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ABSTRACT 21 

The complex ‘language’ of plant RNA encodes a vast array of biological regulatory elements 22 

that orchestrate crucial aspects of plant growth, development, and adaptation to environmental 23 

stresses. Recent advancements in foundation models (FMs) have demonstrated their 24 

unprecedented potential to decipher complex ‘language’ in biology. In this study, we 25 

introduced PlantRNA-FM, a novel high-performance and interpretable RNA FM specifically 26 

designed based on RNA features including both sequence and structure. PlantRNA-FM was 27 

pre-trained on an extensive dataset, integrating RNA sequences and RNA structure information 28 

from 1,124  distinct plant species. PlantRNA-FM exhibits superior performance in plant-29 

specific downstream tasks, such as plant RNA annotation prediction and RNA translation 30 

efficiency (TE) prediction. Compared to the second-best FMs, PlantRNA-FM achieved an 𝐹1 31 

score improvement of up to 52.45% in RNA genic region annotation prediction and up to 32 

15.30% in translation efficiency prediction, respectively. Our PlantRNA-FM is empowered by 33 

our interpretable framework that facilitates the identification of biologically functional RNA 34 

sequence and structure motifs, including both RNA secondary and tertiary structure motifs 35 

across transcriptomes. Through experimental validations, we revealed novel translation-36 

associated RNA motifs in plants. Our PlantRNA-FM also highlighted the importance of the 37 

position information of these functional RNA motifs in genic regions. Taken together, our 38 

PlantRNA-FM facilitates the exploration of functional RNA motifs across the complexity of 39 

transcriptomes, empowering plant scientists with novel capabilities for programming RNA 40 

codes in plants.  41 

Introduction 42 

The transcriptome contains a wide array of RNA motifs that impact diverse biological 43 

functions such as translation1–5. These RNA motifs encompass both RNA sequence and 44 

structure features. Previous individual studies have revealed the functional importance of RNA 45 
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sequence features such as the Kozak sequence motif6. Recently, our studies along with others 46 

have suggested that both RNA secondary and tertiary structure motifs play important roles in 47 

diverse biological processes7–13. Particularly in plants, the relatively low habitat temperatures 48 

(~20 °C) favour the folding of RNA structure motifs, including RNA tertiary motifs such as 49 

RNA G-quadruplex (rG4)12. However, systematically identifying functional RNA motifs 50 

across transcriptomes remains a formidable challenge due to the high level of complexity 51 

arising from astronomical combinations of the four nucleotide bases into tens of thousands of 52 

transcripts8,14. For example, for a 50-nucleotide sequence, the number of artificially 53 

synthesized sequences would be on the order of 450 (approximately 1.27 ×  1030), which is 54 

impossible to achieve experimentally. Additionally, the functional readouts using the reporter 55 

gene assay for measuring biological functions such as translation may not be sensitive enough 56 

to detect differences in individual single-nucleotide mutations15. 57 

The recent rapid advancements of foundation models (FMs) in artificial intelligence 58 

(AI) are set to show exciting promise for supercharging scientific advances in life sciences16. 59 

FMs are distinguished by their massive scale, often encompassing millions to billions of 60 

parameters. They are first pre-trained in a self-supervised manner on diverse forms of 61 

unlabelled data. This makes them ideally suitable for bioscience, where acquiring abundant 62 

labelled data is both prohibitively expensive and time-consuming. More importantly, FMs are 63 

highly adaptable through fine-tuning and are poised to aid bioscientists in customising 64 

generalist FMs in unravelling complex biological processes, paving the way for unprecedented 65 

capabilities in modulating gene functions. For FMs on DNA sequences, DNABERT2 is one of 66 

the FMs pre-trained on the genome sequences across 135 species, including mammals, fungi 67 

and bacteria17. By pre-training on diverse human and non-human genomes, the Nucleotide 68 

Transformers (NT) family learns transferable representations that enable accurate molecular 69 

phenotype prediction with limited annotated data, while focusing on key genomic elements 70 
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without supervision18. FMs have also achieved success in protein sequences, also known as 71 

protein language models. For example, ESM2 (Evolutionary Scale Modeling) has achieved 72 

remarkable breakthroughs in atomic-level structure representations by pretraining on a vast 73 

amount of protein sequences and structures19.  74 

For building RNA FM, several FM models were pre-trained using RNA sequence 75 

information that has demonstrated great performance in RNA molecule design20–22. However, 76 

RNA sequence information is not sufficient since RNA is capable of forming secondary or 77 

tertiary structure motifs that are important for its functions23,24. Therefore, it is important to 78 

generate an RNA FM including both RNA sequence and structure information to facilitate the 79 

exploration of functional RNA motifs. Here, we developed PlantRNA-FM, a groundbreaking 80 

