulating EVs to determine if there
264  were differences dependent on the gestational timing of COVID-19. We sequenced an average
265 0f 2,946 gene associated transcripts in large EVs and 1,947 in small EVs.

266 The most abundant mRNA transcripts in EVs were common to all groups. However, we
267  also identified transcripts that were either uniquely expressed in COVID-19 groups (i.e. absent in
268 Controls), or uniquely expressed in Controls, and absent in one or more COVID-19 groups.

269  Multiple transcripts were uniquely expressed in large EVs from the COVID-19 groups including
270  YYIAPI, MOSPDI, RYBP, and HI-4 (Table 2). The proteins encoded by these mRNAs are

271  related to transcription, except for H/-4 which has an unknown cellular function. In small EVs,
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MYL4, Cl8orf32, CAPG, and CTSS transcripts were uniquely present in EVs isolated from
COVID-19 groups (Table 2). These transcripts encode a motor (MYL4 (myosin light chain 4))
and immune (C/8orf32 (Putative NF-Kappa-B-Activating Protein 200), CAPG (macrophage
capping protein), and C7SS (cathepsin S)) proteins. This suggests that COVID-19 alters
immune-related small EV cargo. Many other transcripts were uniquely detected in EVs isolated
from individual COVID-19 groups (Table 2). The unique transcriptome suggests that COVID-
19 increased expression of these genes making their transcripts more available for EV packaging
or increased specific transcript loading into EVs.

There were several interesting transcripts that were only present in large EVs from
Controls, including APBA3, MTSS, FCF1, PSG2, LOC100128233, PHOSPHO2, and THOC3
(Figure 5A). These transcripts encode proteins involved in various cellular functions, including
signal transduction, transcription, and proliferation. In contrast, only a few transcripts were
unique to Controls in small EVs. These included PYCR2, SCGBICI, and CD300L4 (Figure
5B). PYCR2 encodes a cellular metabolism protein; CD300L4 encodes an immune-regulating
protein. The protein function of SCGB1C1 is unknown. Numerous other transcripts were
abundant in Controls but absent in individual COVID-19 groups. If present in the other COVID-
19 groups, their expression was decreased compared to Controls (Figure 5).

Transcripts carried by EVs reflect the activity of the secreting cell. While the individual
transcripts identified in EVs differ, their cellular functions often overlapped (Table 2, Figure 5).
For example, large and small EVs isolated from R2 carried transcripts that regulate cell
signaling, gene expression, immune regulation, and metabolism. Additional pathways include

proliferation, apoptosis, invasion, ubiquitination, platelet function, and vesicle formation.
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294 Many transcripts identified in EVs are abundant in trophoblast cells and have been

295  previously reported to increase with gestation. Interestingly, THOC3 mRNA, encoded by a

296  highly expressed gene in trophoblast cells, was abundant in Control large EVs but was low or
297  absent in the COVID-19 groups. In addition, large EVs carried a different highly expressed

298  trophoblast transcript, RYBP, in COVID-19 groups, but this transcript was absent in Controls.
299  Both proteins encoded by these genes are involved in transcriptional regulation (57, 58). Several
300  of the unique mRNAs in EVs isolated from COVID-19 groups have been previously reported to
301  be associated with adverse pregnancy outcomes, including gestational hypertension,

302 preeclampsia, preterm birth, and intrauterine growth restriction (Supplemental Table 5). The
303  number of these pregnancy complication-associated mRNAs was highest in AT EVs, but they
304  were also abundant in EVs isolated from participants with resolved infections. Interestingly, the
305  abundance of eleven transcripts that have been implicated in preeclampsia differed between Al
306 EVsand Control EVs. Of importance, participants with Al also had a higher incidence of

307  preeclampsia. Moreover, two transcripts associated with preterm birth were uniquely carried in
308  R2, but not Control EVs; R2 participants had a higher incidence of preterm birth. This suggests
309  that EV cargo may reflect etiological pathways leading to these pregnancy complications.

310  Circulating EVs carry transcriptional regulators of differentially expressed genes in the
311  placenta

312 Because EVs had a direct functional effect on trophoblasts in vitro, we investigated

313 whether they carried transcriptional regulators of genes whose expression was altered in placenta
314  of COVID-19 pregnant participants (Supplemental Table 3). Multiple mRNAs encoding

315  transcriptional regulators were differentially abundant in COVID-19 groups compared to

