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Accelerating Single-Cell Sequencing Data Analysis with SciDAP: A 

User-Friendly Approach 

Abstract 

Single-cell (sc) RNA, ATAC and Multiome sequencing became powerful tools for uncovering 

biological and disease mechanisms. Unfortunately, manual analysis of sc data presents multiple 

challenges due to large data volumes and complexity of configuration parameters. This 

complexity, as well as not being able to reproduce a computational environment, affects the 

reproducibility of analysis results. The Scientific Data Analysis Platform (https://SciDAP.com) 

allows biologists without computational expertise to analyze sequencing-based data using 

portable and reproducible pipelines written in Common Workflow Language (CWL). Our suite 

of computational pipelines addresses the most common needs in scRNA-Seq, scATAC-Seq and 

scMultiome data analysis. When executed on SciDAP, it offers a user-friendly alternative to 

manual data processing, eliminating the need for coding expertise. In this protocol, we describe 

the use of SciDAP to analyze scMultiome data. Similar approaches can be used for analysis of 

scRNA-Seq, scATAC-Seq and scVDJ-Seq datasets. 
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Introduction 

Over the last decade, single-cell (sc) sequencing data analysis has become pivotal for uncovering novel biological and disease 

mechanisms. In one of the recent studies [1], it helped to reveal the signature of tumor-reactive T cells in human ovarian cancer. 

As the approaches used in this manuscript can be applicable to other studies, the authors took pains to carefully document all the 
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steps of the analysis in a separate protocol paper [2]. However, even with the detailed methods section describing sample 

preparation and data analysis [2], one cannot guarantee reproducibility, especially when it comes to manual processing of the 

collected data. This lack of exact reproducibility can be due to several reasons, such as inconsistency of computational 

environment. Over time, the software used in the original analysis may become outdated or sometimes even deprecated. 

Replacing it with the latest available version may lead to compatibility issues and discrepancies in the analysis results. 

Additionally, manual processing requires programming skills and is prone to human error. Use of a specialized analysis 

platform such as SciDAP (https://SciDAP.com) overcomes these problems [3]. The platform not only guarantees the 

reproducibility of the computational studies, but also provides an intuitive web-based interface (

 

Fig. 1), eliminating the need for coding expertise. 
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Fig. 1 SciDAP web-based interface for adding a new analysis and viewing the experiment results. (a) Input parameters form for 

the “Single-Cell WNN Cluster Analysis” pipeline. (b) Expression of the user-provided genes on the “Genes of interest” tab. (c) 

Table with identified gene markers on the “Gene markers” tab. (d) Interactive visualization of the experiment results in built-in 

UCSC Cell Browser 

All data analysis workflows are containerized and wrapped into CWL [4] (Common Workflow 

Language) format to guarantee independence from computational environment, reproducibility 

and portability. Therefore, exactly the same software version is run no matter how much time has 

passed since the original analysis had been developed. This is particularly important for ongoing, 

long-term studies, where the new datasets should be analyzed in exactly the same manner as the 

previous ones. Altogether, SciDAP helps biologist focus on the biological questions relevant to 

their study rather than spending time on software installation and configuration problems. When 

it comes to the analysis of sc sequencing data, with its complexity and abundance of 
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configuration parameters, the advantages of using a platform with a convenient user interface 

and standardized workflows become more apparent. Therefore, we have developed multiple 

pipelines (Table 1) to address the most common needs in sc data analysis, all of which are now 

available in SciDAP. To illustrate the benefits of using these pipelines over manual processing, 

we will reanalyze scMultiome sequencing data from the abovementioned study [1]. 

Table 1 – Workflows for single-cell sequencing data analysis available on SciDAP 

# Workflow Description 
1 Cell Ranger Reference 

(RNA, ATAC, 

RNA+ATAC) 

Builds a reference genome of a selected species for quantifying gene expression 

and chromatin accessibility. The results of this workflow are used in all “Cell 

Ranger Count” and “Cell Ranger Aggregate” pipelines. 

2 Cell Ranger Reference 

(VDJ) 

Builds a reference genome of a selected species for V(D)J contig assembly and 

clonotype calling. The results of this workflow are used in the “Cell Ranger Count 

(RNA+VDJ)” pipeline. 

3 Cell Ranger Count 

(RNA) 

Quantifies single-cell gene expression of the sequencing data from a single 10x 

Genomics library. The results of this workflow are used in either the “Single-Cell 

RNA-Seq Filtering Analysis” or “Cell Ranger Aggregate (RNA, RNA+VDJ)” 

pipeline. 

4 Cell Ranger Count 

(ATAC) 

Quantifies single-cell chromatin accessibility of the sequencing data from a single 

10x Genomics library. The results of this workflow are used in either the “Single-

Cell ATAC-Seq Filtering Analysis” or “Cell Ranger Aggregate (ATAC)” 

pipeline. 

5 Cell Ranger Count 

(RNA+ATAC) 

Quantifies single-cell gene expression and chromatin accessibility of the 

sequencing data from a single 10x Genomics library in a combined manner. The 

results of this workflow are used in either the “Single-Cell Multiome ATAC-Seq 
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and RNA-Seq Filtering Analysis” or “Cell Ranger Aggregate (RNA+ATAC)” 

pipeline. 

6 Cell Ranger Count 

(RNA+VDJ) 

Quantifies single-cell gene expression and performs V(D)J contig assembly and 

clonotype calling of the sequencing data from a single 10x Genomics library in a 

combined manner. The results of this workflow are used in the “Single-Cell RNA-

Seq Filtering Analysis”, “Single-Cell Immune Profiling Analysis”, or “Cell 

Ranger Aggregate (RNA, RNA+VDJ)” pipeline. 

7 Cell Ranger Aggregate 

(RNA, RNA+VDJ) 

Combines outputs from multiple runs of either the “Cell Ranger Count (RNA)” or 

“Cell Ranger Count (RNA+VDJ)” pipeline. The results of this workflow are used 

in the “Single-Cell RNA-Seq Filtering Analysis” and “Single-Cell Immune 

Profiling Analysis” pipelines. 

8 Cell Ranger Aggregate 

(ATAC) 

Combines outputs from multiple runs of the “Cell Ranger Count (ATAC)” 

pipeline. The results of this workflow are used in the “Single-Cell ATAC-Seq 

Filtering Analysis” pipeline. 

9 Cell Ranger Aggregate 

(RNA+ATAC) 

Combines outputs from multiple runs of the “Cell Ranger Count (RNA+ATAC)” 

pipeline. The results of this workflow are used in the “Single-Cell Multiome 

ATAC-Seq and RNA-Seq Filtering Analysis” pipeline. 

