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ABSTRACT

The complex ‘language’ of plant RNA encodes a vast array of biological regulatory elements
that orchestrate crucial aspects of plant growth, development, and adaptation to environmental
stresses. Recent advancements in foundation models (FMs) have demonstrated their
unprecedented potential to decipher complex ‘language’ in biology. In this study, we
introduced PlantRNA-FM, a novel high-performance and interpretable RNA FM specifically
designed based on RNA features including both sequence and structure. PlantRNA-FM was
pre-trained on an extensive dataset, integrating RNA sequences and RNA structure information
from 1,124 distinct plant species. PlantRNA-FM exhibits superior performance in plant-
specific downstream tasks, such as plant RNA annotation prediction and RNA translation
efficiency (TE) prediction. Compared to the second-best FMs, PlantRNA-FM achieved an F1
score improvement of up to 52.45% in RNA genic region annotation prediction and up to
15.30% in translation efficiency prediction, respectively. Our PlantRNA-FM is empowered by
our interpretable framework that facilitates the identification of biologically functional RNA
sequence and structure motifs, including both RNA secondary and tertiary structure motifs
across transcriptomes. Through experimental validations, we revealed novel translation-
associated RNA motifs in plants. Our PlantRNA-FM also highlighted the importance of the
position information of these functional RNA motifs in genic regions. Taken together, our
PlantRNA-FM facilitates the exploration of functional RNA motifs across the complexity of
transcriptomes, empowering plant scientists with novel capabilities for programming RNA

codes in plants.
Introduction
The transcriptome contains a wide array of RNA motifs that impact diverse biological

functions such as translation'. These RNA motifs encompass both RNA sequence and

structure features. Previous individual studies have revealed the functional importance of RNA
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sequence features such as the Kozak sequence motif®. Recently, our studies along with others
have suggested that both RNA secondary and tertiary structure motifs play important roles in
diverse biological processes’ . Particularly in plants, the relatively low habitat temperatures
(~20 °C) favour the folding of RNA structure motifs, including RNA tertiary motifs such as
RNA G-quadruplex (rG4)'?. However, systematically identifying functional RNA motifs
across transcriptomes remains a formidable challenge due to the high level of complexity
arising from astronomical combinations of the four nucleotide bases into tens of thousands of
transcripts®!4. For example, for a 50-nucleotide sequence, the number of artificially
synthesized sequences would be on the order of 45° (approximately 1.27 x 103°), which is
impossible to achieve experimentally. Additionally, the functional readouts using the reporter
gene assay for measuring biological functions such as translation may not be sensitive enough
to detect differences in individual single-nucleotide mutations!>.

The recent rapid advancements of foundation models (FMs) in artificial intelligence
(Al) are set to show exciting promise for supercharging scientific advances in life sciences!'®.
FMs are distinguished by their massive scale, often encompassing millions to billions of
parameters. They are first pre-trained in a self-supervised manner on diverse forms of
unlabelled data. This makes them ideally suitable for bioscience, where acquiring abundant
labelled data is both prohibitively expensive and time-consuming. More importantly, FMs are
highly adaptable through fine-tuning and are poised to aid bioscientists in customising
generalist FMs in unravelling complex biological processes, paving the way for unprecedented
capabilities in modulating gene functions. For FMs on DNA sequences, DNABERT?2 is one of
the FMs pre-trained on the genome sequences across 135 species, including mammals, fungi
and bacteria!’. By pre-training on diverse human and non-human genomes, the Nucleotide
Transformers (NT) family learns transferable representations that enable accurate molecular

phenotype prediction with limited annotated data, while focusing on key genomic elements
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without supervision'®. FMs have also achieved success in protein sequences, also known as
protein language models. For example, ESM2 (Evolutionary Scale Modeling) has achieved
remarkable breakthroughs in atomic-level structure representations by pretraining on a vast
amount of protein sequences and structures'®.

