

1 Direct inference of the distribution of fitness effects of spontaneous mutations from recombinant
2 inbred *C. elegans* mutation accumulation lines

3

4 Timothy A. Crombie^{1,2,3,†}, Moein Rajaei^{1,4,†}, Ayush S. Saxena¹, Lindsay M. Johnson^{1,5}, Sayran
5 Saber^{1,6}, Robyn E. Tanny^{2,7}, José Miguel Ponciano¹, Erik C. Andersen^{2,7,*}, Juannan Zhou^{1,*}, and
6 Charles F. Baer^{1,8,*}

7

8 ¹*Department of Biology, University of Florida, Gainesville, FL 32611, USA*

9 ²*Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA*

10 ³*Present address: Florida Institute of Technology, Melbourne, FL 32901, USA*

11 ⁴*Present address: Department of Biostatistics, Yale School of Public Health, New Haven, CT
12 06510*

13 ⁵*Present address: Dyne Therapeutics, Waltham, MA 02451, USA*

14 ⁶*Present address: Florida International University, Miami, FL*

15 ⁷*Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA*

16 ⁸*University of Florida Genetics Institute, Gainesville, FL, 32611, USA*

17 [†]*These authors contributed equally*

18

19

20 ^{*}*Corresponding authors: erik.andersen@jhu.edu; juannanzhou@ufl.edu, cbaer@ufl.edu*

22 **Abstract**

23 The distribution of fitness effects (DFE) of new mutations plays a central role in evolutionary
24 biology. Estimates of the DFE from experimental Mutation Accumulation (MA) lines are
25 compromised by the complete linkage disequilibrium (LD) between mutations in different lines.

26 To reduce LD, we constructed two sets of recombinant inbred lines from a cross of two *C.*
27 *elegans* MA lines. One set of lines ("RIAILs") was intercrossed for ten generations prior to ten
28 generations of selfing; the second set of lines ("RILs") omitted the intercrossing. Residual LD in
29 the RIAILs is much less than in the RILs, which affects the inferred DFE when the sets of lines
30 are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILs) infers a
31 large fraction of mutations with positive effects (~40%); models that constrain mutations to have
32 negative effects fit much worse. The conclusion is the same using only the RILs. For the
33 RIAILs, however, models that constrain mutations to have negative effects fit nearly as well as
34 models that allow positive effects. When mutations in high LD are pooled into haplotypes, the
35 inferred DFE becomes increasingly negative-skewed and leptokurtic. We conclude that the
36 conventional wisdom - most mutations have effects near zero, a handful of mutations have
37 effects that are substantially negative and mutations with positive effects are very rare – is likely
38 correct, and that unless it can be shown otherwise, estimates of the DFE that infer a substantial
39 fraction of mutations with positive effects are likely confounded by LD.

40 INTRODUCTION

41 The distribution of fitness effects (DFE) of new mutations is of fundamental importance in
42 numerous areas of evolutionary biology (FISHER 1930; ORR 2000; PECK *et al.* 1997; SCHULTZ
43 and LYNCH 1997; ZHANG *et al.* 2004), as well as having practical applications, including human
44 genetic disease (AGARWAL *et al.* 2023; BOYLE *et al.* 2017; EYRE-WALKER 2010; MORROW and
45 CONNALLON 2013) and cancer (CANNATARO *et al.* 2016; CANNATARO and TOWNSEND 2018;
46 DURRETT *et al.* 2010). The DFE can be estimated from data in two ways: indirectly from
47 patterns of sequence variation within and between species (BOYKO *et al.* 2008; GILBERT *et al.*
48 2021; JAMES *et al.* 2023; JOHRI *et al.* 2020; KEIGHTLEY and EYRE-WALKER 2010; KIM *et al.*
49 2017; KOUSATHANAS and KEIGHTLEY 2013; LOEWE and CHARLESWORTH 2006; TATARU *et al.*
50 2017), or directly from comparisons between genotypes differing by a known (or estimated) set
51 of mutations (BÖNDEL *et al.* 2019; DAVIES *et al.* 1999; KEIGHTLEY 1994; RAMANI *et al.* 2012;
52 SHEN *et al.* 2022; THATCHER *et al.* 1998). Each method has strengths and limitations.
53 Estimation from the standing variation incorporates a vastly larger number of mutations than
54 could ever be assessed experimentally, the effects of very weak selection are detectable (at least
55 in aggregate), and effects are integrated over the entire spectrum of environmental and genomic
56 contexts experienced by the organism in question. However, the method has several important
57 limitations. First, the effects of selection must be jointly estimated with the effects of
58 demography, which are necessarily greatly simplified for analytical tractability (JOHRI *et al.*
59 2020; KEIGHTLEY and EYRE-WALKER 2007; LI *et al.* 2012). Second, there is little information
60 about the tail of the distribution for which selection is strong on an evolutionary timescale but
61 weak over the course of a few generations ($s \approx 1\%$) (KOUSATHANAS and KEIGHTLEY 2013).
62 Third, the method assumes there is a class of mutations that are selectively neutral to serve as a

63 reference; the extent to which that assumption is met is an empirical issue requiring independent
64 validation (KRUGLYAK *et al.* 2023; SHEN *et al.* 2022). Finally, there is no way to connect the
65 DFE back to phenotypic traits.

66 Direct estimation from fitness differences between known genotypes has the advantage of
67 being conceptually unambiguous - if two groups differ by a single mutation and differ in fitness
68 by some amount y , the effect of the mutation is y . Constructing two populations that differ by
69 one or a few mutations is straightforward: known mutations can be introgressed or otherwise
70 engineered (e.g., by CRISPR) into a common genetic background to provide "nearly isogenic
71 lines" (NILs). Recent advances in CRISPR technology have made it possible to engineer large
72 panels of NILs in yeast and other microbes (SHARON *et al.* 2018; SHEN *et al.* 2022). However,
73 constructing enough NILs to provide a meaningful estimate of the DFE remains a daunting
74 proposition in multicellular organisms. Single-gene "knockout panels", in which genes are
75 systematically inactivated and the fitness effects documented, have been tremendously important
76 in informing our understanding of the functional aspects of the genome (e.g., KIM *et al.* 2010;
77 RAMANI *et al.* 2012; THATCHER *et al.* 1998), but knockout mutations constitute only a small part
78 of the mutational spectrum and do not provide an unbiased estimate of the DFE.

79 Mutation accumulation (MA) experiments, in which spontaneous mutations are allowed
80 to accumulate in the (near) absence of natural selection, provide the opportunity to estimate the
81 DFE of a (nearly) unbiased set of mutations (HALLIGAN and KEIGHTLEY 2009; KATJU and
82 BERGTHORSSON 2019). However, within an MA line, all mutations are in complete linkage
83 disequilibrium, which renders individual mutational effects inestimable.

84 Here we employ a classical line-cross strategy with MA lines, to break down the linkage
85 disequilibrium among the accumulated mutations. We then combine whole-genome sequencing

86 with high-throughput competitive fitness assays to estimate the DFE of a set of 169 spontaneous
87 mutations. This strategy was first employed by BÖNDEL *et al.* (2019) with the unicellular green
88 alga *Chlamydomonas reinhardtii*. We crossed two parental *C. elegans* mutation accumulation
89 (MA) lines derived from the same genetically homogeneous ancestor to get F1 hybrids that are
90 segregating at all mutant loci. The F1s were reciprocally crossed, and from the F2s we
91 constructed two sets of recombinant inbred lines (**Supplemental Figure 1**). For the first set, F2s
92 were further crossed prior to inbreeding to construct a set of Recombinant Inbred Advanced
93 Intercross Lines (RIAILs). For the second set, we omitted the intercrossing step and proceeded
94 directly to the inbreeding step; these lines are classical RILs. We refer to the full set of lines as
95 RI(AI)Ls for brevity. RI(AI)Ls were assayed for competitive fitness against a marked
96 competitor strain nearly isogenic for the ancestral genome, and multilocus genotypes inferred by
97 whole-genome sequencing at low (2-3X) coverage. The strategy is conceptually analogous to
98 QTL analysis, except the variant loci are not simply markers, but rather are the QTL themselves.
99

100 **METHODS**

101 *1. Experimental Methods*

102 *1.1 Mutation Accumulation (MA) lines.*

103 The details of the MA experiment have been reported elsewhere (BAER *et al.* 2005). Briefly, 100
104 replicate lines were initiated from a single, highly inbred N2 strain hermaphrodite, and
105 propagated under standard laboratory conditions for a maximum of 250 generations by transfer
106 of a single immature hermaphrodite at four-day intervals. Under this protocol the effective
107 population size, $N_e \approx 1$, and all but the most highly deleterious mutations are effectively neutral.

108 The progenitor (G0) was cryopreserved at the outset of the experiment, and surviving MA lines
109 were cryopreserved upon culmination of the MA phase.

110 *1.2 Recombinant Inbred (Advanced Intercross) Lines.*

111 Two MA lines (MA530, n=76 mutations and MA563, n=93 mutations) were chosen as parents
112 for a set of recombinant inbred advance intercross lines (RIAILs) or simple recombinant inbred
113 lines (RILs). The parental lines were chosen on the basis of their near-average decline in lifetime
114 reproductive success (~20%) over four assays after 200 and 220 generations of MA at two
115 different assay temperatures (20° and 25° (BAER *et al.* 2006). The original plan was to construct
116 a set of 600 RIAILs, with ten generations of intercrossing followed by ten generations of selfing,
117 using the "random pair mating with equal contributions of each parent" design of ROCKMAN and
118 KRUGLYAK (2008; see their Figure 1). However, many crosses failed during the intercrossing
119 phase, so we abandoned the intercrossing and completed the set of lines with RILs. The final set
120 of 517 genotyped lines includes 192 RIAILs and 325 RILs. Details of the crossing schemes are
121 given in **Section I of the Supplemental Material.**

122 *1.3 Competitive fitness assays.*

123 To assay competitive fitness, an L1-stage focal strain worm and an L1 GFP-marked competitor
124 (strain VP604) were placed together on a plate seeded with bacterial food and allowed to
125 reproduce. Upon exhaustion of the bacterial food, worms were washed from the plate and
126 counted using a Union Biometrica BioSorter™. The natural logarithm of the ratio of the
127 frequencies of the two types, $W=\log[(p/1-p)]$, is proportional to the difference in fitness between
128 the focal strain (frequency = p) and the competitor strain (frequency = $1-p$) (LATTER and SVED
129 1994). The assay is described in detail in Appendix 1 of YEH *et al.* (2018) and summarized in
130 **Section II of the Supplemental Material.**

131 *1.4 Genome sequencing, variant calling, and genotyping.*
132 RI(AI)L genomes were sequenced at low (~2-3X) coverage with 150-bp paired-end Illumina
133 sequencing, using standard methods. Details of sequencing and variant calling are given in
134 **Section III of the Supplemental Material.** Raw sequence data (fastq) of the RI(AI)Ls have
135 been deposited in the NCBI SRA under project number PRJNA1083210. Genome sequences for
136 the G0 progenitor and the parent MA lines have been previously reported (RAJAEI *et al.* 2021;
137 SAXENA *et al.* 2019).

