

IFNB induced by non-lytic virus immunotherapy promotes improved survival in hepatocellular carcinoma, mediated by MHCII-independent cytotoxic CD4⁺ T-cells.

AUTHORS: Russell Hughes^{1*}, Amy Moran¹, Samantha Garcia-Cardenas¹, Karen J. Scott¹, Elizabeth Appleton¹, Matthew J. Bentham¹, Elizabeth Ilett¹, Alan Melcher³, Andrew Macdonald², Adel Samson^{1,*}, and Stephen Griffin^{1,*}

AFFILIATIONs:

¹Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds; Leeds, UK.

²School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds; Leeds, UK.

³The Institute for Cancer Research, University of London; London, UK.

*Corresponding author(s): s.d.c.griffin@leeds.ac.uk; a.samson@leeds.ac.uk;

r.hughes1@leeds.ac.uk

Word count: 6552

Number of figures: 7

COMPETING INTERESTS

All authors declare that there are no conflicts of interest.

FINANCIAL SUPPORT STATEMENT

This research was funded by the Medical Research Council (Award No: MR/T016205, awarded to SG), and Cancer Research UK (Award No: 29039, awarded to AS).

Key words: Reovirus, MHCII-independent, IFNB, Granzyme B, Perforin, CD4, cytotoxic.

AUTHOR CONTRIBUTIONS

Conceptualization, R.H., S.G, A.S., A.M²., and A.M³; *Methodology*, R.H., A.M¹., S.G.C., and S.G; *Investigation*, R.H., A.S., S.G.C., K.J.S., E.A., M.B., and A.M¹; *Writing – Original*, R.H. and S.G; *Writing – Review & Editing*, R.H., A.S., A.M¹., A.M²., A.M³., E.A., K.J.S., M.B., and S.G; *Funding Acquisition*, A.S., A.M², A.M³., E.I., and S.G.

ABSTRACT

Hepatocellular carcinoma (HCC) is the third most common cause of cancer deaths worldwide. Combination immunotherapy is now standard of care for advanced HCC, improving patient outcomes. However, a considerable number of patients remain unresponsive, or are unable to tolerate therapy. Tyrosine kinase inhibitors (TKIs), such as the former first-line agent sorafenib, remain an option for such patients, yet provide only marginal efficacy. We hypothesised that a clinically advanced immunogenic “oncolytic” virus, namely, human *Orthoreovirus*, might improve TKI mediated therapy. Surprisingly, *uv*-inactivated, replication-deficient reovirus, but not live virus, significantly extended survival when combined with sorafenib in preclinical immunocompetent HCC models. Favourable responses were dependent upon adaptive immunity, mediated by IFNB-induced skewing of the infiltrating T-cell ratio in favour of cytotoxic CD4⁺ T-cells expressing granzyme B and perforin. Interestingly, this subset effectively killed tumours via both contact juxtacrine and paracrine processes, the former being MHCII independent. Moreover, efficacy correlated with more rapid and robust IFN production by inactivated virus due to the absence of innate viral antagonists. Thus, we reveal a means to improve TKI-HCC outcomes through an alternative virus-driven immunotherapy, underpinned by non-classical immunological mechanisms.

IMPACT AND IMPLICATIONS

Immune checkpoint immunotherapy is revolutionising cancer treatment, yet considerable numbers of patients still fail to respond and must resort to older, more toxic and less effective therapies, including Sorafenib for the management of HCC.

We demonstrate that burgeoning virus-driven immunotherapy can be successfully combined with Sorafenib to extend preclinical HCC survival, but only when the virus is *uv*-inactivated to prevent already attenuated innate immune antagonism, specifically increasing the magnitude of tumour IFNB responses. IFNB was essential to promote tumour infiltration of cytotoxic CD4+ cells during therapy, which was a hallmark of long-term survival mediated by ensuing adaptive responses.

We anticipate this work will be of interest to clinicians and cancer immunology researchers, promoting closer inspection of the immune microenvironment and cancer-specific responses to OV therapy, specifically those driven by non-canonical anti-cancer mechanisms involving IFNB and cytotoxic CD4+ T-cells.

INTRODUCTION

1 Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths
2 worldwide. A significant proportion of HCC patients (~40%) present with advanced disease
3 at diagnosis, excluding them from potentially curative surgery. Consequently, ~88% of
4 patients succumb within 5-years post-diagnosis across disease stages. Recently,
5 immunotherapy combinations, including licensed treatments targeting PD-L1 and VEGF-A
6 have dramatically improved clinical outcomes, dependent upon a favourable immunological
7 tumour microenvironment. Patients failing to respond revert to prior systemic TKI therapy,
8 most commonly sorafenib. The survival benefit gained following sorafenib treatment is
9 limited¹, as is patient compliance. Thus, considerable need exists for novel therapeutic
10 approaches that augment existing TKI efficacy.

11
12 Oncolytic viruses (OV) are a promising area of cancer immunotherapy and are well tolerated
13 by patients. Numerous OVs are in clinical trials for a range of solid and hematological
14 malignancies. OV-therapies are known to exert their anti-cancer activity by both direct
15 tumour cell lysis and stimulation of anti-tumour immunity. This arises due to innate
16 responses, direct leukocyte stimulation, and the liberation of PAMPs, DAMPs and other cell
17 components including tumour antigens. The balance between how these processes combine
18 to achieve efficacy logically varies according to both the OV, as well as the tumour in
19 question.

20 Oncolytic human *Orthoreovirus* (type-3, Dearing Strain, supplied as Pelareorep, Oncolytics
21 Biotech, Calgary, CA. Referred to herein as “Reo”) has been both widely and safely used in
22 numerous cancer clinical trials and is currently under fast-track review for both metastatic
23 breast cancer and advanced/metastatic pancreatic cancer². Although Reo exerts direct lytic

24 effects following replication in cancerous cells, there is considerable interest in its
25 pronounced ability to activate the immune system³⁻⁷. The segmented, dsRNA genome of
26 Reovirus, including its terminal diphosphate, can be detected by innate cellular pattern
27 recognition receptors (PRR) including endosomal Toll-like receptors (TLR3) and cytosolic
28 RIG-like receptors⁸ (RIG-I and MDA-5). Upon activation, PRRs trigger signalling cascades
29 that drive host cells to produce a wide variety of inflammatory cytokines, particularly
30 interferons. These play a major role inducing an anti-viral state by upregulating the
31 expression of interferon-stimulated genes (ISGs), but also stimulate and enhance immune
32 cell function. In the context of cancer, Reo stimulates antigen-specific cytotoxic CD8⁺ T-cell
33 responses⁴⁻⁷ capable of breaking tumour immune tolerance in pre-clinical mouse models^{5, 6}.
34 Immune activation is also observed in Reo treated patients, evidenced by increased
35 expression of the interferon gamma-inducible immune checkpoint molecule, PD-L1⁹,
36 increased levels of anti-Reo neutralising antibodies in peripheral blood^{10, 11}, and the
37 accumulation of intra-tumoural T-cells¹².

38

39 CD4⁺ T-helper cells (T_H-cells) are critical master co-ordinators of the adaptive immune
40 system. In addition, under specific conditions T_H-cells exert direct toxicity against a range of
41 cell types. Cytotoxic CD4⁺ T_H-cells (CTHs) are frequently observed in patients with chronic
42 viral infections, including both human cytomegalovirus (hCMV)¹³ and human
43 immunodeficiency virus (HIV)¹⁴, as well as in pre-clinical models of lymphocytic
44 choriomeningitis (LCMV)¹⁵.

45 CTHs resemble *bona fide* cytotoxic CD8⁺ T-cells (CTLs) by expressing granzyme-B and
46 perforin, although rather than MHC_I, they exert MHC_{II}-dependent, antigen-specific cell
47 killing. T_H-cells also deploy granzyme/perforin-independent cytotoxicity, including FasL/Fas
48 and TNF-related apoptosis-inducing ligand (TRAIL), which are involved in maintenance of

49 peripheral tolerance through activation-induced cell death (AICD), and the elimination of
50 malignant or virus-infected cells^{16, 17}.

51 Here, we describe a striking observation whereby *uv*-inactivated, replication-deficient Reo
52 (*uv*-Reo), but *not* live Reo, dramatically extended survival in a pre-clinical, syngeneic,
53 immunocompetent HCC model when combined with sorafenib. Whilst long-term protection
54 relied upon adaptive responses, its inception was critically dependent upon expression of
55 IFNB, and a T_H1-dominated anti-tumour immune response underpinned, surprisingly, by
56 multiple MHCII-*independent* modes of killing. Mechanistically, tumour-borne expression of
57 the T_H1-cell tropic chemokine, CCL5, led to a markedly increased CD4:CD8 ratio amongst
58 tumour-infiltrating lymphocytes (TIL) during therapy. *uv*-Reo/sorafenib induced CTH
59 exhibited both paracrine as well as proximity-dependent tumour cell killing. Sorafenib
60 sensitised tumour cells to secreted TNFA and IFNG produced by CTHs whereas IFNB
61 engaged a proximity-dependent mode of killing that was reliant on granzyme B and perforin,
62 but *not* MHCII. The superiority of the *uv*-Reo response was attributable to the absence of
63 viral IFN antagonists, raising questions over the possible limitations of other, less attenuated,
64 virus-driven immunotherapies.

MATERIALS & METHODS

65 **Mouse models**

66 All *in vivo* experiments were conducted with the approval of the University of Leeds
67 Applications and Amendments (Ethics) Committee and in accordance with UK Home Office
68 regulations (PP1816772). BALB/c, SCID, and SCID/Beige mice were housed in isolator
69 cages with 12-h light/dark cycles at 22°C with access to food and water *ad libitum*. For
70 overall survival studies, female mice, aged 7 – 8 weeks, were implanted subcutaneously
71 (*s.c.*,) with 1MEA cells in 100 µL of PBS. Once palpable (~2 – 3 mm in diameter), mice were
72 treated with either Reo or *uv*-Reo (1x10⁷ pfu) *via* intra-tumoural injection (*i.t.*,), three times
73 per week for six weeks. Sorafenib (10 mg/Kg) or vehicle (PBS, 25% PEG-400, 5% Tween-
74 20, 5% ethanol) were administered by oral gavage (*o.g.*,), daily for 4 four weeks. Tumour
75 diameter was measured in two dimensions daily and mice were culled when they reached 15
76 mm in diameter as a proxy for cancer-induced mortality. For histological, proteomic and
77 RNA analyses, female mice were implanted with murine HCC cells and treated with live- or
78 *uv*-Reo alone or in combination with sorafenib or vehicle as described above, for two weeks.
79 Twenty-four hours after the last treatment the mice were culled by an approved Schedule 1
80 method and tissue processed accordingly.

