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Abstract: Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo. In this domain, digital 32 
brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial compar-33 
ison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived 34 
from histology (e.g., Allen atlas [7], BigBrain [13], Julich [15]), are currently the state of the art and provide exquisite 3D 35 
cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain, a next-36 
generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular 37 
delineations of five whole brain hemispheres. We developed AI techniques to align and reconstruct ∼10,000 histological 38 
sections into coherent 3D volumes with joint geometric constraints (no overlap or gaps between sections), as well as to 39 
semi-automatically trace the boundaries of 333 distinct anatomical ROIs on all these sections. Comprehensive delineation 40 
on multiple cases enabled us to build the first probabilistic histological atlas of the whole human brain. Further, we cre-41 
ated a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan 42 
using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution 43 
ex vivo MRI and volumetric analysis of Alzheimer’s disease and healthy brain ageing based on ∼4,000 publicly available 44 
in vivo MRI scans. We publicly release: the raw and aligned data (including an online visualisation tool); the probabilistic 45 
atlas; the segmentation tool; and ground truth delineations for a 100 μm isotropic ex vivo hemisphere (that we use for 46 
quantitative evaluation of our segmentation method in this paper). By enabling researchers worldwide to analyse brain 47 
MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, Next-48 
Brain holds promise to increase the specificity of MRI findings and ultimately accelerate our quest to understand the 49 
human brain in health and disease. 50 
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Magnetic resonance imaging (MRI) is arguably the most 51 
important tool to study the human brain in vivo. Its ex-52 
quisite contrast between different types of soft tissue 53 
provides a window into the living brain without ionising 54 
radiation, making it suitable to healthy volunteers. Ad-55 
vances in magnet strength, data acquisition and image 56 
reconstruction methods [16-20] enable the acquisition 57 
of millimetre-resolution MRI scans of the whole brain in 58 
minutes. MRI can be acquired with different pulse se-59 
quences that image different tissue properties, includ-60 
ing: neuroanatomy with structural acquisitions [21]; 61 
brain activity with functional MRI based on blood oxy-62 
genation [23]; vasculature with perfusion imaging and 63 
MR angiography [24-27]; or white matter fibres and mi-64 
crostructure with diffusion-weighted MRI [28,29].  65 

Publicly available neuroimaging packages (Free-66 
Surfer [30], FSL [31], SPM [32], or AFNI [33]) enable re-67 
searchers to perform large-scale studies with thousands 68 
of scans [34-37] to study of healthy ageing, as well as a 69 
broad spectrum of brain  diseases, such as Alzheimer’s, 70 
multiple sclerosis, or depression [38-41]. A core compo-71 
nent of these neuroimaging packages is digital 3D brain 72 
atlases. These are reference 3D brain images that are 73 
representative of a certain population and can comprise 74 
image intensities, neuroanatomical labels, or both. We 75 
note that, due to its highly convoluted structure, the 76 
cerebral cortex is often modelled with specific atlases 77 
defined on surface coordinate systems [42,43] – rather 78 
than 3D images). We refer the reader to [44] for a com-79 
parative study.  80 

Volumetric atlases are often computed by averaging 81 
data from a large cohort of subjects [45], but they may 82 
encompass as few as a single subject – particularly when 83 
built from labour-intensive modalities like histol-84 
ogy [13]. Atlases enable aggregation of data from differ-85 
ent subjects into a common coordinate frame (CCF), 86 
thus allowing analyses (e.g., group comparisons) as a 87 
function of spatial location. Atlases that include neuro-88 
anatomical labels also provide prior spatial information 89 
for analyses like automated image segmentation [46].  90 

Most volumetric atlases, including those in neuroim-91 
aging packages, capitalise on the abundance of in vivo 92 
MRI scans acquired at ∼1 mm isotropic resolution. This 93 
voxel size is sufficient to represent information at the 94 
level of gyri, sulci, and subcortical nuclei. However, it is 95 
insufficient to study the brain at the subregion level, 96 
which is desirable as brain substructures (e.g., hippo-97 
campal subfields, nuclei of the thalamus) are known 98 
from animal models and postmortem human studies to 99 
have different function and connectivity [47]. This limi-100 
tation can be circumvented with higher resolution im-101 
ages acquired ex vivo, typically with MRI or histology.  102 

Ex vivo MRI has no motion artifacts and enables long 103 
acquisitions with voxels in the 100 μm range [3,48-50]. 104 
However, it fails to visualise cytoarchitecture and re-105 
solve many boundaries between brain areas. Histology, 106 

on the other hand, is a microscopic 2D modality that can 107 
visualise distinct aspects of cytoarchitecture using an ar-108 
ray of stains – thus revealing neuroanatomy with much 109 
higher detail. Earlier versions of histological atlases 110 
were printed, often not digitised, and comprised only a 111 
small set of labelled sections. Representative examples 112 
include the Morel atlas of the thalamus and basal gan-113 
glia [51] or the Mai atlas of the whole brain [1] (Fig. 1A).  114 

While printed atlases are not useful for computational 115 
analysis, serial histology can be combined with image 116 
registration (alignment) methods to enable volumetric 117 
reconstruction of 3D histology [52], thus opening the 118 
door to creating 3D histological atlases. These have two 119 
major advantages over MRI atlases: (i) providing a more 120 
detailed CCF; and (ii) the ability to segment MRI scans at 121 
finer resolution – with potentially higher sensitivity and 122 
specificity to detect brain alterations caused by brain 123 
diseases or to measure treatment effects. 124 

Earlier 3D histological atlases were limited in terms of 125 
anatomical coverage. Following the Morel atlas, two 126 
digital atlases of the basal ganglia and thalamus were 127 
presented [8,11] (Fig. 1B-C). To automatically obtain 128 
segmentations for living subjects, one needs to register 129 
their MRI scans with the histological atlases, which is dif-130 
ficult due to differences in image resolution and con-131 
trast between the two modalities. For this reason, the 132 
authors mapped the atlases to 3D MRI templates (e.g., 133 
the MNI atlas [53]) that can be more easily registered to 134 
in vivo images of other subjects. A similar atlas combin-135 
ing histological and MRI data was proposed for the hip-136 
pocampus [12] (Fig. 1D-F). Our group presented a histo-137 
logical atlas of the thalamus [14] (Fig. 1G), but instead of 138 
using MNI as a stepping stone, we used Bayesian meth-139 
ods [54] to map our atlas to in vivo scans directly. 140 

More recently, several efforts have aimed at the con-141 
siderably bigger endeavour of building histological at-142 
lases of the whole human brain: 143 
- BigBrain [13] comprises over 7,000 histological sec-144 
tions of a single brain, which were accurately recon-145 
structed in 3D with an ex vivo MRI scan as reference 146 
(Fig. 1H). BigBrain paved the road for its follow-up Ju-147 
lich-Brain [15], which aggregates data from 23 individu-148 
als. A subset of 10 cases have been provided to the com-149 
munity for labelling, which has led to the annotation of 150 
248 cytoarchitectonic areas as part of 41 projects. The 151 
maximum likelihood maps have been mapped to MNI 152 
space for in vivo MRI analysis [55], but have two caveats 153 
(Fig. 1I): they align poorly with the underlying MNI tem-154 
plate, and subcortical annotations are only partial. 155 
- The Allen reference brain [7] (Fig. 1J) has comprehen-156 
sive anatomical annotations on high-resolution histol-157 
ogy  and is integrated with the Allen gene expression at-158 
lases. However, it only has delineations for a sparse set 159 
of histological sections of a single specimen (resembling 160 
a printed atlas). For 3D analysis of in vivo MRI, the au-161 
thors have manually labelled the MNI template using a 162 
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protocol inspired by their own atlas (Fig. 1K), but with a 163 
fraction of the labels and less accurately delineations – 164 
since they are made on MRI and not histology.  165 
- The Ahead brains [22] (Fig. 1L-N) comprise quantita-166 
tive MRI and registered 3D histology for two separate 167 
specimens. These have anatomical labels for a few 168 
dozen structures, but almost exclusively of the basal 169 
ganglia. Moreover, these  labels were obtained from the 170 
MRI with automated methods, rather than manually 171 
traced on the high-resolution histology. 172 

While these histological atlases of the whole brain 173 
provide exquisite 3D cytoarchitectural maps, interoper-174 
ability with other datasets (e.g., gene expression), and 175 
some degree of MRI-histology integration, there are 176 
currently neither: (i) datasets with densely labelled 3D 177 
histology of the whole brain; nor (ii) probabilistic atlases 178 
built from such datasets, which would enable analyses 179 

such as Bayesian segmentation or CCF mapping of the 180 
whole brain at the subregion level.  181 