For building RNA FM, several FM models were pre-trained using RNA sequence
information that has demonstrated great performance in RNA molecule design?°22. However,
RNA sequence information is not sufficient since RNA is capable of forming secondary or
tertiary structure motifs that are important for its functions®***. Therefore, it is important to
generate an RNA FM including both RNA sequence and structure information to facilitate the
exploration of functional RNA motifs. Here, we developed PlantRNA-FM, a groundbreaking
RNA FM designed to globally identify functional RNA motifs including both RNA sequences
and structure motifs in plants (Fig. 1). By incorporating RNA sequences, annotations, and
structure information from 1,124 distinct plant species, PlantRNA-FM captures the extensive
diversity of plant transcriptomes (Fig. 1). We validate the superior performance of PlantRNA-
FM in downstream tasks compared to existing FMs. Furthermore, we also established an
interpretable framework based on our PlantRNA-FM to determine the critical regions across
the 5° untranslated regions (5° UTRs) that significantly impact translation. Remarkably,
PlantRNA-FM identifies RNA motifs at the transcriptome-wide scale that are functionally
important to translation including both RNA sequences, and secondary and tertiary structure
motifs. We further experimentally validated these identified RNA motifs in plants. The
development of our PlantRNA-FM represents a significant leap forward in our ability to
decipher hidden regulatory codes among the extensive complexity of nucleotides across the

transcriptome, opening new avenues for RNA-based gene regulation.

1. Results
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95 1.1. Our PlantRNA-FM integrates both RNA sequence and structure

96 information of the transcriptomes across 1,124 plant species.
97 The plant kingdom encompasses approximately 500,000 species, exhibiting

98 remarkable diversity. The One Thousand Plant Transcriptomes Initiative (1KP) sequenced the

99 transcriptomes of 1,124 species, capturing the extensive diversity of plant transcriptomes'®.
100  Here, we took advantage of this unique resource and generated the pre-training dataset for our
101  PlantRNA-FM (Fig. 1). Different from existing FMs, our PlantRNA-FM was designed to
102  capture and learn both RNA sequences and RNA structure motifs. We employed RNAfold?® to
103  predict RNA structures of individual RNA sequences across 1,124 transcriptomes and
104  integrated them into the pre-training dataset. Our PlantRNA-FM has 35 million parameters,
105 including 12 transformer network layers, 24 attention heads, and an embedding dimension of
106 480, optimised for RNA understanding rather than generation (Methods). Our tokenization
107  approach surpasses the constraints of conventional k-mers and BPE methods, ensuring the
108 preservation of RNA structure motifs as coherent units throughout the pre-training process
109 (Methods). In addition, we incorporated RNA annotation information (CDS and UTRs) and
110 employed advanced pre-training techniques, such as sequence truncation, filtering and masked
111  nucleotide modeling (Methods).
112 To assess the effectiveness of our PlantRNA-FM in RNA structure prediction tasks, we
113 evaluated its performance (Fig. S1, Table S1) using three benchmark datasets: bpRNA,
114  Archivell, and RNAstralign*-28, The F1 score, which is the harmonic mean of precision and
115 recall, was used to measure the model’s predictive performance on these datasets. The F1
116  scores achieved by our PlantRNA-FM on these three datasets were 0.750, 0.924, and 0.981,
117  respectively, while RNAfold alone only obtained F1 scores of 0.278, 0.759, and 0.748 (Fig.
118  S1, Table S1). When compared to other state-of-the-art FMs, PlantRNA-FM outperformed the

119  second-best model by 22.10%, 27.49%, and 17.38% on the respective datasets (Fig. S1,
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120 Table S1). Therefore, the unique integration of RNA structure information equips our
121  PlantRNA-FM with the ability to predict RNA structure more accurately.

122 1.2. PlantRNA-FM demonstrates superior performance on plant-specific

123 downstream tasks

124 To evaluate the performance of PlantRNA-FM, we curated a benchmark set consisting
125  of four other state-of-the-art FMs: DNABERT-2, Nucleotide Transformer, ESM2, and
126  cdsBERT. We assessed their performance in two plant-specific downstream tasks: genic region
127  annotation and translation efficiency (TE) prediction (Fig. 2a).

128 In the RNA genic region annotation prediction task, we aimed to identify and classify
129  different genic regions of given RNA sequences, such as the 5> UTR, coding sequence (CDS),
130 and 3’ UTR. We used the transcriptomes of two model plant species, Arabidopsis thaliana (a
131 dicot model plant) and Oryza sativa L. ssp. Japonica (rice, a moncot model plant). Both of
132  them were not included in our pre-training dataset. For the RNA genic region annotation
133  prediction in these two species, our PlantRNA-FM outperformed other FM models, achieving
134  average F1 scores of 0.974 and 0.958 for Arabidopsis and rice, respectively, surpassing the
135  second-best model by 52.45% and 43.90% (Fig. 2b, Table 1).

