

1 Revealing the evolutionary history and contemporary population structure of Pacific salmon in the
2 Fraser River through genome resequencing

3

4 Kris A. Christensen^{1*}, Anne-Marie Flores¹, Dionne Sakhrani², Carlo A. Biagi², Robert H. Devlin², Ben
5 J. G. Sutherland^{3,4}, Ruth E. Withler⁵, Eric B. Rondeau⁶, Ben F. Koop¹

6

7 1. Department of Biology, University of Victoria, Victoria, BC, Canada, V8W 2Y2

8 2. Fisheries and Oceans Canada, West Vancouver, BC, Canada, V7V 1H2

9 3. Sutherland Bioinformatics, Lantzville, BC, Canada V0R 2H0

10 4. Faculty of Science and Technology, Vancouver Island University, Nanaimo, BC, Canada V9R 5S5

11 5. Pacific Salmon Foundation, Vancouver, BC, Canada V6H 3V9

12 6. Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada V9T 6N7

13

14 *Corresponding author

15 Email: kris.christensen@wsu.edu (KC)

16

17 Running title: Genetics of Pacific salmon from the Fraser River

18

19 Keywords: Chinook, coho, sockeye, genetics, demography, glacial refugia

20 Abstract

21
22 The Fraser River once supported massive salmon returns, but now years with half of the
23 recorded historical maximum are considered good. There is substantial interest from surrounding
24 communities, governments, and other groups to increase salmon returns for both human use and for
25 functional ecosystems. To help generate resources for this endeavour, we resequenced hundreds of
26 genomes at moderate coverage (~16x) of Chinook (*Oncorhynchus tshawytscha*), coho (*O. kisutch*), and
27 sockeye salmon (*O. nerka*) from the Fraser River. The resequenced genomes are an important resource
28 that can give us new insights. In this study, we found evidence that Chinook salmon have 1.5-2x more
29 polymorphic loci than coho or sockeye salmon. Using principal component analysis (PCA) and
30 admixture analysis, we also identified genetic groups similar to those previously identified with only a
31 few microsatellite markers. As the higher density data supports these previous genetic groups, it
32 suggests that the identity of these groups is not overly sensitive to the number of genetic markers or
33 when the groups were sampled. With the increased resolution from resequenced genomes, we were
34 able to further identify factors influencing these genetic groups, including isolation-by-distance,
35 migration barriers, recolonization from different glacial refugia, and environmental factors like
36 precipitation. We were also able to identify 20 potentially adaptive loci among the genetic groups by
37 analyzing runs of homozygosity. All of the resequenced genomes have been submitted to a public
38 database where they can be used as a reference for the contemporary genomics of Fraser River salmon.
39

40 Article Summary

41

42 Concerns over Fraser River salmon declines led us to generate resources to better understand
43 the genetics of these salmon. Our findings were similar to previous studies that examined a very small
44 fraction of the genetic markers examined here. We expanded upon previous studies by identifying
45 possible influences on the genetics of Fraser River salmon. These included environmental factors,
46 historical differences, and a lack of connectivity in the river caused by the Fraser Canyon.
47

48 Introduction

49

50 The Fraser River in Canada may have existed in some form for over 66 million years (Tribe
51 2005). The modern flow of the river is much more recent as there is evidence of a major change in
52 flow around 760,000 years ago (Andrews *et al.* 2012). During the last glaciation period (the last in the
53 Pleistocene), the entire region where the modern river is located may have been covered by the
54 Cordilleran Ice Sheet, which reached its estimated maximum around 19,000 years ago (Clark *et al.*
55 2009). The retreat of the Cordilleran Ice Sheet began as early as 18,000 years ago and there were ice-
56 free regions in British Columbia (where the Fraser River is located) as early as 17,700 years ago
57 (Warner *et al.* 1982; Darvill *et al.* 2018). Some regions of British Columbia may have even been ice-
58 free during the glacial maximum (e.g., (Byun *et al.* 1999; McPhail 2007; Stewart *et al.* 2009)). The
59 Cordilleran Ice Sheet fully retreated by around 11,000 years ago, and its only remnants are the glaciers
60 that still exist in modern times (Clague 2017). These massive changes in the Fraser River environment
61 likely caused local extinctions of plants and animals from the river.

62 Based on fossil evidence, there were salmonids in the Fraser River before it was covered by
63 glaciers (Harington 1996). From paleogeographic evidence mentioned above and this fossil evidence,
64 we can infer that modern salmon in the river must have re-colonized after glaciers receded. There is

similar evidence of colonization of other species to this region, such as different plants, deer, and other ray-finned fishes (Soltis *et al.* 1997; Bernatchez and Wilson 1998; Hewitt 2000; McPhail 2007; Latch *et al.* 2009; Beatty and Provan 2010). Colonization or re-colonization of the 65-66 species of ray-finned fishes native to British Columbia was thought to have started around 13,000 years ago (McPhail 2007). However, fossil evidence indicates that kokanee (*O. nerka*) could have re-colonized the interior of British Columbia, possibly via the Columbia River, as early as 18,000 years ago (Harington 1996). This is consistent with a large isolated and unique kokanee population in the upper Columbia River and Fraser River system that remains today (Beacham and Withler 2017; Christensen *et al.* 2020).

While there is a large body of paleogeographic research and a fossil record describing glaciation and species colonization of the Fraser River after glaciers retreated, we often do not have information on specific locations or populations. We can turn to genetic studies to complement what we understand from these other two fields of study. We expect to observe genetic legacies of re-colonization events in modern populations (Hewitt 1996, 2000). These legacies may influence modern populations, and understanding them will be important for evidence-based conservation and management. Several researchers have suggested that Fraser River salmon have experienced recent genetic bottlenecks that could be the outcome of re-colonization events (Wehrhahn and Powell 1987; Wood *et al.* 1994; Rondeau *et al.* 2023).

Generally, there were two to three Fraser River (e.g., lower, middle, and upper) Chinook (*O. tshawytscha*), sockeye (*O. nerka*), or coho salmon (*O. kisutch*) genetic groups identified from previous studies (Wood *et al.* 1994; Small *et al.* 1998; Teel *et al.* 2000; Beacham *et al.* 2003; Beacham and Withler 2017). This excludes additional groups identified from the Thompson River tributary that were also commonly identified (Small *et al.* 1998; Withler *et al.* 2000; Beacham *et al.* 2003; Beacham and Withler 2017). While these different genetic groups could have originated from different re-colonization events or from different combinations of re-colonization events, they could also have originated as a result of other factors. These factors include: limited gene flow between the groups (e.g., due to barriers like the Fraser Canyon, a phenomenon sometimes referred to as isolation-by-resistance (McRae 2006)), because of stochastic mechanisms like isolation-by-distance, adaptation to environmental conditions (sometimes referred to as isolation-by-environment (Weber *et al.* 2017)), ecotype differentiation in sockeye salmon (Beacham and Withler 2017), or through a combination of these mechanisms. If these genetic groups were a result of different re-colonization events, it is also possible that the re-colonizing populations came from different glacial refugia (Wood *et al.* 1994; Small *et al.* 1998; Teel *et al.* 2000; Withler *et al.* 2000), which would increase their overall distinctiveness.

Wehrhahn and Powell (1987) note that the Fraser Canyon might limit gene flow between lower and upper Fraser River salmon. There are several identified velocity barriers in the Fraser Canyon that could influence salmon migration and particularly limit migration of smaller salmon (Wright 2022). This was dramatically emphasized between 1913-1914 when construction left a massive rockslide in the Fraser Canyon that partially blocked some salmon species, and completely blocked pink salmon (*O. gorbuscha*) (Kew 1992; Grant and Pestal 2009; Pess *et al.* 2012). This single event reduced salmon returns to around a quarter of historic returns to the Fraser River during peak years (Pacific Salmon Commission – psc.org). If the Fraser Canyon acts as a barrier, we might expect unique genetic characteristics above and below the Fraser Canyon for all the species that must traverse it.

Upper and lower Fraser River salmon are also separated by large distances and because they have natal homing with variable straying (reviewed in (Quinn 1993; Keefer and Caudill 2013; Bett *et al.* 2017)), we expect population structure to be influenced by isolation-by-distance (e.g., (Wright 1943; Weber *et al.* 2017; Aguillon *et al.* 2017)). In general, we would expect isolation-by-distance to increase the longer temporally that salmon are isolated from each other and with increased distance. We also expect to observe nearby groups to have higher genetic similarity than those further away for all

112 species. An exception to this expectation would be salmon with different life history types (e.g., odd
113 and even-year pink salmon (Christensen *et al.* 2021)).

114 The expectation of increased genetic distance with increased geographic distance will not be the
115 main driver of differentiation if genetic groups were largely influenced by separate re-colonization
116 events. If re-colonization occurred by different genetic groups (e.g., populations from different glacial
117 refugia), we might expect genetic distance to be unrelated to geographic distance in the absence of
118 strong gene-flow or long periods of time. Patterns of re-colonization from different genetic groups
119 would also be expected to be variable among species.

120 Adaptation to the environment is of particular interest for the conservation and management of
121 a species because salmon from an area could be uniquely suited to that region. The headwaters of the
122 Fraser River flow north down the Rocky Mountain Trench, which leads to the Interior Plateau,
123 followed by the Fraser Canyon, and finally the river outlets through a major delta in the metropolis of
124 Vancouver, British Columbia (Reynoldson *et al.* 2005). These different regions have variable climates,
125 elevations, and river velocities (Reynoldson *et al.* 2005). They are also separated by great distances.
126 Genetic signatures correlated with environmental factors could be from neutral factors such as
127 isolation-by-distance or from non-neutral factors such as local adaptation or other forms of selection.
128 Researchers have not yet found a reliable method for distinguishing among the different mechanisms
129 with genetic data alone (reviewed in (Bierne *et al.* 2013; Lotterhos and Whitlock 2015; Ahrens *et al.*
130 2018; Saravanan *et al.* 2020)), and other experiments need to be used to firmly establish particular
131 genetic adaptations.

132 In this study, we analyze 954 resequenced genomes from three species of salmon (317 sockeye,
133 360 Chinook, and 277 coho salmon), mainly from the Fraser River, to understand differences among
134 the species, identify genetic groups among the collections of samples within each species, and to
135 characterize genetic adaptation to different environments. Data related to genetic structure and local
136 adaptation are particularly important to conservation and management. By using data from multiple
137 species, we compare among species to identify common patterns. This work provides a foundational
138 dataset that will be openly available and of significant use to the salmonid research community for
139 years to come.

140

141 Materials and Methods

142

143 Sampling and whole genome resequencing

144 Chinook, coho, and sockeye salmon were sampled from Fraser River tributaries and lakes or
145 were from other bodies of water from previous studies (Figure 1, Figure S1, File S1, (Christensen *et al.*
146 2020; Rondeau *et al.* 2023)). Some of these sampling locations include hatchery sources (File S1).
147 Most modern hatchery stocks originate from local sources (e.g. (Heard 2012)), and they should reflect
148 the current Fraser River population if not the historical population. The samples were collected during
149 various years (File S1). For coho salmon, there were 125 salmon collected at the Big Bar Landslide
150 between 2019-2021. Spawning locations were unknown for these samples. These were included to
151 identify potentially unknown genetic structure since it is difficult to reach upper Fraser River sites
152 during coho salmon spawning.

153 Samples were collected by Fisheries and Oceans Canada personnel in compliance with the
154 Canadian Council on Animal Care Guidelines, and under the authority of the Fisheries and Oceans
155 Canada Pacific Region Animal Care Committee (Ex.7.1). Samples were taken either as operculum-
156 clips or as scales. Both were desiccated and stored on Whatman paper.

157 Genomic DNA was extracted from tissue, after an overnight incubation in 95% ethanol, using a
158 Quick-DNA Kit (Zymo Research). Other genomic DNA samples were previously extracted by
159 Fisheries and Oceans Canada using automated BioSprint extractions, as per manufacturer's instructions
160 (Qiagen). DNA samples were then sent to the Michael Smith Genome Science Centre (Vancouver, BC)
161 for library preparation and whole genome resequencing.

162 Whole genome sequencing libraries were prepared by shearing the DNA samples individually
163 using a Covaris LE220 (duty cycle: 20%, PIP: 450, cycles per burst: 200, time per run: 90 s; with pulse
164 spin after 45 s). Individual libraries were then constructed using the MGIEasy PCR-Free DNA Library
165 Prep Set (MGI Tech Co.). The indexed libraries were then pooled and sequenced on a MGISEq-G400
166 sequencer (paired-end 200 bp). Data used in this study were also taken from previous studies
167 (Christensen *et al.* 2020; Rondeau *et al.* 2023) that used Illumina sequencing technology.
168

169 *SNP calling and filtering*

170 Reads from each individual were aligned to their respective species reference genome assembly
171 (Chinook salmon: GCF_018296145.1 (Christensen *et al.* 2018), coho salmon: GCF_002021735.2
172 (Rondeau *et al.* 2023), sockeye salmon: unreleased version 2 (Christensen *et al.* 2020)) with BWA
173 (version 0.7.17, parameter -M) (Li and Durbin 2009, 2010; Li 2013). Reads were sorted with
174 SAMtools (version 1.12, default parameters) (Danecek *et al.* 2021). Picard (version 2.26.3, default
175 parameters) (Broad Institute 2019) was used to add read group information and mark reads that were
176 suspected PCR duplicates. GATK (version 3.8) (McKenna *et al.* 2010; Van der Auwera *et al.* 2013)
177 was then used to call nucleotide variants for each individual (parameters: -T HaplotypeCaller, --
178 genotyping_mode DISCOVERY, --emitRefConfidence GVCF) and then combined (parameters: -T
179 GenotypeGVCFs, --max_alternate_alleles 3). Truth and training SNP datasets (File S2) were then used
180 to recalibrate nucleotide variant scores and filter variants using GATK (parameters -T
181 ApplyRecalibration, --mode SNP --ts_filter_level 99.5). The truth SNPs came from multiple studies
182 (Brieuc *et al.* 2014; Meek *et al.* 2016; Nichols *et al.* 2016; Larson *et al.* 2017; Veale and Russello 2017;
183 Rondeau *et al.* 2023), and the training SNPs are described in File S2.

184 Additional filters were used to remove indels, SNPs with more or fewer than two alleles, or that
185 were missing genotypes in more than 10% of the individuals. SNPs were removed if their mean depths
186 were outside a range of 8-100x, and if they had less than 0.01 minor allele frequency (MAF). All
187 filtering was performed using VCFtools (version 0.1.15) (Danecek *et al.* 2011). The MAF would
188 eliminate alleles found in fewer than 6-8 heterozygous individuals (or 3-4 homozygous individuals),
189 depending on the species and its respective sample size. This threshold was chosen to reduce
190 sequencing errors, but to still keep all but the rarest variants. The MAF filter was not used for the
191 SMC++ analysis. Linkage disequilibrium was evaluated and used to filter SNPs in some analyses, as
192 noted below. The prune add-on for BCFtools (version 1.9) (Danecek *et al.* 2021) was used to filter
193 based on linkage disequilibrium (parameters: +prune, -w 20kb, -l 0.4, -n 2). The filters used for all
194 analyses are shown in Table 1.
195

196 *Mapping variants among species*

197 To compare analyses among species, variants were mapped from the coho and sockeye salmon
198 genomes to the Chinook salmon genome using a pipeline, *MapVCF2NewGenome* (see *Data*
199 *Availability*). This pipeline was also used to map sockeye salmon variants, which were on scaffolds, to
200 a chromosome level assembly (this assembly was submitted to the NCBI as version 2 of the reference
201 genome assembly – now available as GCA_034236695.1). The sockeye salmon chromosome mapped
202 version was needed for several analyses.

203
204 *Coverage, relatedness metrics, and runs of homozygosity (ROH)*

205 Coverage was assessed using a python script, *VCFStats* (see *Data Availability*). This script
206 finds the average depth of all SNPs per individual. It also counts the number and type of genotypes per
207 individual. This information was used to remove individuals, using *VCFtools*, that had average
208 depth/coverage less than 8x, as a preliminary PCA analysis showed clustering of individuals based on
209 coverage rather than geography if they were below this threshold. These individuals are not discussed
210 and were not analyzed further. Individuals were filtered with an average depth less than 15x depending
211 on the analysis (noted for each analysis). This was because the frequency of heterozygous genotypes
212 dropped when coverage was below 15x and some analyses were sensitive to this issue (Table 1).
213 Genotype information and coverage was visualized in R (R Core Team 2022) using *ggplot2* (Wickham
214 2016).

215 The related package (version 0.8, parameters of coancestry: *ritland* = 1) (Pew *et al.* 2015) was
216 used to calculate relatedness (Ritland 1996) in R. Values below zero (e.g., when markers are not
217 shared) and above one (e.g., when rare markers are shared) are expected with this type of estimation
218 (Ritland 1996). There were many more private alleles in coastal populations of Chinook and coho
219 salmon, which may have made them appear much more related. The linkage disequilibrium filtered
220 SNP datasets were converted to the related format using a python script, *VCF2Relate* (see *Data
221 Availability*). The *reshape2* (Wickham 2007) and *pheatmap* (Kolde 2019) packages were used to
222 visualize relatedness. Related individuals were included in most analyses, but we tested what would
223 happen if related individuals were removed from PCA analyses. A relatedness score of 0.15 (an
224 arbitrary value greater than what might be expected for first cousins, but less than for half-sibs –
225 depending on dataset) was used to filter all but one individual from pairs that might be related. Most
226 samples were taken as adults and related individuals were not expected to be common within or among
227 sampling collections.