In this article, we present NextBrain, a next-genera-182 
tion probabilistic atlas of the human brain built from 183 
comprehensively labelled, multi-modal 3D histology of 184 
five half brains (Fig. 1O-P). The full dataset comprises 185 
∼10,000 sections stained with Hematoxylin and Eosin 186 
(H&E, which discerns cell nuclei vs cytoplasm) and Luxol 187 
Fast Blue (LFB, which enhances myelin). These sections 188 
were: (i) 3D-reconstructed with ex vivo MRI scans and 189 
highly customised image registration methods powered 190 
by artificial intelligence (AI); and (ii) densely segmented 191 
into 333 regions of interest (ROIs) with AI-enabled, 192 
semi-automated segmentation methods (Fig. 1Q). The 193 
3D label maps are finally use to build a probabilistic atlas 194 
(Fig. 1R), which is combined with a Bayesian tool for au-195 
tomated segmentation of MRI scans (Fig. 1S). 196 
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Fig. 1: NextBrain in the context of histological atlases, with advantages ( ), disadvantages ( ), and neutral points. ( ). (A) Printed atlas [1] 
with a sparse set of manually traced sections [1]. (B-G) Histological atlases of specific ROIs with limited coverage: (B) Manually traced section 
of basal ganglia [8]; (C) 3D rendering of deterministic thalamic atlas [11]; (D-F) Traced MRI slice, histological section, and 3D rendering of 
hippocampal atlas [12]; and (G) Slice of our probabilistic atlas of the thalamus [14]. (H-N) Histological atlases of the whole human brain: 
(H) 3D reconstructed slice of BigBrain [13]; (I) Slice of Julich-Brain labels on MNI template; (J) Labelled histological section of the Allen refer-
ence brain [7]; (K) Labelling of MNI template with protocol inspired by (J); and (L-N) MRI, histology, and 3D rendering of AHEAD brains [22]. 
(O-S) Our new atlas NextBrain includes dense 3D histology (O-P) and comprehensive manual labels (Q) of five specimens, enabling the con-
struction of a probabilistic atlas (R) that can be combined with Bayesian techniques to automatically label 333 ROIs in in vivo MRI scans (S). 
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As the first densely labelled probabilistic atlas of the 197 
human brain built from histology, NextBrain enables 198 
brain MRI analysis at a level of detail that was previously 199 
not possible. Our results showcase: the high accuracy of 200 
our 3D histology reconstructions; NextBrain’s ability to 201 
accurately segment MRI scans acquired in vivo or ex 202 
vivo; its ability to separate diseased and control subjects 203 
in an Alzheimer’s group study; and a volumetric study of 204 
healthy brain aging with unprecedented detail. 205 

In addition to the atlas and companion segmentation 206 
tool, our public release of NextBrain includes:  (i) The 207 
raw and registered images that were used to build the 208 
atlas, which are an invaluable resource for MRI signal 209 
modelling or histology registration studies; (ii) An online 210 
visualisation tool for these data, for educational and 211 
data inspection purposes; (iii) The source code and pipe-212 
lines, which do not require any highly specialised equip-213 
ment for intact coronally sliced full-brain procedures 214 
used at select sites like Allen or Julich (e.g., full-brain mi-215 
crotome, custom glass slides), thus enabling wide ap-216 
plicability; and (iv) our manual 3D segmentation of a 217 
publicly available 100 μm isotropic ex vivo scan [3] (used 218 
here for quantitative evaluation), which is a valuable re-219 
source in its own right, e.g., for ROI analysis in the ex 220 
vivo CCF of this scan, or for development and validation 221 
of segmentations methods. 222 

Densely labelled 3D histology of five human 223 
hemispheres 224 
The NextBrain workflow is summarised in Fig. 2 and de-225 
tailed in the Methods section. The first result of the 226 
pipeline (panels A-G) is a multimodal dataset with hu-227 
man hemispheres from five donors (three right, two 228 
left), including half cerebellum and brainstem. Each of 229 
the five cases comprises accurately aligned high-resolu-230 
tion ex vivo MRI, serial histology (H&E and LFB stains), 231 
and dense ground truth segmentations of 333 cortical 232 
and subcortical brain ROIs.  233 

Aligning the histology of a case is analogous to solving 234 
a 2,000-piece jigsaw puzzle in 3D, with the ex vivo MRI 235 
as reference (similar to the image on the box cover), and 236 
with pieces that are deformed by sectioning and mount-237 
ing on glass slides – with occasional tissue folding or 238 
tearing. This problem falls out of the scope of existing 239 
inter-modality registration techniques [56], including 240 
slice-to-volume [57] and 3D histology reconstruction 241 
methods [52], which do not have to address the joint 242 
constraints of thousands of sections, acquired in non-243 
parallel planes as part of different blocks.  244 

Instead, we solve this challenging problem with a cus-245 
tom, state-of-the-art image registration framework (Fig. 246 
3), which includes three components specifically devel-247 
oped for this project: (i) a differentiable regulariser that 248 
minimises overlap of different blocks and gaps in be-249 

A | Photograph of formalin-fixed 
hemisphere (lateral view).

B | MRI acquisition and FreeSurfer processing. Left: sagittal slice of MRI. Center: corresponding 
FreeSurfer segmentation. Right: 3D rendering of reconstructed and parcellated pial surface.

C | Tissue blocking and processing. Left:  
blocked coronal slice of the cerebrum. 
Right: blockface photo of a cerebral block. 

D | Histology: coronal section 
of cerebrum stained with LFB 
(left) and H&E (right).

E | AI-assisted labelling of 333 
ROIs on LFB (left: cerebrum; mid: 
brainstem; right: cerebellum).

F | 3D rendering of blocks after Initial 
linear alignment using a joint registration 
method with soft shape constraints.

G | Reconstructed coronal slice of LFB (left), H&E (mid), 
and labels (right), overlaid on MRI, after nonlinear 
registration with AI and robust Bayesian refinement. 

H | Sagittal (left), coronal (mid), and axial slices of our atlas. Each voxel is painted 
with a linear combination the colours of each label, multiplied by their probabilities. 

F | Coronal slice of an in vivo MRI scan and its segmentation with the atlas. The atlas can also 
be used for segmenting ex vivo MRI and as common coordinate frame for population analyses.

Fig. 2: NextBrain workflow. (A) Photograph of formalin-fixed hemisphere. (B) High-resolution (400 μm) ex vivo MRI scan, FreeSurfer seg-
mentation, and extracted pial surface (parcellated with FreeSurfer). (C) Tissue slabs and blocks, before and after paraffin embedding. 
(D) Section stained with H&E and LFB. (E) Semi-automated labelling of 333 ROIs on sections using an AI method [5]. (F) Initialization of 
affine alignment of tissue blocks using a custom registration algorithm that minimises overlap and gaps between blocks. (G) Refinement 
of registration with histology and nonlinear transform, using a combination of AI and Bayesian techniques [9,10]. (H) Orthogonal slices of 
3D probabilistic atlas. (I) Automated Bayesian segmentation of an in vivo scan into 333 ROIs using the atlas. 
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tween [58]; (ii) an AI registration method that uses con-250 
trastive learning to provide highly accurate alignment of 251 
corresponding brain tissue across MRI and histol-252 
ogy [10]; and (iii) a Bayesian refinement technique 253 
based on Lie algebra that guarantees the 3D smooth-254 
ness of the reconstruction across modalities, even in the 255 
presence of outliers due to tissue folding and tear-256 
ing [9]. We note that this is an evolution of our previ-257 
ously presented pipeline [6], which incorporates the 258 
aforementioned contrastive AI method and jointly opti-259 
mises the affine and nonlinear transforms to achieve a 260 
32% reduction in registration error (details below). 261 

Qualitatively, it is apparent from Fig. 3 that a very high 262 
level of accuracy is achieved for the spatial alignment, 263 
despite the non-parallel sections and distortions in the 264 
raw data. The regulariser effectively aligns the block 265 
boundaries in 3D without gaps or overlap (Fig. 3A-C), 266 
with minor discontinuities across blocks (e.g., in the 267 
temporal lobe). When the segmentations of different 268 
blocks are combined (Fig. 3A, right), the result is a 269 
smooth mosaic of ROI labels.  270 

The AI-enabled registration across MRI and histologi-271 
cal stains is exemplified in Fig. 3B. Overlaying the main 272 
ROI contours on the different modalities reveals the 273 
highly accurate alignment of the three modalities (MRI, 274 
H&E, LFB), even in convoluted regions of the cortex and 275 

the basal ganglia. The mosaic of modalities also high-276 
lights the accurate alignment at the substructural level, 277 
e.g., subregions of the hippocampus. 278 

Fig. 3C shows the 3D reconstruction in orientations 279 
orthogonal to the main plane of sectioning (coronal). 280 
This illustrates not only the lack of gaps and overlaps be-281 
tween blocks, but also the smoothness that is achieved 282 
within blocks. This is thanks to the Bayesian refinement 283 
algorithm, which combines the best features of meth-284 
ods that: (i) align each section independently (high fidel-285 
ity to the reference, but jagged reconstructions) and 286 
(ii) those that align sections to their neighbours (smooth 287 
reconstructions, but with “banana effect”, i.e., straight-288 
ening of curved structures).  289 

Quantitative results are presented in Fig. 3D, as well 290 
as in Extended Data Figs. 1-4D. The registration error, 291 
evaluated with 250 manually placed pairs of landmarks 292 
(known to be a better proxy for the registration error 293 
than similarity of label overlap metrics [59]), is 0.99 ± 294 
0.51 mm – a considerable reduction with respect our 295 
previous pipeline [6], which yielded 1.45 ± 1.68 mm 296 
(Wilcoxon p=2×10-22). The spatial distribution of the er-297 
ror is further visualised with kernel regression in Ex-298 
tended Data Fig. 5, which shows that this distribution is 299 
fairly uniform, i.e., there is no obvious consistent pat-300 
tern across cases. 301 

Sagittal Axial

C | Bayesian refinement for smooth 3D reconstruction across sections

B | Accurate inter-modality registration with AI techniques 

D | 3D Registration error for a sample case: visualization of 
landmarks (left) and histogram of the error magnitude (right)

MRI landmarks
Registered histology landmarks
Registration error

Error (mean ± std.dev.):1.27 ± 0.59 mm
Error (Mancini et al.): 1.44 ± 1.80 mm

LFB  H&E  Labels  

A | Joint registration that minimizes overlap and and gaps between blocks 
(this reconstructed slice comprises four different blocks)

Fig. 3: 3D reconstruction of Case 1. (A) Coronal slice of 3D reconstruction; boundaries between blocks are noticeable from uneven staining. 
(B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of reconstruction, 
which is smooth thanks to the Bayesian refinement, and avoids gaps and overlaps thanks to the regulariser. (D) Visualization of 3D landmark 
registration error (left); histogram of its magnitude (right); and mean ± standard deviation (bottom), compared with our previous pipe-
line  [6]. See Extended Data for results on the other cases. The average landmark error across all cases is 0.99mm (vs 1.45 for  [6]). 
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Our pipeline is widely applicable as it produces accu-302 
rate 3D reconstructions from blocked tissue in standard-303 
sized cassettes, sectioned with a standard microtome. 304 
The computer code and aligned dataset is freely availa-305 
ble in our public repository (see Data Availability). For 306 
educational and data inspection purposes, we have built 307 
an online visualisation tool for the multi-modality data, 308 
which is available at: github-pages.ucl.ac.uk/NextBrain.  309 

