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Abstract 

Humans are adept at extracting and learning sequential patterns from sensory input. This 

ability enables predictions about future states, resulting in anticipation both on a behavioral 

and neural level. Stimuli deviating from predictions usually evoke higher neural and 

hemodynamic activity than predicted stimuli. This difference indicates increased surprise, or 

prediction error signaling in the context of predictive coding. However, interindividual 

differences in learning performance and uncertainty have rarely been taken into account. 

Under Bayesian formulations of cortical function, surprise should be strongest if a subject 

makes incorrect predictions with high confidence. 

In the present study, we studied the impact of subjective confidence on imaging markers 

of predictive processing. Participants viewed visual object sequences of varying predictability 

over multiple days. After each day, we instructed them to complete partially presented 

sequences and to rate their confidence in the decision. During fMRI scanning, participants saw 

sequences that either confirmed predictions, deviated from them, or were random. We 

replicated findings of increased BOLD responses to surprising input in the ventral visual 

stream. In line with our hypothesis, response magnitude increased with the level of confidence 

after the training phase. Interestingly, the activity difference between predictable and random 

input also scaled with confidence: In the anterior cingulate, we found tentative evidence that 

predictable sequences elicited higher activity for low levels of confidence, but lower activity 

for high levels of confidence. In summary, we showed that confidence is a crucial moderator 

of the link between predictive processing and BOLD activity.  
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Introduction 

Our visual experience evolves as a continuous stream of sensory states. In the natural 

world, states close in time are related, providing a probabilistic mapping of visual input from 

one moment to the next. Studies presenting temporal sequences of visual stimuli show that 

humans and animals track the underlying transitional probabilities (Sherman et al., 2020; Turk-

Browne et al., 2009). After a training phase, both behavior and neural patterns indicative of 

prediction (or anticipation) emerge: Participants detect and categorize expected stimuli faster 

(Turk-Browne et al., 2010) and stimulus templates of expected stimuli can be decoded from 

fMRI activity (Kok, Jehee, et al., 2012; Kok et al., 2014). Interestingly, the activity in visual 

cortices elicited by a given stimulus increases when its occurrence violates previously 

presented patterns (Kaposvari et al., 2018; Manahova et al., 2018; Meyer & Olson, 2011; 

Richter et al., 2018). This difference is thought to represent the extent of surprise – the 

mismatch between expected and actual observations. A more specific interpretation is 

prediction error (PE) signaling as proposed by predictive coding (Rao & Ballard, 1999). In this 

framework, PEs are feedforward signals carrying the difference between feedback predictions 

and sensory input (Keller & Mrsic-Flogel, 2018). 

Most studies reporting corresponding BOLD or EEG activity focused on manipulating the 

transitional probabilities of the sensory stream. However, the human inference process is 

subject to uncertainty (Hasson, 2017; O’Reilly, 2013), possibly implemented as a Bayesian 

integration of prior knowledge and current evidence (Knill & Pouget, 2004; Pouget et al., 2013). 

Consequently, Bayesian predictive coding suggests that the magnitude of PEs depends both 

on the reliability of the evidence (the consistency of patterns and the signal-to-noise ratio) and 

the precision of our predictions (the probability of a prediction among all hypotheses) (Jiang 

& Rao, 2022 but see Aitchison & Lengyel, 2017 for non-Bayesian interpretations). The latter 

can either be inferred with computational modeling or by recording participants’ subjective 

confidence in a given decision. 

Confidence ratings are usually tied to an overt or covert decision by the participant. For 

this reason, they are rarely assessed when studying the learning of temporal patterns, which 

often aims at implicit processes (Schapiro & Turk-Browne, 2015; Turk-Browne et al., 2010). 

