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Abstract

Humans are adept at extracting and learning sequential patterns from sensory input. This
ability enables predictions about future states, resulting in anticipation both on a behavioral
and neural level. Stimuli deviating from predictions usually evoke higher neural and
hemodynamic activity than predicted stimuli. This difference indicates increased surprise, or
prediction error signaling in the context of predictive coding. However, interindividual
differences in learning performance and uncertainty have rarely been taken into account.
Under Bayesian formulations of cortical function, surprise should be strongest if a subject
makes incorrect predictions with high confidence.

In the present study, we studied the impact of subjective confidence on imaging markers
of predictive processing. Participants viewed visual object sequences of varying predictability
over multiple days. After each day, we instructed them to complete partially presented
sequences and to rate their confidence in the decision. During fMRI scanning, participants saw
sequences that either confirmed predictions, deviated from them, or were random. We
replicated findings of increased BOLD responses to surprising input in the ventral visual
stream. In line with our hypothesis, response magnitude increased with the level of confidence
after the training phase. Interestingly, the activity difference between predictable and random
input also scaled with confidence: In the anterior cingulate, we found tentative evidence that
predictable sequences elicited higher activity for low levels of confidence, but lower activity
for high levels of confidence. In summary, we showed that confidence is a crucial moderator

of the link between predictive processing and BOLD activity.
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Introduction

Our visual experience evolves as a continuous stream of sensory states. In the natural
world, states close in time are related, providing a probabilistic mapping of visual input from
one moment to the next. Studies presenting temporal sequences of visual stimuli show that
humans and animals track the underlying transitional probabilities (Sherman et al., 2020; Turk-
Browne et al., 2009). After a training phase, both behavior and neural patterns indicative of
prediction (or anticipation) emerge: Participants detect and categorize expected stimuli faster
(Turk-Browne et al., 2010) and stimulus templates of expected stimuli can be decoded from
fMRI activity (Kok, Jehee, et al., 2012; Kok et al., 2014). Interestingly, the activity in visual
cortices elicited by a given stimulus increases when its occurrence violates previously
presented patterns (Kaposvari et al., 2018; Manahova et al., 2018; Meyer & Olson, 2011;
Richter et al.,, 2018). This difference is thought to represent the extent of surprise — the
mismatch between expected and actual observations. A more specific interpretation is
prediction error (PE) signaling as proposed by predictive coding (Rao & Ballard, 1999). In this
framework, PEs are feedforward signals carrying the difference between feedback predictions
and sensory input (Keller & Mrsic-Flogel, 2018).

Most studies reporting corresponding BOLD or EEG activity focused on manipulating the
transitional probabilities of the sensory stream. However, the human inference process is
subject to uncertainty (Hasson, 2017; O’Reilly, 2013), possibly implemented as a Bayesian
integration of prior knowledge and current evidence (Knill & Pouget, 2004; Pouget et al., 2013).
Consequently, Bayesian predictive coding suggests that the magnitude of PEs depends both
on the reliability of the evidence (the consistency of patterns and the signal-to-noise ratio) and
the precision of our predictions (the probability of a prediction among all hypotheses) (Jiang
& Rao, 2022 but see Aitchison & Lengyel, 2017 for non-Bayesian interpretations). The latter
can either be inferred with computational modeling or by recording participants’ subjective
confidence in a given decision.

Confidence ratings are usually tied to an overt or covert decision by the participant. For
this reason, they are rarely assessed when studying the learning of temporal patterns, which
often aims at implicit processes (Schapiro & Turk-Browne, 2015; Turk-Browne et al., 2010).
Nevertheless, a promising line of studies combined both aspects by interjecting explicit
predictions and confidence ratings between long blocks of visual stimulation. The authors

found that these ratings reflect the confidence of an ideal Bayesian observer during the
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stimulation phase (Bounmy et al., 2023, Meyniel et al., 2015; Meyniel & Dehaene, 2017). This
suggests that subjective ratings are a reliable indicator of the underlying inference process.
Consequently, we used confidence ratings to quantify individual levels of uncertainty during
sequence learning.