10 Single-Cell RNA-Seq 

Filtering Analysis 

Removes low-quality cells from the outputs of the “Cell Ranger Count (RNA)”, 

“Cell Ranger Count (RNA+VDJ)”, and “Cell Ranger Aggregate (RNA, 

RNA+VDJ)” pipelines. The results of this workflow are used in the “Single-Cell 

RNA-Seq Dimensionality Reduction Analysis” pipeline. 

11 Single-Cell ATAC-Seq 

Filtering Analysis 

Removes low-quality cells from the outputs of either the “Cell Ranger Count 

(ATAC)” or “Cell Ranger Aggregate (ATAC)” pipeline. The results of this 

workflow are used in the “Single-Cell ATAC-Seq Dimensionality Reduction 

Analysis” pipeline. 
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12 Single-Cell Multiome 

ATAC-Seq and RNA-

Seq Filtering Analysis 

Removes low-quality cells from the outputs of the “Cell Ranger Count 

(RNA+ATAC)” and “Cell Ranger Aggregate (RNA+ATAC)” pipelines. The 

results of this workflow are used in the “Single-Cell RNA-Seq Dimensionality 

Reduction Analysis” and “Single-Cell ATAC-Seq Dimensionality Reduction 

Analysis” pipelines. 

13 Single-Cell RNA-Seq 

Dimensionality 

Reduction Analysis 

Removes noise and confounding sources of variation by reducing dimensionality 

of gene expression data from the outputs of the “Single-Cell RNA-Seq Filtering 

Analysis” or “Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis” 

pipeline. The results of this workflow are used in the “Single-Cell RNA-Seq 

Cluster Analysis” pipeline. 

14 Single-Cell ATAC-Seq 

Dimensionality 

Reduction Analysis 

Removes noise and confounding sources of variation by reducing dimensionality 

of chromatin accessibility data from the outputs of either the “Single-Cell ATAC-

Seq Filtering Analysis” or “Single-Cell Multiome ATAC-Seq and RNA-Seq 

Filtering Analysis” pipeline. The results of this workflow are used in the “Single-

Cell ATAC-Seq Cluster Analysis” pipeline. 

15 Single-Cell RNA-Seq 

Cluster Analysis 

Clusters cells by similarity of gene expression data from the outputs of the 

“Single-Cell RNA-Seq Dimensionality Reduction Analysis” pipeline. The results 

of this workflow are used in the “Single-Cell Manual Cell Type Assignment”,  

“Single-Cell RNA-Seq Differential Expression Analysis”, “Single-Cell RNA-Seq 

Trajectory Analysis”, and “Single-Cell Differential Abundance Analysis” 

pipelines. 

16 Single-Cell ATAC-Seq 

Cluster Analysis 

Clusters cells by similarity of chromatin accessibility data from the outputs of the 

“Single-Cell ATAC-Seq Dimensionality Reduction Analysis” pipeline. The 

results of this workflow are used in the “Single-Cell Manual Cell Type 

Assignment”, “Single-Cell ATAC-Seq Differential Accessibility Analysis”, and 

“Single-Cell ATAC-Seq Genome Coverage” pipelines. 
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17 Single-Cell WNN 

Cluster Analysis 

Clusters cells by similarity on the basis of both gene expression and chromatin 

accessibility data from the outputs of the “Single-Cell RNA-Seq Dimensionality 

Reduction Analysis” and “Single-Cell ATAC-Seq Dimensionality Reduction 

Analysis” pipelines run sequentially. The results of this workflow are used in the 

“Single-Cell Manual Cell Type Assignment”, “Single-Cell RNA-Seq Differential 

Expression Analysis”, “Single-Cell RNA-Seq Trajectory Analysis”, “Single-Cell 

Differential Abundance Analysis”,  “Single-Cell ATAC-Seq Differential 

Accessibility Analysis”, and “Single-Cell ATAC-Seq Genome Coverage” 

pipelines. 

18 Single-Cell Manual Cell 

Type Assignment 

Assigns identities to cells clustered with any of the “Single-Cell Cluster Analysis” 

pipelines. For “Single-Cell RNA-Seq Cluster Analysis” the results of this 

workflow are used in the “Single-Cell RNA-Seq Differential Expression 

Analysis”, “Single-Cell RNA-Seq Trajectory Analysis”, and—when combined 

with outputs from the “Cell Ranger Count (RNA+VDJ)” or “Cell Ranger 

Aggregate (RNA, RNA+VDJ)” workflow—in the “Single-Cell Immune Profiling 

Analysis” pipeline. For “Single-Cell ATAC-Seq Cluster Analysis”, the results of 

this workflow are used in the “Single-Cell ATAC-Seq Differential Accessibility 

Analysis” and “Single-Cell ATAC-Seq Genome Coverage” pipelines. For 

“Single-Cell WNN Cluster Analysis”, the results of this workflow are used in all 

of the above, except the “Single-Cell Immune Profiling Analysis” pipeline. 

19 Single-Cell RNA-Seq 

Differential Expression 

Analysis 

Identifies differentially expressed genes between any two groups of cells, 

optionally aggregating gene expression data from single-cell to pseudobulk form. 

20 Single-Cell ATAC-Seq 

Differential 

Accessibility Analysis 

Identifies differentially accessible regions between any two groups of cells, 

optionally aggregating chromatin accessibility data from single-cell to pseudobulk 

form. 
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21 Single-Cell RNA-Seq 

Trajectory Analysis 

Infers developmental trajectories and pseudotime from cells clustered by 

similarity of gene expression data. 

22 Single-Cell ATAC-Seq 

Genome Coverage 

Generates genome coverage tracks from chromatin accessibility data of selected 

cells. 

23 Single-Cell Differential 

Abundance Analysis 

Compares the composition of cell types between two tested conditions. 

24 Single-Cell Immune 

Profiling Analysis 

Estimates clonotype diversity and dynamics from V(D)J sequencing data 

assembled into contigs. 

25 FASTQ Download Assists in downloading problematic single-cell sequencing data from NCBI SRA 

(National Center for Biotechnology Information Sequence Read Archive) 

repository. 

 

Materials 

For running sc sequencing data analyses on SciDAP, an active subscription or trial are required. 