RNA FM designed to globally identify functional RNA motifs including both RNA sequences 81 

and structure motifs in plants (Fig. 1). By incorporating RNA sequences, annotations, and 82 

structure information from 1,124 distinct plant species, PlantRNA-FM captures the extensive 83 

diversity of plant transcriptomes (Fig. 1). We validate the superior performance of PlantRNA-84 

FM in downstream tasks compared to existing FMs. Furthermore, we also established an 85 

interpretable framework based on our PlantRNA-FM to determine the critical regions across 86 

the 5 ’ untranslated regions (5 ’ UTRs) that significantly impact translation. Remarkably, 87 

PlantRNA-FM identifies RNA motifs at the transcriptome-wide scale that are functionally 88 

important to translation including both RNA sequences, and secondary and tertiary structure 89 

motifs. We further experimentally validated these identified RNA motifs in plants. The 90 

development of our PlantRNA-FM represents a significant leap forward in our ability to 91 

decipher hidden regulatory codes among the extensive complexity of nucleotides across the 92 

transcriptome, opening new avenues for RNA-based gene regulation. 93 

1. Results 94 
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1.1. Our PlantRNA-FM integrates both RNA sequence and structure 95 

information of the transcriptomes across 1,124 plant species.   96 

The plant kingdom encompasses approximately 500,000  species, exhibiting 97 

remarkable diversity. The One Thousand Plant Transcriptomes Initiative (1KP) sequenced the 98 

transcriptomes of 1,124 species, capturing the extensive diversity of plant transcriptomes14. 99 

Here, we took advantage of this unique resource and generated the pre-training dataset for our 100 

PlantRNA-FM (Fig. 1). Different from existing FMs, our PlantRNA-FM was designed to 101 

capture and learn both RNA sequences and RNA structure motifs. We employed RNAfold25 to 102 

predict RNA structures of individual RNA sequences across 1,124  transcriptomes and 103 

integrated them into the pre-training dataset. Our PlantRNA-FM has 35 million parameters, 104 

including 12 transformer network layers, 24 attention heads, and an embedding dimension of 105 

480, optimised for RNA understanding rather than generation (Methods). Our tokenization 106 

approach surpasses the constraints of conventional 𝑘-mers and BPE methods, ensuring the 107 

preservation of RNA structure motifs as coherent units throughout the pre-training process 108 

(Methods). In addition, we incorporated RNA annotation information (CDS and UTRs) and 109 

employed advanced pre-training techniques, such as sequence truncation, filtering and masked 110 

nucleotide modeling (Methods). 111 

To assess the effectiveness of our PlantRNA-FM in RNA structure prediction tasks, we 112 

evaluated its performance (Fig. S1, Table S1) using three benchmark datasets: bpRNA, 113 

ArchiveII, and RNAstralign26–28. The 𝐹1 score, which is the harmonic mean of precision and 114 

recall, was used to measure the model’s predictive performance on these datasets. The 𝐹1 115 

scores achieved by our PlantRNA-FM on these three datasets were 0.750, 0.924, and 0.981, 116 

respectively, while RNAfold alone only obtained 𝐹1 scores of 0.278, 0.759, and 0.748 (Fig. 117 

S1, Table S1). When compared to other state-of-the-art FMs, PlantRNA-FM outperformed the 118 

second-best model by 22.10%, 27.49%, and 17.38% on the respective datasets (Fig. S1, 119 
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Table S1). Therefore, the unique integration of RNA structure information equips our 120 

PlantRNA-FM with the ability to predict RNA structure more accurately. 121 

1.2. PlantRNA-FM demonstrates superior performance on plant-specific 122 

downstream tasks 123 

To evaluate the performance of PlantRNA-FM, we curated a benchmark set consisting 124 

of four other state-of-the-art FMs: DNABERT-2, Nucleotide Transformer, ESM2, and 125 

cdsBERT. We assessed their performance in two plant-specific downstream tasks: genic region 126 

annotation and translation efficiency (TE) prediction (Fig. 2a).  127 

In the RNA genic region annotation prediction task, we aimed to identify and classify 128 

different genic regions of given RNA sequences, such as the 5’ UTR, coding sequence (CDS), 129 

and 3’ UTR. We used the transcriptomes of two model plant species, Arabidopsis thaliana (a 130 

dicot model plant) and Oryza sativa L. ssp. Japonica (rice, a moncot model plant). Both of 131 

them were not included in our pre-training dataset. For the RNA genic region annotation 132 

prediction in these two species, our PlantRNA-FM outperformed other FM models, achieving 133 

average 𝐹1 scores of 0.974 and 0.958 for Arabidopsis and rice, respectively, surpassing the 134 

second-best model by 52.45% and 43.90% (Fig. 2b, Table 1). 135 

For translation, one of the key RNA biological processes, previous research has 136 

highlighted the critical role of the 5’ UTR in regulating translation efficiencies17–19,21,29–31. To 137 

evaluate the TE prediction performance of our PlantRNA-FM, we used the 5’ UTR sequences 138 

of both Arabidopsis and rice transcriptomes along with the corresponding TE values measured 139 

by polysome profiling8. We first classified the TE datasets into high and low TE groups, using 140 

the mean plus or minus the standard deviation as the threshold. In the TE prediction task, 141 