In the present study, we aimed to show that PE activity scales with subjective confidence,
building on a previous study using visual streams of everyday objects (Richter et al., 2018).
Furthermore, we addressed whether PE activity emerges as a function of increasing activity
for surprising input (surprise enhancement) or decreasing activity for predictable input
(expectation suppression). Evidence for the latter is inconclusive in humans with few fMRI
studies looking into the alternative explanations (Feuerriegel et al., 2021). To address this gap,
we included three experimental conditions regarding the visual stream: Fully predictable, fully
unpredictable (random), and surprising. Following previous work, activity decreases for
predictable compared to unpredictable stimulation served as evidence for expectation

suppression (Manahova et al., 2018; Ramachandran et al., 2017).

Results

Confidence increases for predictable input and explains improvements in behavior

For the visual stimulation, we used sequences of visual images comprised of five everyday
objects in full color. Prior to the scanning session, participants completed a three-day training
phase with 20 minutes of stimulation per day (Figure 1). This phase only included predictable
and unpredictable sequences. After each day, we sampled the learning process with a
sequence completion task: Participants saw incomplete sequences and had to choose the
correct trailing object from a set of five options. Each trial was followed by a confidence rating
prompt. We found that average confidence regarding predictable sequences increased over
the training phase while it remained constant for unpredictable ones (Figure 2a). Objective
accuracy in completing predictable sequences also increased over days (Figure 2b) and was
highly correlated with confidence (r=0.8, p<0.001). For the following analyses, we used the
average confidence rating in predictable sequences after the last training day. To ensure visual
fixation and attentiveness during the stimulation blocks, we instructed participants to react to
upside-down images with a button press (the cover task). Neither reaction time nor accuracy
were significantly different between conditions (reaction time: t(41)=-1.2, p=.24; accuracy:

t(41)=1.55, p=.13).
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We also tested whether learning the transitional probabilities led to behavioral
advantages. To this end, we included a short task before the MR acquisition on day four. We
presented the participants with a target object that would occur in the following object
sequence. Sequence presentation followed the same design as in the training phase, but
instead of performing the cover task, participants were instructed to react to the occurrence
of the target object. Reaction times were nearly 10% faster for predictable objects (median RT
change=-9.93%, t(41)=-5.66, p<0.001), with a maximum gain of 48%. Confidence was a crucial
predictor of this effect: Subjects with higher ratings after training had significantly larger gains

in reaction time (Figure 2c).
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Figure 1. Experimental design. a. Creation of three types of object sequences. Predictable (P, green) and
unpredictable (U, purple) sequences were shown during training. Surprising (S, yellow) sequences were only
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shown during the scanning session. See methods section for details. b. Across three days, participants performed
an online training phase. Each day, sequences were shown for a total of 20 minutes. There was no inter-stimulus
interval and sequences were separated by a fixation cross. To ensure gaze fixation and vigilance, participants were
instructed to press a button when upside-down objects occurred (catch trials). During the following sequence-
completion task, one to four of the leading objects were presented and the correct trailing object had to be
selected from five options. The selection was followed by a confidence prompt. This task was not timed. Both
predictable and unpredictable sequences were shown to keep object exposure comparable. c. Before entering
the scanner, we tested for behavioral effects of sequence learning. Instead of reacting to upside-down images,
participants had to detect and react to a target object which was given before each sequence. Both P and U were
presented to quantify the gain in reaction time for predictable sequences. Finally, the scanning session followed
the design of the learning phase with additional surprising sequences. We used a block design with four
sequences per condition and a random condition order. There was no sequence completion test during this day.

During fMRI scanning, we used a block design with surprising sequences in addition to the
conditions from the training phase. These were based on predictable sequences from the
learning phase but had one to three objects replaced (Figure 1a). The scanning session
included no sequence-completion task or confidence ratings. Analysis of the cover task
revealed that reaction times were faster in predictable than unpredictable blocks (Figure 2d).
The same trend was present, but not significant, compared to the surprising blocks (t(41)=1.94,
prwe=0.18). The accuracy of reactions did not vary between conditions. Since the cover task
was independent of the presented condition, we explored whether reaction times were
differentially impacted by confidence levels. We calculated condition-wise correlations and
found that high confidence in the predictable sequences was associated with quicker reaction
times (Figure 2e). This link was not significant in the other conditions. Seeing this possibly