Supplementary Video 1 illustrates the aligned data, 310 
which includes: (i) MRI at 400 μm isotropic resolution; 311 
(ii) aligned H&E and LFB histology digitised at 4 μm res-312 
olution (with 250 or 500 μm spacing, depending on the 313 
brain location); and (iii) ROI segmentations, obtained 314 
with a semi-automated AI method [5]. The ROIs com-315 
prise 34 cortical labels (following the Desikan-Killiany at-316 
las [60]) and 299 subcortical labels (following different 317 
atlas for different brain regions; see the Methods sec-318 
tion below and the supplement). This public dataset en-319 
ables researchers worldwide to conduct their own stud-320 
ies not only in 3D histology reconstruction, but also 321 
other fields like:  high-resolution segmentation of MRI 322 
or histology [61]; MRI-to-histology and histological 323 
stain-to-stain image  translation [62]; deriving MRI sig-324 
nal models from histology [63]; and many others. 325 

A next-generation probabilistic atlas of the 326 
human brain 327 
The labels from the five human hemispheres were co-328 
registered and merged into a probabilistic atlas. This 329 
was achieved with a method that alternately registers 330 
the volumes to the estimate of the template, and up-331 
dates the template via averaging [64]. The registration 332 
method is diffeomorphic [65] to ensure preservation of 333 
the neuroanatomic topology (e.g., ROIs do not split or 334 
disappear in the deformation process). Crucially, we use 335 

an initialization based on the MNI template, which 336 
serves two important purposes: preventing biases to-337 
wards any of the cases (which would happen if we ini-338 
tialised with one of them); and “centring” our atlas on a 339 
well-established CCF computed from 305 subjects, 340 
which largely mitigates our relatively low number of 341 
cases. Since the MNI template is a greyscale volume, the 342 
first iteration of atlas building uses registrations com-343 
puted with the ex vivo MRI scans. Subsequent iterations 344 
register labels directly with a metric based on the prob-345 
ability of the discrete labels according to the atlas [64]. 346 

Fig. 4 shows close-ups of orthogonal slices of the atlas, 347 
which models voxel-wide probabilities for the 333 ROIs 348 
on a 0.2mm isotropic grid. The resolution and detail of 349 
the atlas represents a substantial advance with respect 350 
to the SAMSEG atlas [2] currently in FreeSurfer (Fig. 4A). 351 
SAMSEG models 13 brain ROIs at 1 mm resolution and 352 
is, to the best of our knowledge, the most detailed prob-353 
abilistic atlas that covers all brain regions. The figure 354 
also shows approximately corresponding slices of the 355 
manual labelling of the MNI atlas with the simplified Al-356 
len protocol [7]. Compared with NextBrain, this labelling 357 
is not probabilistic and does not include many histolog-358 
ical boundaries that are invisible on the MNI template 359 
(e.g., hippocampal subregions, in violet). For this rea-360 
son, it only has 138 ROIs – while NextBrain has 333. 361 

A comprehensive comparison between and all digit-362 
ised sections of the printed atlas by Mai & Paxinos [1] 363 
and approximately equivalent sections of the Allen ref-364 
erence brain and NextBrain is included in the supple-365 
ment. The agreement between the three atlases is gen-366 
erally good, especially for the outer boundaries of the 367 
whole structures, e.g., the whole hippocampus, amyg-368 
dala, or thalamus. Mild differences can be found in the 369 
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(A) Comparison with whole brain atlases (B) Close-ups with boundaries of maximum probability segmentations overlaid in red
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Fig. 4: NextBrain probabilistic atlas. (A) Portions of the NextBrain probabilistic atlas (which has 333 ROIs), the SAMSEG atlas in FreeSurfer [2]  (13 
ROIs), and the manual labels of MNI based on the Allen atlas [7] (138 ROIs). (B) Close-up of three orthogonal slices of NextBrain. The colour 
coding follows the convention of the Allen atlas [7], where the hue indicates the structure (e.g., purple is thalamus, violet is hippocampus, green 
is amygdala) and the saturation is proportional to neuronal density. The colour of each voxel is a weighted sum of the colour corresponding to 
the ROIs, weighted by the corresponding probabilities at that voxel. The red lines separate ROIs based on the most probable label at each voxel, 
thus highlighting boundaries between ROIs of similar colour; we note that the jagged boundaries are a common discretization artefact of prob-
abilistic atlases in regions where two or more labels mix continuously, e.g., the two layers of the cerebellar cortex. 
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delineation of sub-structures, both cortical and subcor-370 
tical (e.g., subdivision of the accumbens), mainly due to: 371 
(i) the forced choice of applying arbitrary anatomical cri-372 
teria in both atlases due to lack of contrast in smaller 373 
regions; (ii) different anatomical definitions; and (iii) the 374 
probabilistic nature of NextBrain. We emphasise that 375 
these differences are not exclusive to NextBrain, as they 376 
are also present between Mai-Paxinos and Allen. 377 

Close-ups NextBrain slices centred on representative 378 
brain regions are shown in Fig. 4B, with boundaries be-379 
tween the ROIs (computed from the maximum likeli-380 
hood segmentation) overlaid in red. These highlight the 381 
anatomical granularity of the new atlas, with dozens of 382 
subregions for areas such as the thalamus, hippocam-383 
pus, amygdala, midbrain, etc. An overview of the com-384 
plete atlas is shown in Supplementary Video 2, which il-385 
lustrates the atlas construction procedure and flies 386 
through all the slices in axial, coronal, and sagittal view.  387 

The probabilistic atlas is freely available as part of our 388 
segmentation module distributed with FreeSurfer. The 389 
maximum likelihood and colour-coded probabilistic 390 
maps (as in Fig. 4) can also be downloaded separately 391 
from our public repository, for quick inspection and ed-392 
ucational purposes (see Data Availability). Developers of 393 
neuroimaging methods can freely capitalise on this re-394 
source, e.g., by extending the atlas via combination with 395 
other atlases or manually tracing new labels; or by de-396 
signing their own segmentation methods using the at-397 
las. Neuroimaging researchers can use the atlas for fine-398 
grained automated segmentation (as shown below), or 399 
as a highly detailed CCF for population analyses. 400 

Automated segmentation of ultra-high reso-401 
lution ex vivo MRI 402 
One of the new analyses that NextBrain enables is the 403 
automated fine-grained segmentation of ultra-high-res-404 
olution ex vivo MRI. Since motion is not a factor in ex 405 
vivo imaging, very long MRI scanning times can be used 406 
to acquire data at resolutions that are infeasible in vivo. 407 
One example is the publicly available 100 μm isotropic 408 
whole brain presented in [3], which was acquired in a 409 
100-hour session on a 7T MRI scanner. Such datasets 410 
have huge potential in mesoscopic studies connecting 411 
microscopy with in vivo imaging [66]. 412 

Volumetric segmentation of ultra-high-resolution ex 413 
vivo MRI can be highly advantageous in neuroimaging in 414 
two different manners. First, by supplementing such 415 
scans (like the 100-micron brain) with neuroanatomical 416 
information that augments their value as atlases, e.g., 417 
as  common coordinate frames or for segmentation pur-418 
poses [67]. And second, by enabling analyses of ex vivo 419 
MRI datasets at scale (e.g., volumetry or shape analysis). 420 

Dense manual segmentation of these datasets is prac-421 
tically infeasible, as it entails manually tracing ROIs on 422 
over 1,000 slices. Moreover, one typically seeks to label 423 

these images at a higher level of detail than in vivo (i.e., 424 
more ROIs of smaller sizes), which exacerbates the prob-425 
lem. One may utilise semi-automated methods like the 426 
AI-assisted technique we used in to build NextBrain (see 427 
previous section), which limits the manual segmenta-428 
tion to one every N slices [5] (N=4 in this work). How-429 
ever, such a strategy only ameliorates the problem to a 430 
certain degree, as tedious manual segmentation is still 431 
required for a significant fraction of slices.  432 

A more appealing alternative is thus automated seg-433 
mentation. However, existing approaches have limita-434 
tions, as they either: (i) were designed for 1 mm in vivo 435 
scans and do not capitalise on the increased resolution 436 
of ex vivo MRI [2,54]; or (ii) utilise neural networks 437 
trained with ex vivo scans but with a limited number of 438 
ROIs, due to the immense labelling effort that is re-439 
quired to generate the training data [61]. 440 

This limitation is circumvented by NextBrain: as a 441 
probabilistic atlas of neuroanatomy, it can be combined 442 
with well-established Bayesian segmentation methods 443 
(which are adaptive to MRI contrast) to segment ultra-444 
high-resolution ex vivo MRI scans into 333 ROIs. We 445 
have released in FreeSurfer an implementation that seg-446 
ments full brain scans in approximately 1h, using a desk-447 
top equipped with a graphics processing unit (GPU). 448 

 To quantitatively evaluate the segmentation method,  449 
we have created a ground truth segmentation of the 450 
public 100-micron brain [3], which we are publicly re-451 
leasing as part of NextBrain. To make this burdensome 452 
task practical and feasible, we simplified it in five man-453 
ners: (i) downsampling the data to 200 μm resolution; 454 
(ii) labelling only one hemisphere; (iii) using the same 455 
semi-automated AI method as in NextBrain for faster 456 
segmentation; (iv) using FreeSurfer to automatically 457 
subdivide the cerebral cortex; and (v) labelling only a 458 
subset of 98 visible ROIs (see Supplementary Videos 3 459 
and 4). Even with these simplifications, labelling the 460 
scan took over 100 hours of manual tracing effort.  461 

