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A next-generation, histological atlas of the human brain
and its application to automated brain MRI segmentation
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Abstract: Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo. In this domain, digital
brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial compar-
ison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived
from histology (e.g., Allen atlas [7], BigBrain [13], Julich [15]), are currently the state of the art and provide exquisite 3D
cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain, a next-
generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular
delineations of five whole brain hemispheres. We developed Al techniques to align and reconstruct ~10,000 histological
sections into coherent 3D volumes with joint geometric constraints (no overlap or gaps between sections), as well as to
semi-automatically trace the boundaries of 333 distinct anatomical ROls on all these sections. Comprehensive delineation
on multiple cases enabled us to build the first probabilistic histological atlas of the whole human brain. Further, we cre-
ated a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan
using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution
ex vivo MRI and volumetric analysis of Alzheimer’s disease and healthy brain ageing based on ~4,000 publicly available
in vivo MRI scans. We publicly release: the raw and aligned data (including an online visualisation tool); the probabilistic
atlas; the segmentation tool; and ground truth delineations for a 100 um isotropic ex vivo hemisphere (that we use for
guantitative evaluation of our segmentation method in this paper). By enabling researchers worldwide to analyse brain
MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, Next-
Brain holds promise to increase the specificity of MRI findings and ultimately accelerate our quest to understand the
human brain in health and disease.
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Magnetic resonance imaging (MRI) is arguably the most
important tool to study the human brain in vivo. Its ex-
quisite contrast between different types of soft tissue
provides a window into the living brain without ionising
radiation, making it suitable to healthy volunteers. Ad-
vances in magnet strength, data acquisition and image
reconstruction methods [16-20] enable the acquisition
of millimetre-resolution MRI scans of the whole brain in
minutes. MRI can be acquired with different pulse se-
guences that image different tissue properties, includ-
ing: neuroanatomy with structural acquisitions [21];
brain activity with functional MRI based on blood oxy-
genation [23]; vasculature with perfusion imaging and
MR angiography [24-27]; or white matter fibres and mi-
crostructure with diffusion-weighted MRI [28,29].

Publicly available neuroimaging packages (Free-
Surfer [30], FSL [31], SPM [32], or AFNI [33]) enable re-
searchers to perform large-scale studies with thousands
of scans [34-37] to study of healthy ageing, as well as a
broad spectrum of brain diseases, such as Alzheimer’s,
multiple sclerosis, or depression [38-41]. A core compo-
nent of these neuroimaging packages is digital 3D brain
atlases. These are reference 3D brain images that are
representative of a certain population and can comprise
image intensities, neuroanatomical labels, or both. We
note that, due to its highly convoluted structure, the
cerebral cortex is often modelled with specific atlases
defined on surface coordinate systems [42,43] — rather
than 3D images). We refer the reader to [44] for a com-
parative study.

Volumetric atlases are often computed by averaging
data from a large cohort of subjects [45], but they may
encompass as few as a single subject — particularly when
built from labour-intensive modalities like histol-
ogy [13]. Atlases enable aggregation of data from differ-
ent subjects into a common coordinate frame (CCF),
thus allowing analyses (e.g., group comparisons) as a
function of spatial location. Atlases that include neuro-
anatomical labels also provide prior spatial information
for analyses like automated image segmentation [46].

Most volumetric atlases, including those in neuroim-
aging packages, capitalise on the abundance of in vivo
MRI scans acquired at ~1 mm isotropic resolution. This
voxel size is sufficient to represent information at the
level of gyri, sulci, and subcortical nuclei. However, it is
insufficient to study the brain at the subregion level,
which is desirable as brain substructures (e.g., hippo-
campal subfields, nuclei of the thalamus) are known
from animal models and postmortem human studies to
have different function and connectivity [47]. This limi-
tation can be circumvented with higher resolution im-
ages acquired ex vivo, typically with MRI or histology.

Ex vivo MRI has no motion artifacts and enables long
acquisitions with voxels in the 100 um range [3,48-50].
However, it fails to visualise cytoarchitecture and re-
solve many boundaries between brain areas. Histology,
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on the other hand, is a microscopic 2D modality that can
visualise distinct aspects of cytoarchitecture using an ar-
ray of stains — thus revealing neuroanatomy with much
higher detail. Earlier versions of histological atlases
were printed, often not digitised, and comprised only a
small set of labelled sections. Representative examples
include the Morel atlas of the thalamus and basal gan-
glia [51] or the Mai atlas of the whole brain [1] (Fig. 1A).

While printed atlases are not useful for computational
analysis, serial histology can be combined with image
registration (alignment) methods to enable volumetric
reconstruction of 3D histology [52], thus opening the
door to creating 3D histological atlases. These have two
major advantages over MRI atlases: (i) providing a more
detailed CCF; and (ii) the ability to segment MRl scans at
finer resolution — with potentially higher sensitivity and
specificity to detect brain alterations caused by brain
diseases or to measure treatment effects.

Earlier 3D histological atlases were limited in terms of
anatomical coverage. Following the Morel atlas, two
digital atlases of the basal ganglia and thalamus were
presented [8,11] (Fig. 1B-C). To automatically obtain
segmentations for living subjects, one needs to register
their MRl scans with the histological atlases, which is dif-
ficult due to differences in image resolution and con-
trast between the two modalities. For this reason, the
authors mapped the atlases to 3D MRI templates (e.g.,
the MNI atlas [53]) that can be more easily registered to
in vivo images of other subjects. A similar atlas combin-
ing histological and MRI data was proposed for the hip-
pocampus [12] (Fig. 1D-F). Our group presented a histo-
logical atlas of the thalamus [14] (Fig. 1G), but instead of
using MNI as a stepping stone, we used Bayesian meth-
ods [54] to map our atlas to in vivo scans directly.

More recently, several efforts have aimed at the con-
siderably bigger endeavour of building histological at-
lases of the whole human brain:

- BigBrain [13] comprises over 7,000 histological sec-
tions of a single brain, which were accurately recon-
structed in 3D with an ex vivo MRI scan as reference
(Fig. 1H). BigBrain paved the road for its follow-up Ju-
lich-Brain [15], which aggregates data from 23 individu-
als. A subset of 10 cases have been provided to the com-
munity for labelling, which has led to the annotation of
248 cytoarchitectonic areas as part of 41 projects. The
maximum likelihood maps have been mapped to MNI
space for in vivo MRI analysis [55], but have two caveats
(Fig. 11): they align poorly with the underlying MNI tem-
plate, and subcortical annotations are only partial.

- The Allen reference brain [7] (Fig. 1)) has comprehen-
sive anatomical annotations on high-resolution histol-
ogy and is integrated with the Allen gene expression at-
lases. However, it only has delineations for a sparse set
of histological sections of a single specimen (resembling
a printed atlas). For 3D analysis of in vivo MRI, the au-
thors have manually labelled the MNI template using a
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protocol inspired by their own atlas (Fig. 1K), but with a
fraction of the labels and less accurately delineations —
since they are made on MRI and not histology.

- The Ahead brains [22] (Fig. 1L-N) comprise quantita-
tive MRI and registered 3D histology for two separate
specimens. These have anatomical labels for a few
dozen structures, but almost exclusively of the basal
ganglia. Moreover, these labels were obtained from the
MRI with automated methods, rather than manually
traced on the high-resolution histology.

While these histological atlases of the whole brain
provide exquisite 3D cytoarchitectural maps, interoper-
ability with other datasets (e.g., gene expression), and
some degree of MRI-histology integration, there are
currently neither: (i) datasets with densely labelled 3D
histology of the whole brain; nor (ii) probabilistic atlases
built from such datasets, which would enable analyses

Printed histological atlases (2D)
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such as Bayesian segmentation or CCF mapping of the
whole brain at the subregion level.

In this article, we present NextBrain, a next-genera-
tion probabilistic atlas of the human brain built from
comprehensively labelled, multi-modal 3D histology of
five half brains (Fig. 10-P). The full dataset comprises
~10,000 sections stained with Hematoxylin and Eosin
(H&E, which discerns cell nuclei vs cytoplasm) and Luxol
Fast Blue (LFB, which enhances myelin). These sections
were: (i) 3D-reconstructed with ex vivo MRI scans and
highly customised image registration methods powered
by artificial intelligence (Al); and (ii) densely segmented
into 333 regions of interest (ROIs) with Al-enabled,
semi-automated segmentation methods (Fig. 1Q). The
3D label maps are finally use to build a probabilistic atlas
(Fig. 1R), which is combined with a Bayesian tool for au-
tomated segmentation of MRI scans (Fig. 1S).

