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Abstract  22 

The distribution of fitness effects (DFE) of new mutations plays a central role in evolutionary 23 

biology.  Estimates of the DFE from experimental Mutation Accumulation (MA) lines are 24 

compromised by the complete linkage disequilibrium (LD) between mutations in different lines.  25 

To reduce LD, we constructed two sets of recombinant inbred lines from a cross of two C. 26 

elegans MA lines.  One set of lines ("RIAILs") was intercrossed for ten generations prior to ten 27 

generations of selfing; the second set of lines ("RILs") omitted the intercrossing.  Residual LD in 28 

the RIAILs is much less than in the RILs, which affects the inferred DFE when the sets of lines 29 

are analyzed separately.  The best-fit model estimated from all lines (RIAILs + RILs) infers a 30 

large fraction of mutations with positive effects (~40%); models that constrain mutations to have 31 

negative effects fit much worse.  The conclusion is the same using only the RILs.  For the 32 

RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as 33 

models that allow positive effects.  When mutations in high LD are pooled into haplotypes, the 34 

inferred DFE becomes increasingly negative-skewed and leptokurtic.  We conclude that the 35 

conventional wisdom - most mutations have effects near zero, a handful of mutations have 36 

effects that are substantially negative and mutations with positive effects are very rare – is likely 37 

correct, and that unless it can be shown otherwise, estimates of the DFE that infer a substantial 38 

fraction of mutations with positive effects are likely confounded by LD.             39 
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INTRODUCTION  40 

The distribution of fitness effects (DFE) of new mutations is of fundamental importance in 41 

numerous areas of evolutionary biology (FISHER 1930; ORR 2000; PECK et al. 1997; SCHULTZ 42 

and LYNCH 1997; ZHANG et al. 2004), as well as having practical applications, including human 43 

genetic disease (AGARWAL et al. 2023; BOYLE et al. 2017; EYRE-WALKER 2010; MORROW and 44 

CONNALLON 2013) and cancer (CANNATARO et al. 2016; CANNATARO and TOWNSEND 2018; 45 

DURRETT et al. 2010).  The DFE can be estimated from data in two ways: indirectly from 46 

patterns of sequence variation within and between species (BOYKO et al. 2008; GILBERT et al. 47 

2021; JAMES et al. 2023; JOHRI et al. 2020; KEIGHTLEY and EYRE-WALKER 2010; KIM et al. 48 

2017; KOUSATHANAS and KEIGHTLEY 2013; LOEWE and CHARLESWORTH 2006; TATARU et al. 49 

2017), or directly from comparisons between genotypes differing by a known (or estimated) set 50 

of mutations (BÖNDEL et al. 2019; DAVIES et al. 1999; KEIGHTLEY 1994; RAMANI et al. 2012; 51 

SHEN et al. 2022; THATCHER et al. 1998).  Each method has strengths and limitations.  52 

Estimation from the standing variation incorporates a vastly larger number of mutations than 53 

could ever be assessed experimentally, the effects of very weak selection are detectable (at least 54 

in aggregate), and effects are integrated over the entire spectrum of environmental and genomic 55 

contexts experienced by the organism in question.  However, the method has several important 56 

limitations.  First, the effects of selection must be jointly estimated with the effects of 57 

demography, which are necessarily greatly simplified for analytical tractability (JOHRI et al. 58 

2020; KEIGHTLEY and EYRE-WALKER 2007; LI et al. 2012).  Second, there is little information 59 

about the tail of the distribution for which selection is strong on an evolutionary timescale but 60 

weak over the course of a few generations (s ≈ 1%) (KOUSATHANAS and KEIGHTLEY 2013).  61 

Third, the method assumes there is a class of mutations that are selectively neutral to serve as a 62 
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reference; the extent to which that assumption is met is an empirical issue requiring independent 63 

validation (KRUGLYAK et al. 2023; SHEN et al. 2022).  Finally, there is no way to connect the 64 

DFE back to phenotypic traits. 65 

 Direct estimation from fitness differences between known genotypes has the advantage of 66 

being conceptually unambiguous - if two groups differ by a single mutation and differ in fitness 67 

by some amount y, the effect of the mutation is y.  Constructing two populations that differ by 68 

one or a few mutations is straightforward: known mutations can be introgressed or otherwise 69 

engineered (e.g., by CRISPR) into a common genetic background to provide "nearly isogenic 70 

lines" (NILs).  Recent advances in CRISPR technology have made it possible to engineer large 71 

panels of NILs in yeast and other microbes (SHARON et al. 2018; SHEN et al. 2022).  However, 72 

constructing enough NILs to provide a meaningful estimate of the DFE remains a daunting 73 

proposition in multicellular organisms.  Single-gene "knockout panels", in which genes are 74 

systematically inactivated and the fitness effects documented, have been tremendously important 75 

in informing our understanding of the functional aspects of the genome (e.g., KIM et al. 2010; 76 

RAMANI et al. 2012; THATCHER et al. 1998), but knockout mutations constitute only a small part 77 

of the mutational spectrum and do not provide an unbiased estimate of the DFE.  78 

Mutation accumulation (MA) experiments, in which spontaneous mutations are allowed 79 

to accumulate in the (near) absence of natural selection, provide the opportunity to estimate the 80 

DFE of a (nearly) unbiased set of mutations (HALLIGAN and KEIGHTLEY 2009; KATJU and 81 

BERGTHORSSON 2019).  However, within an MA line, all mutations are in complete linkage 82 

disequilibrium, which renders individual mutational effects inestimable.    83 

Here we employ a classical line-cross strategy with MA lines, to break down the linkage 84 

disequilibrium among the accumulated mutations. We then combine whole-genome sequencing 85 
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with high-throughput competitive fitness assays to estimate the DFE of a set of 169 spontaneous 86 

mutations.  This strategy was first employed by BÖNDEL et al. (2019) with the unicellular green 87 

alga Chlamydomonas reinhardtii.  We crossed two parental C. elegans mutation accumulation 88 

(MA) lines derived from the same genetically homogeneous ancestor to get F1 hybrids that are 89 

segregating at all mutant loci.  The F1s were reciprocally crossed, and from the F2s we 90 

constructed two sets of recombinant inbred lines (Supplemental Figure 1).  For the first set, F2s 91 

were further crossed prior to inbreeding to construct a set of Recombinant Inbred Advanced 92 

Intercross Lines (RIAILs).  For the second set, we omitted the intercrossing step and proceeded 93 

directly to the inbreeding step; these lines are classical RILs.  We refer to the full set of lines as 94 