136 For translation, one of the key RNA biological processes, previous research has
137  highlighted the critical role of the 5° UTR in regulating translation efficiencies!’1%-21:-31 To
138  evaluate the TE prediction performance of our PlantRNA-FM, we used the 5> UTR sequences
139 of both Arabidopsis and rice transcriptomes along with the corresponding TE values measured
140 by polysome profiling®. We first classified the TE datasets into high and low TE groups, using
141  the mean plus or minus the standard deviation as the threshold. In the TE prediction task,
142  PlantRNA-FM achieved F1 scores of 0.735 and 0.737 for Arabidopsis and rice, respectively,

143  outperforming the second-best model by 15.30% and 13.83% (Fig. 2c). Taken together, our
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144  PlantRNA-FM is better suited for plant-specific downstream tasks compared to other FMs pre-

145  trained on non-plant datasets.

146 1.3. Interpretable PlantRNA-FM revealed RNA features important to

147 translation
148 A general roadblock in applying Al models to biology is that, while these models

149  demonstrate strong predictive capabilities, the key to their successful application lies in
150 interpreting them to uncover the biological principles learned by the Al. In this paper, we
151  established an interpretable framework to derive an attention contrast matrix from our
152  PlantRNA-FM (Methods). In particular, we are interested in extracting the key RNA features
153  within the 5° UTR that significantly impact RNA translation, i.e., elucidating the RNA motifs
154  associated with translation (Fig. 3a). We developed two models in parallel: one is the true
155  model, denoted as PlantRNA-FM(+), trained using the real TE dataset, while the other one is
156 called the background model, PlantRNA-FM(-), altered using the same dataset but with
157 randomly assigned labels (Fig. 3a). The F1 score achieved by the background model is
158  approximately 50%, which is close to the random chance (mean F1 = 0.522), while the true
159  model attained a significantly higher mean F1 score of 0.737. This indicates that PlantRNA-
160 FM(+) has successfully learned the RNA features in the 5> UTR sequences associated with
161 translation.

162 By subtracting the attention matrices of the background model from those of the true
163  model, we obtained an attention contrast matrix that highlighted the significance of nucleotides
164 inthe 5° UTR contributing to TE (Fig. 3a). Across the transcriptomes, we observed an increase
165 inattention contrast scores as the position approached the AUG start codon in both Arabidopsis
166  and rice (Fig. 3b). This result indicates that positions close to the start codon contribute the
167  most to the TE values. By underlining the RNA sequence contents with high contrast attention

168  score (identified by a z-score > 2.326), our PlantRNA-FM successfully identified the Kozak
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169  sequence motifs in both Arabidopsis and rice transcriptomes that are associated with TE (Fig.
170  3c, 3d). This result demonstrates that our PlantRNA-FM successfully identifies evolutionarily

171  conserved RNA motifs that are important to translation (Fig. 3c, 3d).

172 1.4. PlantRNA-FM globally identifies the translation-associated RNA

173 secondary structure motifs
174 Since RNA structure is the unique RNA feature incorporated in our PlantRNA-FM, we

175  further identified the RNA secondary structure motifs important to translation through the
176  model’s attention contrast matrix and an unsupervised hierarchical clustering strategy (Fig. 4a,
177  Methods). Overall, we identified 112 RNA secondary structure motifs that are important to
178 translation, including 63 low translation-associated and 49 high translation-associated RNA
179  secondary structure motifs (Table S2). Notably, we identified low translation-associated RNA
180  secondary structure motifs with high GC base pairs such as the RNA secondary structure motif
181  with four GC base pairs in the stem (Fig. 4b). Interestingly, we also identified high translation-
182  associated RNA structure motifs with a balanced ratio of GC and AU base pairs such as the
183  RNA structure motif with four base pairs formed by two repeats of ACGU (Fig. 4c).

184 To validate our identified RNA secondary structure motifs important to translation, we
185  conducted experimental validation using the dual luciferase reporter assay in plants'2. For the
186  high translation-associated RNA secondary structure motif with four base pairs formed by two
187  repeats of ACGU, we changed the two AU base pairs to the two GC base pairs, resulting in a
188  significant decrease in TE with a reduction up to 5.3 -fold (Fig. 4d). In contrast, when we
189 exchanged the low translation-associated RNA secondary structure motif with four GC base
190 pair in the stem for the high translation-associated RNA secondary structure motif with a
191 balanced mix of GC and AU base pairs, we found a significant increase in TE (Fig. 4e).
192  Notably, when we completely disrupted this low translation-associated RNA structure motif,

193  resulting in complete single-strandedness, we observed an even greater enhancement of TE up
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194  to 2.1-fold (Fig. 4f). Our results demonstrate that PlantRNA-FM is capable of determining

195 functional RNA secondary structure motifs in plants.

