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Abstract

The distribution of fitness effects (DFE) of new mutations plays a central role in evolutionary
biology. Estimates of the DFE from experimental Mutation Accumulation (MA) lines are
compromised by the complete linkage disequilibrium (LD) between mutationsin different lines.
To reduce LD, we constructed two sets of recombinant inbred lines from a cross of two C.
elegans MA lines. One set of lines ("RIAILS") was intercrossed for ten generations prior to ten
generations of selfing; the second set of lines ("RILS") omitted theintercrossing. Residual LD in
the RIAILs is much less than in the RILs, which affects the inferred DFE when the sets of lines
are analyzed separately. The best-fit model estimated from all lines (RIAILs + RILS) infersa
large fraction of mutations with positive effects (~40%); models that constrain mutations to have
negative effects fit much worse. The conclusion isthe same using only the RILs. For the
RIAILSs, however, models that constrain mutations to have negative effects fit nearly as well as
models that allow positive effects. When mutationsin high LD are pooled into haplotypes, the
inferred DFE becomes increasingly negative-skewed and leptokurtic. We conclude that the
conventional wisdom - most mutations have effects near zero, a handful of mutations have
effects that are substantially negative and mutations with positive effects are very rare—islikely
correct, and that unless it can be shown otherwise, estimates of the DFE that infer a substantial

fraction of mutations with positive effects are likely confounded by LD.
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INTRODUCTION

The distribution of fitness effects (DFE) of new mutations is of fundamental importancein
numerous areas of evolutionary biology (FISHER 1930; ORR 2000; PecK et al. 1997; SCHULTZ
and LYNCH 1997; ZHANG et al. 2004), as well as having practical applications, including human
genetic disease (AGARWAL et al. 2023; BoOYLE et al. 2017; EYRE-WALKER 2010; MORROW and
CONNALLON 2013) and cancer (CANNATARO et al. 2016; CANNATARO and TOWNSEND 2018;
DURRETT et al. 2010). The DFE can be estimated from datain two ways: indirectly from
patterns of sequence variation within and between species (BOYKO et al. 2008; GILBERT et al.
2021; JAMES et al. 2023; JoHRI €t al. 2020; KEIGHTLEY and EYRE-WALKER 2010; Kim €t al.
2017; KousaTHANAS and KEIGHTLEY 2013; LoEwE and CHARLESWORTH 2006; TATARU et al.
2017), or directly from comparisons between genotypes differing by a known (or estimated) set
of mutations (BONDEL et al. 2019; DAVIES et al. 1999; KEIGHTLEY 1994; RAMANI et al. 2012;
SHEN et al. 2022; THATCHER et al. 1998). Each method has strengths and limitations.
Estimation from the standing variation incorporates a vastly larger number of mutations than
could ever be assessed experimentally, the effects of very weak selection are detectable (at |east
in aggregate), and effects are integrated over the entire spectrum of environmental and genomic
contexts experienced by the organism in question. However, the method has several important
limitations. First, the effects of selection must be jointly estimated with the effects of
demography, which are necessarily greatly ssmplified for analytical tractability (JOHRI et al.
2020; KEIGHTLEY and EYRE-WALKER 2007; LI et al. 2012). Second, thereislittle information
about the tail of the distribution for which selection is strong on an evolutionary timescal e but
weak over the course of afew generations (s~ 1%) (KOUSATHANAS and KEIGHTLEY 2013).

Third, the method assumes there is a class of mutations that are selectively neutral to serve as a
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reference; the extent to which that assumption is met isan empirical issue requiring independent
validation (KRUGLYAK et al. 2023; SHEN et al. 2022). Finally, thereis no way to connect the
DFE back to phenotypic traits.

Direct estimation from fitness differences between known genotypes has the advantage of
being conceptually unambiguous - if two groups differ by a single mutation and differ in fitness
by some amount y, the effect of the mutation isy. Constructing two populations that differ by
one or afew mutationsis straightforward: known mutations can be introgressed or otherwise
engineered (e.g., by CRISPR) into a common genetic background to provide "nearly isogenic
lines' (NILs). Recent advancesin CRISPR technology have madeit possible to engineer large
panels of NILsin yeast and other microbes (SHARON et al. 2018; SHEN et al. 2022). However,
constructing enough NILs to provide a meaningful estimate of the DFE remains a daunting
proposition in multicellular organisms. Single-gene "knockout panels’, in which genes are
systematically inactivated and the fitness effects documented, have been tremendously important
in informing our understanding of the functional aspects of the genome (e.g., Kim et al. 2010;
RAMANI et al. 2012; THATCHER et al. 1998), but knockout mutations constitute only a small part
of the mutational spectrum and do not provide an unbiased estimate of the DFE.

Mutation accumulation (MA) experiments, in which spontaneous mutations are allowed
to accumulate in the (near) absence of natural selection, provide the opportunity to estimate the
DFE of a (nearly) unbiased set of mutations (HALLIGAN and KEIGHTLEY 2009; KATJU and
BERGTHORSSON 2019). However, within an MA line, all mutations are in complete linkage
disequilibrium, which renders individual mutational effects inestimable.

Here we employ aclassical line-cross strategy with MA lines, to break down the linkage

disequilibrium among the accumulated mutations. We then combine whole-genome sequencing
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with high-throughput competitive fitness assays to estimate the DFE of a set of 169 spontaneous
mutations. This strategy was first employed by BONDEL et al. (2019) with the unicellular green
alga Chlamydomonas reinhardtii. We crossed two parental C. elegans mutation accumulation
(MA) lines derived from the same genetically homogeneous ancestor to get F1 hybrids that are
segregating at all mutant loci. The F1s were reciprocally crossed, and from the F2s we
constructed two sets of recombinant inbred lines (Supplemental Figure 1). For thefirst set, F2s
were further crossed prior to inbreeding to construct a set of Recombinant Inbred Advanced
Intercross Lines (RIAILS). For the second set, we omitted the intercrossing step and proceeded
directly to the inbreeding step; these lines are classical RILs. Werefer to the full set of lines as
RI(Al)Lsfor brevity. RI(Al)Ls were assayed for competitive fitness against a marked
competitor strain nearly isogenic for the ancestral genome, and multilocus genotypes inferred by
whole-genome sequencing at low (2-3X) coverage. The strategy is conceptually analogous to

QTL analysis, except the variant loci are not smply markers, but rather are the QTL themselves.