81 **Primary cell cultures and cell lines**

82 Human (HLE) and murine (1ME.A7.7R.1 [1MEA]) HCC cell lines, and primary immune
83 cells, were maintained in humidified incubators with 5% CO₂ in DMEM supplemented with

84 2 mM *l*-glutamine, 10% FBS, and 1% non-essential amino acids. Human and murine T-cells
85 were isolated by a combination of positive selection using antibody-conjugated magnetic
86 beads directed against CD4 and CD8 for whole blood (Human) or negative selection from
87 spleens and lymph nodes (Mouse). Activation of human and murine T-cells was performed
88 using plate-bound anti-CD3 and medium supplemented with anti-CD28 for three days, with
89 or without recombinant IL2 and IL12 for T_H1 polarisation.

90

91 **Chemotaxis assay**

92 CD4⁺ T-cells were serum-starved for two hours in chemotaxis buffer (RPMI-1640 and 0.5 %
93 BSA) prior to assay. For each experiment, 3x10⁵ CD4⁺ T-cells, labelled with CFSE, were
94 seeded into tissue culture inserts (5 μ m pore size), in 24-well plates, in chemotaxis buffer in
95 the presence or absence a CCR5 inhibitor (Maraviroc, 1 μ M) or vehicle. The lower
96 compartment contained either chemotaxis buffer alone or was supplemented with CCL5 (100
97 ng/mL) with or without Maraviroc or vehicle. Chemotaxis assays were stopped after 1.5
98 hours and cells counted using flow cytometry.

99

100 **Immunofluorescence**

101 Tumour cryosections 14 μ m thick were fixed with either ice-cold acetone or 4%
102 paraformaldehyde, blocked in appropriate serum and incubated with fluorophore-conjugated
103 primary antibodies (2 – 5 μ g/mL) in PBS, overnight at 4°C. Nuclei were counter-stained
104 using DAPI and labelled sections were mounted in ProLong Diamond antifade reagent.
105 Random fields of view (F.O.V.) were acquired using both a Nikon A1R and Zeiss LSM 980
106 confocal microscopes. Image processing and quantification was performed using ‘Fiji’
107 Image.

108 **Proteomics**

109 Cytokine arrays were performed using tumour protein extracts generated from snap-frozen
110 biopsies using a combination of bead mill and freeze/fracture in PBS. Mouse cytokine arrays
111 were incubated with 1 mg pooled total protein. Membranes were developed using PierceTM
112 chemiluminescent substrate with a ChemiDocTM imaging system and image quantification
113 was performed using 'Fiji' Image J. For ELISAs, clarified supernatants were generated from
114 human and mouse HCC cell lines following incubation overnight with Reo/uv-Reo (2
115 PFU/cell) in the presence or absence of sorafenib (7 μ M), and from T-cells at three days post-
116 activation.

117

118 **Flow cytometry**

119 Antibody labelling of T-cells and HCC cell lines was performed in staining buffer (HBSS +
120 0.5% BSA), on ice, using directly-conjugated antibodies (1 – 5 μ g/mL). For cryopreserved
121 tumour biopsies, single cell suspensions were generated by passing tumours through a 70 μ m
122 nylon mesh with subsequent labelling of both cell surface and intra-cellular antigens using a
123 CytoFix/CytoPerm Kit. Data were collected using a CytoFLEX S flow cytometer.

124

125 **HCC/T-cell co-culture killing assays**

126 For direct co-culture killing assays, human and murine CFSE-labelled HCC target cells
127 (1.5×10^4) were co-cultured with near infra-red dye-labelled T-cells at a ratio of 50:1 in the
128 presence or absence of IFNB, with or without neutralising antibodies, EGTA, GZMB
129 inhibitor (z-AAD-CMK) or Caspase inhibitor (z-VAD-FMK), where indicated. Following
130 overnight incubation, all cells were collected and stained with Zombie UV viability dye then
131 fixed in 4% PFA prior to analysis. Target cell killing ($CFSE^+NIR^{neg}$) was determined using a

132 CytoFLEX S flow cytometer. For indirect co-culture killing assays, T-cells and target cells
133 were separated using tissue culture inserts with a 0.4 μ m pore size.

134

135 **RNASeq and immune deconvolution**

136 RNA samples were extracted from 1MEA tumours using an RNeasy mini kit and subjected to
137 Illumina sequencing (Novogene UK Ltd), with a sequencing depth of 20 million reads.
138 RNASeq data were uploaded to the TIMER2.0 online immune estimation resource and the
139 xCell immune deconvolution algorithm was applied¹⁸⁻²⁰.

140

141 **Statistics**

142 All figures and statistical analyses were performed using Prism software (GraphPad, San
143 Diego, CA). All data presented are expressed as means \pm standard error of the mean (SEM)
144 and were analysed by one-tailed or two-tailed unpaired Student's t-test where appropriate. P
145 values less than 0.05 were considered statistically significant and marked as follows; *
146 p<0.05, \neq p<0.01, + <0.001, \wedge <0.0001. Sample size (n) is indicated where appropriate in
147 figure legends.

148 **RESULTS**

149 **Suppression of HCC tumour growth during *uv*-Reo/sorafenib therapy involves the**
150 **skewing of intra-tumoural T-cell ratios (T_H:CTL) in favour of CD4⁺ T_H-cells.**

151 We investigated the therapeutic effect of combining sorafenib with Reo in Balb/c
152 mice bearing syngeneic, subcutaneous 1MEA HCC tumours, controlling for virus gene
153 expression-mediated effects by including *uv*-inactivated, replication-deficient virus (*uv*-Reo -
154 **Fig. S1A-B**). Surprisingly, the combination of *uv*-Reo and sorafenib significantly extended
155 the survival of tumour-bearing mice well beyond that of all other treatment groups (**Fig. 1A**),
156 a response that was greatly reduced in SCID mice and lost entirely in SCID/Beige, supporting
157 an immune-mediated mechanism significantly driven by the adaptive response (**Fig. 1B**).
158

159 Thus, we examined the leukocyte composition of 1MEA tumours, grown in Balb/c hosts,
160 harvested when responding to therapy (Therapy phase – **Fig 1A & Fig. 1C**), to identify
161 changes in infiltrating immune cell(s) that contribute to the subsequent improved survival
162 phenotype. The only leukocyte population found to be increased in tumours treated with *uv*-
163 Reo/sorafenib combination therapy relative to control animals was the CD3⁺CD4⁺ T_H-cell,
164 but not CD3⁺CD8⁺ CTLs (**Fig. 2A – C & Fig. S2**). This significantly skewed the T-cell ratio
165 in favour of CD4⁺ cells (**Fig. 2D**) implying that the response to therapy that underpinned the
166 ensuing improved survival was dominated by T_H-cells.

167

168 Cytokine array analysis (**Fig. S3A**) revealed increased intra-tumoural IFNG and TNFA (**Fig.**
169 **3A**) coincident with the accumulation of CD3⁺CD4⁺ T-cells. These cytokines are known to
170 be expressed by T_H1-activated T-cells and, accordingly, were detected in tumour-infiltrating
171 CD3⁺CD4⁺ cells in mice treated with *uv*-Reo/sorafenib therapy (**Fig. 3B**). By contrast, levels
172 of cytokines associated with T_H2 and T_H17 T-cell subsets did not mirror the pattern of CD4⁺
173 T-cell recruitment (**Fig. S3B**).

174

175 We also observed elevated levels of the T_H1-cell chemokine CCL5 coincident with the
176 increased abundance of CD3⁺CD4⁺ T-cells (**Fig. 3C**). *In vitro*, the expression of CCL5 by
177 human and murine HCC cells was significantly increased by treatment with *uv*-Reo compared
178 to Reo, even in the presence of sorafenib (**Fig. S3C - D**). CCL5 exerts a potent chemotactic
179 effect on T_H1-cells, but not naïve CD4⁺ T-cells, and a specific small molecule inhibitor
180 supported that this chemotaxis was mediated by the chemokine receptor CCR5 (**Fig. 3D**).
181 This was readily detected on the surface of T_H1-activated T-cells *in vitro*, and on intra-
182 tumoural CD3⁺CD4⁺ T-cells from mice treated with *uv*-Reo/sorafenib (**Fig. 3E**). These data
183 indicate that the combination of *uv*-Reo and sorafenib exerts a suppressive effect on
184 continuing HCC growth by skewing the intra-tumoural T-cell ratio in favour of CD4⁺ T_H1-
185 cells, not CD8⁺ CTLs.

186

187 **T_H1-activated CD4⁺ T-cells exert contact-independent tumouricidal activity against**
188 **HCC cells via a TNFA-dependent mechanism.**

189 We co-cultured HCC cells with CD4⁺ T-cells to determine whether the latter
190 possessed anti-tumour properties. T_H1-cells displayed measurable tumouricidal activity (**Fig.**
191 **4A**) that did not require the two cell types to be in physical proximity, demonstrating that a

192 soluble factor was responsible (**Fig. 4B**). Thus, we examined the tumouricidal activity of
193 soluble mediators released by T_H1-cells known to have cytotoxic properties. We discovered
194 that TNFA (**Fig. 4C – D**), not IFNG (**Fig. S4A**), was a direct-acting tumouricidal factor
195 produced by T_H1-cells. However, IFNG enhanced the sensitivity of HCC cells to TNFA
196 killing by T_H1-cells in co-culture assays (**Fig. S4B, Fig. 4E – left panel**).

197

198 Next, we treated HCC cells with sorafenib, using a clinically relevant dose, to determine
199 whether this could further modify the responses to TNFA and IFNG. Sorafenib significantly
200 enhanced the anti-tumour activity of TNFA against human HCC cells (**Fig. 4E – right panel**),
201 but not IFNG (**Fig. 4F** and **Fig. S4D**), and these findings were replicated using the mouse
202 HCC cell line used for *in vivo*. A contribution from T_H1-derived factors TRAIL and LTA was
203 excluded based on antibody neutralisation experiments in co-culture assays (**Fig S4E – F**).