Alternatively, the same open-source CWL pipelines, available from our GitHub repository [5], 

can be manually executed as command line tools by more experienced users for testing and 

developing purposes. To manually run our CWL pipelines a user will need Docker [6] and CWL-

Airflow [7] or other CWL workflow runner installed. Minimum hardware requirements to 

manually execute all described data analysis steps sequentially: 128GB of RAM, 8 CPU, 4TB of 

storage. The source code for all our sc data analysis pipelines is written in R [8], containerized 

and wrapped in CWL format. Pipelines utilize the following R packages: Seurat [9], Signac [10], 

Harmony [11], scRepertoire [12], DESeq2 [13], Limma [14], Hopach [15], DAseq [16], 

Slingshot [17], EnhancedVolcano [18], ComplexHeatmap [19], Glimma [20], Circlize [21], 
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DittoSeq [22], Nebulosa [23], scDblFinder [24], and Dynverse [25], as well as some Python 

packages, such as UCSC Cell Browser [26], MAnorm2 [27], and MACS2 [28]. Raw read 

alignment and cell calling is performed with 10x Genomics Cell Ranger 7.0.0 [29], Cell Ranger 

ATAC 2.1.0 [30], and Cell Ranger ARC 2.0.2 [31]. 

Video guides for using SciDAP for analysis of various data types are available on SciDAP 

Youtube channel: https://www.youtube.com/@scidapscientificdataanalys8786  

Methods 

Overview 

The analysis of sc sequencing data includes several stages and can be roughly divided into 

preprocessing that assigns reads to cells and genes or peaks, low-quality cell removal, 

dimensionality reduction, clustering, and cell annotation steps [32, 33]. Each of these can be 

accomplished by running one or several pipelines designed for a specific sequencing data type 

(scRNA-Seq, scATAC-Seq or scMultiome). Most of our workflows are intended to be run 

sequentially, reusing the outputs of the previous step (Fig. 2). 

 

Fig. 2 Workflow selection guide for analysis of scRNA-Seq, scATAC-Seq, or scMultiome data. Each hexagon labeled with “W” 

represents a workflow from Table 1. It can only be run when the upstream pipeline (the preceding hexagon linked by the arrow) 
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has successfully completed. The color indicates the sequencing data type a pipeline can process. The W19-22 workflows can be 

run in parallel because they do not depend on each other. The workflow execution order begins with one of the hexagons labeled 

with “D” (representing input data) and progresses to adjacent hexagons following the arrows. A typical analysis of scMultiome 

data from multiple datasets begins with D1 and includes the W5→W9→W12→W13→W15→W14→W16→W17 and, optionally, 

W19-W22 steps. 

Every pipeline produces interactive visualizations, tables, and publication-ready plots. 

Additionally, Seurat objects in the form R data files (.rds) are available for further analysis if 

needed. For scMultiome, the preprocessing step will include building the reference genome of a 

selected species, quantifying gene expression and chromatin accessibility (modalities) of the 

sequencing data from each of the datasets and merging the obtained results into a single feature-

barcode matrix. The latter will include RNA reads per gene and ATAC fragments per peak 

counts for all cells found in the merged datasets. The next step is to identify and remove low-

quality cells by jointly applying filtering thresholds to QC (quality control) metrics calculated for 

each modality. For scMultiome data, the main QC metrics include RNA reads, ATAC fragments, 

and genes per cell counts, percentage of RNA reads mapped to mitochondrial genes, TSS 

(Transcription Start Site) enrichment score, FRiP (Fraction of Reads in Peaks), nucleosome 

signal, and the fraction of ATAC fragments in genomic blacklist regions. Unlike low-quality cell 

removal, the dimensionality reduction of gene expression and chromatin accessibility data is 

performed independently by two different pipelines run sequentially. These steps normalize and 

integrate different experiments to ensure that similar cells from different samples cluster 

together. Each of these workflows also removes noise and possible confounding sources of 

variation by reducing the dimensionality in the selected modality. The next step is to cluster cells 

by similarity based on either gene expression or chromatin accessibility or both using WNN [34] 

(Weighted Nearest Neighbor) analysis. Resulting clusters usually recapitulate cell types or cell 
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differentiation stages that can be annotated in a separate pipeline if needed. The detailed 

description of scMultiome data analysis in SciDAP is outlined below. 

1 Creating a Project in SciDAP 

In SciDAP, data analysis is organized into projects that contain both the data and the pipelines 

used to analyze them. After logging into SciDAP, click the “New project” button. On the left 

side of the window, select the “Overview” tab, and enter a title for the new project (e.g., 

“PRJNA793128”). You can optionally provide a subtitle and a description. On the right side of 

the window, go to the “Global” tab, and add the pipelines that we will use in this analysis by 

checking the boxes for the following workflows: 

- FASTQ Download (optional, not needed if fastq files are already available) 

- Cell Ranger Reference (RNA, ATAC, RNA+ATAC) 

- Cell Ranger Count (RNA+ATAC) 

- Cell Ranger Aggregate (RNA+ATAC) 

- Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis 

- Single-Cell RNA-Seq Dimensionality Reduction Analysis 

- Single-Cell ATAC-Seq Dimensionality Reduction Analysis 

- Single-Cell RNA-Seq Cluster Analysis 

- Single-Cell ATAC-Seq Cluster Analysis 

- Single-Cell WNN Cluster Analysis 

- Single-Cell Manual Cell Type Assignment 

When done, click on “Save project”. If only scRNA-Seq or scATAC-Seq data are present, refer 

to Table 1 and Fig. 2 for selecting the proper workflows. For scRNA-Seq, begin with the D2 step 

and progress to the W3→W7→W10→W13→W15 steps, optionally including the W19, W21 
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and W23 pipelines. For scATAC-Seq, start from the D3 step and proceed to the 

W4→W8→W11→W14→W16 steps, optionally including the W20 and W22 pipelines. 

2 Data Preprocessing 

2.1 Downloading Single-Cell Sequencing Data 

scMultiome analysis combines both gene expression and chromatin accessibility sequencing 

data; thus, it requires a minimum of five input FASTQ files per experiment. scRNA-Seq data are 

sequenced as paired-end, where R1 (at least 28 bases) contains a cell barcode and UMI (Unique 

Molecular Identifier) and R2 (at least 90 bases) is the cDNA sequence. The I1 and I2 (i7 and i5 

indexes, respectively) files are used only for demultiplexing and are not needed for analysis. For 

scATAC-Seq, the i7 index file (I1) is not needed, but the i5 index file (I2, sometimes called R2, 

at least 24 bases) is required because it carries cell barcodes. The remaining two FASTQ files 

from scATAC-Seq (R1 and R2, sometimes called R1 and R3, at least 50 bases are 

recommended) contain DNA sequences of the Tn5 integration sites. For published studies, raw 

FASTQ files from scMultiome experiments are usually deposited to NCBI SRA (National Center 

for Biotechnology Information Sequence Read Archive) repository under two different SRR 

accession numbers for scRNA-Seq and scATAC-Seq data, respectively. Unfortunately, 

downloading raw FASTQ files from NCBI SRA is unnecessarily complicated because NCBI 

failed to establish and enforce a uniform way of storing the sc data, thus making programmatic 

access difficult [3]. Therefore, we recommend using the “FASTQ Download” pipeline described 

below. It can be omitted if FASTQ files are already available. The process of downloading sc 

FASTQ files for our example study is described below. 
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For each scMultiome experiment in Table 2, add two new samples (one with the accession 

number from the “RNA SRR” column, another from the “ATAC SRR” column) using the 

“FASTQ Download” pipeline. 