We compared the ground truth labels with the auto-462 
mated segmentations produced by NextBrain using Dice 463 
overlap scores. Since the ground truth has fewer ROIs 464 
(particularly in the brainstem), we: (i) clustered the ROIs 465 
in the automated segmentation that correspond with 466 
the ROIs in the ground truth; and (ii) used a version of 467 
NextBrain in which the brainstem ROIs are simplified to 468 
better match those of the ground truth (with 264 labels 469 
instead of 333). The results are shown in Extended Data 470 
Table 1. As expected, there is a clear link between size 471 
and Dice. Larger ROIs like the cerebral white matter or 472 
cortex have Dice around 0.9. The smaller ROIs have 473 
lower Dice, but very few are below 0.4 – which is enough 474 
to localize ROIs. We note that the median Dice (0.667) is 475 
comparable with that reported by other Bayesian seg-476 
mentation methods for brain subregions [68]. 477 
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  Sample slices and their corresponding automated 478 
and manual segmentations are shown in Fig. 5. The ex-479 
quisite resolution and contrast of the dataset enables 480 
our atlas to accurately delineate a large number of ROIs 481 
with very different sizes, including small nuclei and sub-482 
regions of the hippocampus, amygdala, thalamus, hypo-483 
thalamus, midbrain, etc. Differences in label granularity 484 
aside, the consistency between the automated and 485 
ground truth segmentation is qualitatively very strong.  486 

To the best of our knowledge, this is the most com-487 
prehensive dense segmentation of a human brain MRI 488 
scan to date. As ex vivo datasets with tens of scans be-489 
come available [61,69,70], our tool has great potential 490 
in augmenting mesoscopic studies of the human brain. 491 
Moreover, the labelled MRI that we are releasing has 492 
great potential in other neuroimaging studies, e.g., for 493 
training or evaluating segmentation algorithms; for ROI 494 
analysis in the high-resolution ex vivo space; or for vol-495 
umetric analysis via registration-based segmentation. 496 

Fine-grained analysis of in vivo MRI 497 
NextBrain can also be used to automatically segment in 498 
vivo MRI scans at the resolution of the atlas (200 μm iso-499 
tropic), yielding an unprecedented level of detail. Scans 500 
used in research typically have isotropic resolution with 501 
voxel sizes ranging from 0.7 to 1.2mm, and therefore do 502 
not reveal all ROI boundaries with as much detail as ul-503 
tra-high-resolution ex vivo MRI. However, many bound-504 
aries are still visible, including the external boundaries 505 
of brain structures (hippocampus, thalamus, etc.) and 506 
some internal boundaries, e.g., between the anterome-507 
dial and lateral posterior thalamus [14]. Bayesian seg-508 
mentation capitalises on these visible boundaries and 509 
combines them with the prior knowledge encoded in 510 
the atlas to produce the full subdivision – albeit with 511 
lower reliability for the indistinct boundaries [49]. A 512 
sample segmentation is shown in Fig. 2F. 513 
Evaluation of segmentation accuracy: We first evalu-514 
ated the in vivo segmentation quantitatively in two dif-515 
ferent experiments. First, we downsampled the ex vivo 516 
MRI scan from the previous section to 1 mm isotropic 517 
resolution (i.e., the standard resolution of in vivo scans); 518 
segmented it at 200 μm resolution; and computed Dice 519 
scores with the high-resolution ground truth. The re-520 
sults are displayed in Extended Data Table 1. The me-521 
dian Dice is 0.590, which is 0.077 lower than at 200 μm, 522 
but still fair for such small ROIs [68]. Moreover, most 523 
Dice scores remain 0.4, as for the ultra-high resolution, 524 
hinting that the priors can successfully provide a rough 525 
localization of internal boundaries, given the more visi-526 
ble external boundaries. 527 

In a second experiment, we analysed the Dice scores 528 
produced by NextBrain in OpenBHB [4], a public meta-529 
dataset with ∼1 mm isotropic T1-weighted scans of 530 
over 3,000 healthy individuals acquired at over 60 sites. 531 
Using FreeSurfer 7.0 as a silver standard, we computed 532 
Dice scores for our segmentations at the level of whole 533 
regions, i.e., the level of granularity provided by Free-534 
Surfer. While these scores cannot assess segmentation 535 
accuracy at the subregion level, they do enable evalua-536 
tion on a much larger multi-site cohort, as well as com-537 
parison with the Allen MNI template – the only compet-538 
ing histological (or rather, histology-inspired) atlas that 539 
can segment the whole brain in vivo (Fig. 1).  The results 540 
(Extended Data Fig. 6) show that: (i) NextBrain consist-541 
ently outperform the Allen MNI template, as expected 542 
from the fact that one atlas is probabilistic while the 543 
other is not; and (ii) NextBrain yields Dice scores in the 544 
range expected from Bayesian segmentation meth-545 
ods [2] – despite using only five cases, thanks to the ex-546 
cellent generalization ability of generative models [71]. 547 
Application to Alzheimer’s disease (AD) classification: 548 
To further compare NextBrain with the Allen MNI tem-549 
plate, we used an AD classification task based on linear 550 
discriminant analysis (LDA) of ROI volumes (corrected by 551 
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Fig. 5: Automated Bayesian segmentation of publicly available ultra-high 
resolution ex vivo brain MRI [3] using the simplified version of NextBrain, 
and comparison with ground truth (only available for right hemisphere). We 
show two coronal, sagittal, and axial slices. The MRI was resampled to 
200 μm isotropic resolution for processing. As in previous figures, the seg-
mentation uses the Allen colour map [7] with boundaries overlaid in red. 
We note that the manual segmentation uses a coarser labelling protocol.  
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age and intracranial volume). Using a simple linear clas-552 
sifier on a task where strong differences are expected 553 
allows us to use classification accuracy as a proxy for the 554 
quality of the input features, i.e., the ROI volumes de-555 
rived from the automated segmentations. To enable di-556 
rect comparison, we used a sample of 383 subjects from 557 
the ADNI dataset [72] (168 AD, 215 controls) that we 558 
used in previous publications [14,49,50]. 559 

Using the ROI volumes estimated by FreeSurfer 7.0 560 
(which do not include subregions) yields and area under 561 
the receiver operating characteristic curve (AUROC) 562 
equal to 0.911, which classification accuracy of 85.4% at 563 
its elbow. The Allen MNI template exploits subregion in-564 
formation to achieve AUROC = 0.929 and 86.9% accu-565 
racy. The increased segmentation accuracy and granu-566 
larity of NextBrain enables it to achieve AUROC = 0.953 567 
and 90.3% accuracy – with a significant increase in 568 
AUROC with respect to the Allen MNI template (p = 0.01 569 
for a DeLong test). This AUROC is also superior to those 570 
of specific ex vivo atlases we have presented in the prior 571 
work [14,49,50] – which range from 0.830 to 0.931  572 
Application to fine-grained signature of aging: We per-573 
formed Bayesian segmentation with NextBrain on 705 574 
subjects (aged 36-90, mean 59.6 years) from the Ageing 575 
HCP dataset [73], which comprises high-quality in vivo 576 
scans at 0.8mm resolution. We computed the volumes 577 
of the ROIs for every subject, corrected them for total 578 

intracranial volume (by division) and sex (by regression), 579 
and computed their Spearman correlation with age. We 580 
used the Spearman rather than Pearson correlation be-581 
cause, being rank-based, it is a better model for ageing 582 
trajectories as they are known to be nonlinear for wide 583 
age ranges [74,75].  584 

The result of this analysis is, to the best of our 585 
knowledge, the most comprehensive map of regional 586 
ageing of the human brain to date (Fig. 6A and Extended 587 
Data Fig. 7A; see also full trajectories for select ROIs in 588 
Extended Data Fig. 8). Cortically, we found significant 589 
negative correlations with age in the prefrontal cortex 590 
(marked with ‘a’ on the figure) and insula (b), whilst the 591 
temporal (c) and parahippocampal cortices (d) did not 592 
yield significant correlation; this is consistent with find-593 
ings from studies of cortical thickness [38,76]. The white 594 
matter (e) is known to decline steadily after ∼35 595 
years [74,75], and such negative correlation is also de-596 
tected by NextBrain. Other general ageing patterns at 597 
the whole structure level [74,75] are also successfully 598 
captured, such as a steady volume decrease of the cau-599 
date, thalamus, or putamen (f), or the volumetric reduc-600 
tion of the hippocampus, amygdala, or globus pallidus.  601 

Importantly, NextBrain also unveils more granular 602 
patterns of the relationship between volumes and age-603 
ing within these regions. For example, the anterior cau-604 
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Fig. 6: Absolute value of Spearman correlation for ROI volumes vs age derived from in vivo MRI scans: (A) Ageing HCP dataset (image resolu-
tion: .8mm isotropic; age range: 36-90 years; mean age: 59.6 years); please see main text for meaning of markers (letters). (B) OpenBHB 
dataset [4], restricted to subjects with ages over 35 years to match Ageing HCP (resolution 1 mm isotropic; age range: 36-86 years; mean 
age: 57.9 years). (C) Full OpenBHB dataset (age range: 6-86 years, mean age: 25.2 years); please note the different scale of the colour bar. 
The ROI volumes are corrected by intracranial volume (by division) and sex (by regression).  Further slices are shown in Extended Data Fig. 6. 
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date (g) showed a stronger negative correlation be-605 
tween age and volume than the posterior caudate (h). 606 
Similarly, the external segment of the globus pallidus (i) 607 
showed a stronger correlation than the internal seg-608 
ment (j) – an effect that was not observed in previous 609 
work studying the whole pallidum [77]. The ability to in-610 
vestigate separate subregions highlights a differential 611 
effect of ageing across brain networks, particularly a 612 
stronger effect on the regions of the limbic and prefron-613 
tal networks, given the correlations we found in the cau-614 
date head (g), insula (b), orbitofrontal cortex (k), amyg-615 
dala, and thalamus [78]. Within the thalamus, the 616 
correlation is more significant in the mediodorsal (l), an-617 
teroventral (m), and pulvinar subnuclei (n), key regions 618 
in the limbic, lateral orbitofrontal and dorsolateral pre-619 
frontal circuits. In the hippocampus, subicular regions 620 
(o) correlate more strongly than the rest of the struc-621 
ture. The pattern of correlation strength is more homo-622 
geneous across subregions in the amygdala (key region 623 
in the limbic system), hypothalamus, and cerebellum.   624 