228 Runs of homozygosity were identified using *PLINK* (version 1.9, parameters: *--homozyg* –
229 *double-id*, *--allow-extra-chr*, *--homozyg-snp* 25, *--homozyg-kb*, *--homozyg-density*, *--homozyg-gap*,
230 *--homozyg-window-het* 1, *--homozyg-window-snp* 50, *--homozyg-window-threshold* 0.05, *--homozyg-
231 window-missing* 5) (Chang *et al.* 2015; “*PLINK 1.9*”). This was to compare species levels of runs of
232 homozygosity. All individuals were included in these analyses. No consistent relationship was
233 observed between coverage and runs of homozygosity (e.g., runs of homozygosity might be expected
234 to increase as coverage decreases since there are fewer heterozygous genotypes as noted above). We
235 plotted each individual when comparing runs of homozygosity among species to determine if coverage
236 or relatedness might influence species comparisons.
237

238 *Population structure and clustering analyses*

239 PCA and admixture analyses were used to identify distinct genetic groups for each species. The
240 admixture software requires independent variants, and PCAs can be sensitive to LD blocks, which can
241 cause clustering that is unrelated to population structure. For this reason, the LD filtered SNPs were
242 used in these analyses. To perform the admixture analyses, the LD filtered data was converted from
243 VCF format to a suitable format using *PLINK* (version 1.9, parameters: *--double-id*, *--allow-extra-chr*).
244 We converted the chromosome names to numbers using Unix commands. The admixture analysis was
245 performed using *ADMIXTURE* (version 1.3.0, parameters: *--cv*) (Alexander *et al.* 2009). Cluster
246 values 1-20 were tested and we accepted the value with the lowest cross-validation score. Admixture
247 ancestry values were visualized in R for individuals and in QGIS (QGIS Development Team 2022) as
248 an average score per sampling site.

249 PCA were used to assess the groupings produced from the admixture analyses. PLINK
250 (parameters: --pca, --double-id, --allow-extra-chr) was used to perform the PCA, and they were
251 visualized in R using ggplot2, reshape2, and ggrepel (Slowikowski 2021). PCA were tried with all the
252 individuals, individuals with $\geq 15x$ coverage, and with individuals that were highly related removed.
253 The outputs of these three approaches were compared to determine the influence of coverage and
254 relatedness on clustering and the groups produced from the admixture analyses. We also verified that
255 samples among the new and previous datasets clustered together if they were from the same sampling
256 site.
257

258 *Environmental variable PCA*

259 To determine whether population structure was associated with environmental factors, we
260 clustered sampling sites by environmental factors using PCA in R (parameters: prcomp, scale=T).
261 Each sampling site was assigned to an admixture group if the average ancestry value was ≥ 0.7 for a
262 particular site. Environmental factors were taken from the WorldClim version 2.1 dataset (Fick and
263 Hijmans 2017). Elevation for each site was either estimated from Google maps, mapcarta, or from data
264 downloaded from the Federal Geospatial Platform (maps.canada.ca) and viewed in QGIS. Distance to
265 the ocean was estimated as the river distance with QGIS or Google maps.
266

267 *Historical estimates of effective population size*

268 To estimate effective population size through time, we used the program SMC++ (parameters: -
269 c 1000000) (Terhorst *et al.* 2017). The only mutation rate estimate for these species available at the
270 time of writing was for coho salmon (8e-9 from (Rougemont *et al.* 2020)). A correction was applied to
271 this mutation rate for Chinook and sockeye salmon based on the ratio of total SNPs from these species
272 to the total SNPs from coho salmon. For Chinook salmon, this ratio was 1.7274 for the individuals
273 subset from a similar geographic range and for the same number of individuals (mutation rate of
274 1.382e-8). For sockeye salmon, this was 0.79785342 for the individuals subset, with a mutation rate of
275 6.38283e-9. Figures were plotted in R using ggplot2, and ocean surface temperature data was taken
276 from previous studies (Zachos *et al.* 2008; Hansen *et al.* 2013).
277

278 *Genetic diversity*

279 The percent of heterozygous genotypes per individual was calculated by dividing the number of
280 heterozygous genotypes (see *Coverage, relatedness metrics, and runs of homozygosity* section) by all
281 genotypes (including missing data to standardize against all variants) and multiplying by 100. If
282 missing genotypes were excluded from the calculation, values changed by 0.09% on average, and the
283 difference ranged from 0.03%-1.4%. Nucleotide diversity (Pi) and the number of polymorphic loci
284 was calculated using the Stacks populations module (version 2.54, default parameters) (Catchen *et al.*
285 2011, 2013).

286 The percent of heterozygous genotypes per individual and nucleotide diversity per sampling site
287 were both calculated from the subset of individuals with $\geq 15x$ coverage because these analyses were
288 sensitive to coverage (i.e., as coverage increased, so did the percent of heterozygous genotypes until
289 $\geq 15x$ coverage). The number of sampling sites were included in the reported percent of heterozygous
290 genotypes per individual to show if the reported value could be sensitive to relatedness (e.g., fewer
291 locations could be more sensitive to highly related individuals from a single location). Since the
292 nucleotide diversity was plotted per sampling site using the inverse distance weighting interpolation
293 analysis in QGIS, other nearby sites can also be used to determine if relatedness influenced nucleotide
294 diversity regionally.

295

296 *Admixture group private alleles*

297 A python script was used to identify private alleles among admixture groups of each species
298 (*PrivateAllele* see *Data Availability*). Alleles were identified that were unique to each group if they
299 were present for a specified number of individuals in that group (parameter: -min 3). Individuals were
300 assigned to an admixture group if they had ancestry values ≥ 0.7 for a particular group. Salmon with
301 ancestry values below 0.7 were excluded from these analyses. The private allele counts were
302 visualized in R using ggplot and the gridExtra library (Auguie 2017).

303 The number of private alleles per individual among admixture groups was identified using
304 another python script, *PrivateAllelePerInd* (see *Data Availability*). This metric identifies if there are
305 individuals or sampling sites that were more responsible for the number of private alleles within a
306 genetic group. The minimum number of individuals with the private allele was set to one. While
307 decreasing this parameter to one could increase the chance that SNP calling errors are included, it also
308 allows us to get an idea for the number of private alleles from a group that are within the genome of
309 each individual. We expect sequencing errors to be evenly distributed among sampling locations and
310 similar among individuals.

311

312 *Potentially adaptive variants*

313 The rehh library (Gautier and Vitalis 2012; Gautier *et al.* 2017) in R was used to identify
314 extended haplotype homozygosity within and among admixture groups (assignments were made for
315 individuals with ≥ 0.7 ancestry values). To perform the rehh analyses, we used SHAPEIT5
316 (Hofmeister *et al.* 2023) (version 5.1.1, parameter: phase_common_static) to first phase the genotypes
317 of the MAF 0.01 filtered variants. The output was then converted to VCF format using BCFtools, and
318 the different admixture groups were separated using VCFtools. The rehh command *data2haplohh* was
319 then used to read in each admixture group VCF file, and the *scan_hh* command (parameters,
320 polarized=False, interpolate=False) was used to calculate extended haplotype homozygosity. The
321 within population metric iHS was calculated using the *ihh2ihs* command (default parameters), and the
322 pairwise population metric Rsb was calculated using the *ines2rsb* command (default parameters). The
323 *calc_candidate_regions* function (parameters: threshold=10, window_size=10000, min_n_extr_mrk=8)
324 was used to identify regions with significant differences in extended haplotype homozygosity (the
325 Bonferroni correction p-value threshold was between 8.8-9.13 after -log10 transformation depending
326 on species). A higher threshold was used to identify only the strongest candidates as this is only a
327 preliminary study. We also examined overlapping 10 kbp windows among all three species to identify
328 candidates of potential convergent evolution.

329

330 **Results**

331

332 *Coverage, relatedness metrics, and runs of homozygosity (ROH)*

333 We identified ~6-13 million SNPs per species (Figure 2a). Chinook salmon had 1.58-2.07x
334 more SNPs than either coho or sockeye salmon, respectively. Between 1-1.75% of all SNP loci were
335 common among species, and only up to 0.1% were found to be polymorphic in all species (Figure 2b).
336 Chinook salmon had a reduction in the total length of runs of homozygosity (ROH), consistent with a
337 higher number of polymorphic loci (Figure 2c). Sockeye and coho salmon had on average ~3.5-3.6x
338 longer total lengths of ROH than Chinook salmon. The length of ROH decreased as the fraction of
339 heterozygous genotypes increased, but generally sockeye and coho salmon had longer ROH when

340 fractions of heterozygous genotypes were below 0.2 (Figure 2d). No consistent relationship among
341 species was observed between SNP coverage and the total length of ROH (Figure S2).

342 The average SNP coverage of the combined 954 salmon was 16x (Figure 3a). The average
343 coverage of Chinook salmon was 16.5x (n=360), coho salmon 18.1x (n=277), and sockeye salmon
344 13.7x (n=317). The percent of heterozygous genotypes for each individual appeared to depend on the
345 SNP coverage until a depth of 15x (Figure 3a). This relationship was consistent in all species (Figure
346 3b). This issue did not appear to influence the scale of the number of SNPs among species. The
347 average number of heterozygous genotypes per salmon for those with 15x coverage or greater reflected
348 the trend observed for the number of SNPs per species. These values were 1,667,558 in coho salmon,
349 1,305,776 in sockeye salmon, and 2,636,167 in Chinook salmon (1.58-2.02x greater in Chinook
350 salmon).

351 Coastal samples (all sites downstream of the Thompson River or outside the Fraser River – see
352 Figure 1) appeared to be highly related in Chinook and coho salmon (Figure 3c and 3d). These high
353 relatedness scores were independent of the coverage or the technology used. In Chinook and coho
354 salmon, coastal samples had much higher counts of private alleles (see below), which is known to
355 increase relatedness metrics (Ritland 1996). Relatedness values were greatly reduced by sub-setting
356 individuals by coastal or non-coastal (data not shown).

357

358 *Population structure and clustering analyses*

359 We focused on large-scale resolution of genetic groups in this study, but there was still
360 substantial genetic variation within each of the genetic groups (Figure S3). Each species had three
361 supported Fraser River admixture groups (Figures 4 and S3). All groups were based on geography and
362 were supported by PCA (Figure S4). These included a lower/coastal, mid, and upper Fraser River
363 admixture group.

364 All of the lower Fraser River (LFR) admixture groups included sample sites in the Fraser Valley
365 south of the Fraser Canyon (approximately where the river turns from a southern flow to a western
366 flow before its outlet to the Pacific Ocean) (Figure 4). In Chinook and coho salmon, the LFR
367 admixture groups also included nearby coastal sites. For coho salmon, this included locations from
368 Alaska to California.

369 We sampled fewer coho salmon north of the Fraser Valley than for the other species due to
370 accessibility issues during their spawning season, but those north of the valley clustered in a pattern
371 similar to Chinook salmon (Figure 4). All samples, excluding those from McKinley Creek (a tributary
372 of the Horsefly River), and some samples without known natal streams (sampled at the Big Bar
373 Landslide), form one admixture group. In Chinook salmon, a similar admixture group is formed from
374 the collection of sites west of the Horsefly River and from the Nechako River south. This geographic
375 region is known as the Interior Plateau. In sockeye salmon, the mid Fraser River (MFR) group is
376 composed of bodies of water from the Chilcotin and Quesnel River watersheds (Figure 4).

377 The upper Fraser River (UFR) coho and Chinook salmon admixture groups include most of the
378 Quesnel watershed locations, with the exception of the lower Cariboo River near the confluence with
379 the Fraser River (Figure 4). For coho salmon, this was from a single known sampling location and
380 potentially other locations from salmon that were collected at the Big Bar Landslide. The Chinook
381 salmon UFR group also included sampling sites above the Nechako River (in or near Robson Valley, a
382 part of the Rocky Mountain Trench). The UFR sockeye salmon admixture group is comprised of
383 Nechako River watershed sites.

384 The LFR admixture groups, in all species, have the greatest genetic differentiation (i.e., F_{st})
385 from the other admixture groups (Figure 4). In addition, the UFR admixture groups have higher

386 differentiation from the LFR admixture groups than the MFR groups (Figure 4). F_{st} values were
387 generally much lower between UFR and MFR admixture groups. While there were some significant
388 differences in the percent of heterozygous genotypes per individual among groups, these do not show a
389 consistent pattern (Figure 4). In Chinook salmon, the significant differences in heterozygous genotypes
390 per individual between the MFR admixture group and the other groups were driven by high values in
391 upper Chilcotin River samples (File S1).

392

393 *Environmental factors influencing genetic structure*

394 Sampling locations from different admixture groups clustered by environmental factors (Figure
395 5, Figure S5). Sites with predominately LFR ancestry values were in regions with higher annual
396 precipitation and higher mean annual temperatures (Figure S5). While there was some overlap between
397 MFR and UFR admixture groups, there was still distinct environmental factors between them overall.
398 This was the case for all three species.

399

400 *Historical estimates of effective population size*

401 Historical estimates of effective population size (N_e) are strikingly different among species
402 (Figure 6, Figure S6). Prior to 200,000 years before present, almost all Chinook and multiple coho
403 salmon sampled experienced drops in estimates of effective population size (Figure 6, Figure S6). This
404 coincides with a time when there was an increase in ocean surface temperatures (Figure 6d).

405 Between 120,000 and 150,000 years before present, coho and sockeye salmon both experienced
406 major declines in estimated effective population size (Figures 6 and 7). In sockeye salmon, there are
407 distinct times when these decreases occurred (Figure 7). For some sockeye salmon locations and for
408 most coho salmon sites, the decrease in effective population size occurred around the penultimate
409 glacial maximum, when ocean temperatures were at their lowest. Neither species recovered to previous
410 estimates of effective population size for over 100,000 years (Figures 6 and S6). This is consistent with
411 the decrease in polymorphic loci and increases of runs of homozygosity compared to Chinook salmon.
412 Interestingly, Chinook salmon effective population size increased during this same time frame. A
413 similar reversal among species was observed between 50,000 and 90,000 years before present, where
414 there were increases in estimates of effective population size for coho and sockeye salmon, but
415 decreases in Chinook salmon (Figure 6, Figure S6).

416 In all species, there were decreases in effective population size around the last glacial
417 maximum, 19,000 years before present (Figures 6 and 7, Figure S6). The timing of these decreases in
418 effective population size varied in time by species, admixture group, and sampling sites within
419 admixture groups (Figures 6 and 7, Figure S6). Most of the demographic histories have a step pattern
420 near or after the last glacial maximum. Some coastal Fraser River groups have earlier decreases in
421 effective population sizes than the other Fraser River groups. The exception being LFR sockeye
422 salmon sites, which have similar or more recent decreases in population size than MFR and UFR
423 locations (Figure S6).

424

425 *Understanding the genetic diversity of Fraser River salmon*

426 On average, total runs of homozygosity (ROH) were shorter in LFR locations than MFR and
427 UFR sites of Chinook and coho salmon (Figure 8). Lower ROH is a proxy for greater genetic diversity,
428 suggesting that the Chinook and coho salmon LFR admixture groups have higher diversity than MFR
429 and UFR groups. Sampling sites with the longest average total ROH were the Yakoun River (Haida
430 Gwaii) and Salmon River (tributary of the Thompson River) for Chinook and coho salmon,
431 respectively (Figure S7). Locations with the shortest average total ROH (i.e., highest diversity) for

432 Chinook and coho salmon, respectively, were the upper Chilcotin River (tributary of the Fraser River)
433 and the Deschutes River (tributary of the Columbia River) (Figure S7). ROH levels were most variable
434 in the Morkill and upper Chilcotin River locations for Chinook salmon. The individuals with the
435 shorter ROH in the upper Chilcotin River drove the average to the lowest for Chinook salmon.

436 There was a reverse trend for ROH in sockeye salmon compared to Chinook and coho salmon
437 (Figure 8). Most of the sockeye salmon sites with the longest ROH (i.e., the lowest diversity) were
438 from the LFR (i.e., Cultus Lake, Pitt River, and Widgeon Slough). Cultus Lake and Widgeon Slough
439 have small population sizes, often under 1000 salmon in recent generations (DFO 2020; Doutaz *et al.*
440 2023). The Harrison River, although not a part of this admixture group due to being below the 0.7
441 admixture threshold, had the lowest average ROH of all sockeye salmon collections (Figure S7). The
442 Harrison River, in the early 1980s, had around 300,000 spawning adults (Doutaz *et al.* 2023). Widgeon
443 Slough and possibly the Harrison River were also the only samples of the sea-type ecotype taken from
444 the Fraser River (Beacham and Withler 2017; Doutaz *et al.* 2023), all the other Fraser River samples
445 were likely lake-type. Also, some Harrison River salmon are sea and some are lake-type. Bodies of
446 water in the Yukon, Alaska, Russia, and the upper Columbia River had slightly lower average ROH (i.e.,
447 more diverse) compared to the LFR, but higher than sites from the MFR and UFR (Figure 8 and Figure
448 S7).