138 *1.5. Imputation.* Given the low (2-3X) sequencing coverage, approximately 1/3 of the data
139 (35.2%) are missing, i.e., the genotype at a given locus was not called as either homozygote.
140 The mean number of loci successfully genotyped per RI(AI)L is 109, and the mean number of
141 RI(AI)Ls for which a locus was scored is 335. To account for the missing genotype information,
142 we constructed a computational procedure to impute the missing data by leveraging linkage
143 disequilibrium (LD; see next section) between segregating sites. Specifically, we used the
144 masked language modeling approach from natural language processing to build a predictive
145 model for the missing alleles. The imputation model is built on the transformer architecture,
146 which has been widely used for modeling natural languages as well as biological sequences such
147 as DNAs and proteins (JI *et al.* 2021; RIVES *et al.* 2021). The model output consists of the
148 predicted log-probability for all possible states per site, i.e., the MA530 or MA563 allele. The
149 details of the model are given in **Section IV of the Supplemental Material.**

150 To assess the model's performance, we performed 100 rounds of validation. For each
151 round, all RI(AI)L genotypes were used for training, but with one percent of the called alleles
152 randomly masked. Across the 100 rounds, we observed a high imputation accuracy on the
153 masked positions: mean \pm 1 SD prediction accuracy = $90.3 \pm 1.5\%$. Cases in which the imputed

154 allele differs from the called allele include errors in the initial call, so 90% is a conservative
155 estimate of the true prediction accuracy. The final imputed genotypes (**Supplemental Table 1**)
156 were generated by retraining the model on all RI(AI)L genotypes using all available allele
157 information.

158 *1.6. Linkage Disequilibrium (LD)*

159 Alleles from the two parents, MA530 and MA563, are initially in complete coupling (positive)
160 linkage disequilibrium in the F1. However, mutant alleles occur in both parental genomes, so
161 although the initial LD between pairs of mutant alleles is complete, the sign of the association
162 (positive or negative) depends on which parental genomes the mutations occurred. Measures of
163 LD that do not account for the sign of the association are agnostic with respect to whether alleles
164 are coded by the parent of origin or as ancestral (0) vs. mutant (1); the value is the same either
165 way. Measures of LD that do account for the sign of the association may differ by sign
166 depending on if the alleles are coded by parent of origin vs. ancestral vs. mutant. For our
167 purposes, it is more meaningful to code alleles as ancestral or mutant.

168 The pairwise coefficient of linkage disequilibrium, $D = p_{AIBI} - p_A p_B$ where p_{AIBI} is the
169 frequency of the double-mutant ($AIBI$) haplotype at the A and B loci, p_A is the frequency of the
170 mutant allele at the A locus and p_B is the frequency of the mutant allele at the B locus. The
171 expected allele frequency in the RI(AI)Ls is 0.5 at all segregating loci, but the observed
172 frequencies will vary due to sampling. We report two measures of LD, the squared coefficient of
173 correlation, r^2 , and $D^* = D / |D_{max}|$, where $|D_{max}| = \min[p_A(1-p_B), (1-p_A)p_B]$; r^2 is constrained
174 non-negative and D^* can take on values [-1,1]. Note that our D^* is the familiar D' but with the
175 sign retained. We calculated r^2 and D^* among all pairs of the 169 loci using the PLINK v1.9
176 commands ‘--r2’ and ‘--r dprime-signed’ respectively (PURCELL *et al.* 2007). We also report the

177 mean pairwise intra-chromosomal and inter-chromosomal LD for (1) all lines ($n = 517$), (2) RILs
178 only ($n = 325$), and (3) RIAILs only ($n = 192$). To visualize intra-chromosomal pairwise LD we
179 used the ggplot2 package v3.4.4 for R Statistical Software v4.2.3 (WICKHAM 2009).

180 *1.7. Heritability.* We estimated the broad-sense heritability (H^2) of W from the among-line (i.e.,
181 among-RI(AI)L) component of variance estimated from the general linear model (GLM) $y_{ijk} = \mu$
182 $+ \alpha_i + \beta_{ij} + \varepsilon_{ijk}$, where y_{ijk} is the value of W , μ is the overall mean, α_i is the random effect of
183 Block i , β_{ij} is the random effect of Line j in Block i , and ε_{ijk} is the residual effect of Replicate k of
184 Line j in Block i . Because the RI(AI)Ls are homozygous lines derived from a cross of
185 homozygous parents, $V_G = V_L$, where V_L is the among-line component of variance (FALCONER
186 1989, Ch. 15) and the broad-sense heritability $H^2 = V_G/V_P$, where V_P is the total phenotypic
187 variance. Variance components were estimated by restricted maximum likelihood (REML), as
188 implemented in the MIXED procedure of SAS v. 9.4. 95% Confidence intervals of H^2 were
189 determined empirically from 200 bootstrap replicates, resampling lines pooled over blocks while
190 retaining the effect of Block in the analysis.

191 To account for the possibility that some of the among-line variance was due to factors
192 other than genotype, we included a set of six "pseudolines" of the G0 ancestor and of each
193 parental MA line in each assay block, which are the experimental equivalent of RILs except they
194 are genetically homogeneous, and any among-(pseudo)line variance must be due to causes other
195 than variation among genes. Pseudolines were analyzed identically to the RI(AI)Ls.

196 We next estimated the proportion of the total broad-sense heritability not explained by
197 the cumulative additive effects of the mutations, H^2* (here "additive" formally means
198 "homozygous non-epistatic", because we have no information about dominance). First, we
199 calculated the multiple regression $y_{ijk} = \mu + \beta\mathbf{x} + \varepsilon$, where y_{ijk} is the value of W as before, μ is the

200 overall mean, \mathbf{x} is the vector of genotypes at mutant loci 1-169, $\boldsymbol{\beta}$ is the vector of regression
201 coefficients, and ε is the residual effect. We then re-estimated the linear model from above, y^*_{ijk}
202 $= \mu + \alpha_i + \beta_{ij} + \varepsilon_{ijk}$, where the terms are as before, where the y^*_{ijk} are the residuals of the multiple
203 regression of W on the multilocus genotype, \mathbf{x} . The difference $H^2 - H^{2*}$ is the narrow-sense
204 heritability h^2 , i.e., the fraction of the total phenotypic variance explained by the additive effects
205 of the mutations. Statistical significance of h^2 was assessed by randomly permuting estimates of
206 W among replicates and re-calculating h^2 .

207

208 2. *Estimation of the DFE*

209 2.1. *Raw Difference*. The simplest way to measure the phenotypic effect of a mutation at locus i
210 is from the average difference in the trait between lines that have the mutant allele and lines that
211 have the ancestral allele at locus i . Following BÖNDEL *et al.* (2019) we refer to the mutational
212 effects calculated in this way as the raw difference, u_{RAW} . Confidence intervals and approximate
213 standard errors of u_{RAW} were calculated from 1000 bootstrap replicates, holding the number of
214 lines in each category (mutant, wild-type) constant in each (re)sample.

215 2.2. *Bayesian MCMC*. We take a fully Bayesian approach to estimate the posterior distribution
216 of all genetic and non-genetic parameters. The basic model is the same as in section 1.7 above,
217 such that the observed fitness of replicate k of line j in block i is: $y_{ijk} = \mu + \alpha_i + \boldsymbol{\beta}^T \mathbf{x}_j + \varepsilon_{ijk}$. The
218 vector $\boldsymbol{\beta}$ contains the effects for the 169 mutations. We fit a series of models with increasing
219 complexity in the prior distribution of $\boldsymbol{\beta}$, to test different hypotheses regarding the DFE of the
220 mutations. In all models, the grand mean, μ , follows an uninformative normal distribution with
221 mean zero and SD = 10. The individual block effects follow normal distributions with mean 0

222 and $SD = 1$, given the small variation in block effects when averaged over lines ($SD = 0.13$). The
223 models tested are summarized in **Table 1**.

224 To begin, in model 1 (“neutral model”) mutational effects are constrained to 0, i.e., $\beta = 0$.

225 In model 2 (“uniform effect model”), all mutations in the vector β have a constant effect (u),
226 such that $y_{ijk} = \mu + \alpha_i + m_j \times u + \varepsilon_{ijk}$, where m_j is the number of mutant alleles in line j .

227 Model 3 (“neutral + uniform effect model”) assumes that mutations in vector β follow identical
228 independent distributions such that the m -th mutation, β_m , has a probability $1 - q$ of being
229 neutral, and q of having a nonzero constant effect u , such that $\beta_m = w \times u$, where w is sampled
230 from a Bernoulli distribution with parameter q , which in turn is drawn from an uninformative
231 Beta prior with shape parameter = 2. In both the uniform effect model and the neutral + uniform
232 effect model, the constant mutational effect u follows a normal prior with mean 0 and $SD = 10$.

233 Model 4 (neutral + uniform positive effect + uniform negative effect, “3-effect model”) in
234 addition assumes that mutations can take both constant positive or negative effects, such that β_m
235 $= w \times (z \times u^+ - (1 - z) \times u^-)$. Similarly, w is a Bernoulli random variable with the probability q ,
236 equal to the probability that a mutation is non-neutral, which follows the same distribution as
237 model 3. The parameter z controls the conditional probability of a nonneutral mutation having
238 the positive effect, and is a Bernoulli random variable with probability p^+ , which follows an
239 uninformative Beta distribution with shape parameters = 2. The constant positive/negative effects
240 u_{pos}/u_{neg} follow an uninformative normal distribution with mean 0 and $SD = 10$.