RI(AI)Ls for brevity.  RI(AI)Ls were assayed for competitive fitness against a marked 95 

competitor strain nearly isogenic for the ancestral genome, and multilocus genotypes inferred by 96 

whole-genome sequencing at low (2-3X) coverage.  The strategy is conceptually analogous to 97 

QTL analysis, except the variant loci are not simply markers, but rather are the QTL themselves. 98 

 99 

METHODS 100 

1. Experimental Methods 101 

1.1 Mutation Accumulation (MA) lines.   102 

The details of the MA experiment have been reported elsewhere (BAER et al. 2005).  Briefly, 100 103 

replicate lines were initiated from a single, highly inbred N2 strain hermaphrodite, and 104 

propagated under standard laboratory conditions for a maximum of 250 generations by transfer 105 

of a single immature hermaphrodite at four-day intervals.  Under this protocol the effective 106 

population size, Ne ≈ 1, and all but the most highly deleterious mutations are effectively neutral.  107 
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The progenitor (G0) was cryopreserved at the outset of the experiment, and surviving MA lines 108 

were cryopreserved upon culmination of the MA phase. 109 

1.2 Recombinant Inbred (Advanced Intercross) Lines.  110 

Two MA lines (MA530, n=76 mutations and MA563, n=93 mutations) were chosen as parents 111 

for a set of recombinant inbred advance intercross lines (RIAILs) or simple recombinant inbred 112 

lines (RILs). The parental lines were chosen on the basis of their near-average decline in lifetime 113 

reproductive success (~20%) over four assays after 200 and 220 generations of MA at two 114 

different assay temperatures (20° and 25° (BAER et al. 2006).  The original plan was to construct 115 

a set of 600 RIAILs, with ten generations of intercrossing followed by ten generations of selfing, 116 

using the "random pair mating with equal contributions of each parent" design of  ROCKMAN and 117 

KRUGLYAK (2008; see their Figure 1).  However, many crosses failed during the intercrossing 118 

phase, so we abandoned the intercrossing and completed the set of lines with RILs.  The final set 119 

of 517 genotyped lines includes 192 RIAILs and 325 RILs.  Details of the crossing schemes are 120 

given in Section I of the Supplemental Material. 121 

 1.3 Competitive fitness assays.   122 

To assay competitive fitness, an L1-stage focal strain worm and an L1 GFP-marked competitor 123 

(strain VP604) were placed together on a plate seeded with bacterial food and allowed to 124 

reproduce.  Upon exhaustion of the bacterial food, worms were washed from the plate and 125 

counted using a Union Biometrica BioSorter™.  The natural logarithm of the ratio of the 126 

frequencies of the two types, W=log[(p/1-p)], is proportional to the difference in fitness between 127 

the focal strain (frequency = p) and the competitor strain (frequency = 1-p) (LATTER and SVED 128 

1994). The assay is described in detail in Appendix 1 of YEH et al. (2018) and summarized in 129 

Section II of the Supplemental Material.   130 
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 1.4 Genome sequencing, variant calling, and genotyping. 131 

RI(AI)L genomes were sequenced at low (~2-3X) coverage with 150-bp paired-end Illumina 132 

sequencing, using standard methods.  Details of sequencing and variant calling are given in 133 

Section III of the Supplemental Material. Raw sequence data (fastq) of the RI(AI)Ls have 134 

been deposited in the NCBI SRA under project number PRJNA1083210.  Genome sequences for 135 

the G0 progenitor and the parent MA lines have been previously reported (RAJAEI et al. 2021; 136 

SAXENA et al. 2019). 137 

1.5. Imputation.  Given the low (2-3X) sequencing coverage, approximately 1/3 of the data 138 

(35.2%) are missing, i.e., the genotype at a given locus was not called as either homozygote.  139 

The mean number of loci successfully genotyped per RI(AI)L is 109, and the mean number of 140 

RI(AI)Ls for which a locus was scored is 335.  To account for the missing genotype information, 141 

we constructed a computational procedure to impute the missing data by leveraging linkage 142 

disequilibrium (LD; see next section) between segregating sites.  Specifically, we used the 143 

masked language modeling approach from natural language processing to build a predictive 144 

model for the missing alleles.  The imputation model is built on the transformer architecture, 145 

which has been widely used for modeling natural languages as well as biological sequences such 146 

as DNAs and proteins (JI et al. 2021; RIVES et al. 2021).  The model output consists of the 147 

predicted log-probability for all possible states per site, i.e., the MA530 or MA563 allele.  The 148 

details of the model are given in Section IV of the Supplemental Material. 149 

To assess the model’s performance, we performed 100 rounds of validation. For each 150 

round, all RI(AI)L genotypes were used for training, but with one percent of the called alleles 151 

randomly masked. Across the 100 rounds, we observed a high imputation accuracy on the 152 

masked positions: mean ± 1 SD prediction accuracy = 90.3 ± 1.5%. Cases in which the imputed 153 
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allele differs from the called allele include errors in the initial call, so 90% is a conservative 154 

estimate of the true prediction accuracy. The final imputed genotypes (Supplemental Table 1) 155 

were generated by retraining the model on all RI(AI)L genotypes using all available allele 156 

information.  157 

1.6. Linkage Disequilibrium (LD) 158 

Alleles from the two parents, MA530 and MA563, are initially in complete coupling (positive) 159 

linkage disequilibrium in the F1.  However, mutant alleles occur in both parental genomes, so 160 

although the initial LD between pairs of mutant alleles is complete, the sign of the association 161 

(positive or negative) depends on which parental genomes the mutations occurred.  Measures of 162 

LD that do not account for the sign of the association are agnostic with respect to whether alleles 163 

are coded by the parent of origin or as ancestral (0) vs. mutant (1); the value is the same either 164 

way.  Measures of LD that do account for the sign of the association may differ by sign 165 

depending on if the alleles are coded by parent of origin vs. ancestral vs. mutant.  For our 166 

purposes, it is more meaningful to code alleles as ancestral or mutant.    167 

 The pairwise coefficient of linkage disequilibrium, D=pA1B1-pA1pB1 where pA1B1 is the 168 

frequency of the double-mutant (A1B1) haplotype at the A and B loci, pA1 is the frequency of the 169 

mutant allele at the A locus and pB1 is the frequency of the mutant allele at the B locus.  The 170 

expected allele frequency in the RI(AI)Ls is 0.5 at all segregating loci, but the observed 171 

frequencies will vary due to sampling.  We report two measures of LD, the squared coefficient of 172 

correlation, r2, and D*=D/|Dmax|, where |Dmax|= min[pA1(1-pB1)], (1-pA1)pB1]; r
2 is constrained 173 

non-negative and D* can take on values [-1,1].  Note that our D* is the familiar D' but with the 174 

sign retained.  We calculated r2 and D* among all pairs of the 169 loci using the PLINK v1.9 175 

commands ‘--r2’ and ‘--r dprime-signed’ respectively (PURCELL et al. 2007). We also report the 176 
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mean pairwise intra-chromosomal and inter-chromosomal LD for (1) all lines (n = 517), (2) RILs 177 

only (n = 325), and (3) RIAILs only (n = 192). To visualize intra-chromosomal pairwise LD we 178 

used the ggplot2 package v3.4.4 for R Statistical Software v4.2.3 (WICKHAM 2009). 179 