Histological atlases of specific brain regions (3D)

~ @ Comprehensive
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@ Full brain coverage
| © Typically not digital
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. 4
ﬂ&' ®. 4

@High-resolution @ Two specimens.
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\L histology @ From automated method) \ labelling in 3D probabilistic atlas MRI<->histology J)

@ Multi-modality histology @ High-resolution MRI

Fig. 1: NextBrain in the context of histological atlases, with advantages (9), disadvantages (), and neutral points. (@). (A) Printed atlas [1]
with a sparse set of manually traced sections [1]. (B-G) Histological atlases of specific ROIs with limited coverage: (B) Manually traced section
of basal ganglia [8]; (C) 3D rendering of deterministic thalamic atlas [11]; (D-F) Traced MRI slice, histological section, and 3D rendering of
hippocampal atlas [12]; and (G) Slice of our probabilistic atlas of the thalamus [14]. (H-N) Histological atlases of the whole human brain:
(H) 3D reconstructed slice of BigBrain [13]; (1) Slice of Julich-Brain labels on MNI template; (J) Labelled histological section of the Allen refer-
ence brain [7]; (K) Labelling of MNI template with protocol inspired by (J); and (L-N) MRI, histology, and 3D rendering of AHEAD brains [22].
(O-S) Our new atlas NextBrain includes dense 3D histology (O-P) and comprehensive manual labels (Q) of five specimens, enabling the con-
struction of a probabilistic atlas (R) that can be combined with Bayesian techniques to automatically label 333 ROlIs in in vivo MRl scans (S).
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As the first densely labelled probabilistic atlas of the
human brain built from histology, NextBrain enables
brain MRI analysis at a level of detail that was previously
not possible. Our results showcase: the high accuracy of
our 3D histology reconstructions; NextBrain's ability to
accurately segment MRI scans acquired in vivo or ex
vivo; its ability to separate diseased and control subjects
in an Alzheimer’s group study; and a volumetric study of
healthy brain aging with unprecedented detail.

In addition to the atlas and companion segmentation
tool, our public release of NextBrain includes: (i) The
raw and registered images that were used to build the
atlas, which are an invaluable resource for MRI signal
modelling or histology registration studies; (ii) An online
visualisation tool for these data, for educational and
data inspection purposes; (iii) The source code and pipe-
lines, which do not require any highly specialised equip-
ment for intact coronally sliced full-brain procedures
used at select sites like Allen or Julich (e.g., full-brain mi-
crotome, custom glass slides), thus enabling wide ap-
plicability; and (iv) our manual 3D segmentation of a
publicly available 100 um isotropic ex vivo scan [3] (used
here for quantitative evaluation), which is a valuable re-
source in its own right, e.g., for ROl analysis in the ex
vivo CCF of this scan, or for development and validation
of segmentations methods.

A | Photograph of formalin-fixed
hemisphere (lateral view).

D | Histology: coronal section
of cerebrum stained with LFB
(left) and H&E (right).

E | Al-assisted labelling of 333
ROls on LFB (left: cerebrum; mid:
brainstem; right: cerebellum).

H | Sagittal (left), coronal (mid), and axial slices of our atlas. Each voxel is painted
with a linear combination the colours of each label, multiplied by their probabilities.
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B | MRI acquisition and FreeSurfer processing. Left: sagittal slice of MRI. Center: corresponding
FreeSurfer segmentation. Right: 3D rendering of reconstructed and parcellated pial surface.

F | 3D rendering of blocks after Initial
linear alignment using a joint registration
method with soft shape constraints.

Densely labelled 3D histology of five human
hemispheres

The NextBrain workflow is summarised in Fig. 2 and de-
tailed in the Methods section. The first result of the
pipeline (panels A-G) is a multimodal dataset with hu-
man hemispheres from five donors (three right, two
left), including half cerebellum and brainstem. Each of
the five cases comprises accurately aligned high-resolu-
tion ex vivo MRI, serial histology (H&E and LFB stains),
and dense ground truth segmentations of 333 cortical
and subcortical brain ROls.

Aligning the histology of a case is analogous to solving
a 2,000-piece jigsaw puzzle in 3D, with the ex vivo MRI
as reference (similar to the image on the box cover), and
with pieces that are deformed by sectioning and mount-
ing on glass slides — with occasional tissue folding or
tearing. This problem falls out of the scope of existing
inter-modality registration techniques [56], including
slice-to-volume [57] and 3D histology reconstruction
methods [52], which do not have to address the joint
constraints of thousands of sections, acquired in non-
parallel planes as part of different blocks.

Instead, we solve this challenging problem with a cus-
tom, state-of-the-art image registration framework (Fig.
3), which includes three components specifically devel-
oped for this project: (i) a differentiable regulariser that
minimises overlap of different blocks and gaps in be-

C | Tissue blocking and processing. Left:
blocked coronal slice of the cerebrum.
Right: blockface photo of a cerebral block.

G | Reconstructed coronal slice of LFB (left), H&E (mid),
and labels (right), overlaid on MRI, after nonlinear
registration with Al and robust Bayesian refinement.

F | Coronal slice of an in vivo MRI scan and its segmentation with the atlas. The atlas can also
be used for segmenting ex vivo MRI and as common coordinate frame for population analyses.

Fig. 2: NextBrain workflow. (A) Photograph of formalin-fixed hemisphere. (B) High-resolution (400 um) ex vivo MRI scan, FreeSurfer seg-
mentation, and extracted pial surface (parcellated with FreeSurfer). (C) Tissue slabs and blocks, before and after paraffin embedding.
(D) Section stained with H&E and LFB. (E) Semi-automated labelling of 333 ROIs on sections using an Al method [5]. (F) Initialization of
affine alignment of tissue blocks using a custom registration algorithm that minimises overlap and gaps between blocks. (G) Refinement
of registration with histology and nonlinear transform, using a combination of Al and Bayesian techniques [9,10]. (H) Orthogonal slices of
3D probabilistic atlas. (I) Automated Bayesian segmentation of an in vivo scan into 333 ROIs using the atlas.
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tween [58]; (i) an Al registration method that uses con-
trastive learning to provide highly accurate alignment of
corresponding brain tissue across MRI and histol-
ogy [10]; and (iii) a Bayesian refinement technique
based on Lie algebra that guarantees the 3D smooth-
ness of the reconstruction across modalities, even in the
presence of outliers due to tissue folding and tear-
ing [9]. We note that this is an evolution of our previ-
ously presented pipeline [6], which incorporates the
aforementioned contrastive Al method and jointly opti-
mises the affine and nonlinear transforms to achieve a
32% reduction in registration error (details below).

Qualitatively, it is apparent from Fig. 3 that a very high
level of accuracy is achieved for the spatial alignment,
despite the non-parallel sections and distortions in the
raw data. The regulariser effectively aligns the block
boundaries in 3D without gaps or overlap (Fig. 3A-C),
with minor discontinuities across blocks (e.g., in the
temporal lobe). When the segmentations of different
blocks are combined (Fig. 3A, right), the result is a
smooth mosaic of ROI labels.

The Al-enabled registration across MRI and histologi-
cal stains is exemplified in Fig. 3B. Overlaying the main
ROI contours on the different modalities reveals the
highly accurate alignment of the three modalities (MRI,
H&E, LFB), even in convoluted regions of the cortex and

A | Joint registration that minimizes overlap and and gaps between blocks
(this reconstructed slice comprises four different blocks)
Labels

C | Bayesian refinement for smooth 3D reconstruction across sections
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the basal ganglia. The mosaic of modalities also high-
lights the accurate alignment at the substructural level,
e.g., subregions of the hippocampus.

Fig. 3C shows the 3D reconstruction in orientations
orthogonal to the main plane of sectioning (coronal).
This illustrates not only the lack of gaps and overlaps be-
tween blocks, but also the smoothness that is achieved
within blocks. This is thanks to the Bayesian refinement
algorithm, which combines the best features of meth-
ods that: (i) align each section independently (high fidel-
ity to the reference, but jagged reconstructions) and
(i) those that align sections to their neighbours (smooth
reconstructions, but with “banana effect”, i.e., straight-
ening of curved structures).

Quantitative results are presented in Fig. 3D, as well
as in Extended Data Figs. 1-4D. The registration error,
evaluated with 250 manually placed pairs of landmarks
(known to be a better proxy for the registration error
than similarity of label overlap metrics [59]), is 0.99 +
0.51 mm — a considerable reduction with respect our
previous pipeline [6], which yielded 1.45 + 1.68 mm
(Wilcoxon p=2x1022). The spatial distribution of the er-
ror is further visualised with kernel regression in Ex-
tended Data Fig. 5, which shows that this distribution is
fairly uniform, i.e., there is no obvious consistent pat-
tern across cases.