241 In addition to these constant-effects models, we tested three models in which mutational
242 effects are sampled from a continuous Gamma distribution. In model 5 (“negative gamma”), all
243 mutations are assumed to have negative (i.e., deleterious) effects, with effect sizes sampled
244 identically and independently from a Gamma distribution, whose shape and rate parameters

245 follow uninformative half normal distributions ($SD = 10$). In model 6 (“symmetric gamma”) and
246 model 7 (“asymmetric gamma”), mutations can have either positive or negative effects, such that
247 we can express individual mutation effects as $\beta_m = z \times \beta_m^+ - (1 - z) \times \beta_m^-$. Similar to model 4, z
248 is a Bernoulli random variable with probability p^+ , which follows a symmetric Beta distribution.
249 The positive (negative) effect sizes, β_m^+ (β_m^-) are in turn sampled from their respective Gamma
250 distributions, as in Model 5. The only difference between model 6 and 7 is that in model 6, β_m^+
251 and β_m^- follow the same Gamma distribution, whereas in model 7, the Gamma distributions for
252 the positive and negative effect sizes are allowed to be different.

253 Bayesian inference for all models was implemented in the statistical software PyMC3
254 v5.10 (SALVATIER *et al.* 2016). The No-U-Turn-Sampler was employed to acquire posterior
255 samples. Continuous random variables were sampled using the Hamiltonian Monte Carlo
256 method which relies on gradients calculated using automatic differentiation, whereas discrete
257 random variable were sampled using the Metropolis algorithm. To account for the uncertainty in
258 the genotypes due to missing alleles, for each model we performed 50 independent Monte Carlo
259 runs, each with missing alleles sampled from independent Bernoulli distributions with
260 probability predicted by the trained imputation model. For each model and genotype replicate,
261 we ran 4 parallel Monte Carlo chains, each with 1000 warm up steps and 4000 sampling steps.
262 We used the R-hat statistic (VEHTARI *et al.* 2021) as a diagnostic of model divergence, which
263 compares the parameter estimates between and within chains. R-hat is greater than 1 if the chains
264 are not well mixed, such that the between and within-chain sample distributions disagree.

265 We used a Bayesian model selection procedure to identify the best model. Specifically,
266 for each model we estimated the leave-one-out expected log pointwise predictive density (ELPD
267 LOO) model fit, equal to the mean expected log likelihood of the observed fitness of a random

268 individual given its genotype, calculated based on a model fitted using the full data set minus the
269 focal individual. The procedure is implemented in PyMC3 based on the approximate method
270 introduced by VEHTARI *et al.* (2017) The ELPD LOO scores for all 50 genotype replicates were
271 averaged to provide an overall goodness-of-fit score for each model.

272

273 **RESULTS:**

274 *Linkage Disequilibrium*

275 The purpose of constructing RI(AI)Ls is to break up the linkage disequilibrium between
276 mutations, to permit estimation of the effects of individual mutations. That effort was only
277 partially, and variably, successful. Averaged over all lines (RILs + RIAILs), intrachromosomal
278 LD as measured by median r^2 is 0.12 (**Figure 1**; **Supplemental Figure 2**). However, LD is
279 much higher in the RILs (median $r^2 = 0.28$) than in the RIAILs (median $r^2 = 0.045$). Ten
280 generations of advanced intercrossing was effective in breaking up LD, on average, but regions
281 of near-complete LD remain even in the RIAILs. Inspection of **Figure 1** reveals that regions of
282 high LD are concentrated in the chromosome centers, as expected given the reduced rate of
283 crossing over in centers relative to arms, although there are also regions of high LD in
284 chromosome arms where mutations are tightly clustered. Interchromosomal LD is near 0 in both
285 RILs and RIAILs (**Supplemental Figure 3**), indicating a trivial role for sampling variance in
286 maintaining LD.

287 *Heritability*

288 Our goal is to estimate the effects of spontaneous mutations on fitness. To begin, we ask: is
289 there heritable variation in competitive fitness among the RI(AI)Ls? The broad-sense heritability
290 of W including all RI(AI)Ls, $H^2=0.30$ (bootstrap 95% CI=0.271, 0.370). Estimates of H^2 were

291 similar for RIAILs ($H^2=0.337$; bootstrap 95% CI=0.256, 0.403) and RILs ($H^2=0.313$; bootstrap
292 95% CI=0.243, 0.382). Including all RI(AI)Ls, narrow-sense heritability, estimated from the
293 residuals of the multiple regression of W on multilocus genotype, $h^2 = 0.16$ (permutation test,
294 $P<0.001$; averaged over 1000 permutations of the data, random $h^2 = 0.023$, max=0.048). The
295 cumulative additive effects of the 169 segregating spontaneous mutations explain approximately
296 half of the total heritable variance in W . By way of comparison, H^2 for competitive fitness from
297 a set of 28 *C. elegans* wild isolates was 0.49, although the assays in the two studies are not
298 directly comparable (TEOTÓNIO *et al.* 2006).

299 Considering RIAILs and RILs separately, h^2 of the RILs is similar to the estimate from
300 the full dataset ($h^2 = 0.20$, $n=325$), whereas the same analysis for RIAILs gives a REML point
301 estimate of residual $V_L=0$. Taken at face value, these results imply that additive mutational
302 effects completely explain H^2 (i.e., $h^2 = H^2$) in the RIAILs, whereas the additive effects only
303 explain about two-thirds of the among-line variance in the RILs. To investigate the possibility
304 that LD could explain the unexplained among-line variance in the RILs, we used parametric
305 bootstrap simulations, as follows. For each RIL we (i) assigned each mutation in its genome a
306 fitness effect drawn from a given DFE with mean effect equal to the observed mean, (ii) summed
307 the effects across loci, and (iii) added to each replicate a residual (= microenvironmental) fitness
308 effect drawn from a normal distribution. We then estimated H^2 and h^2 from the simulated data as
309 described above. In the first set of simulations ($n=100$), we maintained the observed LD
310 structure; in the second set of simulations we permuted alleles (mutant or ancestral) among loci
311 in each RIL to break up the LD. We tested two different DFEs. The first DFE is the
312 ‘asymmetric Gamma model’ described in Methods, where mutations can have positive or
313 negative effects, with the magnitude of the positive/negative effect drawn from two non-identical

314 Gamma distributions. The second DFE is the ‘negative gamma’ model, where mutations can
315 only have negative effects and are drawn from a single Gamma distribution. We sampled effects
316 of mutations from these two DFEs using the posterior mean model parameters (Supplemental
317 Table 2). Residual fitness effects were sampled from zero-mean normal distributions with
318 variance equal to the posterior means of the noise variance inferred jointly with model
319 parameters for the two DFEs ($\sigma^2 \approx 1$). For both DFEs, LD had no effect on the inferred h^2 ; in
320 each case $h^2 = H^2$ in 100% of the simulations, as expected because the mutations were the only
321 source of among-line variance in the simulations.

322 Having ruled out differences in LD as the cause of missing heritability in the RILs if
323 mutational effects are strictly additive, the remaining unexplained heritability in the RILs must
324 be due to some combination of epistasis, transgenerational epigenetic inheritance (TEI), and/or
325 residual (but small) genotype-environment correlations. It is not obvious at first glance why the
326 same set of epistatic mutations would lead to missing heritability in the RILs but not in the
327 RIAILs. However, the number of RIAILs (n=192) is only slightly greater than the number of
328 loci (n=169), so it is plausible that there simply is little power to detect residual among-line
329 variance once the additive effects of the mutations are accounted for. When h^2 is estimated for
330 the full set of RI(AI)Ls with the additive effects regressed separately for each block, the residual
331 heritability disappears; that result reinforces the likelihood that the absence of missing
332 heritability in the RIAILs is simply due to lack of power rather than an actual absence of non-
333 additive among-line variance. We elaborate on this possibility in Section V of the Supplemental
334 Material.

335 To account for potential non-genetic variation that is nevertheless heritable over a few
336 generations, we estimated variance components among sets of "pseudolines" of the G0 ancestor

337 of the parental lines, and of the MA530 and MA563 parental lines. These controls are not
338 powerful (n=30 pseudolines, 6 per block), but in all three cases the REML estimate of the
339 among-pseudoline component of variance, $V_L = 0$.

340 *Relationship between number of mutations and mean fitness*

341 If all mutational effects are equal and in the same direction (i.e., the Bateman-Mukai criteria
342 (MUKAI 1964)), the slope of the regression of W on the number of mutant alleles carried by a line
343 will equal the average effect of a mutation. Averaged over all RI(AI)Ls, accounting for variation
344 among assay blocks and removing two outlying lines, the regression of W on number of
345 mutations is not significantly different from 0 (slope = -0.0051, $F_{1,509}=1.83$, $P>0.17$), although
346 the trend suggests that mutations are deleterious, on average.

347 *Relationship between mutational effect and mutant allele frequency*

348 The expected frequency of segregating neutral alleles in the RI(AI)Ls is 0.5. Selection was
349 minimally effective in the crossing and inbreeding phases ($N_e \approx 2$), but it was not absent. If most
350 mutations are deleterious and if deleterious alleles were preferentially removed by selection, then
351 (i) the average frequency of mutant alleles will be < 0.5 , and (ii), there should be a negative
352 relationship between allele frequency and mutational effect size. The mean observed mutant
353 allele frequency is 0.500 (range = 0.287-0.675). The correlation between mutant allele
354 frequency p_i at the i th locus and the raw difference $u_{RAW,i}$, $r_{pu}=0.15$ (**Supplemental Figure 4**).
355 Thus, we infer that selection did not systematically skew mutant allele frequencies away from
356 the expected neutral frequency.

357 *The Bayesian posterior DFE.*

358 To infer the DFE, we tested a series of seven increasingly complex models, using the Bayesian
359 MCMC analysis outlined in the Methods. Because of the discrepancy in average LD between

360 the RIAILs and the RILs, all analyses were first done on the full set of RI(AI)Ls, and repeated on
361 RIAILs and RILs separately.

362 As a first step, we tested for model convergence, using the R-hat statistic. We observed
363 no divergence between the four parallel Markov chains, indicated by $\text{R-hat} < 1$ in all cases
364 (VEHTARI *et al.* 2021). Model performance, as measured by the Bayesian leave-one-out
365 expected log pointwise predictive density (LOO-ELPD, VEHTARI *et al.* 2021) averaged across 50
366 genotype replicates, is summarized in **Table 1**. Posterior means and 95% credible intervals of
367 model parameters are given in **Supplemental Table 2**.

368 (i) *All lines (RILs + RIAILs = RI(AI)Ls)*. Reassuringly, the **neutral** model, in which mutational
369 effects are constrained to equal 0, performs worst. The **uniform** effect model, in which
370 mutational effects are constrained to be equal, is moderately better ($\Delta\text{fit} = 23.0$). The posterior
371 mean for the shared mutational effect (u) is negative and has a 95% credible interval not
372 intersecting zero ($u = -0.006$; CI = -0.009, -0.005).