Nevertheless, a promising line of studies combined both aspects by interjecting explicit 

predictions and confidence ratings between long blocks of visual stimulation. The authors 

found that these ratings reflect the confidence of an ideal Bayesian observer during the 
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stimulation phase (Bounmy et al., 2023, Meyniel et al., 2015; Meyniel & Dehaene, 2017). This 

suggests that subjective ratings are a reliable indicator of the underlying inference process. 

Consequently, we used confidence ratings to quantify individual levels of uncertainty during 

sequence learning. 

In the present study, we aimed to show that PE activity scales with subjective confidence, 

building on a previous study using visual streams of everyday objects (Richter et al., 2018). 

Furthermore, we addressed whether PE activity emerges as a function of increasing activity 

for surprising input (surprise enhancement) or decreasing activity for predictable input 

(expectation suppression). Evidence for the latter is inconclusive in humans with few fMRI 

studies looking into the alternative explanations (Feuerriegel et al., 2021). To address this gap, 

we included three experimental conditions regarding the visual stream: Fully predictable, fully 

unpredictable (random), and surprising. Following previous work, activity decreases for 

predictable compared to unpredictable stimulation served as evidence for expectation 

suppression (Manahova et al., 2018; Ramachandran et al., 2017).  

Results 

Confidence increases for predictable input and explains improvements in behavior 

For the visual stimulation, we used sequences of visual images comprised of five everyday 

objects in full color. Prior to the scanning session, participants completed a three-day training 

phase with 20 minutes of stimulation per day (Figure 1). This phase only included predictable 

and unpredictable sequences. After each day, we sampled the learning process with a 

sequence completion task: Participants saw incomplete sequences and had to choose the 

correct trailing object from a set of five options. Each trial was followed by a confidence rating 

prompt. We found that average confidence regarding predictable sequences increased over 

the training phase while it remained constant for unpredictable ones (Figure 2a). Objective 

accuracy in completing predictable sequences also increased over days (Figure 2b) and was 

highly correlated with confidence (r=0.8, p<0.001). For the following analyses, we used the 

average confidence rating in predictable sequences after the last training day. To ensure visual 

fixation and attentiveness during the stimulation blocks, we instructed participants to react to 

upside-down images with a button press (the cover task). Neither reaction time nor accuracy 

were significantly different between conditions (reaction time: t(41)=-1.2, p=.24; accuracy: 

t(41)=1.55, p=.13). 
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We also tested whether learning the transitional probabilities led to behavioral 

advantages. To this end, we included a short task before the MR acquisition on day four. We 

presented the participants with a target object that would occur in the following object 

sequence. Sequence presentation followed the same design as in the training phase, but 

instead of performing the cover task, participants were instructed to react to the occurrence 

of the target object. Reaction times were nearly 10% faster for predictable objects (median RT 

change=-9.93%, t(41)=-5.66, p<0.001), with a maximum gain of 48%. Confidence was a crucial 

predictor of this effect: Subjects with higher ratings after training had significantly larger gains 

in reaction time (Figure 2c). 

 

Figure 1. Experimental design. a. Creation of three types of object sequences. Predictable (P, green) and 

unpredictable (U, purple) sequences were shown during training. Surprising (S, yellow) sequences were only 
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shown during the scanning session. See methods section for details. b. Across three days, participants performed 

an online training phase. Each day, sequences were shown for a total of 20 minutes. There was no inter-stimulus 

interval and sequences were separated by a fixation cross. To ensure gaze fixation and vigilance, participants were 

instructed to press a button when upside-down objects occurred (catch trials). During the following sequence-

completion task, one to four of the leading objects were presented and the correct trailing object had to be 

selected from five options. The selection was followed by a confidence prompt. This task was not timed. Both 

predictable and unpredictable sequences were shown to keep object exposure comparable. c. Before entering 

the scanner, we tested for behavioral effects of sequence learning. Instead of reacting to upside-down images, 

participants had to detect and react to a target object which was given before each sequence. Both P and U were 

presented to quantify the gain in reaction time for predictable sequences. Finally, the scanning session followed 

the design of the learning phase with additional surprising sequences. We used a block design with four 

sequences per condition and a random condition order. There was no sequence completion test during this day. 