Table 2 – Sample metadata and SRR accession numbers 

Experiment name Patient Condition RNA SRR ATAC SRR 
P_012320M_TRM P_012320M TRM SRR17381636 SRR17381635 

P_012320M_ReCir ReCir SRR17381634 SRR17381633 

P_100809M_TRM P_100809M TRM SRR17381632 SRR17381631 

P_100809M_ReCir ReCir SRR17381630 SRR17381629 

P_042718M_TRM P_042718M TRM SRR17381628 SRR17381627 

P_042718M_ReCir ReCir SRR17381626 SRR17381625 

P_041218M_TRM P_041218M TRM SRR17381624 SRR17381623 

P_041218M_ReCir ReCir SRR17381622 SRR17381621 

 

To do this, in your project, click “Add sample”, and select “FASTQ Download” workflow from 

the dropdown menu at the top of the window. For “RNA SRR”, set the title for the new sample 

by copying it from the “Experiment name” column and adding the “Downloading RNA” prefix. 

For the “Comma or space separated list of SRR Identifiers” input, use the value from the “RNA 

SRR” column. Select “Split into all available files” from the “Split reads by” dropdown menu. 

Click on “Save sample”. Repeat a similar process for the accession number from the “ATAC 

SRR” column using the “Downloading ATAC” prefix in the sample’s title. Multiple samples can 

be added simultaneously. Downloaded FASTQ files are available in the “Files” tab of each 

sample that finished running successfully. An example of the outputs from the “Downloading 

ATAC P_041218M_ReCir” sample is shown in Fig. 3. 
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Fig. 3 SciDAP web-based interface for accessing FASTQ files downloaded from the NCBI SRA repository by the “FASTQ 

Download” pipeline. When run with the “Split into all available files” parameter, the workflow will download and extract both 

technical and biological reads on the basis of the provided SRR accession number. The link address for files can be copied here 

for use in a later step. 

2.2 Building a Reference Genome 

Building genome indices is a required step before proceeding to gene expression and chromatin 

accessibility quantification, as the raw sequencing reads from the downloaded FASTQ files will 

be aligned to the reference genome using these indices. To do this, navigate to the “Sample” tab 

within the “PRJNA793128” project, click on “Add sample”, and choose the “Cell Ranger 

Reference (RNA, ATAC, RNA+ATAC)” workflow from the dropdown menu at the top of the 

window. In the form below, provide the title “Homo sapiens (hg38)” for a new experiment and 

set “Genome type” to “Homo sapiens (hg38)”. When done, click on “Save sample”. Wait for the 

experiment to finish running. If the same reference genome has been already built in another 

Downloading ATAC P_041218M_ReCir

Download link address
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project, it can be shared with the current one. To share an already built reference genome a 

current project: 

1. Navigate to the project with the existing reference genome sample.  

2. Click on “Edit samples”. 

3. Check the box near the sample with the reference genome. 

4. From the dropdown menu below “Add sample” button, select the project with which to 

share the reference genome. 

5. Click “Link samples”. 

6. Click “Stop edit”. 

2.3 Quantifying Single-Cell Gene Expression and Chromatin Accessibility 

The next step is to quantify gene expression and chromatin accessibility for each cell. To do this, 

add a new sample using the “Cell Ranger Count (RNA+ATAC)” pipeline for each scMultiome 

experiment in Table 2 by following the instructions below. 

1. Navigate to the “Sample” tab within the “PRJNA793128” project. 

2. Open the “Downloading RNA [Experiment name]” sample for the current experiment. 

3. In the “Files” tab, right click and copy the link addresses of the “fastq_files_2.gz” and 

“fastq_files_3.gz” outputs to be used for the “RNA FASTQ, Read 1” and “RNA FASTQ, 

Read 2” workflow inputs, respectively. The files can be identified by read length shown 

on the overview tab. 

4. Navigate to the “Sample” tab within the “PRJNA793128” project. 

5. Enter the “Downloading ATAC [Experiment name]” sample for the current experiment. 

6. Copy the link addresses of the “fastq_files_2.gz”, “fastq_files_3.gz”, and 

“fastq_files_4.gz” outputs from the “Files” tab to be used for the “ATAC FASTQ, Read 
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1”, “ATAC FASTQ, Read 2”, and “ATAC FASTQ, Read 3” workflow inputs, 

respectively (Fig. 3). 

7. Navigate to the “Sample” tab within the “PRJNA793128” project, and click on “Add 

sample”. 

8. Select “Cell Ranger Count (RNA+ATAC)” workflow from the dropdown menu at the top 

of the window. 

9. Provide a title for a new sample e.g. from the “Experiment name” column of Table 2. 

10. Set the “Cell Ranger Reference Sample” to “Homo sapiens (hg38)”. 

11. Attach all previously copied links to the appropriate workflow inputs by clicking on the 

“Use File Manager” button, selecting the “Attach From URL” tab, pasting a link into the 

designated field and clicking on the “Attach” button (Fig. 4b). 

a. Alternatively, pre-downloaded FASTQ files can be uploaded to the “Current 

Sample” directory through the “File Manager” tab (Fig. 4a). 

12. After all FASTQ files are attached to the respective inputs, click on “Save sample”. 

Multiple samples can be added simultaneously. Wait for all experiments to finish running. 

 

Fig. 4 SciDAP web-based interface for file upload. (a) The “File Manager” tab for uploading local files to the platform. (b) The 

“Attach From URL” tab for adding a link address for a file to be uploaded to the platform. 

a b
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2.4 Aggregating Outputs from Multiple Runs of the “Cell Ranger Count (RNA+ATAC)” 

Pipeline 

To analyze cells from multiple datasets jointly, the results from all scMultiome experiments 

should be aggregated into a single feature-barcode matrix. To do this, navigate to the “Analysis” 

tab within the “PRJNA793128” project, click on “Add Analysis”, and choose the “Cell Ranger 

Aggregate (RNA+ATAC)” workflow from the dropdown menu at the top of the window. In the 

form below, provide a title “All samples aggregated” for the new analysis. Check the boxes next 

to all available samples in the “Cell Ranger RNA+ATAC Sample” dropdown menu. Before 

clicking on “Save sample”, switch to the “Advanced” tab and ensure that the “Library depth 

normalization” is set to “none” to prevent subsampling the reads to the smallest dataset. This 

subsampling may be useful for viewing the results with 10x Genomics Loupe Browser. 