B | Accurate inter-modality registration with Al techniques

D | 3D Registration error for a sample case: visualization of
landmarks (left) and histogram of the error magnitude (right)

Frequency
o

o
=3
@

0

0.5 1 1.5 2 25 3
Landmark error (mm)

MRI landmarks
Registered histology landmarks
Registration error

Error (mean * std.dev.): 1.27 £ 0.59 mm
Error (Mancini et al.):  1.44 £ 1.80 mm

Fig. 3: 3D reconstruction of Case 1. (A) Coronal slice of 3D reconstruction; boundaries between blocks are noticeable from uneven staining.
(B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of reconstruction,
which is smooth thanks to the Bayesian refinement, and avoids gaps and overlaps thanks to the regulariser. (D) Visualization of 3D landmark
registration error (left); histogram of its magnitude (right); and mean * standard deviation (bottom), compared with our previous pipe-
line [6]. See Extended Data for results on the other cases. The average landmark error across all cases is 0.99mm (vs 1.45 for [6]).
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Our pipeline is widely applicable as it produces accu-
rate 3D reconstructions from blocked tissue in standard-
sized cassettes, sectioned with a standard microtome.
The computer code and aligned dataset is freely availa-
ble in our public repository (see Data Availability). For
educational and data inspection purposes, we have built
an online visualisation tool for the multi-modality data,
which is available at: github-pages.ucl.ac.uk/NextBrain.

Supplementary Video 1 illustrates the aligned data,
which includes: (i) MRI at 400 um isotropic resolution;
(i) aligned H&E and LFB histology digitised at 4 um res-
olution (with 250 or 500 um spacing, depending on the
brain location); and (iii) ROl segmentations, obtained
with a semi-automated Al method [5]. The ROIs com-
prise 34 cortical labels (following the Desikan-Killiany at-
las [60]) and 299 subcortical labels (following different
atlas for different brain regions; see the Methods sec-
tion below and the supplement). This public dataset en-
ables researchers worldwide to conduct their own stud-
ies not only in 3D histology reconstruction, but also
other fields like: high-resolution segmentation of MRI
or histology [61]; MRI-to-histology and histological
stain-to-stain image translation [62]; deriving MRI sig-
nal models from histology [63]; and many others.

A next-generation probabilistic atlas of the
human brain

The labels from the five human hemispheres were co-
registered and merged into a probabilistic atlas. This
was achieved with a method that alternately registers
the volumes to the estimate of the template, and up-
dates the template via averaging [64]. The registration
method is diffeomorphic [65] to ensure preservation of
the neuroanatomic topology (e.g., ROIs do not split or
disappear in the deformation process). Crucially, we use

(A) Comparison with whole brain atlases
Coronal Sagittal Axial
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an initialization based on the MNI template, which
serves two important purposes: preventing biases to-
wards any of the cases (which would happen if we ini-
tialised with one of them); and “centring” our atlas on a
well-established CCF computed from 305 subjects,
which largely mitigates our relatively low number of
cases. Since the MNI template is a greyscale volume, the
first iteration of atlas building uses registrations com-
puted with the ex vivo MRI scans. Subsequent iterations
register labels directly with a metric based on the prob-
ability of the discrete labels according to the atlas [64].

Fig. 4 shows close-ups of orthogonal slices of the atlas,
which models voxel-wide probabilities for the 333 ROIs
on a 0.2mm isotropic grid. The resolution and detail of
the atlas represents a substantial advance with respect
to the SAMSEG atlas [2] currently in FreeSurfer (Fig. 4A).
SAMSEG models 13 brain ROIs at 1 mm resolution and
is, to the best of our knowledge, the most detailed prob-
abilistic atlas that covers all brain regions. The figure
also shows approximately corresponding slices of the
manual labelling of the MNI atlas with the simplified Al-
len protocol [7]. Compared with NextBrain, this labelling
is not probabilistic and does not include many histolog-
ical boundaries that are invisible on the MNI template
(e.g., hippocampal subregions, in violet). For this rea-
son, it only has 138 ROIs — while NextBrain has 333.

A comprehensive comparison between and all digit-
ised sections of the printed atlas by Mai & Paxinos [1]
and approximately equivalent sections of the Allen ref-
erence brain and NextBrain is included in the supple-
ment. The agreement between the three atlases is gen-
erally good, especially for the outer boundaries of the
whole structures, e.g., the whole hippocampus, amyg-
dala, or thalamus. Mild differences can be found in the

(B) Close-ups with boundaries of maximum probability segmentations overlaid in red
Coronal

Sagittal

Fig. 4: NextBrain probabilistic atlas. (A) Portions of the NextBrain probabilistic atlas (which has 333 ROIs), the SAMSEG atlas in FreeSurfer [2] (13
ROIs), and the manual labels of MNI based on the Allen atlas [7] (138 ROIs). (B) Close-up of three orthogonal slices of NextBrain. The colour
coding follows the convention of the Allen atlas [7], where the hue indicates the structure (e.g., purple is thalamus, violet is hippocampus, green
is amygdala) and the saturation is proportional to neuronal density. The colour of each voxel is a weighted sum of the colour corresponding to
the ROIs, weighted by the corresponding probabilities at that voxel. The red lines separate ROIs based on the most probable label at each voxel,
thus highlighting boundaries between ROIs of similar colour; we note that the jagged boundaries are a common discretization artefact of prob-
abilistic atlases in regions where two or more labels mix continuously, e.g., the two layers of the cerebellar cortex.
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delineation of sub-structures, both cortical and subcor-
tical (e.g., subdivision of the accumbens), mainly due to:
(i) the forced choice of applying arbitrary anatomical cri-
teria in both atlases due to lack of contrast in smaller
regions; (ii) different anatomical definitions; and (iii) the
probabilistic nature of NextBrain. We emphasise that
these differences are not exclusive to NextBrain, as they
are also present between Mai-Paxinos and Allen.

Close-ups NextBrain slices centred on representative
brain regions are shown in Fig. 4B, with boundaries be-
tween the ROIs (computed from the maximum likeli-
hood segmentation) overlaid in red. These highlight the
anatomical granularity of the new atlas, with dozens of
subregions for areas such as the thalamus, hippocam-
pus, amygdala, midbrain, etc. An overview of the com-
plete atlas is shown in Supplementary Video 2, which il-
lustrates the atlas construction procedure and flies
through all the slices in axial, coronal, and sagittal view.

The probabilistic atlas is freely available as part of our
segmentation module distributed with FreeSurfer. The
maximum likelihood and colour-coded probabilistic
maps (as in Fig. 4) can also be downloaded separately
from our public repository, for quick inspection and ed-
ucational purposes (see Data Availability). Developers of
neuroimaging methods can freely capitalise on this re-
source, e.g., by extending the atlas via combination with
other atlases or manually tracing new labels; or by de-
signing their own segmentation methods using the at-
las. Neuroimaging researchers can use the atlas for fine-
grained automated segmentation (as shown below), or
as a highly detailed CCF for population analyses.

Automated segmentation of ultra-high reso-
lution ex vivo MRI

One of the new analyses that NextBrain enables is the
automated fine-grained segmentation of ultra-high-res-
olution ex vivo MRI. Since motion is not a factor in ex
vivo imaging, very long MRI scanning times can be used
to acquire data at resolutions that are infeasible in vivo.
One example is the publicly available 100 um isotropic
whole brain presented in [3], which was acquired in a
100-hour session on a 7T MRI scanner. Such datasets
have huge potential in mesoscopic studies connecting
microscopy with in vivo imaging [66].

Volumetric segmentation of ultra-high-resolution ex
vivo MRI can be highly advantageous in neuroimaging in
two different manners. First, by supplementing such
scans (like the 100-micron brain) with neuroanatomical
information that augments their value as atlases, e.g.,
as common coordinate frames or for segmentation pur-
poses [67]. And second, by enabling analyses of ex vivo
MRI datasets at scale (e.g., volumetry or shape analysis).

Dense manual segmentation of these datasets is prac-
tically infeasible, as it entails manually tracing ROIs on
over 1,000 slices. Moreover, one typically seeks to label
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these images at a higher level of detail than in vivo (i.e.,
more ROIs of smaller sizes), which exacerbates the prob-
lem. One may utilise semi-automated methods like the
Al-assisted technique we used in to build NextBrain (see
previous section), which limits the manual segmenta-
tion to one every N slices [5] (N=4 in this work). How-
ever, such a strategy only ameliorates the problem to a
certain degree, as tedious manual segmentation is still
required for a significant fraction of slices.

A more appealing alternative is thus automated seg-
mentation. However, existing approaches have limita-
tions, as they either: (i) were designed for 1 mm in vivo
scans and do not capitalise on the increased resolution
of ex vivo MRI[2,54]; or (ii) utilise neural networks
trained with ex vivo scans but with a limited number of
ROIs, due to the immense labelling effort that is re-
quired to generate the training data [61].

This limitation is circumvented by NextBrain: as a
probabilistic atlas of neuroanatomy, it can be combined
with well-established Bayesian segmentation methods
(which are adaptive to MRI contrast) to segment ultra-
high-resolution ex vivo MRI scans into 333 ROIls. We
have released in FreeSurfer an implementation that seg-
ments full brain scans in approximately 1h, using a desk-
top equipped with a graphics processing unit (GPU).