We then revisited the OpenBHB dataset and per-625 
formed the same regression analysis only for subjects 626 
older than 35 years, to match the age range of the Age-627 
ing HCP dataset (N=431, aged 36-86 years, mean 57.9 628 
years). The results are shown in Fig. 6B and Extended 629 
Data Fig. 7B. Despite the differences in acquisition and 630 
the huge heterogeneity of the OpenBHB dataset, the re-631 
sults are highly consistent with those from HCP – but 632 
with slightly lower significance, possibly due to the in-633 
creased voxel size (twice as big, since 1/0.83  ≈ 2).	 634 

We also performed the same analysis with all 3,220 635 
subjects in OpenBHB; see results in Fig. 6C and Extended 636 
Data Fig. 7C. For many regions, widening the age range 637 
to 6-86 years (mean age: 25.2) yields non-monotonic 638 
ageing curves and therefore weaker Spearman correla-639 
tions. Therefore, these graphs highlight the regions 640 
whose volumes start decreasing with age the earliest, 641 
such as the putamen or medial thalamus. Many other 642 
patterns of association between age and ROI volumes 643 
remain very similar to those of the older populations 644 
(e.g., basal ganglia or hippocampus). 645 
The segmentation code is publicly available in Free-646 
Surfer: https://surfer.nmr.mgh.harvard.edu/fswiki/His-647 
toAtlasSegmentation and can be run with a single line of 648 
code. This enables researchers worldwide to analyse 649 
their scans at a superior level of detail without manual 650 
effort or highly specific neuroanatomical knowledge.  651 

Discussion and Conclusion 652 
NextBrain is a next-generation probabilistic human 653 
brain atlas, which is publicly available and distributed 654 
with a companion Bayesian segmentation tool and 655 
multi-modal dataset. The dataset itself is already a 656 
highly valuable resource: researchers have free access 657 
to both the raw and registered data, which they can use 658 
for their own research (e.g., in MRI signal modelling or 659 

registration), or to augment the atlas with new ROIs, 660 
e.g., by labelling them on the histology or MRI data and 661 
rebuilding the atlas. The atlas itself is a novel, high-res-662 
olution common coordinate frame for population anal-663 
yses. The 3D segmentation of 100 μm ex vivo brain MRI 664 
scan [3] is a valuable complement to this (already very 665 
useful) resource. Finally, the Bayesian tool enables seg-666 
mentation of ex vivo and in vivo MRI at an unprece-667 
dented level of granularity.  668 

Due to its volumetric and semantic nature, NextBrain 669 
can be complemented by other segmentation methods 670 
and atlases that describe other aspects of the brain. For 671 
example, more accurate cortical segmentation and par-672 
cellation can be achieved with surface models [79]. We 673 
are currently working on models that combine neural 674 
networks with geometry processing to obtain laminar 675 
segmentations from both in vivo and ex vivo 676 
scans [80,81]. Surface placement will also warrant com-677 
patibility with cortical atlases obtained with multi-678 
modal data [43].  679 

NextBrain is extensible: since all the data and code are 680 
publicly available, it is possible to download the data, 681 
modify (or extend) the manual annotations, and then 682 
rerun all the scripts to build a custom atlas. However, 683 
these tasks require domain expertise and compute 684 
power. Automatising this process to make it more ac-685 
cessible is desirable, but also quite a large engineering 686 
endeavour – and thus remains as future work. 687 

The Bayesian segmentation tool in NextBrain is com-688 
patible with 1 mm isotropic scans, as illustrated by the 689 
Alzheimer’s and aging experiments. As with other prob-690 
abilistic atlases, Bayesian segmentation can be aug-691 
mented with models of pathology to automatically seg-692 
ment pathology, such as tumours [82] or white matter 693 
hyperintensities [83]. Importantly, NextBrain’s high 694 
level of detail enables us to fully take advantage of high-695 
resolution data, such as ex vivo MRI, ultra-high field MRI 696 
(e.g., 7T), and exciting new modalities like HiP-CT [84]. 697 
As high-quality 3D brain images become increasingly 698 
available, NextBrain’s ability to analyse them with supe-699 
rior granularity holds great promise to advance 700 
knowledge about the human brain in health and in dis-701 
ease. 702 

Methods 703 
Brain specimens 704 
Hemispheres from five individuals (including half of the 705 
cerebrum, cerebellum, and brainstem), were used in 706 
this study, following informed consent to use the tissue 707 
for research and the ethical approval for research by the 708 
National Research Ethics Service (NRES) Committee Lon-709 
don-Central. All hemispheres were fixed in 10% neutral 710 
buffered formalin (Fig. 2A). The laterality and de-711 
mographics are summarised in Table 1 below; the do-712 
nors were neurologically normal, but one case had an 713 
undiagnosed, asymptomatic tumour (diameter: 714 
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∼10mm) in the white matter, adjacent to the pars oper-715 
cularis. This tumour did not pose issues in any of the 716 
processing steps described below. 717 

Table 1 Demographics of the five cases used in this study. 718 

Case Age at death  Sex Laterality Incidental findings 

Case 1 94 years Female Right None 

Case 2 84 years Female Right None 

Case 3 80 years Male Right None 

Case 4 79 years Female Left Tumour adjacent to 
pars opercularis  

Case 5 78 years Male Left None 

Data acquisition 719 
Our data acquisition pipeline largely leverages our pre-720 
vious work [6]. We summarise it here for completeness; 721 
the reader is referred to the corresponding publication 722 
for further details. 723 
- MRI scanning. Prior to dissection, the hemispheres 724 
were scanned on a 3T Siemens MAGNETOM Prisma 725 
scanner. The specimens were placed in a container filled 726 
with Fluorinert (perfluorocarbon), a proton-free fluid 727 
with no MRI signal that yields excellent ex vivo MRI con-728 
trast and does not affect downstream histological anal-729 
ysis [85]. The MRI scans were acquired with a T2-730 
weighted sequence (optimised long echo train 3D fast 731 
spin echo [86]) with parameters: TR = 500 ms, TEeff = 732 
69ms, BW = 558 Hz/Px, echo spacing = 4.96ms, echo 733 
train length = 58, 10 averages, with 400 μm isotropic 734 
resolution, acquisition time for each average = 547s, to-735 
tal scanning time = 91 min. These scans were processed 736 
with a combination of SAMSEG [2] and the FreeSurfer 737 
7.0 cortical stream [79] to bias field correct the images, 738 
generate rough subcortical segmentations, and obtain 739 
white matter and pial surfaces with corresponding par-740 
cellations according to the Desikan-Killiany atlas [60] 741 
(Fig. 2B).  742 
- Dissection. After MRI scanning, each hemisphere is dis-743 
sected to fit into standard 74x52mm cassettes. First, 744 
each hemisphere was split into cerebrum, cerebellum, 745 
and brainstem. Using a metal frame as a guide, these 746 
were subsequently cut into 10mm-thick slices in coro-747 
nal, sagittal, and axial orientation, respectively. These 748 
slices were photographed inside a rectangular frame of 749 
known dimensions for pixel size and perspective correc-750 
tion; we refer to these images as “whole slice photo-751 
graphs.” While the brainstem and cerebellum slices all 752 
fit into the cassettes, the cerebrum slices were further 753 
cut into as many blocks as needed. “Blocked slice pho-754 
tographs” were also taken for these blocks (Fig. 2C, left). 755 
- Tissue processing and sectioning. After standard tissue 756 
processing steps, each tissue block was embedded in 757 
paraffin wax and sectioned with a sledge microtome at 758 
25𝜇m thickness. Before each cut, a photograph was 759 

taken with a 24MPx Nikon D5100 camera (ISO = 100, ap-760 
erture = f/20, shutter speed = automatic) mounted right 761 
above the microtome, pointed perpendicularly to the 762 
sectioning plane. These photographs (henceforth 763 
“blockface photographs”) were corrected for pixel size 764 
and perspective using fiducial markers. The blockface 765 
photographs have poor contrast between grey and 766 
white matter (Fig. 2C, right) but also negligible nonlinear 767 
geometric distortion, so they can be readily stacked into 768 
3D volumes. A 2D convolutional neural network (CNN) 769 
pretrained on the ImageNet dataset [87] and fine-tuned 770 
on 50 manually labelled examples was used to automat-771 
ically produce binary tissue masks for the blockface im-772 
ages. 773 
- Staining and digitisation. We mounted on glass slides 774 
and stained two consecutive sections every N (see be-775 
low), one with Hematoxylin and Eosin (H&E) and one 776 
with Luxol Fast Blue (LFB); see Fig. 2D. The sampling in-777 
terval was N=10 (i.e., 250𝜇m) for blocks that included 778 
subcortical structures in the cerebrum, medial struc-779 
tures of the cerebellum, or brainstem structures. The in-780 
terval was N=20 (500𝜇m) for all other blocks. All stained 781 
sections were digitised with a flatbed scanner at 6,400 782 
DPI resolution (pixel size: 3.97𝜇m). Tissue masks were 783 
generated using a 2D CNN similar to the one used for 784 
blockface photographs (pretrained on ImageNet and 785 
finetuned on 100 manually labelled examples). 786 