However, subsampling leads to data loss. Instead, normalization and scaling will be performed 

independently in scRNA-Seq and scATAC-Seq dimensionality reduction steps. Wait for the 

aggregation step to finish running. 

3 QC Analysis and Low-Quality Cell Removal 

3.1 Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis 

Removing low-quality cells is a crucial step in ensuring the accuracy and correct interpretation of 

scMultiome data analysis results. Filtering thresholds applied to multiple QC metrics help in 

selecting only high-quality cells. The thresholds proposed here are a good starting point and can 

be adjusted using the results of this analysis. When adjusting filtering thresholds, consider their 

joint effect, as some of the QC metrics correlate to each other. The easiest approach in this case 

is to examine distribution plots of the basic QC metrics and remove outlier peaks [35]. However, 

datasets containing heterogeneous cells may result in multiple peaks; therefore, select filtering 
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thresholds to be as permissive as possible to avoid excluding viable cells. It is good practice to 

rerun the filtering step with updated parameters if clustering results show a strong batch effect 

related to any of the QC metrics. The filtering step can also be used for subsetting the data to 

selected cells for sub-clustering in the later steps by providing the list of cell barcodes. To 

remove low-quality cells in SciDAP, follow the instructions below. 

1. Create a metadata table that will be used to group samples. 

a. Navigate to the “Analysis” tab within the “PRJNA793128” project. 

b. Enter the “All samples aggregated” experiment and download the 

“grouping_data.tsv” file from the “Files” tab. This file is a convenient template 

for the metadata table. 

c. Open the downloaded file in a text editor, and edit the “condition” column to 

correspond to the values from the “Condition” column in Table 2. Ensure, that the 

order and number of rows in the edited file remain unchanged. These metadata 

(Table 3) will be used for highlighting cells on UMAP plots and differential 

analysis later. Additional metadata can be added at the later steps. 

2. Navigate to the “Analysis” tab within the “PRJNA793128” project, click on “Add 

analysis”, and choose the “Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering 

Analysis” workflow from the dropdown menu at the top of the window. 

3. Provide the analysis name, e.g., “Step 1. Filtering”. 

4. Select “All samples aggregated” from the dropdown menu below the “Cell Ranger 

RNA+ATAC Sample” label. 
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5. Click on “Use File Manager” under the “Datasets grouping (optional)” input, switch to 

the “File Manager” tab, enter the “Current Sample” directory, and upload previously 

prepared “grouping_data.tsv” file (Fig. 4a). 

6. Select the uploaded file from the list, and click on the “Attach” button. 

7. Switch to the “Advanced” tab and select “Based on either RNA or ATAC” in the 

“Doublets removal” dropdown menu. scDblFinder [24] will be used for doublet removal. 

This option is the strictest and will remove cells identified as doublets by either gene 

expression or chromatin accessibility data. 

8. Update the “Minimum number of RNA reads per cell” and “Minimum number of genes 

per cell” inputs with 1000 and 500, respectively. 

9. Set “Maximum mitochondrial percentage per cell” to 20%. This value is recommended 

for human cells [32]. Use 5% as a starting point for mouse cells. 

10. Click on “Save sample”, and wait for the experiment to finish running. 

Table 3 – An example of the metadata file for splitting datasets into groups by the “condition” column 

library_id condition 
P_012320M_TRM TRM 

P_012320M_ReCir ReCir 

P_100809M_TRM TRM 

P_100809M_ReCir ReCir 

P_042718M_TRM TRM 

P_042718M_ReCir ReCir 

P_041218M_TRM TRM 

P_041218M_ReCir ReCir 
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Refer to Note 1 for a detailed description and default values of other configuration parameters. 

To access the analysis results enter the “Step 1. Filtering” experiment in the “Analysis” tab. 

Choose the “Raw” or “Filtered” tab to view QC metrics plots before and after removing low-

quality cells, respectively. For interactive exploration of the experiment results, select the 

“Overview” tab, and click on “UCSC Cell Browser”. All output files are also accessible for 

download on the “Files” tab. An example of the main QC metrics for a single dataset 

(P_100809M_ReCir) is shown in Fig. 5. After reviewing the results, the user may want to change 

some of the filtering parameters. To do so, the user can click on the “Edit” button within the 

sample, change the parameters and click on “Save sample” to re-run the filtering step. 
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Fig. 5 Assessing main QC metrics to remove low-quality cells from the P_100809M_ReCir dataset. (a) Include cells that have at 

least 1,000 ATAC fragments and 1,000 RNA reads per cell. Cells with a high fraction of mitochondrial reads (more than 20%) 

are discarded. (b) Include cells with a TSS enrichment score higher than 2. (c) Filter out cells with less than 500 or more than 

5,000 genes, and exclude cells identified as doublets by either scRNA-Seq or scATAC-Seq data (marked with black crosses). (d) 

ATAC fragment length distribution for cells with a nucleosome signal below 4 (indicates high enrichment of fragments from 
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nucleosome-free regions compared to the fragments with mono- and multi-nucleosomal lengths) (e) Density plots for evaluating 

main QC metrics and selected thresholds. The majority of viable cells (highest peaks) are not discarded. 

4 Datasets Integration and Clustering 

4.1 Single-Cell RNA-Seq Dimensionality Reduction Analysis 

Not all of the genes are equally informative when it comes to grouping cells by their gene 

expression profiles. Moreover, high-dimensional sc data often contain noise and are prone to 

confounding sources of variation. Therefore, to capture the biologically meaningful signal, sc 

gene expression data usually undergo normalization, scaling, dimensionality reduction and, in 

case of multiple datasets merged together, integration procedures. In SciDAP, all these tasks can 

be performed by following the instructions below. 

1. Create a metadata table that will be used to group samples. 

a. Navigate to the “Analysis” tab within the “PRJNA793128” project. 

b. Enter the “Step 1. Filtering” experiment and download the 

“datasets_metadata.tsv” file from the “Files” tab. 

c. Open the downloaded file in a text editor and fill the “custom_patient” column 

with values from the “Patient” column in Table 2. Ensure, that the order and 

number of rows in the edited file remain unchanged. These metadata (Table 4) are 

used for assigning the datasets to groups for batch correction with Harmony. 

2. Navigate to the “Analysis” tab within the “PRJNA793128” project, click on “Add 

analysis” and choose the “Single-Cell RNA-Seq Dimensionality Reduction Analysis” 

workflow from the dropdown menu at the top of the window. 