 

During fMRI scanning, we used a block design with surprising sequences in addition to the 

conditions from the training phase. These were based on predictable sequences from the 

learning phase but had one to three objects replaced (Figure 1a). The scanning session 

included no sequence-completion task or confidence ratings. Analysis of the cover task 

revealed that reaction times were faster in predictable than unpredictable blocks (Figure 2d). 

The same trend was present, but not significant, compared to the surprising blocks (t(41)=1.94, 

pFWE=0.18). The accuracy of reactions did not vary between conditions. Since the cover task 

was independent of the presented condition, we explored whether reaction times were 

differentially impacted by confidence levels. We calculated condition-wise correlations and 

found that high confidence in the predictable sequences was associated with quicker reaction 

times (Figure 2e). This link was not significant in the other conditions. Seeing this possibly 

confounding effect, we included reaction times in the GLMs of the following BOLD analyses. 

 

Figure 2. Training and cover task results. a. Average subject-wise confidence ratings within conditions after 
respective training days. Black markers show daily medians. b. Average percentage of correctly completed 
sequences. Unpredictable sequences could not be predicted over chance level and are not shown here. c. 
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Significant linear regression between the relative difference in reacting to predictable versus unpredictable target 
objects and average confidence ratings for predictable sequences prior to scanning (r=-0.536, p<0.001). Negative 
values on the x-axis correspond to quicker reactions for predictable objects. d. Subject-wise averages of reaction 
time in the cover task during fMRI acquisition. Dashed horizontal lines show respective medians, with a significant 
difference between the predictable and unpredictable condition (post-hoc t-test: t(41)=2.59, pFWE=0.04). Note 
that the lines for the unpredictable and surprising conditions overlap since the median is nearly the same. e. 
Condition-wise correlations between confidence ratings and reaction time in the cover task during scanning. Since 
surprising sequences were based on predictable ones during scanning, we used the corresponding confidence 
ratings. The relationship was only significant for the predictable condition (r=-0.5, pFWE=0.002). The color legend 
applies to all subfigures. 
 

Prediction errors in sensory areas and prediction activity in parietal areas 

We analyzed two contrasts with respect to the BOLD data: A PE contrast (surprising > 

predictable) and a prediction contrast (predictable > unpredictable). We adopt the 

terminology of “prediction contrast” in reference to non-error related aspects of predictive 

processing. Confidence was included as a regressor of interest and reaction time differences 

between the respective conditions as a confound regressor (Methods). First, we inspected the 

main contrasts between conditions. PE activity was present bilaterally throughout the ventral 

stream, in close correspondence to previous work using an event-based design after implicit 

statistical learning (Figure 3a, left; Richter et al., 2018). The prediction contrast did not provide 

evidence of expectation suppression, as we observed no significant negative clusters (i.e. 

predictable < unpredictable). Note that these results are based on a conservative whole-brain 

analysis. However, we found two positive clusters: A medial cluster in the posterior cingulate 

cortex and superior parietal cortex and a left lateral cluster covering parts of the superior 

parietal cortex, inferior parietal cortex and a small area of the dorsal stream (Figure 3b, left).  

Confidence explains interindividual differences in error and prediction activity 

We investigated the link between confidence and predictive processing patterns in both a 

confirmatory and an exploratory way. Since we assumed that PE activity increases with 

confidence, we regressed the subject-wise average contrast parameter estimates (COPEs) in 

the significant PE clusters on confidence ratings, controlling for reaction time differences. In 

accordance with our assumptions, we found that PE activity significantly increases with the 

participants’ confidence level (Figure 3a, right). We then performed a corresponding analysis 

for the positive clusters of the prediction contrast. If these increases indicated PE activity, 

possibly due to uncertainty in the predictable sequences by low-confidence subjects, we 