316  Controls. Several were contained in both small and large EVs (JUN, FOS, LEPR, LGALSI,
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CD36) or only in small EVs (PRKN). Moreover, Jun proto-oncogene B (JUNB) mRNA levels
were increased in large EVs from R1 compared to Controls (FC=2.25, p=0.01). This suggests
that JUNB carried in EVs could elicit the observed changes in transcription of its downstream
targets in the placenta. Similarly, mRNAs encoding 4 of the transcriptional regulators in R3
compared to Control placenta were found in large and small EVs (IL1B, HIFIA, IGF2, PCBPI);
1 was only in large EVs (CXCR4), and 3 were only in small EVs (ESRI, AKT1, TP53, SPZI,
IRS?2). Interestingly, interleukin 1 beta (/L/B) mRNA was decreased in large EVs from R3
compared to Controls (FC = -1.85, p=0.070), whereas estrogen receptor 1 (ESR1) mRNA levels
were lower in R3 small EVs compared to Controls (FC=-6.99, p=0.13). Importantly, expression
of genes controlled by these transcriptional regulators was altered in R3 placenta compared to
Controls. Similarly, many transcriptional regulators of genes with differential expression in Al
compared to Control placenta were found in both large and small EVs (GRN and IL1B), in large
EVs (FAS) or in small EVs (JUN, STAT3, IFG1, IFNG, AGT). These observations exemplify
potential EV-driven signaling leading to altered gene expression in the placenta that occurs in
COVID-19.
DISCUSSION

The long-term effects of COVID-19 during pregnancy have not yet been elucidated.
Previous studies and our findings reported here, show that the placenta is damaged, and the
likelihood of adverse pregnancy outcomes was increased in patients with a pregnancy
complicated by COVID-19. We have begun to elucidate the mechanisms underlying the
observed placental abnormalities associated with COVID-19. For the first time, we demonstrate
that circulating EVs from COVID-19 affected pregnancies 1) have a detrimental effect on

trophoblast function, including hormone production and invasion in vitro; 2) are altered after
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340  SARS-CoV-2 infection; and 3) carry cargo that has been previously associated with adverse

341  pregnancy outcomes.

342 Our findings, in in vitro experiments, that trophoblast dysfunction following exposure to
343 EVsisolated from study participants with an active SARS-CoV-2 infection provides evidence
344  that circulating EVs contribute to the resulting placental pathology. We focused our in vitro

345  trophoblast experiments on the response to EVs isolated from participants with an active

346  infection because the magnitude of alteration in the placental transcriptome was greater

347  compared to those placentas from resolved infections. EVs from patients with an active

348 infection (Al) disrupted fundamental trophoblast functions that are crucial to maintain a healthy
349  pregnancy. Others have shown that trophoblast dysfunction, including failure to invade and

350  produce hormones, contributes to the development of preeclampsia, preterm birth, and

351  intrauterine growth restriction (50, 51). Therefore, the Al EV-induced reduction in EVT

352 invasion and syncytiotrophoblast hormone production may have contributed to the development
353  of these pregnancy complications following COVID-19.

354 Gestational age at the time of infection was a major determinant of COVID-19-induced
355  changes in the profile of circulating EVs. If participants were infected during the first or second
356  trimester of pregnancy, numbers of trophoblast and fetal endothelial cell large EV were

357  increased, and circulating large EVs carried more mtDNA. This suggests that COVID-19 during
358  early pregnancy disrupts mitochondrial function in the placenta. Mitochondrial dysfunction has
359  been reported in many organs following SARS-CoV-2 infection and is thought to contribute to
360  cell injury, cell death, and inflammation (59-67). Appelman et al. recently reported persistent
361  mitochondrial dysfunction in skeletal muscle long after the resolution of SARS-CoV-2 infection

362 (62). Further, elevated cell-free circulating mtDNA is commonly observed in COVID-19 and
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correlates with severity and length of infection, reflecting significant mitochondria stress (63-
66). In support of a direct association of infection and mtDNA release in EVs, Faizan et al.
recently demonstrated that SARS-CoV-2 infection causes mitochondrial dysfunction and release
of EVs containing mtDNA in airway epithelial cells (60). Thus, our results suggest that
abnormal mitochondria may also play a role in the pathogenesis of placental dysfunction in
COVID-19.

Circulating EV cargo reflects the activity of the cells of origin. The transcripts carried by
EVs encode genes related to inflammation, vasculopathies, bioenergetics, and cell death,
processes and pathways that were present in the transcriptome and histopathology of the placenta
regardless of the timing of infection. EVs carry transcripts that are highly expressed by
trophoblasts, and have known functions in cellular metabolism, immune regulation, and
transcription. We also found that many of the transcripts in EVs from pregnancies complicated
by COVID-19 are encoded by genes that have been implicated in adverse pregnancy outcomes
including gestational hypertension, preeclampsia, preterm birth, and intrauterine growth
restriction. This points to shared pathways of placental dysfunction induced by a systemic
SARS-CoV-2 infection.