373 The **neutral + uniform effect model**, in which mutations can either have a uniform non-
374 zero effect with probability q or be neutral with probability $1 - q$, performed significantly better
375 ($\Delta\text{fit} = 50.0$). Again, the mean mutational effect is inferred to be negative ($u = -0.16$, 95% CI = -
376 0.24, -0.10), but with low probability ($q = 0.064$, 95% CI = 0.026, 0.114). The **negative**
377 **Gamma** model, in which effects are constrained to be negative and sampled from a Gamma
378 distribution, fits equally well as the neutral + fixed effect model ($u = -0.007$, $\Delta\text{fit} = 0.0$).

379 All models summarized so far assume mutations must have a uniform sign. The first
380 model relaxing this assumption is the **3-effect model**, in which a mutation can be neutral with
381 probability $1 - q$, or have a fixed positive/negative effect with probabilities q^+ and q^- (in our
382 Bayesian model parametrization, $q^+ = q \times p^+$, $q^- = q \times (1 - p^+)$, where p^+ is the probability that a

383 mutation has a positive effect, given that it is non-neutral). This model showed a significant
384 improvement in performance ($\Delta\text{fit} = 19.1$).

385 Finally, the two-sided Gamma models (**symmetric** and **asymmetric Gamma**) provide a
386 moderate improvement over the 3-effect model. The two models have LOO-ELPD scores that
387 are nearly indistinguishable (symmetric gamma model = -3402, asymmetric gamma model = -
388 3402.3), indicating that the additional flexibility conferred by the asymmetric gamma model does
389 not confer higher generalizability to new data. For the asymmetric gamma model, the alpha
390 (scale) and beta (rate, inverse of the scale parameter) parameters for the positive and negative
391 halves of the distribution have nearly identical posterior distributions (**Supplemental Table 2**).
392 Additionally, the two-sided gamma models show very similar posterior distributions for all
393 parameters. We therefore focus our discussion on the more parsimonious symmetric gamma
394 model.

395 On average, mutations are slightly less likely to have a positive effect ($p^+ = 0.426$; 95%
396 CI = 0.294, 0.547). The posterior distribution of the effects of all 169 mutations shows that
397 39.6% of all mutations have a positive posterior mean effect (**Figure 2A**), consistent with the
398 posterior probabilities $p^+/-$. However, individual mutations exhibit large credible intervals that
399 intersect zero (**Figure 3A**). The distribution of negative mean effects shows a longer tail than
400 the positive effects, but this asymmetry in shape was not reflected in the model selection results,
401 where the symmetric and asymmetric Gamma models have virtually identical performance. This
402 is likely a power issue, whereby the increased flexibility of the asymmetric Gamma model was
403 not supported by enough data to result in likelihood improvements that can offset the penalty
404 resulting from the higher model complexity.

405 (ii) *RILs*. The model selection results for the RILs are largely consistent with results based on the
406 full set of RI(AI)Ls. The neutral and the fixed effect models have the lowest LOO-ELPD (**Table**
407 **1**). The two negative effects models have similar LOO-ELPD values and show significant
408 improvement over the first two models. Finally, we see that the three two-sided models provide
409 further substantial improvement over the one-sided model. The two-sided Gamma models
410 produced very similar LOO-ELPD scores, while the 3-effect model has a moderately lower
411 value. The distribution of mean mutational effects under the symmetric Gamma model are
412 similar to results generated from the full set of RI(AI)Ls (Pearson's $r = 0.56$; **Figure 2B**).

413 (iii) *RIAILs*. Model selection results for the RIAILs reveal a different pattern. Although the
414 neutral and fixed effect models still perform worst, performance of the models in which effects
415 are constrained to be non-positive (in particular the negative Gamma model) is now close to that
416 of the two-sided models (**Table 1**). The similarity between the two-sided models and the
417 negative-only model is supported by the change in the shape of the two-sided gamma models, in
418 which the frequency of mutations with positive effects is lower ($q+ = 0.355$; 95% CI 0.119,
419 0.595). Inference from RIAILs resulted in an overall reduction in the mean posterior effects of
420 mutations, such that the effects of most mutations are shrunk towards zero (**Figure 2C**).
421 Additionally, the posterior variance of the mutational effects is lower in the RIAILs (mean
422 posterior SD of mutational effects is 0.040, compared with 0.056 in the full set of RI(AI)Ls)
423 (**Figure 3C**), even with the lower sample size. The mutational effects for the RIAILs are more
424 weakly correlated to those inferred from the full set of RI(AI)Ls (Pearson's $r = 0.36$) than are the
425 effects inferred from the RILs.

426 (iv) *Locus-specific effects*. The simplest way to infer the mutational effect at a locus is to
427 calculate the mean value of all lines with a mutant allele and all lines with an ancestral allele at

428 that locus; the difference is the raw difference (u_{RAW}) of the mutation at that locus. As a sanity
429 check, we plotted the inferred Bayesian posterior effect against the raw difference; ideally, the
430 correlation should be +1. The correlations were positive, but well below 1 in all three cases
431 (**Figure 4**). The magnitude of the raw difference is typically much larger than that of the
432 posterior effects. The difference is likely caused by LD, in that the raw difference of a single
433 mutation contains contributions from other linked mutations, which may inflate the estimates.

434 *Effects of mutant haplotypes*

435 A major challenge is that many mutations are in high LD, making the effects of individual
436 mutations nearly unidentifiable (for example, if two mutations with effects, u_1 and u_2 are in
437 complete LD, we only have observations for the sum of their effect $u_1 + u_2$, making it impossible
438 to estimate u_1 and u_2 separately). To proceed, we first identified haplotype blocks consisting of
439 groups of loci in which LD among all pairs of consecutive loci $r^2 > 0.8$. We then designated two
440 haplotypes for each haplotype block. Among loci in a haplotype block, two types of haplotype
441 assignment can occur. Consider a haplotype block with two loci, each with an ancestral and a
442 mutant allele (coded 0 and 1). If the two loci are in positive LD, we have an ancestral haplotype
443 (00) and a double-mutant haplotype (11). If the two loci are in negative LD, we have two single-
444 mutant haplotypes, 01 and 10. Treating the data as haplotypes rather than individual loci reduces
445 the sample size from 169 (the number of loci) to 114 (the number of haplotypes). We restricted
446 this analysis to the symmetric Gamma model.

447 We acquired the posterior sample of a mutant haplotype by summing the posterior
448 samples of the individual mutations at each locus in the haplotype. We repeated this procedure
449 for the RILs, RIAILs and the full set of RI(AI)Ls. In all three cases, the distribution of the mean
450 mutant haplotype effects is skewed to the left (**Figure 5**). The percentage of mutant haplotypes

451 with negative posterior means is 61.4% in the full set of RI(AI)Ls, 64.0% in the RILs, and 67.5%
452 in the RIAILs. Again, inference from the RIAILs results in an overall reduction in the mean and
453 variance of posterior effects of mutant haplotypes, relative to inferences from RILs and the full
454 set of RI(AI)Ls. The mean absolute posterior mean effect for the negative mutant haplotypes
455 based on RIAILs only ($u^- = -0.022$) is twice that of the positive mutant haplotypes ($u^+ = 0.011$).

456 Finally, the lower LD in the RIAILs allowed us to identify a mutant haplotype with a
457 strong negative effect located in a 6.05 Mb region between positions 3771123 and 9819058 on
458 chromosome III (**Figure 6**). This haplotype contains 13 mutations, including 11 SNPs and 2
459 indels. The two mutant haplotypes are 1000111001100 for MA530, and 0111000110011 for
460 MA563. The MA563 mutant haplotype has a large negative effect ($u = -0.760$; 95% CI -1.09, -
461 0.149), whereas the MA530 mutant haplotype shows a moderately strong positive mean effect (u
462 = 0.118; 95% CI -0.134, 0.647). However, their effects are strongly negatively correlated in the
463 posterior samples, i.e., if an estimated effect at the MA530 haplotype is large and negative, the
464 corresponding estimate at the MA563 haplotype is large and positive. The most we can say with
465 confidence is that the cumulative effect of mutations in this region is to reduce W by about 0.64
466 relative to the ancestor, which is sufficient to explain the decrease in fitness of MA563 relative to
467 the ancestor (**Supplemental Figure 5**).

468 The full list of mutations, along with parent of origin and their inferred effects, are
469 presented in **Supplemental Table 3**; fitness data are presented in **Supplemental Table 4**.

470

471 **DISCUSSION**

472 Unsurprisingly, mutations are deleterious, on average. Coincidentally or not, the point estimate
473 of the mean average raw difference in competitive fitness in the RI(AI)Ls, -0.0039, is extremely

474 similar to the same estimate from the full set of 80 MA lines of which the two parental lines were
475 drawn. Assuming that a random pair of MA lines differs by 160 mutations, the average
476 mutational effect estimated from the data of YEH *et al.* (2018, Table 1) is -0.0040. Given the
477 substantial sources of variation in these experiments, the concordance is remarkable. In a similar
478 vein, YEH et al. estimated the mutational heritability from the same data, $h_M^2 = V_L/2t =$
479 0.00084/generation of MA. Summed over the approximately 250 generations of MA, we predict
480 a broad-sense heritability $H^2 \approx 0.2$, about 2/3 of the observed value in this study. Or differently
481 put, our estimate of H^2 implies a mutational heritability $h_M^2 \approx 0.0012$. Given that both measures
482 of heritability are ratios of variances, the observed values are quite consistent.

483 Perhaps more surprising is the relatively high narrow-sense heritability of the mutational
484 effects ($h^2=0.16$), which explain roughly half of the heritable variance in fitness. There are no
485 comparable competitive fitness data from wild isolates, but ZHANG *et al.* (2021) estimated H^2
486 and h^2 for lifetime fecundity on solid media for a set of 121 *C. elegans* wild isolates. In their
487 assay h^2 (0.20) was about 1/3 of H^2 (0.63). In contrast to our RI(AI)Ls, which differ by about 85
488 mutations on average, the wild isolates differ by thousands of segregating variants. Comparison
489 of heritabilities is problematic because the upper bound is 1, which means that h^2 necessarily
490 reaches an asymptotic value. However, if we assume that the contribution of non-heritable
491 effects (V_E) is similar in the two studies – and we would naively expect that V_E is greater in a
492 competitive fitness assay than in a non-competitive assay because the competitor contributes to
493 V_E – the implication is that the asymptote is reached after at most a few hundred generations of
494 mutations have accumulated in the population.