METHODS

1. Experimental Methods

1.1 Mutation Accumulation (MA) lines.

The details of the MA experiment have been reported elsewhere (BAER et al. 2005). Briefly, 100
replicate lines were initiated from a single, highly inbred N2 strain hermaphrodite, and
propagated under standard laboratory conditions for a maximum of 250 generations by transfer
of asingle immature hermaphrodite at four-day intervals. Under this protocol the effective

population size, Ne = 1, and all but the most highly del eterious mutations are effectively neutral.
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The progenitor (GO) was cryopreserved at the outset of the experiment, and surviving MA lines
were cryopreserved upon culmination of the MA phase.

1.2 Recombinant Inbred (Advanced Intercross) Lines.

Two MA lines (MA530, n=76 mutations and MA563, n=93 mutations) were chosen as parents
for a set of recombinant inbred advance intercross lines (RIAILS) or ssmple recombinant inbred
lines (RILS). The parental lines were chosen on the basis of their near-average declinein lifetime
reproductive success (~20%) over four assays after 200 and 220 generations of MA at two
different assay temperatures (20° and 25° (BAER €t al. 2006). The original plan was to construct
a set of 600 RIAILS, with ten generations of intercrossing followed by ten generations of selfing,
using the "random pair mating with equal contributions of each parent" design of RockmAN and
KRUGLYAK (2008; see their Figure 1). However, many crosses failed during the intercrossing
phase, so we abandoned the intercrossing and completed the set of lineswith RILs. Thefinal set
of 517 genotyped linesincludes 192 RIAILs and 325 RILs. Details of the crossing schemes are
given in Section | of the Supplemental Material.

1.3 Competitive fitness assays.
To assay competitive fitness, an L1-stage focal strain worm and an L1 GFP-marked competitor
(strain VP604) were placed together on a plate seeded with bacterial food and allowed to
reproduce. Upon exhaustion of the bacterial food, worms were washed from the plate and
counted using a Union Biometrica BioSorter™. The natural logarithm of the ratio of the
frequencies of the two types, W=log[ (p/1-p)], is proportional to the difference in fithess between
thefocal strain (frequency = p) and the competitor strain (frequency = 1-p) (LATTER and SVED
1994). The assay is described in detail in Appendix 1 of YEH et al. (2018) and summarized in

Section |1 of the Supplemental M aterial.
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1.4 Genome sequencing, variant calling, and genotyping.

RI(AI)L genomes were sequenced at low (~2-3X) coverage with 150-bp paired-end [llumina
sequencing, using standard methods. Details of sequencing and variant calling are givenin
Section |11 of the Supplemental Material. Raw sequence data (fastq) of the RI(Al)Ls have
been deposited in the NCBI SRA under project number PRINA1083210. Genome sequences for
the GO progenitor and the parent MA lines have been previously reported (RAJAEI et al. 2021,
SAXENA et al. 2019).
1.5. Imputation. Given the low (2-3X) sequencing coverage, approximately 1/3 of the data
(35.2%) are missing, i.e., the genotype at a given locus was not called as either homozygote.
The mean number of loci successfully genotyped per RI(AI)L is 109, and the mean number of
RI(Al)Ls for which alocus was scored is 335. To account for the missing genotype information,
we constructed a computational procedure to impute the missing data by leveraging linkage
disequilibrium (LD; see next section) between segregating sites. Specifically, we used the
masked language modeling approach from natural language processing to build a predictive
model for the missing alleles. The imputation model is built on the transformer architecture,
which has been widely used for modeling natural languages as well as biological sequences such
as DNAs and proteins (J et al. 2021; RIVES et al. 2021). The model output consists of the
predicted log-probability for al possible states per site, i.e., the MA530 or MA563 allele. The
details of the model are given in Section 1V of the Supplemental Material.

To assess the modd’ s performance, we performed 100 rounds of validation. For each
round, all RI(AI)L genotypes were used for training, but with one percent of the called alleles
randomly masked. Across the 100 rounds, we observed a high imputation accuracy on the

masked positions: mean + 1 SD prediction accuracy = 90.3 £ 1.5%. Cases in which the imputed
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154  dlelediffersfrom the called allele include errorsin the initial call, so 90% is a conservative

155  estimate of the true prediction accuracy. The final imputed genotypes (Supplemental Table 1)
156  were generated by retraining the model on al RI(AI)L genotypes using all available allele

157  information.

158  1.6. Linkage Disequilibrium (LD)

159  Allelesfrom the two parents, MA530 and MA563, are initially in complete coupling (positive)
160  linkage disequilibrium in the F1. However, mutant alleles occur in both parental genomes, so
161 athoughtheinitia LD between pairs of mutant allelesis complete, the sign of the association
162  (positive or negative) depends on which parental genomes the mutations occurred. Measures of
163 LD that do not account for the sign of the association are agnostic with respect to whether alleles
164  are coded by the parent of origin or as ancestral (0) vs. mutant (1); the value is the same either
165 way. Measuresof LD that do account for the sign of the association may differ by sign

166 depending on if the alleles are coded by parent of origin vs. ancestral vs. mutant. For our

167  purposes, it is more meaningful to code alleles as ancestral or mutant.

168 The pairwise coefficient of linkage disequilibrium, D=paig1-paiPs1 Where pais; isthe
169 frequency of the double-mutant (A1B1) haplotype at the A and B loci, paz is the frequency of the
170  mutant allele at the A locus and pg; isthe frequency of the mutant allele at the B locus. The

171  expected alelefrequency inthe RI(Al)Lsis 0.5 at al segregating loci, but the observed

172 frequencies will vary due to sampling. We report two measures of LD, the squared coefficient of
173  correlation, r?, and D*=D/|Dmax|, where [Dmax|= min[pai(1-pe1)], (1-par)pes]; r?is constrained
174  non-negative and D* can take on values[-1,1]. Notethat our D* isthe familiar D' but with the
175  signretained. We calculated r? and D* among all pairs of the 169 loci using the PLINK v1.9

176  commands‘--r2’ and ‘--r dprime-signed’ respectively (PURCELL et al. 2007). We also report the
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mean pairwise intra-chromosomal and inter-chromosomal LD for (1) all lines (n =517), (2) RILs
only (n=325), and (3) RIAILsonly (n =192). To visualize intra-chromosomal pairwise LD we
used the ggplot2 package v3.4.4 for R Statistical Software v4.2.3 (WICKHAM 2009).