EV cargo can elicit a functional response when delivered to a recipient cell, as
demonstrated by our in vitro studies. While it is not known if mtDNA in EVs per se was
responsible for altering trophoblast function in our experiments, multiple studies have
demonstrated that mitochondria cargo can alter the recipient cell’s mitochondrial function (67-
69). mRNA transcripts are also biologically active in recipient cells and we identified transcripts
in EVs that encode for multiple transcriptional regulators genes whose expression was altered in

placenta following COVID-19. Importantly, expression of several of these genes has been
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previously reported to be altered in pregnancy complications. For example, JUN signaling was
disrupted in R1 placenta compared to Control placenta and JUNB mRNA was increased in
Control compared to R1 large EVs. JUN proteins are important for placentation, and a loss of
JUN signaling is implicated in preeclampsia (70, 71). Thus, low levels of JUNB in COVID-19
EVs may indicate placental dysfunction which in turn could contribute to the later development
of preeclampsia, which is observed at higher rates in pregnancies complicated by COVID-19
(72). In R3 compared to Controls, hormone receptor signaling was identified as a top canonical
pathway and differentially expressed genes were regulated by ESR1. ESRI mRNA was
abundant in small EVs isolated from Controls but not R3. ESR1 signaling is vital for placental
function and pregnancy maintenance because estrogen signaling is obligate for angiogenesis and
vasculature control (73). In fact, genetic variations in ESR/ are associated with recurrent
pregnancy loss and preeclampsia, and both adverse pregnancy outcomes are increased in
maternal SARS-CoV-2 infection during pregnancy (74, 75). Thus, our findings suggest
placental dysfunction may in fact be a result of EV cargo delivery.

Our study is limited by the number of symptomatic patients with an active infection at the
time of delivery. Despite only 14% of pregnant participants experiencing COVID-19 related
symptoms, their placentas had significant pathology and an altered transcriptome. This was
associated with an increased incidence of preeclampsia and medically indicated preterm birth in
asymptomatic and symptomatic Al cases. It's worth noting that EVs obtained from
asymptomatic individuals have been found to exert significant impacts on trophoblast function
when tested in vitro. This discovery highlights the importance of exploring the potential
consequences of EV exposure in asymptomatic patients and may have important implications for

understanding the role of EVs in reproductive health.
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Our study has provided significant insights into the profile and functional consequences
of circulating extracellular vesicles in mothers who were infected with SARS-CoV-2. This study
is the first to demonstrate the negative impact of maternal circulating vesicles on trophoblast
function in COVID-19. By comparing the placental transcriptome and EV cargo content, we
have identified shared pathways that are associated with pregnancy complications caused by

maternal COVID-19 and other pregnancy-related disorders that are not well understood.

MATERIALS AND METHODS

Patient cohort

The COMET study was conducted at the Hospital of the University of Pennsylvania (HUP) with
Institutional Review Board approval (IRB#843277). Study participants received a description of
the study and signed an informed consent before enrollment. Participants were enrolled at the
time of delivery in the COMET study between April 2020-June 2022. Participants were tested
for a SARS-CoV-2 infection by nasopharyngeal polymerase chain reaction (PCR) upon
admission to the labor and delivery unit at HUP. Participants who tested positive at the time of
delivery were enrolled in the active infection (Al) group. Those participants who tested negative
and had no known SARS-CoV-2 infection during their pregnancy were defined as Controls.
Participants with a negative test at delivery and a history of SARS-CoV-2 infection during their
pregnancy and greater than 14 days before enrollment, were defined as having a resolved
infection (R). All COVID-19 cases were unvaccinated against SARS-CoV-2. The gestational
age of SARS-CoV-2 infection was calculated, and participants were further divided into the
trimester of infection (resolved infection in the first trimester (R1), resolved infection in the

second trimester (R2) and resolved infection in the third trimester (R3)).
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432 Clinical and demographic data collection

433 Clinical characteristics, such as maternal age, self-identified race, gestational age at
434 infection, and pregnancy outcomes, were extracted from the medical record (Table 1). The
435  severity of COVID-19 disease was categorized based on the National Institute of Health and
436 Society for Maternal-Fetal Medicine definitions: Asymptomatic infection was defined as
437  participants who tested positive but experienced no symptoms. Symptomatic participants

438 included all levels of illness (mild-critical).

439  Sample collection

440 Placentas were collected at the time of delivery. All placentas were examined by the

441  pathology department at the Hospital of the University of Pennsylvania (HUP). Placentas were
442 assessed using a systematic protocol that includes recording the trimmed placental weight,

443  membrane insertion site, gross appearance, dimensions of the placental disc, and umbilical cord
444  insertion, length, and diameter. Full-thickness placental biopsies were collected from an area
445  devoid of obvious pathology located equidistant between the placental cord insertion and the

446  edge of the placenta. Tissue was fixed in 10% formalin for histological assessment.

447  Macroscopic and microscopic lesions were identified and classified according to the Amsterdam
448  Placental Workshop Group 2014 classification (76-78). Placental biopsies were also collected

449  and stored in Trizol for RNA isolation.

450 Blood was collected at delivery in an EDTA tube and spun at 1,000G for 10 minutes at

451  room temperature to isolate plasma, which was aliquoted and stored at -80°C.

452 Placenta and BeWo RNA isolation and sequencing
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453 Total RNA was isolated from placental biopsy samples using Qiagen RNEasy Plus Mini
454  Kits (Cat# 74134 Qiagen, Hilden, Germany). Total RNA was isolated from syncytialized BeWo
455  cells with the PicoPure RNA Isolation Kit (Cat# KIT0204 Applied Biosystems, Waltham, MA).