PlantRNA-FM achieved 𝐹1 scores of 0.735 and 0.737 for Arabidopsis and rice, respectively, 142 

outperforming the second-best model by 15.30% and 13.83% (Fig. 2c). Taken together, our 143 
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PlantRNA-FM is better suited for plant-specific downstream tasks compared to other FMs pre-144 

trained on non-plant datasets.  145 

1.3. Interpretable PlantRNA-FM revealed RNA features important to 146 

translation  147 

A general roadblock in applying AI models to biology is that, while these models 148 

demonstrate strong predictive capabilities, the key to their successful application lies in 149 

interpreting them to uncover the biological principles learned by the AI. In this paper, we 150 

established an interpretable framework to derive an attention contrast matrix from our 151 

PlantRNA-FM (Methods). In particular, we are interested in extracting the key RNA features 152 

within the 5’ UTR that significantly impact RNA translation, i.e.,  elucidating the RNA motifs 153 

associated with translation (Fig. 3a). We developed two models in parallel: one is the true 154 

model, denoted as PlantRNA-FM(+), trained using the real TE dataset, while the other one is 155 

called the background model, PlantRNA-FM(-), altered using the same dataset but with 156 

randomly assigned labels (Fig. 3a). The 𝐹1  score achieved by the background model is 157 

approximately 50%, which is close to the random chance (mean 𝐹1 = 0.522), while the true 158 

model attained a significantly higher mean 𝐹1 score of 0.737. This indicates that PlantRNA-159 

FM(+) has successfully learned the RNA features in the 5’ UTR sequences associated with 160 

translation.  161 

By subtracting the attention matrices of the background model from those of the true 162 

model, we obtained an attention contrast matrix that highlighted the significance of nucleotides 163 

in the 5’ UTR contributing to TE (Fig. 3a). Across the transcriptomes, we observed an increase 164 

in attention contrast scores as the position approached the AUG start codon in both Arabidopsis 165 

and rice (Fig. 3b). This result indicates that positions close to the start codon contribute the 166 

most to the TE values. By underlining the RNA sequence contents with high contrast attention 167 

score (identified by a z-score > 2.326), our PlantRNA-FM successfully identified the Kozak 168 
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sequence motifs in both Arabidopsis and rice transcriptomes that are associated with TE (Fig. 169 

3c, 3d). This result demonstrates that our PlantRNA-FM successfully identifies evolutionarily 170 

conserved RNA motifs that are important to translation (Fig. 3c, 3d).   171 

1.4. PlantRNA-FM globally identifies the translation-associated RNA 172 

secondary structure motifs  173 

Since RNA structure is the unique RNA feature incorporated in our PlantRNA-FM, we 174 

further identified the RNA secondary structure motifs important to translation through the 175 

model’s attention contrast matrix and an unsupervised hierarchical clustering strategy (Fig. 4a, 176 

Methods). Overall, we identified 112 RNA secondary structure motifs that are important to 177 

translation, including 63 low translation-associated and 49 high translation-associated RNA 178 

secondary structure motifs (Table S2). Notably, we identified low translation-associated RNA 179 

secondary structure motifs with high GC base pairs such as the RNA secondary structure motif 180 

with four GC base pairs in the stem (Fig. 4b). Interestingly, we also identified high translation-181 

associated RNA structure motifs with a balanced ratio of GC and AU base pairs such as the 182 

RNA structure motif with four base pairs formed by two repeats of ACGU (Fig. 4c).  183 

To validate our identified RNA secondary structure motifs important to translation, we 184 

conducted experimental validation using the dual luciferase reporter assay in plants12. For the 185 

high translation-associated RNA secondary structure motif with four base pairs formed by two 186 

repeats of ACGU, we changed the two AU base pairs to the two GC base pairs, resulting in a 187 

significant decrease in TE with a reduction up to 5.3 -fold (Fig. 4d). In contrast, when we 188 

exchanged the low translation-associated RNA secondary structure motif with four GC base 189 

pair in the stem for the high translation-associated RNA secondary structure motif with a 190 

balanced mix of GC and AU base pairs, we found a significant increase in TE (Fig. 4e). 191 

Notably, when we completely disrupted this low translation-associated RNA structure motif, 192 

resulting in complete single-strandedness, we observed an even greater enhancement of TE up 193 
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to 2.1-fold (Fig. 4f). Our results demonstrate that PlantRNA-FM is capable of determining 194 

functional RNA secondary structure motifs in plants.  195 

1.5. PlantRNA-FM globally identifies the translation-associated RNA 196 

tertiary structure motifs  197 

RNA G-quadruplexes (rG4s) are one of the RNA tertiary structure motifs formed by 198 

the stacking of two or more G-quartets, composed of four guanines held together by both 199 