1.7. Heritability. We estimated the broad-sense heritability (H?) of W from the among-line (i.e.,
among-RI(AI)L) component of variance estimated from the general linear model (GLM) yij= u
+ o + fij + &ij, Wherey isthe value of W, x isthe overall mean, a; isthe random effect of
Block i, gij is the random effect of Linej in Block i, and ¢ is the residual effect of Replicate k of
Linej inBlock i. Becausethe RI(Al)Ls are homozygous lines derived from a cross of
homozygous parents, Vg = V|, where V| is the among-line component of variance (FALCONER
1989, Ch. 15) and the broad-sense heritability H*=V ¢/Vp, where Vp is the total phenotypic
variance. Variance components were estimated by restricted maximum likelihood (REML), as
implemented in the MIXED procedure of SASv. 9.4. 95% Confidence intervals of H? were
determined empirically from 200 bootstrap replicates, resampling lines pooled over blocks while
retaining the effect of Block in the analysis.

To account for the possibility that some of the among-line variance was due to factors
other than genotype, we included a set of six "pseudolines’ of the GO ancestor and of each
parental MA line in each assay block, which are the experimental equivalent of RILs except they
are genetically homogeneous, and any among-(pseudo)line variance must be due to causes other
than variation among genes. Pseudolines were analyzed identically to the RI(Al)Ls.

We next estimated the proportion of the total broad-sense heritability not explained by
the cumulative additive effects of the mutations, H* (here "additive" formally means
"homozygous non-epistatic”, because we have no information about dominance). First, we

calculated the multiple regression yij = ¢ + pX + ¢, where i is the value of W as before,  isthe


https://doi.org/10.1101/2024.05.08.593038
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.08.593038; this version posted July 26, 2024. The copyright holder for this preprint (which

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

overall mean, x isthe vector of genotypes at mutant loci 1-169, # is the vector of regression
coefficients, and ¢ istheresidual effect. We then re-estimated the linear model from above, y*
=u+ ai + B + sijk, Wwhere theterms are as before, where the y* ;. are the residuals of the multiple
regression of W on the multilocus genotype, x. The difference H%- H* is the narrow-sense
heritability h? i.e., the fraction of the total phenotypic variance explained by the additive effects
of the mutations. Statistical significance of h? was assessed by randomly permuting estimates of

W among replicates and re-calculating h?.

2. Estimation of the DFE

2.1. Raw Difference. The simplest way to measure the phenotypic effect of a mutation at locusi
is from the average difference in the trait between lines that have the mutant allele and lines that
have the ancestral allele at locusi. Following BONDEL et al. (2019) we refer to the mutational
effects calculated in this way as the raw difference, ug,,,. Confidence intervals and approximate
standard errors of ug .y, Were calculated from 1000 bootstrap replicates, holding the number of
linesin each category (mutant, wild-type) constant in each (re)sample.

2.2. Bayesan MCMC. Wetake afully Bayesian approach to estimate the posterior distribution
of all genetic and non-genetic parameters. The basic model isthe same asin section 1.7 above,
such that the observed fitness of replicate k of linej in block i is: yik=u + i + B7X; + & The
vector g contains the effects for the 169 mutations. We fit a series of models with increasing
complexity in the prior distribution of f, to test different hypotheses regarding the DFE of the
mutations. In all models, the grand mean, 4, follows an uninformative normal distribution with

mean zero and SD = 10. Theindividual block effects follow normal distributions with mean O

10
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222 and SD =1, given the small variation in block effects when averaged over lines (SD = 0.13). The
223  modelstested are summarized in Table 1.

224 To begin, in mode 1 (“neutral model”) mutational effects are constrainedto 0, i.e., #=0.
225 Inmodd 2 (“uniform effect model”), all mutationsin the vector # have a constant effect (u),
226  suchthat yjk=p + ai + M X U+ gk, where my isthe number of mutant allelesin linej.

227  Modd 3 (“neutral + uniform effect model”) assumes that mutationsin vector # follow identical
228  independent distributions such that the m-th mutation, Sm, has a probability 1 — q of being

229  neutral, and g of having a nonzero constant effect u, such that S = w X u, wherew is sampled
230  fromaBernoulli distribution with parameter g, which in turn is drawn from an uninformative
231  Betaprior with shape parameter = 2. In both the uniform effect model and the neutral + uniform
232  effect model, the constant mutational effect u follows a normal prior with mean 0 and SD = 10.
233  Modé 4 (neutral + uniform positive effect + uniform negative effect, “ 3-effect model”) in

234  addition assumes that mutations can take both constant positive or negative effects, such that S,
235 =wx (zxu —(1-2) x u). Similarly, wisaBernoulli random variable with the probability g,
236  egual to the probability that a mutation is non-neutral, which follows the same distribution as
237  mode 3. The parameter z controls the conditional probability of a nonneutral mutation having
238  thepositive effect, and isaBernoulli random variable with probability p*, which follows an

239  uninformative Beta distribution with shape parameters = 2. The constant positive/negative effects
240  UpogUneg follow an uninformative normal distribution with mean 0 and SD = 10.

241 In addition to these constant-effects models, we tested three models in which mutational
242  effects are sampled from a continuous Gamma distribution. In modd 5 (* negative gamma’), all
243  mutations are assumed to have negative (i.e., deleterious) effects, with effect sizes sampled

244  identically and independently from a Gamma distribution, whose shape and rate parameters

11
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follow uninformative half normal distributions (SD = 10). In model 6 (“symmetric gamma’) and
model 7 (*asymmetric gamma’), mutations can have either positive or negative effects, such that
we can express individual mutation effects as Ppm =z % Pm’ — (1 —2) X Pm . Similar to model 4, z
isaBernoulli random variable with probability p*, which follows a symmetric Beta distribution.
The positive (negative) effect sizes, B’ (Bm ) arein turn sampled from their respective Gamma
distributions, asin Mode 5. The only difference between model 6 and 7 isthat in mode! 6, P’
and B, follow the same Gamma distribution, whereas in model 7, the Gamma distributions for
the positive and negative effect sizes are allowed to be different.