196 1.5. PlantRNA-FM globally identifies the translation-associated RNA

197 tertiary structure motifs
198 RNA G-quadruplexes (rG4s) are one of the RNA tertiary structure motifs formed by

199 the stacking of two or more G-quartets, composed of four guanines held together by both
200  Watson-Crick and Hoogsteen hydrogen bonds®3>33. Previous studies have demonstrated the
201 important role of individual rG4s in repressing translation®*. However, it is impossible to
202  identify all the rG4 motifs important to translation from tens of thousands of rG4 motifs across
203 the transcriptome. Therefore, we took advantage of our PlantRNA-FM to identify the
204  translation-associated rG4s at the transcriptome-wide scale.

205 We first obtained all rG4 motifs in the 5° UTRs from our G4Atlas database™.
206  Subsequently, we identified all rG4 motifs associated with translation using our model’s
207  attention contrast matrix across the transcriptome (Methods). Notably, we only identified rG4
208 motifs associated with low TE, particularly with both GGA and GGU repeat (Table S3).
209  Therefore, our results indicate that rG4 serves as a translation repressor, which agrees with
210  previous studies on individual rG4s*>-*". To validate our identified translation-associated rG4
211  motifs, we conducted the experimental validation using dual luciferase reporter assay in
212  plants'?. We fused the 5’UTRs containing our identified rG4 motif and the corresponding
213  disrupted rG4 motif with the luciferase reporter genes'2. We then measured the corresponding
214  TEs in plants and observed a significant increase of up to 5.8-fold in the disrupted rG4 motif
215  compared to the TE in the native rG4 motif (Fig. 49). These results indicate that our PlantRNA-
216 FM is also capable of identifying functional RNA tertiary structure motifs such as translation-

217  associated rG4 motifs throughout the transcriptome.

218 2. Discussion
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219 In this study, we developed PlantRNA-FM, a high-performance and interpretable plant-
220  specific RNA FM. PlantRNA-FM (Fig. 1) is designed for understanding RNA sequence and
221  structure information rather than generation. This state-of-the-art model was specifically
222  designed based on the extensive plant RNA information from 1,124 plant species, thereby
223  capturing the remarkable diversity of plant RNA features. From the perspective of the dataset,
224 we have incorporated RNA sequence information of all the RNAs from the transcriptomes
225 across 1,124 plant species. We also incorporated the corresponding RNA annotation
226  information. The integration of RNA structure information in our PlantRNA-FM achieves
227  superior performance in RNA structure prediction tasks compared to other FMs (Fig. S1).
228 Regarding the model architecture, we adopted a fine-grained tokenization method with single-
229  nucleotide resolution. This contrasts with commonly used tokenization methods, such as byte
230 pair encoding (BPE) and k-mers, which rely on frequency-based tokenization and may
231 inadvertently fragment RNA structure motifs into arbitrary pieces. This strategy ensures the
232  precise extraction and preservation of RNA structure motifs as coherent units throughout the
233  pre-training process, thereby maintaining the integrity of crucial structure information.
234  Additionally, PlantRNA-FM integrates rotational position embedding (RoPE), a technique that
235 has proven effective in enhancing the modeling capabilities for long tokens in large FMs?®. The
236  implementation of ROPE leads to a approximately 30% reduction in the number of parameters
237 in the embedding layer, consequently improving the efficiency of RNA tokenisation and
238  modeling.

239 The superior performance of PlantRNA-FM can be further demonstrated in the plant-
240  specific downstream tasks (Fig. 2a). Our PlantRNA-FM achieved the best F1 scores of 0.974
241 and 0.958 for the genic region annotation in Arabidopsis and rice, while our PlantRNA-FM
242  also achieved much better performance in predicting TE compared to other FMs (Fig. 2b, 2¢).

243  The outperformance of our PlantRNA-FM is likely due to the combination of both RNA
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244 sequence and structure information in our pre-training dataset, highlighting the importance of
245  RNA structure, a key RNA feature, in regulating RNA biological processes.