To quantitatively evaluate the segmentation method,
we have created a ground truth segmentation of the
public 100-micron brain [3], which we are publicly re-
leasing as part of NextBrain. To make this burdensome
task practical and feasible, we simplified it in five man-
ners: (i) downsampling the data to 200 um resolution;
(i) labelling only one hemisphere; (iii) using the same
semi-automated Al method as in NextBrain for faster
segmentation; (iv) using FreeSurfer to automatically
subdivide the cerebral cortex; and (v) labelling only a
subset of 98 visible ROIs (see Supplementary Videos 3
and 4). Even with these simplifications, labelling the
scan took over 100 hours of manual tracing effort.

We compared the ground truth labels with the auto-
mated segmentations produced by NextBrain using Dice
overlap scores. Since the ground truth has fewer ROIs
(particularly in the brainstem), we: (i) clustered the ROls
in the automated segmentation that correspond with
the ROIs in the ground truth; and (ii) used a version of
NextBrain in which the brainstem ROIs are simplified to
better match those of the ground truth (with 264 labels
instead of 333). The results are shown in Extended Data
Table 1. As expected, there is a clear link between size
and Dice. Larger ROIs like the cerebral white matter or
cortex have Dice around 0.9. The smaller ROIs have
lower Dice, but very few are below 0.4 —which is enough
to localize ROIs. We note that the median Dice (0.667) is
comparable with that reported by other Bayesian seg-
mentation methods for brain subregions [68].
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478 Sample slices and their corresponding automated 497
479 and manual segmentations are shown in Fig. 5. The ex- 498
480 quisite resolution and contrast of the dataset enables 499
481 our atlas to accurately delineate a large number of ROIs 500
482 with very different sizes, including small nuclei and sub- 501
483 regions of the hippocampus, amygdala, thalamus, hypo- 502
484 thalamus, midbrain, etc. Differences in label granularity 503
485 aside, the consistency between the automated and 504
486 ground truth segmentation is qualitatively very strong. 505
487 To the best of our knowledge, this is the most com-  50¢
488 prehensive dense segmentation of a human brain MRl 57
489 scan to date. As ex vivo datasets with tens of scans be- 508
490 come available [61,69,70], our tool has great potential 509
491 in augmenting mesoscopic studies of the human brain. 510
492 Moreover, the labelled MRI that we are releasing has 511
493 great potential in other neuroimaging studies, e.g., for 512
494 training or evaluating segmentation algorithms; for ROl 513
495 analysis in the high-resolution ex vivo space; or for vol- 514
496 umetric analysis via registration-based segmentation. 515
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Fig. 5: Automated Bayesian segmentation of publicly available ultra-high 546
resolution ex vivo brain MRI [3] using the simplified version of NextBrain, 547
and comparison with ground truth (only available for right hemisphere). We
show two coronal, sagittal, and axial slices. The MRI was resampled to
200 um isotropic resolution for processing. As in previous figures, the seg-549
mentation uses the Allen colour map [7] with boundaries overlaid in red. 550
We note that the manual segmentation uses a coarser labelling protocol. 551
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Fine-grained analysis of in vivo MRI

NextBrain can also be used to automatically segment in
vivo MRl scans at the resolution of the atlas (200 um iso-
tropic), yielding an unprecedented level of detail. Scans
used in research typically have isotropic resolution with
voxel sizes ranging from 0.7 to 1.2mm, and therefore do
not reveal all ROl boundaries with as much detail as ul-
tra-high-resolution ex vivo MRI. However, many bound-
aries are still visible, including the external boundaries
of brain structures (hippocampus, thalamus, etc.) and
some internal boundaries, e.g., between the anterome-
dial and lateral posterior thalamus [14]. Bayesian seg-
mentation capitalises on these visible boundaries and
combines them with the prior knowledge encoded in
the atlas to produce the full subdivision — albeit with
lower reliability for the indistinct boundaries [49]. A
sample segmentation is shown in Fig. 2F.

Evaluation of segmentation accuracy: We first evalu-
ated the in vivo segmentation quantitatively in two dif-
ferent experiments. First, we downsampled the ex vivo
MRI scan from the previous section to 1 mm isotropic
resolution (i.e., the standard resolution of in vivo scans);
segmented it at 200 um resolution; and computed Dice
scores with the high-resolution ground truth. The re-
sults are displayed in Extended Data Table 1. The me-
dian Dice is 0.590, which is 0.077 lower than at 200 um,
but still fair for such small ROIs [68]. Moreover, most
Dice scores remain 0.4, as for the ultra-high resolution,
hinting that the priors can successfully provide a rough
localization of internal boundaries, given the more visi-
ble external boundaries.

In a second experiment, we analysed the Dice scores
produced by NextBrain in OpenBHB [4], a public meta-
dataset with ~1 mm isotropic T1l-weighted scans of
over 3,000 healthy individuals acquired at over 60 sites.
Using FreeSurfer 7.0 as a silver standard, we computed
Dice scores for our segmentations at the level of whole
regions, i.e., the level of granularity provided by Free-
Surfer. While these scores cannot assess segmentation
accuracy at the subregion level, they do enable evalua-
tion on a much larger multi-site cohort, as well as com-
parison with the Allen MNI template — the only compet-
ing histological (or rather, histology-inspired) atlas that
can segment the whole brain in vivo (Fig. 1). The results
(Extended Data Fig. 6) show that: (i) NextBrain consist-
ently outperform the Allen MNI template, as expected
from the fact that one atlas is probabilistic while the
other is not; and (ii) NextBrain yields Dice scores in the
range expected from Bayesian segmentation meth-
ods [2] — despite using only five cases, thanks to the ex-
cellent generalization ability of generative models [71].
Application to Alzheimer’s disease (AD) classification:
To further compare NextBrain with the Allen MNI tem-
plate, we used an AD classification task based on linear
discriminant analysis (LDA) of ROl volumes (corrected by
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age and intracranial volume). Using a simple linear clas-
sifier on a task where strong differences are expected
allows us to use classification accuracy as a proxy for the
quality of the input features, i.e., the ROl volumes de-
rived from the automated segmentations. To enable di-
rect comparison, we used a sample of 383 subjects from
the ADNI dataset [72] (168 AD, 215 controls) that we
used in previous publications [14,49,50].

Using the ROI volumes estimated by FreeSurfer 7.0
(which do not include subregions) yields and area under
the receiver operating characteristic curve (AUROC)
equal to 0.911, which classification accuracy of 85.4% at
its elbow. The Allen MNI template exploits subregion in-
formation to achieve AUROC = 0.929 and 86.9% accu-
racy. The increased segmentation accuracy and granu-
larity of NextBrain enables it to achieve AUROC = 0.953
and 90.3% accuracy — with a significant increase in
AUROC with respect to the Allen MNI template (p = 0.01
for a DelLong test). This AUROC is also superior to those
of specific ex vivo atlases we have presented in the prior
work [14,49,50] — which range from 0.830 to 0.931
Application to fine-grained signature of aging: We per-
formed Bayesian segmentation with NextBrain on 705
subjects (aged 36-90, mean 59.6 years) from the Ageing
HCP dataset [73], which comprises high-quality in vivo
scans at 0.8mm resolution. We computed the volumes
of the ROIs for every subject, corrected them for total

A | Aging HCP (N = 705)
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B | OpenBHB, age > 35 (N = 431)

intracranial volume (by division) and sex (by regression),
and computed their Spearman correlation with age. We
used the Spearman rather than Pearson correlation be-
cause, being rank-based, it is a better model for ageing
trajectories as they are known to be nonlinear for wide
age ranges [74,75].

The result of this analysis is, to the best of our
knowledge, the most comprehensive map of regional
ageing of the human brain to date (Fig. 6A and Extended
Data Fig. 7A; see also full trajectories for select ROIs in
Extended Data Fig. 8). Cortically, we found significant
negative correlations with age in the prefrontal cortex
(marked with ‘a’ on the figure) and insula (b), whilst the
temporal (c) and parahippocampal cortices (d) did not
yield significant correlation; this is consistent with find-
ings from studies of cortical thickness [38,76]. The white
matter (e) is known to decline steadily after ~35
years [74,75], and such negative correlation is also de-
tected by NextBrain. Other general ageing patterns at
the whole structure level [74,75] are also successfully
captured, such as a steady volume decrease of the cau-
date, thalamus, or putamen (f), or the volumetric reduc-
tion of the hippocampus, amygdala, or globus pallidus.