204

205 Together, these data demonstrated that TNFA was the dominant soluble mediator of T_H1-
206 cellular cytotoxicity towards HCC, with a tumour-sensitising role for both IFNG and
207 sorafenib. However, because this difference alone did not explain the improved efficacy of
208 the *uv*-Reo/Sorafenib combination, we reasoned that additional mechanisms likely enhance
209 tumour killing for this treatment combination.

210 **IFNB induces a close-contact MHCII-independent tumouricidal activity in T_H1-cells
211 mediated by granzyme B/perforin.**

212 Type-I interferons are important mediators of anti-viral immunity *via* upregulation of
213 interferon-stimulated genes (ISGs), as well as enhancing immune-mediated killing of infected
214 cells. We, and others, have shown that Reo and *uv*-Reo are potent inducers of the type-I
215 interferon, ‘IFNB’^{7, 21} particularly in the context of both HCC and primary liver tissue²¹.

216 Thus, we compared the levels of IFNB produced by both human and mouse HCC cells *in*
217 *vitro*, and mouse tumours *ex vivo*, when treated with Reo/*uv*-Reo monotherapy or in
218 combination with sorafenib. Human and mouse HCC cells responded to *uv*-Reo (alone and
219 in combination with sorafenib) with a robust induction of IFNB expression, which,
220 surprisingly, was significantly larger than the response to Reo (**Fig. 5A - B**). Next, we
221 examined the intracellular signalling events in HCC cells treated with Reo/*uv*-Reo alone and
222 in the presence of sorafenib to better understand the differential induction of IFNB. The
223 transcription factors NF κ B p65 (RELA) and IRF3 were phosphorylated to a greater extent in
224 HCCs treated with *uv*-Reo compared to Reo, both in the presence and absence of sorafenib,
225 as determined by Western blot (**Fig. 5C**). Therefore, we compared the contribution made by
226 each of these factors to the expression of IFNB using luciferase reporter assays containing
227 either IRF3 (PD116) or NF κ B p65 (PRDII) binding elements from the IFNB promoter. The
228 IRF3 reporter was more strongly activated in HCC cells infected with *uv*-Reo (in both the
229 presence and absence of sorafenib) compared to Reo (**Fig. S5A**). However, the opposite was
230 true for the NF κ B reporter with more robust activation in the presence of Reo, not *uv*-Reo
231 (**Fig. S5B**). These data indicated that the differential activation and functional output from
232 these pathways contributed the difference in IFNB induction by Reo/*uv*-Reo.

233 Viruses dedicate considerable proportions of their coding capacity towards the production of
234 interferon antagonists within infected cells. Reovirus is no exception^{22, 23} so we hypothesised
235 this may account for the differential induction of IFNB observed in HCC cells. Consistently,
236 infecting HCC cells with Reo prior to *uv*-Reo significantly dampened the induction of IFNB
237 compared to *uv*-Reo alone (**Fig. 5D**). In addition, the kinetics of virus-induced IFNB
238 expression were slower with Reo compared to *uv*-Reo, indicating a delay in viral sensing
239 (**Fig. 5E**). Critically, this effect was dependent upon Reo replication, and so presumably gene

240 expression, as a nucleotide analogue inhibitor of the RNA-dependent RNA polymerase, 2'-C-
241 methylcytidine, ameliorated the suppressive effect (**Fig. 5D**). These data indicated that a
242 virulence factor could account for the differential induction of IFNB between Reo and *uv*-
243 Reo, *in vitro*. Accordingly, Reo μ NS protein is known to redirect IRF3 to viral replication
244 factories²², consistent with decreased levels of phosphorylated protein within Reo infected
245 HCC cells (**Fig. S5A**). Thus, whilst attenuation of the Type 3 Dearing strain may be severe
246 compared to other *Orthoreoviruses*, it is by no means absent.

247

248 Interestingly, the highest level of intra-tumoural IFNB was found in tumours from mice
249 treated with *uv*-Reo/sorafenib therapy (**Fig. 6A**), affirming that the magnitude of the IFNB
250 response might play an important mechanistic role in suppressing tumour growth. Thus, we
251 added recombinant IFNB to co-culture assays comprising HCC cells and T_H1-cells to
252 determine how this affected target cell killing. IFNB significantly enhanced the tumouricidal
253 activity of T_H1-cells (**Fig. 6B**) but, unlike TNFA, did so *via* a mechanism that required
254 proximity between the two cell types (**Fig. 6C - D**). Next, we examined the effect of pre-
255 treating HCC target cells with IFNB to determine whether the enhanced killing was a
256 consequence of either increased target cell sensitivity or the augmented killing capacity of
257 T_H1-cells. Consistent with the latter, target cell killing was only enhanced when IFNB was
258 added concurrently with T_H1-cells (**Fig. 6E**) suggesting that the IFNB acted either directly on
259 CD4⁺ T-cells alone or simultaneously on both cell types. Moreover, shRNA-mediated
260 knockdown of IFNB in mouse 1MEA cells eliminated the efficacy of *uv*-Reo/Sorafenib
261 therapy, *in vivo* (**Fig. 6F**) and this correlated with a failure to recruit CD4⁺ T-cells (**Fig. 6G**).

262

263 We next investigated potential juxtacrine mediators of IFNB-enhanced T_H1-mediated killing
264 of HCC cells, namely TNF-related apoptosis-inducing ligand (TRAIL) and FasL/Fas.

265 However, inhibiting these pathways in co-culture assays did not inhibit target cell killing
266 (**Fig. S6A – G**). Consequently, we considered the involvement of MHCII-dependent
267 degranulation, described previously for cytotoxic CD4⁺ T-cells²⁴. However, MHCII was
268 absent on both human and mouse HCC targets in culture, and addition of MHCII-neutralising
269 antibody to co-culture assays had no effect (**Fig. 7A - B**). Despite the lack of MHCII
270 involvement, addition of EGTA (a calcium chelating inhibitor of degranulation) to co-culture
271 assays dose-dependently inhibited IFNB-enhanced target cell killing (**Fig. 7C**). Hence, we
272 next quantified the proportion of CD4⁺ T-cells with surface expression of the degranulation
273 marker CD107a and intra-cellular expression of both granzyme B and perforin, important
274 components of the apoptosis-inducing machinery deployed by cytotoxic T-cells. We
275 observed a marked increase in the proportion of human T-cells with surface CD107a
276 expression and intra-cellular granzyme B (GZMB) following T_H1-activation and this was
277 further enhanced upon stimulation with IFNB (**Fig. 7D – E**). A smaller, but statistically
278 significant, change in intra-cellular perforin (PRF) was also detected. Similar results were
279 obtained for mouse CD4⁺ T-cells (**Fig. S7A**). GZMB and PRF were readily detected in
280 supernatants from T_H1-activated T-cells, and levels were further increased upon treatment
281 with IFNB (**Fig. 7F**). Accordingly, addition of a small molecule GZMB inhibitor to co-
282 culture assays dose dependently inhibited IFNB-enhanced killing (**Fig. 7G – left panel**). The
283 same response was also seen in the presence of a pan-caspase inhibitor (**Fig. 7G – right**
284 *panel*). Taken together, these data demonstrate that IFNB enhanced the tumouricidal activity
285 of CD4⁺ T-cells by increasing the expression and/or licensing of GZMB/PRF activity against
286 MHCII-negative HCC cells.

287

288 Finally, given that CD8⁺ cells were also present, but not enriched, within tumours treated
289 with *uv*-Reo and sorafenib (**Fig. 2**), we compared their ability to engage in antigen-

290 independent HCC killing with that of CD4⁺ T-cells, *in vitro*. Consistent with the notion that
291 CD8⁺ T-cells played a lesser role in tumour response to therapy, whilst they could indeed kill
292 HCCs upon activation and this was further enhanced by IFNB, their tumouricidal activity was
293 significantly lower than that of CD4⁺ T-cells (**Fig. S7B**). Furthermore, CD8⁺ T-cell
294 tumouricidal activity required neither TNFA (**Fig. S7C**) nor degranulation (**Fig. S7D**) and
295 was therefore distinct mechanistically from that of CD4⁺ T-cells.
296 Thus, we conclude that the magnitude of the initial IFNB response, resulting from a lack of
297 viral antagonist, underpins the improved efficacy of the *uv*-Reo/Sorafenib therapy in
298 preclinical HCC models. The induction of IFNB was associated with increased expression of
299 CCL5 and supported the accumulation of T_H1-activated CD4⁺ T-cells with basal tumouricidal
300 activity, facilitated by their expression of TNFA and IFNG. Crucially, IFNB licenses and/or
301 focusses the cytolytic activity of GZMB and PRF, derived from T_H1-cells, against MHCII-
302 negative tumours.

303 **DISCUSSION**

304 This study demonstrates the superior therapeutic efficacy of a unique immunotherapy
305 combining *uv*-inactivated reovirus with the targeted agent sorafenib over either sorafenib
306 monotherapy or combination with live Reo, as a treatment for HCC. This combination
307 therapy significantly extended the survival of mice bearing HCC tumours by engaging a
308 multi-faceted, MHCII-independent response from cytotoxic CD4⁺ T_H-cells (CTHs), induced
309 by IFNB.

310

311 The *uv*-Reo/sorafenib therapy specifically induced increased expression of the chemokine
312 CCL5 and cytokine IFNB relative to other treatment modalities. This was accompanied by
313 increased abundance of intra-tumoural CCR5⁺ T_H1-activated CD4⁺ T-cells, skewing the T-cell
314 ratio in favour of T_H1-cells. Tumour-infiltrating lymphocytes (TILs) exerted basal levels of
315 paracrine tumouricidal activity *via* TNFA, which was enhanced in HCC cells by both IFNG
316 and sorafenib. Concomitantly, increased expression of IFNB in HCC cells following
317 stimulation with *uv*-Reo/sorafenib was a crucial mechanistic switch, stimulating MHCII-
318 independent degranulation involving GZMB and PRF, requiring close cell-cell contact.
319 Hence, our findings support that *uv*-inactivated reovirus could be used to enhance the efficacy
320 of sorafenib during the treatment of HCC by engaging MHCII-independent GZMB⁺PRF⁺
321 T_H1-cells.