Watson-Crick and Hoogsteen hydrogen bonds8,32,33. Previous studies have demonstrated the 200 

important role of individual rG4s in repressing translation34. However, it is impossible to 201 

identify all the rG4 motifs important to translation from tens of thousands of rG4 motifs across 202 

the transcriptome. Therefore, we took advantage of our PlantRNA-FM to identify the 203 

translation-associated rG4s at the transcriptome-wide scale.  204 

We first obtained all rG4 motifs in the 5 ’ UTRs from our G4Atlas database33. 205 

Subsequently, we identified all rG4 motifs associated with translation using our model’s 206 

attention contrast matrix across the transcriptome (Methods). Notably, we only identified rG4 207 

motifs associated with low TE, particularly with both GGA and GGU repeat (Table S3). 208 

Therefore, our results indicate that rG4 serves as a translation repressor, which agrees with 209 

previous studies on individual rG4s35–37. To validate our identified translation-associated rG4 210 

motifs, we conducted the experimental validation using dual luciferase reporter assay in 211 

plants12. We fused the 5’UTRs containing our identified rG4 motif and the corresponding 212 

disrupted rG4 motif with the luciferase reporter genes12. We then measured the corresponding 213 

TEs in plants and observed a significant increase of up to 5.8-fold in the disrupted rG4 motif 214 

compared to the TE in the native rG4 motif (Fig. 4g). These results indicate that our PlantRNA-215 

FM is also capable of identifying functional RNA tertiary structure motifs such as translation-216 

associated rG4 motifs throughout the transcriptome. 217 

2. Discussion 218 
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In this study, we developed PlantRNA-FM, a high-performance and interpretable plant-219 

specific RNA FM. PlantRNA-FM (Fig. 1) is designed for understanding RNA sequence and 220 

structure information rather than generation. This state-of-the-art model was specifically 221 

designed based on the extensive plant RNA information from 1,124 plant species, thereby 222 

capturing the remarkable diversity of plant RNA features. From the perspective of the dataset, 223 

we have incorporated RNA sequence information of all the RNAs from the transcriptomes 224 

across 1,124  plant species. We also incorporated the corresponding RNA annotation 225 

information. The integration of RNA structure information in our PlantRNA-FM achieves 226 

superior performance in RNA structure prediction tasks compared to other FMs (Fig. S1). 227 

Regarding the model architecture, we adopted a fine-grained tokenization method with single-228 

nucleotide resolution. This contrasts with commonly used tokenization methods, such as byte 229 

pair encoding (BPE) and k-mers, which rely on frequency-based tokenization and may 230 

inadvertently fragment RNA structure motifs into arbitrary pieces. This strategy ensures the 231 

precise extraction and preservation of RNA structure motifs as coherent units throughout the 232 

pre-training process, thereby maintaining the integrity of crucial structure information. 233 

Additionally, PlantRNA-FM integrates rotational position embedding (RoPE), a technique that 234 

has proven effective in enhancing the modeling capabilities for long tokens in large FMs38. The 235 

implementation of RoPE leads to a approximately 30% reduction in the number of parameters 236 

in the embedding layer, consequently improving the efficiency of RNA tokenisation and 237 

modeling. 238 

The superior performance of PlantRNA-FM can be further demonstrated in the plant-239 

specific downstream tasks (Fig. 2a). Our PlantRNA-FM achieved the best F1 scores of 0.974 240 

and 0.958 for the genic region annotation in Arabidopsis and rice, while our PlantRNA-FM 241 

also achieved much better performance in predicting TE compared to other FMs (Fig. 2b, 2c). 242 

The outperformance of our PlantRNA-FM is likely due to the combination of both RNA 243 
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sequence and structure information in our pre-training dataset, highlighting the importance of 244 

RNA structure, a key RNA feature, in regulating RNA biological processes. 245 

Notably,  we developed an interpretable framework for our PlantRNA-FM to explore 246 

the RNA features within the 5’ UTR that influence translation (Fig. 3a). Using the attention 247 

contrast matrices, we found that the nucleotides in the regions close to the start codon affect 248 

the translation the most, emphasizing the importance of positional information of functional 249 

RNA motifs (Fig. 3b). In contrast to conventional meta-gene analysis, our PlantRNA-FM is 250 

capable of providing positional information of RNA motifs across transcriptomes, which is 251 

critical for biological regulatory functions.  Furthermore, the Kozak sequence, an evolutionary 252 

conserved translation-associated sequence motif across translation initiation sites was 253 

successfully identified in both Arabidopsis and rice using our PlantRNA-FM (Fig. 3c, 3d). This 254 

result successfully demonstrates the capability of our PlantRNA-FM in identifying the RNA 255 

sequence motifs important to translation across the transcriptomes. By using an unsupervised 256 

hierarchical clustering strategy to explore our attention contrast matrix, we further 257 

systematically identified RNA secondary and tertiary structure motifs that are functionally 258 

important to translation (Fig. 4a). Notably, we identified both high translation-associated and 259 

low translation-associated RNA secondary structure motifs where their differences are mainly 260 

in the strengths of the base pairs (Fig. 4b, 4c). This suggests that RNAs may adopt different 261 