Importantly, NextBrain also unveils more granular
patterns of the relationship between volumes and age-
ing within these regions. For example, the anterior cau-

C | OpenBHB, all cases (N = 3220)

Fig. 6: Absolute value of Spearman correlation for ROl volumes vs age derived from in vivo MRI scans: (A) Ageing HCP dataset (image resolu-
tion: .8mm isotropic; age range: 36-90 years; mean age: 59.6 years); please see main text for meaning of markers (letters). (B) OpenBHB
dataset [4], restricted to subjects with ages over 35 years to match Ageing HCP (resolution 1 mm isotropic; age range: 36-86 years; mean
age: 57.9 years). (C) Full OpenBHB dataset (age range: 6-86 years, mean age: 25.2 years); please note the different scale of the colour bar.
The ROI volumes are corrected by intracranial volume (by division) and sex (by regression). Further slices are shown in Extended Data Fig. 6.
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date (g) showed a stronger negative correlation be-
tween age and volume than the posterior caudate (h).
Similarly, the external segment of the globus pallidus (i)
showed a stronger correlation than the internal seg-
ment (j) — an effect that was not observed in previous
work studying the whole pallidum [77]. The ability to in-
vestigate separate subregions highlights a differential
effect of ageing across brain networks, particularly a
stronger effect on the regions of the limbic and prefron-
tal networks, given the correlations we found in the cau-
date head (g), insula (b), orbitofrontal cortex (k), amyg-
dala, and thalamus [78]. Within the thalamus, the
correlation is more significant in the mediodorsal (l), an-
teroventral (m), and pulvinar subnuclei (n), key regions
in the limbic, lateral orbitofrontal and dorsolateral pre-
frontal circuits. In the hippocampus, subicular regions
(o) correlate more strongly than the rest of the struc-
ture. The pattern of correlation strength is more homo-
geneous across subregions in the amygdala (key region
in the limbic system), hypothalamus, and cerebellum.

We then revisited the OpenBHB dataset and per-
formed the same regression analysis only for subjects
older than 35 years, to match the age range of the Age-
ing HCP dataset (N=431, aged 36-86 years, mean 57.9
years). The results are shown in Fig. 6B and Extended
Data Fig. 7B. Despite the differences in acquisition and
the huge heterogeneity of the OpenBHB dataset, the re-
sults are highly consistent with those from HCP — but
with slightly lower significance, possibly due to the in-
creased voxel size (twice as big, since 1/0.8% = 2).

We also performed the same analysis with all 3,220

subjects in OpenBHB; see results in Fig. 6C and Extended
Data Fig. 7C. For many regions, widening the age range
to 6-86 years (mean age: 25.2) yields non-monotonic
ageing curves and therefore weaker Spearman correla-
tions. Therefore, these graphs highlight the regions
whose volumes start decreasing with age the earliest,
such as the putamen or medial thalamus. Many other
patterns of association between age and ROI volumes
remain very similar to those of the older populations
(e.g., basal ganglia or hippocampus).
The segmentation code is publicly available in Free-
Surfer: https://surfer.nmr.mgh.harvard.edu/fswiki/His-
toAtlasSegmentation and can be run with a single line of
code. This enables researchers worldwide to analyse
their scans at a superior level of detail without manual
effort or highly specific neuroanatomical knowledge.

Discussion and Conclusion

NextBrain is a next-generation probabilistic human
brain atlas, which is publicly available and distributed
with a companion Bayesian segmentation tool and
multi-modal dataset. The dataset itself is already a
highly valuable resource: researchers have free access
to both the raw and registered data, which they can use
for their own research (e.g., in MRI signal modelling or
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registration), or to augment the atlas with new ROls,
e.g., by labelling them on the histology or MRI data and
rebuilding the atlas. The atlas itself is a novel, high-res-
olution common coordinate frame for population anal-
yses. The 3D segmentation of 100 um ex vivo brain MRI
scan [3] is a valuable complement to this (already very
useful) resource. Finally, the Bayesian tool enables seg-
mentation of ex vivo and in vivo MRI at an unprece-
dented level of granularity.

Due to its volumetric and semantic nature, NextBrain
can be complemented by other segmentation methods
and atlases that describe other aspects of the brain. For
example, more accurate cortical segmentation and par-
cellation can be achieved with surface models [79]. We
are currently working on models that combine neural
networks with geometry processing to obtain laminar
segmentations from both in vivo and ex vivo
scans [80,81]. Surface placement will also warrant com-
patibility with cortical atlases obtained with multi-
modal data [43].

NextBrain is extensible: since all the data and code are
publicly available, it is possible to download the data,
modify (or extend) the manual annotations, and then
rerun all the scripts to build a custom atlas. However,
these tasks require domain expertise and compute
power. Automatising this process to make it more ac-
cessible is desirable, but also quite a large engineering
endeavour — and thus remains as future work.

The Bayesian segmentation tool in NextBrain is com-
patible with 1 mm isotropic scans, as illustrated by the
Alzheimer’s and aging experiments. As with other prob-
abilistic atlases, Bayesian segmentation can be aug-
mented with models of pathology to automatically seg-
ment pathology, such as tumours [82] or white matter
hyperintensities [83]. Importantly, NextBrain’s high
level of detail enables us to fully take advantage of high-
resolution data, such as ex vivo MRI, ultra-high field MRI
(e.g., 7T), and exciting new modalities like HiP-CT [84].
As high-quality 3D brain images become increasingly
available, NextBrain’s ability to analyse them with supe-
rior granularity holds great promise to advance
knowledge about the human brain in health and in dis-
ease.

Methods

Brain specimens

Hemispheres from five individuals (including half of the
cerebrum, cerebellum, and brainstem), were used in
this study, following informed consent to use the tissue
for research and the ethical approval for research by the
National Research Ethics Service (NRES) Committee Lon-
don-Central. All hemispheres were fixed in 10% neutral
buffered formalin (Fig. 2A). The laterality and de-
mographics are summarised in Table 1 below; the do-
nors were neurologically normal, but one case had an
undiagnosed, asymptomatic tumour (diameter:


https://surfer.nmr.mgh.harvard.edu/fswiki/HistoAtlasSegmentation
https://surfer.nmr.mgh.harvard.edu/fswiki/HistoAtlasSegmentation
https://doi.org/10.1101/2024.02.05.579016
http://creativecommons.org/licenses/by/4.0/

715
716
717

718

719
720
721
722
723

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.579016; this version posted September 6, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

~10mm) in the white matter, adjacent to the pars oper-
cularis. This tumour did not pose issues in any of the

processing steps described below.

Table 1 Demographics of the five cases used in this study.
Case Age at death Sex Laterality Incidental findings
Case 1 94 years Female Right None
Case 2 84 years Female Right None
Case 3 80 years Male Right None
Case 4 79 years Female Left Tumour adjace‘nt to

pars opercularis
Case 5 78 years Male Left None

Data acquisition

Our data acquisition pipeline largely leverages our pre-
vious work [6]. We summarise it here for completeness;
the reader is referred to the corresponding publication
for further details.

- MRI scanning. Prior to dissection, the hemispheres
were scanned on a 3T Siemens MAGNETOM Prisma
scanner. The specimens were placed in a container filled
with Fluorinert (perfluorocarbon), a proton-free fluid
with no MRI signal that yields excellent ex vivo MRI con-
trast and does not affect downstream histological anal-
ysis [85]. The MRI scans were acquired with a T2-
weighted sequence (optimised long echo train 3D fast
spin echo [86]) with parameters: TR = 500 ms, TEeff =
69ms, BW = 558 Hz/Px, echo spacing = 4.96ms, echo
train length = 58, 10 averages, with 400 um isotropic
resolution, acquisition time for each average = 547s, to-
tal scanning time = 91 min. These scans were processed
with a combination of SAMSEG [2] and the FreeSurfer
7.0 cortical stream [79] to bias field correct the images,
generate rough subcortical segmentations, and obtain
white matter and pial surfaces with corresponding par-
cellations according to the Desikan-Killiany atlas [60]
(Fig. 2B).

- Dissection. After MRI scanning, each hemisphere is dis-
sected to fit into standard 74x52mm cassettes. First,
each hemisphere was split into cerebrum, cerebellum,
and brainstem. Using a metal frame as a guide, these
were subsequently cut into 10mm-thick slices in coro-
nal, sagittal, and axial orientation, respectively. These
slices were photographed inside a rectangular frame of
known dimensions for pixel size and perspective correc-
tion; we refer to these images as “whole slice photo-
graphs.” While the brainstem and cerebellum slices all
fit into the cassettes, the cerebrum slices were further
cut into as many blocks as needed. “Blocked slice pho-
tographs” were also taken for these blocks (Fig. 2C, left).
- Tissue processing and sectioning. After standard tissue
processing steps, each tissue block was embedded in
paraffin wax and sectioned with a sledge microtome at
25um thickness. Before each cut, a photograph was
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taken with a 24MPx Nikon D5100 camera (ISO = 100, ap-
erture = /20, shutter speed = automatic) mounted right
above the microtome, pointed perpendicularly to the
sectioning plane. These photographs (henceforth
“blockface photographs”) were corrected for pixel size
and perspective using fiducial markers. The blockface
photographs have poor contrast between grey and
white matter (Fig. 2C, right) but also negligible nonlinear
geometric distortion, so they can be readily stacked into
3D volumes. A 2D convolutional neural network (CNN)
pretrained on the ImageNet dataset [87] and fine-tuned
on 50 manually labelled examples was used to automat-
ically produce binary tissue masks for the blockface im-
ages.