confounding effect, we included reaction times in the GLMs of the following BOLD analyses.
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Figure 2. Training and cover task results. a. Average subject-wise confidence ratings within conditions after
respective training days. Black markers show daily medians. b. Average percentage of correctly completed
sequences. Unpredictable sequences could not be predicted over chance level and are not shown here. c.
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Significant linear regression between the relative difference in reacting to predictable versus unpredictable target
objects and average confidence ratings for predictable sequences prior to scanning (r=-0.536, p<0.001). Negative
values on the x-axis correspond to quicker reactions for predictable objects. d. Subject-wise averages of reaction
time in the cover task during fMRI acquisition. Dashed horizontal lines show respective medians, with a significant
difference between the predictable and unpredictable condition (post-hoc t-test: t(41)=2.59, prwe=0.04). Note
that the lines for the unpredictable and surprising conditions overlap since the median is nearly the same. e.
Condition-wise correlations between confidence ratings and reaction time in the cover task during scanning. Since
surprising sequences were based on predictable ones during scanning, we used the corresponding confidence
ratings. The relationship was only significant for the predictable condition (r=-0.5, prwe=0.002). The color legend
applies to all subfigures.

Prediction errors in sensory areas and prediction activity in parietal areas

We analyzed two contrasts with respect to the BOLD data: A PE contrast (surprising >
predictable) and a prediction contrast (predictable > unpredictable). We adopt the
terminology of “prediction contrast” in reference to non-error related aspects of predictive
processing. Confidence was included as a regressor of interest and reaction time differences
between the respective conditions as a confound regressor (Methods). First, we inspected the
main contrasts between conditions. PE activity was present bilaterally throughout the ventral
stream, in close correspondence to previous work using an event-based design after implicit
statistical learning (Figure 3a, left; Richter et al., 2018). The prediction contrast did not provide
evidence of expectation suppression, as we observed no significant negative clusters (i.e.
predictable < unpredictable). Note that these results are based on a conservative whole-brain
analysis. However, we found two positive clusters: A medial cluster in the posterior cingulate
cortex and superior parietal cortex and a left lateral cluster covering parts of the superior

parietal cortex, inferior parietal cortex and a small area of the dorsal stream (Figure 3b, left).

Confidence explains interindividual differences in error and prediction activity
We investigated the link between confidence and predictive processing patterns in both a

confirmatory and an exploratory way. Since we assumed that PE activity increases with
confidence, we regressed the subject-wise average contrast parameter estimates (COPEs) in
the significant PE clusters on confidence ratings, controlling for reaction time differences. In
accordance with our assumptions, we found that PE activity significantly increases with the
participants’ confidence level (Figure 3a, right). We then performed a corresponding analysis
for the positive clusters of the prediction contrast. If these increases indicated PE activity,
possibly due to uncertainty in the predictable sequences by low-confidence subjects, we
would expect a similar relationship to confidence. However, we found no evidence for such a
link (Figure 3b, right). A corresponding Bayesian correlation analysis revealed moderate

evidence for the null hypothesis (BF=.195).
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For the exploratory analysis, we analyzed the confidence regressor estimates of the
second-level GLMs across the whole brain. No significant clusters emerged for the link
between PE activity and confidence. The uncorrected maps indicate peaks in the ventral visual
stream, anterior insula and inferior frontal cortex bilaterally (Figure 3c). Regarding the link to
the prediction COPEs, we found a negative cluster in the anterior cingulate cortex (ACC; Figure
3d, left), although it did not survive FWE correction for two-sided cluster testing. Within this
cluster, we found a strong negative association between COPEs and confidence. Interestingly,
the corresponding regression line crosses the zero value with respect to the COPEs (Figure 3d,
right). Descriptively, this indicates that the relative difference flips sign — for low-confidence
participants, predictable blocks elicited higher BOLD signal compared to unpredictable blocks
while the opposite happened for high-confidence subjects (Methods).