Bayesian inference for all models was implemented in the statistical software PyMC3
v5.10 (SALVATIER €t al. 2016). The No-U-Turn-Sampler was employed to acquire posterior
samples. Continuous random variables were sampled using the Hamiltonian Monte Carlo
method which relies on gradients cal culated using automatic differentiation, whereas discrete
random variable were sampled using the Metropolis algorithm. To account for the uncertainty in
the genotypes due to missing aleles, for each model we performed 50 independent Monte Carlo
runs, each with missing alleles sampled from independent Bernoulli distributions with
probability predicted by the trained imputation model. For each model and genotype replicate,
weran 4 parallel Monte Carlo chains, each with 1000 warm up steps and 4000 sampling steps.
We used the R-hat statistic (VEHTARI et al. 2021) as adiagnostic of model divergence, which
compares the parameter estimates between and within chains. R-hat is greater than 1 if the chains
are not well mixed, such that the between and within-chain sample distributions disagree.

We used a Bayesian model selection procedure to identify the best model. Specifically,
for each model we estimated the |eave-one-out expected log pointwise predictive density (ELPD

LOO) mode fit, equal to the mean expected log likelihood of the observed fitness of a random

12
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268 individual given its genotype, calculated based on amodel fitted using the full data set minus the
269  focal individual. The procedure isimplemented in PyMC3 based on the approximate method
270  introduced by VEHTARI et al. (2017) The ELPD LOO scores for all 50 genotype replicates were
271  averaged to provide an overall goodness-of-fit score for each model.

272

273 RESULTS:

274  Linkage Disequilibrium

275  Thepurpose of constructing RI(Al)Ls isto break up the linkage disequilibrium between

276  mutations, to permit estimation of the effects of individual mutations. That effort was only

277  partialy, and variably, successful. Averaged over al lines (RILs + RIAILS), intrachromosomal
278 LD asmeasured by median r?is0.12 (Figure 1; Supplemental Figure 2). However, LD is

279  much higher in the RILs (median r? = 0.28) than in the RIAILs (median r? = 0.045). Ten

280  generations of advanced intercrossing was effective in breaking up LD, on average, but regions
281  of near-complete LD remain even inthe RIAILS. Inspection of Figure 1 reveals that regions of
282  high LD are concentrated in the chromosome centers, as expected given the reduced rate of

283  crossing over in centers relative to arms, although there are also regions of high LD in

284  chromosome arms where mutations are tightly clustered. Interchromosomal LD isnear O in both
285 RILsand RIAILs (Supplemental Figure 3), indicating atrivial role for sampling variancein
286  maintaining LD.

287  Heritability

288  Our goal isto estimate the effects of spontaneous mutations on fitness. To begin, we ask: is

289  there heritable variation in competitive fitness among the RI(AI)Ls? The broad-sense heritability

290  of Wincluding all RI(AI)Ls, H?=0.30 (bootstrap 95% CI=0.271, 0.370). Estimates of H* were
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291  similar for RIAILS (H?=0.337; bootstrap 95% CI=0.256, 0.403) and RILs (H?=0.313; bootstrap
292 95% CI=0.243, 0.382). Including al RI(Al)Ls, narrow-sense heritability, estimated from the
293  residuals of the multiple regression of W on multilocus genotype, h? = 0.16 (permutation test,
294  P<0.001; averaged over 1000 permutations of the data, random h?= 0.023, max=0.048). The
295  cumulative additive effects of the 169 segregating spontaneous mutations explain approximately
296  half of thetotal heritable variancein W. By way of comparison, H* for competitive fitness from
297 asetof 28 C. eleganswild isolates was 0.49, although the assays in the two studies are not

298  directly comparable (TEOTONIO et al. 2006).

299 Considering RIAILs and RILs separately, h? of the RILs is similar to the estimate from
300 thefull dataset (h* = 0.20, n=325), whereas the same analysis for RIAILs gives a REML point
301 estimateof residual V| =0. Taken at face value, these results imply that additive mutational

302  effects completely explain H? (i.e., h*= H?) in the RIAILS, whereas the additive effects only

303  explain about two-thirds of the among-line variance in the RILS. To investigate the possibility
304 that LD could explain the unexplained among-line variance in the RILS, we used parametric

305  bootstrap smulations, as follows. For each RIL we (i) assigned each mutation in its genome a
306 fitness effect drawn from a given DFE with mean effect equal to the observed mean, (ii) summed
307 theeffects acrossloci, and (iii) added to each replicate a residual (= microenvironmental) fitness
308  effect drawn from anormal distribution. We then estimated H? and h? from the simulated data as
309  described above. Inthefirst set of smulations (n=100), we maintained the observed LD

310  structure; in the second set of simulations we permuted alleles (mutant or ancestral) among loci
311 ineachRIL to break up the LD. We tested two different DFEs. Thefirst DFE isthe

312  ‘asymmetric Gammamodel’ described in Methods, where mutations can have positive or

313  negative effects, with the magnitude of the positive/negative effect drawn from two non-identical
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Gamma distributions. The second DFE isthe ‘ negative gamma’ model, where mutations can
only have negative effects and are drawn from a single Gamma distribution. We sampled effects
of mutations from these two DFEs using the posterior mean model parameters (Supplemental
Table 2). Residual fitness effects were sampled from zero-mean normal distributions with
variance egual to the posterior means of the noise variance inferred jointly with model
parameters for the two DFEs (6 = 1). For both DFEs, LD had no effect on theinferred h? in
each case h’=H? in 100% of the simulations, as expected because the mutations were the only
source of among-line variance in the smulations.