Dense labelling of histology 787 
Segmentations of 333 ROIs (34 cortical, 299 subcortical) 788 
were made by authors ER, JA, and EB (with guidance 789 
from DK, MB, JZ, and JCA) for all the LFB sections, using 790 
a combination of manual and automated techniques 791 
(Fig. 2E). The general procedure to label each block was: 792 
(i) produce an accurate segmentation for one of every 793 
four sections; (ii) run SmartInterpol [5] to automatically 794 
segment the sections in between; and (iii) manually cor-795 
rect these automatically segmented sections when 796 
needed. SmartInterpol is a dedicated AI technique that 797 
we have developed specifically to speed up segmenta-798 
tion of histological stacks in this project. 799 

To obtain accurate segmentations on sparse sections, 800 
we used two different strategies depending on the brain 801 
region. For the blocks containing subcortical or brain-802 
stem structures, ROIs were manually traced from 803 
scratch using a combination of ITK-SNAP [88] and Free-804 
Surfer’s viewer “Freeview”. For cerebellum blocks, we 805 
first trained a 2D CNN (a U-Net [89]) on 20 sections on 806 
which we had manually labelled the white matter and 807 
the molecular and granular layers of the cortex. The 808 
CNN was then run on the (sparse) sections, and the out-809 
puts manually corrected. This procedure saves a sub-810 
stantial amount of time, since manually tracing the con-811 
voluted shape of the arbor vitae is extremely time 812 
consuming. For the cortical cerebrum blocks, we used a 813 
similar strategy as for the cerebellum, labelling the tis-814 
sue as either white or grey matter. The subdivision of 815 
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the cortical grey matter into parcels was achieved by 816 
taking the nearest neighbouring cortical label from the 817 
aligned MRI scan (details on the alignment below).  818 

The manual labelling followed neuroanatomical pro-819 
tocols based on different brain atlases, depending on 820 
the brain region. Further details on the specific delinea-821 
tion protocols are provided in the Supplementary Meth-822 
ods. The general ontology of the 333 ROIs is based on 823 
the Allen reference brain [7], and is provide in a spread-824 
sheet as part of the Supplementary Data.  825 

3D histology reconstruction 826 
3D histology reconstruction is the inverse problem of re-827 
versing all the distortion that brain tissue undergoes 828 
during acquisition, in order to reassemble a 3D shape 829 
that accurately follows the original anatomy. For this 830 
purpose, we used a framework with four modules. 831 
- Initial blockface alignment. In order to roughly initialise 832 
the 3D reconstruction, we relied on the stacks of block-833 
face photographs. Specifically, we used our previously 834 
presented hierarchical joint registration framework [58] 835 
that seeks to: (i) align each block to the MRI with a sim-836 
ilarity transform, by maximising the normalised cross-837 
correlation of their intensities; while (ii) discouraging 838 
overlap between blocks or gaps in between, via a differ-839 
entiable regulariser. The similarity transforms allowed 840 
for rigid deformation (rotation, translation), as well as 841 
isotropic scaling to model the shrinking due to tissue 842 
processing. The registration algorithm was initialised 843 
with transforms derived from the whole slice, blocked 844 
slice, and blockface photographs (see details in [6]). The 845 
registration was hierarchical in the sense that groups of 846 
transforms were forced to share the same parameters 847 
in the earlier iterations of the optimisation, to reflect 848 
our knowledge of the cutting procedure. In the first iter-849 
ations, we clustered the blocks into three groups: cere-850 
brum, cerebellum, and brainstem. In the following iter-851 
ations, we clustered the cerebral blocks that were cut 852 
from the same slice, and allowed translations in all di-853 
rections, in-plane rotation, and global scaling. In the fi-854 
nal iterations, each block alignment was optimised inde-855 
pendently. The numerical optimisation used the LBFGS 856 
algorithm [90]. The approximate average error after this 857 
procedure was ∼2mm [58]. A sample 3D reconstruction 858 
is shown in Fig. 2F.  859 
- Refined alignment with preliminary nonlinear model. 860 
Once a good initial alignment is available, we can use the 861 
LFB sections to refine the registration. These LFB images 862 
have exquisite contrast (Fig. 2D) but suffer from nonlin-863 
ear distortion – rendering the good initialization from 864 
the blockface images crucial. The registration procedure 865 
was nearly identical to that of the blockface, with two 866 
main differences. First, the similarity term used the local 867 
(rather than global) normalised cross-correlation func-868 
tion [91] in order to handle uneven staining across sec-869 
tions. Second, the deformation model and optimisation 870 

hierarchy were slightly different since nonlinear regis-871 
tration benefits from more robust methods. Specifically: 872 
The first two levels of optimisation were the same, with 873 
blocks grouped into cerebrum/cerebellum/brainstem 874 
(first level) or cerebral slices (second level), and optimi-875 
sation of similarity transforms. The third level (i.e., each 876 
block independently) was subdivided into four stages in 877 
which we optimised transforms with increasing com-878 
plexity, such that the solution of every level of complex-879 
ity serves as initialisation to the next. In the first and 880 
simplest level, we allowed for translations in all direc-881 
tions, in-plane rotation and global scaling (5 parameters 882 
per block). In the second level, we added a different 883 
scaling parameter in the normal direction of the block (6 884 
parameters per block). In the third level, we allowed for 885 
rotation in all directions (8 parameters per block). In the 886 
fourth and final level, we added to every section in every 887 
block a nonlinear field modelled with a grid of control 888 
points (10mm spacing) and interpolating B-splines. This 889 
final deformation model has approximately 100,000 pa-890 
rameters per case (∼100 parameters per section, times 891 
∼1,000 LFB sections).  892 
- Nonlinear AI registration. We seek to produce final 893 
nonlinear registrations that are accurate, consistent 894 
with each other, and robust against tears and folds in 895 
the sections. We capitalise on Synth-by-Reg (SbR [10]), 896 
an AI tool for multimodal registration that we have re-897 
cently developed, to register histological sections to 898 
MRI slices resampled to the plane of the histology (as 899 
estimated by the linear alignment). SbR exploits the 900 
facts that: (i) intra-modality registration is more accu-901 
rate than inter-modality registration [92]; and (ii) there 902 
is a correspondence between histological sections and 903 
MRI slices, i.e., they represent the same anatomy. In 904 
short, SbR trains a CNN to make histological sections 905 
look like MRI slices (a task known as style transfer [93]), 906 
using a second CNN that has been previously trained to 907 
register MRI slices to each other. The style transfer re-908 
lies on the fact that only good MRI synthesis will yield a 909 
good match when used as input to the second CNN, 910 
combined with a contrastive loss [94] that prevents 911 
blurring and content shift due to overfitting. SbR pro-912 
duces highly accurate deformations parameterised as 913 
stationary velocity fields (SVF [95]). 914 
- Bayesian refinement. Running SbR for each stain and 915 
section independently (i.e., LFB to resampled MRI, and 916 
H&E to resampled MRI) yields a reconstruction that is 917 
jagged and sensitive to folds and tears. One alternative 918 
is to register each histological section to each neighbour 919 
directly, which achieves smooth reconstructions but in-920 
curs the so-called “banana effect”, i.e., a straightening 921 
of curved structures [52]. We have proposed a Bayesian 922 
method that yields smooth reconstructions without ba-923 
nana effect [9]. This method follows an overconstrained 924 
strategy, by computing registrations between: LFB and 925 
MRI; H&E and MRI; H&E and LFB; each LFB section and 926 
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the two nearest neighbours in either direction across 927 
the stack; each H&E section and its neighbours; and 928 
each MRI slice and its neighbours. For a stack with S sec-929 
tions, this procedure yields 15xS-18 registrations, while 930 
the underlying dimensionality of the spanning tree con-931 
necting all the images is just 3xS-1. We use a probabilis-932 
tic model of SVFs to infer the most likely spanning tree 933 
given the computed registrations, which are seen as 934 
noisy measurements of combinations of transforms in 935 
the spanning tree. The probabilistic model uses a La-936 
place distribution, which relies on L1 norms and is thus 937 
robust to outliers. Moreover, the properties of SVFs en-938 
able us to write the optimization problem as a linear 939 
program, which we solve with a standard simplex algo-940 
rithm [96].  The result of this procedure was a 3D recon-941 
struction that is accurate (it is informed by many regis-942 
trations), robust, and smooth (Figures 2G and 3).  943 

Atlas construction 944 
The transforms for the LFB sections produced by the 3D 945 
reconstructions were applied to the segmentations to 946 
bring them into 3D space. Despite the regulariser 947 
from [58], minor overlaps and gaps between blocks still 948 
occur. The former were resolved by selecting the label 949 
which is furthest inside the corresponding ROI. For the 950 
latter, we used our previously developed smoothing ap-951 
proach [14].  952 

Given the low number of available cases, we com-953 
bined the left (2) and right (3) hemispheres into a single 954 
atlas. This was achieved by flipping the right hemi-955 
spheres and computing a probabilistic atlas of the left 956 
hemisphere using an iterative technique [64]. To initial-957 
ise the procedure, we registered the MRI scans to the 958 
MNI atlas [53] with the right hemisphere masked out, 959 
and averaged the deformed segmentations to obtain an 960 
initial estimate of the probabilistic atlas. This first regis-961 
tration was based on intensities, using a local normal-962 
ised cross-correlation loss.  From that point on, the al-963 
gorithm operates exclusively on the segmentations.  964 

Every iteration of the atlas construction process com-965 
prises two steps. First, the current estimate of the atlas 966 
and the segmentations are co-registered one at the 967 
time, using: (i) a diffeomorphic deformation model 968 
based on SVFs parameterised by grids of control points 969 
and B-splines (as implemented in NiftyReg [97]), which 970 
preserves the topology of the segmentations; (ii) a data 971 
term, which is the log-likelihood of the label at each 972 
voxel according to the probabilities given by the de-973 
formed atlas (with a weak Dirichlet prior to prevent logs 974 
of zero); and (iii) a regulariser based on the bending en-975 
ergy of the field, which encourages regularity in the de-976 
formations. The second step of each iteration updates 977 
the atlas by averaging the segmentations. The proce-978 
dure converged (negligible change in the atlas) after five 979 
iterations. Slices of the atlas are shown in Figs. 2H and 4. 980 