Finally, the directionality of the relationship with confidence generally depended on the
contrast: Inspecting the uncorrected parameter maps, we see that PE activity increases with
confidence while the inverse can be seen for the prediction contrast activity (with a single

exception in the inferior frontal cortex, Figure 3d, left).
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Figure 3. fMRI analysis results on the voxel level (brain slices, left) and cluster level (regression plots, right). Brain
slices show uncorrected t-values thresholded at z=2.33 (p<0.01). Clusters surviving cluster correction (cluster-
forming threshold: z=3.09, cluster threshold: prwe=0.025) are shown in black contours. Regression plots show the
subject-wise mean contrast parameter estimate across significant clusters and confidence ratings in predictable
sequences after training. a. Surprising > predictable contrast. Confidence significantly explains interindividual
differences in BOLD effects (R%partial=.15, t(41)=2.54, p=.015). b. Corresponding results for the predictable >
unpredictable contrast. The linear model yielded no significant results (R%partiai=.001, t(41)=-0.24, p=.82). c and d.
Statistical maps for the confidence regressor in the respective GLMs. Brain maps indicate how strongly the BOLD
differences between conditions vary with confidence levels. Cluster contours in d show a significant negative
cluster (p=0.043) which did not survive FWE correction for two-sided cluster correction. Within this cluster,
confidence explained considerable variance of the COPEs (R%pariai=.49). No test for significance was carried out
because the ROl was based on the GLM results.

Discussion

In the present paper, we established a link between brain activation patterns of
predictive processing during the presentation of temporal sequences and subjective
confidence in knowing the underlying patterns. Importantly, confidence ratings were derived

separately from the visual stimulation. While this approach deviates from similar work using
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statistical learning, we replicated BOLD findings from a recent study where participants were
kept unaware of the patterns (Richter et al., 2018). In line with our assumptions, PE activity in
the ventral visual stream increased with confidence in knowing the (previously reliably
predictable) object sequences. In the ACC, we found tentative evidence that the activity during
predictable input relative to unpredictable input depended on confidence levels: For high
confidence levels, activity for predictable input was lower. Conversely, for low confidence
levels, unpredictable input elicited lower activity levels. These results stress the importance of
accounting for interindividual differences in uncertainty during partly implicit predictive

processes.

Paradigms for learning of temporal regularities

The human ability to extract regularities in the visual domain has been studied from
various perspectives, leading to subtly different paradigms (Conway, 2020). These include
statistical learning (Fiser & Aslin, 2002), sequence or sequential learning (Gheysen & Fias,
2012), probabilistic learning (Meyniel et al., 2015) or temporal community learning (Schapiro
et al., 2013). Instead of being fundamentally different, these approaches can be described as
gradually varying along three axes representing the extent of exposure, structure, and
instruction or feedback (Conway, 2020). Importantly, unifying frameworks have been
developed, arguing that Bayesian inference models can account for most variants of acquiring
regularities from sensory stimulation (Fiser & Lengyel, 2019; Konovalov & Krajbich, 2018).
While the present study did not aim to resolve competing perspectives, it focused on the latter
account. Here, we combined an extended learning phase of continuous sensory stimulation,

using deterministic sequences and light instructions with a separate explicit performance task.

Prediction error activity

We first discuss the results of our main contrasts with respect to previous studies. Firstly,
we found evidence for PE activity throughout the ventral visual stream. Similar to previous
studies in humans, there was no evidence of expectation suppression (Feuerriegel et al., 2021).
In our data, the process behind PE activity is thus better explained as upregulated processing
for surprising stimuli as opposed to downregulated processing for predictable ones. However,
we here used a whole-brain approach that is more conservative than targeted analyses of the
visual stream.

Our findings bear striking similarity to a previous study (Richter et al., 2018) despite

differences in pattern length, instruction and participant awareness. This suggests that the
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underlying neural processes are not exclusive to incidental or implicit learning. Differences
between neuroanatomical substrates of implicit and explicit learning point to more frontal
activations for the latter, while implicit conditions predominantly affect sensory areas
(Gheysen & Fias, 2012). However, these systems may work in parallel, with the implicit
processes as a prerequisite for the explicit ones (Batterink et al., 2015). Consequently, one
might expect additional activations in higher cognitive areas for our design. While not surviving
cluster correction, we did find corresponding clusters in the precentral gyrus and inferior
frontal cortex bilaterally (Figure 3a). It is possible that our study is underpowered to detect
these effects. However, our GLM contrast was not designed to detect general patterns of
statistical learning, but specifically isolated PE processing after a multi-day training phase.
Related to the implicit versus explicit divide, there is evidence that surprising stimuli only evoke
higher activity when unattended (Kok et al., 2012). In contrast, our data suggests that PE
activity persists even when participants were explicitly asked to reproduce the patterns. This
was corroborated by reaction time data in our cover task: Reaction times were shortest for
predictable sequences, suggesting that, even though participants were highly engaged here,
surprising sequences still evoked a stronger signal. Of note, our study differs from previous
work by using a block design. That means that our surprising condition represents a visual
stream including both confirmations and violations of expectation. The subtleties of transient,

event-based responses might thus deviate from our findings.