would expect a similar relationship to confidence. However, we found no evidence for such a 

link (Figure 3b, right). A corresponding Bayesian correlation analysis revealed moderate 

evidence for the null hypothesis (BF=.195). 
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For the exploratory analysis, we analyzed the confidence regressor estimates of the 

second-level GLMs across the whole brain. No significant clusters emerged for the link 

between PE activity and confidence. The uncorrected maps indicate peaks in the ventral visual 

stream, anterior insula and inferior frontal cortex bilaterally (Figure 3c). Regarding the link to 

the prediction COPEs, we found a negative cluster in the anterior cingulate cortex (ACC; Figure 

3d, left), although it did not survive FWE correction for two-sided cluster testing. Within this 

cluster, we found a strong negative association between COPEs and confidence. Interestingly, 

the corresponding regression line crosses the zero value with respect to the COPEs (Figure 3d, 

right). Descriptively, this indicates that the relative difference flips sign – for low-confidence 

participants, predictable blocks elicited higher BOLD signal compared to unpredictable blocks 

while the opposite happened for high-confidence subjects (Methods).  

Finally, the directionality of the relationship with confidence generally depended on the 

contrast: Inspecting the uncorrected parameter maps, we see that PE activity increases with 

confidence while the inverse can be seen for the prediction contrast activity (with a single 

exception in the inferior frontal cortex, Figure 3d, left).  
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Figure 3. fMRI analysis results on the voxel level (brain slices, left) and cluster level (regression plots, right). Brain 

slices show uncorrected t-values thresholded at z=2.33 (p<0.01). Clusters surviving cluster correction (cluster-

forming threshold: z=3.09, cluster threshold: pFWE=0.025) are shown in black contours. Regression plots show the 

subject-wise mean contrast parameter estimate across significant clusters and confidence ratings in predictable 

sequences after training. a. Surprising > predictable contrast. Confidence significantly explains interindividual 

differences in BOLD effects (R2
partial=.15, t(41)=2.54, p=.015). b. Corresponding results for the predictable > 

unpredictable contrast. The linear model yielded no significant results (R2
partial=.001, t(41)=-0.24, p=.82). c and d. 

Statistical maps for the confidence regressor in the respective GLMs. Brain maps indicate how strongly the BOLD 

differences between conditions vary with confidence levels. Cluster contours in d show a significant negative 

cluster (p=0.043) which did not survive FWE correction for two-sided cluster correction. Within this cluster, 

confidence explained considerable variance of the COPEs (R2
partial=.49). No test for significance was carried out 

because the ROI was based on the GLM results. 

Discussion 

In the present paper, we established a link between brain activation patterns of 

predictive processing during the presentation of temporal sequences and subjective 

confidence in knowing the underlying patterns. Importantly, confidence ratings were derived 

separately from the visual stimulation. While this approach deviates from similar work using 
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statistical learning, we replicated BOLD findings from a recent study where participants were 

kept unaware of the patterns (Richter et al., 2018). In line with our assumptions, PE activity in 

the ventral visual stream increased with confidence in knowing the (previously reliably 

predictable) object sequences. In the ACC, we found tentative evidence that the activity during 

predictable input relative to unpredictable input depended on confidence levels: For high 

confidence levels, activity for predictable input was lower. Conversely, for low confidence 

levels, unpredictable input elicited lower activity levels. These results stress the importance of 

accounting for interindividual differences in uncertainty during partly implicit predictive 

processes. 

Paradigms for learning of temporal regularities 

The human ability to extract regularities in the visual domain has been studied from 

various perspectives, leading to subtly different paradigms (Conway, 2020). These include 

statistical learning (Fiser & Aslin, 2002), sequence or sequential learning (Gheysen & Fias, 

2012), probabilistic learning (Meyniel et al., 2015) or temporal community learning (Schapiro 

et al., 2013). Instead of being fundamentally different, these approaches can be described as 

gradually varying along three axes representing the extent of exposure, structure, and 

instruction or feedback (Conway, 2020). Importantly, unifying frameworks have been 

developed, arguing that Bayesian inference models can account for most variants of acquiring 

regularities from sensory stimulation (Fiser & Lengyel, 2019; Konovalov & Krajbich, 2018). 