Having ruled out differencesin LD as the cause of missing heritability in the RILSif
mutational effects are strictly additive, the remaining unexplained heritability in the RILS must
be due to some combination of epistasis, transgenerational epigenetic inheritance (TEI), and/or
residual (but small) genotype-environment correlations. It isnot obvious at first glance why the
same set of epistatic mutations would lead to missing heritability in the RILs but not in the
RIAILs. However, the number of RIAILs (n=192) is only dlightly greater than the number of
loci (n=169), so it is plausible that there ssimply islittle power to detect residual among-line
variance once the additive effects of the mutations are accounted for. When h? is estimated for
the full set of RI(Al)Ls with the additive effects regressed separately for each block, the residual
heritability disappears; that result reinforces the likelihood that the absence of missing
heritability in the RIAILsis simply dueto lack of power rather than an actual absence of non-
additive among-line variance. We elaborate on this possibility in Section V of the Supplemental
Material.

To account for potential non-genetic variation that is nevertheless heritable over afew

generations, we estimated variance components among sets of "pseudolines’ of the GO ancestor
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of the parental lines, and of the MA530 and MA563 parental lines. These controls are not
powerful (n=30 pseudolines, 6 per block), but in all three cases the REML estimate of the
among-pseudoline component of variance, V= 0.

Relationship between number of mutations and mean fitness

If all mutational effects are equal and in the same direction (i.e., the Bateman-Mukai criteria
(MukAI 1964)), the slope of the regression of W on the number of mutant alleles carried by aline
will equal the average effect of a mutation. Averaged over all RI(Al)Ls, accounting for variation
among assay blocks and removing two outlying lines, the regression of W on number of
mutationsis not significantly different from O (slope = -0.0051, F; 500=1.83, P>0.17), although
the trend suggests that mutations are del eterious, on average.

Relationship between mutational effect and mutant allele frequency

The expected frequency of segregating neutral alelesin the RI(Al)Lsis0.5. Selection was
minimally effective in the crossing and inbreeding phases (N.~ 2), but it was not absent. If most
mutations are deleterious and if deleterious alleles were preferentially removed by selection, then
(i) the average frequency of mutant alleles will be < 0.5, and (ii), there should be a negative
relationship between allele frequency and mutational effect size. The mean observed mutant
alele frequency is 0.500 (range = 0.287-0.675). The correlation between mutant allele
frequency p; at theith locus and the raw difference ug 4y ;, rp= 0.15 (Supplemental Figure 4).
Thus, we infer that selection did not systematically skew mutant allele frequencies away from
the expected neutral frequency.

The Bayesian posterior DFE.

To infer the DFE, we tested a series of seven increasingly complex models, using the Bayesian

MCMC analysis outlined in the Methods. Because of the discrepancy in average LD between
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the RIAILs and the RILs, all analyses were first done on the full set of RI(Al)Ls, and repeated on
RIAILs and RILSs separately.

As afirst step, wetested for model convergence, using the R-hat statistic. We observed
no divergence between the four parallel Markov chains, indicated by R-hat < 1 in all cases
(VEHTARI €t al. 2021). Modd performance, as measured by the Bayesian leave-one-out
expected log pointwise predictive density (LOO-ELPD, VEHTARI €t al. 2021) averaged across 50
genotype replicates, issummarized in Table 1. Posterior means and 95% credible intervals of
model parameters are given in Supplemental Table 2.

(1) All lines (RILs + RIAILs = RI(Al)Ls). Reassuringly, the neutral model, in which mutational
effects are constrained to equal O, performs worst. The unifor m effect model, in which
mutational effects are constrained to be equal, is moderately better (Afit = 23.0). The posterior
mean for the shared mutational effect (u) is negative and has a 95% credible interval not
intersecting zero (u = -0.006; CI = -0.009, -0.005).

The neutral + uniform effect model, in which mutations can either have a uniform non-
zero effect with probability q or be neutral with probability 1- g, performed significantly better
(Afit =50.0). Again, the mean mutational effect isinferred to be negative (u =-0.16, 95% CI = -
0.24, -0.10), but with low probability (q = 0.064, 95% CI = 0.026, 0.114). The negative
Gamma mode, in which effects are constrained to be negative and sampled from a Gamma
distribution, fits equally well as the neutral + fixed effect model (u =-0.007, Afit = 0.0).

All models summarized so far assume mutations must have a uniform sign. Thefirst
model relaxing this assumption is the 3-effect model, in which a mutation can be neutral with
probability 1 — g, or have a fixed positive/negative effect with probabilitiesq” and g (in our

Bayesian model parametrization, q" = qx p*, g = gx (L—p"), wherep" isthe probability that a
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383  mutation has a positive effect, given that it is non-neutral). This model showed a significant

384 improvement in performance (Afit = 19.1).

385 Finally, the two-sided Gamma models (symmetric and asymmetric Gamma) provide a
386  moderate improvement over the 3-effect model. The two models have LOO-ELPD scores that
387  arenearly indistinguishable (symmetric gamma model = -3402, asymmetric gamma model = -
388  3402.3), indicating that the additional flexibility conferred by the asymmetric gamma model does
389  not confer higher generalizability to new data. For the asymmetric gamma model, the alpha
390 (scale) and beta (rate, inverse of the scale parameter) parameters for the positive and negative
391  halves of the distribution have nearly identical posterior distributions (Supplemental Table 2).
392  Additionally, the two-sided gamma models show very similar posterior distributions for al

393  parameters. We therefore focus our discussion on the more parsimonious Symmetric gamma
394 modd.

395 On average, mutations are slightly less likely to have a positive effect (p* = 0.426; 95%
396 Cl=0.294,0.547). The posterior distribution of the effects of all 169 mutations shows that

397  39.6% of all mutations have a positive posterior mean effect (Figure 2A), consistent with the
398  posterior probabilitiesp’/ . However, individual mutations exhibit large credible intervals that
399 intersect zero (Figure 3A). The distribution of negative mean effects shows a longer tail than
400 thepositive effects, but this asymmetry in shape was not reflected in the model selection results,
401  wherethe symmetric and asymmetric Gamma models have virtually identical performance. This
402  islikely a power issue, whereby the increased flexibility of the asymmetric Gamma model was
403  not supported by enough datato result in likelihood improvements that can offset the penalty

404  resulting from the higher model complexity.
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(i1) RILs. The model selection results for the RILs are largely consistent with results based on the
full set of RI(Al)Ls. The neutral and the fixed effect models have the lowest LOO-ELPD (Table
1). Thetwo negative effects models have similar LOO-ELPD values and show significant
improvement over the first two models. Finally, we see that the three two-sided models provide
further substantial improvement over the one-sided model. The two-sided Gamma models
produced very similar LOO-ELPD scores, while the 3-effect model has a moderately lower
value. The distribution of mean mutational effects under the symmetric Gamma model are
similar to results generated from the full set of RI(Al)Ls (Pearson'sr = 0.56; Figure 2B).