449 Nucleotide diversity (π), which is a population-level metric rather than an individual-level
450 metric like ROH, had a more complex pattern. Nucleotide diversity ranged from 0.147 (Chinook
451 salmon – Yakoun River) to 0.22 (sockeye salmon – Pinchi Creek). All sockeye salmon sampling
452 locations had nucleotide diversity metrics above 0.19 except for Widgeon Slough, which was 0.17.
453 Cultus Lake might have had lower nucleotide diversity than Widgeon Slough based on its longer ROH,
454 but this location was excluded from this analysis since it had lower SNP coverage than 15x. Similarly,
455 most northern coastal and upper Columbia River samples were excluded from the nucleotide diversity
456 analysis because they had SNP coverage below the threshold. Most Fraser River salmon locations had
457 comparable nucleotide diversity to upper Columbia River Kokanee that were available for comparison.
458 Similar to the ROH results, the LFR salmon had lower diversity than the MFR and UFR sockeye
459 salmon.

460 Most Chinook salmon locations had π values between 0.18 and 0.20. However, the Yakoun
461 River (Haida Gwaii) had the lowest π of all sites for Chinook salmon ($\pi = 0.147$). Many of the
462 sampling locations with the highest nucleotide diversity were from the MFR (Figure 8). The Fraser
463 River Chinook salmon sampling sites had average nucleotide diversity values comparable or lower than
464 other coastal locations along the BC coast (Figure 8).

465 Coho salmon ranged in nucleotide diversity from 0.17 to 0.21, with the lowest collection site
466 being the Salmon River in the South Thompson River drainage and the highest being the Kawkawa
467 Creek below the Fraser Canyon (Figure 8). Fraser River coho salmon had comparable or higher levels
468 of nucleotide diversity as those from California to Alaska. The most extreme northern (Kwethluk
469 River) and southern sites (Klamath River) had the second and third lowest nucleotide diversity metrics
470 respectively.

471 The number of polymorphic loci was highest in Chinook salmon sampling sites, followed by
472 coho salmon and then sockeye salmon, which is consistent with the total number of SNPs identified in
473 each species (Figure S8, Figure 2). While the number of polymorphic loci was dependent on the
474 number of samples per location, it remained higher in Chinook salmon at comparable sample counts
475 per location (Figure S8). Even though Chinook salmon had the greatest number of polymorphic loci
476 per location, nucleotide diversity was often lower than for coho and sockeye salmon locations (Figure
477 S8). This is consistent with higher individual percent heterozygous genotypes in coho and sockeye
478 salmon (Figure 3).

479
480

481 *Admixture group private alleles*

482 There were more private alleles identified in the LFR admixture groups of Chinook and coho
483 salmon than the other admixture groups, with 5-13% of all the identified SNPs being private to the LFR
484 group (Figure 9a). Sockeye salmon had a more even distribution of private alleles among admixture
485 groups than Chinook or coho salmon (Figure 9a). However, the sample size of the LFR sockeye
486 salmon group was the lowest of all comparisons, and this may have impacted the number of private
487 alleles identified. Also, sockeye salmon from the Harrison River (in the coastal region) had admixture
488 ancestry value below 0.7 and were excluded from this analysis. This site had greater genetic diversity
489 metrics than most other sockeye salmon locations (see previous section), and so the removal of this
490 river would be expected to reduce the observed private alleles from this region.

491 Analyses of individual private alleles from Chinook and coho salmon provided more evidence
492 that LFR individuals have more unique alleles than individuals from MFR and UFR groups (Figure 9b-
493 d). Each coastal individual had roughly 130,000 private alleles that were not found in the other
494 admixture groups. Other admixture groups, on average, have much fewer individual private alleles
495 compared to LFR salmon (~ 0.04% - 10%). The upper Chilcotin River and Spius River contributed
496 more private alleles to the Chinook salmon MFR admixture group than other rivers in that group
497 (Figure 9b). Likewise, the Kawkawa River contributed fewer private alleles to the coho salmon LFR
498 group than the other rivers (Figure 9d).

499 Sockeye salmon do not have a comparable admixture group with the large store of private
500 alleles relative to that observed in the LFR coho and Chinook salmon. The northern coast and upper
501 Columbia River kokanee admixture groups have the highest average individual private allele counts
502 (Figure 9c). Most sampling locations in the Fraser River have lower individual private alleles
503 compared to those outside the Fraser River. The main exceptions are samples from the Quesnel River
504 watershed, which have similar values as those outside of the Fraser River (Figure 9c). This is
505 consistent with a higher nucleotide diversity in the Quesnel River watershed than the Chilcotin River
506 watershed (see previous section).

507

508 *Potentially adaptive variants*

509 Twenty candidate adaptive loci were identified in pairwise comparisons among admixture
510 groups based on expanded haplotype homozygosity analyses (Figure S9, Table 2, File S3). No
511 significant loci were identified from within admixture group analyses. Most candidate loci were
512 identified among Chinook salmon admixture groups (14 out of 20). Twelve of these loci overlapped
513 with the boundary of a gene (Table 2). Two different homologs of the *trace amine-associated receptor*
514 13C (TAAR13C) gene overlapped with candidate loci identified in comparisons of admixture groups of
515 sockeye salmon (Figure S9, Table 2). One of these genes was identified from the comparison with the
516 LFR group and the MFR group. The other was identified from the comparison of the LFR group and
517 the UFR group.

518 To identify if there were potential adaptive variants shared among species, we searched for
519 overlapping regions with high -log10 p-values (we were searching for signals of convergent evolution
520 with this analysis). The overlap of 10 kb regions with the highest -log10 p-value was 3.6 among
521 species. The chance of having an overlap with this high of a value was expected by random at least
522 twice by chance given the distribution of p-values. These overlaps were not considered significant and
523 they are not shown or discussed below.

524

525 Discussion

526 The Fraser River drains a very large and diverse section of British Columbia from the Rocky
527 Mountains to its outlet in the city of Vancouver (Reynoldson *et al.* 2005). This river has at times been
528 the largest producer of salmon in North America (Milne 1964; Northcote and Atagi 1997), and remains
529 important commercially (Henderson and Healey 1993) and culturally for its salmon fisheries. The
530 massive declines in salmon, predominately sockeye and pink salmon from a 1913-1914 landslide
531 caused by the construction of a railway, have never fully recovered (Pacific Salmon Commission –
532 psc.org). There are many pressures potentially for why recovery has not occurred and why there has
533 been continued declines in Fraser River salmon (Arbeider *et al.* 2020; DFO 2021; Doutaz *et al.* 2023).
534 Understanding these pressures and their influence on salmon will be valuable for governance and
535 conservation. Our goal is to provide the genetic tools that will facilitate this understanding and help
536 with recovery.

537 While there have been many studies to examine population structure in the Fraser River (Small
538 *et al.* 1998; Teel *et al.* 2000; Withler *et al.* 2000; Beacham *et al.* 2001, 2003, 2006b, 2006a, 2017;
539 Nelson *et al.* 2001; Beacham and Withler 2017; Xuereb *et al.* 2022), this is the first to use whole
540 genome resequencing data for a large distribution of multiple salmon species. The improved resolution
541 of resequenced genomes allowed us to compare the genetic diversity among salmon species, calculate
542 nucleotide diversity at the genome level, and evaluate historical influences on population structure.
543 These types of analyses would suffer using fewer genetic markers. As an example, genetic and
544 nucleotide diversity estimates are dependent on the nucleotide variants used to estimate them (e.g.,
545 polymorphic loci in one region might not be polymorphic in another region) and whole genome
546 analyses allow unbiased estimates among locations. These genome sequences also us to capture a
547 better snapshot in time that can be used in comparisons for future studies.

549 550 *Species level differences of polymorphic loci*

551 Genetic diversity can be understood at both a species and population level. We first discuss the
552 diversity at a species level and will return to the population level later. From previous research, we
553 expected different levels of polymorphic loci among Pacific salmon, with a generally lower genetic
554 diversity of Pacific salmon compared to other species such as rainbow trout (*O. mykiss*) (Allendorf and
555 Utter 1979). Several studies observed that sockeye salmon, and sometimes coho salmon, have the
556 lowest levels of polymorphic loci or average heterozygosity (Utter *et al.* 1973; Allendorf and Utter
557 1979; Wood *et al.* 1994).

558 Our findings indicate that Chinook salmon have ~1.5-2x the number of polymorphic loci and a
559 corresponding drop in the length of ROH (~27-29% of the ROH length) when compared to coho or
560 sockeye salmon. We observed the same trend based on the total number of heterozygous genotypes
561 among the species when only looking at individuals with higher than 15x coverage. While sequencing
562 coverage likely impacts the number of polymorphic loci identified, the scale of the differences we
563 observed, the greater geographic sampling distance covered by the species with fewer polymorphic
564 loci, a similar trend in ROH, and a similar trend with heterozygous genotypes of individuals with at
565 least 15x coverage supports that these findings are robust. If we assume that salmon species had
566 similar levels of genetic diversity during speciation and that mutation rates are similar among species,
567 coho and sockeye salmon likely had a greater reduction in standing genetic variation than Chinook
568 salmon.

570 From modelling of effective population size through time, there is evidence that sockeye and
571 coho salmon experienced a large drop in effective population size around the penultimate glacial
572 maximum that Chinook salmon did not experience (Chinook salmon did experience an earlier drop in
573 effective population size, but the size rebounded after ~50,000 years). We must consider that we do not
574 have precise estimates of mutation rates for all of these species. Even without precise dates or effective
575 population size estimates, however, we note that the drop in effective population size did not rebound
576 to prior levels in sockeye and coho salmon as it did in most Chinook salmon sites. This could have
577 resulted in a loss of polymorphic loci in both sockeye and coho salmon not observed in Chinook
578 salmon.

579 While the SNP count, effective population size, and runs of homozygosity data are consistent
580 with this hypothesis, nucleotide diversity and private allele analyses appear to be inconsistent at first
581 glance. For example, why would sockeye and coho salmon have higher nucleotide diversity if Chinook
582 salmon have more polymorphic loci overall (sockeye salmon average π : 0.205, coho salmon: 0.197,
583 Chinook salmon: 0.189)? Also, why would the average private allele count be higher in the LFR coho
584 salmon admixture group than the Chinook salmon LFR group if the Chinook salmon have more
585 polymorphic loci?

586 First, we note that some coastal samples of sockeye salmon were removed due to low coverage
587 in these analyses, and these samples would have likely lowered the average nucleotide diversity score.
588 Technical artifacts like this and others (e.g., how nucleotide diversity was measured, sequence
589 coverage, or differences among genome assemblies) might help to explain a part of these discrepancies,
590 but they appear to be inadequate for all of the data. For example, at comparable SNP coverages,
591 sockeye salmon had higher proportions of heterozygous genotypes than coho or Chinook salmon even
592 though coho and Chinook salmon have more polymorphic loci overall.

593 The timing of re-colonization and the distribution of groups with unique genetic characteristics
594 could help to account for some of the discrepancies among genetic diversity metrics. In Chinook and
595 coho salmon, for example, the coastal genetic groups have the largest stores of private alleles and the
596 highest metrics of genetic diversity (comparable between species, even if slightly higher in coho
597 salmon). If there was a difference in the timing or the size of the groups that re-colonized the Fraser
598 River from these coastal genetic groups, we might expect the fraction of private alleles from a group to
599 reflect these differences.

600 Estimates of effective population size dip in Chinook salmon locations soon after the last glacial
601 maximum when compared to coho salmon. If we assume these dips are founding events and the times
602 are roughly accurate, we infer that Chinook salmon re-colonized the Fraser River earlier. The founding
603 events also appeared to have reduced the effective population size of Chinook salmon sites less than
604 they did for coho salmon, perhaps reflective of larger founding populations in Chinook salmon. With
605 this in mind, even with fewer polymorphic loci overall, the LFR coho salmon might appear to have
606 higher levels of private alleles per individual than Chinook salmon when comparing the LFR group to
607 the MFR and UFR groups because those groups have lower genetic diversity as a result of more recent
608 and smaller founding events. The MFR and UFR coho salmon groups could have retained comparable
609 nucleotide diversity metrics to Chinook salmon groups due to gene flow, or because not as much time
610 has passed for genetic drift to impact this metric as it has for Chinook salmon. Also, heterozygosity
611 excess (e.g., (Wang *et al.* 2016)), where allele frequency varies by chance more often between males
612 and females due to a low breeding population, is another viable explanation for how MFR or UFR coho
613 salmon might have comparable nucleotide diversity to Chinook salmon.

614 Nucleotide diversity might also be higher in a species with lower overall counts of polymorphic
615 loci and genetic diversity if there was recent admixture between diverse populations. In sockeye
616 salmon, there were at least two distinct demographic patterns identified based on when effective

617 population size declined around the penultimate glacial maximum (perhaps indicative of groups from
618 different glacial refugia as previously suggested (Wood *et al.* 1994; Beacham *et al.* 2006b)). In the
619 Fraser River, both demographic patterns were observed, with the MFR and UFR admixture groups
620 mostly having the earlier decline in effective population size (earlier than 150,000 years before
621 present), while the LFR locations had mostly the later (after 150,000 years before). Gene flow between
622 these groups could explain the higher nucleotide diversity in the MFR and UFR even though sockeye
623 salmon as a whole have fewer polymorphic loci.

624 Overall, the data point to a model where Chinook salmon have more polymorphic loci, but less
625 diversity at these loci than coho or sockeye salmon. Demographic modelling points to one explanation
626 for how this might have occurred, but other explanations are possible. For example, heterozygosity
627 excess is expected in populations with smaller effective population size (Robertson 1965; Wang *et al.*
628 2016).

629

630 *Influences on the population structure of Fraser River salmon*

631

632 Turning from the species level to the population level, researchers have known the basic
633 population structure of Fraser River salmon since the mid 1990's to the mid 2000's (Wood *et al.* 1994;
634 Small *et al.* 1998; Teel *et al.* 2000; Withler *et al.* 2000; Nelson *et al.* 2001; Beacham *et al.* 2003, 2006a,
635 2006b, 2017; Beacham and Withler 2017; Xuereb *et al.* 2022). This knowledge was based on relatively
636 few genetic markers but often many samples from a wide distribution. In the current work, we sampled
637 a moderate number of locations and individuals, but resequenced entire genomes. The basic population
638 structure identified in the Fraser River from resequencing genomes was similar to findings from earlier
639 studies using microsatellite and allozyme genetic markers (e.g., lower, mid, and upper groups), except
640 the Thompson River groups were missing since we did not sample the Thompson River drainage
641 enough to reconstruct them. We interpret the consistency among studies to mean that these genetic
642 clusters are stable through time (as sampling took place at various times, even within studies (Beacham
643 *et al.* 2003, 2006a)), the clusters are robust since they can be identified with only a few genetic
644 markers, and the entire genome is impacted by these groupings.

645 Understanding why we observe these genetic groups is important (e.g., (Nadeau *et al.* 2016;
646 Rougemont *et al.* 2023)). Are they a technical artifact from trying to cluster genomes influenced by
647 isolation-by-distance? Are they an artifact from the transfers between regions of the Fraser River
648 (Withler 1982)? Were they formed from different re-colonization events (or a combinations of events)?
649 Are they a consequence of environmental hurdles to gene-flow? Were they formed from adaptations to
650 specific environmental conditions?

651 If the groups are technical artifacts from isolation-by-distance, they may not be useful from a
652 conservation or management perspective because the groups were shaped by stochastic processes rather
653 than adaptations to different environments. If instead, groups were shaped by different re-colonization
654 events, they might reflect those colonization histories rather than the environments they occupy. If the
655 groups are a result of limited gene flow, we might expect the salmon to have specific adaptations to
656 environmental factors that influence gene flow (e.g., the ability to pass regions of the Fraser River such
657 as the Fraser Canyon), but not necessarily to other environmental conditions. These are only some
658 examples of why these groups might exist. The genetic groups could also be influenced by a
659 combination of these processes.

660 Previous researchers have suggested that isolation-by-distance is an important factor
661 influencing salmon genetics (Withler *et al.* 2000; Rougemont *et al.* 2020, 2023). Others have
662 suggested that different re-colonization events (e.g., from different glacial refugia) influence population

663 structure in Fraser River salmon (Wood *et al.* 1994; Small *et al.* 1998; Teel *et al.* 2000; Withler *et al.*
664 2000). Still others have suggested that barriers to gene-flow like the Fraser Canyon (specifically Hell's
665 Canyon) are important for population structure (Wehrhahn and Powell 1987). Finally, researchers have
666 also suggested genetic adaptation to environmental conditions are important (Small *et al.* 1998).
667 Analyzing multiple species can help with distinguishing which hypotheses are more supported (Nadeau
668 *et al.* 2016).

669 While we observed lower F_{st} between neighbouring admixture groups in all species, which
670 would be consistent with isolation-by-distance, we also observed that private alleles were more
671 common in the UFR group of Chinook salmon than in the MFR group. If populations were delineated
672 strictly by isolation-by-distance, we might expect UFR salmon to have the lowest count of private
673 alleles. Also, in all three species, sampling sites of an admixture group clustered together based on
674 environmental factors in a PCA. If admixture groups were the result of neutral genetic variation or
675 different colonization events alone, we would expect random sorting of groups or for it to be based on
676 distance between locations. This suggests that the environment is a major factor influencing genetic
677 variation in Fraser River salmon, but still does not exclude isolation-by-distance or separate
678 colonization events.

679 Indeed, from demographic modelling, separate colonization events appear to have been an
680 important source of sockeye salmon in the Fraser River and possibly for Chinook salmon. For sockeye
681 salmon, there are at least two unique demographic histories, with one common to LFR sites and the
682 other to MFR and UFR locations. These groups have unique demographic histories starting as early as
683 the penultimate glacial maximum. In Chinook salmon, LFR sampling locations have an earlier
684 decrease in effective population size that may be indicative of an earlier colonization history. Overall,
685 the variability in demographic histories of the species suggest a complex re-colonization history.