Prediction activity

Previous research on the contrast between predictable and unpredictable stimulation
produced varied results. Stimuli predictive of other stimuli can elicit either increased activity
(Egner et al., 2008) or decreased activity (Davis & Hasson, 2018), potentially dependent on
task relevance (Richter & de Lange, 2019). Neuroanatomical findings partly overlap with the
ACC being implicated irrespective of effect directionality. In our data, we found extended
increases for predictable input focusing on the superior parietal cortex, intraparietal sulcus
and posterior cingulate. The intraparietal sulcus has been found to increase activity in
response to predictive stimuli (Egner et al., 2008) and is generally sensitive to the entropy of
visual and auditory sequences (Nastase et al., 2014). Interestingly, the superior parietal sulcus
is central to a wide range of predictive processing tasks, as shown by a recent modality- and

task-general meta-study (Ficco et al., 2021).
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Interpreting the effect of confidence

Confidence ratings are often studied in the context of decisions, where they reflect the
posterior probability of being correct, given evidence and an internal model (Pouget et al.,
2016, but see Adler & Ma, 2018 for a non-Bayesian view). However, a line of studies (Bounmy
et al., 2023; Meyniel et al., 2015; Meyniel & Dehaene, 2017) showed that confidence ratings
can also be used to sample the uncertainty during continuous perceptual inference. This
suggests that confidence is an ever-present aspect of perception, which can be cast as ongoing
inference about the correspondence of our internal model (and the associated predictions)
with sensory input (Friston, 2010). However, while many studies explored imaging patterns of
expectation and surprise, surprising trials were often defined by the objective deviation of a
presented stimulus from preceding patterns (Kaposvari et al., 2018; Manahova et al., 2018;
Meyer & Olson, 2011; Richter et al., 2018). We suggest that much of the variance in individual
response can be explained by accounting for individual (un)certainty in the presented patterns.
As an example in the context of simpler paradigms, presenting a sequence of nine house
images followed by a face image might lead to varying levels of surprise if observers did not
infer the same conditional probability of observing a tenth house image. Given more complex
patterns, as used in our study, interindividual variability is expected to increase. While the
underlying reasons are beyond the scope of this study, the frequent divergence of human
inference and behavior from (Bayes-) optimal models has been discussed previously (Acerbi et
al., 2014; Beck et al., 2012).

Confirming our main hypothesis, PE activity in the significant clusters across the visual
stream scaled with confidence. Previous studies investigating this link used model parameters
derived from an ideal Bayesian observer, finding the strongest links between surprise and
confidence outside of the visual cortex (Bounmy et al., 2023). To our knowledge, only two
other studies explored the link between imaging indicators of PE and confidence ratings: In an
EEG analysis of a perceptual decision task, parietal event-related potentials covaried with
confidence ratings both during stimulus presentation and response (Boldt & Yeung, 2015). An
fMRI study using a visual search paradigm found no evidence of PE scaling during stimulus
presentation but did find an inverse relationship during the participants' response in the
inferior frontal gyrus (Sherman et al., 2016). To extend our findings, we performed an
exploratory whole-brain analysis but did not find significant clusters. However, uncorrected

results generally indicated an increase of PE activity with confidence across the cortex.
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We also tested whether prediction activity scaled with confidence but found no
relationship within the clusters of the contrast between predictable and unpredictable
sequences. Mirroring the previous analysis, we then performed a whole-brain analysis on the
voxel level. This yielded a cluster in the ACC where nearly 50 percent of the variance was
explained by confidence levels. The direction of this effect was opposite to the PE contrast:
Here, contrast estimates decreased as a function of confidence. Since this cluster did not
survive correction for multiple comparisons, the results should be interpreted with care.
However, evidence for the role of the ACC in predictive processing and conflict processing in
general is widespread throughout the literature (Alexander & Brown, 2019; Garrison et al.,
2013; Vanveen & Carter, 2002). Consequently, we discuss some implications of this finding in
the following lines. Recently, the ACC has been described as part of a prefrontal network that
anticipates PEs across cortical hierarchies (Alexander & Brown, 2018). This suggests a decrease
in activity with increasing confidence, which has been confirmed for probabilistic learning
tasks (Bounmy et al., 2023; Davis & Hasson, 2018). However, if the ACC is central to PE
processing, we would expect corresponding results regarding our PE contrast. Possible
explanations for this dissociation might lie in the hierarchical nature of predictive processing
(Alexander & Brown, 2018): PEs in the visual stream indicate low-level mismatches without
necessary awareness, while errors in higher cortices are subject to conscious reflection and,
possibly, anticipation. Future studies are necessary to differentiate the modulating effect of
confidence across the hierarchy of predictive processing.