(i) RIAILs. Modd selection resultsfor the RIAILs reveal a different pattern. Although the
neutral and fixed effect models still perform worst, performance of the models in which effects
are constrained to be non-positive (in particular the negative Gamma mode!) is now close to that
of the two-sided models (Table 1). The similarity between the two-sided models and the
negative-only model is supported by the change in the shape of the two-sided gamma models, in
which the frequency of mutations with positive effectsis lower (g+ = 0.355; 95% CI 0.119,
0.595). Inference from RIAILsresulted in an overall reduction in the mean posterior effects of
mutations, such that the effects of most mutations are shrunk towards zero (Figur e 2C).
Additionally, the posterior variance of the mutational effectsislower inthe RIAILS (mean
posterior SD of mutational effectsis0.040, compared with 0.056 in the full set of RI(AI)LS)
(Figure 3C), even with the lower sample size. The mutational effects for the RIAILs are more
weakly correlated to those inferred from the full set of RI(Al)Ls (Pearson'sr = 0.36) than are the
effectsinferred from the RILs.

(iv) Locus-specific effects. The simplest way to infer the mutational effect at alocusisto

calculate the mean value of all lines with amutant allele and all lines with an ancestral alele at
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428  that locus, the differenceis the raw difference (ug4y,) Of the mutation at that locus. As a sanity
429  check, we plotted the inferred Bayesian posterior effect against the raw difference; idedlly, the
430  correlation should be +1. The correlations were positive, but well below 1 in all three cases
431  (Figure4). The magnitude of the raw difference istypically much larger than that of the

432  posterior effects. The differenceislikely caused by LD, in that the raw difference of asingle
433  mutation contains contributions from other linked mutations, which may inflate the estimates.
434  Effects of mutant haplotypes

435 A magor chalengeisthat many mutations are in high LD, making the effects of individual

436  mutations nearly unidentifiable (for example, if two mutations with effects, u; and u, arein

437  complete LD, we only have observations for the sum of their effect u; + u,, making it impossible
438 toestimate u; and u, separately). To proceed, we first identified haplotype blocks consisting of
439  groups of loci in which LD among al pairs of consecutive loci r?> 0.8. We then designated two
440  haplotypes for each haplotype block. Among loci in a haplotype block, two types of haplotype
441  assignment can occur. Consider a haplotype block with two loci, each with an ancestral and a
442  mutant alele (coded 0 and 1). If the two loci arein positive LD, we have an ancestral haplotype
443  (00) and a double-mutant haplotype (11). If the two loci arein negative LD, we have two single-
444  mutant haplotypes, 01 and 10. Treating the data as haplotypes rather than individual loci reduces
445  the sample size from 169 (the number of loci) to 114 (the number of haplotypes). We restricted
446  thisanalysisto the symmetric Gamma mode.

447 We acquired the posterior sample of a mutant haplotype by summing the posterior

448  samples of theindividual mutations at each locusin the haplotype. We repeated this procedure
449  for theRILs, RIAILs and the full set of RI(Al)Ls. In all three cases, the distribution of the mean

450  mutant haplotype effects is skewed to the left (Figure 5). The percentage of mutant haplotypes
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451  with negative posterior meansis 61.4% in the full set of RI(Al)Ls, 64.0% in the RILSs, and 67.5%
452 intheRIAILs. Again, inference from the RIAILs resultsin an overall reduction in the mean and
453  variance of posterior effects of mutant haplotypes, relative to inferences from RILs and the full
454  setof RI(Al)Ls. The mean absolute posterior mean effect for the negative mutant haplotypes
455  based on RIAILs only (u = -0.022) istwice that of the positive mutant haplotypes (u” = 0.011).
456 Finally, the lower LD in the RIAILs allowed usto identify a mutant haplotype with a
457  strong negative effect located in a 6.05 Mb region between positions 3771123 and 9819058 on
458  chromosome Il (Figure 6). This haplotype contains 13 mutations, including 11 SNPs and 2

459  indels. The two mutant haplotypes are 1000111001100 for MA530, and 0111000110011 for

460 MADS63. The MA563 mutant haplotype has alarge negative effect (u = -0.760; 95% CI -1.09, -
461  0.149), whereas the MA530 mutant hapl otype shows a moderately strong positive mean effect (u
462 =0.118; 95% CI -0.134, 0.647). However, their effects are strongly negatively correlated in the
463  posterior samples, i.e, if an estimated effect at the MAS530 haplotype is large and negative, the
464  corresponding estimate at the MA563 haplotype is large and positive. The most we can say with
465  confidence isthat the cumulative effect of mutationsin this region isto reduce W by about 0.64
466 relativeto the ancestor, which is sufficient to explain the decrease in fitness of MA563 relative to
467  theancestor (Supplemental Figureb).

468 The full list of mutations, along with parent of origin and their inferred effects, are

469  presented in Supplemental Table 3; fitness data are presented in Supplemental Table 4.

470

471 DISCUSSION

472  Unsurprisingly, mutations are deleterious, on average. Coincidentally or not, the point estimate

473  of the mean average raw difference in competitive fitnessin the RI(AI)Ls, -0.0039, is extremely
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474  similar to the same estimate from the full set of 80 MA lines of which the two parental lines were
475  drawn. Assuming that arandom pair of MA lines differs by 160 mutations, the average

476  mutational effect estimated from the dataof YEH et al. (2018, Table 1) is-0.0040. Giventhe
477  substantial sources of variation in these experiments, the concordance is remarkable. Inasimilar
478  vein, YEH et al. estimated the mutational heritability from the same data, 4%, = V, /2t =

479  0.00084/generation of MA. Summed over the approximately 250 generations of MA, we predict
480  abroad-sense heritability H? = 0.2, about 2/3 of the observed valuein this study. Or differently
481  put, our estimate of H? implies amutational heritability 4% ~ 0.0012. Given that both measures
482  of heritability are ratios of variances, the observed values are quite consi stent.