686 In all three species, there was a delineation between admixture and PCA groups between the
687 LFR group and the MFR group. The LFR groups had higher F_{st} values among groups, and 5-13% of
688 the SNPs we identified in Chinook and coho salmon were private alleles of the LFR group. If we also
689 consider the velocity barriers between these groups (Wright 2022), we have several pieces of evidence
690 to suggest that there is a substantial gene flow and migration barrier due to the Fraser Canyon. In
691 support of this hypothesis, we observed that the Chinook and coho salmon from the LFR groups had
692 higher nucleotide diversity and that longer runs of homozygosity in coho salmon appeared to be
693 demarcated near Hell's Canyon in the Fraser Canyon. If the Fraser Canyon is a migration barrier, we
694 would expect to observe these genetic delineations in all species and generally this is what was
695 observed.

696 In a study of Fraser River sockeye salmon, researchers observed possible adaptations to
697 environmental differences among populations (Eliason *et al.* 2011). They observed coastal populations
698 had significantly different cardiac morphology and performance from other groups, and that cardiac
699 morphology was correlated with migration difficulty. River temperature was also correlated with
700 cardiac performance. This study highlights the importance of the environment on population structure,
701 migration difficulty, and relates the genetic structure among admixture groups to phenotypic variation.
702 We note that in a comparison of extended haplotype homozygosity between the LFR coho salmon with
703 the MFR group, a potential adaptive locus was identified that overlapped with the *Ankyrin Repeat And*
704 *SOCS Box Containing 2* (ASB2) gene. This gene is thought to be involved in heart development
705 (Yamak *et al.* 2020; Min *et al.* 2021).

706

707 *Influence of adaptation on population structure of Fraser River salmon*

708

709 When comparing genetic groups, we identified twenty candidate adaptive loci. No significant
710 loci overlapped among species, which would have been evidence for convergent evolution. Rather
711 than discuss all twenty regions, we will focus on what these loci reveal in general, and as an example
712 discuss the olfactory receptor gene TAAR13C. Potentially adaptive loci overlapped with two
713 TAAR13C genes and were identified in separate comparisons of the LFR sockeye salmon with MFR
714 and UFR groups.

715 In general, adaptive loci among the genetic groups reveal that there are different selective
716 pressures along the Fraser River drainage. While the environmental PCA gave us insight into how
717 genetic groups were organized based on environmental components, adaptive loci can reveal how these
718 and other elements shape the genomes of salmon through generations. In the type of analysis we used,
719 we did not need to know what these elements were. This means we can discover adaptation caused by
720 unknown and unexamined factors.

721 We may be able to formulate a hypothesis regarding a mode of adaptation in the case of the
722 TAAR13C genes. The olfactory receptor gene, TAAR13C, is directly involved in detecting putrescine,
723 cadaverine, and other diamines (typically associated with decomposing flesh) (Hussain *et al.* 2013;
724 Tessarolo *et al.* 2014; Liberles 2015; Gainetdinov *et al.* 2018). The TAAR13C gene has also
725 previously been found to be associated with sea age at maturity in Atlantic salmon (*Salmo salar*)
726 (Sinclair-Waters *et al.* 2022), and to possibly be under selection in another study of Atlantic salmon
727 (not peer reviewed at the time of writing) (Miettinen *et al.* 2023). Since the TAAR13C gene appears to
728 be involved in the timing of maturation, one hypothesis is that diamines could act as a signal for
729 maturation for the different genetic groups of sockeye salmon in the Fraser River. One source of
730 diamines to consider for this hypothesis comes from eggs. A study of Arctic charr (*Salvelinus alpinus*)
731 eggs and alevin revealed that during these developmental stages different amounts of putrescine and
732 cadaverine were produced during the spawning season (Srivastava *et al.* 1992). If diamines influenced
733 maturation of MFR and UFR groups of sockeye salmon, this information would be valuable in
734 conservation and management. Understanding the modes of adaptation of other potential adaptive loci
735 could likewise be useful for these purposes.

736

737 Conclusion

738

739 From analyzing hundreds of resequenced genomes of Chinook, sockeye, and coho salmon,
740 mostly from the Fraser River, we identified genetic groups that had previously been identified with
741 only a few microsatellites. With data from resequenced genomes, we were able to examine how these
742 groups might have formed. They appear to have been influenced by many factors, including isolation-
743 by-distance, migration barriers, separate glacial refugia in sockeye salmon, and by the diverse
744 environmental factors of the Fraser River drainage. We identified twenty potentially adaptive loci
745 among the different groups of salmon, which is indicative of unique patterns of selection in the various
746 regions of the river. Two of these loci overlapped with homologs of the TAAR13C gene. This gene
747 could be an important target for future studies, to investigate if there is a link between it and timing of
748 maturation in Fraser River sockeye salmon. Finally, by examining three species, we were able to
749 identify commonalities and differences. Patterns of historical effective population size were
750 dramatically different among the three species and could explain the variable genetic diversity currently
751 observed among them. In terms of information useful from a conservation and management
752 perspective, we have generated resequenced genomes that can be reused in future studies, determined
753 metrics for comparison, and identified loci that could impact the timing of maturation of salmon in the
754 Fraser River.

755

756 **Data availability**

757

758 Resequenced genomes from this study are available on the NCBI (coho salmon: PRJNA986075,
759 sockeye salmon: PRJNA930425, and Chinook salmon: PRJNA694998 and PRJNA1090956). Truth
760 SNP datasets used for SNP calling are available in File S2. SNP datasets are available in FigShare.
761 Scripts are available at github.com/KrisChristensen (repositories: PrivateAllelePerInd, PrivateAllele,
762 VCF2Relate, VCFstats, and MapVCF2NewGenome).

763

764 **Acknowledgements**

765

766 We would like to thank the many people involved with sample collection at Fisheries and
767 Oceans Canada (dfo-mpo.gc.ca). For computer resources, we would like to acknowledge the Digital
768 Research Alliance of Canada (alliancecan.ca) and its regional partner the BC DRI Group at the
769 University of Victoria. For their sequencing services, we would like to thank the Michael Smith
770 Genome Science Centre and the technicians there.

771

772 **Funding**

773

774 Funding was provided by the British Columbia Salmon Restoration and Innovation Fund
775 (genetic baseline) through the Pacific Salmon Foundation, and from the Fisheries and Oceans Canada
776 Canadian Regulatory System for Biotechnology.

777

778 **References**

779

Aguillon, S. M., J. W. Fitzpatrick, R. Bowman, S. J. Schoech, A. G. Clark *et al.*, 2017 Deconstructing
isolation-by-distance: The genomic consequences of limited dispersal. *PLOS Genetics* 13:
e1006911.

Ahrens, C. W., P. D. Rymer, A. Stow, J. Bragg, S. Dillon *et al.*, 2018 The search for loci under
selection: trends, biases and progress. *Molecular Ecology* 27: 1342–1356.

Alexander, D. H., J. Novembre, and K. Lange, 2009 Fast model-based estimation of ancestry in
unrelated individuals. *Genome Res* 19: 1655–1664.

Allendorf, F. W., and F. M. Utter, 1979 Population genetics, pp. 407–454 in *Fish physiology*, edited by
W. S. Hoar, D. J. Randall, and J. R. Brett. Academic Press, New York, NY.

Andrews, G. D. M., J. K. Russell, S. R. Brown, and R. J. Enkin, 2012 Pleistocene reversal of the Fraser River, British Columbia. *Geology* 40: 111–114.

Arbeider, M., L. M. Ritchie, D. Braun, B. Jenewein, K. Rickards *et al.*, 2020 Interior Fraser Coho Salmon Recovery Potential Assessment: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 2020/025, xi + 211 p. p.

Auguie, B., 2017 *gridExtra: Miscellaneous Functions for “Grid” Graphics*.

Beacham, T. D., J. R. Candy, K. J. Supernault, T. Ming, B. Deagle *et al.*, 2001 Evaluation and Application of Microsatellite and Major Histocompatibility Complex Variation for Stock Identification of Coho Salmon in British Columbia. *Transactions of the American Fisheries Society* 130: 1116–1149.

Beacham, T. D., K. L. Jonsen, J. Supernault, M. Wetklo, L. Deng *et al.*, 2006a Pacific Rim Population Structure of Chinook Salmon as Determined from Microsatellite Analysis. *Transactions of the American Fisheries Society* 135: 1604–1621.

Beacham, T. D., B. McIntosh, C. MacConnachie, K. M. Miller, R. E. Withler *et al.*, 2006b Pacific Rim Population Structure of Sockeye Salmon as Determined from Microsatellite Analysis. *Transactions of the American Fisheries Society* 135: 174–187.

Beacham, T. D., K. J. Supernault, M. Wetklo, B. Deagle, K. Labaree *et al.*, 2003 The geographic basis for population structure in Fraser River chinook salmon (*Oncorhynchus tshawytscha*). *Fishery Bulletin* 101: 229–242.

Beacham, T. D., C. Wallace, C. MacConnachie, K. Jonsen, B. McIntosh *et al.*, 2017 Population and individual identification of coho salmon in British Columbia through parentage-based tagging and genetic stock identification: an alternative to coded-wire tags. *Can. J. Fish. Aquat. Sci.* 74: 1391–1410.

Beacham, T. D., and R. E. Withler, 2017 Population structure of sea-type and lake-type sockeye salmon and kokanee in the Fraser River and Columbia River drainages. *PLOS ONE* 12: e0183713.

Beatty, G. E., and J. Provan, 2010 Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant *Orthilia secunda*. *Molecular Ecology* 19: 5009–5021.

Bernatchez, L., and C. C. Wilson, 1998 Comparative phylogeography of Nearctic and Palearctic fishes. *Molecular Ecology* 7: 431–452.

Bett, N. N., S. G. Hinch, N. J. Burnett, M. R. Donaldson, and S. M. Naman, 2017 Causes and Consequences of Straying into Small Populations of Pacific Salmon. *Fisheries* 42: 220–230.

Bierne, N., D. Roze, and J. J. Welch, 2013 Pervasive selection or is it...? why are FST outliers sometimes so frequent? *Molecular Ecology* 22: 2061–2064.

Brieuc, M. S. O., C. D. Waters, J. E. Seeb, and K. A. Naish, 2014 A dense linkage map for Chinook salmon (*Oncorhynchus tshawytscha*) reveals variable chromosomal divergence after an ancestral whole genome duplication event. *G3 (Bethesda)* 4: 447–460.

Broad Institute, 2019 Picard Toolkit. Broad Institute, GitHub Repository.

Byun, A. S., B. Koop, and T. E. Reimchen, 1999 Coastal Refugia and Postglacial Recolonization Routes: A Reply to Demboski, Stone, and Cook. *Evolution* 53: 2013–2015.

Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait, 2011 Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. *G3 Genes|Genomes|Genetics* 1: 171–182.

Catchen, J., P. A. Hohenlohe, S. Bassham, A. Amores, and W. A. Cresko, 2013 Stacks: an analysis tool set for population genomics. *Mol Ecol* 22: 3124–3140.

Chang, C. C., C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell *et al.*, 2015 Second-generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* 4:.

Christensen, K. A., J. S. Leong, D. Sakhraei, C. A. Biagi, D. R. Minkley *et al.*, 2018 Chinook salmon (*Oncorhynchus tshawytscha*) genome and transcriptome. *PLOS ONE* 13: e0195461.

Christensen, K. A., E. B. Rondeau, D. R. Minkley, D. Sakhraei, C. A. Biagi *et al.*, 2020 The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. *PLOS ONE* 15: e0240935.

Christensen, K. A., E. B. Rondeau, D. Sakhraei, C. A. Biagi, H. Johnson *et al.*, 2021 The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. *PLOS ONE* 16: e0255752.

Clague, J. J., 2017 Deglaciation of the Cordillera of Western Canada at the end of the Pleistocene. *Cuadernos de Investigación Geográfica* 43: 449–466.

Clark, P. U., A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark *et al.*, 2009 The Last Glacial Maximum. *Science* 325: 710–714.

Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks *et al.*, 2011 The variant call format and VCFtools. *Bioinformatics* 27: 2156–2158.

Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan *et al.*, 2021 Twelve years of SAMtools and BCFtools. *GigaScience* 10: giab008.

Darvill, C. M., B. Menounos, B. M. Goehring, O. B. Lian, and M. W. Caffee, 2018 Retreat of the Western Cordilleran Ice Sheet Margin During the Last Deglaciation. *Geophysical Research Letters* 45: 9710–9720.

DFO, 2020 Recovery Potential Assessment – Cultus Lake Sockeye Salmon (*Oncorhynchus nerka*) (2019): DFO Canadian Science Advisory Secretariat Science Advisory Report 2020/011.

DFO, 2021 Recovery Potential Assessment for 11 Designatable Units of Fraser River Chinook Salmon, *Oncorhynchus tshawytscha*, Part 2: Elements 12 to 22: Canadian Science Advisory Secretariat Science Advisory Report 2021/030.

Doutaz, D., A.-M. Huang, S. Decker, and T. Vivian, 2023 Recovery Potential Assessment for Fraser River Sockeye Salmon (*Oncorhynchus nerka*), Nine Designatable Units Part 2: Biology, Habitat, Threats, Mitigations and Allowable Harm - Elements 1-11, 14, 16-18, 22: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 2023/003, xiii + 250 p.

Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher *et al.*, 2011 Differences in Thermal Tolerance Among Sockeye Salmon Populations. *Science* 332: 109–112.

Fick, S. E., and R. J. Hijmans, 2017 WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* 37: 4302–4315.

Gainetdinov, R. R., M. C. Hoener, and M. D. Berry, 2018 Trace Amines and Their Receptors (J. M. Witkin, Ed.). *Pharmacol Rev* 70: 549–620.

Gautier, M., A. Klassmann, and R. Vitalis, 2017 rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. *Mol Ecol Resour* 17: 78–90.

Gautier, M., and R. Vitalis, 2012 rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. *Bioinformatics* 28: 1176–1177.

Grant, S., and G. Pestal, 2009 CERTIFICATION UNIT PROFILE: FRASER RIVER PINK SALMON: Department of Fisheries and Oceans Canada Canadian Manuscript Report of Fisheries and Aquatic Sciences 2875, vii+36p. p.

Hansen, J., M. Sato, G. Russell, and P. Kharecha, 2013 Climate sensitivity, sea level and atmospheric carbon dioxide. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 371: 20120294.

Harington, C. R., 1996 Quaternary Animals: Vertebrates of the Ice Age, pp. 261–273 in *Life in Stone: A Natural History of British Columbia's Fossils*, edited by R. Ludvigsen. University of British Columbia Press, Vancouver.

Heard, W. R., 2012 Overview of salmon stock enhancement in southeast Alaska and compatibility with maintenance of hatchery and wild stocks. *Environ Biol Fish* 94: 273–283.

Henderson, M. A., and M. C. Healey, 1993 Doubling sockeye salmon production in the Fraser River—Is this sustainable development? *Environmental Management* 17: 719–728.

Hewitt, G. M., 1996 Some genetic consequences of ice ages, and their role in divergence and speciation. *Biological Journal of the Linnean Society* 58: 247–276.

Hewitt, G., 2000 The genetic legacy of the Quaternary ice ages. *Nature* 405: 907–913.

Hofmeister, R. J., D. M. Ribeiro, S. Rubinacci, and O. Delaneau, 2023 Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. *Nat Genet* 55: 1243–1249.

Hussain, A., L. R. Saraiva, D. M. Ferrero, G. Ahuja, V. S. Krishna *et al.*, 2013 High-affinity olfactory receptor for the death-associated odor cadaverine. *Proceedings of the National Academy of Sciences* 110: 19579–19584.

Keefer, M. L., and C. C. Caudill, 2013 Homing and straying by anadromous salmonids: a review of mechanisms and rates. *Rev Fish Biol Fisheries* 24: 333–368.

Kew, M., 1992 Salmon Availability, Technology, and Cultural Adaptation in the Fraser River Watershed, in *A Complex Culture of the British Columbia Plateau*, edited by B. Hayden. UBC Press, Vancouver, BC.

Kolde, R., 2019 pheatmap: Pretty Heatmaps.

Larson, W. A., M. T. Limborg, G. J. McKinney, D. E. Schindler, J. E. Seeb *et al.*, 2017 Genomic islands of divergence linked to ecotypic variation in sockeye salmon. *Molecular Ecology* 26: 554–570.

Latch, E. K., J. R. Heffelfinger, J. A. Fike, and O. E. RHODES Jr, 2009 Species-wide phylogeography of North American mule deer (*Odocoileus hemionus*): cryptic glacial refugia and postglacial recolonization. *Molecular Ecology* 18: 1730–1745.

Li, H., 2013 Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio].

Li, H., and R. Durbin, 2010 Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* 26: 589–595.

Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25: 1754–1760.

Liberles, S. D., 2015 Trace amine-associated receptors: ligands, neural circuits, and behaviors. *Current Opinion in Neurobiology* 34: 1–7.

Lotterhos, K. E., and M. C. Whitlock, 2015 The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. *Molecular Ecology* 24: 1031–1046.

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis *et al.*, 2010 The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 20: 1297–1303.

McPhail, J. D., 2007 *The Freshwater Fishes of British Columbia*. University of Alberta.

McRae, B. H., 2006 ISOLATION BY RESISTANCE. *Evolution* 60: 1551–1561.