246 Notably, we developed an interpretable framework for our PlantRNA-FM to explore
247  the RNA features within the 5 UTR that influence translation (Fig. 3a). Using the attention
248  contrast matrices, we found that the nucleotides in the regions close to the start codon affect
249  the translation the most, emphasizing the importance of positional information of functional
250 RNA motifs (Fig. 3b). In contrast to conventional meta-gene analysis, our PlantRNA-FM is
251  capable of providing positional information of RNA motifs across transcriptomes, which is
252  critical for biological regulatory functions. Furthermore, the Kozak sequence, an evolutionary
253  conserved translation-associated sequence motif across translation initiation sites was
254 successfully identified in both Arabidopsis and rice using our PlantRNA-FM (Fig. 3c, 3d). This
255  result successfully demonstrates the capability of our PlantRNA-FM in identifying the RNA
256  sequence motifs important to translation across the transcriptomes. By using an unsupervised
257  hierarchical clustering strategy to explore our attention contrast matrix, we further
258  systematically identified RNA secondary and tertiary structure motifs that are functionally
259  important to translation (Fig. 4a). Notably, we identified both high translation-associated and
260 low translation-associated RNA secondary structure motifs where their differences are mainly
261 in the strengths of the base pairs (Fig. 4b, 4c). This suggests that RNAs may adopt different
262  RNA structure motifs with diverse folding strengths in regulating biological processes such as
263  translation. In contrast to conventional meta-gene analysis, our PlantRNA-FM is capable of
264  delivering a comprehensive understanding of functional RNA motifs such as the type of RNA
265  motifs, the genic position of the RNA motifs, the positive or negative effects of the RNA motifs
266  on their functions, and the exact contributions of the RNA motifs to their functions. For
267 instance, high GC content in the 5° UTR has been shown to be anti-correlated with translation

268 efficiency®*!. However, these correlations are not able to facilitate understanding of which
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269  type of regulatory motifs with high GC content repress translation. Here, our PlantRNA-FM
270  revealed diverse RNA structure motifs such as the RNA secondary structure motif with four
271  GC base pairs in the stem and rG4s, serving as low translation-associated RNA motifs. This
272  suggests the diversity of RNA regulatory motifs across the transcriptomes (Fig. 4b).

273 In summary, we have built the first interpretable RNA FM with both RNA sequence
274  and structure information. Our PlantRNA-FM was pre-trained using 1,124 plant transcriptomes.
275  We have demonstrated that our PlantRNA-FM is capable of identifying functional RNA motifs
276  such as translation-associated sequence and structure motifs across the transcriptomes.
277  Through our experimental validations, we have elucidated novel translation-associated RNA
278  motifs in plants. Our FM model can be extended to explore functional RNA motifs in other
279  kingdoms and investigate RNA motifs important for other biological functions such as RNA
280  decay and maturation. Our PlantRNA-FM is poised to transform the way we determine RNA
281  motifs for regulating gene expression, opening new horizons for programming RNA codes to

282  facilitate crop improvements and RNA-based applications.

283 3. Methods

284 3.1. Pre-training datasets curation
285 The plant transcriptome data used for pre-training PlantRNA-FM was obtained from

286 the one thousand plant transcriptomes project (LKP)!'4. Note that modeling genomic sequences
287  differs significantly from natural language modeling. For instance, while RNA sequences are
288  one-dimensional, they strictly follow biological genomic patterns and depend heavily on
289  certain structural characteristics. In contrast, natural language models are more resilient and
290 can tolerate linguistic errors such as typos and grammar mistakes. Thus, effective RNA
291  sequence curation is crucial to minimize the impact of noisy data and enhance modeling

292  performance. Specifically, our data curation protocol is as follows.


https://doi.org/10.1101/2024.06.24.600509
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600509; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

293 o Sequence truncation and filtering: We truncated RNA sequences exceeding 512
294  nucleotides to comply with the model’s maximum length capacity and filtered out sequences
295  shorter than 20 nucleotides to eliminate noise, such as RNA fragment sequences.

296 o RNA secondary structure annotation: Given the significant impact of RNA
297  secondary structures on sequence function, we annotated the local RNA structures of all RNA
298  sequences using ViennaRNA (with parameters maxBPspan = 30)%.

299 o Annotation of CDS and UTR sequences: After obtaining the assembled transcripts
300 and translated RNA regions from the dataset, we retrieve the CDS (translated RNA), 5° UTR,

301 and 3° UTR sequences (upstream and downstream of the translated RNA).

302 3.2. Model architecture
303 In this study, we developed PlantRNA-FM, a specialised language model based on the

304  transformer architecture (Fig. 1). PlantRNA-FM has 35 million parameters, including 12
305 transformer network layers, 24 attention heads, and an embedding dimension of 480. We
306 applied layer normalisation and residual connections both before and after the encoder block.
307  As our focus is on RNA understanding rather than generation, we only utilised the encoder
308 component of the transformer architecture. PlantRNA-FM is capable of processing sequences
309 upto 512 nucleotides in length, making it compatible with consumer-grade GPUs, such as the
310 Nuvidia RTX 4090, with a batch size of 16. The model was trained on four A100 GPUs over a

311  period of three weeks, completing 3 epochs.