1.7. Heritability. We estimated the broad-sense heritability (H2) of W from the among-line (i.e., 180 

among-RI(AI)L) component of variance estimated from the general linear model (GLM) yijk = μ 181 

+ αi + βij + εijk, where yijk is the value of W, μ is the overall mean, αi is the random effect of 182 

Block i, βij is the random effect of Line j in Block i, and εijk is the residual effect of Replicate k of 183 

Line j in Block i.  Because the RI(AI)Ls are homozygous lines derived from a cross of 184 

homozygous parents, VG = VL, where VL is the among-line component of variance (FALCONER 185 

1989, Ch. 15) and the broad-sense heritability H2=VG/VP, where VP is the total phenotypic 186 

variance.  Variance components were estimated by restricted maximum likelihood (REML), as 187 

implemented in the MIXED procedure of SAS v. 9.4.  95% Confidence intervals of H2 were 188 

determined empirically from 200 bootstrap replicates, resampling lines pooled over blocks while 189 

retaining the effect of Block in the analysis.  190 

 To account for the possibility that some of the among-line variance was due to factors 191 

other than genotype, we included a set of six "pseudolines" of the G0 ancestor and of each 192 

parental MA line in each assay block, which are the experimental equivalent of RILs except they 193 

are genetically homogeneous, and any among-(pseudo)line variance must be due to causes other 194 

than variation among genes.  Pseudolines were analyzed identically to the RI(AI)Ls. 195 

 We next estimated the proportion of the total broad-sense heritability not explained by 196 

the cumulative additive effects of the mutations, H2* (here "additive" formally means 197 

"homozygous non-epistatic", because we have no information about dominance).  First, we 198 

calculated the multiple regression yijk = μ + βx + ε, where yijk is the value of W as before, μ is the 199 
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overall mean, x is the vector of genotypes at mutant loci 1-169, β is the vector of regression 200 

coefficients, and ε is the residual effect.  We then re-estimated the linear model from above, y*ijk 201 

= μ + αi + βij + εijk, where the terms are as before, where the y*ijk are the residuals of the multiple 202 

regression of W on the multilocus genotype, x.  The difference H2- H2* is the narrow-sense 203 

heritability h2, i.e., the fraction of the total phenotypic variance explained by the additive effects 204 

of the mutations.  Statistical significance of h2 was assessed by randomly permuting estimates of 205 

W among replicates and re-calculating h2.   206 

 207 

2. Estimation of the DFE  208 

2.1. Raw Difference. The simplest way to measure the phenotypic effect of a mutation at locus i 209 

is from the average difference in the trait between lines that have the mutant allele and lines that 210 

have the ancestral allele at locus i.  Following BÖNDEL et al. (2019) we refer to the mutational 211 

effects calculated in this way as the raw difference, ���� .  Confidence intervals and approximate 212 

standard errors of ����  were calculated from 1000 bootstrap replicates, holding the number of 213 

lines in each category (mutant, wild-type) constant in each (re)sample.   214 

2.2. Bayesian MCMC.  We take a fully Bayesian approach to estimate the posterior distribution 215 

of all genetic and non-genetic parameters.  The basic model is the same as in section 1.7 above, 216 

such that the observed fitness of replicate k of line j in block i is: yijk = μ + αi + βTxj + εijk.  The 217 

vector β contains the effects for the 169 mutations. We fit a series of models with increasing 218 

complexity in the prior distribution of β, to test different hypotheses regarding the DFE of the 219 

mutations. In all models, the grand mean, μ, follows an uninformative normal distribution with 220 

mean zero and SD = 10. The individual block effects follow normal distributions with mean 0 221 
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and SD = 1, given the small variation in block effects when averaged over lines (SD = 0.13). The 222 

models tested are summarized in Table 1.  223 

To begin, in model 1 (“neutral model”) mutational effects are constrained to 0, i.e., β = 0.  224 

In model 2 (“uniform effect model”), all mutations in the vector β have a constant effect (u), 225 

such that yijk = μ + αi + mj × u + εijk., where mj is the number of mutant alleles in line j. 226 

Model 3 (“neutral + uniform effect model”) assumes that mutations in vector β follow identical 227 

independent distributions such that the m-th mutation, βm, has a probability 1 – q of being 228 

neutral, and q of having a nonzero constant effect u, such that βm = w × u, where w is sampled 229 

from a Bernoulli distribution with parameter q, which in turn is drawn from an uninformative 230 

Beta prior with shape parameter = 2.  In both the uniform effect model and the neutral + uniform 231 

effect model, the constant mutational effect u follows a normal prior with mean 0 and SD = 10.  232 

Model 4 (neutral + uniform positive effect + uniform negative effect, “3-effect model”) in 233 

addition assumes that mutations can take both constant positive or negative effects, such that βm 234 

= w × (z × u+ – (1 – z) × u-). Similarly, w is a Bernoulli random variable with the probability q, 235 

equal to the probability that a mutation is non-neutral, which follows the same distribution as 236 

model 3. The parameter z controls the conditional probability of a nonneutral mutation having 237 

the positive effect, and is a Bernoulli random variable with probability p+, which follows an 238 

uninformative Beta distribution with shape parameters = 2. The constant positive/negative effects 239 

upos/uneg follow an uninformative normal distribution with mean 0 and SD = 10.  240 

In addition to these constant-effects models, we tested three models in which mutational 241 

effects are sampled from a continuous Gamma distribution.  In model 5 (“negative gamma”), all 242 

mutations are assumed to have negative (i.e., deleterious) effects, with effect sizes sampled 243 

identically and independently from a Gamma distribution, whose shape and rate parameters 244 
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follow uninformative half normal distributions (SD = 10).  In model 6 (“symmetric gamma”) and 245 

model 7 (“asymmetric gamma”), mutations can have either positive or negative effects, such that 246 

we can express individual mutation effects as βm = z × βm
+  –  (1 – z) × βm

–. Similar to model 4, z 247 

is a Bernoulli random variable with probability p+, which follows a symmetric Beta distribution. 248 