Meek, M. H., M. R. Baerwald, M. R. Stephens, A. Goodbla, M. R. Miller *et al.*, 2016 Sequencing improves our ability to study threatened migratory species: Genetic population assignment in California's Central Valley Chinook salmon. *Ecology and Evolution* 6: 7706–7716.

Miettinen, A., J. Dannewitz, S. Palm, E. P. Ahi, A. Romakkaniemi *et al.*, 2023 Loci associated with maturation, migration and appetite control are linked with signals of fine-scale local selection in a large Atlantic salmon population. 2023.08.23.553800.

Milne, D. J., 1964 The Chinook and Coho Salmon Fisheries of British Columbia: Fisheries Research Board of Canada 142.

Min, K.-D., M. Asakura, M. Shirai, S. Yamazaki, S. Ito *et al.*, 2021 ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. *Sci Rep* 11: 23056.

Nadeau, S., P. G. Meirmans, S. N. Aitken, K. Ritland, and N. Isabel, 2016 The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: The case of two white pines. *Ecology and Evolution* 6: 8649–8664.

Nelson, R., M. Small, T. Beacham, and J. Supernault, 2001 Population structure of Fraser River chinook salmon (*Oncorhynchus tshawytscha*): An analysis using microsatellite DNA markers. *Fishery Bulletin* 99: 94–107.

Nichols, K. M., C. C. Kozfkay, and S. R. Narum, 2016 Genomic signatures among *Oncorhynchus nerka* ecotypes to inform conservation and management of endangered Sockeye Salmon. *Evol Appl* 9: 1285–1300.

Northcote, T. G., and D. Y. Atagi, 1997 Pacific Salmon Abundance Trends in the Fraser River Watershed Compared with Other British Columbia Systems, pp. 199–219 in *Pacific Salmon & their Ecosystems: Status and Future Options*, edited by D. J. Stouder, P. A. Bisson, and R. J. Naiman. Springer US, Boston, MA.

Pess, G. R., R. Hilborn, K. Kloehn, and T. P. Quinn, 2012 The influence of population dynamics and environmental conditions on pink salmon (*Oncorhynchus gorbuscha*) recolonization after barrier removal in the Fraser River, British Columbia, Canada. *Can. J. Fish. Aquat. Sci.* 69: 970–982.

Pew, J., P. H. Muir, J. Wang, and T. R. Frasier, 2015 related: an R package for analysing pairwise relatedness from codominant molecular markers. *Molecular Ecology Resources* 15: 557–561.

PLINK 1.9 cog-genomics.org.

QGIS Development Team, 2022 QGIS_software.

Quinn, T. P., 1993 A review of homing and straying of wild and hatchery-produced salmon. *Fisheries Research* 18: 29–44.

R Core Team, 2022 R: A Language and Environment for Statistical Computing.

Reynoldson, T. B., J. Culp, R. Lowell, and J. S. Richardson, 2005 Fraser River Basin, pp. 696–732 in *Rivers of North America*, edited by A. C. Benke and C. E. Cushing. Academic Press, Burlington.

Ritland, K., 1996 Estimators for pairwise relatedness and individual inbreeding coefficients. *Genetics Research* 67: 175–185.

Robertson, A., 1965 The interpretation of genotypic ratios in domestic animal populations. *Animal Science* 7: 319–324.

Rondeau, E. B., K. A. Christensen, D. R. Minkley, J. S. Leong, M. T. T. Chan *et al.*, 2023 Population-size history inferences from the coho salmon (*Oncorhynchus kisutch*) genome. *G3 Genes|Genomes|Genetics* 13: jkad033.

Rougemont, Q., T. Leroy, E. B. Rondeau, B. Koop, and L. Bernatchez, 2023 Allele surfing causes maladaptation in a Pacific salmon of conservation concern. *PLOS Genetics* 19: e1010918.

Rougemont, Q., J.-S. Moore, T. Leroy, E. Normandeau, E. B. Rondeau *et al.*, 2020 Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon. *PLOS Genetics* 16: e1008348.

Saravanan, K. A., M. Panigrahi, H. Kumar, B. Bhushan, T. Dutt *et al.*, 2020 Selection signatures in livestock genome: A review of concepts, approaches and applications. *Livestock Science* 241: 104257.

Sinclair-Waters, M., T. Nome, J. Wang, S. Lien, M. P. Kent *et al.*, 2022 Dissecting the loci underlying maturation timing in Atlantic salmon using haplotype and multi-SNP based association methods. *Heredity* 129: 356–365.

Slowikowski, K., 2021 *ggrepel*: Automatically Position Non-Overlapping Text Labels with “*ggplot2*.”

Small, M. P., T. D. Beacham, R. E. Withler, and R. J. Nelson, 1998 Discriminating coho salmon (*Oncorhynchus kisutch*) populations within the Fraser River, British Columbia, using microsatellite DNA markers. *Molecular Ecology* 7: 141–155.

Soltis, D. E., M. A. Gitzendanner, D. D. Strenge, and P. S. Soltis, 1997 Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. *Plant Syst. Evol.* 206: 353–373.

Srivastava, R. K., J. A. Brown, and M. E. Brosnan, 1992 The presence of polyamines during embryonic development of arctic charr, *Salvelinus alpinus*. *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry* 101: 153–157.

Stewart, J. R., A. M. Lister, I. Barnes, and L. Dalén, 2009 Refugia revisited: individualistic responses of species in space and time. *Proceedings of the Royal Society B: Biological Sciences* 277: 661–671.

Teel, D. J., G. B. Milner, G. A. Winans, and W. S. Grant, 2000 Genetic Population Structure and Origin of Life History Types in Chinook Salmon in British Columbia, Canada. *Transactions of the American Fisheries Society* 129: 194–209.

Terhorst, J., J. A. Kamm, and Y. S. Song, 2017 Robust and scalable inference of population history from hundreds of unphased whole genomes. *Nat Genet* 49: 303–309.

Tessarolo, J. A., M. J. Tabesh, M. Nesbitt, and W. S. Davidson, 2014 Genomic Organization and Evolution of the Trace Amine-Associated Receptor (TAAR) Repertoire in Atlantic Salmon (*Salmo salar*). *G3 Genes|Genomes|Genetics* 4: 1135–1141.

Tribe, S., 2005 Eocene paleo-physiography and drainage directions, southern Interior Plateau, British Columbia. *Can. J. Earth Sci.* 42: 215–230.

Utter, F. M., F. W. Allendorf, and H. O. Hodgins, 1973 Genetic Variability and Relationships in Pacific Salmon and Related Trout Based on Protein Variations. *Systematic Biology* 22: 257–270.

Van der Auwera, G. A., M. O. Carneiro, C. Hartl, R. Poplin, G. Del Angel *et al.*, 2013 From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* 43: 11.10.1-11.10.33.

Veale, A. J., and M. A. Russello, 2017 Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (*Oncorhynchus nerka*). *Genome Biol Evol* 9: 2921–2939.

Wang, J., E. Santiago, and A. Caballero, 2016 Prediction and estimation of effective population size. *Heredity* 117: 193–206.

Warner, B. G., R. W. Mathewes, and J. J. Clague, 1982 Ice-Free Conditions on the Queen Charlotte Islands, British Columbia, at the Height of Late Wisconsin Glaciation. *Science* 218: 675–677.

Weber, J. N., G. S. Bradburd, Y. E. Stuart, W. E. Stutz, and D. I. Bolnick, 2017 Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. *Evolution* 71: 342–356.

Wehrhahn, C. F., and R. Powell, 1987 Electrophoretic Variation, Regional Differences, and Gene Flow in the Coho Salmon (*Oncorhynchus kisutch*) of Southern British Columbia. *Can. J. Fish. Aquat. Sci.* 44: 822–831.

Weir, B. S., and C. C. Cockerham, 1984 Estimating F-Statistics for the Analysis of Population Structure. *Evolution* 38: 1358–1370.

Wickham, H., 2016 *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

Wickham, H., 2007 Reshaping Data with the reshape Package. *Journal of Statistical Software* 21: 1–20.

Withler, F. C., 1982 Transplanting Pacific salmon: Canada Department of Fisheries and Oceans Canadian technical report of fisheries and aquatic sciences 1488-5379 1079.

Withler, R. E., K. D. Le, R. J. Nelson, K. M. Miller, and T. D. Beacham, 2000 Intact genetic structure and high levels of genetic diversity in bottlenecked sockeye salmon (*Oncorhynchus nerka*) populations of the Fraser River, British Columbia, Canada. *Can. J. Fish. Aquat. Sci.* 57: 1985–1998.

Wood, C. C., B. E. Riddell, D. T. Rutherford, and R. E. Withler, 1994 Biochemical Genetic Survey of Sockeye Salmon (*Oncorhynchus nerka*) in Canada. *Can. J. Fish. Aquat. Sci.* 51: 114–131.

Wright, M., 2022 A typology of hydraulic barriers to salmon migration in a bedrock river [Masters]: Simon Fraser University, 57 p.

Wright, S., 1943 Isolation by Distance. *Genetics* 28: 114–138.

Xuereb, A., Q. Rougemont, X. Dallaire, J.-S. Moore, E. Normandeau *et al.*, 2022 Re-evaluating Coho salmon (*Oncorhynchus kisutch*) conservation units in Canada using genomic data. *Evolutionary Applications* 15: 1925–1944.

Yamak, A., D. Hu, N. Mittal, J. W. Buikema, S. Ditta *et al.*, 2020 Loss of *Asb2* Impairs Cardiomyocyte Differentiation and Leads to Congenital Double Outlet Right Ventricle. *iScience* 23: 100959.

Zachos, J. C., G. R. Dickens, and R. E. Zeebe, 2008 An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. *Nature* 451: 279–283.

780

781 **Figure Legends**

782

783 **Figure 1. Fraser River salmon sampling locations.** a) Each point on the map represents a sockeye
784 salmon sampling site (average of 6.5 samples per location). Each location is shown as the closest point
785 of the specified body of water to the Fraser River. The Fraser River and associated watersheds are
786 highlighted on the map. The Nechako River is highlighted as the top left watershed (darker blue, with
787 the river as a lighter blue), and the Thompson River is highlighted as the bottom right watershed
788 (green). Watershed and geographical data are from ced.org and naturalearthdata.com, respectively.
789 The map was generated using QGIS software. Information on sampling locations outside of the
790 boundaries of this map can be found in File S1. b) Same as a) for Chinook salmon samples (average of
791 7.8 samples per site). c) Same as a) for coho salmon samples (average of 6.9 samples per site –
792 excluding the Big Bar Landslide sampling site).

793

794 **Figure 2. Polymorphic loci per species and runs of homozygosity.** a) Counts of all SNPs identified
795 for each species with the same pipeline – differing only in score recalibration and reference genome
796 assemblies. The number of samples per species is shown below each column. b) Overlapping SNP
797 loci among species. SNP loci from sockeye and coho salmon were mapped to the Chinook salmon
798 genome assembly. The percent of loci that overlap are shown for each species relative to the number of
799 SNPs identified in that species. c) Boxplots of the total lengths of runs of homozygosity for each
800 species. d) A scatterplot of runs of homozygosity and the fraction of heterozygous genotypes per
801 individual. The sockeye sample on the far left is a doubled-haploid. Lines were fitted using the loess
802 method.

803

804 **Figure 3. SNP coverage and relatedness metrics.** a) A scatterplot of the relationship between the
805 average SNP coverage and the percent of the genotypes that were heterozygous for each salmon (all
806 species). The relationship between the two variables was modelled using the loess method. The
807 vertical line shows 15x coverage, which was used as a threshold in other analyses. b) Same as a), but
808 each salmon is identified by species. c) Heatmap of pairwise relatedness scores between each Chinook
809 salmon. The salmon from a previous study are highlighted under the Illumina banner. A boxplot of
810 SNP depth is displayed in an insert for the previous (Illumina) and current datasets (MGI). Samples
811 from a Thompson River tributary are highlighted from the previous dataset. d) Same as c) for the coho
812 salmon datasets.
813

814 **Figure 4. Comparison of Fraser River salmon admixture groups.** a) (left) Map of sockeye salmon
815 admixture groups plotted in QGIS by overlaying the admixture ancestry raster plots from Figure S3.
816 Each group is labelled (the colour of the group was randomly assigned). The northern coastal
817 admixture group is outside the frame of this map. (right) Average percent of heterozygous genotypes
818 for each of the Fraser River admixture groups. The different Fraser River admixture group names are
819 lower Fraser River – LFR, mid Fraser River – MFR, and upper Fraser River – UFR. The number of
820 samples ($\geq 15x$ SNP coverage) and sampling sites per admixture group is shown. Weir and
821 Cockerham's (Weir and Cockerham 1984) F_{st} are shown for comparisons between admixture groups.
822 F_{st} comparisons between coastal (LFR) and interior clusters (MFR and UFR) are in bold text. b) Same
823 as a) for Chinook salmon. The LFR group includes coastal sites outside the Fraser River. Significant
824 differences in the percent of heterozygous genotypes among groups are shown with the *p*-value (two-
825 tailed Welch's t-test). c) Same as b) for coho salmon.
826

827 **Figure 5. PCA of sampling location environmental factors.** a) A biplot of a PCA of environmental
828 factors from each sockeye salmon sampling site. These included environmental factors from
829 WorldClim version 2.1, elevation, and distance to the ocean. Environmental factors were simplified as
830 temperature (including: annual mean temperature, minimum temperature of the coldest month,
831 maximum temperature of the warmest month, and temperature range), precipitation (including: driest
832 month precipitation, wettest month precipitation, and annual precipitation), elevation, and distance to
833 the ocean. Figure S5 does not simplify these variables. Locations were coloured by their assignment
834 to admixture genetic groups, but no genetic data was used to produce these PCA. Only sites that had
835 average ancestry values ≥ 0.7 from the LFR, MFR, and UFR genetic groups are shown for simplicity.
836 See Figure S5 for all locations. Each small symbol represents a sampling site, and the larger symbol
837 represents the centre of the ellipse if drawn (ellipse level 0.4). b) Same as a), except for coho salmon.
838 The LFR group includes coastal sites outside the Fraser River. c) Same as b), except for Chinook
839 salmon.
840

841 **Figure 6. Estimated historical effective population size of Fraser River salmon.** a) Effective
842 population size of Chinook salmon estimated using SMC++ and whole genome data. Only one
843 sampling site from each Fraser River admixture group was retained for clarity. Figure S6 shows all
844 sites. The estimated glacial maximum of around 19,000 years ago (Clark *et al.* 2009) is shown with a
845 dashed vertical line. Other regions are highlighted when there were major changes in effective
846 population size for more than one species. b) Same as a) for coho salmon. c) Same as a) for sockeye
847 salmon. d) Estimates of ocean surface temperature (Zachos *et al.* 2008; Hansen *et al.* 2013).
848

849 **Figure 7. Estimated historical effective population sizes of some admixture groups of sockeye
850 salmon.** a) Effective population size of sockeye sampling locations from the UFR admixture group

851 estimated using SMC++ and whole genome data. b) Same as a), but for sites from the MFR admixture
852 group. c) Same as a), but for locations from the northern coastal admixture group. d) Same as a), but
853 for locations from the upper Columbia River kokanee admixture group.
854

855 **Figure 8. Genetic diversity of Fraser River salmon.** a) (left) Map of sockeye salmon total length
856 (kb) of runs of homozygosity (ROH) averaged for each sampling site. This analysis included all
857 individuals. The colour scale is quantile-based. (middle-left) Barplot of total lengths of runs of
858 homozygosity for samples assigned to the different admixture groups with ancestry values ≥ 0.7 .
859 (middle-right) Map of sockeye salmon nucleotide diversity (π) of each sampling site excluding salmon
860 with less than 15x SNP coverage. The colour scale is quantile-based. (right) Nucleotide diversity
861 barplots of sampling sites with average admixture ancestry values ≥ 0.7 from individuals with at least
862 15x SNP coverage. b) Same as a) for Chinook salmon. The LFR group contains samples outside the
863 Fraser River. c) Same as b) for coho salmon.
864

865 **Figure 9. Private allele analyses of Fraser River genetic groups.** a) The count of private alleles of
866 Fraser River admixture groups (only individuals with ≥ 0.7 ancestry values were used). Only private
867 alleles identified in at least three individuals from a group were counted. Below the private allele count
868 is the percent that this represents of all the SNPs identified for each species. The circles are scaled by
869 this value. The number of samples per genetic group after these criteria were met are also included. b)
870 Boxplots, with jittered points added, of individual private allele counts of the different Chinook salmon
871 admixture groups. The individual private allele counts are the number of private alleles each individual
872 has from the private alleles common to the admixture group. This is a way to compare how much
873 individuals contribute to the identified private alleles of the group, and to be able to compare these
874 values to understand if sample size might influence group counts. The LFR group has individuals from
875 outside the Fraser River. c) Same as b) for sockeye salmon, except there were five total admixture
876 groups of sockeye salmon and the LFR is strictly Fraser River samples. d) Same as b) for coho salmon.
877

878 **Tables**

879 **Table 1. SNP filtering parameters used for each analysis.**

Analyses	Indels, >10% missing, depth	MAF 0.01	LD Filter	15x coverage	Relatedness
SMC++	all				
Rehh	all	all			
Coverage	all	all			
ROH	all	all			
Relatedness	all	all	all		
Admixture	all	all	all		
% Heterozygous	all	all		all	
Nucleotide diversity	all	all		all	
Polymorphic loci	all	all		all	
PCA	all	all	all	some*	some*

881 *See Figure S4 for all PCAs, including some with the 15x SNP coverage and relatedness filters.
882

883 **Table 2. Significant extended haplotype homozygosity among admixture groups.**

Species	Admixture	Admixture	Admixture	Nearest gene
---------	-----------	-----------	-----------	--------------

	comparison LFR vs. MFR	comparison LFR vs. UFR	comparison MFR vs. UFR
Chinook salmon	LG09:14.36-14.37 LG10:5.22-5.23 LG11:36.37-36.38 LG21:43.68-43.69	LG09:14.36-14.37	CSGALNACT1* ENDOD1* MACO2* CTNNA1
		LG01:54.33-54.34 LG07:46.47-46.48 LG10:2.25-2.26 LG13:37.80-37.81 LG13:37.98-37.99 LG18:25.30-25.31 LG18:33.39-33.40 LG25:28.04-28.05 LG26:1.26-1.27 LG30:17.88-17.90	HCA2 SRGAP3* AIMP1B* EPHA7* LOC121838999 METTL24* FOSL2 LRPPRC* KLF12B* MINK1
Coho salmon	LG18:24.62-24.63	LG10:24.15-24.16	ASB2* PTPRD
Sockeye salmon	LG26:45.73-45.74	LG09:23.72-23.73	TAAR13C* TAAR13C* LG11:31.22-31.53 LG04:28.48-31.57
			Two genes overlap Many genes

884 All locations are relative to the Chinook salmon genome assembly for comparison (see File S3 for
885 species specific information). Format of location: Chinook salmon linkage group : start (distance in
886 Mb) – end (distance in Mb). *Location overlaps with gene.