Lastly, the confidence parameter estimates in the ACC flipped sign at medium-to-high
levels of confidence. This means that predictable sequences elicited higher activity than
unpredictable ones for low confidence levels, while the opposite was true for high levels. This
matches the pattern usually expected for expectation suppression, albeit not in a sensory area.
Regarding low levels of confidence, this can be explained by precision weighting of expected
errors (Yon & Frith, 2021): If participants inferred that there is a ground truth to the predictable
sequences while not being able to accurately predict the order, PEs of high precision can be
expected. Due to the stochastic nature of the unpredictable condition, stimuli can never be
accurately predicted, but the precision of errors is low. Nevertheless, if the unpredictable
condition did elicit residual error activity, it might explain the relatively higher activity for high
confidence levels. Here, the correspondence between predictions and sensory information is

(close to) perfect in the predictable condition, triggering little to no error anticipation or
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processing. Finally, it is possible that even after three days of exposure, subjects still assumed
that there is some order in randomness (Huettel et al., 2002), leading to incorrect predictions
of comparatively high precision. Tentative evidence for this assumption can be found in the
confidence ratings for the unpredictable condition. While these did not change during training,
they were still far from minimal, indicating that some of the subjects did not correctly infer

that these sequences were inherently unpredictable.

Methods

Participants

We recruited 44 participants including students, doctoral researchers, clinic staff and the
general population of Munich. The sample size was based on a-priori analysis, aiming to detect
at least a medium effect size (d>=0.5, alpha=0.05, beta=0.9). All participants took part in a
familiarization MRI session (20 minutes), an online training phase over three days and the main
MRI session (70 minutes) on the day after training completion. Two participants were excluded
from the analysis due to technical problems during data acquisition. The remaining 42
participants (19 female, age [mean(std)] = 27.1(3.9)) were included for analysis. The study was
approved by the ethics board of the Technical University of Munich (TUM), and we acquired
written informed consent from all participants.
Visual stimuli

We selected 224 full-color images of everyday objects from a larger image set (Brady et al.,
2008). The stimuli were chosen to be maximally homogenous regarding salience, e.g., by
excluding food items and bright colors. If not stated otherwise, all allocations of stimuli to
subjects and conditions were random. A set of 80 images was selected for every subject, with
half assigned to the predictable condition and the other half to the unpredictable condition.
Experimental design

Implementation. We used Psychopy (Peirce et al., 2019) to implement the design. The
online training sessions were realized using pavlovia.org, where Javascript-translated Psychopy
experiments can be run online with millisecond precision (Bridges et al., 2020; Sauter et al.,
2020).

Main task. Participants saw sequences of five objects each, each stimulus presented for
800ms with no inter-stimulus interval and a 1100ms fixation cross between sequences. Three

types of sequences were presented: Predictable sequences had the same order for every
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repetition. Unpredictable sequences were composed of randomly chosen objects from the
subject-specific set of unpredictable images. After all unpredictable images were shown, new
sequences were formed. Surprising sequences were based on predictable sequences but had
one to three stimuli replaced with images from the unpredictable condition for every
repetition. To allow for an initial prediction, the first object was never replaced. The visual
stream was reshuffled prior to presentation based on two rules: Objects could only repeat
after all objects in the respective condition were presented, and objects (or sequences) could
not appear twice in a row. This was done to minimize the confounding effects of repetition
suppression. To ensure fixation and concentration, participants were instructed to quickly
react to occurrences of upside-down objects. These appeared with a probability of 10%,
independent of condition.