495 The inclusion of both RILs and RIAILs in the experiment is fortuitous. If we only had
496 RILs to work with, we would have been much more confident in concluding that a large

497 proportion of mutations have positive effects. Ten generations of intercrossing in the RIAILS
498 broke up most of the initial LD, but not all of it, and it is clear that at least some of the apparently
499 greater fraction of positive-effect mutations in the RILs can be attributed to the confounding
500 effect of negative-effect mutations in LD. Inspection of the DFE along the chromosome (**Figure**
501 **3**) reveals a negative spatial autocorrelation: mutations inferred to have large positive effects are
502 usually in close proximity to one or more mutations with large negative effects.

503 This study was motivated by three antecedents: the studies of BÖNDEL *et al.* (2019), who
504 used a related crossing design to estimate the DFE from spontaneous MA lines in the unicellular
505 green alga *Chlamydomonas reinhardtii*; of GILBERT *et al.* (2021), who estimated the *C. elegans*
506 DFE from the standing site frequency spectrum among wild isolates; and those of VASSILIEVA *et*
507 *al.* (2000) and KEIGHTLEY *et al.* (2000), who estimated the DFE from the distribution of (non-
508 competitive) fitnesses among *C. elegans* MA lines. We consider each in turn.

509 BÖNDEL *et al.*'s crossing design differed from ours in a key way: they backcrossed MA
510 lines to the common ancestor rather than crossing two MA lines. Their design results in all
511 mutations being initially in complete coupling (positive) LD, rather than a random mix of
512 coupling and repulsion LD, as in our design. Nevertheless, their design is still constrained to
513 infer the cumulative effects of mutations in LD. They did not report LD, nor did they report the
514 distribution of mutational effects along the chromosomes (except as raw data). They too
515 observed a high proportion of mutations with positive effects on fitness; in their best-fit model
516 (two-sided Gamma with different means for positive and negative DFEs), the DFE was highly
517 leptokurtic, with posterior mean frequency of positive effects, q^+ , of 84%. However, the
518 estimated mean (absolute) effect of deleterious mutations, u^- , was 4-5 times greater than the
519 mean positive effect, which reconciles the high frequency of mutations with positive effects with

520 the consistent and well-supported overall decline in fitness of the MA lines. They too observed a
521 strong positive correlation between the inferred posterior mean mutational effect at a locus and
522 the raw difference, and that the Bayesian posterior DFE was shrunk toward zero compared to the
523 raw difference.

524 GILBERT *et al.* used maximum likelihood, as implemented in the DFE-alpha software
525 (KEIGHTLEY and EYRE-WALKER 2007), to infer the DFE from segregating SNP variation in a set
526 of ~300 *C. elegans* wild isolates. They also analyzed data simulated under realistic parameters
527 of mutation and recombination to investigate the effect of self-fertilization on the inferred DFE.
528 They found that, while DFE-alpha reprises the input DFE quite faithfully when mating is
529 random, self-fertilization biases the results toward mutations of small negative effect, evidently
530 due to the slower decay of LD under selfing. Inclusion of a small fraction (0.1%) of beneficial
531 mutations similarly biases the inferred DFE of deleterious mutations toward small effects.

532 *C. elegans* MA lines invariably decline in fitness, and early studies concluded that the
533 mean deleterious mutational effect is quite large (~10-25 %) (ESTES *et al.* 2004; KEIGHTLEY and
534 CABALLERO 1997; VASSILIEVA *et al.* 2000), although none of those studies investigated
535 competitive fitness. The point estimate of the mean deleterious mutational effect from our
536 neutral + uniform effect model (Model 3) in the full set of RI(AI)Ls is -0.16 and the inferred
537 fraction of deleterious mutations (0.064) translates to a per-genome, per-generation deleterious
538 mutation rate of $U \approx 0.02$, very consistent with the aforementioned studies. Coincidentally or
539 not, our inference from RIAIL haplotypes that the *C. elegans* DFE consists of a very large
540 proportion of mutations with near-zero effects interspersed with a small number of mutations
541 with large negative effects is very similar to the conclusion of KEIGHTLEY *et al.* (2000), who

542 reached that conclusion from the distribution of fitnesses among *C. elegans* MA lines that had
543 been subjected to EMS mutagenesis.

544 Conclusions – Two primary conclusions emerge from this work. First, mathematics is no
545 substitute for recombination where inference of the DFE is concerned. When mutations are in
546 strong LD – repulsion or coupling – different combinations of positive and negative effects can
547 result in the same cumulative effect, possibly leading to the mistaken inference that the DFE
548 includes a large fraction of mutations with positive effects. However, posterior estimates at
549 linked loci will be strongly negatively correlated, which will not be true of unlinked loci. That
550 conclusion is obvious in hindsight, and should serve as a cautionary note. But second, the
551 unplanned inclusion in this study of RILs along with the RIAILs, and the large difference in
552 average LD between the two sets of lines, turns out to be informative. As LD is reduced in the
553 RIAILs vs. the RILs, the DFE becomes more leptokurtic, the inferred proportion of mutations
554 with negative effects increases, and the relative difference in magnitude between negative and
555 positive effects increases (negative effects become increasingly greater). When mutations are
556 binned into haplotypes, the most intuitive interpretation of the results is that almost all mutations
557 have effects that are very close to 0, and that the decline in fitness with MA is the result of a
558 small number of mutations with large negative effects – perhaps only one, on chromosome III in
559 the MA563 genome.

560 Looking ahead, we envision understanding of the DFE being advanced in three ways.
561 First, technical advances in high-throughput gene editing will allow efficient construction of
562 nearly-isogenic lines (NILs), removing the confounding effects of LD. The mutation spectrum
563 can be inferred, and a large random sample of spontaneous mutations can be engineered into a
564 common genomic background(s) and the DFE estimated as we have done here. Second, the DFE

565 of a common set of mutations should be estimated in a variety of contexts. We only assayed
566 fitness in one context in this experiment; it would be very interesting to see if, and how, the DFE
567 changes in different contexts. Finally, experimental estimates of the DFE can be employed as
568 strong priors in estimates of the DFE from standing polymorphism, which may have the added
569 benefit of facilitating estimates of demographic parameters by de-confounding selection from
570 demography.

571

572 **DATA AVAILABILITY STATEMENT**

573 Raw sequence data have been submitted to the NCBI BioProject database
574 (<https://www.ncbi.nlm.nih.gov/bioproject/>) under accession numbers PRJNA1083210
575 (RI(AI)Ls) and PRJNA429972 (parental MA lines). Cryopreserved stocks (G0 ancestor,
576 parental MA lines and RI(AI)Ls) are available upon request to CFB. All code for analyses is
577 available at https://github.com/Crombie-Lab/manuscript_DFE/tree/main

578

579 **ACKNOWLEDGEMENTS**

580 We thank Joanna Dembek and Mike Snyder for expert work in the lab during the line
581 construction and assay phases of the experiment. We thank David McCandlish, Aneil Agrawal,
582 Ian Dworkin, and an anonymous reviewer for comments on the manuscript. Support was
583 provided by NIH awards GM107227 to CFB, ECA, and JMP, and GM127433 to CFB, ECA, and
584 V. Katju.

585

586

587 **Table 1.** Comparison of seven competing Bayesian models fitted to the genotype and phenotype
588 data of all RILs and RIAILs, and separately to RILs and RIAILs. Each model was run with 50
589 random genotype replicates. Each replicate consisted of four Markov Chains with 4000
590 Metropolis steps. Sampling was performed using the software PyMC3 (Salvatier *et al.*
591 2016Salvatier *et al.* 2016). Model performance is measured using the Bayesian leave-one-out
592 expected log pointwise predictive density (LOO-ELPD), quantifying the generalizability of the
593 fitted model to validation data points. Higher (less negative) LOO-ELPD indicates better model
594 performance.

595

Index	Model name	RILs + RIAILs		RILs		RIAIALs	
		LOO-ELPD	Δ Best	LOO-ELPD	Δ Best	LOO-ELPD	Δ Best
1	Neutral	-3501.2	-99.2	-2200.6	-33.4	-1493.1	-133.6
2	Uniform	-3478.2	-76.2	-2190.1	-22.9	-1472.6	-113.1
	Neutral +						
5	uniform	-3422.2	-20.2	-2179.7	-12.6	-1365.1	-5.5
	Negative						
4	gamma	-3422.2	-20.2	-2181.0	-13.8	-1360.3	-0.8
5	3 effects	-3403.1	-1.1	-2170.8	-3.7	-1360.4	-0.8
	Symmetric						
6	gamma	-3402.0	0	-2168.2	-1.1	-1359.6	0
	Asymm.						
7	gamma	-3402.3	-0.3	-2167.2	0	-1359.9	-0.3

596

597 **FIGURE LEGENDS**

598

599 **Figure 1 - Intrachromosomal pairwise linkage disequilibrium (LD).** (a) Pairwise LD (r^2)
600 calculated with all lines (RIAILs + RILs), (b) RILs only, and (c) RIAILs only. Each heat map
601 represents a chromosome with pairwise LD (r^2) between mutant loci colored as shown in the
602 legend. The colored lines above each chromosome represent the parental origin of the mutant
603 allele (MA530-solid blue, MA563-dashed orange). These lines also show the relative physical
604 position of mutant loci across each chromosome; the far-left vertical line represents the first
605 mutant locus on the chromosome and the far-right vertical line represents the last mutant locus.

606

607 **Figure 2 - Distribution of Bayesian posterior mutational effects on fitness.** The distribution
608 of mean mutational effects (u) calculated using the Bayesian MCMC method is shown. The
609 distribution is calculated separately with (a) all lines (b), RILs only, or (c) RIAILs only. The
610 vertical red line in each panel represents the mean of means for that population. The mean value
611 for each panel is also annotated on the plots in red text.

612

613 **Figure 3 - Bayesian posterior mutational effects by genome position.** The mutant loci are
614 plotted by their physical position in the genome (x-axis) and their mean mutational effect (u) (y-
615 axis), which was calculated using the Bayesian Markov chain Monte Carlo (MCMC) method.
616 The colors indicate the parent of origin for the mutant locus (MA530-blue, MA563-orange) and
617 the shapes show the mutant class (indel-circle, snp-triangle). The vertical lines plotted behind

618 each point represent the 95% confidence intervals of the mutant effect estimates. The mutational
619 effects are calculated separately with all lines (a), RILs only (b), and RIAILs only (c).

620

621 **Figure 4 - The relationship between Bayesian posterior mutational effects (u) and raw
622 difference, u_{RAW} .** The effects are calculated separately using (a) all lines, (b) RILs only, or (c)
623 RIAILs only. Each point represents a locus and is colored by the parent of origin (MA530-blue,
624 MA563-orange). The shape of the point shows the mutant class (indel=circle, snp=triangle). 95%
625 confidence intervals for the estimates are plotted as vertical and horizontal lines behind the
626 points. Pearson's correlation coefficient (r) is displayed in the upper left of each panel.