888 Supporting Information

889 **Figure S1. Expanded maps and sampling locations.** Slide 1) Sockeye salmon maps, Slide 2)
890 Chinook salmon map, and Slide 3) Coho salmon maps.

891 **Figure S2. Relationship between average SNP coverage and the total length of runs of**
892 **homozygosity.** a) The average SNP coverage per sockeye salmon sample relative to the total length of
893 runs of homozygosity per sample. The line was determined using the loess function (local regression).
894 b) Same as a) for Chinook salmon. c) Same as a) for coho salmon.

895 **Figure S3. Admixture analyses.** Slide 1) Average admixture ancestry values of the different
896 admixture groups were plotted for sampling locations in QGIS using the inverse distance weighted
897 interpolation method. The darker the sampling location, the greater the ancestry assignment to the
898 specified admixture group. Slide 2) Plot of admixture ancestry values for clusters above and below the
899 best supported k=5 for sockeye salmon. Slide 3) Plot of admixture ancestry values for clusters above
900 and below the best supported k=3 for Chinook salmon. The arrows indicate that the name of a location
901 was omitted because of space limitations. Slide 4) Plot of admixture ancestry values for clusters above
902 and below the best supported k=3 for coho salmon. The arrows indicate that the name of a location
903 was omitted because of space limitations.

904

908 **Figure S4. PCA of each species with different filtering criteria.** a) PCA of sockeye salmon. The
909 first column is a PCA of all samples, the second column is a PCA with only one individual from pairs
910 with high relatedness scores (≥ 0.15), and the third column is a PCA of samples with high SNP
911 coverage ($>15x$ coverage). The different admixture groups are noted in the PCA. Admixture numbers
912 were arbitrary, so names were given based on geography for the first column PCA. Individuals with
913 admixture ancestry values < 0.7 , were given a different colour from the the main groups. b) Same as a)
914 for Chinook salmon. c) Same as a) for coho salmon.

915
916 **Figure S5. PCA of sampling locations based on environmental factors.** Slide 1) Biplot of sockeye
917 salmon sampling sites based on environmental variables from WorldClim version 2.1 and elevation.
918 Sampling sites with an average ancestry assignment of less than 0.7 were assigned to intermediate
919 genetic groups with the highest fraction named first (e.g., if a site had average ancestry fractions of 0.6
920 MFR and 0.4 LFR, it was assigned Mid-Coast). The Okanagan was an exception as it had high
921 ancestry values for multiple genetic groups. Each sampling location is represented by a small point
922 (unless there was only one site, in which case it has a larger symbol), larger points show the middle of
923 ellipses, and ellipses were drawn at the 0.4 level. The average annual precipitation and distance to the
924 ocean are shown on the right. Groups were combined if they shared a genetic group as the largest
925 contributor to their ancestry values. Slide 2) Same as Slide 1, but for coho salmon, Slide 3) Same as
926 Slide 1 but for Chinook salmon.

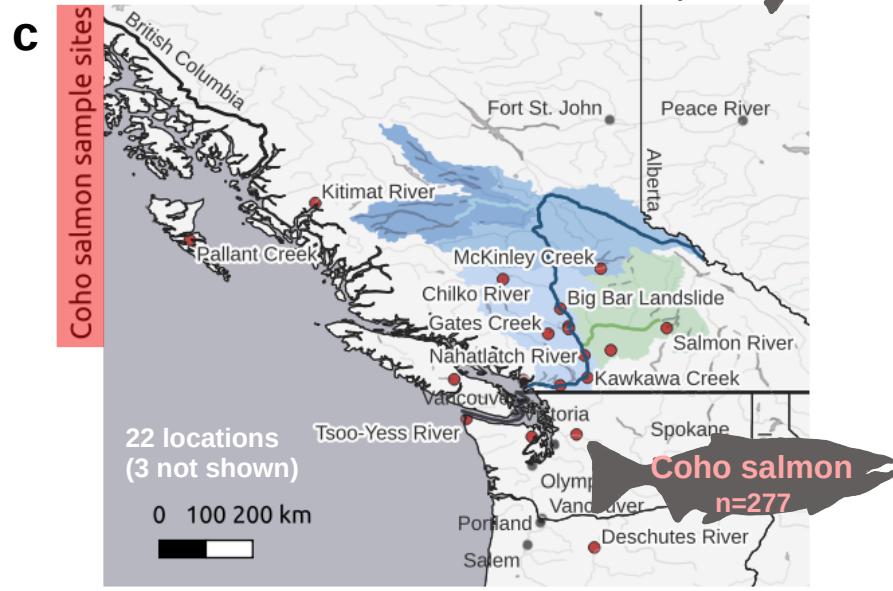
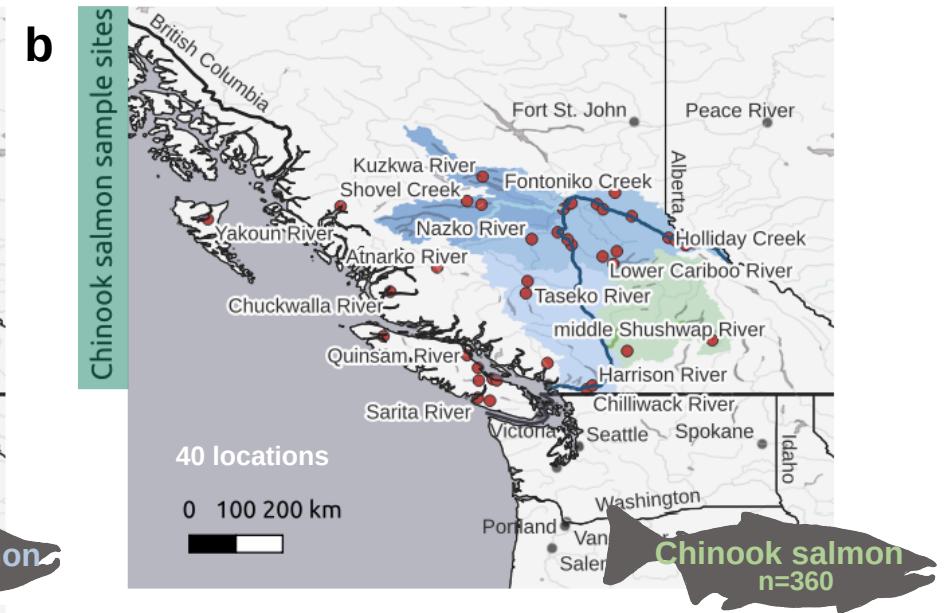
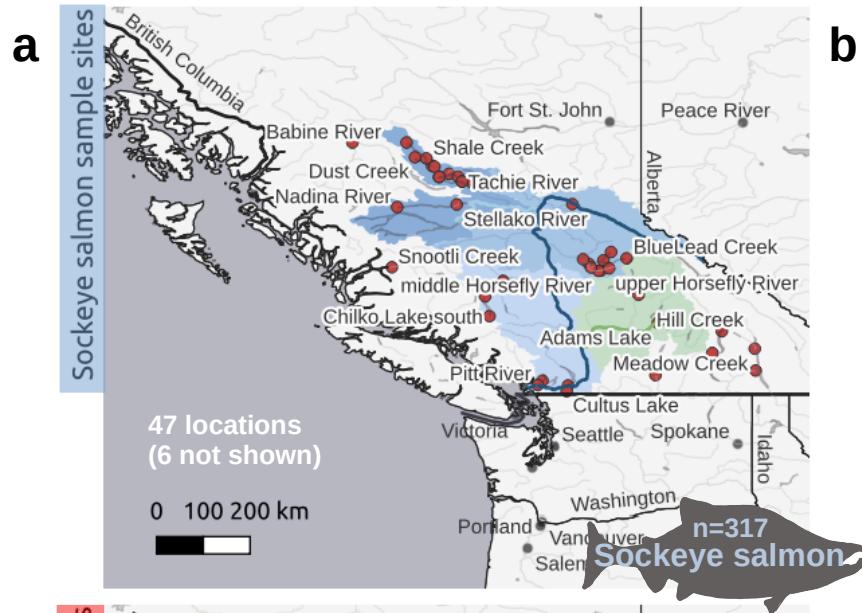
927
928 **Figure S6. Estimates of historical effective population size for different salmon species and**
929 **groups.** Slide 1) Effective population size for all species and sampling sites. Some Chinook sampling
930 locations are off the graph. These sites may have recent admixture, which can throw off these
931 estimates. These sites were removed in all other figures. Slides 2-3) Fraser River admixture group
932 comparisons of each species. Slides 4-5) Effective population size estimations of different groups of
933 Chinook salmon. Individuals were grouped by admixture and region (Coastal: Northern BC Coast,
934 Vancouver Island, Lower Fraser River; Mid Fraser: Mid-Upper Fraser River, Mid-Coast Fraser River,
935 Mid Fraser River; Upper Fraser: Upper Fraser River, Upper Mid Fraser River). Slides 6-7) Effective
936 population size estimations of different groups of coho salmon (Coastal: Mid Alaska, Northern
937 BC/Southern Alaska, Southern BC, Coastal Fraser River, California-Oregon; Mid Fraser: Mid Fraser-
938 Coastal Fraser, Mid Fraser; Upper Fraser River). Slides 8-9) Effective population size estimations of
939 different groups of sockeye salmon (Coastal: Northern Coast, Coast-Mid Fraser, Coast-Coast Fraser,
940 Coast Fraser; Mid Fraser: Mid-Coast Fraser, Mid-Upper Fraser, Mid Fraser; Upper Fraser: Upper
941 Fraser – Columbia, Upper Fraser River; Columbia: Upper Columbia River Kokanee, Upper Columbia
942 – Upper Fraser; Okanagan Lake).

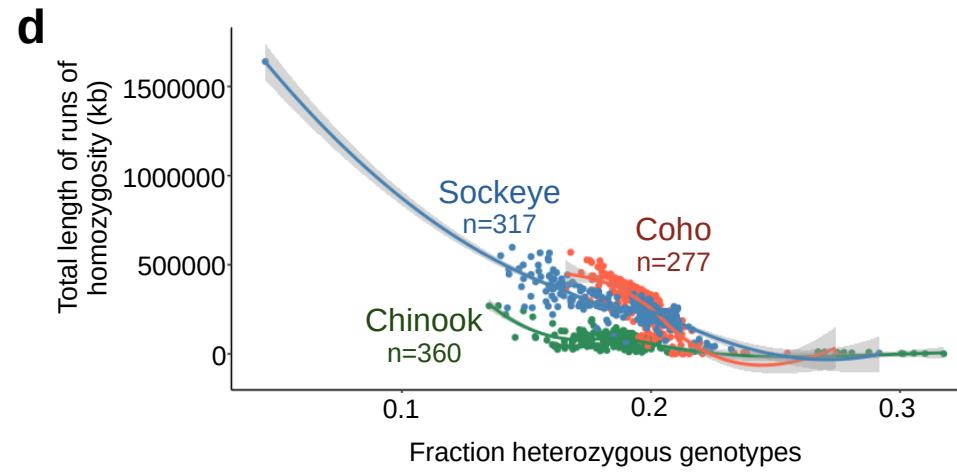
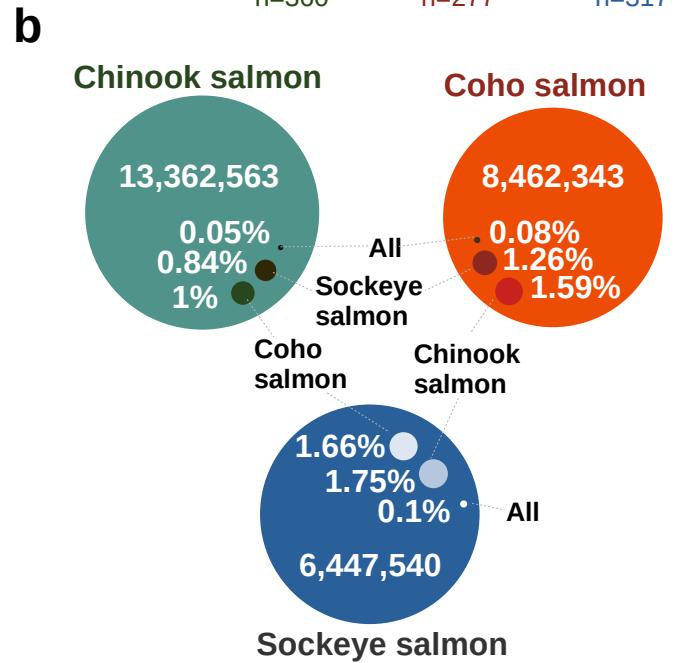
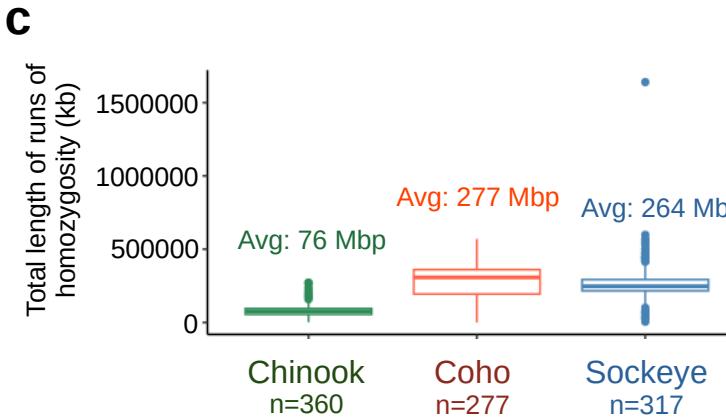
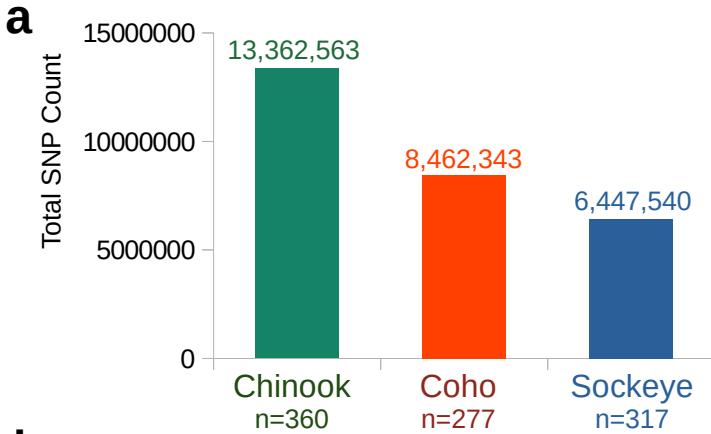
943
944 **Figure S7. Total runs of homozygosity for each sample location.** Slide 1) Boxplot of total runs of
945 homozygosity (kb) for all individuals from each sample location of Chinook salmon. Individuals were
946 also highlighted by Admixture group (individuals with ancestry values < 0.7 were represented by mixes
947 of admixture groups with the largest contributor first). The x-axis represents the sampling site (see File
948 S1 for full name) and the y-axis represents the total length of runs of homozygosity within each
949 individual genome. Slide 2) same as slide 1 except for coho salmon. Slide 3) same as slide 1 except
950 for sockeye salmon.