Training phase. Over the course of three days prior to the main scanning session,
participants followed an online implementation of the main design. This phase only included
predictable und unpredictable sequences. We instructed every participant to perform the
training in a quiet environment without distractions. Stimulation blocks lasted 20 minutes per
day, with a break of one minute after 10 minutes. Instructions were shown on screen before
the stimulation began and the first day included a five-minute familiarization block with on-
screen feedback regarding cover-task button presses. To measure objective and subjective
progress in sequence learning, a testing phase followed each training day. Here, participants
saw eight incomplete sequences for both conditions. After every sequence, participants chose
what they assumed would be the correct trailing object from five options and gave a
confidence rating on a scale of one to seven. No feedback was given regarding performance
and no information on the underlying conditions was disclosed.

Imaging phase. During scanning, stimuli were presented against a grey background and
subtended 4° of visual angle. We chose a block design with four sequences of one condition
forming one block, with sequence order randomized. Half of the predictable and unpredictable
objects were set aside for the generation of the surprising sequences. This ensured that every
object was uniquely assigned to a condition. Participants saw 12 blocks per condition with a
duration of 20.4s each, adding up to a run time of 12 minutes and 23.4 seconds. We disclosed
no information regarding the sequence patterns and the imaging session included no

sequence completion test.
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MRI acquisition

High-resolution structural scans were acquired with a T1-weighted 3D MPRAGE sequence
(170 slices, voxel size = 1.0x1.0x1.0mm3, FOV = 250x256x170mm3, TR/TE/flip
angle=9ms/4ms/8°). fMRI data was acquired using single-shot EPI (40 slices, voxel size =
3.0x3.0.3.0mm3, FOV 192x192x127.8mm3, TR/TE/flip angle=1200ms/30ms/70°) with 612

dynamic scans plus 2 dummy scans (total duration: 768 seconds).

MRI data processing
We preprocessed the fMRI data with fMRIPrep (Esteban, 2019) which produces an

automated processing description that we provide in the supplement.

Statistical analysis

We performed whole-brain BOLD data analysis using FSL FEAT via a Python interface
(adapted from Esteban et al. 2020). Regarding the first level analysis, we modelled the
experimental manipulation as blocks, following their presentation timing with a length of 20.4
seconds (four object sequences) and included the respective temporal derivatives. The
resulting boxcar functions were convolved with a double gamma hemodynamic response
function. We added eight motion regressors: Six translations and rotations as well as two
measures of bulk head motion (DVARS and framewise displacement). Finally, we included the
average global CSF and white matter signal. All regressors were taken from the fMRIPrep
results. The data were grand mean scaled, smoothed with a 6mm?2 kernel and high pass filtered
at 120 seconds. Since we did not have a resting condition, we created two GLMs: One leaving
the surprising blocks unmodelled (used to create the prediction contrast between the
modelled blocks) and one leaving the unpredictable blocks unmodelled (used to create the PE
contrast). This was done to prevent overparametrization of the design matrix which can lead
to unstable estimates.

Subsequent group-level analyses were run using FSUs FLAMEO and included two
covariates: Confidence ratings from predictable sequences (individual average after the last
training day) and the percent change in reaction time to catch trials between the conditions
being contrasted (individual average over all blocks). Since we acquired separate statistical
maps from the first level analyses, we ran two corresponding analyses on the group level. This
influences the interpretation of the covariates: The effect of confidence is now specific to the
respective contrast (i.e. explained variance regarding the prediction contrast or PE contrast).

Statistical maps of significant activation were obtained using FSLs cluster correction with a
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voxel threshold of z=3.09 and a cluster threshold of p=0.05 (Woo et al., 2014). Since cluster
correction is applied for negative and positive clusters separately, we used an FWE-corrected
threshold of 0.025. Our interpretation of contrast parameter estimates (COPEs) rests on the
underlying subtraction of two parameter estimates. The resulting COPE thus informs both
about the magnitude of the difference as well as the direction (which parameter weight is
larger). Comparisons regarding the anatomical localization were based on relative voxel
coverage over regions in the Harvard-Oxford Cortical Probabilistic Atlas.

All analyses on behavioral data were performed using the python package pingouin (Vallat,
2018). In linear regressions, the partial R? values for confidence predictors were based on a

partitioning of explained variance following Gromping (2006).
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