627

628 **Figure 5 - Distribution of Bayesian posterior mutant haplotype effects on fitness.** The
629 distribution of mean mutant haplotype effects (u) calculated using the Bayesian MCMC method
630 is shown. The distribution is calculated separately for (a) all lines, (b) RILs only, or (c) RIAILs.
631 The vertical red line in each panel represents the mean of means for that population. The mean
632 value for each panel is also annotated on the plots in red text.

633

634 **Figure 6 - Bayesian posterior mutant haplotype effects by genome position.** The 114 mutant
635 haplotypes are plotted by their physical position in the genome (x-axis) and their mean haplotype
636 effect (u) (y-axis), which was calculated using the Bayesian Markov chain Monte Carlo
637 (MCMC) method. The center of haplotypes are plotted as points and the genomic range of multi-
638 locus haplotypes are represented by horizontal boxes plotted behind the points. The colors
639 indicate the parent of origin for the mutant haplotype (MA530-blue, MA563-orange). Multi-
640 locus mutant haplotypes are plotted with square points (multi), and the other single-locus

641 haplotypes are plotted with shapes based on mutation type (indel-circle, snp-triangle). The
642 vertical lines plotted behind each point represent the 95% confidence intervals of the haplotype
643 effect estimates. The haplotype effects are calculated separately with all lines (**a**), RILs only (**b**),
644 and RIAILs only (**c**).
645

646

LITERATURE CITED

647

648 AGARWAL, I., Z. L. FULLER, S. R. MYERS and M. PRZEWORSKI, 2023 Relating pathogenic loss-of-
649 function mutations in humans to their evolutionary fitness costs. *eLIFE* **12**.

650 BAER, C. F., N. PHILLIPS, D. OSTROW, A. AVALOS, D. BLANTON *et al.*, 2006 Cumulative effects of
651 spontaneous mutations for fitness in *Caenorhabditis*: Role of genotype, environment
652 and stress. *Genetics* **174**: 1387-1395.

653 BAER, C. F., F. SHAW, C. STEDING, M. BAUMGARTNER, A. HAWKINS *et al.*, 2005 Comparative
654 evolutionary genetics of spontaneous mutations affecting fitness in rhabditid
655 nematodes. *Proceedings of the National Academy of Sciences of the United States of
656 America* **102**: 5785-5790.

657 BÖNDEL, K. B., S. A. KRAEMER, T. SAMUELS, D. McCLEAN, J. LACHAPELLE *et al.*, 2019 Inferring the
658 distribution of fitness effects of spontaneous mutations in *Chlamydomonas
659 reinhardtii*. *PLoS Biology* **17**: e3000192.

660 BOYKO, A. R., S. H. WILLIAMSON, A. R. INDAP, J. D. DEGENHARDT, R. D. HERNANDEZ *et al.*, 2008
661 Assessing the evolutionary impact of amino acid mutations in the human genome.
662 *Plos Genetics* **4**.

663 BOYLE, E. A., Y. I. LI and J. K. PRITCHARD, 2017 An Expanded View of Complex Traits: From
664 Polygenic to Omnipotent. *Cell* **169**: 1177-1186.

665 CANNATARO, V. L., S. A. MCKINLEY and C. M. S. ST. MARY, 2016 The implications of small stem
666 cell niche sizes and the distribution of fitness effects of new mutations in aging and
667 tumorigenesis. *Evolutionary Applications* **9**: 565-582.

668 CANNATARO, V. L., and J. P. TOWNSEND, 2018 Neutral Theory and the Somatic Evolution of
669 Cancer. *Molecular Biology and Evolution* **35**: 1308-1315.

670 DAVIES, E. K., A. D. PETERS and P. D. KEIGHTLEY, 1999 High frequency of cryptic deleterious
671 mutations in *Caenorhabditis elegans*. *Science* **285**: 1748-1751.

672 DURRETT, R., J. FOO, K. LEDER, J. MAYBERRY and F. MICHOR, 2010 Evolutionary dynamics of
673 tumor progression with random fitness values. *Theoretical Population Biology* **78**:
674 54-66.

675 ESTES, S., P. C. PHILLIPS, D. R. DENVER, W. K. THOMAS and M. LYNCH, 2004 Mutation
676 accumulation in populations of varying size: The distribution of mutational effects
677 for fitness correlates in *Caenorhabditis elegans*. *Genetics* **166**: 1269-1279.

678 EYRE-WALKER, A., 2010 Genetic architecture of a complex trait and its implications for
679 fitness and genome-wide association studies. *Proceedings of the National Academy
680 of Sciences of the United States of America* **107**: 1752-1756.

681 FALCONER, D. S., 1989 *Quantitative Genetics*. Longman Scientific and Technical, Essex, UK.

682 FISHER, R. A., 1930 *The Genetical Theory of Natural Selection*. Clarendon Press, Oxford.

683 GILBERT, K. J., S. ZDRALEVIC, D. E. COOK, A. D. CUTTER, E. C. ANDERSEN *et al.*, 2021 The
684 distribution of mutational effects on fitness in *Caenorhabditis elegans* inferred from
685 standing genetic variation. *Genetics* **220**.

686 HALLIGAN, D. L., and P. D. KEIGHTLEY, 2009 Spontaneous mutation accumulation studies in
687 evolutionary genetics. *Annual Review of Ecology Evolution and Systematics* **40**:
688 151-172.

689 JAMES, J., C. KASTALLY, K. B. BUDDE, S. C. GONZÁLEZ-MARTÍNEZ, P. MILESI *et al.*, 2023 Between but
690 not within species variation in the Distribution of Fitness Effects. *Mol Biol Evol* **13**.

691 JI, Y., Z. ZHOU, H. LIU and R. V. DAVULURI, 2021 DNABERT: pre-trained Bidirectional Encoder
692 Representations from Transformers model for DNA-language in genome.
693 *Bioinformatics* **37**: 2112-2120.

694 JOHRI, P., B. CHARLESWORTH and J. D. JENSEN, 2020 Toward an Evolutionarily Appropriate Null
695 Model: Jointly Inferring Demography and Purifying Selection. *Genetics* **215**: 173-
696 192.

697 KATJU, V., and U. BERGTHORSSON, 2019 Old Trade, New Tricks: Insights into the Spontaneous
698 Mutation Process from the Partnering of Classical Mutation Accumulation
699 Experiments with High-Throughput Genomic Approaches. *Genome Biology and*
700 *Evolution* **11**: 136-165.

701 KEIGHTLEY, P. D., 1994 The distribution of mutation effects on viability in *Drosophila*
702 *melanogaster*. *Genetics* **138**: 1315-1322.

703 KEIGHTLEY, P. D., and A. CABALLERO, 1997 Genomic mutation rates for lifetime reproductive
704 output and lifespan in *Caenorhabditis elegans*. *Proceedings of the National Academy of*
705 *Sciences of the United States of America* **94**: 3823-3827.

706 KEIGHTLEY, P. D., E. K. DAVIES, A. D. PETERS and R. G. SHAW, 2000 Properties of ethylmethane
707 sulfonate-induced mutations affecting life-history traits in *Caenorhabditis elegans*
708 and inferences about bivariate distributions of mutation effects. *Genetics* **156**: 143-
709 154.

710 KEIGHTLEY, P. D., and A. EYRE-WALKER, 2007 Joint inference of the distribution of fitness
711 effects of deleterious mutations and population demography based on nucleotide
712 polymorphism frequencies. *Genetics* **177**: 2251-2261.

713 KEIGHTLEY, P. D., and A. EYRE-WALKER, 2010 What can we learn about the distribution of
714 fitness effects of new mutations from DNA sequence data? *Philosophical*
715 *Transactions of the Royal Society B-Biological Sciences* **365**: 1187-1193.

716 KIM, B. Y., C. D. HUBER and K. E. LOHMUELLER, 2017 Inference of the Distribution of Selection
717 Coefficients for New Nonsynonymous Mutations Using Large Samples. *Genetics* **206**:
718 345-361.

719 KIM, D. U., J. HAYLES, D. KIM, V. WOOD, H. O. PARK *et al.*, 2010 Analysis of a genome-wide set of
720 gene deletions in the fission yeast *Schizosaccharomyces pombe*. *Nat Biotechnol* **28**:
721 617-623.

722 KOUSATHANAS, A., and P. D. KEIGHTLEY, 2013 A comparison of models to Infer the distribution
723 of fitness effects of new mutations. *Genetics* **193**: 1197-1208.

724 KRUGLYAK, L., A. BEYER, J. S. BLOOM, J. GROSSBACH, T. D. LIEBERMAN *et al.*, 2023 Insufficient
725 evidence for non-neutrality of synonymous mutations. *Nature* **616**: E8-E9.

726 LATTER, B. D. H., and J. A. SVED, 1994 A Reevaluation of data from competitive tests shows
727 high levels of heterosis in *Drosophila melanogaster*. *Genetics* **137**: 509-511.

728 LI, J. R., H. P. LI, M. JAKOBSSON, S. LI, P. SJÖDIN *et al.*, 2012 Joint analysis of demography and
729 selection in population genetics: where do we stand and where could we go?
730 *Molecular Ecology* **21**: 28-44.

731 LOEWE, L., and B. CHARLESWORTH, 2006 Inferring the distribution of mutational effects on
732 fitness in *Drosophila*. *Biology Letters* **2**: 426-430.

733 MORROW, E. H., and T. CONNALLON, 2013 Implications of sex-specific selection for the genetic
734 basis of disease. *Evolutionary Applications* **6**: 1208-1217.

735 MUKAI, T., 1964 Genetic structure of natural populations of *Drosophila melanogaster*. 1.
736 Spontaneous mutation rate of polygenes controlling viability. *Genetics* **50**: 1-19.

737 ORR, H. A., 2000 The rate of adaptation in asexuals. *Genetics* **155**: 961-968.

738 PECK, J. R., G. BARREAU and S. C. HEATH, 1997 Imperfect genes, fisherian mutation and the
739 evolution of sex. *Genetics* **145**: 1171-1199.

740 PURCELL, S., B. NEALE, K. TODD-BROWN, L. THOMAS, M. A. R. FERREIRA *et al.*, 2007 PLINK: A tool
741 set for whole-genome association and population-based linkage analyses. *American
742 Journal of Human Genetics* **81**: 559-575.