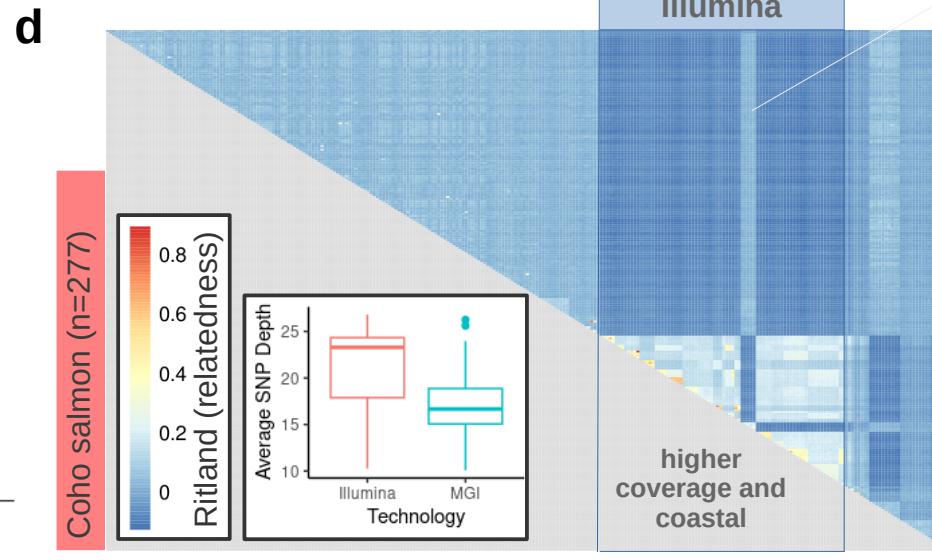
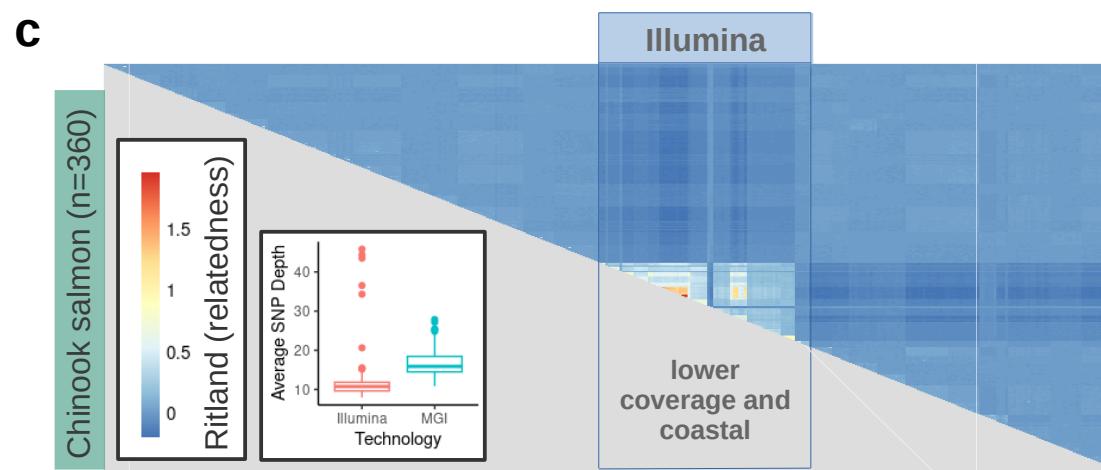
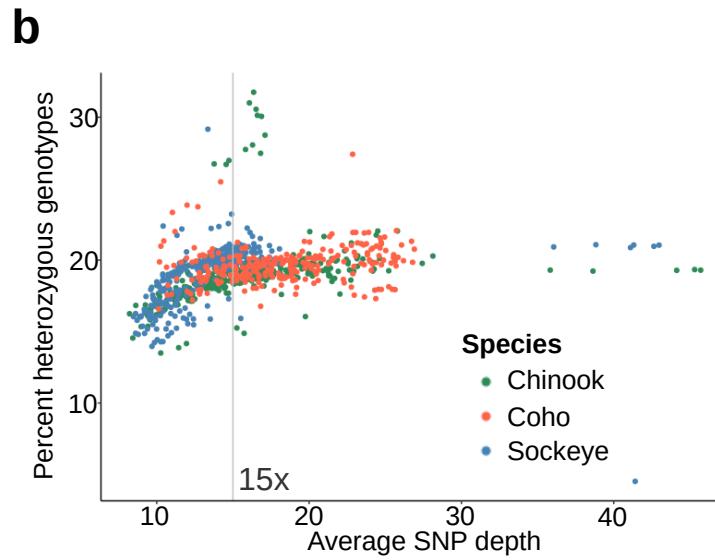
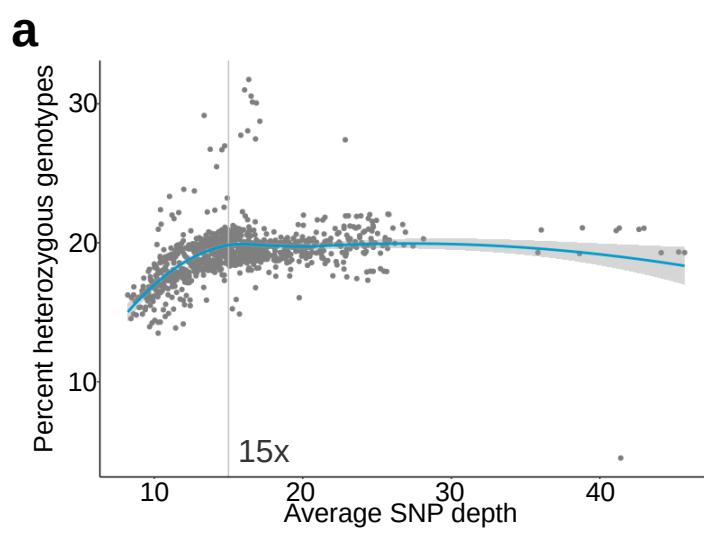
951
952 **Figure S8. Number of polymorphic loci for each sample location.** a) The number of polymorphic
953 loci per location is shown on the top for all species. The number of samples per location is shown on
954 the bottom. b) The relationship between the number of samples per location and the number of

955 polymorphic loci identified for those locations. c) A boxplot of the number of polymorphic loci based
956 on admixture group. Locations with average admixture group ancestry values ≥ 0.7 only have one
957 label (i.e., lower Fraser River – LFR, mid Fraser River – MFR, and upper Fraser River – UFR). Those
958 with < 0.7 have two labels with the first having the largest ancestry value. Only locations with at least
959 four samples were used for this analysis. d) Relationship between the number of polymorphic loci and
960 nucleotide diversity for locations with at least four individuals per site. Each species has its own linear
961 regression line plotted.

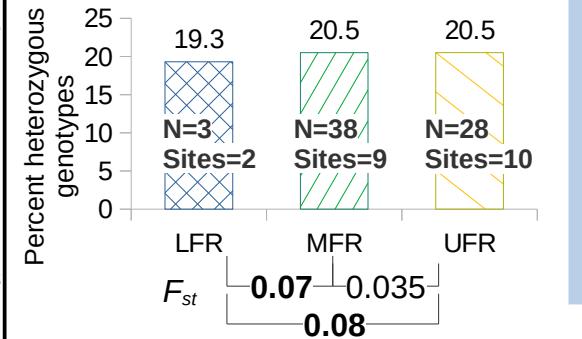
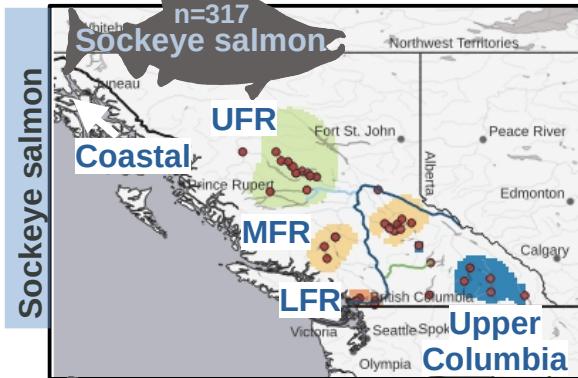
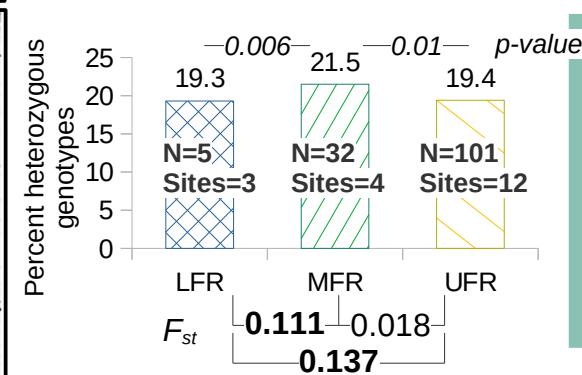
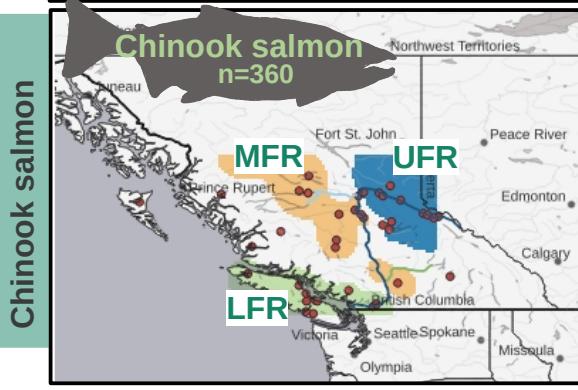
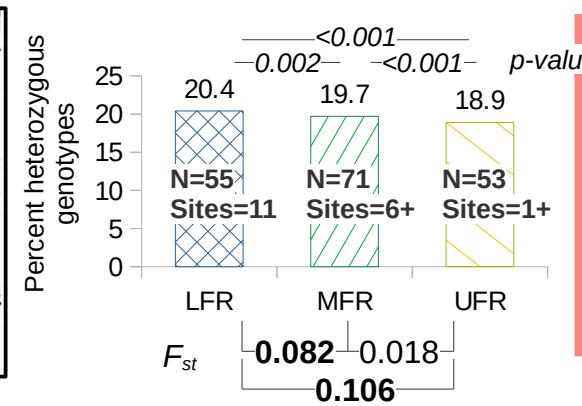
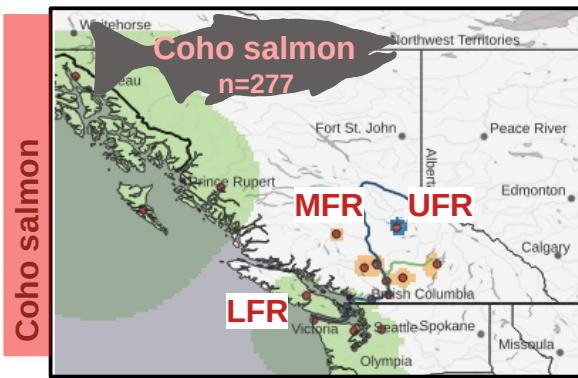
962

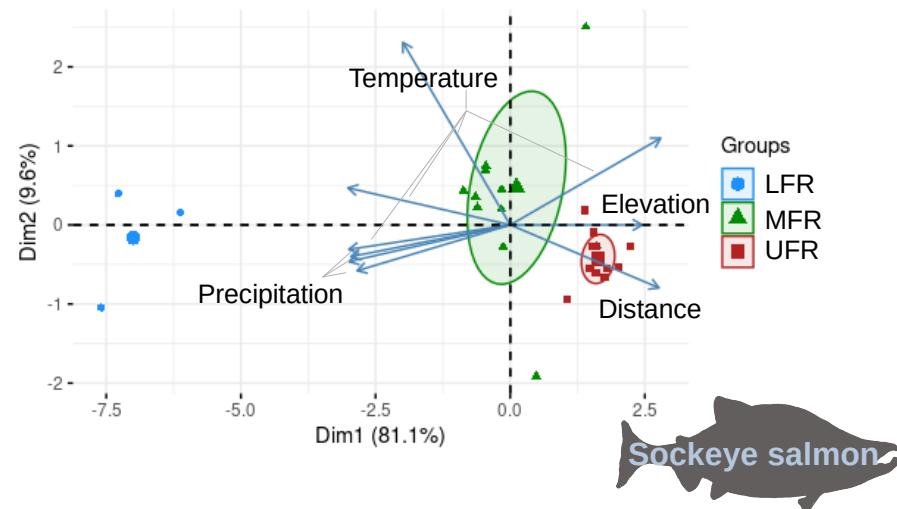
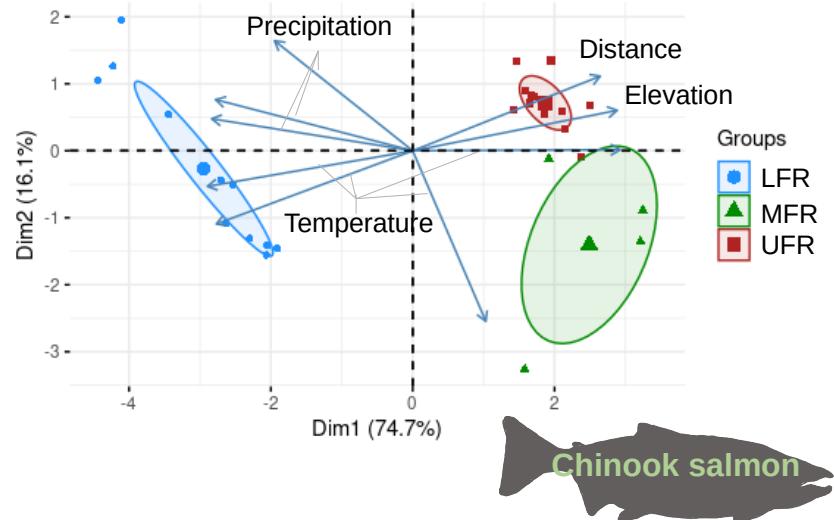
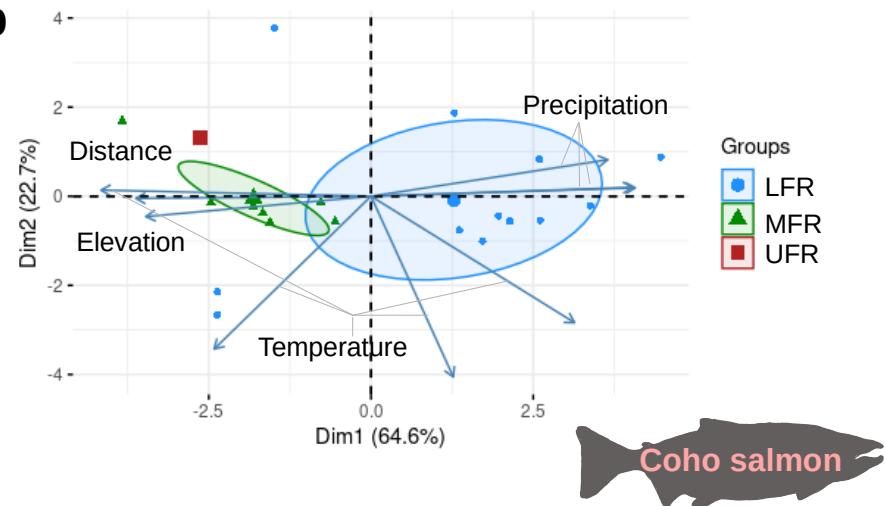



963 **Figure S9. Extended haplotype homozygosity comparisons between LRF and MFR admixture**
964 **groups.** a) A manhattan plot of $-\log_{10}$ p-values from an Rsb analysis between LFR and MFR sockeye
965 salmon admixture groups. Sockeye salmon chromosomes were based on a draft genome assembly
966 submitted to the NCBI (now GCA_034236695.1). Significant peaks were indicated on the graph with
967 a vertical line and a number. b) Same as a) for Chinook salmon. c) Same as a) for coho salmon.