3. Provide the analysis name “Step 2. RNA Dimensionality Reduction”. 
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4. Select “Step 1. Filtering” from the dropdown menu below the “Single-cell Analysis with 

Filtered RNA-Seq Datasets” label. 

5. Select “harmony” in the “Integration method” dropdown menu and update the “Batch 

correction (harmony)” input with “custom_patient” value. This will remove patient-

specific effects. 

6. Set “Cell cycle gene set” to “human”. 

7. Click on “Use File Manager” under the “Datasets metadata (optional)” input, switch to 

the “File Manager” tab, enter the “Current Sample” directory and upload the previously 

prepared “datasets_metadata.tsv” file (Fig. 4a). 

8. Select the uploaded file from the list, and click on the “Attach” button. 

9. Click on “Save sample”, and wait for the experiment to finish running. 

Table 4 – An example of the metadata file for  dataset grouping 

library_id custom_patient 
A P_012320M_TRM P_012320M 

B P_012320M_ReCir P_012320M 

C P_100809M_TRM P_100809M 

D P_100809M_ReCir P_100809M 

E P_042718M_TRM P_042718M 

F P_042718M_ReCir P_042718M 

G P_041218M_TRM P_041218M 

H P_041218M_ReCir P_041218M 

 

Refer to Note 2 for a detailed description and default values of other configuration parameters. 

To access the analysis results enter the “Step 2. RNA Dimensionality Reduction” experiment in 

the “Analysis” tab. An elbow plot and other QC metrics, useful for quantifying datasets 
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dimensionality and identifying potential confounding sources of variation, are shown on the 

“QC” tab. The quality of dataset integration can be evaluated through the plots available on the 

“Per dataset” and “Per group” tabs. For interactive exploration of the experiment results, select 

the “Overview” tab, and click on “UCSC Cell Browser”. All output files are also accessible for 

download on the “Files” tab. An example of 8 experiments integrated with Harmony is shown in 

Fig. 6. 

 

Fig. 6 Evaluating the results of integrating scRNA-Seq data from 8 experiments. (a) The RNA UMAP plot from all datasets 

merged without integration. Cells from different patients form separate groups, which indicates the necessity of batch correction. 

(b, c) The RNA UMAP plots from the same datasets integrated with Harmony. The influence of the “custom_patient” covariate is 

removed, while preserving the expected distinction between TRM and recirculating CD8+ T cells. 

4.2 Single-Cell RNA-Seq Cluster Analysis 

The heterogeneity of sc gene expression data can be explored by clustering cells in the 

dimensionally reduced space. Resulting clusters usually resemble cell types or cell differentiation 

stages, each of which has a distinct set of gene markers (genes upregulated in the current cluster 

compared to all other cells). To run clustering analysis in SciDAP, follow the instructions below. 

1. Navigate to the “Analysis” tab within the “PRJNA793128” project, click “Add analysis”, 

and select the “Single-Cell RNA-Seq Cluster Analysis” workflow.  

2. Provide the analysis name “Step 3. RNA Clustering”. 

P_012320M P_041218M P_100809M P_042718M
Patient

ReCir TRM
Condition

a b c
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3. Select “Step 2. RNA Dimensionality Reduction” from the dropdown menu below the 

“Single-cell Analysis with PCA Transformed RNA-Seq Datasets” label. 

4. Update the “Clustering resolution” input with 0.5. 

5. Copy the following genes into the “Genes of interest” input: “SELL, LEF1, CD28, CD27, 

CCR7, IL7R, CXCR5, TCF7, BACH2, JUNB, EGR1, KLF2, GZMK, GZMH, GZMB, 

PRF1, GNLY, IFNG, FASLG, FGFBP2, TOP2A, MKI67, CDK1, STMN1, DNMT1, 

MCM7, PDCD1, TIGIT, HAVCR2, LAG3, CTLA4, CD74, MIR155HG, CXCL13, 

LAYN, MYO7A, HLA-DRB1, HLA-DQA1, TOX, TOX2, BATF, ETV1, ID2, ZNF683, 

RBPJ, TBX21, RUNX1, RUNX3, RUNX2, EZH2”. This list does not affect the 

clustering but will be used to create several plots showing expression of these genes (e.g., 

Fig. 7b). 

6. Click on “Save sample” button, and wait for the analysis to finish running. 

Refer to Note 3 for a detailed description and the default values of other configuration 

parameters. To access the analysis results enter the “Step 3. RNA Clustering” experiment in the 

“Analysis” tab. The RNA UMAP plot with identified clusters, as well as a silhouette score plot 

[36], used for evaluating the quality of clustering results, can be viewed on the “Per cluster” tab. 

The composition of each cluster categorized by dataset or grouping condition are shown on the 

“Per dataset” or “Per group” tabs, respectively. The expression of the user-provided genes can be 

explored through the plots available on the “Genes of interest” tab, while all gene markers are 

presented on the “Heatmap” and “Gene markers” tabs. For interactive exploration of the 

experiment results, select the “Overview” tab, and click on “UCSC Cell Browser”. All output 

files are also accessible for download on the “Files” tab. An example of clustering results is 

shown in Fig. 7. 
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Fig. 7 Clustering results of integrated with Harmony scRNA-Seq data from 8 datasets. (a) RNA UMAP plot with identified 13 

clusters. (b) The dot plot showing the average gene expression and the percentage of cells per cluster for genes split into 4 

categories (Stem, Effector, Proliferated [Prolifer.], Exhausted). 

4.3 Single-Cell ATAC-Seq Dimensionality Reduction Analysis 

The feature-barcode matrix constructed from sc chromatin accessibility data shows number of 

reads per peak in each cell. Peaks can be called by Cell Ranger ARC 2.0.2 [31] based on pseudo-
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bulk of all cells or by MACS2 [28] separately for each cluster. To replace 10x peaks with the 

new ones, rerun “Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis” step with 

the “Cell grouping for MACS2 peak calling” parameter set to the sc metadata column where the 

clusters are defined. Compared to scRNA-Seq, scATAC-Seq data are even more sparse because 

there are more open regions than genes. Moreover, each cell contains only 2 copies of DNA 

compared to multiple copies of mRNA. Representation of scATAC-Seq data in the 

dimensionally reduced space is often impacted by the sequencing depth; therefore, the first 

dimension (which is often highly correlated with the number of ATAC fragment counts in cell) 

is usually excluded from the analysis. Unlike scRNA-Seq data, integration of multiple scATAC-

Seq datasets is typically performed through a shared low-dimensional space [9]. In SciDAP, all 

these tasks can be performed by following the instructions below. 