The positive (negative) effect sizes, βm
+ (βm

–) are in turn sampled from their respective Gamma 249 

distributions, as in Model 5. The only difference between model 6 and 7 is that in model 6, βm
+ 250 

and βm
– follow the same Gamma distribution, whereas in model 7, the Gamma distributions for 251 

the positive and negative effect sizes are allowed to be different.  252 

Bayesian inference for all models was implemented in the statistical software PyMC3 253 

v5.10 (SALVATIER et al. 2016). The No-U-Turn-Sampler was employed to acquire posterior 254 

samples.  Continuous random variables were sampled using the Hamiltonian Monte Carlo 255 

method which relies on gradients calculated using automatic differentiation, whereas discrete 256 

random variable were sampled using the Metropolis algorithm. To account for the uncertainty in 257 

the genotypes due to missing alleles, for each model we performed 50 independent Monte Carlo 258 

runs, each with missing alleles sampled from independent Bernoulli distributions with 259 

probability predicted by the trained imputation model. For each model and genotype replicate, 260 

we ran 4 parallel Monte Carlo chains, each with 1000 warm up steps and 4000 sampling steps.  261 

We used the R-hat statistic (VEHTARI et al. 2021) as a diagnostic of model divergence, which 262 

compares the parameter estimates between and within chains. R-hat is greater than 1 if the chains 263 

are not well mixed, such that the between and within-chain sample distributions disagree.  264 

We used a Bayesian model selection procedure to identify the best model. Specifically, 265 

for each model we estimated the leave-one-out expected log pointwise predictive density (ELPD 266 

LOO) model fit, equal to the mean expected log likelihood of the observed fitness of a random 267 
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individual given its genotype, calculated based on a model fitted using the full data set minus the 268 

focal individual. The procedure is implemented in PyMC3 based on the approximate method 269 

introduced by VEHTARI et al. (2017) The ELPD LOO scores for all 50 genotype replicates were 270 

averaged to provide an overall goodness-of-fit score for each model.  271 

  272 

RESULTS: 273 

Linkage Disequilibrium  274 

The purpose of constructing RI(AI)Ls is to break up the linkage disequilibrium between 275 

mutations, to permit estimation of the effects of individual mutations.  That effort was only 276 

partially, and variably, successful.  Averaged over all lines (RILs + RIAILs), intrachromosomal 277 

LD as measured by median r2 is 0.12 (Figure 1; Supplemental Figure 2).  However, LD is 278 

much higher in the RILs (median r2 = 0.28) than in the RIAILs (median r2 = 0.045).  Ten 279 

generations of advanced intercrossing was effective in breaking up LD, on average, but regions 280 

of near-complete LD remain even in the RIAILs.  Inspection of Figure 1 reveals that regions of 281 

high LD are concentrated in the chromosome centers, as expected given the reduced rate of 282 

crossing over in centers relative to arms, although there are also regions of high LD in 283 

chromosome arms where mutations are tightly clustered.  Interchromosomal LD is near 0 in both 284 

RILs and RIAILs (Supplemental Figure 3), indicating a trivial role for sampling variance in 285 

maintaining LD.       286 

Heritability 287 

Our goal is to estimate the effects of spontaneous mutations on fitness.  To begin, we ask: is 288 

there heritable variation in competitive fitness among the RI(AI)Ls?  The broad-sense heritability 289 

of W including all RI(AI)Ls, H2=0.30 (bootstrap 95% CI=0.271, 0.370).  Estimates of H2 were 290 
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similar for RIAILs (H2=0.337; bootstrap 95% CI=0.256, 0.403) and RILs (H2=0.313; bootstrap 291 

95% CI=0.243, 0.382).  Including all RI(AI)Ls, narrow-sense heritability, estimated from the 292 

residuals of the multiple regression of W on multilocus genotype, h2 = 0.16 (permutation test, 293 

P<0.001; averaged over 1000 permutations of the data, random h2 = 0.023, max=0.048).  The 294 

cumulative additive effects of the 169 segregating spontaneous mutations explain approximately 295 

half of the total heritable variance in W.  By way of comparison, H2 for competitive fitness from 296 

a set of 28 C. elegans wild isolates was 0.49, although the assays in the two studies are not 297 

directly comparable (TEOTÓNIO et al. 2006).   298 

Considering RIAILs and RILs separately, h2 of the RILs is similar to the estimate from 299 

the full dataset (h2 = 0.20, n=325), whereas the same analysis for RIAILs gives a REML point 300 

estimate of residual VL=0.  Taken at face value, these results imply that additive mutational 301 

effects completely explain H2 (i.e., h2 = H2) in the RIAILs, whereas the additive effects only 302 

explain about two-thirds of the among-line variance in the RILs.  To investigate the possibility 303 

that LD could explain the unexplained among-line variance in the RILs, we used parametric 304 

bootstrap simulations, as follows.  For each RIL we (i) assigned each mutation in its genome a 305 

fitness effect drawn from a given DFE with mean effect equal to the observed mean, (ii) summed 306 

the effects across loci, and (iii) added to each replicate a residual (= microenvironmental) fitness 307 

effect drawn from a normal distribution.  We then estimated H2 and h2 from the simulated data as 308 

described above.  In the first set of simulations (n=100), we maintained the observed LD 309 

structure; in the second set of simulations we permuted alleles (mutant or ancestral) among loci 310 

in each RIL to break up the LD.  We tested two different DFEs.  The first DFE is the 311 

‘asymmetric Gamma model’ described in Methods, where mutations can have positive or 312 

negative effects, with the magnitude of the positive/negative effect drawn from two non-identical 313 
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Gamma distributions. The second DFE is the ‘negative gamma’ model, where mutations can 314 

only have negative effects and are drawn from a single Gamma distribution. We sampled effects 315 

of mutations from these two DFEs using the posterior mean model parameters (Supplemental 316 

Table 2).  Residual fitness effects were sampled from zero-mean normal distributions with 317 

variance equal to the posterior means of the noise variance inferred jointly with model 318 

parameters for the two DFEs (σ2 ≈ 1).  For both DFEs, LD had no effect on the inferred h2; in 319 

each case h2=H2 in 100% of the simulations, as expected because the mutations were the only 320 

source of among-line variance in the simulations.              321 

Having ruled out differences in LD as the cause of missing heritability in the RILs if 322 

mutational effects are strictly additive, the remaining unexplained heritability in the RILs must 323 

be due to some combination of epistasis, transgenerational epigenetic inheritance (TEI), and/or 324 

residual (but small) genotype-environment correlations.  It is not obvious at first glance why the 325 

same set of epistatic mutations would lead to missing heritability in the RILs but not in the 326 