- Staining and digitisation. We mounted on glass slides
and stained two consecutive sections every N (see be-
low), one with Hematoxylin and Eosin (H&E) and one
with Luxol Fast Blue (LFB); see Fig. 2D. The sampling in-
terval was N=10 (i.e., 250um) for blocks that included
subcortical structures in the cerebrum, medial struc-
tures of the cerebellum, or brainstem structures. The in-
terval was N=20 (500um) for all other blocks. All stained
sections were digitised with a flatbed scanner at 6,400
DPI resolution (pixel size: 3.97um). Tissue masks were
generated using a 2D CNN similar to the one used for
blockface photographs (pretrained on ImageNet and
finetuned on 100 manually labelled examples).

Dense labelling of histology

Segmentations of 333 ROIs (34 cortical, 299 subcortical)
were made by authors ER, JA, and EB (with guidance
from DK, MB, JZ, and JCA) for all the LFB sections, using
a combination of manual and automated techniques
(Fig. 2E). The general procedure to label each block was:
(i) produce an accurate segmentation for one of every
four sections; (ii) run Smartinterpol [5] to automatically
segment the sections in between; and (iii) manually cor-
rect these automatically segmented sections when
needed. Smartinterpol is a dedicated Al technique that
we have developed specifically to speed up segmenta-
tion of histological stacks in this project.

To obtain accurate segmentations on sparse sections,
we used two different strategies depending on the brain
region. For the blocks containing subcortical or brain-
stem structures, ROIs were manually traced from
scratch using a combination of ITK-SNAP [88] and Free-
Surfer’s viewer “Freeview”. For cerebellum blocks, we
first trained a 2D CNN (a U-Net [89]) on 20 sections on
which we had manually labelled the white matter and
the molecular and granular layers of the cortex. The
CNN was then run on the (sparse) sections, and the out-
puts manually corrected. This procedure saves a sub-
stantial amount of time, since manually tracing the con-
voluted shape of the arbor vitae is extremely time
consuming. For the cortical cerebrum blocks, we used a
similar strategy as for the cerebellum, labelling the tis-
sue as either white or grey matter. The subdivision of
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the cortical grey matter into parcels was achieved by
taking the nearest neighbouring cortical label from the
aligned MRI scan (details on the alignment below).

The manual labelling followed neuroanatomical pro-
tocols based on different brain atlases, depending on
the brain region. Further details on the specific delinea-
tion protocols are provided in the Supplementary Meth-
ods. The general ontology of the 333 ROIs is based on
the Allen reference brain [7], and is provide in a spread-
sheet as part of the Supplementary Data.

3D histology reconstruction

3D histology reconstruction is the inverse problem of re-
versing all the distortion that brain tissue undergoes
during acquisition, in order to reassemble a 3D shape
that accurately follows the original anatomy. For this
purpose, we used a framework with four modules.

- Initial blockface alignment. In order to roughly initialise
the 3D reconstruction, we relied on the stacks of block-
face photographs. Specifically, we used our previously
presented hierarchical joint registration framework [58]
that seeks to: (i) align each block to the MRI with a sim-
ilarity transform, by maximising the normalised cross-
correlation of their intensities; while (ii) discouraging
overlap between blocks or gaps in between, via a differ-
entiable regulariser. The similarity transforms allowed
for rigid deformation (rotation, translation), as well as
isotropic scaling to model the shrinking due to tissue
processing. The registration algorithm was initialised
with transforms derived from the whole slice, blocked
slice, and blockface photographs (see details in [6]). The
registration was hierarchical in the sense that groups of
transforms were forced to share the same parameters
in the earlier iterations of the optimisation, to reflect
our knowledge of the cutting procedure. In the first iter-
ations, we clustered the blocks into three groups: cere-
brum, cerebellum, and brainstem. In the following iter-
ations, we clustered the cerebral blocks that were cut
from the same slice, and allowed translations in all di-
rections, in-plane rotation, and global scaling. In the fi-
nal iterations, each block alignment was optimised inde-
pendently. The numerical optimisation used the LBFGS
algorithm [90]. The approximate average error after this
procedure was ~2mm [58]. A sample 3D reconstruction
is shown in Fig. 2F.

- Refined alignment with preliminary nonlinear model.
Once a good initial alignment is available, we can use the
LFB sections to refine the registration. These LFB images
have exquisite contrast (Fig. 2D) but suffer from nonlin-
ear distortion — rendering the good initialization from
the blockface images crucial. The registration procedure
was nearly identical to that of the blockface, with two
main differences. First, the similarity term used the local
(rather than global) normalised cross-correlation func-
tion [91] in order to handle uneven staining across sec-
tions. Second, the deformation model and optimisation
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hierarchy were slightly different since nonlinear regis-
tration benefits from more robust methods. Specifically:
The first two levels of optimisation were the same, with
blocks grouped into cerebrum/cerebellum/brainstem
(first level) or cerebral slices (second level), and optimi-
sation of similarity transforms. The third level (i.e., each
block independently) was subdivided into four stages in
which we optimised transforms with increasing com-
plexity, such that the solution of every level of complex-
ity serves as initialisation to the next. In the first and
simplest level, we allowed for translations in all direc-
tions, in-plane rotation and global scaling (5 parameters
per block). In the second level, we added a different
scaling parameter in the normal direction of the block (6
parameters per block). In the third level, we allowed for
rotation in all directions (8 parameters per block). In the
fourth and final level, we added to every section in every
block a nonlinear field modelled with a grid of control
points (10mm spacing) and interpolating B-splines. This
final deformation model has approximately 100,000 pa-
rameters per case (~100 parameters per section, times
~1,000 LFB sections).

- Nonlinear Al registration. We seek to produce final
nonlinear registrations that are accurate, consistent
with each other, and robust against tears and folds in
the sections. We capitalise on Synth-by-Reg (SbR [10]),
an Al tool for multimodal registration that we have re-
cently developed, to register histological sections to
MRI slices resampled to the plane of the histology (as
estimated by the linear alignment). SbR exploits the
facts that: (i) intra-modality registration is more accu-
rate than inter-modality registration [92]; and (ii) there
is a correspondence between histological sections and
MRI slices, i.e., they represent the same anatomy. In
short, SbR trains a CNN to make histological sections
look like MRl slices (a task known as style transfer [93]),
using a second CNN that has been previously trained to
register MRI slices to each other. The style transfer re-
lies on the fact that only good MRI synthesis will yield a
good match when used as input to the second CNN,
combined with a contrastive loss [94] that prevents
blurring and content shift due to overfitting. SbR pro-
duces highly accurate deformations parameterised as
stationary velocity fields (SVF [95]).

- Bayesian refinement. Running SbR for each stain and
section independently (i.e., LFB to resampled MRI, and
H&E to resampled MRI) yields a reconstruction that is
jagged and sensitive to folds and tears. One alternative
is to register each histological section to each neighbour
directly, which achieves smooth reconstructions but in-
curs the so-called “banana effect”, i.e., a straightening
of curved structures [52]. We have proposed a Bayesian
method that yields smooth reconstructions without ba-
nana effect [9]. This method follows an overconstrained
strategy, by computing registrations between: LFB and
MRI; H&E and MRI; H&E and LFB; each LFB section and


https://doi.org/10.1101/2024.02.05.579016
http://creativecommons.org/licenses/by/4.0/

927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

944
945
946
947
948
949
950
951
952

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

981

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.579016; this version posted September 6, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

the two nearest neighbours in either direction across
the stack; each H&E section and its neighbours; and
each MRl slice and its neighbours. For a stack with S sec-
tions, this procedure yields 15xS-18 registrations, while
the underlying dimensionality of the spanning tree con-
necting all the images is just 3xS-1. We use a probabilis-
tic model of SVFs to infer the most likely spanning tree
given the computed registrations, which are seen as
noisy measurements of combinations of transforms in
the spanning tree. The probabilistic model uses a La-
place distribution, which relies on L1 norms and is thus
robust to outliers. Moreover, the properties of SVFs en-
able us to write the optimization problem as a linear
program, which we solve with a standard simplex algo-
rithm [96]. The result of this procedure was a 3D recon-
struction that is accurate (it is informed by many regis-
trations), robust, and smooth (Figures 2G and 3).

Atlas construction

The transforms for the LFB sections produced by the 3D
reconstructions were applied to the segmentations to
bring them into 3D space. Despite the regulariser
from [58], minor overlaps and gaps between blocks still
occur. The former were resolved by selecting the label
which is furthest inside the corresponding ROI. For the
latter, we used our previously developed smoothing ap-
proach [14].