322

323 The role of TNF in liver cancer is complex and studies can be contradictory. A considerable
324 body of evidence details a pro-tumourigenic role for TNF in the development of liver
325 cancer²⁵. However, in pre-clinical cancer models, direct intra-tumoural injection of TNF
326 resulted in widespread necrosis, an effect attributed to its anti-vascular activity, rather than
327 direct tumour cytolysis²⁶⁻²⁸. The consensus is, therefore, that TNF is a weak direct-acting
328 cytolytic, consistent with findings herein. However, this limited tumouricidal activity can be
329 significantly enhanced by co-administration of IFNG, a phenomenon demonstrated in a
330 variety of tumour types, including melanoma, breast, and colon cancer^{26, 27}, confirmed again
331 here. We now add that sorafenib also sensitised HCCs to TNFA-induced cell death,
332 reminiscent of responses described previously for other TNF family members including
333 TRAIL and Fas, attributed to downregulation of the anti-apoptotic protein, Mcl-1²⁹ in tumour
334 cells. Although it is likely that the response to TNFA is enhanced by sorafenib in a similar
335 way, the precise mechanism has yet to be determined. Interestingly, we found that
336 TNFA/IFNG-mediated HCC killing by T_H1-cells occurred in the presence of the pan-caspase
337 inhibitor Z-VAD-FMK, implicating a caspase-independent pathway.

338

339 These data provide an important mechanistic insight and suggest that the efficacy of *uv*-
340 Reo/sorafenib therapy is mediated, at least in part, by a skewing of T-cell ratios in favour of
341 IFNG⁺ TNFA⁺ T_H1-cells. However, IFNG and TNFA alone do not fully explain how T_H1-
342 cells control tumour growth in response to *uv*-Reo/sorafenib and not in other treatment
343 groups where they are also equally abundant.

344

345 We, and others, have demonstrated that *uv*-Reo elicits a significantly more robust induction of
346 IFNB in treated cells compared with Reo^{21, 30}, confirmed again, here, in both human and

347 murine HCC cells. Our analysis indicates a Reo-derived antagonist virulence factor is
348 responsible for the differential induction of IFNB by Reo/*uv*-Reo, as well as the ability of
349 Reo to suppress ensuing responses (**Fig 5C**). Several factors have been reported including
350 the non-structural mu protein (μ NS)²² and the outer capsid σ 3²³. It may be that one or both
351 contribute to suppression of IFNB in HCCs infected by Reo, although increased IRF3
352 phosphorylation in cells exposed to *uv*-Reo is consistent with a lack of μ NS function, rather
353 than σ 3 which predominantly antagonises PKR.

354

355 The genetic determinants of reovirus strain variability, specifically relating to interferon
356 antagonism and apoptotic potential, have been identified^{31, 32}. Type-3 Dearing strain (T3D)
357 shows a reduced ability to suppress type-I interferon responses^{31, 32} and demonstrates
358 enhanced pro-apoptotic activity in infected cells³¹. This strain has been extensively evaluated
359 as a oncolytic agent in clinical trials. However, in the context of HCC, T3D's attenuation
360 appears insufficient, failing to elicit a robust interferon response or effectively control tumour
361 growth. This finding suggests that many natural or genetically attenuated OVs currently in
362 clinical trials might not be adequately attenuated for all cancer types, particularly those that
363 are considered immunologically cold. This raises the question of whether the enhanced IFNB
364 response induced by *uv*-inactivated viruses could lead to superior clinical efficacy in these
365 cancer types. Interestingly, the TKI sorafenib was key to the robust induction of IFNB that
366 underpinned the CD4⁺ T-cell response, despite being naturally immunosuppressive. This
367 raises the question of whether *uv*-inactivated viruses might be effective in other cancer types
368 treated with sorafenib and similar TKIs.

369

370 This study demonstrates that IFNB induces a unique GZMB/PRF-mediated tumouricidal
371 activity in T_H1-cells, independent of MHCII expression by target HCCs. Although the

372 expression of GZMB and PRF by CD4⁺ T-cells is reported in the context of viral infection,
373 this mode of killing is both antigen-specific and reliant on MHCII^{33, 34}. How an immune
374 synapse is able to form between IFNB-stimulated T_H1-cells and MHCII-negative tumour
375 cells, thereby inducing target cell death, is not fully understood but, a mechanism involving
376 the upregulation of such stress-induced NKG2D (present upon activated T_H1-cells) ligands,
377 in conjunction with ICAM1/LFA1, has been proposed³⁵⁻³⁹. Interestingly, NKG2D ligands can
378 be induced within tumour cells following viral infection and in response to type-I
379 interferon^{38, 40}.

380

381 CD8⁺ T-cells were also present in tumours treated with *uv*-Reo/sorafenib therapy, although
382 their abundance was unchanged relative to controls. Furthermore, CD8⁺ T-cells were
383 surprisingly less tumouricidal than their CD4⁺ counterparts in the context of antigen-
384 independent immunity, and utilised neither TNFA nor GZMB. These data indicate that the
385 immediate response to therapy with *uv*-Reo/sorafenib is dominated by T_H1-activated T-cells.
386 Despite this, we do not discount a major role for antigen-specific immunity during the post-
387 therapy phase, which contributed significantly to the overall survival advantage (Fig 1). How
388 initial MHCII-independent responses translate into adaptive immunity remains the focus of
389 ongoing research.

390

391 Taken together, our data demonstrate that *uv*-inactivated reovirus and the targeted agent,
392 sorafenib, combine to drive IFNB and CCL5 mediated tumour infiltration by MHCII-
393 independent GZMB⁺PRF1⁺ T_H1-cells, capable of establishing subsequent long-lasting tumour
394 survival despite the cessation of therapy. This also highlights an overlooked role for CD4⁺
395 T_H1-cells in mediating MHC-independent anti-tumour immunity. Further mechanistic

396 elaboration is needed to fully understand how non-canonical effector cells can be further
397 exploited as a therapeutic tool for the treatment of HCC.

398 **ACKNOWLEDGEMENTS**

399 *Funding:* The authors thank the Medical Research Council (Award No: MR/T016205,
400 awarded to SG), and Cancer Research UK (Award No: 29039, awarded to AS) for funding
401 this research. We also thank the NHS Blood and Transplant Service for the provision of donor
402 blood samples, the St. James's Biological Services Unit (SBS) for their support with animal
403 welfare and husbandry, and Oncolytics Biotech Inc. for supplying clinical grade human
404 *Orthoreovirus*, type-3 Dearing strain, Pelareorep.

REFERENCES

405 1. Llovet, J.M. *et al.* Sorafenib in advanced hepatocellular carcinoma. *N Engl J Med*
406 **359**, 378-390 (2008).

407 2. Bernstein, V. *et al.* A randomized phase II study of weekly paclitaxel with or without
408 pelareorep in patients with metastatic breast cancer: final analysis of Canadian
409 Cancer Trials Group IND.213. *Breast Cancer Res Treat* **167**, 485-493 (2018).

410 3. Clements, D.R. *et al.* Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells
411 augment tumor-associated immunosuppression immediately following the therapeutic
412 administration of oncolytic reovirus. *J Immunol* **194**, 4397-4412 (2015).

413 4. Errington, F. *et al.* Reovirus activates human dendritic cells to promote innate
414 antitumor immunity. *J Immunol* **180**, 6018-6026 (2008).

415 5. Gujar, S.A., Marcato, P., Pan, D. & Lee, P.W. Reovirus virotherapy overrides tumor
416 antigen presentation evasion and promotes protective antitumor immunity. *Mol
417 Cancer Ther* **9**, 2924-2933 (2010).

418 6. Prestwich, R.J. *et al.* Tumor infection by oncolytic reovirus primes adaptive antitumor
419 immunity. *Clin Cancer Res* **14**, 7358-7366 (2008).

420 7. Prestwich, R.J. *et al.* Reciprocal human dendritic cell-natural killer cell interactions
421 induce antitumor activity following tumor cell infection by oncolytic reovirus. *J
422 Immunol* **183**, 4312-4321 (2009).

423 8. Goubau, D. *et al.* Antiviral immunity via RIG-I-mediated recognition of RNA bearing
424 5'-diphosphates. *Nature* **514**, 372-375 (2014).

425 9. Mahalingam, D. *et al.* A Phase II Study of Pelareorep (REOLYSIN((R))) in
426 Combination with Gemcitabine for Patients with Advanced Pancreatic
427 Adenocarcinoma. *Cancers (Basel)* **10** (2018).

428 10. Noonan, A.M. *et al.* Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep
429 (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. *Mol Ther*
430 **24**, 1150-1158 (2016).

431 11. Sborov, D.W. *et al.* A phase I trial of single-agent reolysin in patients with relapsed
432 multiple myeloma. *Clin Cancer Res* **20**, 5946-5955 (2014).

433 12. Mahalingam, D. *et al.* Pembrolizumab in Combination with the Oncolytic Virus
434 Pelareorep and Chemotherapy in Patients with Advanced Pancreatic
435 Adenocarcinoma: A Phase Ib Study. *Clin Cancer Res* **26**, 71-81 (2020).

436 13. Zaunders, J.J. *et al.* Identification of circulating antigen-specific CD4+ T lymphocytes
437 with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV
438 infection. *Blood* **103**, 2238-2247 (2004).

439 14. Norris, P.J. *et al.* Beyond help: direct effector functions of human immunodeficiency
440 virus type 1-specific CD4(+) T cells. *J Virol* **78**, 8844-8851 (2004).

441 15. Jellison, E.R., Kim, S.K. & Welsh, R.M. Cutting edge: MHC class II-restricted killing in
442 vivo during viral infection. *J Immunol* **174**, 614-618 (2005).

443 16. Brunner, T. *et al.* Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates
444 activation-induced apoptosis in T-cell hybridomas. *Nature* **373**, 441-444 (1995).

445 17. Simon, A.K. *et al.* Tumor necrosis factor-related apoptosis-inducing ligand in T cell
446 development: sensitivity of human thymocytes. *Proc Natl Acad Sci U S A* **98**, 5158-
447 5163 (2001).

448 18. Aran, D., Hu, Z. & Butte, A.J. xCell: digitally portraying the tissue cellular
449 heterogeneity landscape. *Genome Biol* **18**, 220 (2017).

450 19. Li, B. *et al.* Comprehensive analyses of tumor immunity: implications for cancer
451 immunotherapy. *Genome Biol* **17**, 174 (2016).

452 20. Sturm, G. *et al.* Comprehensive evaluation of transcriptome-based cell-type
453 quantification methods for immuno-oncology. *Bioinformatics* **35**, i436-i445 (2019).

454 21. Samson, A. *et al.* Oncolytic reovirus as a combined antiviral and anti-tumour agent
455 for the treatment of liver cancer. *Gut* **67**, 562-573 (2018).