1. Navigate to the “Analysis” tab within the “PRJNA793128” project, click on “Add 

analysis”, and choose the “Single-Cell ATAC-Seq Dimensionality Reduction Analysis” 

workflow from the dropdown menu at the top of the window. 

2. Provide the analysis name “Step 4. ATAC Dimensionality Reduction”. 

3. Select “Step 3. RNA Clustering” from the dropdown menu below the “Single-Cell 

Analysis with Filtered ATAC-Seq Datasets” label. 

4. Set “Target dimensionality” to 35. 

5. Click on “Save sample”, and wait for the experiment to finish running. 

Refer to Note 4 for a detailed description and the default values of other configuration 

parameters. To access the analysis results enter the “Step 4. ATAC Dimensionality Reduction” 

experiment in the “Analysis” tab. Main QC metrics, useful for identifying potential confounding 

sources of variation, are shown on the “QC” tab. The quality of datasets integration can be 
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evaluated through the plots available on the “Per dataset” and “Per group” tabs. For interactive 

exploration of the experiment results, select the “Overview” tab, and click on “UCSC Cell 

Browser”. All output files are also accessible for download on the “Files” tab. An example of 8 

experiments integrated with Signac [10] is shown in Fig. 8. 

 

Fig. 8 Evaluating the results of integrating scATAC-Seq data from 8 experiments. (a) The ATAC UMAP plot from all datasets 

merged without integration. Cells from different patients form separate groups, which indicates a noticeable batch effect. (b, c) 

The ATAC UMAP plots from the same datasets integrated with Signac. The technical differences between experiments are 

removed, while preserving the expected distinction between TRM and recirculating CD8+ T cells. 

4.4 Single-Cell ATAC-Seq Cluster Analysis 

Clustering of scATAC-Seq data is similar to scRNA-Seq; however, the obtained clusters reveal 

similarities in the cell regulatory states instead of common gene expression profiles. The first 

dimension is excluded from the analysis in the same manner as it was done in the “Single-Cell 

ATAC-Seq Dimensionality Reduction Analysis” step. To run clustering analysis in SciDAP, 

follow the instructions below. 

1. Navigate to the “Analysis” tab within the “PRJNA793128” project, click on “Add 

analysis” and choose the “Single-Cell ATAC-Seq Cluster Analysis” workflow from the 

dropdown menu at the top of the window. 

2. Provide the analysis name “Step 5. ATAC Clustering”. 

a b c

P_012320M P_041218M P_100809M P_042718M
Patient

ReCir TRM
Condition
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3. Select “Step 4. ATAC Dimensionality Reduction” from the dropdown menu below the 

“Single-cell Analysis with LSI Transformed ATAC-Seq Datasets” label. 

4. Select “All samples aggregated” from the dropdown menu below the “Cell Ranger 

ATAC or RNA+ATAC Sample (optional)” label. 

5. Set “Target dimensionality” to 35. 

6. Update the “Clustering resolution” input with 0.3. 

7. Copy the following genes into the “Genes of interest” input: “TCF7, IL7R, PDGFB, 

GZMB, IFNG, TOX, ITGA2, ENTPD1, HAVCR2, EZH2”. 

8. Click on “Save sample”, and wait for the experiment to finish running. 

Refer to Note 5 for a detailed description and the default values of other configuration 

parameters. To access the analysis results enter the “Step 5. ATAC Clustering” experiment in the 

“Analysis” tab. The ATAC UMAP plot with identified clusters, as well as a silhouette score plot, 

used for evaluating the quality of clustering results, can be viewed on the “Per cluster” tab. The 

composition of each cluster categorized by dataset or grouping condition is shown on the “Per 

dataset” or “Per group” tabs, respectively. The ATAC fragment coverage around the user-

provided genes can be explored through the plots available on the “Genome coverage” tab. For 

interactive exploration of the experiment results, select the “Overview” tab, and click on “UCSC 

Cell Browser”. All output files are also accessible for download on the “Files” tab. An example 

of clustering results is shown in Fig. 9. 
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Fig. 9 Clustering results of scATAC-Seq data from 8 datasets integrated with Signac. (a) The ATAC UMAP plot with identified 6 

clusters. (b) The ATAC UMAP plot shows high expression of the exhaustion marker gene HAVCR2 in cluster 5. (c) The RNA 

UMAP plot colored by the clusters identified from scATAC-Seq data. Most cells from cluster 5 (marked with black) overlap with 

cluster 5 from the “Step 3. RNA Clustering” analysis. (d) ATAC fragment coverage plot around the HAVCR2 gene split by 

cluster. 

4.5 Single-Cell WNN Cluster Analysis 

The main advantage of scMultiome sequencing is capturing different types of information 

(modalities) from the same cells. Although gene expression and chromatin accessibility can be 

processed independently, as we demonstrated in the previous steps, an integrative analysis of 

both modalities can reveal novel information about the cell populations. WNN is one of the 

approaches that allows integration of multiple modalities and can handle the diverse information 

content within of each of them [34]. To perform WNN analysis in SciDAP, follow the 

instructions below. 
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1. Navigate to the “Analysis” tab within the “PRJNA793128” project, click on “Add 

analysis” and choose the “Single-Cell WNN Cluster Analysis” workflow from the 

dropdown menu at the top of the window. 

2. Provide the analysis name “Step 6. WNN Clustering”. 

3. Select “Step 5. ATAC Clustering” from the dropdown menu below the “Single-cell 

Analysis with both PCA and LSI Transformed Datasets” label. 

4. Select “All samples aggregated” from the dropdown menu below the “Cell Ranger 

RNA+ATAC Sample (optional)” label. 

5. Set “Target RNA dimensionality” to 40 and “Target ATAC dimensionality” to 35. 

6. Update the “Clustering resolution” input with 0.4. 

7. Enable the checkbox for the “Find gene markers” parameter. 

8. Copy the following genes into the “Genes of interest” input: “SELL, LEF1, CD28, CD27, 

CCR7, IL7R, CXCR5, TCF7, BACH2, JUNB, EGR1, KLF2, GZMK, GZMH, GZMB, 

PRF1, GNLY, IFNG, FASLG, FGFBP2, TOP2A, MKI67, CDK1, STMN1, DNMT1, 

MCM7, PDCD1, TIGIT, HAVCR2, LAG3, CTLA4, CD74, MIR155HG, CXCL13, 

LAYN, MYO7A, HLA-DRB1, HLA-DQA1, TOX, TOX2, BATF, ETV1, ID2, ZNF683, 

RBPJ, TBX21, RUNX1, RUNX3, RUNX2, EZH2”. 

9. Click on “Save sample”, and wait for the experiment to finish running. 

Refer to Note 6 for a detailed description and default values of other configuration parameters. 