Bayesian segmentation 981 

Our Bayesian segmentation algorithm builds on well-es-982 
tablished methods in the neuroimaging litera-983 
ture [54,98,99]. In short, the algorithm jointly estimates 984 
a set of parameters that best explain the observed im-985 
age in light of the probabilistic atlas, according to a gen-986 
erative model based on a Gaussian mixture model 987 
(GMM) conditioned on the segmentation, combined 988 
with a model of bias field. The parameters include the 989 
deformation of the probabilistic atlas, a set of coeffi-990 
cients describing the bias field, and the means, vari-991 
ances, and weights of the GMM. The atlas deformation 992 
is regularised in the same way as the atlas construction 993 
(bending energy, in our case) and is estimated via nu-994 
merical optimisation with LBFGS. The bias field and 995 
GMM parameters are estimated with the Expectation 996 
Maximisation algorithm [100].  997 

Compared with classical Bayesian segmentation 998 
methods operating at 1 mm resolution with just a few 999 
classes (e.g., SAMSEG [2], SPM [54]), our proposed 1000 
method has several distinct features: 1001 

● Since the atlas only describes the left hemi-1002 
sphere, we use a fast deep learning registration 1003 
method (EasyReg [101]) to register the input 1004 
scan to MNI space, and use the resulting defor-1005 
mation to split the brain into two hemispheres 1006 
that are processed independently.  1007 

● Since the atlas only models brain tissue, we run 1008 
SynthSeg [102] on the input scan to mask out 1009 
the extracerebral tissue. 1010 

● Clustering ROIs into tissue types (rather than let-1011 
ting each ROI have its own Gaussian) is particu-1012 
larly important, given the large number of ROIs 1013 
(333). The user can specify the clustering via a 1014 
configuration file; by default, our public imple-1015 
mentation uses a configuration with 15 tissue 1016 
types, tailored to in vivo MRI segmentation. 1017 

● The framework is implemented using the 1018 
PyTorch package, which enables it to run on 1019 
GPUs and curbs segmentation run times to 1020 
about half an hour per hemisphere.  1021 

Sample segmentations with this method can be found in 1022 
Figures 2H (in vivo) and 5 (ex vivo). 1023 

Labelling of ultra-high resolution ex vivo brain MRI and 1024 
simplified version of NextBrain atlas 1025 
In order to quantitatively assess the accuracy of our seg-1026 
mentation method on the ultra-high resolution ex vivo 1027 
scan, we produced a gold standard segmentation of the 1028 
publicly available 100 μm scan [3] as follows. First, we 1029 
downsampled the data to 200 μm resolution and dis-1030 
carded the left hemisphere, to alleviate the manual la-1031 
belling requirements. Next, we used Freeview to manu-1032 
ally label from scratch one coronal slice every 10; we 1033 
labelled as many regions from the histological protocol 1034 
as the MRI contrast allowed – without subdividing the 1035 
cortex. Then, we used SmartInterpol [5] to complete the 1036 
segmentation of the missing slices. Next, we manually 1037 
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corrected the SmartInterpol output as needed, until we 1038 
were satisfied with the 200 μm isotropic segmentation. 1039 
The cortex was subdivided using standard FreeSurfer 1040 
routines. This labelling scheme led to a ground truth 1041 
segmentation with 98 ROIs, which we have made pub-1042 
licly available (details under “Data Availability”). Supple-1043 
mentary Videos 3 and 4 fly over the coronal and axial 1044 
slices of the labelled scan, respectively.  1045 

As explained in the Results section, we used a simpli-1046 
fied version of the NextBrain atlas when segmenting the 1047 
100 μm scan, in order to better match the ROIs of the 1048 
automated segmentation and the ground truth (espe-1049 
cially in the brainstem). This version was created by re-1050 
placing the brainstem labels in the histological 3D recon-1051 
struction (Fig. 2G, right) by new segmentations made 1052 
directly in the underlying MRI scan. These segmenta-1053 
tions were made with the same methods as for the 1054 
100 μm isotropic scan. The new combined segmenta-1055 
tions were used to rebuild the atlas. 1056 

Automated segmentation with Allen MNI template  1057 
Automated labelling with the Allen MNI template relied 1058 
on registration-based segmentation with the NiftyReg 1059 
package [65,97], which yields state-of-the art perfor-1060 
mance in brain MRI registration [103]. We used the 1061 
same deformation model and parameters as the Nif-1062 
tyReg authors used in their own registration-based seg-1063 
mentation work [104]: (i) symmetric registration with a 1064 
deformation model parameterised by a grid of control 1065 
points (spacing: 2.5 mm = 5 voxels) and B-spline inter-1066 
polation; (ii) local normalised cross correlation as objec-1067 
tive function (standard deviation: 2.5mm); and 1068 
(iii) bending energy regularisation (relative weight: 1069 
0.001).  1070 

Linear discriminant analysis (LDA) for AD classification  1071 
Linear classification of AD vs controls based on ROI vol-1072 
umes was performed as follows. Leaving one subject out 1073 
at the time, we used all other subjects to: (i) compute 1074 
linear regression coefficients to correct for sex and age 1075 
(intracranial volume was corrected by division); (ii) esti-1076 
mate mean vectors for the two classes (𝜇̅!, 𝜇̅"), as well 1077 
as a pooled covariance matrix (Σ ); and (iii) use the 1078 
means and covariance to compute an unbiased log-like-1079 
hood criterion 𝐿  for the left-out subject: 1080 

𝐿(𝑥̅) = (𝜇̅" − 𝜇̅#)$	Σ%"	[𝑥̅ − 	0.5	(𝜇̅" + 𝜇̅#)], 1081 
where 𝑥̅ is the vector with ICV-, sex-, and age-corrected 1082 
volumes for the left-out subject. Once the criterion 𝐿 1083 
has been computed for all subjects, we it can be globally 1084 
thresholded for accuracy and ROC analysis. We note 1085 
that, for NextBrain, the high number of ROIs renders the 1086 
covariance matrix singular. We prevent this by using 1087 
regularised LDA: we normalise all the ROIs to unit vari-1088 
ance and then compute the covariance as Σ = S + λI, 1089 
where S is the sample covariance, 𝐼 is the identity ma-1090 
trix, and λ = 1.0 is a constant. We note that normalizing 1091 

to unit variance enables us to use a fixed, unit λ – rather 1092 
than having to estimate λ for every left-out subject.  1093 

B-spline fitting of aging trajectories  1094 
To compute the B-spline fits in Extended Data Fig. 8, we 1095 
first corrected the ROI volumes by sex (using regression) 1096 
and intracranial volume (by division). Next, we modelled 1097 
the data with a Laplace distribution, which is robust 1098 
against outliers which may be caused by potential seg-1099 
mentation mistakes. Specifically, we used an age-de-1100 
pendent Laplacian where the location 𝜇 and scale 𝑏 are 1101 
both B-splines with four evenly space control points at 1102 
30, 51.6, 73.3, and 95 years. The fit is optimised with 1103 
gradient ascent over the log-likelihood function: 1104 

𝐿(𝜃& , 𝜃') = 	< log𝑝A𝑣(; 𝜇D𝑎(; 𝜃&F, 𝑏(𝑎(; 𝜃')G,
)

(*"

	 1105 

where 𝑝(𝑥; 𝜇, 𝑏) is the Laplace distribution with loca-1106 
tion 𝜇 and scale 𝑏; 𝑣( is the volume of ROI for subject 𝑛; 1107 
𝑎(  is the age of subject 𝑛; 𝜇(𝑎(; 𝜃&) is a B-spline de-1108 
scribing the location, parameterised by 𝜃&; and  1109 
𝑏(𝑎(; 𝜃') is a B-spline describing the scale, parameter-1110 
ised by 𝜃'. The 95% confidence interval of the Laplace 1111 
distribution is given by 𝜇 ± 3𝑏. 1112 
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Extended Data 1596 

 1597 
Extended Data Fig. 1: 3D reconstruction of Case 2. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D 1598 
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of 1599 
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error 1600 
(right); and mean ± standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).  1601 

Sagittal Axial

C | Bayesian refinement for smooth 3D reconstruction across sections

LFB  H&E  Labels  

B | Accurate inter-modality registration with AI techniques

D | 3D Registration error for a sample case: visualization of 
landmarks (left) and histogram of the error magnitude (right)

MRI landmarks
Registered histology landmarks
Registration error

A | Joint registration that minimizes overlap and and gaps between blocks 
(this reconstructed slice comprises four different blocks)

Error (mean ± std.dev.):0.98 ± 0.55 mm
Error (Mancini et al.): 1.50 ± 1.61 mm

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.02.05.579016doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.579016
http://creativecommons.org/licenses/by/4.0/


 

21 
 

 1602 
Extended Data Fig. 2: 3D reconstruction of Case 3. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D 1603 
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of 1604 
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error 1605 
(right); and mean ± standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).  1606 

Sagittal Axial

C | Bayesian refinement for smooth 3D reconstruction across sections

B | Accurate inter-modality registration with AI techniques

D | 3D Registration error for a sample case: visualization of 
landmarks (left) and histogram of the error magnitude (right)

MRI landmarks
Registered histology landmarks
Registration error

A | Joint registration that minimizes overlap and and gaps between blocks 
(this reconstructed slice comprises three different blocks)

LFB  H&E  Labels  

Error (mean ± std.dev.):0.80 ± 0.32 mm
Error (Mancini et al.): 1.41 ± 1.69 mm
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 1607 
Extended Data Fig. 3: 3D reconstruction of Case 4. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D 1608 
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of 1609 
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error 1610 
(right); and mean ± standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).  1611 

Sagittal Axial

C | Bayesian refinement for smooth 3D reconstruction across sections

B | Accurate inter-modality registration with AI techniques

D | 3D Registration error for a sample case: visualization of 
landmarks (left) and histogram of the error magnitude (right)