456  Isolated RNA was sent to NovoGene for library preparation and sequencing.

457 RNA integrity and quantification were assessed using the RNA Nano 6000 Assay Kit of
458  the Bioanalyzer 2100 System (Agilent Technologies, CA, USA). RNA purity was determined
459  using a NanoPhotometer spectrophotometer (IMPLEN, CA, USA). A total of 1ug RNA per

460  sample was used as input material for the RNA sample preparation. Sequencing libraries were
461  generated using NEBNext Ultra RNA Library Prep Kit for [llumina (NEB, USA) following

462  manufacturer recommendations, and index codes were added to identify samples. Clustering of
463 the index-coded samples was performed on an [llumina Novaseq 6000 sequencer according to
464  the manufacturer’s instructions. After cluster generation, libraries were sequenced, and pair-end
465  reads were generated. Raw data (raw reads) of FASTQ format were processed through fastp. and
466  clean data was obtained by removing reads containing adapter and poly-N sequences and reads
467  with low quality. Pair-end clean reads were aligned to the GRCh38/hg38 reference genome

468  using Spliced Transcripts Alignment to a Reference (STAR) software. FeatureCounts were used
469  to count the read number mapped to each gene. Then RPKM of each gene was calculated based
470  on the length of the gene and read count mapped to the gene. Differential gene expression

471 between COVID-19 groups and Controls was assessed by DESeq2. Differentially expressed

472 genes were determined based on their adjusted p-value (<0.05) and >1.5-fold change. Functional
473 analysis was conducted using Qiagen’s ingenuity pathway analysis (IPA). The clusterProfiler R

474  package was used to perform a Gene Ontology enrichment analysis of genes that were
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differentially expressed. Canonical pathways, transcriptional regulators, and GO terms were

considered significant if the p-value was less than 0.05.

EV isolation and characterization

Serial centrifugation was utilized to isolate EVs from plasma. One mL of plasma was
spun in an Eppendorf 5424 benchtop centrifuge at 2,000 x g for 10 minutes at 4°C. The
supernatant was then spun at 20,000 x g for 30 minutes at 4°C. The pellet was washed in ImL
filtered PBS and spun again at 20,000 x g for 30 minutes at 4°C. The large EV pellet was
resuspended in 100uL filtered PBS. The supernatant was spun by the Beckman Ultracentrifuge
Optima Max TL using the TLA 120.2 rotor at 100,000 x g (48,000RPM) for 90 minutes at 4°C.
The pellet was washed with 1mL filtered PBS and spun again at 100,000 x g (48,000RPM) for

90 minutes at 4°C. The small EV pellet was resuspended in 100uL filtered PBS.

EV isolation was confirmed by transmission electron microscopy, nanoparticle tracking,
and protein measurement as recommended by the MISEV guidelines (79). Transmission
electron microscopy images were generated and resulting images reviewed for the presence of
EVs. EVs were analyzed by Particle Metrix Zetaview nanoparticle tracking. 11 fields were
captured using the following parameters: sensitivity 80, frame rate 30, shutter 100, minimum
brightness 1000, minimum area 10, trace length 15. Representative histograms and TEM images
for large and small EVs are included in Supplemental Figure 1. CD9 protein abundance was
determined by gel electrophoresis. Total protein was measured with a Qubit Protein Assay Kit
and EV suspension was evaporated by vacuum and resuspended in electrophoresis buffer. Three
large EV (5pg) and small EV (20ug) samples were loaded into BioRad Mini-Protean TGX Gel

4-20% polyacrylamide gels with Licor Chameleon Duo ladders (928-60000) and run at 20mA
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for 2 hours. Proteins were transferred to nitrocellulose membrane via 200mA over 3 hours on
ice. The membrane was blocked in Licor Intercept Blocking Buffer for 1hour at room
temperature then incubated with CD9 antibody (HI9a Biolegend Cat 312112) at 1:5000
overnight at room temperature. The membrane was then incubated with Licor IRDye 800CW
streptavidin (926-32230) at 1:5000 for 2 hours at room temperature and the membrane was

imaged by Licor Odyssey.
Flow cytometry on EVs

EVs surface protein expression was determined by flow cytometry following the MISEV
guidelines (79). EVs were resuspended at 1x103/10uL of filtered PBS. Di-8-ANEPPS
(Invitrogen Cat# D3167) was reconstituted in ethanol as per manufacturer instruction and further
diluted to 1:1000 in filtered PBS. Antibodies were spun at 20,000 x g for 30 minutes at 4°C
immediately before use. 10uL of EV suspension was incubated in ANEPPS (10pL) and
antibodies, 1.25uL CD45-Ry586 (Cat# BD568135), 1.25uL. CD41a- PE/Cy7 (Cat#
BDB561424), 1.25uL PLAP- eFlour660 (Fisher Cat# 50-112-4573) , and 1.25uL CD34-
PE/CF594 (Cat# BDB562449) and 3uL. CD31-AF700 (Biolegend Cat# 50-207-2950), for 30
minutes at room temperature. 470uL of filtered PBS was added before samples were measured
by BD Symphony A1l cytometer which has improved sensitivity for small particles. Negative
controls included: antibodies alone, EVs without Di-8-ANEPPS, and EVs treated with 1% triton.
Data was analyzed using FlowJo software. EVs were identified by Small Particle Side Scatter
(SP-SSC) and expression of Di-8-ANEPPS and the relative proportion that expresses cell-

specific surface proteins was determined by antibody detection.