743 RAJAEI, M., A. S. SAXENA, L. M. JOHNSON, M. C. SNYDER, T. A. CROMBIE *et al.*, 2021 Mutability of
744 mononucleotide repeats, not oxidative stress, explains the discrepancy between
745 laboratory-accumulated mutations and the natural allele-frequency spectrum in *C.
746 elegans*. *Genome Research* **31**: 1602-1613.

747 RAMANI, A. K., T. CHULUUNBAATAR, A. J. VERSTER, H. NA, V. VU *et al.*, 2012 The majority of animal
748 genes are required for wild-type fitness. *Cell* **148**: 792-802.

749 RIVES, A., J. MEIER, T. SERCU, S. GOYAL, Z. LIN *et al.*, 2021 Biological structure and function
750 emerge from scaling unsupervised learning to 250 million protein sequences.
751 *Proceedings of the National Academy of Sciences* **118**: e2016239118.

752 ROCKMAN, M. V., and L. KRUGLYAK, 2008 Breeding designs for recombinant inbred advanced
753 intercross lines. *Genetics* **179**: 1069-1078.

754 SALVATIER, J., T. V. WIECKI and C. FONNESBECK, 2016 Probabilistic programming in Python
755 using PyMC3. *PeerJ Computer Science* **2**: e55.

756 SAXENA, A. S., M. P. SALOMON, C. MATSUBA, S. D. YEH and C. F. BAER, 2019 Evolution of the
757 mutational process under relaxed selection in *Caenorhabditis elegans*. *Molecular
758 Biology and Evolution* **36**: 239-251.

759 SCHULTZ, S. T., and M. LYNCH, 1997 Mutation and extinction: The role of variable mutational
760 effects, synergistic epistasis, beneficial mutations, and degree of outcrossing.
761 *Evolution* **51**: 1363-1371.

762 SHARON, E., S. A. A. CHEN, N. M. KHOSLA, J. D. SMITH, J. K. PRITCHARD *et al.*, 2018 Functional
763 genetic variants revealed by massively parallel precise genome editing. *Cell* **175**:
764 544-557.

765 SHEN, X., S. SONG, C. LI and J. ZHANG, 2022 Synonymous mutations in representative yeast
766 genes are mostly strongly non-neutral. *Nature* **606**: 725-731.

767 TATARU, P., M. MOLLION, S. GLEMIN and T. BATAILLON, 2017 Inference of Distribution of Fitness
768 Effects and Proportion of Adaptive Substitutions from Polymorphism Data. *Genetics*
769 **207**: 1103-1119.

770 TEOTÓNIO, H., D. MANOEL and P. C. PHILLIPS, 2006 Genetic variation for outcrossing among
771 *Caenorhabditis elegans* isolates. *Evolution* **60**: 1300-1305.

772 THATCHER, J. W., J. M. SHAW and W. J. DICKINSON, 1998 Marginal fitness contributions of
773 nonessential genes in yeast. *Proceedings of the National Academy of Sciences of the
774 United States of America* **95**: 253-257.

775 VASSILIEVA, L. L., A. M. HOOK and M. LYNCH, 2000 The fitness effects of spontaneous mutations
776 in *Caenorhabditis elegans*. *Evolution* **54**: 1234-1246.

777 VEHTARI, A., A. GELMAN and J. GABRY, 2017 Practical Bayesian model evaluation using leave-
778 one-out cross-validation and WAIC. *Statistics and Computing* **27**: 1413-1432.

779 VEHTARI, A., A. GELMAN, D. SIMPSON, B. CARPENTER and P.-C. BÜRKNER, 2021 Rank-
780 Normalization, Folding, and Localization: An Improved \widehat{R} for Assessing
781 Convergence of MCMC (with Discussion). *Bayesian Analysis* **16**: 667-718, 652.

782 WICKHAM, H., 2009 *ggplot2*. Springer, New York, NY.

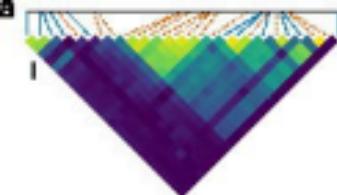
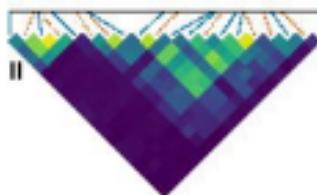
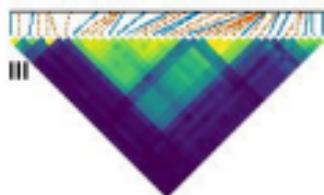
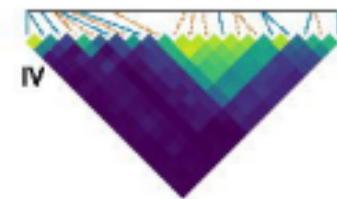
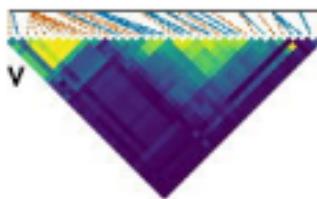
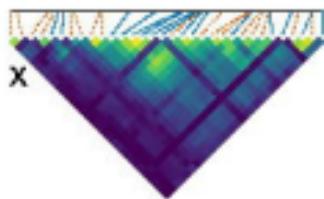
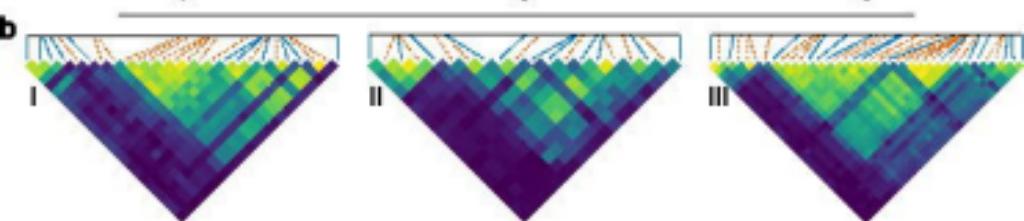
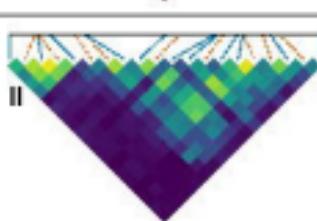
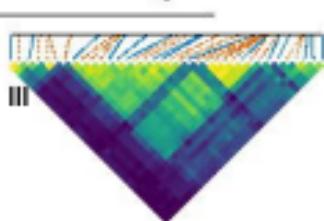
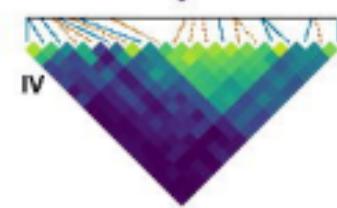
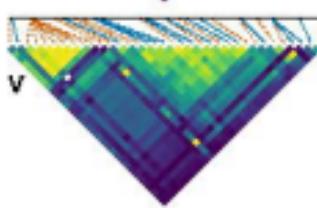
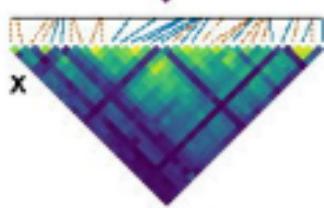
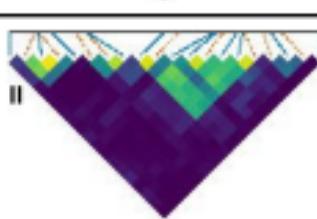
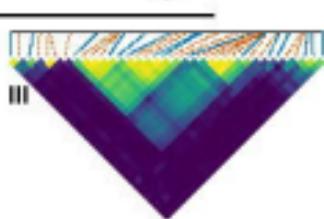
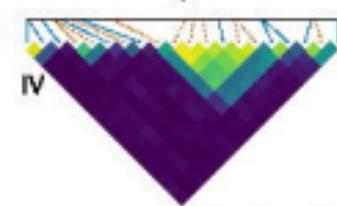
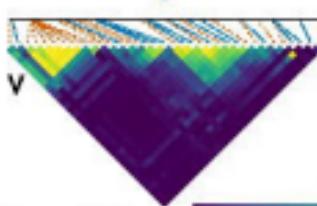
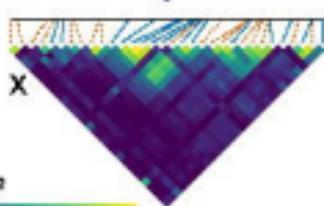
783 YEH, S.-D., A. S. SAXENA, T. A. CROMBIE, D. FEISTEL, L. M. JOHNSON *et al.*, 2018 The mutational
784 decay of male-male and hermaphrodite-hermaphrodite competitive fitness in the
785 androdioecious nematode *C. elegans*. *Heredity* **120**: 1-12.

786 ZHANG, G., J. D. MOSTAD and E. C. ANDERSEN, 2021 Natural variation in fecundity is correlated
787 with species-wide levels of divergence in *Caenorhabditis elegans*. *G3*
788 *Genes|Genomes|Genetics* **11**.

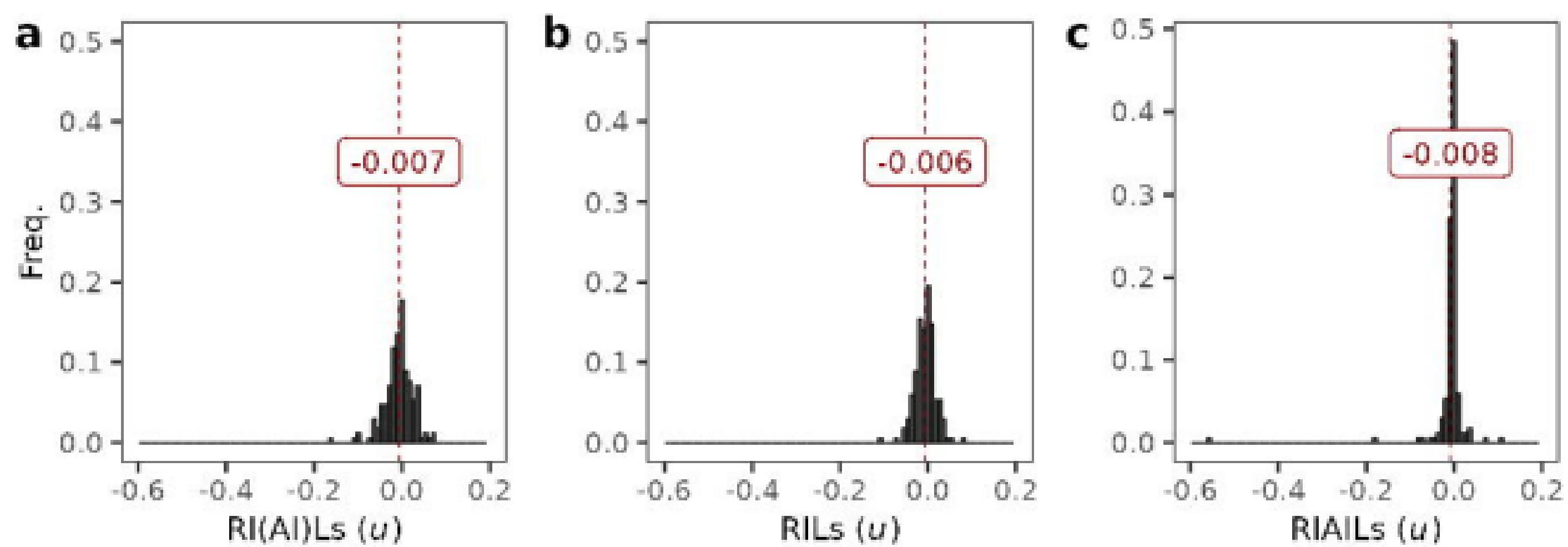
789 ZHANG, X. S., J. L. WANG and W. G. HILL, 2004 Influence of dominance, leptokurtosis and
790 pleiotropy of deleterious mutations on quantitative genetic variation at mutation-
791 selection balance. *Genetics* **166**: 597-610.