RNA structure motifs with diverse folding strengths in regulating biological processes such as 262 

translation. In contrast to conventional meta-gene analysis, our PlantRNA-FM is capable of 263 

delivering a comprehensive understanding of functional RNA motifs such as the type of RNA 264 

motifs, the genic position of the RNA motifs, the positive or negative effects of the RNA motifs 265 

on their functions, and the exact contributions of the RNA motifs to their functions. For 266 

instance, high GC content in the 5’ UTR has been shown to be anti-correlated with translation 267 

efficiency39–41. However, these correlations are not able to facilitate understanding of which 268 
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type of regulatory motifs with high GC content repress translation. Here, our PlantRNA-FM 269 

revealed diverse RNA structure motifs such as the RNA secondary structure motif with four 270 

GC base pairs in the stem and rG4s, serving as low translation-associated RNA motifs. This 271 

suggests the diversity of RNA regulatory motifs across the transcriptomes (Fig. 4b).  272 

In summary, we have built the first interpretable RNA FM with both RNA sequence 273 

and structure information. Our PlantRNA-FM was pre-trained using 1,124 plant transcriptomes. 274 

We have demonstrated that our PlantRNA-FM is capable of identifying functional RNA motifs 275 

such as translation-associated sequence and structure motifs across the transcriptomes. 276 

Through our experimental validations, we have elucidated novel translation-associated RNA 277 

motifs in plants. Our FM model can be extended to explore functional RNA motifs in other 278 

kingdoms and investigate RNA motifs important for other biological functions such as RNA 279 

decay and maturation. Our PlantRNA-FM is poised to transform the way we determine RNA 280 

motifs for regulating gene expression, opening new horizons for programming RNA codes to 281 

facilitate crop improvements and RNA-based applications. 282 

3. Methods 283 

3.1. Pre-training datasets curation 284 

The plant transcriptome data used for pre-training PlantRNA-FM was obtained from 285 

the one thousand plant transcriptomes project (1KP)14. Note that modeling genomic sequences 286 

differs significantly from natural language modeling. For instance, while RNA sequences are 287 

one-dimensional, they strictly follow biological genomic patterns and depend heavily on 288 

certain structural characteristics. In contrast, natural language models are more resilient and 289 

can tolerate linguistic errors such as typos and grammar mistakes. Thus, effective RNA 290 

sequence curation is crucial to minimize the impact of noisy data and enhance modeling 291 

performance. Specifically, our data curation protocol is as follows. 292 
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 Sequence truncation and filtering: We truncated RNA sequences exceeding 512 293 

nucleotides to comply with the model’s maximum length capacity and filtered out sequences 294 

shorter than 20 nucleotides to eliminate noise, such as RNA fragment sequences. 295 

 RNA secondary structure annotation: Given the significant impact of RNA 296 

secondary structures on sequence function, we annotated the local RNA structures of all RNA 297 

sequences using ViennaRNA (with parameters maxBPspan = 30)25. 298 

 Annotation of CDS and UTR sequences: After obtaining the assembled transcripts 299 

and translated RNA regions from the dataset, we retrieve the CDS (translated RNA), 5’ UTR, 300 

and 3’ UTR sequences (upstream and downstream of the translated RNA). 301 

3.2. Model architecture 302 

In this study, we developed PlantRNA-FM, a specialised language model based on the 303 

transformer architecture (Fig. 1). PlantRNA-FM has 35  million parameters, including 12 304 

transformer network layers, 24 attention heads, and an embedding dimension of 480. We 305 

applied layer normalisation and residual connections both before and after the encoder block. 306 

As our focus is on RNA understanding rather than generation, we only utilised the encoder 307 

component of the transformer architecture. PlantRNA-FM is capable of processing sequences 308 

up to 512 nucleotides in length, making it compatible with consumer-grade GPUs, such as the 309 

Nvidia RTX 4090, with a batch size of 16. The model was trained on four A100 GPUs over a 310 

period of three weeks, completing 3 epochs. 311 

3.3. Pretraining strategies of PlantRNA-FM 312 

To develop an RNA FM for exploiting all potential patterns within RNA sequences, we 313 

investigated the biological domain knowledge of RNA sequences and propose three self-314 

supervised pre-training objectives to enhance the foundational model. 315 

3.3.1. Pretraining with Masked nucleotides modeling 316 

Inspired by the concept of masked language modelling (MLM) in NLP, we introduced 317 

masked nucleotide modelling (MNM) for RNA sequences. This approach involves randomly 318 
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masking a portion of nucleotides and leveraging the model itself to reconstruct these masked 319 

nucleotides. Note that the ability to accurately reconstruct masked nucleotides indicates that 320 

the model is empowered with the capability of understanding RNA sequence. MNM 321 

dynamically selects 20% of nucleotides for masking in each input sequence, as opposed to the 322 

fixed 15% masking used in the classic MLM objective designed for shorter natural language 323 

sentences. This increased masking ratio is chosen to enhance MNM's modeling capability, 324 

considering that RNA sequences typically contain around one thousand bases. Specifically, 325 