In vitro trophoblast EV co-culture
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Extravillous trophoblasts (EVTs) were isolated from fresh first trimester placenta based
on an EVT outgrowth-based protocol established by Gram et al. (§0-84). In brief, villous tissue
was finely minced and cultured at 37°C and 5% COz in RPMI 1640 media with 20% FBS. After
attachment, EVT outgrowth occurs, and those cells were isolated. Isolated EVTs were confirmed
by staining for HLA-G and CK7. EVT invasion was measured using the MilliporeSigma
Chemicon QCM Collagen Cell Invasion Assay (Cat# ECMS558). EVTs were added to the trans-
well invasion plate with EV-depleted media and large and small EVs at 1x10%/mL. Cells were
incubated at 37°C and 5% CO; for 48 hours. Cells that invaded through the collagen membrane

were quantified using a fluorescent plate reader (SpectraMax).

BeWo cells, subclone B30, were cultured in 75-cm? flasks (Fisher Scientific) at 37°C and
5% COz in media (DMEM/F12, 10% FBS, 1% P/S, 1%L-alanyl-L-glutamine). EV-depleted
media was made with EV-depleted FBS (Gibco A2720801) and used for cell culture
experiments. Cells were plated at 250,000 cells/well in a 6 well plate and 1.5mL of EV-depleted
media was added. Cells adhered for 24 hours before adding 1pg/uL forskolin, a cAMP
producer, to promote syncytialization for an additional 24 hours. Large and small EVs were
resuspended in EV-depleted media at 1x10%mL and added to BeWo cells for an additional 24
hours. At the time of harvest, cell media was collected, and cells released with 0.25% trypsin.
Cells were washed and collected as pellets for total DNA measurement and RNA isolation and
sequencing. Cell media was spun at 500 x g to clear cell debris and the supernatant was stored
for future hormone measurement. Hormones were measured by Penn Fertility Care using
Elecsys HCG+p (Cat# 03271749, Roche Diagnostics) and Elecsys Progesterone II1 (Cat#

07092539, Roche Diagnostics).

EV mtDNA measurement
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mtDNA was isolated and quantified from large and small EVs by TagMan-based
quantitative polymerase chain reaction (QPCR). We determined that 2x10” large EV and 3x10°
small EVs were necessary to reliably and robustly measure mtDNA. As previously described,
we quantified mitochondrial-encoded human NADH: ubiquinone oxidoreductase core subunit 1
(ND1) as previously described (85). The qPCR reactions were performed in triplicates using a
QuantStudio 5 Real-time PCR System (Thermo Fisher) using the following thermocycling
conditions: 95 °C for 20 s followed by 40 cycles of 95 °C for 1 s, 63 °C for 20 s, and 60 °C for
20 s. Serial dilutions of pooled human placenta DNA quantified for copies of ND1 (copies/ puL)
by digital PCR (dPCR) were used as a standard curve. The mtDNA amount per EV was
determined by normalizing the resulting abundance by the number of EVs in starting material.
We calculated the Pearson correlation coefficient to determine the strength of the relationship

between gestational age at infection and abundance of EV mtDNA.
EV mRNA sequencing

Total RNA was isolated from large and small EVs isolated from 500uL of plasma.
Isolated EVs were treated with RNAseA (0.02pug/uL) (Invitrogen Cat# 12091021) for 20
minutes at 37°C to degrade extravesicular RNA. Enzyme activity was stopped by freezing
samples at -80°C for 5 minutes and immediate resuspension in Trizol. Nucleic acids were
isolated via BCP co-incubation, precipitated by isopropanol, and washed in ethanol. mRNA
libraries were prepared from total RNA using the SMART-Seq protocol (86). Briefly, RNA was
reverse transcribed using Superscript II (Invitrogen, Cat#18064014). The cDNA was amplified
with 20 cycles and cleaned up with AMPure XP beads (Beckman Coulter Cat#A63881). cDNA
was quantified with Qubit dsSDNA HS Assay Kit (Life Technologies, Inc. Cat#Q32851), and 2ng

of each sample was used to construct a pool of uniquely indexed samples (Illumina Cat# FC-
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131-1096). A second amplification was performed with 12 cycles and cleaned up with AMPure
XP beads. The final library was sequenced on a NextSeq 1000. Data were mapped against the

hg19 genome using RSEM and normalized to transcripts per million (tpm)(87).