312 3.3. Pretraining strategies of PlantRNA-FM
313 To develop an RNA FM for exploiting all potential patterns within RNA sequences, we

314  investigated the biological domain knowledge of RNA sequences and propose three self-
315  supervised pre-training objectives to enhance the foundational model.

316 3.3.1. Pretraining with Masked nucleotides modeling
317 Inspired by the concept of masked language modelling (MLM) in NLP, we introduced

318 masked nucleotide modelling (MNM) for RNA sequences. This approach involves randomly
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319 masking a portion of nucleotides and leveraging the model itself to reconstruct these masked
320 nucleotides. Note that the ability to accurately reconstruct masked nucleotides indicates that
321 the model is empowered with the capability of understanding RNA sequence. MNM
322  dynamically selects 20% of nucleotides for masking in each input sequence, as opposed to the
323  fixed 15% masking used in the classic MLM objective designed for shorter natural language
324  sentences. This increased masking ratio is chosen to enhance MNM's modeling capability,
325  considering that RNA sequences typically contain around one thousand bases. Specifically,
326  10% are replaced with a ‘<mask>’ token, 5% with random nucleotides, and the remaining 5%
327 are left as is. This approach, which aims for token classification, employs cross-entropy as the
328 loss function to enhance the model’s predictive accuracy for masked or replaced nucleotides.

329  The loss function L, (6) for MLM is defined as follows:

330 Loy (6) = _W1|2 log pe (x; | x:),

331 where 8 and m are the parameter set inside trlleemFM and the number of masked nucleotides.
332 pg(xi | x\l-) indicates the probability of predicting the masked nucleotide x; based on its
333 context (xy;).

334 3.3.2. Pretraining with RNA Structure Prediction
335 We hypothesise that effectively aligning RNA sequences with their corresponding

336  secondary structures is important during the pre-training phase. In practice, we annotated the
337 secondary structures within the 1KP dataset, which comprises 50 billion nucleotides. This
338 establishes a robust foundation for our model to recognise the critical role of secondary
339  structures. Based on these annotated data, we utilized cross-entropy as the loss function to

340  predict the RNA secondary structure:

N (o
341 Lisr @ == > yiclogp(yic | x:6),
1

i=1 c=
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342  where N is the length of the RNA sequence, i.e., the total number of nucleotides in the
343  sequence; C denotes the number of prediction for each nucleotide (e.g., ‘(’, ©)’, “."); ¥ic Is the
344  prediction of the i-th nucleotide c, and p(yi‘c | x; 9) is the probability predicted by the model
345  parameterised by 6. Lgsp(0) is the loss function that quantifies the discrepancy between the
346  model’s predicted probabilities for each nucleotide’s secondary structure and the actual
347  structure, with the aim of minimising this loss to improve the model’s accuracy in secondary
348  structure prediction.

349 3.3.3. Pretraining with RNA annotation prediction
350 RNA sequences exhibit significant variation across different regions, each serving

351  distinct functions within an organism. Beyond the two aforementioned training objectives, the
352  third one focuses on classifying regions within RNA sequences. The loss function is as follows:

N R
353 Les(6) = —z z yirlogp(vi, | x;0),

i=1 r=1

354  where N is the length of the RNA sequence, i.e., the total number of nucleotides or segments
355  considered for classification. R represents the number of region categories we are classifying,

356 including CDS, 3 UTR, and 5° UTR. y;, is the prediction of the i-th nucleotide .
357 p(yir | x;0) is the probability predicted by the model, with parameters 6, for the i-th

358 nucleotide given the RNA sequence x. L 5(68) is the cross-entropy loss function aimed at

359 training the model to identify different regions.

360 3.4. Fine-tuning of downstream tasks

361 After the pre-training phase, our FM can be fine-tuned to adapt to various downstream
362  tasks. The fine-tuning phase consists of three steps. First, we gathered an annotated dataset
363  specific to each downstream task, which consists of sequences and their corresponding labels.
364  Note that we pre-sliced any sequences that exceed the model’s maximum length, to ensure
365  compatibility. Next, using the pre-trained FM as a starting point, we adapted the output layer

366 to accommodate the requirements of RNA modelling tasks, which may include outputting
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367  sequences, labels, or scalar values. Finally, the training and inference processes are tailored to
368 the demands of each downstream task by selecting task-specific optimisers, loss functions, and
369 tuning hyperparameters to achieve optimal performance. The source code for our training and

370 inference can be found in our repository.