Given the low number of available cases, we com-
bined the left (2) and right (3) hemispheres into a single
atlas. This was achieved by flipping the right hemi-
spheres and computing a probabilistic atlas of the left
hemisphere using an iterative technique [64]. To initial-
ise the procedure, we registered the MRI scans to the
MNI atlas [53] with the right hemisphere masked out,
and averaged the deformed segmentations to obtain an
initial estimate of the probabilistic atlas. This first regis-
tration was based on intensities, using a local normal-
ised cross-correlation loss. From that point on, the al-
gorithm operates exclusively on the segmentations.

Every iteration of the atlas construction process com-
prises two steps. First, the current estimate of the atlas
and the segmentations are co-registered one at the
time, using: (i) a diffeomorphic deformation model
based on SVFs parameterised by grids of control points
and B-splines (as implemented in NiftyReg [97]), which
preserves the topology of the segmentations; (ii) a data
term, which is the log-likelihood of the label at each
voxel according to the probabilities given by the de-
formed atlas (with a weak Dirichlet prior to prevent logs
of zero); and (iii) a regulariser based on the bending en-
ergy of the field, which encourages regularity in the de-
formations. The second step of each iteration updates
the atlas by averaging the segmentations. The proce-
dure converged (negligible change in the atlas) after five
iterations. Slices of the atlas are shown in Figs. 2H and 4.

Bayesian segmentation
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Our Bayesian segmentation algorithm builds on well-es-
tablished methods in the neuroimaging litera-
ture [54,98,99]. In short, the algorithm jointly estimates
a set of parameters that best explain the observed im-
age in light of the probabilistic atlas, according to a gen-
erative model based on a Gaussian mixture model
(GMM) conditioned on the segmentation, combined
with a model of bias field. The parameters include the
deformation of the probabilistic atlas, a set of coeffi-
cients describing the bias field, and the means, vari-
ances, and weights of the GMM. The atlas deformation
is regularised in the same way as the atlas construction
(bending energy, in our case) and is estimated via nu-
merical optimisation with LBFGS. The bias field and
GMM parameters are estimated with the Expectation
Maximisation algorithm [100].

Compared with classical Bayesian segmentation
methods operating at 1 mm resolution with just a few
classes (e.g., SAMSEG [2], SPM [54]), our proposed
method has several distinct features:

e Since the atlas only describes the left hemi-
sphere, we use a fast deep learning registration
method (EasyReg [101]) to register the input
scan to MNI space, and use the resulting defor-
mation to split the brain into two hemispheres
that are processed independently.

e Since the atlas only models brain tissue, we run
SynthSeg [102] on the input scan to mask out
the extracerebral tissue.

e Clustering ROIs into tissue types (rather than let-
ting each ROI have its own Gaussian) is particu-
larly important, given the large number of ROIs
(333). The user can specify the clustering via a
configuration file; by default, our public imple-
mentation uses a configuration with 15 tissue
types, tailored to in vivo MRI segmentation.

e The framework is implemented using the
PyTorch package, which enables it to run on
GPUs and curbs segmentation run times to
about half an hour per hemisphere.

Sample segmentations with this method can be found in
Figures 2H (in vivo) and 5 (ex vivo).

Labelling of ultra-high resolution ex vivo brain MRI and
simplified version of NextBrain atlas

In order to quantitatively assess the accuracy of our seg-
mentation method on the ultra-high resolution ex vivo
scan, we produced a gold standard segmentation of the
publicly available 100 um scan [3] as follows. First, we
downsampled the data to 200 um resolution and dis-
carded the left hemisphere, to alleviate the manual la-
belling requirements. Next, we used Freeview to manu-
ally label from scratch one coronal slice every 10; we
labelled as many regions from the histological protocol
as the MRI contrast allowed — without subdividing the
cortex. Then, we used Smartinterpol [5] to complete the
segmentation of the missing slices. Next, we manually
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corrected the SmartInterpol output as needed, until we
were satisfied with the 200 um isotropic segmentation.
The cortex was subdivided using standard FreeSurfer
routines. This labelling scheme led to a ground truth
segmentation with 98 ROIs, which we have made pub-
licly available (details under “Data Availability”). Supple-
mentary Videos 3 and 4 fly over the coronal and axial
slices of the labelled scan, respectively.

As explained in the Results section, we used a simpli-
fied version of the NextBrain atlas when segmenting the
100 um scan, in order to better match the ROIs of the
automated segmentation and the ground truth (espe-
cially in the brainstem). This version was created by re-
placing the brainstem labels in the histological 3D recon-
struction (Fig. 2G, right) by new segmentations made
directly in the underlying MRI scan. These segmenta-
tions were made with the same methods as for the
100 um isotropic scan. The new combined segmenta-
tions were used to rebuild the atlas.

Automated segmentation with Allen MNI template

Automated labelling with the Allen MNI template relied
on registration-based segmentation with the NiftyReg
package [65,97], which vyields state-of-the art perfor-
mance in brain MRI registration [103]. We used the
same deformation model and parameters as the Nif-
tyReg authors used in their own registration-based seg-
mentation work [104]: (i) symmetric registration with a
deformation model parameterised by a grid of control
points (spacing: 2.5 mm = 5 voxels) and B-spline inter-
polation; (ii) local normalised cross correlation as objec-
tive function (standard deviation: 2.5mm); and
(i) bending energy regularisation (relative weight:
0.001).

Linear discriminant analysis (LDA) for AD classification

Linear classification of AD vs controls based on ROI vol-
umes was performed as follows. Leaving one subject out
at the time, we used all other subjects to: (i) compute
linear regression coefficients to correct for sex and age
(intracranial volume was corrected by division); (ii) esti-
mate mean vectors for the two classes (i, 1;), as well
as a pooled covariance matrix (Z); and (iii) use the
means and covariance to compute an unbiased log-like-
hood criterion L for the left-out subject:

L(x) = (i — @) 271 [ — 0.5 (iy + )],
where X is the vector with ICV-, sex-, and age-corrected
volumes for the left-out subject. Once the criterion L
has been computed for all subjects, we it can be globally
thresholded for accuracy and ROC analysis. We note
that, for NextBrain, the high number of ROIs renders the
covariance matrix singular. We prevent this by using
regularised LDA: we normalise all the ROIs to unit vari-
ance and then compute the covariance as X = S + 2],
where S is the sample covariance, I is the identity ma-
trix,and A = 1.0 is a constant. We note that normalizing
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to unit variance enables us to use a fixed, unit A — rather
than having to estimate A for every left-out subject.
B-spline fitting of aging trajectories

To compute the B-spline fits in Extended Data Fig. 8, we
first corrected the ROI volumes by sex (using regression)
and intracranial volume (by division). Next, we modelled
the data with a Laplace distribution, which is robust
against outliers which may be caused by potential seg-
mentation mistakes. Specifically, we used an age-de-
pendent Laplacian where the location u and scale b are
both B-splines with four evenly space control points at
30, 51.6, 73.3, and 95 years. The fit is optimised with
gradient ascent over the log-likelihood function:

N
L(000) = ) 10gp[vy; 1(e;0,). b(an; 6,)],
n=1

where p(x; i, b) is the Laplace distribution with loca-
tion u and scale b; v, is the volume of ROI for subject n;
a, is the age of subject n; u(a,;6,) is a B-spline de-
scribing the location, parameterised by 6,; and
b(a,; 8;) is a B-spline describing the scale, parameter-
ised by 8,. The 95% confidence interval of the Laplace
distribution is given by u + 3b.
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1596  Extended Data

A | Joint registration that minimizes overlap and and gaps between blocks
(this reconstructed slice comprises four different blocks)

Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal Axial

B | Accurate inter-modality registration with Al techniques

D | 3D Registration error for a sample case: visualization of
landmarks (left) and histogram of the error magnitude (right)
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Registered histology landmarks Error (mean # std.dev.):0.98 + 0.55 mm
Registration error Error (Mancinietal.): 1.50+1.61 mm

1597

1598 Extended Data Fig. 1: 3D reconstruction of Case 2. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D
1599 reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of
1600 reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error

1601 (right); and mean + standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).
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A | Joint registration that minimizes overlap and and gaps between blocks B | Accurate inter-modality registration with Al techniques
(this reconstructed slice comprises three different blocks)
Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal

D | 3D Registration error for a sample case: visualization of
landmarks (left) and histogram of the error magnitude (right)

Frequency

MRI landmarks
Registered histology landmarks Error (mean * std.dev.):0.80 + 0.32 mm
Registration error Error (Mancini et al.):  1.41 +1.69 mm

Extended Data Fig. 2: 3D reconstruction of Case 3. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error
(right); and mean + standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).
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A | Joint registration that minimizes overlap and and gaps between blocks B | Accurate inter-modality registration with Al techniques
(this reconstructed slice comprises three different blocks)

Labels

Bk

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal Axial

D | 3D Registration error for a sample case: visualization of
landmarks (left) and histogram of the error magnitude (right)