456 22. Stanifer, M.L., Kischnick, C., Rippert, A., Albrecht, D. & Boulant, S. Reovirus inhibits
457 interferon production by sequestering IRF3 into viral factories. *Sci Rep* **7**, 10873
458 (2017).

459 23. Imani, F. & Jacobs, B.L. Inhibitory activity for the interferon-induced protein kinase is
460 associated with the reovirus serotype 1 sigma 3 protein. *Proc Natl Acad Sci U S A*
461 **85**, 7887-7891 (1988).

462 24. Oh, D.Y. *et al.* Intratumoral CD4(+) T Cells Mediate Anti-tumor Cytotoxicity in Human
463 Bladder Cancer. *Cell* **181**, 1612-1625 e1613 (2020).

464 25. Park, E.J. *et al.* Dietary and genetic obesity promote liver inflammation and
465 tumorigenesis by enhancing IL-6 and TNF expression. *Cell* **140**, 197-208 (2010).

466 26. Balkwill, F.R. *et al.* Human tumor xenografts treated with recombinant human tumor
467 necrosis factor alone or in combination with interferons. *Cancer Res* **46**, 3990-3993
468 (1986).

469 27. Brouckaert, P.G., Leroux-Roels, G.G., Guisez, Y., Tavernier, J. & Fiers, W. In vivo
470 anti-tumour activity of recombinant human and murine TNF, alone and in combination
471 with murine IFN-gamma, on a syngeneic murine melanoma. *Int J Cancer* **38**, 763-
472 769 (1986).

473 28. Mantovani, A. & Dejana, E. Cytokines as communication signals between leukocytes
474 and endothelial cells. *Immunol Today* **10**, 370-375 (1989).

475 29. Chen, K.F. *et al.* Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma
476 cells through the inhibition of STAT3. *Clin Cancer Res* **16**, 5189-5199 (2010).

477 30. Henderson, D.R. & Joklik, W.K. The mechanism of interferon induction by UV-
478 irradiated reovirus. *Virology* **91**, 389-406 (1978).

479 31. Baty, C.J. & Sherry, B. Cytopathogenic effect in cardiac myocytes but not in cardiac
480 fibroblasts is correlated with reovirus-induced acute myocarditis. *J Virol* **67**, 6295-
481 6298 (1993).

482 32. Zurney, J., Kobayashi, T., Holm, G.H., Dermody, T.S. & Sherry, B. Reovirus mu2
483 protein inhibits interferon signaling through a novel mechanism involving nuclear
484 accumulation of interferon regulatory factor 9. *J Virol* **83**, 2178-2187 (2009).

485 33. Adhikary, D. *et al.* Control of Epstein-Barr virus infection in vitro by T helper cells
486 specific for virion glycoproteins. *J Exp Med* **203**, 995-1006 (2006).

487 34. Aslan, N. *et al.* Cytotoxic CD4 T cells in viral hepatitis. *J Viral Hepat* **13**, 505-514
488 (2006).

489 35. Homma, S., Komita, H., Sagawa, Y., Ohno, T. & Toda, G. Antitumour activity
490 mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse
491 hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12.
492 *Immunology* **115**, 451-461 (2005).

493 36. Revy, P., Sospedra, M., Barbour, B. & Trautmann, A. Functional antigen-independent
494 synapses formed between T cells and dendritic cells. *Nat Immunol* **2**, 925-931
495 (2001).

496 37. Somersalo, K. *et al.* Cytotoxic T lymphocytes form an antigen-independent ring
497 junction. *J Clin Invest* **113**, 49-57 (2004).

498 38. Esteso, G., Guerra, S., Vales-Gomez, M. & Reyburn, H.T. Innate immune recognition
499 of double-stranded RNA triggers increased expression of NKG2D ligands after virus
500 infection. *J Biol Chem* **292**, 20472-20480 (2017).

501 39. Markiewicz, M.A. *et al.* Costimulation through NKG2D enhances murine CD8+ CTL
502 function: similarities and differences between NKG2D and CD28 costimulation. *J*
503 *Immunol* **175**, 2825-2833 (2005).

504 40. Zhang, C. *et al.* Opposing effects of interferon-alpha and interferon-gamma on the
505 expression of major histocompatibility complex class I chain-related A in tumors.
506 *Cancer Sci* **99**, 1279-1286 (2008).

507 **FIGURE LEGENDS**

508 **Figure 1. The survival of mice bearing syngeneic hepatocellular carcinomas is**
509 **significantly extended by an immune-mediated mechanism induced by a combination of**
510 **sorafenib and *uv*-Reo.** (A) Overall survival analysis of 1MEA tumour-bearing mice treated
511 with Reo (*left*) or *uv*-Reo (*right*) alone or in combination with sorafenib. All treatments were
512 significant relative to vehicle ($p \leq 0.05$) and *uv*-Reo/Sorafenib was significant compared to *uv*-
513 Reo ($p < 0.0189$) and sorafenib ($p < 0.0027$) monotherapies. (B) Overall survival analysis of
514 SCID (*left*) and SCID/Beige (*right*) mice bearing 1MEA tumours treated as with *uv*-Reo
515 alone or in combination with sorafenib. *uv*-Reo/sorafenib was significant compared to all
516 groups in SCID mice only ($p \leq 0.01$). (C) Tumour volumetric data from immunocompetent
517 Balb/c mice bearing 1MEA tumours treated with Reo/*uv*-Reo monotherapy or in combination
518 with sorafenib and culled after two-weeks of therapy for IF analysis ($n = 5$ mice per
519 condition).

520

521 **Figure 2. CD4⁺ T-helper cells, but not CD8⁺ CTLs, accumulate in murine hepatocellular**
522 **carcinomas responding to the combination of *uv*-reovirus and sorafenib.** (A – B)
523 Representative images of 1MEA tumour cryosections taken from tumours harvested midway
524 through the “therapy” phase, stained for CD3 and CD8 (*left*) or CD4 (*right*) then
525 counterstained with DAPI. (C) Quantification of CD3⁺CD8⁺ (*left*) and CD3⁺CD4⁺ (*centre*) T-
526 cells in random fields of view (FOV) taken from tumour cryosections in the indicated groups.
527 (D) Comparison of CD4⁺:CD8⁺ T-cell ratio from quantification in ‘C’ (Scale bar = 50 μ m; $n =$
528 5 mice per condition).

529 **Figure 3. Treatment of murine HCC tumours with *uv*-Reo/sorafenib therapy elicits at**
530 **CD4⁺ T_H1-cell response.** (A) Cytokine array data for the T_H1-cytokines IFNG (*left*) and
531 TNFA (*right*) from pooled tumour protein samples and from the indicated treatment groups.
532 (B) ELISA-based quantification of IFNG and TNFA in supernatants from human CD4⁺ T-
533 cells, *in vitro* (*left*), and flow cytometric detection of intra-cellular IFNG and TNFA in
534 tumour-infiltration CD4⁺ T-cells in mice undergoing treatment with *uv*-Reo/sorafenib therapy
535 (*right*). (C) Cytokine array data as described in 'A' but for CCL5. (D) Chemotaxis assay
536 comparing the migratory potential of human CD4⁺ T-cells towards CCL5 and the dependency
537 on CCR5, using the antagonist Maraviroc (CCR5i – 1 μ M) or vehicle (DMSO). (E) Flow
538 cytometric detection of cell surface CCR5 on human T_H1-activated CD4⁺ T-cells, *in vitro*
539 (*left*), and tumour-infiltrating CD4⁺ T-cells in mice undergoing treatment with *uv*-
540 Reo/sorafenib therapy (*right* – gated on CD45⁺CD3⁺CD4⁺ cells).

541

542 **Figure 4. T_H1-activated CD4⁺ T-cells exert a TNFA-dependent tumouricidal activity that**
543 **is enhanced by tumour cell exposure to IFNG or sorafenib.** (A) Flow cytometric
544 quantification of target HLE killing by human CD4⁺ T-cells in direct co-culture or (B)
545 following separation of T-cells/target cells by porous (0.4 μ m) tissue culture inserts. (C)
546 Quantification of HLE target killing in direct co-culture with CD4⁺ T-cells in the presence of
547 neutralising antibodies against TNFA or IgG control. (D) Quantification of HLE cell viability
548 in the presence of increasing concentrations of TNFA alone or (E) following pre-treatment
549 with IFNG (*left* - 100 U/mL) or sorafenib (*right* - 7 μ M). (F) Quantification of 1MEA cell

550 viability in response to TNFA alone or following pre-treatment with IFNG (*left* – 100 U/mL)
551 or sorafenib (*right* – 7 μ M) (n = 4 – 8 per condition).

552 **Figure 5. The differential induction of IFNB by Reo/uv-Reo can be attributed to**
553 **virulence factor(s).** Quantification of IFNB in supernatants from (A) human HLE cells or
554 (B) mouse 1MEA cells, by ELISA. (C) Representative Western blots revealing activation of
555 intracellular signalling pathways in HLEs following infection with Reo/uv-Reo alone or in
556 combination with sorafenib, 24 hours post-infection (D) *IFNB* expression in HLE cells
557 treated with Reo or *uv*-Reo, alone or sequentially, in the presence or absence of 2'-C-
558 Methylcytidine. (E) Time-course of *IFNB* upregulation in HLE cells treated with Reo or *uv*-
559 Reo (n = 3 per condition).

560

561 **Figure 6. IFNB induces a proximity-dependent mode of tumour cell killing by T_H1-cells**
562 **and delays tumour growth, *in vivo*.** (A) Quantification of IFNB in protein lysates from
563 tumour-bearing mice treated with Reo/uv-Reo (2 pfu/cell) alone or in combination with
564 sorafenib (7 μ M). (B) Quantification of IFNB-induced HLE target cell killing by T_H1-
565 activated CD4⁺ T-cells in direct co-culture or following separation of T-cells/target cells by
566 porous tissue culture inserts in (C) human and (D) mouse systems. (E) Quantification of
567 IFNB-induced killing of HLE target cells when co-administered with T-cells or given to
568 target cells as a pre-treatment. (n = 4 – 8 per condition). (F) Quantification of IFNB released
569 by 1MEA cells carrying Scrambled or IFNB-targeted shRNAs following treatment with *uv*-
570 Reo (*left*) and their response to *uv*-Reo/Sorafenib therapy, *in vivo* (*right*). (G) Quantification
571 (*left*) and representative images (*right*) of CD3⁺CD4⁺ T-cell abundance in 1MEA tumours
572 carrying Scrambled or IFNB-targeted shRNA constructs treated with *uv*-Reo/Sorafenib
573 therapy.