371 3.5. Polysome profiling mapping and data processing

372 Raw polysome profiling sequencing data for A. thaliana were obtained from published
373  research!2. For rice, we performed polysome-seq using the same protocol as Arabidopsis®. The
374  genomes and annotation files of O. sativa and A. thaliana were obtained from Phytozome v13
375  with version of Oryza sativa v7.0 and TAIR10*. After extracting the transcriptome sequence
376  through the reference genome and annotation files, clean polysome profiling and RNA-Seq
377 reads were mapped to the reference transcriptome using HISAT2 and followed by library
378 normalisation and quantification using DESeq2*3*¢. Next, genes with an RPKM of less than
379 1 were removed, and the TE of each gene was calculated by dividing the polysome-associated
380 RNA levels (polysome profiling RNA-seq) by the corresponding RNA levels (RNA-Seq)'2.
381  Subsequently, the dataset was classified as high or low TE, using the mean plus or minus the
382  standard deviation as a threshold, and were respectively assigned the labels 1 and 0 for high

383 andlow TE.

384 3.6. RNA structure motif identification approach

385 3.6.1. Extraction of the attention contrast matrix

386 To facilitate better model interpretation, we created two additional models. One is the
387  true model, denoted as PlantRNA-FM(+), trained using the real TE labels, while the other one
388 s the background model, PlantRNA-FM(-), altered using the same dataset but with randomly
389  assigned labels. Specifically, we fine-tuned the pre-trained PlantRNA-FM (+) and (-) on each
390 dataset for 100 epochs, using regular hyperparameter settings. To avoid overfitting, we
391 employed an early stopping strategy to terminate the fine-tuning process when the best F1 score

392  remained unchanged for 30 epochs. Once the fine-tuning was completed, we used the fine-
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393  tuned models to predict each dataset and derive the raw attention score matrices corresponding
394 to each RNA sequence. Since the raw attention score matrices are five-dimensional, we
395 reshaped them through average-based downsampling to generate attention contrast matrices.
396  Finally, we subtracted the attention contrast matrices of PlantRNA-FM (+) from those of
397 PlantRNA-FM (-). Furthermore, we padded any negative values in the attention contrast
398  matrices with zeros for better visualisation.

399 3.6.2. Generation of the RNA structure motif seed library
400 To identify RNA structure motifs, we first generate a library of that contains RNA

401  structure motif seeds derived from RNA sequences across the transcriptomes. In this work, we
402  apply the Zuker algorithm from the Vienna RNA package to obtain all suboptimal RNA
403  structure foldings for each RNA in our dataset®*. We restrict the length of the RNA structure
404  motifs to a maximum of thirty*s. The folded RNA structures are then annotated using
405 “bpRNA”. Subsequently, all RNA structure motifs are extracted to generate a seed library of
406  RNA structure motifs for the plant transcriptomes?. In order to obtain reliable RNA structure
407  motifs, we set the range of RNA structure stems from 4 to 7, and the loop length from 4 to 9.

408 3.6.3. ldentification of translation-associated RNA secondary structure motifs

409 From the previous step, we obtained all potential foldings of the RNA structure motif
410 inthe 5’ UTR and aligned them with the attention contrast matrix. For each RNA structure
411  motif, we evaluated it using a paired t-test to obtain a p-value. Then, we corrected the obtained
412  p-value using the Benjamini-Hochberg (BH) method. RNA structure motifs with p-values less
413 than 0.01 were considered significant and extracted as the high-attention RNA structure
414  motifs. Then we extracted their corresponding RNA sequence and converted them into
415 numerical matrices using the one-hot encoding method. Subsequently, we applied an
416  unsupervised hierarchical clustering strategy to classify the nucleotides corresponding to the
417  positions of the RNA structure pairs into 2 to 100 clusters®. For each cluster containing a

418 minimum of 30 high-attention RNA structure motifs, the significance was assessed using
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419  Fisher’s exact test. RNA motifs with an odds ratio over 1 and a p-value below 0.05 were
420 identified as high translation-associated motifs. On the contrary, those with an odds ratio less
421  than 1 and a p-value below 0.05 were associated with low TE. Additionally, we calculated the
422  mean information content of all bases, defined as the “Average Positional Information Content”
423  (APIC). RNA motifs with an APIC below 1.5 were excluded from further analysis.