10% are replaced with a ‘<mask>’ token, 5% with random nucleotides, and the remaining 5% 326 

are left as is. This approach, which aims for token classification, employs cross-entropy as the 327 

loss function to enhance the model’s predictive accuracy for masked or replaced nucleotides. 328 

The loss function 𝐿𝑀𝐿𝑀(𝜃) for MLM is defined as follows:  329 

𝐿𝑀𝐿𝑀(𝜃) = −
1

|𝑚|
∑  

𝑖∈𝑚

log 𝑝𝜃(𝑥𝑖 ∣ 𝑥∖𝑖), 330 

where 𝜃 and 𝑚 are the parameter set inside the FM and the number of masked nucleotides. 331 

𝑝𝜃(𝑥𝑖 ∣ 𝑥∖𝑖)  indicates the probability of predicting the masked nucleotide 𝑥𝑖  based on its 332 

context (𝑥∖𝑖).  333 

3.3.2. Pretraining with RNA Structure Prediction 334 

We hypothesise that effectively aligning RNA sequences with their corresponding 335 

secondary structures is important during the pre-training phase. In practice, we annotated the 336 

secondary structures within the 1KP dataset, which comprises 50 billion nucleotides. This 337 

establishes a robust foundation for our model to recognise the critical role of secondary 338 

structures. Based on these annotated data, we utilized cross-entropy as the loss function to 339 

predict the RNA secondary structure: 340 

𝐿𝑆𝑆𝑃(𝜃) = − ∑  

𝑁

𝑖=1

∑  

𝐶

𝑐=1

𝑦𝑖,𝑐 log 𝑝(𝑦𝑖,𝑐 ∣ 𝑥; 𝜃), 341 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600509doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600509
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

where 𝑁  is the length of the RNA sequence, i.e., the total number of nucleotides in the 342 

sequence; 𝐶 denotes the number of prediction for each nucleotide (e.g., ‘(’, ‘)’, ‘.’); 𝑦𝑖,𝑐 is the 343 

prediction of the 𝑖-th nucleotide 𝑐, and 𝑝(𝑦𝑖,𝑐 ∣ 𝑥; 𝜃) is the probability predicted by the model 344 

parameterised by 𝜃. 𝐿𝑆𝑆𝑃(𝜃) is the loss function that quantifies the discrepancy between the 345 

model’s predicted probabilities for each nucleotide’s secondary structure and the actual 346 

structure, with the aim of minimising this loss to improve the model’s accuracy in secondary 347 

structure prediction. 348 

3.3.3. Pretraining with RNA annotation prediction  349 

RNA sequences exhibit significant variation across different regions, each serving 350 

distinct functions within an organism. Beyond the two aforementioned training objectives, the 351 

third one focuses on classifying regions within RNA sequences. The loss function is as follows: 352 

𝐿𝐶𝐿𝑆(𝜃) = − ∑  

𝑁

𝑖=1

∑  

𝑅

𝑟=1

𝑦𝑖,𝑟 log 𝑝(𝑦𝑖,𝑟 ∣ 𝑥; 𝜃), 353 

where 𝑁 is the length of the RNA sequence, i.e., the total number of nucleotides or segments 354 

considered for classification. 𝑅 represents the number of region categories we are classifying, 355 

including CDS, 3 ’ UTR, and 5 ’ UTR. 𝑦𝑖,𝑟  is the prediction of the 𝑖 -th nucleotide 𝑟 .  356 

𝑝(𝑦𝑖,𝑟 ∣ 𝑥; 𝜃)  is the probability predicted by the model, with parameters 𝜃 , for the 𝑖 -th 357 

nucleotide given the RNA sequence 𝑥. 𝐿𝐶𝐿𝑆(𝜃) is the cross-entropy loss function aimed at 358 

training the model to identify different regions. 359 

3.4. Fine-tuning of downstream tasks 360 

After the pre-training phase, our FM can be fine-tuned to adapt to various downstream 361 

tasks. The fine-tuning phase consists of three steps. First, we gathered an annotated dataset 362 

specific to each downstream task, which consists of sequences and their corresponding labels. 363 