574

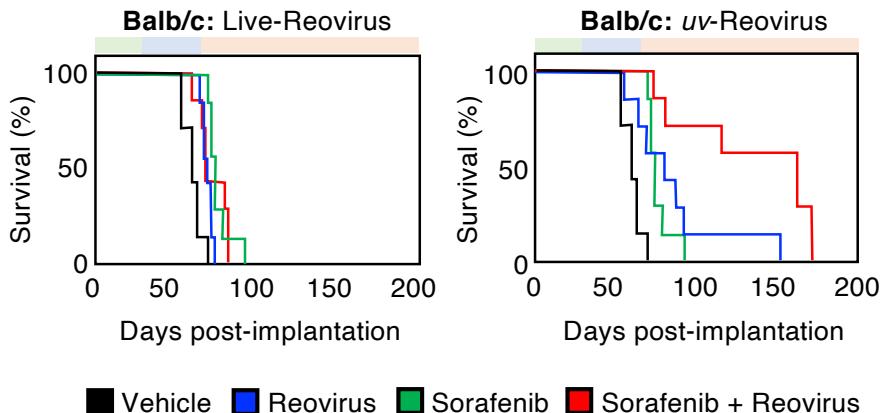
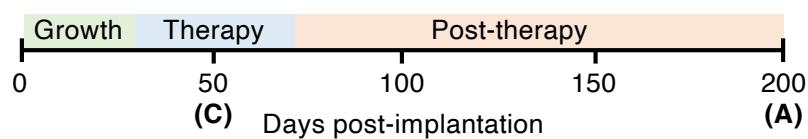
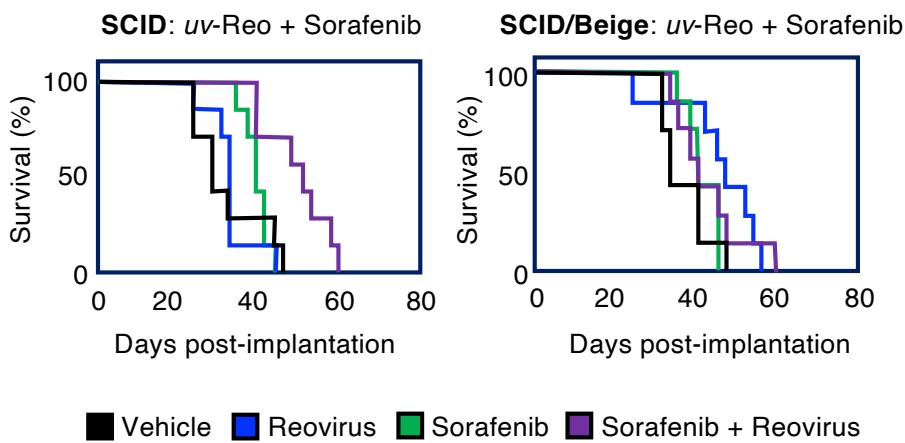
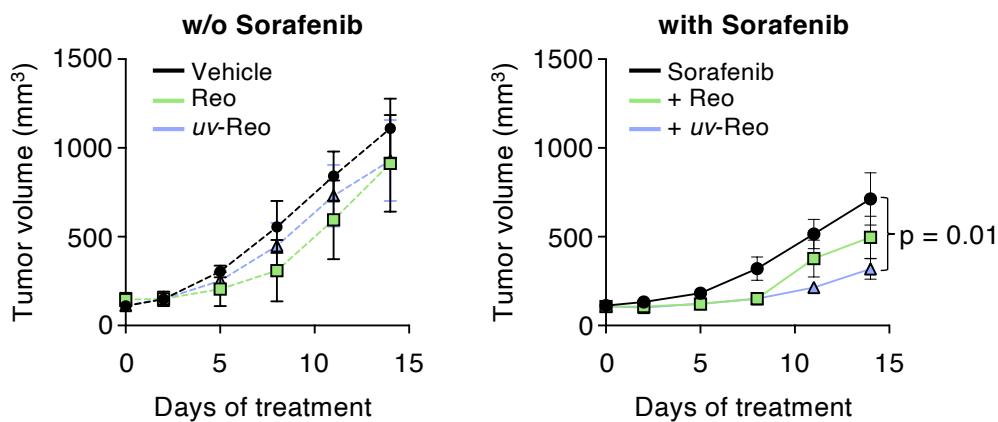


575 **Figure 7. IFNB induces an antigen and perforin-independent, granzyme B-dependent**
576 **mode of tumouricidal activity in T_H1-activated CD4⁺ T-cells.** (A) Flow cytometric
577 detection of cell surface MHCII proteins on human and murine HCC cells, *in vitro*. (B)
578 Quantification of HLE target cell killing by human T_H1-activated CD4⁺ T-cells induced by
579 IFNB in the presence of neutralising antibodies against MHCII or (C) the degranulation
580 inhibitor EGTA. (D) Representative flow cytometry plots showing detection of cell surface
581 CD107a (*left*) and intra-cellular GZMB (*centre*) or PRF (*right*) in human CD4⁺ T-cells
582 alongside (E) quantification of the proportion cells positive for each marker. (F)
583 Quantification of cell-free GZMB and PRF in supernatants from human CD4⁺ T-cells, by
584 ELISA. (G) Quantification of HLE target cell killing by human T_H1-activated CD4⁺ T-cells in
585 the presence of IFNB and a GZMB inhibitor - z-AAD-CMK (*left*) or caspase inhibitor - z-
586 VAD-FMK (*right*). (n = 4 – 8 per condition).

Figure 1


bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.23.581738>; this version posted July 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A.

Overall survival experimental time-line



B.

C.

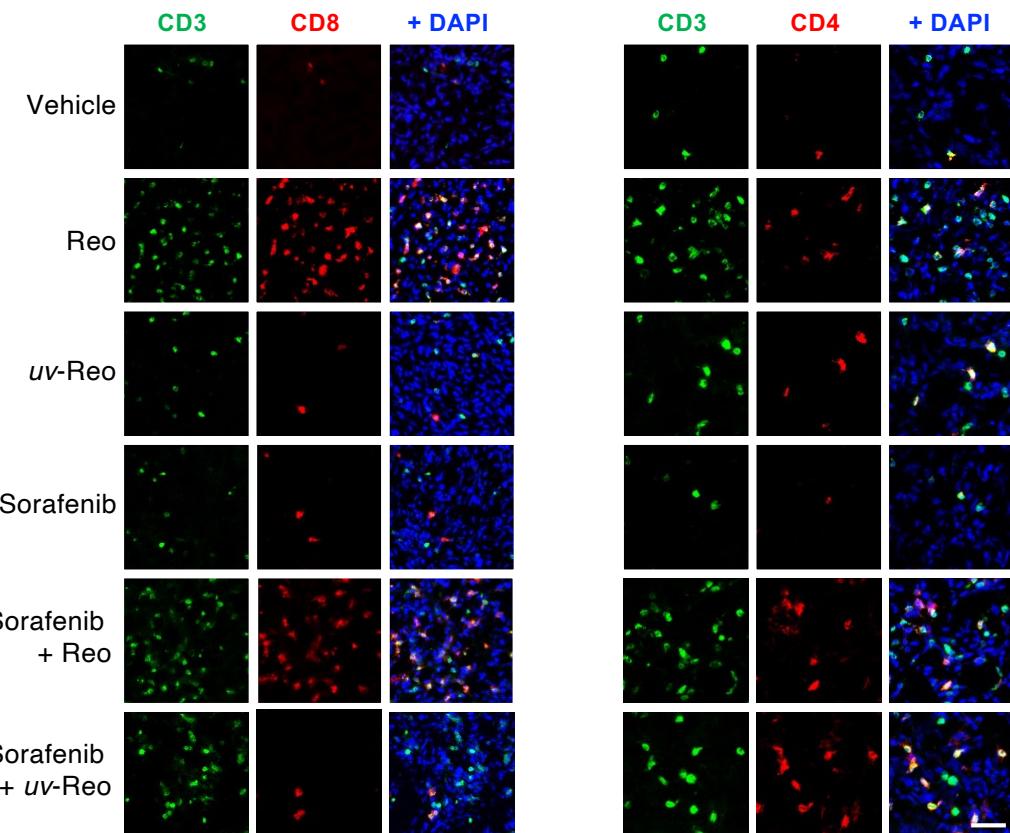
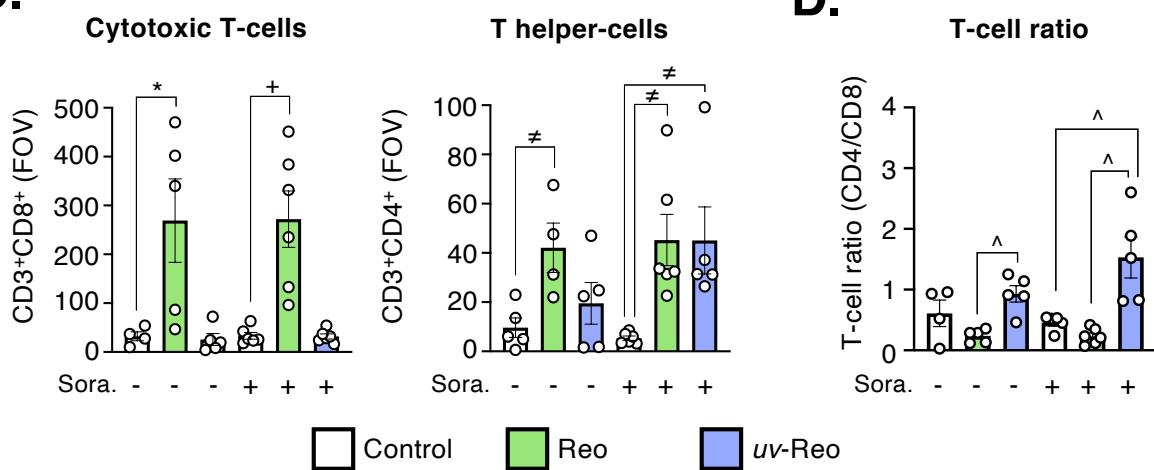
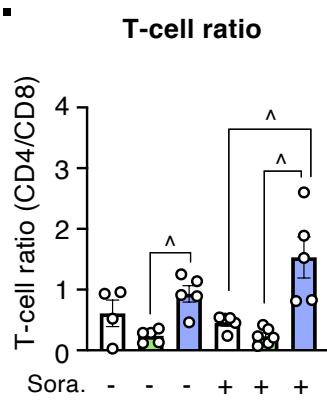