To determine unique expression, we filtered genes to those that had greater than 5 tpm.
Unique genes had no expression (<5 tpm) in all samples in the reference group and had
expression (>5 tpm) in the majority (> 50% of the samples) in the comparison group (data in
Table 2). Expression of unique genes in Controls, but not COVID-19 groups are shown in
Figure 4. These strict criteria identified genes in each group that were uniquely expressed, and

those genes were considered for subsequent analysis.
Statistical analysis

Statistical analysis was performed using GraphPad Prism. Differences in participant
demographics and outcomes were tested by a chi-squared test and considered statistically
different if p<0.05. Data was tested for normality and either parametric or non-parametric tests
were used to determine significance. Data points were identified as outliers and removed if they
exceeded two times the standard deviation from the mean. A one-way ANOVA tested for a
difference within all groups and subsequent post-hoc t-tests or Kruskal-Wallis determined the
significance of each COVID-19 group compared to Controls. Pearson’s correlation was used to
determine a correlation between gestational age at infection and mtDNA abundance. A p-value
less than 0.05 was considered significant. Differential gene expression was determined to be

significant if the adjusted p-value was less than 0.05 and the fold change greater than 1.5.
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Figure 1. Differential gene expression in the placentas from patients with COVID-19 during

pregnancy are represented by volcano plots. (A-D) The number and direction of differentially

expressed genes between Controls (n=5) and resolved infections in the first trimester (R1) (A),

second trimester (R2) (B), and third trimester (R3) (C), and active infection (Al) (D) is listed at

the top of each graph. The gene name for those transcripts with differential expression in more

than one COVID-19 group compared to Control is listed. (n=3-5/group)
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Figure 2. Circulating EVs were persistently altered in participants who experienced COVID-19
in the second trimester. (A) The number of LEVs in the circulation at the time of delivery
(n=14-22/group). (B) The diameter of LEVs in the circulation (n=14-22/group). (C) Relative
frequency of LEVs derived from trophoblasts, endothelial cells, platelets, and immune cells
(n=11-16). (D) The number of small EVs in the circulation at the time of delivery (n=14-
22/group). (E) The diameter of small EVs in the circulation (n=14-22/group). (F) The relative
frequency of small EVs derived from endothelial cells, platelets, immune cells, and trophoblasts
(n=13-20/group). All data are presented as mean + SD. All analyses were performed by one-
way ANOVA or the Kruskal-Wallis test, followed by post-hoc tests. Comparisons were made
between Controls and resolved infection in the first trimester (R1), second trimester (R2), third

trimester (R3), and active infection (AI).
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638

639  Figure 3. Trophoblast function was disrupted by exposure to EVs isolated from patients with an
640  active infection (AI) compared to Controls. (A) Extravillous trophoblasts (EVTs) were isolated
641  from three placentas (identified by symbol shape) and exposed to Control or Al EVs (n=9-

642  10/group, 3 experiments). Invasion was calculated and normalized to invasion of EVTs derived
643  from the same placenta not exposed to EVs (noEVs). All data are presented as mean = SD. (B)
644  Human chorionic gonadotropin (hCG) and progesterone were measured in the media of

645  forskolin-treated (syncytialized) BeWo cells. The ratio of hCG to progesterone was normalized
646  to hormone production by cells not exposed to EVs (noEVs). The results of two experiments

647  (identified by symbol shape) are reported in B. (n=6-7/group, 2 experiments). All analyses were
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648  performed by one-way ANOVA or Kruskal-Wallis test, followed by post-hoc tests. (C)

649  Following EV exposure, BeWo cell transcriptome was measured, and the top differentially

650  expressed genes comparing the cellular response to AI EVs to Control EVs are listed in the heat
651  map (red represents increased and blue represents decreased expression). (D) The biological
652  processes altered by AI EVs compared to Control EVs were determined by Gene Ontology

653  enrichment analysis.

654
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Figure 4. Large EV abundance of mtDNA is inversely correlated with gestational timing of

infection. (A&C) The amount of mtDNA in each large EV (A) and small EV (C) is reported for

each group (n=13-20/group). Data are presented as mean + SD and tested by ANOVA followed

by post-hoc tests. Independent pairwise comparisons were made between Controls and resolved

infection in the 1% trimester (R1), second trimester (R2), third trimester (R3), or active infection

(Al). (B&D) The Pearson correlation between gestational age at infection and mtDNA content is

reported for large EV (B) and small EV (D).
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Figure 5. Control EVs carried transcripts that were absent in COVID-19 groups. (A&B) mRNA

transcripts uniquely detected in EVs isolated from Controls but absent in EVs isolated from

COVID-19 groups (gray bars) and differential expression (log 2-fold change) in other COVID-

19 groups are listed in the heat map (increased expression is red and decreased expression is

blue). The general cellular function of each gene product is listed on the right. Large EV

transcripts are reported in (A) and small EV transcripts are reported in (B) (n=9-10/group).

Independent pairwise comparisons were made between Controls and resolved infection in the

first trimester (R 1), second trimester (R2), third trimester (R3), or active infection (AI).