While the present study did not aim to resolve competing perspectives, it focused on the latter 

account. Here, we combined an extended learning phase of continuous sensory stimulation, 

using deterministic sequences and light instructions with a separate explicit performance task. 

Prediction error activity 

We first discuss the results of our main contrasts with respect to previous studies. Firstly, 

we found evidence for PE activity throughout the ventral visual stream. Similar to previous 

studies in humans, there was no evidence of expectation suppression (Feuerriegel et al., 2021). 

In our data, the process behind PE activity is thus better explained as upregulated processing 

for surprising stimuli as opposed to downregulated processing for predictable ones. However, 

we here used a whole-brain approach that is more conservative than targeted analyses of the 

visual stream.  

Our findings bear striking similarity to a previous study (Richter et al., 2018) despite 

differences in pattern length, instruction and participant awareness. This suggests that the 
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underlying neural processes are not exclusive to incidental or implicit learning. Differences 

between neuroanatomical substrates of implicit and explicit learning point to more frontal 

activations for the latter, while implicit conditions predominantly affect sensory areas 

(Gheysen & Fias, 2012). However, these systems may work in parallel, with the implicit 

processes as a prerequisite for the explicit ones (Batterink et al., 2015). Consequently, one 

might expect additional activations in higher cognitive areas for our design. While not surviving 

cluster correction, we did find corresponding clusters in the precentral gyrus and inferior 

frontal cortex bilaterally (Figure 3a). It is possible that our study is underpowered to detect 

these effects. However, our GLM contrast was not designed to detect general patterns of 

statistical learning, but specifically isolated PE processing after a multi-day training phase. 

Related to the implicit versus explicit divide, there is evidence that surprising stimuli only evoke 

higher activity when unattended (Kok et al., 2012). In contrast, our data suggests that PE 

activity persists even when participants were explicitly asked to reproduce the patterns. This 

was corroborated by reaction time data in our cover task: Reaction times were shortest for 

predictable sequences, suggesting that, even though participants were highly engaged here, 

surprising sequences still evoked a stronger signal. Of note, our study differs from previous 

work by using a block design. That means that our surprising condition represents a visual 

stream including both confirmations and violations of expectation. The subtleties of transient, 

event-based responses might thus deviate from our findings. 

Prediction activity 

Previous research on the contrast between predictable and unpredictable stimulation 

produced varied results. Stimuli predictive of other stimuli can elicit either increased activity 

(Egner et al., 2008) or decreased activity (Davis & Hasson, 2018), potentially dependent on 

task relevance (Richter & de Lange, 2019). Neuroanatomical findings partly overlap with the 

ACC being implicated irrespective of effect directionality. In our data, we found extended 

increases for predictable input focusing on the superior parietal cortex, intraparietal sulcus 

and posterior cingulate. The intraparietal sulcus has been found to increase activity in 

response to predictive stimuli (Egner et al., 2008) and is generally sensitive to the entropy of 

visual and auditory sequences (Nastase et al., 2014). Interestingly, the superior parietal sulcus 

is central to a wide range of predictive processing tasks, as shown by a recent modality- and 

task-general meta-study (Ficco et al., 2021). 
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Interpreting the effect of confidence 

Confidence ratings are often studied in the context of decisions, where they reflect the 

posterior probability of being correct, given evidence and an internal model (Pouget et al., 