Note that we pre-sliced any sequences that exceed the model’s maximum length, to ensure 364 

compatibility. Next, using the pre-trained FM as a starting point, we adapted the output layer 365 

to accommodate the requirements of RNA modelling tasks, which may include outputting 366 
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sequences, labels, or scalar values. Finally, the training and inference processes are tailored to 367 

the demands of each downstream task by selecting task-specific optimisers, loss functions, and 368 

tuning hyperparameters to achieve optimal performance. The source code for our training and 369 

inference can be found in our repository. 370 

3.5. Polysome profiling mapping and data processing 371 

Raw polysome profiling sequencing data for A. thaliana were obtained from published 372 

research12. For rice, we performed polysome-seq using the same protocol as Arabidopsis8. The 373 

genomes and annotation files of O. sativa and A. thaliana were obtained from Phytozome v13 374 

with version of Oryza sativa v7.0 and TAIR1044. After extracting the transcriptome sequence 375 

through the reference genome and annotation files, clean polysome profiling and RNA-Seq 376 

reads were mapped to the reference transcriptome using HISAT2 and followed by library 377 

normalisation and quantification using DESeq245,46.  Next, genes with an RPKM of less than 378 

1 were removed, and the TE of each gene was calculated by dividing the polysome-associated 379 

RNA levels (polysome profiling RNA-seq) by the corresponding RNA levels  (RNA-Seq)12. 380 

Subsequently, the dataset was classified as high or low TE, using the mean plus or minus the 381 

standard deviation as a threshold, and were respectively assigned the labels 1 and 0 for high 382 

and low TE. 383 

3.6. RNA structure motif identification approach 384 

3.6.1. Extraction of the attention contrast matrix 385 

To facilitate better model interpretation, we created two additional models. One is the 386 

true model, denoted as PlantRNA-FM(+), trained using the real TE labels, while the other one 387 

is the background model, PlantRNA-FM(-), altered using the same dataset but with randomly 388 

assigned labels. Specifically, we fine-tuned the pre-trained PlantRNA-FM (+) and (-) on each 389 

dataset for 100 epochs, using regular hyperparameter settings. To avoid overfitting, we 390 

employed an early stopping strategy to terminate the fine-tuning process when the best F1 score 391 

remained unchanged for 30 epochs. Once the fine-tuning was completed, we used the fine-392 
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tuned models to predict each dataset and derive the raw attention score matrices corresponding 393 

to each RNA sequence. Since the raw attention score matrices are five-dimensional, we 394 

reshaped them through average-based downsampling to generate attention contrast matrices. 395 

Finally, we subtracted the attention contrast matrices of PlantRNA-FM (+) from those of 396 

PlantRNA-FM (-). Furthermore, we padded any negative values in the attention contrast 397 

matrices with zeros for better visualisation. 398 

3.6.2. Generation of the RNA structure motif seed library 399 

To identify RNA structure motifs, we first generate a library of that contains RNA 400 

structure motif seeds derived from RNA sequences across the transcriptomes. In this work, we 401 

apply the Zuker algorithm from the Vienna RNA package to obtain all suboptimal RNA 402 

structure foldings for each RNA in our dataset35,36. We restrict the length of the RNA structure 403 

motifs to a maximum of thirty48. The folded RNA structures are then annotated using 404 

“bpRNA”. Subsequently, all RNA structure motifs are extracted to generate a seed library of 405 

RNA structure motifs for the plant transcriptomes26. In order to obtain reliable RNA structure 406 

motifs, we set the range of RNA structure stems from 4 to 7, and the loop length from 4 to 9. 407 

3.6.3. Identification of translation-associated RNA secondary structure motifs 408 

From the previous step, we obtained all potential foldings of the RNA structure motif 409 

in the 5’ UTR and aligned them with the attention contrast matrix. For each RNA structure 410 

motif, we evaluated it using a paired 𝑡-test to obtain a 𝑝-value. Then, we corrected the obtained 411 

𝑝-value using the Benjamini-Hochberg (BH) method. RNA structure motifs with 𝑝-values less 412 

than 0.01  were considered significant and extracted as the high-attention RNA structure 413 

motifs. Then we extracted their corresponding RNA sequence and converted them into 414 

numerical matrices using the one-hot encoding method. Subsequently, we applied an 415 

unsupervised hierarchical clustering strategy to classify the nucleotides corresponding to the 416 

positions of the RNA structure pairs into 2 to 100 clusters49. For each cluster containing a 417 

minimum of 30 high-attention RNA structure motifs, the significance was assessed using 418 
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Fisher’s exact test. RNA motifs with an odds ratio over 1 and a 𝑝-value below 0.05 were 419 

identified as high translation-associated motifs. On the contrary, those with an odds ratio less 420 

than 1 and a 𝑝-value below 0.05 were associated with low TE. Additionally, we calculated the 421 

mean information content of all bases, defined as the “Average Positional Information Content” 422 

(APIC). RNA motifs with an APIC below 1.5 were excluded from further analysis. 423 