Therapy-phase tumor growth

Figure 2

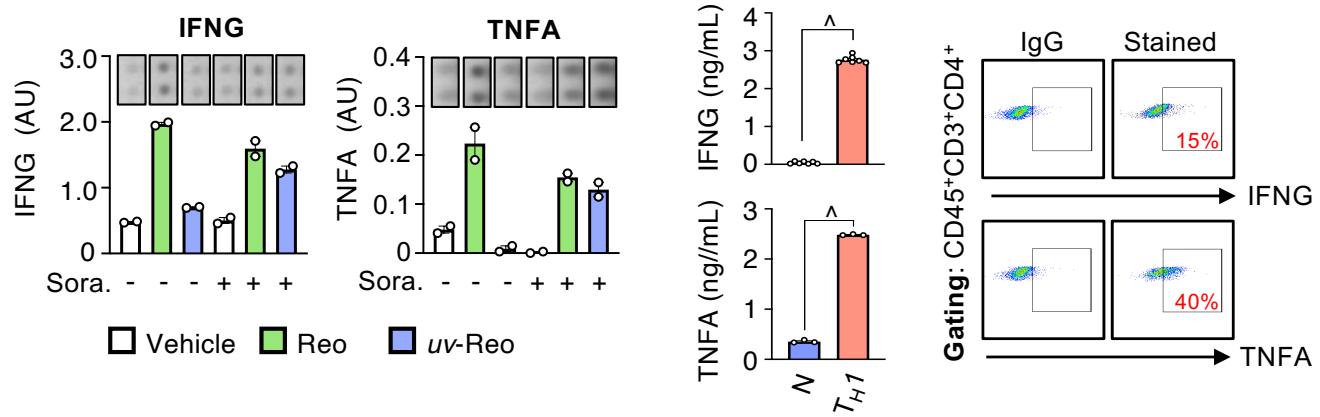

bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.23.581738>; this version posted July 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A.



B.

C.



D.

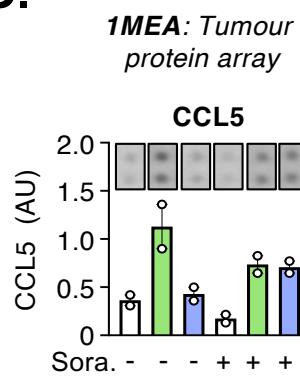
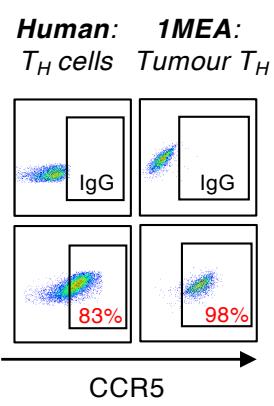
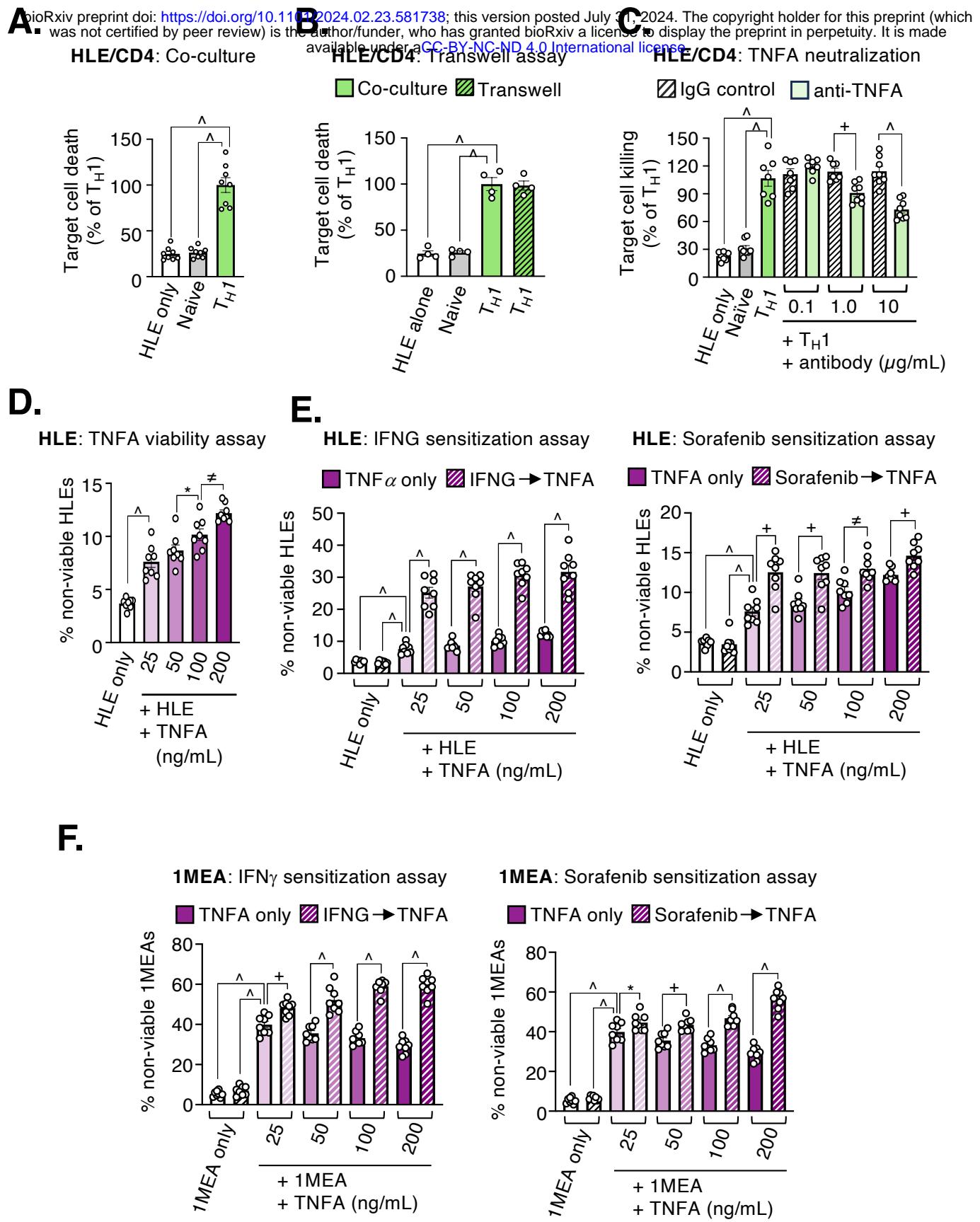


Figure 3

A bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.23.581738>; this version posted July 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. **1MEA: Tumour protein array** **Human: T_H cells** **1MEA: Tumour T_H cells**


C.


D.

E.

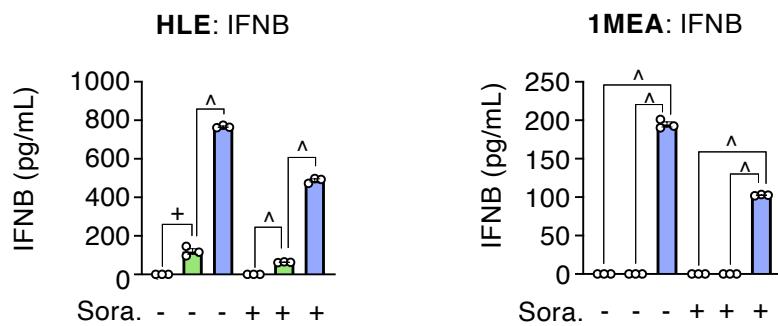
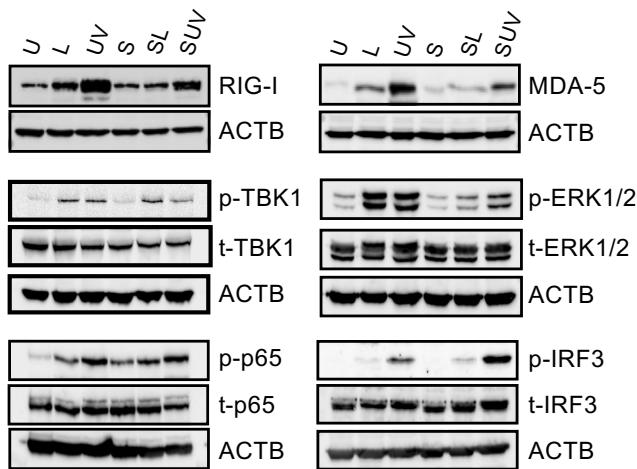
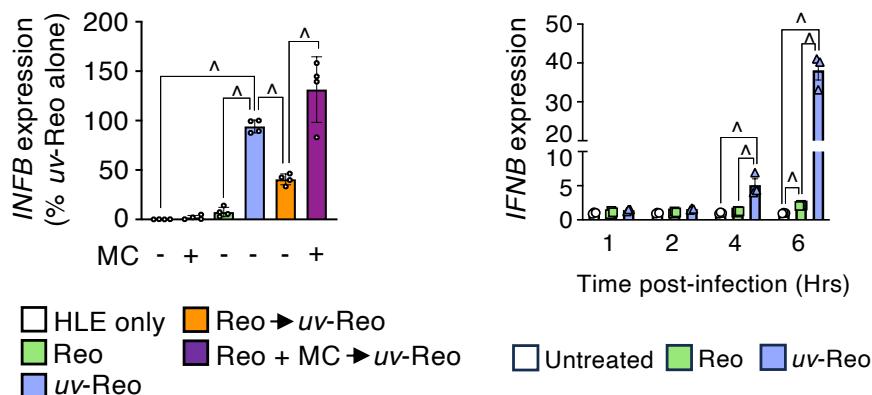

Figure 4

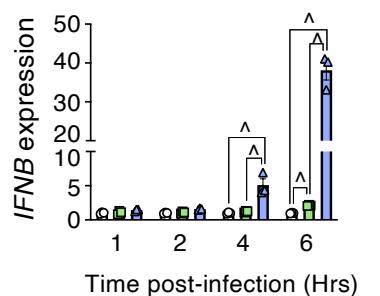
Figure 5


bioRxiv preprint doi: <https://doi.org/10.1101/2024.02.23.581738>; this version posted July 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

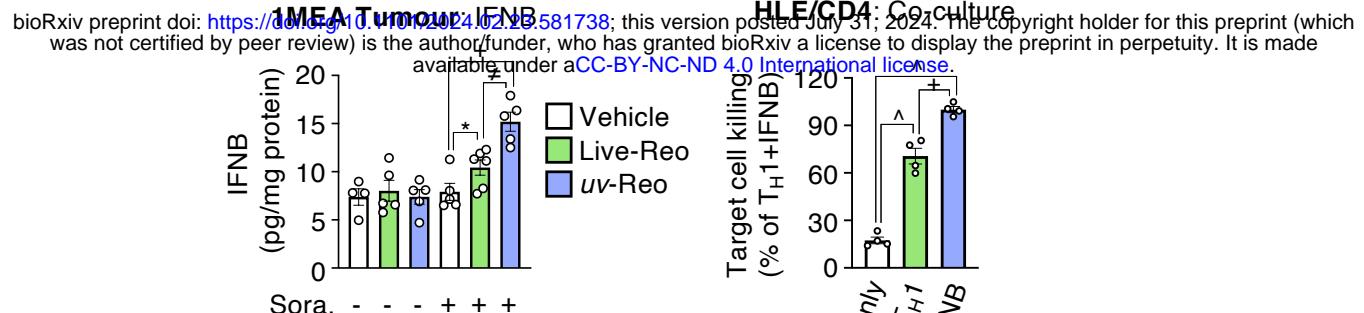
A.