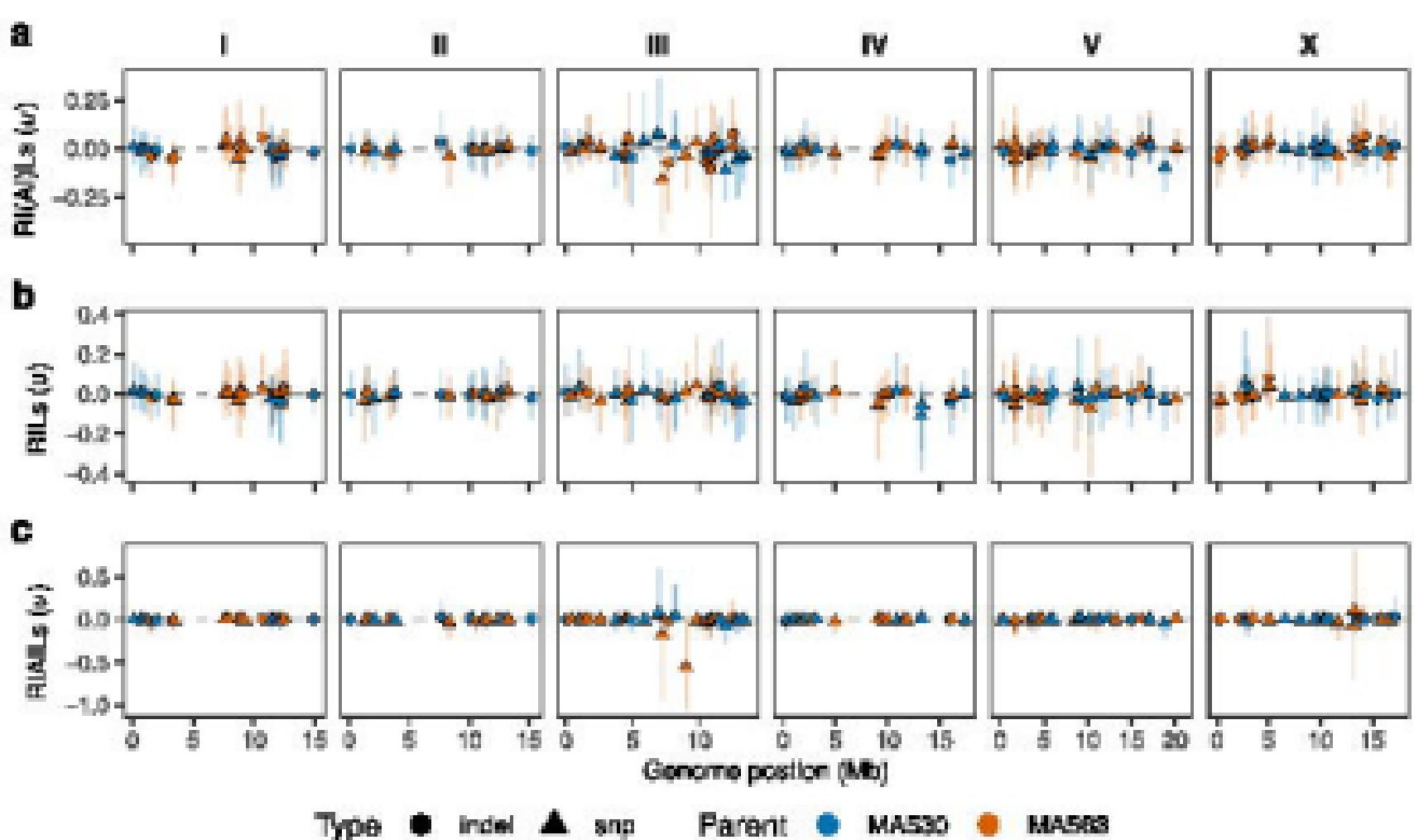
792

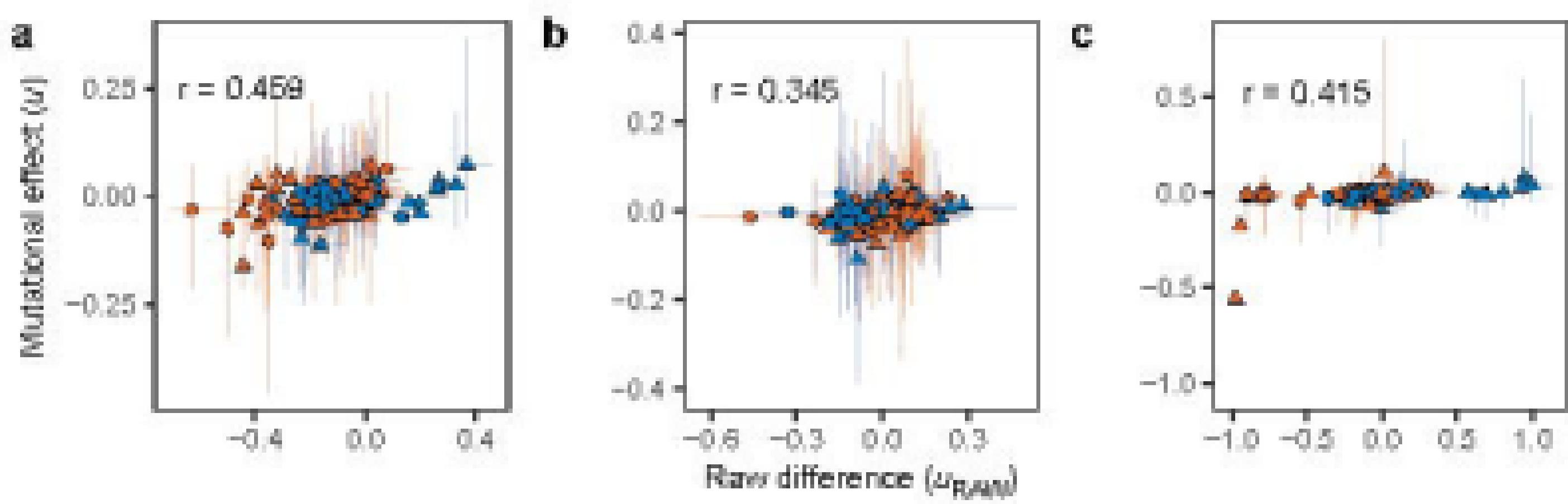
793

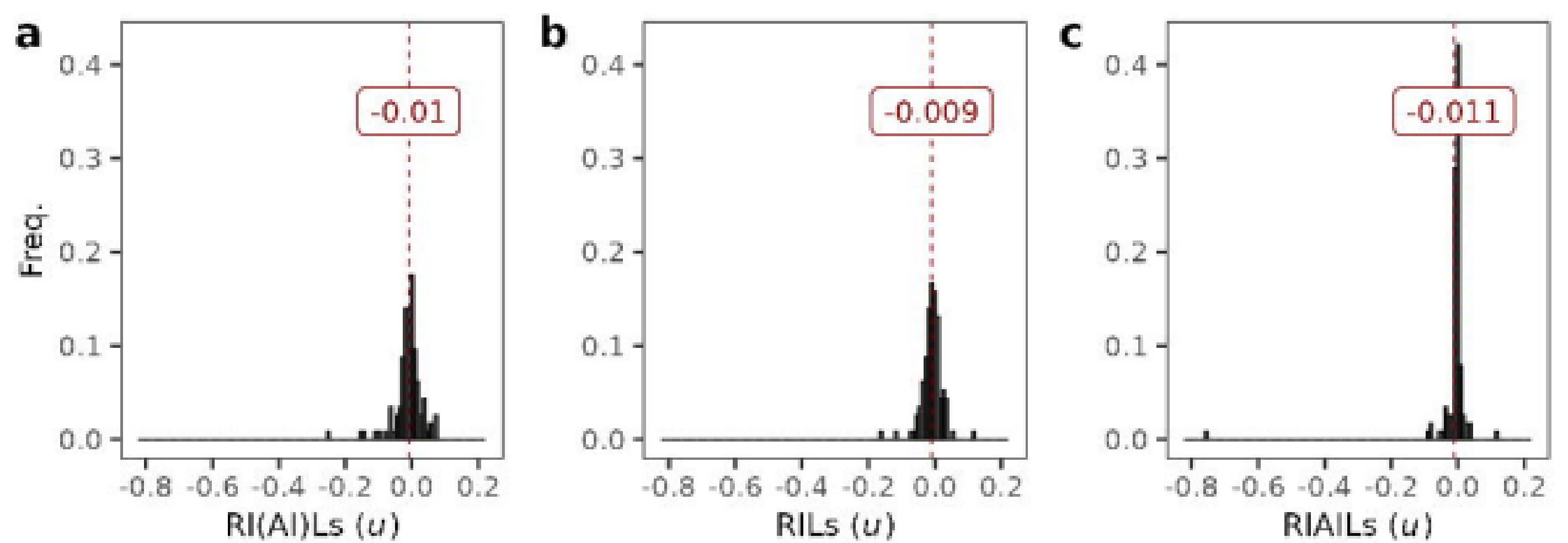


Parent: — MA600 - - - MA603









1