3.6.4. Identification of translation-associated rG4s 424 

We obtained all potential rG4 in rice from our G4Atlas database33. Next, we aligned 425 

the rG4 sequences with the corresponding attention contrast matrix and employed the paired 𝑡-426 

test to assess the statistical significance. For each length of rG4, we adjusted its 𝑝-value using 427 

the Benjamini-Hochberg (BH) correction method and selected rG4s with a 𝑝-value less than 428 

0.01 as the high attention rG4s.  429 

4. Data availability 430 

The polysome-seq sequence data of A. thaliana was obtained from the Sequence Read Archive 431 

(SRA) (https://www.ncbi.nlm.nih.gov/sra) under BioProject ID number PRJNA7627058. The 432 

raw sequence data of O. sativa has been deposited in the Sequence Read Archive (SRA) 433 

(https://www.ncbi.nlm.nih.gov/sra) under BioProject ID number PRJNA1112739.  434 

5. Code availability 435 

The source code of this study is freely available at Huggingface  436 

(https://huggingface.co/yangheng/PlantRNA-FM). 437 
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8. TABLE AND FIGURES 568 

 569 

Fig. 1. Schematic overview of the Pre-training Phase of PlantRNA-FM. The pre-training 570 

dataset comprises transcriptomic sequences from 1,124 plant species, consisting of 571 

approximately 25.0M RNA sequences and 54.2B RNA bases. The green dots on the global 572 

mean temperature map represent the geographical distribution of these plant species across the 573 

world. 574 

575 
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 576 

Fig. 2. Fine-tuning PlantRNA-FM on plant-specific datasets. a, Overview of fine-tuning 577 

PlantRNA-FM for RNA genic region annotation prediction and RNA translation efficiency 578 

(TE) prediction tasks. A. thaliana and O. sativa were selected as representative plant species. 579 

For the RNA genic region annotation prediction task, RNA sequences from these two species 580 

were included, along with three labels: 5' UTR, CDS, and 3' UTR. For the RNA TE prediction 581 

task, 5'UTR sequences from these two species were included, along with TE labels (high TE 582 

and low TE). b, c, Comparison of the model performance of different pre-trained models on 583 

RNA genic region annotation prediction and RNA TE prediction tasks. The error bars represent 584 

the standard deviation of the F1 scores obtained from three fine-tuning replicates. 585 
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 586 

Fig. 3. Our model interpretable framework reveals translation-associated RNA features. 587 

a, Schematic of the model interpretability approach. b, Transcriptome-wide attention contrast 588 

scores. The -1 position represents the first site upstream of the AUG. Different species are 589 

distinguished by colours. c, d, The information content of the 10 high-attention bases closest 590 

to the AUG start codon. 591 

592 
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 593 

Fig 4. RNA structure motif identification approach reveals translation-associated RNA 594 

structure motifs. a, Overview of the RNA structure motif identification approach. RNA 595 

structures are predicted using RNAfold with a maximum length of 30 nucleotides to obtain 596 

RNA structure seeds. Predicted RNA G-quadruplexes were obtained from the G4Atlas 597 

database. b, c, Schematic diagram of high translation-associated RNA structure motifs and low 598 

translation-associated RNA structure motifs. Sequence logos show the information content of 599 

each nucleotide, with semicircles connecting paired bases. APIC stands for average positional 600 

information content. The p-value is derived from Fisher's exact test. d,e,f,g, Experimental 601 

validation of high and low translation-associated RNA structure motifs and low translation-602 

associated RNA G-quadruplex. The bar plot represents the translational efficiency of the 603 

original (WT) and RNA structure-mutated (Mut) constructs from the dual luciferase reporter 604 

assay in plants. It represents the change from high translation-associated RNA structure motifs 605 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600509doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600509
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

to low translation-associated RNA structure motifs (d), the change from low translation-606 

associated RNA structure motifs to high translation-associated RNA structure motifs (e), the 607 

complete disruption of low translation-associated RNA structure motifs (f), and the complete 608 

disruption of low translation-associated rG4 (g). * indicates P < 0.05, ** indicates P < 0.01, by 609 

Student’s t-test, n = 3, error bars indicate se.  610 
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Table 1. Comparison of F1 scores achieved by different pre-trained models on benchmark 611 

datasets. 612 

 613 

 614 

 615 

 616 

Tasks Species PlantRNA-FM cdsBERT DNABERT-2 
Nucleotide 

Transformer 
ESM2 

RNA genic 

region 

annotation 

prediction 

A. thaliana 0.974±0.003 0.254±0.003 0.602±0.001 0.635±0.002 0.639±0.008 

O. sativa 0.958±0.006 0.252±0.017 0.580±0.015 0.635±0.013 0.665±0.010 

       

RNA 

translation 

efficiency 

prediction 

A. thaliana 0.735±0.003 0.359±0.010 0.346±0.001 0.637±0.010 0.617±0.008 

O. sativa 0.737±0.004 0.359±0.010 0.627±0.012 0.631±0.020 0.649±0.011 
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