RIAILs.  However, the number of RIAILs (n=192) is only slightly greater than the number of 327 

loci (n=169), so it is plausible that there simply is little power to detect residual among-line 328 

variance once the additive effects of the mutations are accounted for.  When h2 is estimated for 329 

the full set of RI(AI)Ls with the additive effects regressed separately for each block, the residual 330 

heritability disappears; that result reinforces the likelihood that the absence of missing 331 

heritability in the RIAILs is simply due to lack of power rather than an actual absence of non-332 

additive among-line variance.  We elaborate on this possibility in Section V of the Supplemental 333 

Material.   334 

To account for  potential non-genetic variation that is nevertheless heritable over a few 335 

generations, we estimated variance components among sets of "pseudolines" of the G0 ancestor 336 
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of the parental lines, and of the MA530 and MA563 parental lines.  These controls are not 337 

powerful (n=30 pseudolines, 6 per block), but in all three cases the REML estimate of the 338 

among-pseudoline component of variance, VL= 0.              339 

Relationship between number of mutations and mean fitness 340 

If all mutational effects are equal and in the same direction (i.e., the Bateman-Mukai criteria 341 

(MUKAI 1964)), the slope of the regression of W on the number of mutant alleles carried by a line 342 

will equal the average effect of a mutation.  Averaged over all RI(AI)Ls, accounting for variation 343 

among assay blocks and removing two outlying lines, the regression of W on number of 344 

mutations is not significantly different from 0 (slope = -0.0051, F1,509=1.83, P>0.17), although 345 

the trend suggests that mutations are deleterious, on average.     346 

Relationship between mutational effect and mutant allele frequency 347 

The expected frequency of segregating neutral alleles in the RI(AI)Ls is 0.5.  Selection was 348 

minimally effective in the crossing and inbreeding phases (Ne ≈ 2), but it was not absent.  If most 349 

mutations are deleterious and if deleterious alleles were preferentially removed by selection, then 350 

(i) the average frequency of mutant alleles will be < 0.5, and (ii), there should be a negative 351 

relationship between allele frequency and mutational effect size.  The mean observed mutant 352 

allele frequency is 0.500 (range = 0.287-0.675).   The correlation between mutant allele 353 

frequency pi at the ith locus and the raw difference ����,�, rpu= 0.15 (Supplemental Figure 4).  354 

Thus, we infer that selection did not systematically skew mutant allele frequencies away from 355 

the expected neutral frequency.  356 

The Bayesian posterior DFE.  357 

To infer the DFE, we tested a series of seven increasingly complex models, using the Bayesian 358 

MCMC analysis outlined in the Methods.  Because of the discrepancy in average LD between 359 
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the RIAILs and the RILs, all analyses were first done on the full set of RI(AI)Ls, and repeated on 360 

RIAILs and RILs separately.   361 

As a first step, we tested for model convergence, using the R-hat statistic.  We observed 362 

no divergence between the four parallel Markov chains, indicated by R-hat < 1 in all cases 363 

(VEHTARI et al. 2021).  Model performance, as measured by the Bayesian leave-one-out 364 

expected log pointwise predictive density (LOO-ELPD, VEHTARI et al. 2021) averaged across 50 365 

genotype replicates, is summarized in Table 1.  Posterior means and 95% credible intervals of 366 

model parameters are given in Supplemental Table 2.   367 

(i) All lines (RILs + RIAILs = RI(AI)Ls).  Reassuringly, the neutral model, in which mutational 368 

effects are constrained to equal 0, performs worst. The uniform effect model, in which 369 

mutational effects are constrained to be equal, is moderately better (Δfit = 23.0). The posterior 370 

mean for the shared mutational effect (u) is negative and has a 95% credible interval not 371 

intersecting zero (u = -0.006; CI = -0.009, -0.005).   372 

The neutral + uniform effect model, in which mutations can either have a uniform non-373 

zero effect with probability q or be neutral with probability 1- q, performed significantly better 374 

(Δfit = 50.0).  Again, the mean mutational effect is inferred to be negative (u = -0.16, 95% CI = -375 

0.24, -0.10), but with low probability (q = 0.064, 95% CI = 0.026, 0.114).  The negative 376 

Gamma model, in which effects are constrained to be negative and sampled from a Gamma 377 

distribution, fits equally well as the neutral + fixed effect model (u = -0.007, Δfit = 0.0).   378 

All models summarized so far assume mutations must have a uniform sign. The first 379 

model relaxing this assumption is the 3-effect model, in which a mutation can be neutral with 380 

probability 1 – q, or have a fixed positive/negative effect with probabilities q+ and q- (in our 381 

Bayesian model parametrization, q+ = q × p+, q- = q × (1 – p+), where p+ is the probability that a 382 
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mutation has a positive effect, given that it is non-neutral). This model showed a significant 383 

improvement in performance (Δfit = 19.1).  384 

Finally, the two-sided Gamma models (symmetric and asymmetric Gamma) provide a 385 

moderate improvement over the 3-effect model. The two models have LOO-ELPD scores that 386 

are nearly indistinguishable (symmetric gamma model = -3402, asymmetric gamma model = -387 

3402.3), indicating that the additional flexibility conferred by the asymmetric gamma model does 388 

not confer higher generalizability to new data.  For the asymmetric gamma model, the alpha 389 

(scale) and beta (rate, inverse of the scale parameter) parameters for the positive and negative 390 

halves of the distribution have nearly identical posterior distributions (Supplemental Table 2). 391 

Additionally, the two-sided gamma models show very similar posterior distributions for all 392 

parameters. We therefore focus our discussion on the more parsimonious symmetric gamma 393 

model.  394 

On average, mutations are slightly less likely to have a positive effect (p+ = 0.426; 95% 395 

CI = 0.294, 0.547).  The posterior distribution of the effects of all 169 mutations shows that 396 

39.6% of all mutations have a positive posterior mean effect (Figure 2A), consistent with the 397 

posterior probabilities p+/ -. However, individual mutations exhibit large credible intervals that 398 

intersect zero (Figure 3A).  The distribution of negative mean effects shows a longer tail than 399 

the positive effects, but this asymmetry in shape was not reflected in the model selection results, 400 

where the symmetric and asymmetric Gamma models have virtually identical performance. This 401 

is likely a power issue, whereby the increased flexibility of the asymmetric Gamma model was 402 

not supported by enough data to result in likelihood improvements that can offset the penalty 403 

resulting from the higher model complexity.  404 
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(ii) RILs. The model selection results for the RILs are largely consistent with results based on the 405 

full set of RI(AI)Ls. The neutral and the fixed effect models have the lowest LOO-ELPD (Table 406 