Transcripts known to be highly abundant in trophoblasts are marked by (T).
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Demogeraphics Controls R1 R2 R3 Al
grap (n=32) (n=15) (n=20) (n=22) (n=21)
21-42 25-43 18 -39 21-42 20— 40
Maternal age (years) | \jean: 31.8) (Mean: 31.7) (Mean: 29.4) (Mean: 30.5) (Mean: 29.4)
Race: White 50% 46.7% 34% 27.3% 9.5%*
Race: Black 41% 46.7% 55% 68.2%* 76.2%*
Race: Asian 9.4% 0% 10% 0% 9.5%
Race: Other/Unknown 0% 6.7% 0% 4.5% 4.8%
GA at delivery (weeks) | 373~ 411 35.1-403 33.7-413 323-397 31-41
Y (Mean: 39.3) (Mean: 39.1) (Mean: 38.4) (Mean: 37.5) * (Mean: 38.1) *
. Controls R1 R2 R3 Al
COMID Tl (n=32) (n=15) (0=20) (1=22) (@=21)
Symptomatic N/A 73.3% 85% 81.8% 14.3%
Asymptomatic N/A 26.7% 15% 18.2% 85.7%
Hospitalized N/A 13.3% 0% 31.8% 4.8%
Pregnancy outcomes COl’_ltI'OlS I_{l I_{Z I_U él
(n=32) (n=15) (n=20) (n=22) (n=21)
GHTN 18.8% 53.3%*" 20% 13.6% 9.5%
CHTN 3.1% 0% 5% 13.6% 4.8%
Preeclampsia 0% 0% 5% 18.2%* 19%*
Spontaneous PTB 0% 0% 20%* 4.5% 4.8%
Medically indicated PTB 0% 6.7% 10% 18.2%* 19%*
IUGR 6.3% 13.3% 0% 9.1% 4.8%
IUFD 0% 0% 0% 4.5% 0%
Control R1 R2 R3 Al
Placenta Pathology (n=26) (n=9) @=17) (n=19) (n=19)
MVM or FVM 26.9% 100%* 71%* 63%* 82.6%*
MVM 15% 44%* 47%* 37% 53%*
High grade MVM 0% 11% 18%* 16%* 11%
FVM 15% 78%* 59%* 42%* 47%*
5 — -
10%p e““%‘;;igﬁgg 0% 11% 18%* 21%* 5%

Table 1. Subject demographics, pregnancy outcomes, and placenta pathology

Participants enrolled in the COMET study formed five groups (controls, resolved infection in the 1%

trimester (R1), 2™ trimester (R2), and 3" trimester (R3), and active infection (AI). Maternal

demographics including maternal age, race, and gestational age (GA) at birth are reported. The severity

of COVID-19 during their pregnancy, incidence of pregnancy complications (gestational hypertension

(gHTN), chronic hypertension (cHTN), preeclampsia (PE), spontaneous and medically indicated preterm

birth (PTB), intrauterine growth restriction (IUGR), and intrauterine demise (IUFD)) and placental

pathology (maternal vascular malperfusion (MVM), fetal vascular malperfusion (FVM) and perivillous

fibrin deposition) are reported * p<0.05 chi-squared test compared to Controls. * p<0.05 compared to