C.

HLE: Intracellular signaling


D.

HLE: Reo pre-treatment


E.

HLE: Infection time course

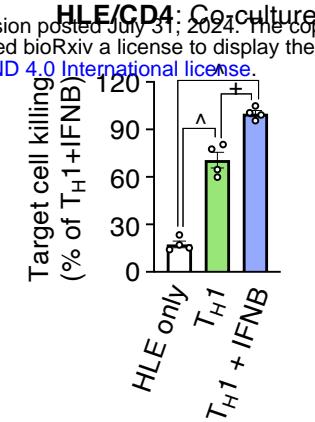
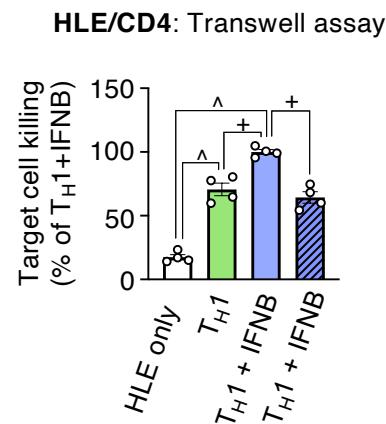
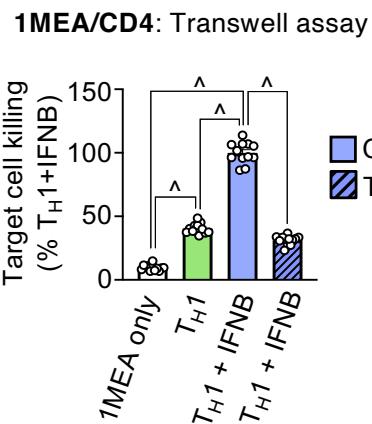
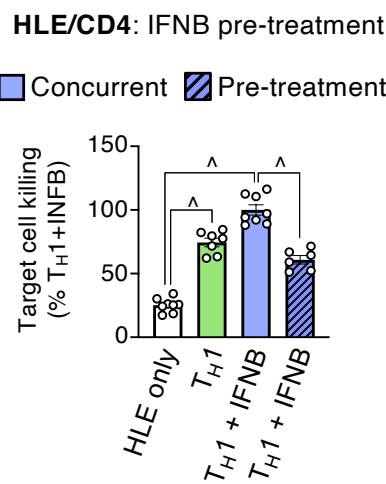
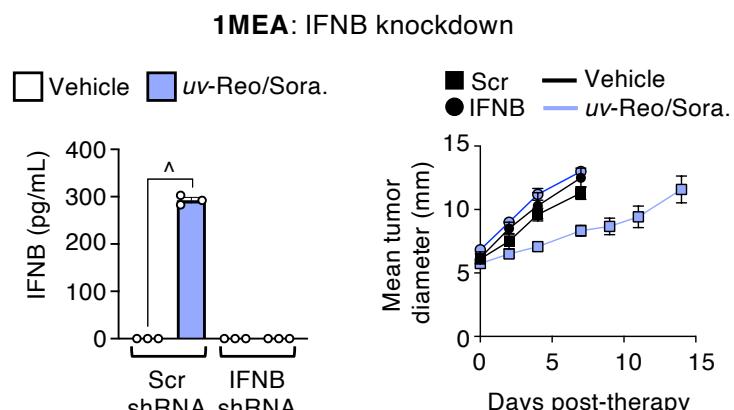


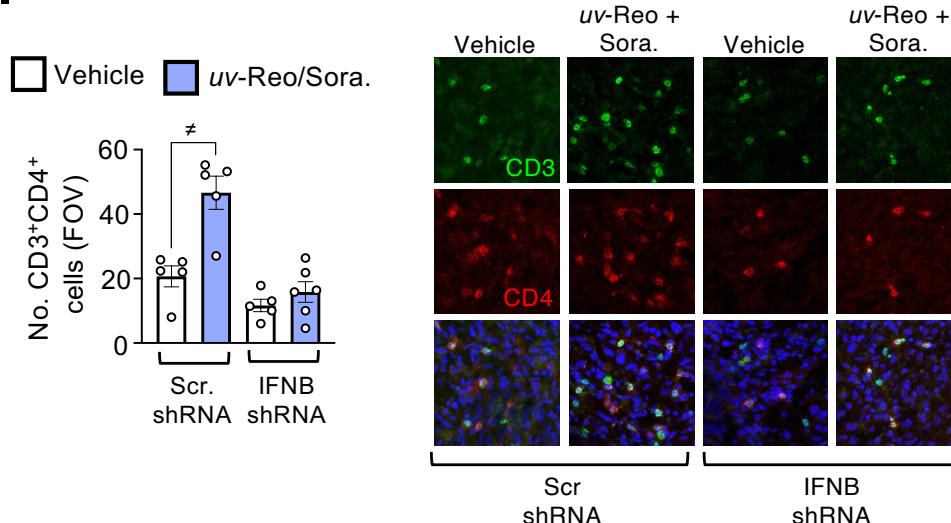
Figure 6

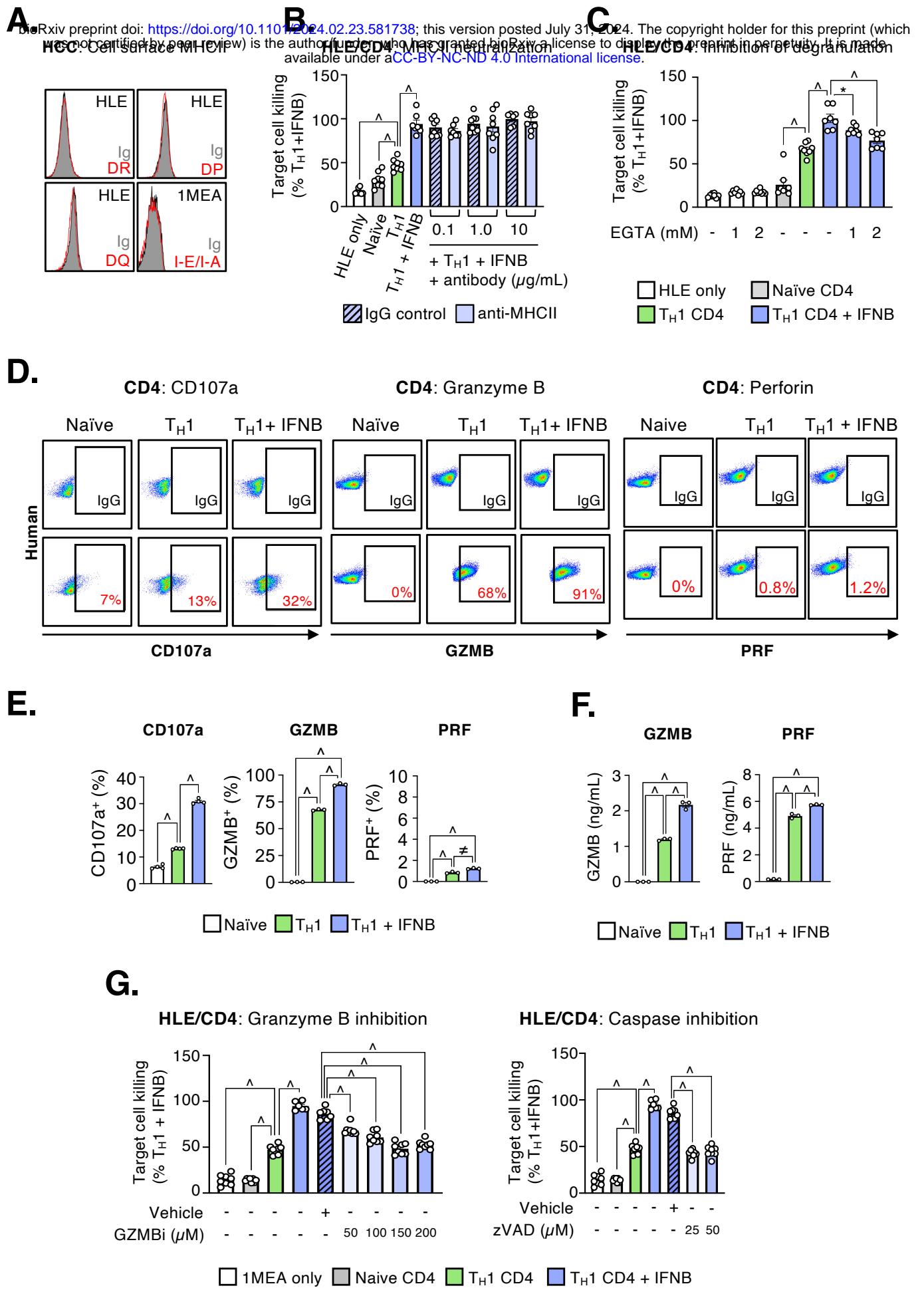

A.


B.


C.


D.


E.


F.

G.

Figure 7