1).  The two negative effects models have similar LOO-ELPD values and show significant 407 

improvement over the first two models. Finally, we see that the three two-sided models provide 408 

further substantial improvement over the one-sided model. The two-sided Gamma models 409 

produced very similar LOO-ELPD scores, while the 3-effect model has a moderately lower 410 

value. The distribution of mean mutational effects under the symmetric Gamma model are 411 

similar to results generated from the full set of RI(AI)Ls (Pearson's r = 0.56; Figure 2B).  412 

 (iii) RIAILs.  Model selection results for the RIAILs reveal a different pattern. Although the 413 

neutral and fixed effect models still perform worst, performance of the models in which effects 414 

are constrained to be non-positive (in particular the negative Gamma model) is now close to that 415 

of the two-sided models (Table 1).  The similarity between the two-sided models and the 416 

negative-only model is supported by the change in the shape of the two-sided gamma models, in 417 

which the frequency of mutations with positive effects is lower (q+ = 0.355; 95% CI 0.119, 418 

0.595).  Inference from RIAILs resulted in an overall reduction in the mean posterior effects of 419 

mutations, such that the effects of most mutations are shrunk towards zero (Figure 2C). 420 

Additionally, the posterior variance of the mutational effects is lower in the RIAILs (mean 421 

posterior SD of mutational effects is 0.040, compared with 0.056 in the full set of RI(AI)Ls) 422 

(Figure 3C), even with the lower sample size. The mutational effects for the RIAILs are more 423 

weakly correlated to those inferred from the full set of RI(AI)Ls (Pearson's r = 0.36) than are the 424 

effects inferred from the RILs.   425 

(iv) Locus-specific effects.  The simplest way to infer the mutational effect at a locus is to 426 

calculate the mean value of all lines with a mutant allele and all lines with an ancestral allele at 427 
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that locus; the difference is the raw difference (����� of the mutation at that locus.  As a sanity 428 

check, we plotted the inferred Bayesian posterior effect against the raw difference; ideally, the 429 

correlation should be +1.  The correlations were positive, but well below 1 in all three cases 430 

(Figure 4).  The magnitude of the raw difference is typically much larger than that of the 431 

posterior effects. The difference is likely caused by LD, in that the raw difference of a single 432 

mutation contains contributions from other linked mutations, which may inflate the estimates.        433 

Effects of mutant haplotypes 434 

A major challenge is that many mutations are in high LD, making the effects of individual 435 

mutations nearly unidentifiable (for example, if two mutations with effects, u1 and u2 are in 436 

complete LD, we only have observations for the sum of their effect u1 + u2, making it impossible 437 

to estimate u1 and u2 separately). To proceed, we first identified haplotype blocks consisting of 438 

groups of loci in which LD among all pairs of consecutive loci r2 > 0.8. We then designated two 439 

haplotypes for each haplotype block. Among loci in a haplotype block, two types of haplotype 440 

assignment can occur. Consider a haplotype block with two loci, each with an ancestral and a 441 

mutant allele (coded 0 and 1). If the two loci are in positive LD, we have an ancestral haplotype 442 

(00) and a double-mutant haplotype (11). If the two loci are in negative LD, we have two single-443 

mutant haplotypes, 01 and 10.  Treating the data as haplotypes rather than individual loci reduces 444 

the sample size from 169 (the number of loci) to 114 (the number of haplotypes).  We restricted 445 

this analysis to the symmetric Gamma model.  446 

We acquired the posterior sample of a mutant haplotype by summing the posterior 447 

samples of the individual mutations at each locus in the haplotype.  We repeated this procedure 448 

for the RILs, RIAILs and the full set of RI(AI)Ls.  In all three cases, the distribution of the mean 449 

mutant haplotype effects is skewed to the left (Figure 5). The percentage of mutant haplotypes   450 
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with negative posterior means is 61.4% in the full set of RI(AI)Ls, 64.0% in the RILs, and 67.5% 451 

in the RIAILs.  Again, inference from the RIAILs results in an overall reduction in the mean and 452 

variance of posterior effects of mutant haplotypes, relative to inferences from RILs and the full  453 

 set of RI(AI)Ls.   The mean absolute posterior mean effect for the negative mutant haplotypes 454 

based on RIAILs only (u- = -0.022) is twice that of the positive mutant haplotypes (u+ = 0.011).  455 

Finally, the lower LD in the RIAILs allowed us to identify a mutant haplotype with a 456 

strong negative effect located in a 6.05 Mb region between positions 3771123 and 9819058 on 457 

chromosome III (Figure 6). This haplotype contains 13 mutations, including 11 SNPs and 2 458 

indels. The two mutant haplotypes are 1000111001100 for MA530, and 0111000110011 for   459 

MA563. The MA563 mutant haplotype has a large negative effect (u = -0.760; 95% CI -1.09, -460 

0.149), whereas the MA530 mutant haplotype shows a moderately strong positive mean effect (u 461 

= 0.118; 95% CI -0.134, 0.647).  However, their effects are strongly negatively correlated in the 462 

posterior samples, i.e., if an estimated effect at the MA530 haplotype is large and negative, the 463 

corresponding estimate at the MA563 haplotype is large and positive.  The most we can say with 464 

confidence is that the cumulative effect of mutations in this region is to reduce W by about 0.64 465 

relative to the ancestor, which is sufficient to explain the decrease in fitness of MA563 relative to 466 

the ancestor (Supplemental Figure 5).   467 

 The full list of mutations, along with parent of origin and their inferred effects, are 468 

presented in Supplemental Table 3; fitness data are presented in Supplemental Table 4. 469 

 470 

DISCUSSION 471 

Unsurprisingly, mutations are deleterious, on average.  Coincidentally or not, the point estimate 472 

of the mean average raw difference in competitive fitness in the RI(AI)Ls, -0.0039, is extremely 473 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2024. ; https://doi.org/10.1101/2024.05.08.593038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593038
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

similar to the same estimate from the full set of 80 MA lines of which the two parental lines were 474 

drawn.  Assuming that a random pair of MA lines differs by 160 mutations, the average 475 

mutational effect estimated from the data of YEH et al. (2018, Table 1) is -0.0040.  Given the 476 

substantial sources of variation in these experiments, the concordance is remarkable.  In a similar 477 

vein, YEH et al. estimated the mutational heritability from the same data, h�
� � ��/2� = 478 