other COVID-19 groups
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685

Uniquely Expressed Transcripts in COVID EVs
Gene Group(s) with Cellular High Trophoblast | Increased in
Gene Name . . . .
Symbol Unique Expression Function Expression Pregnancy
Large EVs
YYIAPI B Ass0011ated Biofein R1,R2 Transcription
Mmospp; | HEEESRSE IR R1, Al Transcription
Containing 1
RYBP NG v R1, Al Transcription Y
Binding Protein
Hi-4 H1.4 linker histone, R2, R3 Unknown
cluster member
A2M Alpha-2-Macroglobulin R1 Immune
Kinesin Associated Chromosome
KIFAP3 Protein 3 Rl Movement Y(88)
MXDI Lo Dlmerlzatlon R1 Proliferation
Protein 1
PEX]9 Peroxisomal Biogenesis RI Oxidative v
Factor 19 stress
TOB1 Transducer Of ERBB2, 1 R1 Proliferation
HKI Hexokinase 1 R2 Metabolism Y
LY9 Lymphocyte Antigen 9 R2 Immune Y(89)
RNA Polymerase I11 Nucleic acid
POLR3C Subunit C R2 binding activity
SPNS Lysolipid
Transporter 3, Transporter
SPNS3 Sphingosine-1-Phosphate R2 Activity
(Putative)
WDR46 | WD Repeat Domain 46 R2 Nucleic acid
binding activity
Cell Division Cycle 34,
CDC34 Ubiquitin Conjugating R3 Ubiquitination
Enzyme
FUNDC?2 e IS o R3 Metabolism
Containing 2
Long Intergenic Non-
LINC-PINT Protein Coding RNA, R3 Unknown
P53 Induced Transcript
R3H Domain and Nucleic acid
RSHCCT Coiled-Coil Containing 1 R3 binding activity
ATP Synthase C Subunit . .
ATPSCKMT Lysine N- Al %Tltf,"’hg?}?“?l
Methyltransferase SYNHAEsIs
DTWDI LV Rom Al Translation
Containing 1
F-Box and Leucine Rich T
FBXL4 Repeat Protein4 Al Ubiquitination
FRA10A Associated _
FRAI10ACI CGG Repeat 1 Al Transcription
FOXPI Forkhead Box P1 Al Transcription
. Protein and
GOLGA4 Golgi A4 Al lipid transport Y Y(88)
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GC-Rich Promoter _
GPBPILI Binding Protein 1 Like 1 Al Transcription
ILIR? Interleukin 1 Receptor Al Immune
Type 2
KI4A1143 KIAA1143 Al Unknown
Long Intergenic Non-
LINC01410 Protein Coding RNA Al Unknown
1410
Nuclear Paraspeckle .
NEATI Assembly Transcript 1 Al Transcription Y
Cell cycle
WDR26 WD Repeat Domain 26 Al progression and Y
gene regulation
XRNI 5'-3' Exoribonuclease 1 Al mRNA Y(90)
degradation
ZNF638 Zinc Finger Protein 638 Al Transcription
Small EVs
MYL4 Myosin Light Chain 4 R1, Al Motor Protein Y(91)
Chromosome 18 Open Y
Cl8orf32 i e R1, Al Immune
CAPG Saegee Agtln Proteln, R2, Al Motor Protein
Gelsolin Like
CTSS Cathepsin S R3, Al Immune Y(92)
Cell Cycle Regulator Of .
CYREN NHEJ R1 DNA Repair
Coiled-Coil Domain .
CCDC124 Gontiining 124 R1 Transcription
CD27-AS81 CD27 Antisense RNA 1 R1 Immune
GNB2 | G Protein Subunit Beta 2 R1 G Protein
Signaling
PHF5A4 PHD Finger Protein SA R1 Immune Y
RNA Binding Motif .
RBM8A Protein 8A R1 Transcription Y
Sigma Non-Opioid Calcium
SIGMARI Intracellular Receptor | Rl Signaling Y
CSF3R Colony Stimulating R2 Immune v
Factor 3 Receptor
ESD Esterase D R2 Metabolism
Grr2rp2 | OTF2! Repeat Domain R2 Transcription
Containing 2
sLc14s | Selute Carrier Family 1 R2 Metabolism Y Y(93)
Member 5
AUP1 Lipid Droplet
AUPI Regulating VLDL R3 Ubiquitination Y
Assembly Factor
Mitochondrial
MFF Mitochondrial Fission R3 apd
Factor Peroxisomal
Fission
ARCNI Archain 1 Al Vesicle Y
CKAP2 Cytoskeleton.Assomated Al Proliferation Y(94)
Protein 2
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686

687

688

689

690

CSNK2B Casein Kinase 2 Beta Al Metabolism
Cytochrome P450
CYP27C1 Family 27 Subfamily C Al Metabolism
Member 1
Grainyhead Like Epithelial
GRHLI Transcription Factor 1 Al Development
Heat Shock Protein 90 Molecular
HSP90BI Beta Family Member 1 Al Chaperone Y(95)
KIF5B Kinesin Family Member Al Protein .Bllndmg
5B Activity
Long Intergenic Non-
LINCO01123 Protein Coding RNA Al Unknown
1123
LOC728323 Unknown Al Unknown
MANBAL | Mannosidase Beta Like Al Memobrane Y(96)
Protein
MUC22 Mucin 22 Al Memobrane
Protein
MYLK Myosin nght Chain Al Contr.a(.:tlle
Kinase Activity
Olfactory Receptor
OR4F17 Family 4 Subfamily F Al Vesicle
Member 17
Poly (ADP-Ribose)
PARPY Polymerase Family Al Immune
Member 9
RNF2 Ring Finger Protein 2 Al Transcription
Secretion Associated Ras .
SARIA Related GTPase 1A Al Vesicle
SHC4 SHC Adaptor Protein 4 Al Proliferation
Serine And Arginine .
SRSF8 Rich Splictng Factor's Al Transcription
Transmembrane And
™CC2 Coiled-Coil Domain Al Metabolism
Family 2
TRIM4 Lo L Al Immune
Containing 4
Twinfilin Actin Binding Actin and ATP
ez Protein 2 Al Binding Site
VTAI Vesicle Trafficking 1 Al Vesicle
ZNF484 Zinc Finger Protein 484 Al Transcription

Table 2. Unique genes identified in EVs isolated from COVID-19 cases

Transcripts are carried by large EVs or small EVs isolated from COVID-19 cases that are absent in
Controls. The listed transcripts are not detected in EVs isolated from Controls but are present in the

identified COVID-19 group(s). The cellular function, expression in trophoblasts, and pregnancy

associated expression of each transcript is listed as well (reference listed).
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