424  3.6.4. ldentification of translation-associated rG4s
425 We obtained all potential rG4 in rice from our G4Atlas database®*. Next, we aligned

426  the rG4 sequences with the corresponding attention contrast matrix and employed the paired ¢t-
427  test to assess the statistical significance. For each length of rG4, we adjusted its p-value using
428  the Benjamini-Hochberg (BH) correction method and selected rG4s with a p-value less than

429  0.01 as the high attention rG4s.

430 4. Data availability

431  The polysome-seq sequence data of A. thaliana was obtained from the Sequence Read Archive
432  (SRA) (https://www.ncbi.nIm.nih.gov/sra) under BioProject ID number PRINA7627058. The
433 raw sequence data of O. sativa has been deposited in the Sequence Read Archive (SRA)

434  (https://www.ncbi.nlm.nih.gov/sra) under BioProject ID number PRINA1112739.
435 5. Code availability
436 The source code of this study is freely available at Huggingface

437  (https://huggingface.co/yangheng/PlantRNA-FM).
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570 Fig. 1. Schematic overview of the Pre-training Phase of PlantRNA-FM. The pre-training
571 dataset comprises transcriptomic sequences from 1,124 plant species, consisting of
572  approximately 25.0M RNA sequences and 54.2B RNA bases. The green dots on the global
573  mean temperature map represent the geographical distribution of these plant species across the
574  world.
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Fig. 2. Fine-tuning PlantRNA-FM on plant-specific datasets. a, Overview of fine-tuning
PlantRNA-FM for RNA genic region annotation prediction and RNA translation efficiency
(TE) prediction tasks. A. thaliana and O. sativa were selected as representative plant species.
For the RNA genic region annotation prediction task, RNA sequences from these two species
were included, along with three labels: 5' UTR, CDS, and 3' UTR. For the RNA TE prediction
task, 5'UTR sequences from these two species were included, along with TE labels (high TE
and low TE). b, ¢, Comparison of the model performance of different pre-trained models on
RNA genic region annotation prediction and RNA TE prediction tasks. The error bars represent

the standard deviation of the F1 scores obtained from three fine-tuning replicates.
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586

587  Fig. 3. Our model interpretable framework reveals translation-associated RNA features.
588 a, Schematic of the model interpretability approach. b, Transcriptome-wide attention contrast
589  scores. The -1 position represents the first site upstream of the AUG. Different species are
590 distinguished by colours. ¢, d, The information content of the 10 high-attention bases closest
591 tothe AUG start codon.
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594  Fig 4. RNA structure motif identification approach reveals translation-associated RNA
595  structure motifs. a, Overview of the RNA structure motif identification approach. RNA
596  structures are predicted using RNAfold with a maximum length of 30 nucleotides to obtain
597 RNA structure seeds. Predicted RNA G-quadruplexes were obtained from the G4Atlas
598 database. b, ¢, Schematic diagram of high translation-associated RNA structure motifs and low
599 translation-associated RNA structure motifs. Sequence logos show the information content of
600 each nucleotide, with semicircles connecting paired bases. APIC stands for average positional
601 information content. The p-value is derived from Fisher's exact test. d,e,f,g, Experimental
602 validation of high and low translation-associated RNA structure motifs and low translation-
603 associated RNA G-quadruplex. The bar plot represents the translational efficiency of the
604  original (WT) and RNA structure-mutated (Mut) constructs from the dual luciferase reporter

605 assay in plants. It represents the change from high translation-associated RNA structure motifs
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to low translation-associated RNA structure motifs (d), the change from low translation-
associated RNA structure motifs to high translation-associated RNA structure motifs (e), the
complete disruption of low translation-associated RNA structure motifs (f), and the complete
disruption of low translation-associated rG4 (g). * indicates P < 0.05, ** indicates P < 0.01, by

Student’s t-test, n = 3, error bars indicate se.
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611 Table 1. Comparison of F1 scores achieved by different pre-trained models on benchmark

612 datasets.

613
Tasks Species  PlantRNA-FM  cdsBERT ~ DNABERT:2 ~ ucleotide ESM2
Transformer
RNA genic .
region A.thaliana  0.974+0.003  0.254+0.003  0.602+£0.001  0.635£0.002  0.639+0.008
annotation .
prediction  O- sativa 0.958+0.006  0.252+0.017  0.580+0.015  0.635£0.013  0.665+0.010
RNA A thaliana  0.735£0.003  0.359+0.010  0.346£0.001  0.637+0.010  0.617+0.008
translation
efficiency .
prediction  O- sativa 0.737£0.004  0.359+0.010  0.627+0.012  0.631£0.020  0.649+0.011
614
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