483 Perhaps more surprising is the relatively high narrow-sense heritability of the mutational
484  effects (h’=0.16), which explain roughly half of the heritable variance in fitness. There are no
485  comparable competitive fitness data from wild isolates, but ZHANG et al. (2021) estimated H?
486  and h?for lifetime fecundity on solid media for aset of 121 C. elegans wild isolates. In their
487  assay h?(0.20) was about 1/3 of H? (0.63). In contrast to our RI(AI)Ls, which differ by about 85
488 mutations on average, the wild isolates differ by thousands of segregating variants. Comparison
489  of heritabilities is problematic because the upper bound is 1, which means that h? necessarily
490 reaches an asymptotic value. However, if we assume that the contribution of non-heritable

491  effects (Vg) issmilar in the two studies — and we would naively expect that Ve is greater in a
492  competitive fitness assay than in a non-competitive assay because the competitor contributes to
493 Ve —theimplication isthat the asymptote is reached after at most a few hundred generations of
494  mutations have accumulated in the population.

495 Theinclusion of both RILs and RIAILs in the experiment is fortuitous. If we only had

496  RILsto work with, we would have been much more confident in concluding that a large
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497  proportion of mutations have positive effects. Ten generations of intercrossing in the RIAILs
498  broke up most of theinitial LD, but not all of it, and it is clear that at least some of the apparently
499  greater fraction of positive-effect mutationsin the RILs can be attributed to the confounding

500 effect of negative-effect mutationsin LD. Inspection of the DFE along the chromosome (Figure
501 3) revealsanegative spatial autocorrelation: mutationsinferred to have large positive effects are
502 usualy in close proximity to one or more mutations with large negative effects.

503 This study was motivated by three antecedents:. the studies of BONDEL et al. (2019), who
504 used arelated crossing design to estimate the DFE from spontaneous MA lines in the unicellular
505 green alga Chlamydomonas reinhardtii; of GILBERT et al. (2021), who estimated the C. elegans
506 DFE from the standing site frequency spectrum among wild isolates; and those of VASSILIEVA et
507 al. (2000) and KEIGHTLEY et al. (2000), who estimated the DFE from the distribution of (non-
508  competitive) fitnesses among C. elegans MA lines. We consider each in turn.

509 BONDEL et al.'s crossing design differed from oursin akey way: they backcrossed MA
510 linesto the common ancestor rather than crossing two MA lines. Their design resultsin al

511 mutations being initially in complete coupling (positive) LD, rather than a random mix of

512  coupling and repulsion LD, asin our design. Nevertheless, their design is still constrained to
513 infer the cumulative effects of mutationsin LD. They did not report LD, nor did they report the
514  disribution of mutational effects along the chromosomes (except as raw data). They too

515 observed ahigh proportion of mutations with positive effects on fitness; in their best-fit model
516 (two-sided Gamma with different means for positive and negative DFES), the DFE was highly
517 leptokurtic, with posterior mean frequency of positive effects, , of 84%. However, the

518 estimated mean (absolute) effect of deleterious mutations, u’, was 4-5 times greater than the

519  mean positive effect, which reconciles the high frequency of mutations with positive effects with
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520 the consistent and well-supported overall decline in fitness of the MA lines. They too observed a
521  strong positive correlation between the inferred posterior mean mutational effect at alocus and
522 theraw difference, and that the Bayesian posterior DFE was shrunk toward zero compared to the
523  raw difference.

524 GILBERT et al. used maximum likelihood, asimplemented in the DFE-alpha software
525 (KEIGHTLEY and EYRE-WALKER 2007), to infer the DFE from segregating SNP variation in a set
526  of ~300 C. eleganswild isolates. They also analyzed data simulated under realistic parameters
527  of mutation and recombination to investigate the effect of self-fertilization on the inferred DFE.
528  They found that, while DFE-alpha reprises the input DFE quite faithfully when mating is

529 random, self-fertilization biases the results toward mutations of small negative effect, evidently
530 dueto the slower decay of LD under selfing. Inclusion of a small fraction (0.1%) of beneficial
531  mutations similarly biases the inferred DFE of deleterious mutations toward small effects.

532 C. elegans MA lines invariably decline in fitness, and early studies concluded that the
533  mean deleterious mutational effect is quite large (~10-25 %) (ESTES et al. 2004; KEIGHTLEY and
534  CABALLERO 1997; VASSILIEVA et al. 2000), although none of those studiesinvestigated

535 competitivefitness. The point estimate of the mean deleterious mutational effect from our

536  neutra + uniform effect model (Moddl 3) in the full set of RI(Al)Lsis-0.16 and the inferred
537  fraction of deleterious mutations (0.064) translates to a per-genome, per-generation deleterious
538 mutation rate of U = 0.02, very consistent with the aforementioned studies. Coincidentally or
539  noat, our inference from RIAIL haplotypes that the C. elegans DFE consists of avery large

540  proportion of mutations with near-zero effects interspersed with a small number of mutations

541  with large negative effectsis very similar to the conclusion of KEIGHTLEY et al. (2000), who
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reached that conclusion from the distribution of fitnesses among C. elegans MA lines that had
been subjected to EM S mutagenesis.
Conclusions— Two primary conclusions emerge from thiswork. First, mathematicsisno
substitute for recombination where inference of the DFE is concerned. When mutations arein
strong LD — repulsion or coupling — different combinations of positive and negative effects can
result in the same cumulative effect, possibly leading to the mistaken inference that the DFE
includes alarge fraction of mutations with positive effects. However, posterior estimates at
linked loci will be strongly negatively correlated, which will not be true of unlinked loci. That
conclusion is obviousin hindsight, and should serve as a cautionary note. But second, the
unplanned inclusion in this study of RILs along with the RIAILS, and the large differencein
average LD between the two sets of lines, turns out to be informative. AsLD isreduced in the
RIAILsvs. the RILs, the DFE becomes more leptokurtic, the inferred proportion of mutations
with negative effects increases, and the relative difference in magnitude between negative and
positive effects increases (negative effects become increasingly greater). When mutations are
binned into haplotypes, the most intuitive interpretation of the results isthat almost all mutations
have effects that are very closeto O, and that the decline in fitness with MA isthe result of a
small number of mutations with large negative effects — perhaps only one, on chromosome Il in
the MA563 genome.