2016, but see Adler & Ma, 2018 for a non-Bayesian view). However, a line of studies (Bounmy 

et al., 2023; Meyniel et al., 2015; Meyniel & Dehaene, 2017) showed that confidence ratings 

can also be used to sample the uncertainty during continuous perceptual inference. This 

suggests that confidence is an ever-present aspect of perception, which can be cast as ongoing 

inference about the correspondence of our internal model (and the associated predictions) 

with sensory input (Friston, 2010). However, while many studies explored imaging patterns of 

expectation and surprise, surprising trials were often defined by the objective deviation of a 

presented stimulus from preceding patterns (Kaposvari et al., 2018; Manahova et al., 2018; 

Meyer & Olson, 2011; Richter et al., 2018). We suggest that much of the variance in individual 

response can be explained by accounting for individual (un)certainty in the presented patterns. 

As an example in the context of simpler paradigms, presenting a sequence of nine house 

images followed by a face image might lead to varying levels of surprise if observers did not 

infer the same conditional probability of observing a tenth house image. Given more complex 

patterns, as used in our study, interindividual variability is expected to increase. While the 

underlying reasons are beyond the scope of this study, the frequent divergence of human 

inference and behavior from (Bayes-) optimal models has been discussed previously (Acerbi et 

al., 2014; Beck et al., 2012). 

Confirming our main hypothesis, PE activity in the significant clusters across the visual 

stream scaled with confidence. Previous studies investigating this link used model parameters 

derived from an ideal Bayesian observer, finding the strongest links between surprise and 

confidence outside of the visual cortex (Bounmy et al., 2023). To our knowledge, only two 

other studies explored the link between imaging indicators of PE and confidence ratings: In an 

EEG analysis of a perceptual decision task, parietal event-related potentials covaried with 

confidence ratings both during stimulus presentation and response (Boldt & Yeung, 2015). An 

fMRI study using a visual search paradigm found no evidence of PE scaling during stimulus 

presentation but did find an inverse relationship during the participants' response in the 

inferior frontal gyrus (Sherman et al., 2016). To extend our findings, we performed an 

exploratory whole-brain analysis but did not find significant clusters. However, uncorrected 

results generally indicated an increase of PE activity with confidence across the cortex. 
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We also tested whether prediction activity scaled with confidence but found no 

relationship within the clusters of the contrast between predictable and unpredictable 

sequences. Mirroring the previous analysis, we then performed a whole-brain analysis on the 

voxel level. This yielded a cluster in the ACC where nearly 50 percent of the variance was 

explained by confidence levels. The direction of this effect was opposite to the PE contrast: 

Here, contrast estimates decreased as a function of confidence. Since this cluster did not 

survive correction for multiple comparisons, the results should be interpreted with care. 

However, evidence for the role of the ACC in predictive processing and conflict processing in 

general is widespread throughout the literature (Alexander & Brown, 2019; Garrison et al., 

2013; Vanveen & Carter, 2002). Consequently, we discuss some implications of this finding in 

the following lines. Recently, the ACC has been described as part of a prefrontal network that 

anticipates PEs across cortical hierarchies (Alexander & Brown, 2018). This suggests a decrease 

in activity with increasing confidence, which has been confirmed for probabilistic learning 

tasks (Bounmy et al., 2023; Davis & Hasson, 2018). However, if the ACC is central to PE 

processing, we would expect corresponding results regarding our PE contrast. Possible 

explanations for this dissociation might lie in the hierarchical nature of predictive processing 

(Alexander & Brown, 2018): PEs in the visual stream indicate low-level mismatches without 

necessary awareness, while errors in higher cortices are subject to conscious reflection and, 

possibly, anticipation. Future studies are necessary to differentiate the modulating effect of 

confidence across the hierarchy of predictive processing. 

Lastly, the confidence parameter estimates in the ACC flipped sign at medium-to-high 

levels of confidence. This means that predictable sequences elicited higher activity than 

unpredictable ones for low confidence levels, while the opposite was true for high levels. This 

matches the pattern usually expected for expectation suppression, albeit not in a sensory area. 