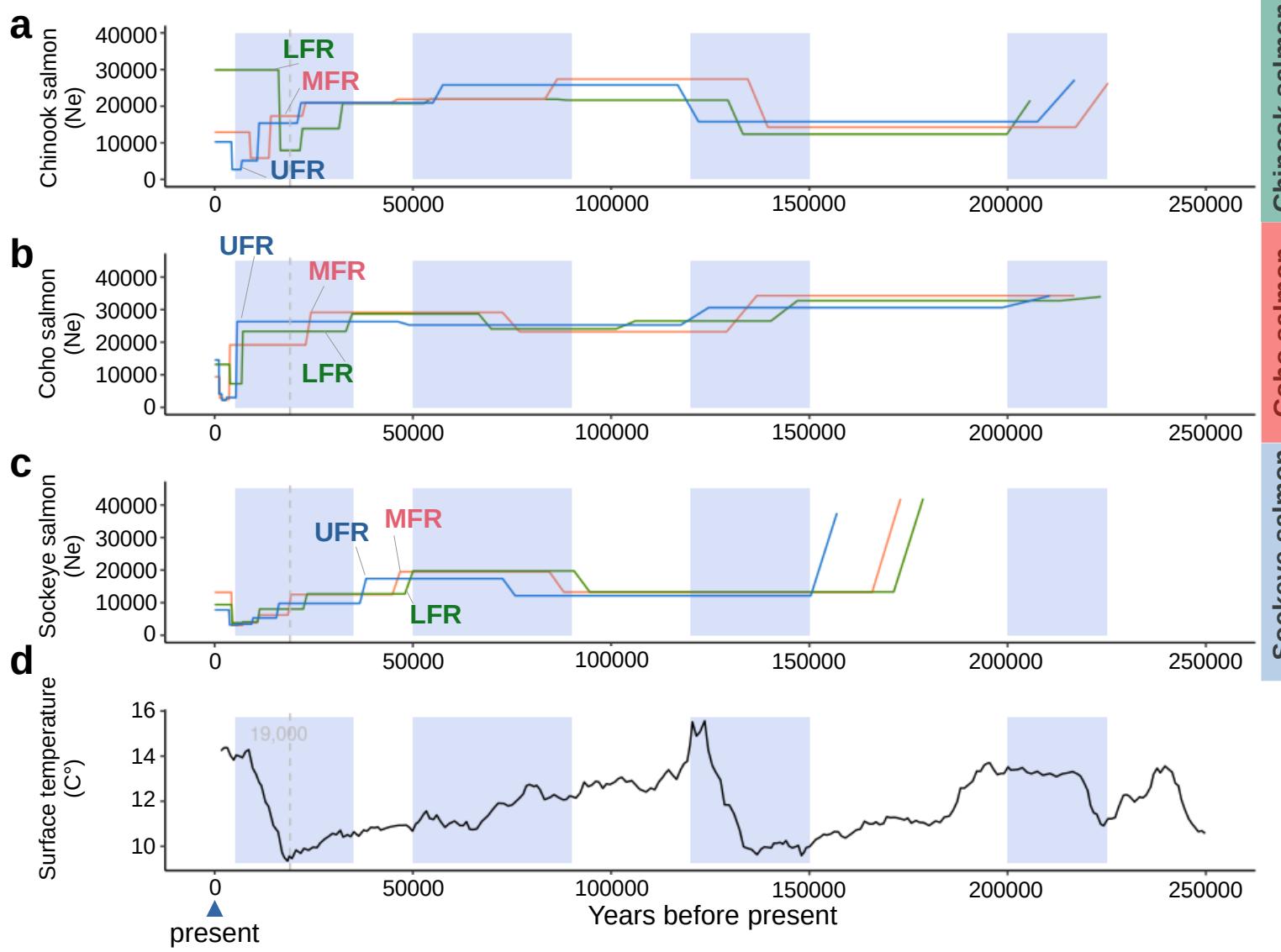




968

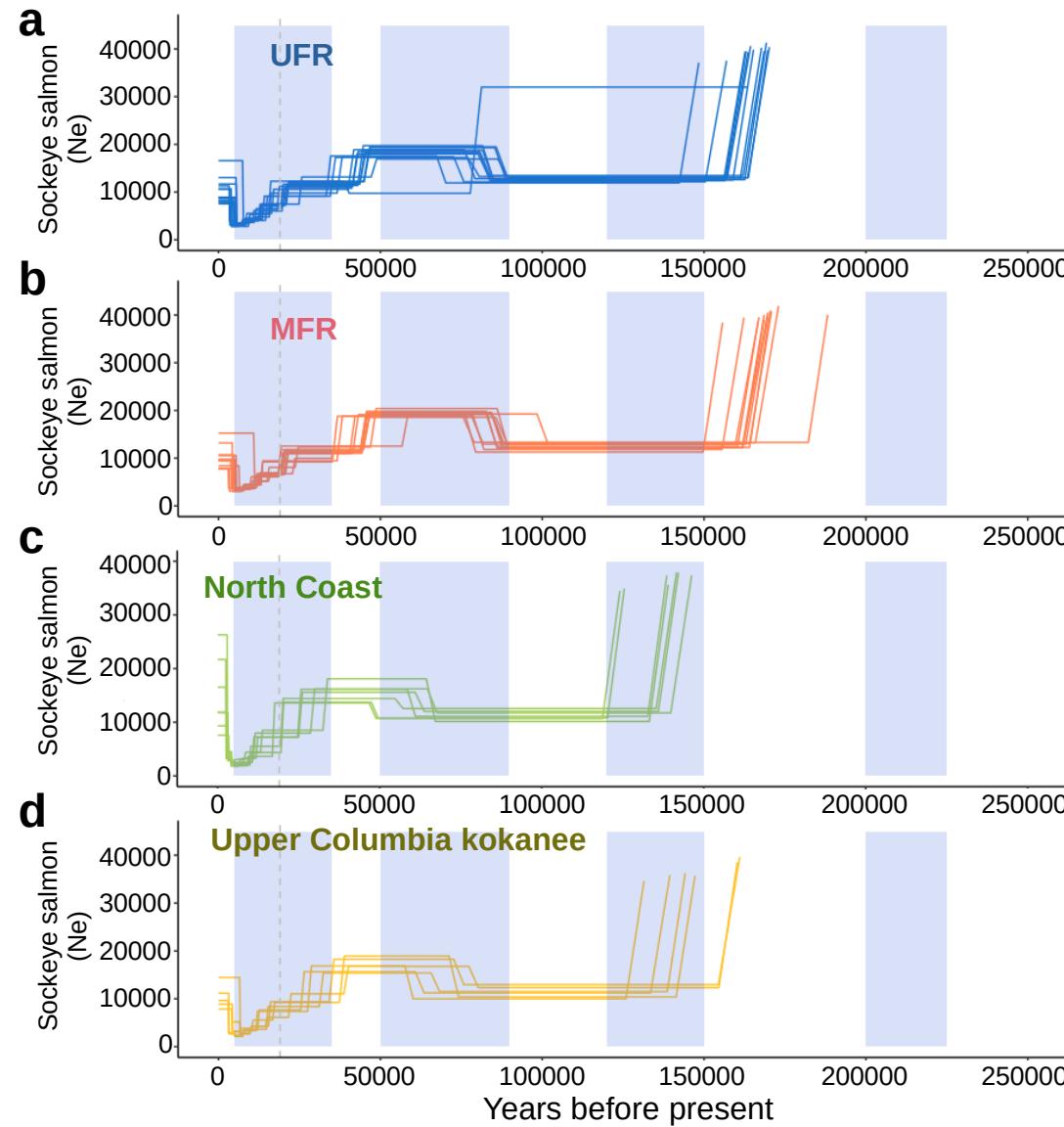




969 **File S1. Sample summary information in a spreadsheet format.**

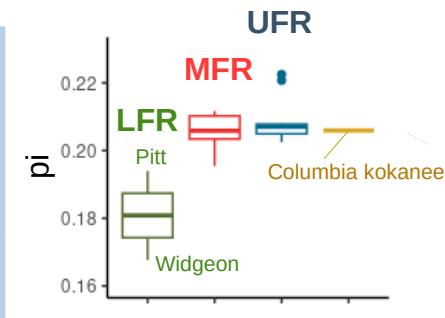
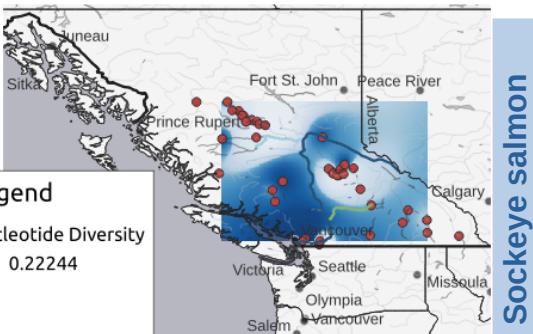
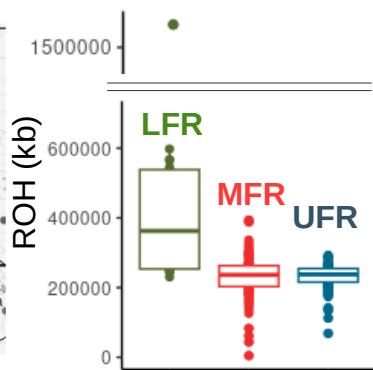
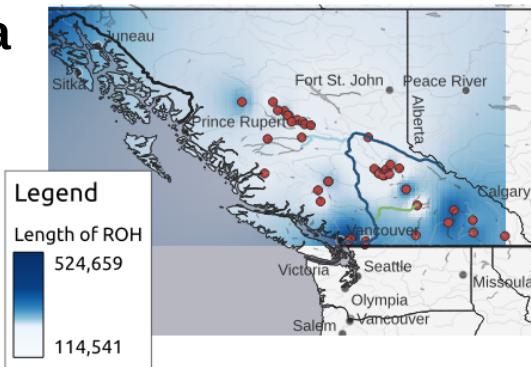
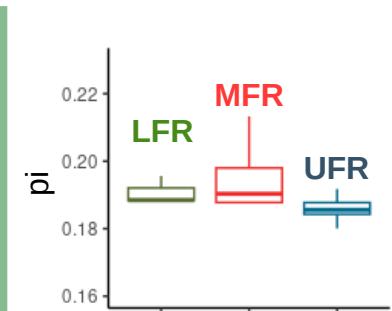
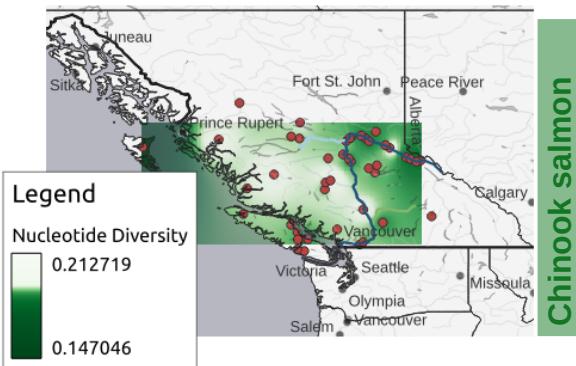
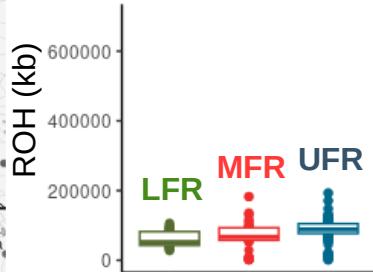
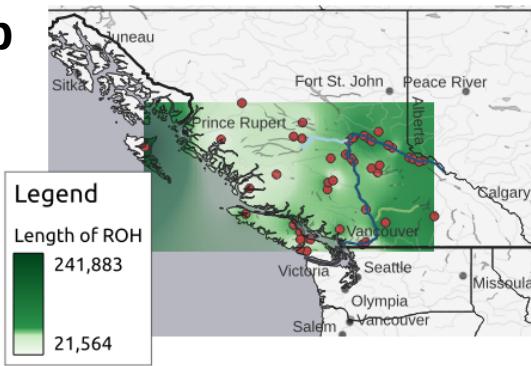
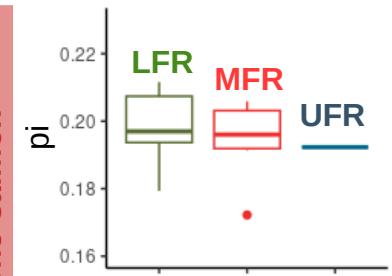
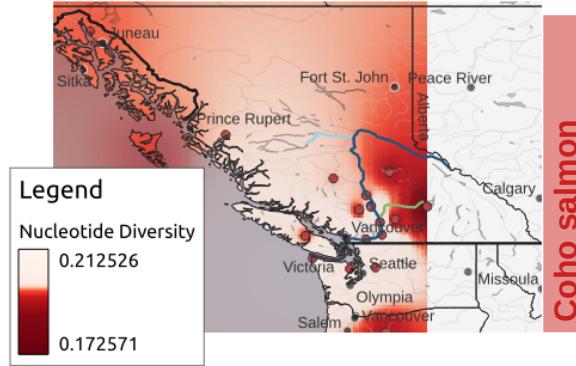
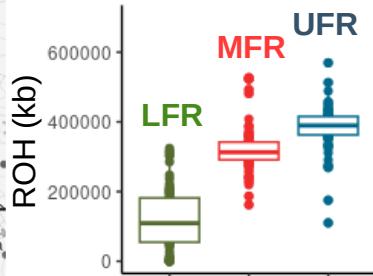
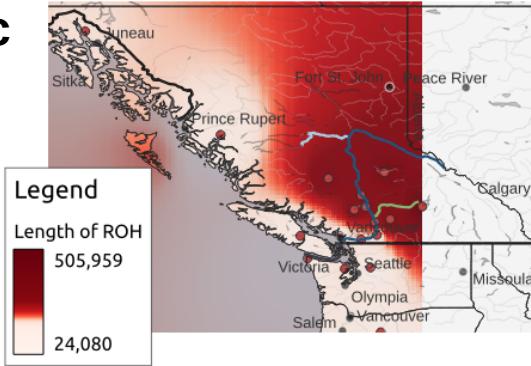
970 **File S2. Truth SNPs used in GATK recalibration for each species (includes a readme file).**

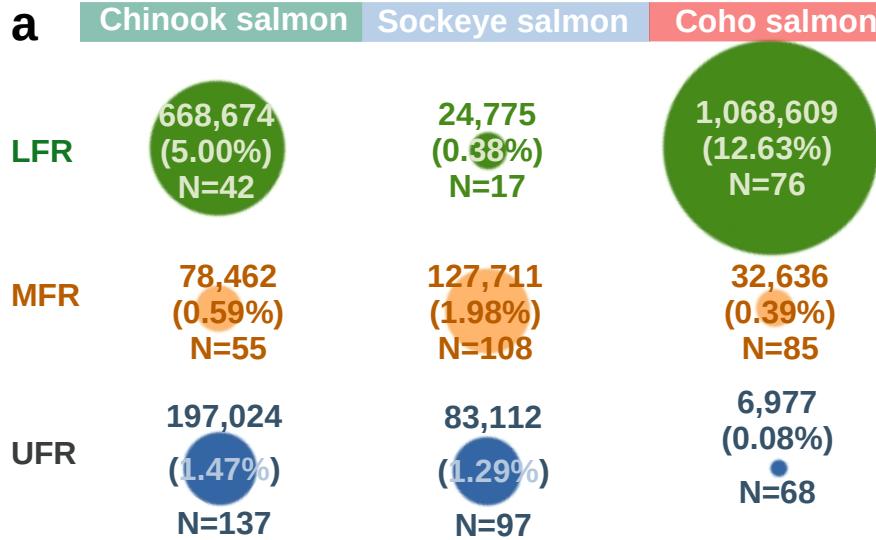
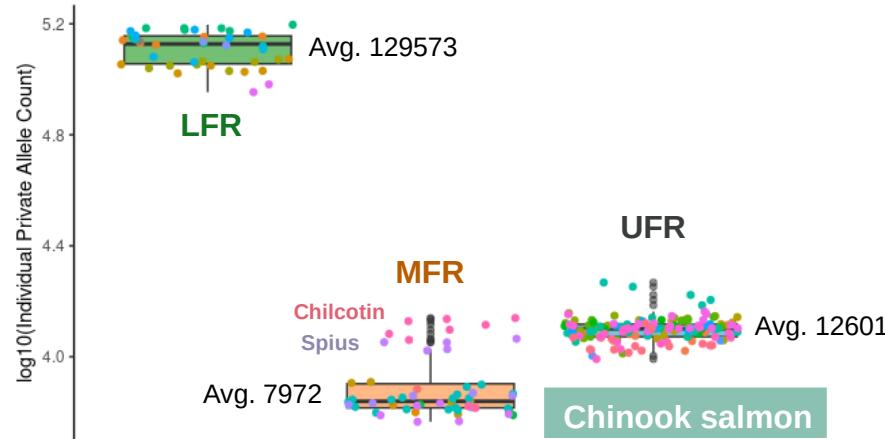
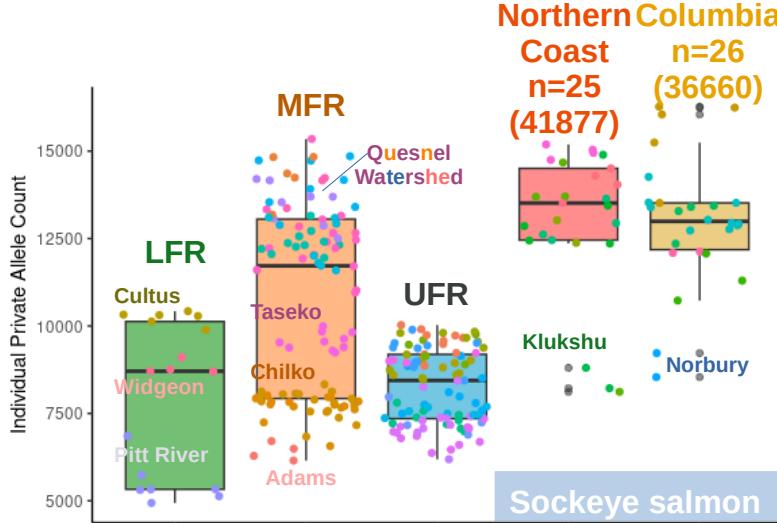
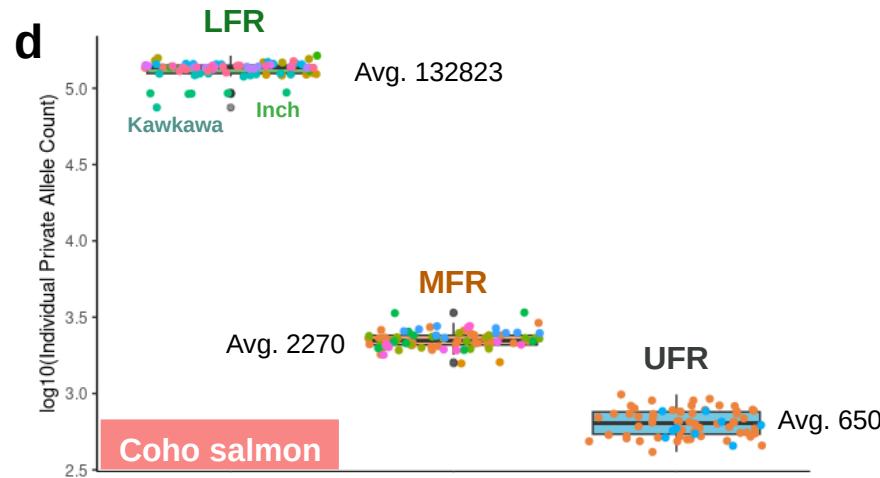






971 **File S3. Significant extended haplotype homozygosity from all comparisons among groups.**

















Thompson tributary





a**b****c**

a**c****b**

a**b****c**

a**b****c****d**