0.00084/generation of MA.  Summed over the approximately 250 generations of MA, we predict 479 

a broad-sense heritability H2 ≈ 0.2, about 2/3 of the observed value in this study.  Or differently 480 

put, our estimate of H2 implies a mutational heritability h�
�  ≈ 0.0012. Given that both measures 481 

of heritability are ratios of variances, the observed values are quite consistent.   482 

 Perhaps more surprising is the relatively high narrow-sense heritability of the mutational 483 

effects (h2=0.16), which explain roughly half of the heritable variance in fitness.  There are no 484 

comparable competitive fitness data from wild isolates, but ZHANG et al. (2021) estimated H2 485 

and h2 for lifetime fecundity on solid media for a set of 121 C. elegans wild isolates. In their 486 

assay h2 (0.20) was about 1/3 of H2 (0.63).  In contrast to our RI(AI)Ls, which differ by about 85 487 

mutations on average, the wild isolates differ by thousands of segregating variants.  Comparison 488 

of heritabilities is problematic because the upper bound is 1, which means that h2 necessarily 489 

reaches an asymptotic value.  However, if we assume that the contribution of non-heritable 490 

effects (VE) is similar in the two studies – and we would naively expect that VE is greater in a 491 

competitive fitness assay than in a non-competitive assay because the competitor contributes to 492 

VE – the implication is that the asymptote is reached after at most a few hundred generations of 493 

mutations have accumulated in the population.     494 

 The inclusion of both RILs and RIAILs in the experiment is fortuitous.  If we only had 495 

RILs to work with, we would have been much more confident in concluding that a large 496 
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proportion of mutations have positive effects.  Ten generations of intercrossing in the RIAILs 497 

broke up most of the initial LD, but not all of it, and it is clear that at least some of the apparently 498 

greater fraction of positive-effect mutations in the RILs can be attributed to the confounding 499 

effect of negative-effect mutations in LD.  Inspection of the DFE along the chromosome (Figure 500 

3) reveals a negative spatial autocorrelation: mutations inferred to have large positive effects are 501 

usually in close proximity to one or more mutations with large negative effects.         502 

 This study was motivated by three antecedents: the studies of BÖNDEL et al. (2019), who 503 

used a related crossing design to estimate the DFE from spontaneous MA lines in the unicellular 504 

green alga Chlamydomonas reinhardtii; of GILBERT et al. (2021), who estimated the C. elegans 505 

DFE from the standing site frequency spectrum among wild isolates; and those of VASSILIEVA et 506 

al. (2000) and KEIGHTLEY et al. (2000), who estimated the DFE from the distribution of (non-507 

competitive) fitnesses among C. elegans MA lines.  We consider each in turn.   508 

 BÖNDEL et al.'s crossing design differed from ours in a key way: they backcrossed MA 509 

lines to the common ancestor rather than crossing two MA lines.  Their design results in all 510 

mutations being initially in complete coupling (positive) LD, rather than a random mix of 511 

coupling and repulsion LD, as in our design.  Nevertheless, their design is still constrained to 512 

infer the cumulative effects of mutations in LD.  They did not report LD, nor did they report the 513 

distribution of mutational effects along the chromosomes (except as raw data).  They too 514 

observed a high proportion of mutations with positive effects on fitness; in their best-fit model 515 

(two-sided Gamma with different means for positive and negative DFEs), the DFE was highly 516 

leptokurtic, with posterior mean frequency of positive effects, q+, of 84%.  However, the 517 

estimated mean (absolute) effect of deleterious mutations, u-, was 4-5 times greater than the 518 

mean positive effect, which reconciles the high frequency of mutations with positive effects with 519 
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the consistent and well-supported overall decline in fitness of the MA lines.  They too observed a 520 

strong positive correlation between the inferred posterior mean mutational effect at a locus and 521 

the raw difference, and that the Bayesian posterior DFE was shrunk toward zero compared to the 522 

raw difference.   523 

 GILBERT et al. used maximum likelihood, as implemented in the DFE-alpha software 524 

(KEIGHTLEY and EYRE-WALKER 2007), to infer the DFE from segregating SNP variation in a set 525 

of ~300 C. elegans wild isolates.  They also analyzed data simulated under realistic parameters 526 

of mutation and recombination to investigate the effect of self-fertilization on the inferred DFE.  527 

They found that, while DFE-alpha reprises the input DFE quite faithfully when mating is 528 

random, self-fertilization biases the results toward mutations of small negative effect, evidently 529 

due to the slower decay of LD under selfing.  Inclusion of a small fraction (0.1%) of beneficial 530 

mutations similarly biases the inferred DFE of deleterious mutations toward small effects.     531 

 C. elegans MA lines invariably decline in fitness, and early studies concluded that the 532 

mean deleterious mutational effect is quite large (~10-25 %) (ESTES et al. 2004; KEIGHTLEY and 533 

CABALLERO 1997; VASSILIEVA et al. 2000), although none of those studies investigated 534 

competitive fitness.  The point estimate of the mean deleterious mutational effect from our 535 

neutral + uniform effect model (Model 3) in the full set of RI(AI)Ls is -0.16 and the inferred 536 

fraction of deleterious mutations (0.064) translates to a per-genome, per-generation deleterious 537 

mutation rate of U ≈ 0.02, very consistent with the aforementioned studies.  Coincidentally or 538 

not, our inference from RIAIL haplotypes that the C. elegans DFE consists of a very large 539 

proportion of mutations with near-zero effects interspersed with a small number of mutations 540 

with large negative effects is very similar to the conclusion of KEIGHTLEY et al. (2000), who 541 
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reached that conclusion from the distribution of fitnesses among C. elegans MA lines that had 542 

been subjected to EMS mutagenesis.      543 

Conclusions – Two primary conclusions emerge from this work.  First, mathematics is no 544 

substitute for recombination where inference of the DFE is concerned.  When mutations are in 545 

strong LD – repulsion or coupling – different combinations of positive and negative effects can 546 

result in the same cumulative effect, possibly leading to the mistaken inference that the DFE 547 

includes a large fraction of mutations with positive effects.  However, posterior estimates at 548 

linked loci will be strongly negatively correlated, which will not be true of unlinked loci.  That 549 

conclusion is obvious in hindsight, and should serve as a cautionary note.  But second, the 550 

unplanned inclusion in this study of RILs along with the RIAILs, and the large difference in 551 

average LD between the two sets of lines, turns out to be informative.  As LD is reduced in the 552 