MRI landmarks
Registered histology landmarks
Registration error

A | Joint registration that minimizes overlap and and gaps between blocks 
(this reconstructed slice comprises three different blocks)

LFB  H&E  Labels  

Error (mean ± std.dev.):1.05 ± 0.50 mm
Error (Mancini et al.): 1.49 ± 1.74 mm
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 1612 
Extended Data Fig. 4: 3D reconstruction of Case 5. The visualisation follows the same convention as in Figure 3: (A) Coronal slice of the 3D 1613 
reconstruction. (B) Registered MRI, LFB, and H&E histology of a block, with tissue boundaries (traced on LFB) overlaid. (C) Orthogonal view of 1614 
reconstruction, which is smooth and avoids gaps and overlaps. (D) Visualization of 3D landmark registration error (left); histogram of its error 1615 
(right); and mean ± standard deviation (bottom), compared with our previous pipeline (Mancini et al. [6]).  1616 

Sagittal Axial

C | Bayesian refinement for smooth 3D reconstruction across sections

A | Joint registration that minimizes overlap and and gaps between blocks 
(this reconstructed slice comprises four different blocks)

B | Accurate inter-modality registration with AI techniques

D | 3D Registration error for a sample case: visualization of 
landmarks (left) and histogram of the error magnitude (right)

MRI landmarks
Registered histology landmarks
Registration error

LFB  H&E  Labels  

Error (mean ± std.dev.):0.83 ± 0.57 mm
Error (Mancini et al.): 1.39 ± 1.64 mm
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 1617 
Extended Data Fig. 5: Sagittal, coronal, and axial slices of the continuous maps of the 3D landmark registration error. The maps are computed 1618 
from the discrete landmarks (displayed in Fig. 3D and Extended Data Figs. 1-4D) using Gaussian kernel regression with σ = 10 mm. There is no 1619 
clear spatial pattern for the anatomical distribution of the error across subjects.  1620 
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 1622 
ROI Dice  

(200 μm) 
Dice  

(1 mm) 

Cerebral-White-Matter 0.90871 0.81367 
Ctx-whole 0.89455 0.81493 
Cerebellum-Cortex 0.93205 0.85472 
ctx-superiorfrontal 0.77579 0.67069 
Cerebellum-White-Matter 0.84393 0.65269 
ctx-inferiorparietal 0.77458 0.68367 
ctx-precentral 0.73685 0.65937 
ctx-rostralmiddlefrontal 0.72036 0.66448 
ctx-superiortemporal 0.78506 0.69595 
ctx-superiorparietal 0.63853 0.56005 
ctx-middletemporal 0.71694 0.67675 
ctx-inferiortemporal 0.64805 0.65658 
ctx-lateraloccipital 0.61442 0.57929 
ctx-postcentral 0.72245 0.60464 
ctx-supramarginal 0.78025 0.66091 
ctx-precuneus 0.72374 0.61229 
ctx-fusiform 0.64278 0.5845 
ctx-rh-lateralorbitofrontal 0.69867 0.66915 
Brain-Stem 0.65342 0.64177 
ctx-insula 0.80767 0.73846 
ctx-caudalmiddlefrontal 0.65308 0.52521 
ctx-medialorbitofrontal 0.73295 0.62687 
ctx-lingual 0.66735 0.59501 
ctx-parsopercularis 0.70901 0.63893 
Left-Putamen 0.9199 0.86072 
ctx-paracentral 0.66197 0.58969 
ctx-parstriangularis 0.68932 0.65785 
Left-Caudate 0.91102 0.86814 
ctx-cuneus 0.56676 0.52349 
Pons 0.73371 0.6236 
ctx-caudalanteriorcingulate 0.6305 0.56515 
ctx-bankssts 0.67939 0.4762 
ctx-isthmuscingulate 0.70825 0.55557 
ctx-parsorbitalis 0.43236 0.42366 
Pons-nuc 0.65229 0.5514 
ctx-rh-posteriorcingulate 0.69731 0.56382 
ctx-rostralanteriorcingulate 0.67935 0.41073 
ctx-pericalcarine 0.5253 0.38703 
ctx-entorhinal 0.72093 0.65273 
ctx-temporalpole 0.54659 0.49421 
ctx-parahippocampal 0.73123 0.66232 
Left-PuL 0.76937 0.78917 
Left-external-pallidum 0.78074 0.79407 
Left-MDl 0.87316 0.86494 
ctx-frontalpole 0.11589 0.3493 
ctx-transversetemporal 0.63184 0.56123 
Left-VA 0.6994 0.73112 
CA1 0.78967 0.60729 
Fornix 0.30751 0.29593 
Claustrum 0.48364 0.3618 

 

ROI Dice  
(200 μm) 

Dice  
(1 mm) 

Reticular-of-thalamus 0.2386 0.3239 
VPL 0.57387 0.62796 
LP 0.73933 0.73133 
molecular_layer_HP 0.50045 0.50313 
Internal-pallidum 0.78939 0.83776 
subiculum 0.69842 0.61734 
Dentate-cerebellum 0.71523 0.54696 
alveus 0.57837 0.3076 
CA4_GC-DG 0.75655 0.7136 
Accumbens-area 0.77455 0.67541 
Thalamus 0.32506 0.32978 
Lateral-nucleus 0.8586 0.75999 
CeM 0.6668 0.70489 
Substancia-Nigra 0.7045 0.63047 
CA2_CA3 0.54381 0.4454 
AV 0.59365 0.60739 
Basal-nucleus 0.66909 0.61273 
SCP 0.71921 0.67856 
hypothalamus_posterior 0.58318 0.53634 
hypothalamus_tubular_sup 0.51626 0.48914 
Accessory-Basal-nucleus 0.74887 0.78098 
hypothalamus_tubular_inf 0.65529 0.56586 
PAG 0.76829 0.7809 
Red-Nucleus 0.83407 0.83386 
VTA 0.67032 0.4751 
STN 0.71496 0.72738 
Optic-Nerve 0.58216 0.44427 
LGN 0.64318 0.62109 
acomm 0.44371 0.42966 
fimbria 0.264 0.157 
MGN 0.37669 0.21371 
VLa 0.32691 0.45109 
LD 0.42601 0.46225 
stria-terminals 0.50263 0.30588 
Central-nucleus-inf-colliculus 0.78275 0.72433 
Corticoamygdaloid-transitio 0.58151 0.48352 
mammillary_body 0.56602 0.57353 
DR 0.54393 0.49046 
Inferior-olive 0.26264 0.046102 
hypothalamus_anterior_sup 0.54939 0.45936 
Medial-nucleus 0.32559 0.33181 
Central-nucleus 0.52925 0.48942 
Anterior-amygdaloid-area-AAA 0.21345 0.18373 
zona-incerta 0.40755 0.45308 
hypothalamus_anterior_inf 0.36912 0.32702 
Paralaminar-nucleus 0.14105 0.13123 
Cortical-nucleus 0.30083 0.23504 
Rest of hippocampus N/A N/A 
Rest of amygdala N/A N/A 

 

 1623 
Extended Data Tab. 1: Dice scores between the ground truth labels of the 100 μm ex vivo brain MRI scan presented in [3] and the automated 1624 
segmentations obtained with NextBrain. ROIs are listed in decreasing order of size (volume). The Dice scores are shown for segmentations 1625 
obtained at two different resolutions: 200 μm (the resolution at which we created the ground truth labels) and 1 mm (which is representative 1626 
of in vivo data). We note that the Dice scores are computed from labels made on the right hemisphere (since we did not label the left side of 1627 
the brain). We also note that the labels “rest of hippocampus” and “rest of amygdala” correspond to voxels that did not clearly belong to any 1628 
of the manually labelled nuclei, and have therefore no direct correspondence with ROIs in NextBrain.  1629 
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 1630 
Extended Data Fig. 6: Box plots of the Dice scores for 11 representative ROIs computed on the OpenBHB dataset (3,330 subjects), using the 1631 
Allen MNI template and NextBrain, with FreeSurfer segmentations as reference. The scores are computed at the whole regions level, i.e., the 1632 
level of granularity at which FreeSurfer segments. On each box, the central mark indicates the median, the edges of the box indicate the 25th 1633 
and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually as 1634 
'+'. The abbreviations for the regions are: WM = white matter of the cerebrum, CT = cortex of the cerebrum, CWM = cerebellar white matter, 1635 
CCT = cerebellar cortex, TH = thalamus, CA = caudate, PU = putamen, PA = pallidum, BS = brainstem, HP = hippocampus, AM = amygdala.  1636 

Allen template
          NextBrain
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 1637 
Extended Data Fig. 7: Absolute value of Spearman correlation for ROI volumes vs age derived from in vivo MRI scans (additional slices). The 1638 
visualisation follows the same convention as in Figure 5: (A) Ageing HCP dataset. (B) OpenBHB dataset, restricted to ages over 35. (C) Full 1639 
OpenBHB dataset. 1640 

  1641 

.0                  .4                  .8 .0                  .4                  .8 .0                  .25                .5

A | Aging HCP (N = 705) B | OpenBHB, age > 35 (N = 431) C | OpenBHB, all cases (N = 3220)
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 1642 

Extended Data Fig. 8: Aging trajectories for select ROIs in HCP dataset, showing differential pattens in subregions of brain structures (thalamus, 1643 
hippocampus, cortex, etc). The red dots correspond to the ROI volumes of individual subjects, corrected by intracranial volume (by division) 1644 
and sex (by regression). The blue lines represent the maximum likehood fit of a Laplace distribution with location and scale parameters para-1645 
metrised by a B-spline with four control points (equally space between 30 and 95 years). The continuous blue line represents the location, 1646 
whereas the dashed lines represent the 95% confidence interval (equal to three times the scale parameter in either direction). Volumes of 1647 
contralateral structures are averaged across left and right. 1648 
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