Regarding low levels of confidence, this can be explained by precision weighting of expected 

errors (Yon & Frith, 2021): If participants inferred that there is a ground truth to the predictable 

sequences while not being able to accurately predict the order, PEs of high precision can be 

expected. Due to the stochastic nature of the unpredictable condition, stimuli can never be 

accurately predicted, but the precision of errors is low. Nevertheless, if the unpredictable 

condition did elicit residual error activity, it might explain the relatively higher activity for high 

confidence levels. Here, the correspondence between predictions and sensory information is 

(close to) perfect in the predictable condition, triggering little to no error anticipation or 
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processing. Finally, it is possible that even after three days of exposure, subjects still assumed 

that there is some order in randomness (Huettel et al., 2002), leading to incorrect predictions 

of comparatively high precision. Tentative evidence for this assumption can be found in the 

confidence ratings for the unpredictable condition. While these did not change during training, 

they were still far from minimal, indicating that some of the subjects did not correctly infer 

that these sequences were inherently unpredictable. 

Methods 

Participants 

We recruited 44 participants including students, doctoral researchers, clinic staff and the 

general population of Munich. The sample size was based on a-priori analysis, aiming to detect 

at least a medium effect size (d>=0.5, alpha=0.05, beta=0.9). All participants took part in a 

familiarization MRI session (20 minutes), an online training phase over three days and the main 

MRI session (70 minutes) on the day after training completion. Two participants were excluded 

from the analysis due to technical problems during data acquisition. The remaining 42 

participants (19 female, age [mean(std)] = 27.1(3.9)) were included for analysis. The study was 

approved by the ethics board of the Technical University of Munich (TUM), and we acquired 

written informed consent from all participants. 

Visual stimuli 

We selected 224 full-color images of everyday objects from a larger image set (Brady et al., 

2008). The stimuli were chosen to be maximally homogenous regarding salience, e.g., by 

excluding food items and bright colors. If not stated otherwise, all allocations of stimuli to 

subjects and conditions were random. A set of 80 images was selected for every subject, with 

half assigned to the predictable condition and the other half to the unpredictable condition. 

Experimental design 

Implementation. We used Psychopy (Peirce et al., 2019) to implement the design. The 

online training sessions were realized using pavlovia.org, where Javascript-translated Psychopy 

experiments can be run online with millisecond precision (Bridges et al., 2020; Sauter et al., 

2020). 

Main task. Participants saw sequences of five objects each, each stimulus presented for 

800ms with no inter-stimulus interval and a 1100ms fixation cross between sequences. Three 

types of sequences were presented: Predictable sequences had the same order for every 
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repetition. Unpredictable sequences were composed of randomly chosen objects from the 

subject-specific set of unpredictable images. After all unpredictable images were shown, new 

sequences were formed. Surprising sequences were based on predictable sequences but had 

one to three stimuli replaced with images from the unpredictable condition for every 

repetition. To allow for an initial prediction, the first object was never replaced. The visual 

stream was reshuffled prior to presentation based on two rules: Objects could only repeat 

after all objects in the respective condition were presented, and objects (or sequences) could 

not appear twice in a row. This was done to minimize the confounding effects of repetition 

suppression. To ensure fixation and concentration, participants were instructed to quickly 

react to occurrences of upside-down objects. These appeared with a probability of 10%, 

independent of condition. 

Training phase. Over the course of three days prior to the main scanning session, 

participants followed an online implementation of the main design. This phase only included 

predictable und unpredictable sequences. We instructed every participant to perform the 

training in a quiet environment without distractions. Stimulation blocks lasted 20 minutes per 

day, with a break of one minute after 10 minutes. Instructions were shown on screen before 

the stimulation began and the first day included a five-minute familiarization block with on-

screen feedback regarding cover-task button presses. To measure objective and subjective 

progress in sequence learning, a testing phase followed each training day. Here, participants 

saw eight incomplete sequences for both conditions. After every sequence, participants chose 

what they assumed would be the correct trailing object from five options and gave a 

confidence rating on a scale of one to seven. No feedback was given regarding performance 

and no information on the underlying conditions was disclosed. 