RIAILs vs. the RILs, the DFE becomes more leptokurtic, the inferred proportion of mutations 553 

with negative effects increases, and the relative difference in magnitude between negative and 554 

positive effects increases (negative effects become increasingly greater).  When mutations are 555 

binned into haplotypes, the most intuitive interpretation of the results is that almost all mutations 556 

have effects that are very close to 0, and that the decline in fitness with MA is the result of a 557 

small number of mutations with large negative effects – perhaps only one, on chromosome III in 558 

the MA563 genome.   559 

 Looking ahead, we envision understanding of the DFE being advanced in three ways.  560 

First, technical advances in high-throughput gene editing will allow efficient construction of 561 

nearly-isogenic lines (NILs), removing the confounding effects of LD.  The mutation spectrum 562 

can be inferred, and a large random sample of spontaneous mutations can be engineered into a 563 

common genomic background(s) and the DFE estimated as we have done here.  Second, the DFE 564 
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of a common set of mutations should be estimated in a variety of contexts.  We only assayed 565 

fitness in one context in this experiment; it would be very interesting to see if, and how, the DFE 566 

changes in different contexts.  Finally, experimental estimates of the DFE can be employed as 567 

strong priors in estimates of the DFE from standing polymorphism, which may have the added 568 

benefit of facilitating estimates of demographic parameters by de-confounding selection from 569 

demography.  570 
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Table 1. Comparison of seven competing Bayesian models fitted to the genotype and phenotype 587 

data of all RILs and RIAILs, and separately to RILs and RIAILs. Each model was run with 50 588 

random genotype replicates. Each replicate consisted of four Markov Chains with 4000 589 

Metropolis steps. Sampling was performed using the software PyMC3 (Salvatier et al. 590 

2016Salvatier et al. 2016). Model performance is measured using the Bayesian leave-one-out 591 

expected log pointwise predictive density (LOO-ELPD), quantifying the generalizability of the 592 

fitted model to validation data points. Higher (less negative) LOO-ELPD indicates better model 593 

performance.  594 

 595 

  RILs + RIAILs RILs RIAILs 

Index Model name 

LOO-

ELPD Δ Best 

LOO-

ELPD Δ Best 

LOO-

ELPD Δ Best 

1 Neutral -3501.2 -99.2 -2200.6 -33.4 -1493.1 -133.6 

2 Uniform -3478.2 -76.2 -2190.1 -22.9 -1472.6 -113.1 

5 

Neutral + 

uniform -3422.2 -20.2 -2179.7 -12.6 -1365.1 -5.5 

4 

Negative 

gamma -3422.2 -20.2 -2181.0 -13.8 -1360.3 -0.8 

5 3 effects -3403.1 -1.1 -2170.8 -3.7 -1360.4 -0.8 

6 

Symmetric 

gamma -3402.0 0 -2168.2 -1.1 -1359.6 0 

7 

Asymm. 

gamma -3402.3 -0.3 -2167.2 0 -1359.9 -0.3 
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 596 

FIGURE LEGENDS 597 

 598 

Figure 1 - Intrachromosomal pairwise linkage disequilibrium (LD). (a) Pairwise LD (r2) 599 

calculated with all lines (RIAILs + RILs), (b) RILs only, and (c) RIAILs only. Each heat map 600 

represents a chromosome with pairwise LD (r2) between mutant loci colored as shown in the 601 

legend. The colored lines above each chromosome represent the parental origin of the mutant 602 

allele (MA530-solid blue, MA563-dashed orange). These lines also show the relative physical 603 

position of mutant loci across each chromosome; the far-left vertical line represents the first 604 

mutant locus on the chromosome and the far-right vertical line represents the last mutant locus.  605 

 606 

 Figure 2 - Distribution of Bayesian posterior mutational effects on fitness. The distribution 607 

of mean mutational effects (u) calculated using the Bayesian MCMC method is shown. The 608 

distribution is calculated separately with (a) all lines (b), RILs only, or (c) RIAILs only. The 609 

vertical red line in each panel represents the mean of means for that population. The mean value 610 

for each panel is also annotated on the plots in red text.  611 

 612 

Figure 3 - Bayesian posterior mutational effects by genome position. The mutant loci are 613 

plotted by their physical position in the genome (x-axis) and their mean mutational effect (u) (y-614 

axis), which was calculated using the Bayesian Markov chain Monte Carlo (MCMC) method. 615 

The colors indicate the parent of origin for the mutant locus (MA530-blue, MA563-orange) and 616 

the shapes show the mutant class (indel-circle, snp-triangle). The vertical lines plotted behind 617 
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each point represent the 95% confidence intervals of the mutant effect estimates. The mutational 618 

effects are calculated separately with all lines (a), RILs only (b), and RIAILs only (c). 619 

 620 

Figure 4 - The relationship between Bayesian posterior mutational effects (u) and raw 621 

difference, 		
�. The effects are calculated separately using (a) all lines, (b) RILs only, or (c) 622 

RIAILs only. Each point represents a locus and is colored by the parent of origin (MA530-blue, 623 

MA563-orange). The shape of the point shows the mutant class (indel=circle, snp=triangle). 95% 624 

confidence intervals for the estimates are plotted as vertical and horizontal lines behind the 625 

points. Pearson’s correlation coefficient (r) is displayed in the upper left of each panel. 626 

 627 

Figure 5 - Distribution of Bayesian posterior mutant haplotype effects on fitness. The 628 

distribution of mean mutant haplotype effects (u) calculated using the Bayesian MCMC method 629 

is shown. The distribution is calculated separately for (a) all lines, (b) RILs only, or (c) RIAILs. 630 

The vertical red line in each panel represents the mean of means for that population. The mean 631 

value for each panel is also annotated on the plots in red text. 632 

 633 

Figure 6 - Bayesian posterior mutant haplotype effects by genome position. The 114 mutant 634 

haplotypes are plotted by their physical position in the genome (x-axis) and their mean haplotype 635 

effect (u) (y-axis), which was calculated using the Bayesian Markov chain Monte Carlo 636 

(MCMC) method. The center of haplotypes are plotted as points and the genomic range of multi-637 

locus haplotypes are represented by horizontal boxes plotted behind the points. The colors 638 

indicate the parent of origin for the mutant haplotype (MA530-blue, MA563-orange). Multi-639 

locus mutant haplotypes are plotted with square points (multi), and the other single-locus 640 
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haplotypes are plotted with shapes based on mutation type (indel-circle, snp-triangle). The 641 

vertical lines plotted behind each point represent the 95% confidence intervals of the haplotype 642 

effect estimates. The haplotype effects are calculated separately with all lines (a), RILs only (b), 643 

and RIAILs only (c).  644 

  645 
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