Looking ahead, we envision understanding of the DFE being advanced in three ways.
First, technical advancesin high-throughput gene editing will allow efficient construction of
nearly-isogenic lines (NILs), removing the confounding effects of LD. The mutation spectrum
can beinferred, and a large random sample of spontaneous mutations can be engineered into a

common genomic background(s) and the DFE estimated as we have done here. Second, the DFE
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of acommon set of mutations should be estimated in avariety of contexts. We only assayed
fitnessin one context in this experiment; it would be very interesting to seeif, and how, the DFE
changesin different contexts. Finaly, experimental estimates of the DFE can be employed as
strong priors in estimates of the DFE from standing polymorphism, which may have the added
benefit of facilitating estimates of demographic parameters by de-confounding selection from

demography.
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587 Table 1. Comparison of seven competing Bayesian models fitted to the genotype and phenotype
588 dataof al RILsand RIAILS, and separately to RILs and RIAILs. Each model was run with 50
589  random genotype replicates. Each replicate consisted of four Markov Chains with 4000

590 Metropolis steps. Sampling was performed using the software PyM C3 (Salvatier et al.

591 2016Salvatier et al. 2016). Model performance is measured using the Bayesian |eave-one-out
592  expected log pointwise predictive density (LOO-ELPD), quantifying the generalizability of the
593 fitted model to validation data points. Higher (less negative) LOO-ELPD indicates better model
594  performance.

595

RILs+ RIAILs RILs RIAILSs

LOO- LOO- LOO-

Index Modd name ELPD A Best ELPD A Best ELPD A Best

1 Neutral -3501.2  -99.2 -2200.6  -334 -1493.1 -133.6

2 Uniform -34782  -76.2 -2190.1  -229 -1472.6  -113.1
Neutral +

5 uniform -3422.2  -20.2 -2179.7  -12.6 -1365.1 -55
Negative

4 gamma -3422.2  -20.2 -2181.0 -13.8 -1360.3 -0.8

5 3 effects -3403.1  -11 -2170.8  -3.7 -1360.4 -0.8
Symmetric

6 gamma -34020 O -2168.2 -1.1 -1359.6 O
Asymm.

7 gamma -3402.3 -0.3 -21672 0 -1359.9 -0.3
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FIGURE LEGENDS

Figure 1 - Intrachromosomal pairwise linkage disequilibrium (L D). (a) Pairwise LD (r%)
calculated with all lines (RIAILs + RILS), (b) RILsonly, and (c) RIAILs only. Each heat map
represents a chromosome with pairwise LD (r?) between mutant loci colored as shown in the
legend. The colored lines above each chromosome represent the parental origin of the mutant
alele (MA530-solid blue, MA563-dashed orange). These lines also show the relative physical
position of mutant loci across each chromosome; the far-left vertical line represents the first

mutant locus on the chromosome and the far-right vertical line represents the last mutant locus.

Figure 2 - Distribution of Bayesian posterior mutational effectson fitness. The distribution
of mean mutational effects (u) calculated using the Bayesian MCMC method is shown. The
digtribution is calculated separately with (a) al lines (b), RILs only, or (c) RIAILs only. The
vertical red linein each panel represents the mean of means for that population. The mean value

for each panel is also annotated on the plotsin red text.

Figure 3 - Bayesian posterior mutational effects by genome position. The mutant loci are
plotted by their physical position in the genome (x-axis) and their mean mutational effect (u) (y-
axis), which was calculated using the Bayesian Markov chain Monte Carlo (MCMC) method.
The colors indicate the parent of origin for the mutant locus (M A530-blue, MA563-orange) and

the shapes show the mutant class (indel-circle, snp-triangle). The vertical lines plotted behind
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618  each point represent the 95% confidence intervals of the mutant effect estimates. The mutational
619 effectsare calculated separately with al lines (a), RILs only (b), and RIAILs only (c).

620

621 Figure4 - Therelationship between Bayesian posterior mutational effects (u) and raw

622  difference, ug,y . The effects are calculated separately using (a) al lines, (b) RILs only, or (c)
623  RIAILsonly. Each point represents alocus and is colored by the parent of origin (MA530-blue,
624  MADS63-orange). The shape of the point shows the mutant class (indel=circle, snp=triangle). 95%
625 confidenceintervals for the estimates are plotted as vertical and horizontal lines behind the

626  points. Pearson’s correlation coefficient (r) is displayed in the upper left of each pand.

627

628 Figure5 - Distribution of Bayesian posterior mutant haplotype effects on fitness. The

629  distribution of mean mutant haplotype effects (u) calculated using the Bayesian MCM C method
630  isshown. Thedistribution is calculated separately for (a) al lines, (b) RILs only, or (c) RIAILSs.
631 Thevertical red line in each panel represents the mean of means for that population. The mean
632  valuefor each pandl is also annotated on the plotsin red text.

633

634 Figure 6 - Bayesan posterior mutant haplotype effects by genome position. The 114 mutant
635  haplotypes are plotted by their physical position in the genome (x-axis) and their mean haplotype
636  effect (u) (y-axis), which was calculated using the Bayesian Markov chain Monte Carlo

637 (MCMC) method. The center of haplotypes are plotted as points and the genomic range of multi-
638  locus haplotypes are represented by horizontal boxes plotted behind the points. The colors

639 indicate the parent of origin for the mutant haplotype (M A530-blue, MA563-orange). Multi-

640 locus mutant haplotypes are plotted with square points (multi), and the other single-locus
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641  haplotypes are plotted with shapes based on mutation type (indel-circle, snp-triangle). The

642  vertical lines plotted behind each point represent the 95% confidence intervals of the haplotype
643  effect estimates. The haplotype effects are calculated separately with all lines (a), RILs only (b),
644 and RIAILsonly (c).

645
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