Imaging phase. During scanning, stimuli were presented against a grey background and 

subtended 4° of visual angle. We chose a block design with four sequences of one condition 

forming one block, with sequence order randomized. Half of the predictable and unpredictable 

objects were set aside for the generation of the surprising sequences. This ensured that every 

object was uniquely assigned to a condition. Participants saw 12 blocks per condition with a 

duration of 20.4s each, adding up to a run time of 12 minutes and 23.4 seconds. We disclosed 

no information regarding the sequence patterns and the imaging session included no 

sequence completion test. 
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MRI acquisition 

High-resolution structural scans were acquired with a T1-weighted 3D MPRAGE sequence 

(170 slices, voxel size = 1.0x1.0x1.0mm³, FOV = 250x256x170mm³, TR/TE/flip 

angle=9ms/4ms/8°). fMRI data was acquired using single-shot EPI (40 slices, voxel size = 

3.0x3.0.3.0mm3, FOV 192x192x127.8mm3, TR/TE/flip angle=1200ms/30ms/70°) with 612 

dynamic scans plus 2 dummy scans (total duration: 768 seconds). 

MRI data processing 

We preprocessed the fMRI data with fMRIPrep (Esteban, 2019) which produces an 

automated processing description that we provide in the supplement.  

Statistical analysis 

We performed whole-brain BOLD data analysis using FSL FEAT via a Python interface 

(adapted from Esteban et al. 2020). Regarding the first level analysis, we modelled the 

experimental manipulation as blocks, following their presentation timing with a length of 20.4 

seconds (four object sequences) and included the respective temporal derivatives. The 

resulting boxcar functions were convolved with a double gamma hemodynamic response 

function. We added eight motion regressors: Six translations and rotations as well as two 

measures of bulk head motion (DVARS and framewise displacement). Finally, we included the 

average global CSF and white matter signal. All regressors were taken from the fMRIPrep 

results. The data were grand mean scaled, smoothed with a 6mm³ kernel and high pass filtered 

at 120 seconds. Since we did not have a resting condition, we created two GLMs: One leaving 

the surprising blocks unmodelled (used to create the prediction contrast between the 

modelled blocks) and one leaving the unpredictable blocks unmodelled (used to create the PE 

contrast). This was done to prevent overparametrization of the design matrix which can lead 

to unstable estimates.  

Subsequent group-level analyses were run using FSL’s FLAMEO and included two 

covariates: Confidence ratings from predictable sequences (individual average after the last 

training day) and the percent change in reaction time to catch trials between the conditions 

being contrasted (individual average over all blocks). Since we acquired separate statistical 

maps from the first level analyses, we ran two corresponding analyses on the group level. This 

influences the interpretation of the covariates: The effect of confidence is now specific to the 

respective contrast (i.e. explained variance regarding the prediction contrast or PE contrast). 

Statistical maps of significant activation were obtained using FSLs cluster correction with a 
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voxel threshold of z=3.09 and a cluster threshold of p=0.05 (Woo et al., 2014). Since cluster 

correction is applied for negative and positive clusters separately, we used an FWE-corrected 

threshold of 0.025. Our interpretation of contrast parameter estimates (COPEs) rests on the 

underlying subtraction of two parameter estimates. The resulting COPE thus informs both 

about the magnitude of the difference as well as the direction (which parameter weight is 

larger). Comparisons regarding the anatomical localization were based on relative voxel 

coverage over regions in the Harvard-Oxford Cortical Probabilistic Atlas. 

All analyses on behavioral data were performed using the python package pingouin (Vallat, 

2018). In linear regressions, the partial R² values for confidence predictors were based on a 

partitioning of explained variance following Grömping (2006). 
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