0.2

0.15

Frequency

0

0 1 2 3
Landmark error (mm)

MRI_Iandmar_ks Error (mean + std.dev.): 1.05 + 0.50 mm
Registered histology landmarks Error (Mancini et al.):  1.49 + 1.74 mm
Registration error

Extended Data Fig. 3: 3D reconstruction of Case 4. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error
(right); and mean + standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).
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A | Joint registration that minimizes overlap and and gaps between blocks
(this reconstructed slice comprises four different blocks)

H&E Labels

C | Bayesian refinement for smooth 3D reconstruction across sections

Sagittal Axial

B | Accurate inter-modality registration with Al techniques

D | 3D Registration error for a sample case: visualization of
landmarks (left) and histogram of the error magnitude (right)
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Extended Data Fig. 4: 3D reconstruction of Case 5. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error
(right); and mean + standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).
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Extended Data Fig. 5: Sagittal, coronal, and axial slices of the continuous maps of the 3D landmark registration error. The maps are computed
from the discrete landmarks (displayed in Fig. 3D and Extended Data Figs. 1-4D) using Gaussian kernel regression with o = 10 mm. There is no
clear spatial pattern for the anatomical distribution of the error across subjects.
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ROI Dice Dice ROI Dice Dice
(200 pm) (1 mm) (200 pm) (1 mm)

Cerebral-White-Matter 0.90871 0.81367 Reticular-of-thalamus 0.2386 0.3239
Ctx-whole 0.89455 0.81493 VPL 0.57387 0.62796
Cerebellum-Cortex 0.93205 0.85472 LP 0.73933 0.73133
ctx-superiorfrontal 0.77579 0.67069 molecular_layer_HP 0.50045 0.50313
Cerebellum-White-Matter 0.84393 0.65269 Internal-pallidum 0.78939 0.83776
ctx-inferiorparietal 0.77458 0.68367 subiculum 0.69842 0.61734
ctx-precentral 0.73685 0.65937 Dentate-cerebellum 0.71523 0.54696
ctx-rostralmiddlefrontal 0.72036 0.66448 alveus 0.57837 0.3076
ctx-superiortemporal 0.78506 0.69595 CA4_GC-DG 0.75655 0.7136
ctx-superiorparietal 0.63853 0.56005 Accumbens-area 0.77455 0.67541
ctx-middletemporal 0.71694 0.67675 Thalamus 0.32506 0.32978
ctx-inferiortemporal 0.64805 0.65658 Lateral-nucleus 0.8586 0.75999
ctx-lateraloccipital 0.61442 0.57929 CeM 0.6668 0.70489
ctx-postcentral 0.72245 0.60464 Substancia-Nigra 0.7045 0.63047
ctx-supramarginal 0.78025 0.66091 CA2_CA3 0.54381 0.4454
ctx-precuneus 0.72374 0.61229 AV 0.59365 0.60739
ctx-fusiform 0.64278 0.5845 Basal-nucleus 0.66909 0.61273
ctx-rh-lateralorbitofrontal 0.69867 0.66915 SCP 0.71921 0.67856
Brain-Stem 0.65342 0.64177 hypothalamus_posterior 0.58318 0.53634
ctx-insula 0.80767 0.73846 hypothalamus_tubular_sup 0.51626 0.48914
ctx-caudalmiddlefrontal 0.65308 0.52521 Accessory-Basal-nucleus 0.74887 0.78098
ctx-medialorbitofrontal 0.73295 0.62687 hypothalamus_tubular_inf 0.65529 0.56586
ctx-lingual 0.66735 0.59501 PAG 0.76829 0.7809
ctx-parsopercularis 0.70901 0.63893 Red-Nucleus 0.83407 0.83386
Left-Putamen 0.9199 0.86072 VTA 0.67032 0.4751
ctx-paracentral 0.66197 0.58969 STN 0.71496 0.72738
ctx-parstriangularis 0.68932 0.65785 Optic-Nerve 0.58216 0.44427
Left-Caudate 0.91102 0.86814 LGN 0.64318 0.62109
ctx-cuneus 0.56676 0.52349 acomm 0.44371 0.42966
Pons 0.73371 0.6236 fimbria 0.264 0.157
ctx-caudalanteriorcingulate 0.6305 0.56515 MGN 0.37669 0.21371
ctx-bankssts 0.67939 0.4762 VLa 0.32691 0.45109
ctx-isthmuscingulate 0.70825 0.55557 LD 0.42601 0.46225
ctx-parsorbitalis 0.43236 0.42366 stria-terminals 0.50263 0.30588
Pons-nuc 0.65229 0.5514 Central-nucleus-inf-colliculus 0.78275 0.72433
ctx-rh-posteriorcingulate 0.69731 0.56382 Corticoamygdaloid-transitio 0.58151 0.48352
ctx-rostralanteriorcingulate 0.67935 0.41073 mammillary_body 0.56602 0.57353
ctx-pericalcarine 0.5253 0.38703 DR 0.54393 0.49046
ctx-entorhinal 0.72093 0.65273 Inferior-olive 0.26264 0.046102
ctx-temporalpole 0.54659 0.49421 hypothalamus_anterior_sup 0.54939 0.45936
ctx-parahippocampal 0.73123 0.66232 Medial-nucleus 0.32559 0.33181
Left-Pul 0.76937 0.78917 Central-nucleus 0.52925 0.48942
Left-external-pallidum 0.78074 0.79407 Anterior-amygdaloid-area-AAA 0.21345 0.18373
Left-MDI 0.87316 0.86494 zona-incerta 0.40755 0.45308
ctx-frontalpole 0.11589 0.3493 hypothalamus_anterior_inf 0.36912 0.32702
ctx-transversetemporal 0.63184 0.56123 Paralaminar-nucleus 0.14105 0.13123
Left-VA 0.6994 0.73112 Cortical-nucleus 0.30083 0.23504
CAl 0.78967 0.60729 Rest of hippocampus N/A N/A
Fornix 0.30751 0.29593 Rest of amygdala N/A N/A
Claustrum 0.48364 0.3618

1623

1624 Extended Data Tab. 1: Dice scores between the ground truth labels of the 100 um ex vivo brain MRI scan presented in [3] and the automated

1625 segmentations obtained with NextBrain. ROls are listed in decreasing order of size (volume). The Dice scores are shown for segmentations

1626 obtained at two different resolutions: 200 um (the resolution at which we created the ground truth labels) and 1 mm (which is representative

1627 of in vivo data). We note that the Dice scores are computed from labels made on the right hemisphere (since we did not label the left side of

1628 the brain). We also note that the labels “rest of hippocampus” and “rest of amygdala” correspond to voxels that did not clearly belong to any

1629 of the manually labelled nuclei, and have therefore no direct correspondence with ROIs in NextBrain.

25


https://doi.org/10.1101/2024.02.05.579016
http://creativecommons.org/licenses/by/4.0/

1630
1631
1632
1633
1634
1635
1636

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.579016; this version posted September 6, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

26
Dice scores for OpenBHB dataset (N=3,220)
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Extended Data Fig. 6: Box plots of the Dice scores for 11 representative ROIs computed on the OpenBHB dataset (3,330 subjects), using the
Allen MNI template and NextBrain, with FreeSurfer segmentations as reference. The scores are computed at the whole regions level, i.e., the
level of granularity at which FreeSurfer segments. On each box, the central mark indicates the median, the edges of the box indicate the 25t
and 75t percentiles, the whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually as
+'. The abbreviations for the regions are: WM = white matter of the cerebrum, CT = cortex of the cerebrum, CWM = cerebellar white matter,
CCT = cerebellar cortex, TH = thalamus, CA = caudate, PU = putamen, PA = pallidum, BS = brainstem, HP = hippocampus, AM = amygdala.
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A | Aging HCP (N = 705) B | OpenBHB, age > 35 (N = 431) C | OpenBHB, all cases (N = 3220)

Extended Data Fig. 7: Absolute value of Spearman correlation for ROl volumes vs age derived from in vivo MRI scans (additional slices). The
visualisation follows the same convention as in Figure 5: (A) Ageing HCP dataset. (B) OpenBHB dataset, restricted to ages over 35. (C) Full
OpenBHB dataset.
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Extended Data Fig. 8: Aging trajectories for select ROIs in HCP dataset, showing differential pattens in subregions of brain structures (thalamus,
hippocampus, cortex, etc). The red dots correspond to the ROI volumes of individual subjects, corrected by intracranial volume (by division)
and sex (by regression). The blue lines represent the maximum likehood fit of a Laplace distribution with location and scale parameters para-
metrised by a B-spline with four control points (equally space between 30 and 95 years). The continuous blue line represents the location,
whereas the dashed lines represent the 95% confidence interval (equal to three times the scale parameter in either direction). Volumes of
contralateral structures are averaged across left and right.
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