To access the analysis results enter “Step 6. WNN Clustering” experiment in the “Analysis” tab. 

WNN UMAP plot with identified clusters can be viewed on the “Per cluster” tab. The 

composition of each cluster categorized by dataset or grouping condition are shown on the “Per 

dataset” or “Per group” tabs, respectively. The expression of the user-provided genes can be 
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explored through the plots available on the “Genes of interest” tab, while all gene markers are 

presented on the “Heatmap” and “Gene markers” tabs. The ATAC fragments coverage plots 

around the same genes of interest are available on the “Genome coverage” tab. For interactive 

exploration of the experiment results, select the “Overview” tab, and click on “UCSC Cell 

Browser”. All output files are also accessible for download on the “Files” tab. An example of 

integrated scRNA-Seq and scATAC-Seq data from 8 datasets using WNN analysis is shown in 

Fig. 10. 
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Fig. 10 Clustering results of the integrated scRNA-Seq and scATAC-Seq data from 8 datasets using WNN analysis. (a) The WNN 

UMAP plot with identified 11 clusters. (b) The dot plot showing the average gene expression and the percentage of cells per 

cluster for genes split into 4 categories (Stem, Effector, Proliferated [Prolifer.], Exhausted). 

5 Cell Annotation 

5.1 Single-Cell Manual Cell Type Assignment 

Cell annotation is the process of assigning identities to clusters on the basis of the expression of 

known marker genes. In scMultiome experiments, cell types are typically assigned on the basis 

of the clustering results of integrated modalities. It is also possible to use this pipeline to annotate 

clusters on the basis of scRNA-Seq or scATAC-Seq clustering instead. To manually annotate 

identified clusters from WNN analysis, follow the instructions below. 

1. Using a text editor, create a comma-separated file “diff_stages.csv” with “cluster” and 

“celltype” columns. 

2. Open the created file, and copy the cluster numbers from the results of the “Step 6. WNN 

Clustering” experiment to the “cluster” column. 

3. Add values to the “celltype” column on the basis of the marker genes shown in Fig. 10b 

(e.g., “Stem” for clusters 1 and 5, “Effector” for cluster 6, “Proliferated” for cluster 7, 

“Exhausted” for cluster 4, and “Others” for all remaining clusters). 

4. Navigate to the “Analysis” tab within the “PRJNA793128” project, click on “Add 

analysis” and choose the “Single-Cell Manual Cell Type Assignment” workflow from the 

dropdown menu at the top of the window. 

5. Provide the analysis name “Step 7. Cell Differentiation Stages Assignment”. 

6. Select “Step 6. WNN Clustering” from the dropdown menu below the “Single-cell 

Cluster Analysis” label. 
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7. Select “All samples aggregated” from the dropdown menu below the “Cell Ranger 

ATAC or RNA+ATAC Sample (optional)” label. 

8. Select “WNN” in the “Dimensionality reduction” dropdown menu. 

9. Update the “Clustering resolution” input with 0.4. 

10. Copy the following genes into the “Genes of interest” input: “SELL, LEF1, CD28, CD27, 

CCR7, IL7R, CXCR5, TCF7, BACH2, JUNB, EGR1, KLF2, GZMK, GZMH, GZMB, 

PRF1, GNLY, IFNG, FASLG, FGFBP2, TOP2A, MKI67, CDK1, STMN1, DNMT1, 

MCM7, PDCD1, TIGIT, HAVCR2, LAG3, CTLA4, CD74, MIR155HG, CXCL13, 

LAYN, MYO7A, HLA-DRB1, HLA-DQA1, TOX, TOX2, BATF, ETV1, ID2, ZNF683, 

RBPJ, TBX21, RUNX1, RUNX3, RUNX2, EZH2”. 

11. Click on “Use File Manager” under the “Cell types” input, switch to the “File Manager” 

tab, enter the “Current Sample” directory and upload the previously prepared 

“diff_stages.csv” file (Fig. 4a). 

12. Select the uploaded file from the list, and click on the “Attach” button. 

13. Click on “Save sample”, and wait for the experiment to finish running. 

Refer to Note 7 for a detailed description and the default values of other configuration 

parameters. To access the analysis results enter “Step 7. Cell Differentiation Stages Assignment” 

experiment in the “Analysis” tab. The WNN UMAP plot with assigned cell differentiation stages 

can be viewed on the “Per cell type” tab. The composition of each cell differentiation stage 

categorized by dataset or grouping condition is shown on the “Per dataset” or “Per group” tabs, 

respectively. The expression of the user-provided genes can be explored through the plots 

available on the “Genes of interest” tab, while all gene markers are presented on the “Heatmap” 

and “Gene markers” tabs. The ATAC fragment coverage plots around the same genes of interest 
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are available on the “Genome coverage” tab. If the “Criteria to split every cluster by (optional)” 

parameter is set to “condition” or “dataset”, each cell differentiation stage will be further split 

into the multiple groups showing each “condition” or “dataset” separately. For interactive 

exploration of the experiment results, select the “Overview” tab, and click on “UCSC Cell 

Browser”. All output files are also accessible for download on the “Files” tab. An example of the 

results from assigning different cell differentiation stages is shown in Fig. 11. 
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Fig. 11 Results from assigning different cell differentiation stages. (a) The WNN UMAP plot with cells assigned to different 

differentiation stages (Diff. Stage). (b) The ATAC fragment coverage plot around the IL7R gene split by different cell 

differentiation stages. (c) The dot plot showing the average gene expression and the percentage of cells per cell type and per cell 

differentiation stage for genes split into 4 categories (Stem, Effector [Effect.], Proliferated [Prolifer.], Exhausted [Exh.]). 
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6 Additional Data Analysis Steps 

The subsequent data analysis steps, not covered in this chapter, may be accomplished by running 

the “Single-Cell RNA-Seq Differential Expression Analysis”, “Single-Cell RNA-Seq Trajectory 

Analysis”, “Single-Cell Differential Abundance Analysis”,  “Single-Cell ATAC-Seq Differential 

Accessibility Analysis”, and “Single-Cell ATAC-Seq Genome Coverage” pipelines (Table 1). 

Moreover, each of the W10-W17 and W21 workflows (Fig. 2) produce Seurat object with the 

analysis results saved in RDS (R Data Serialization) format. 

Notes 

1 Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis 

If the experiment selected from the “Cell Ranger RNA+ATAC Sample” dropdown menu 

includes multiple aggregated datasets, each of them can be filtered independently by providing a 

comma- or space-separated list of filtering thresholds for the following parameters: 

- Minimum number of RNA reads per cell 

- Minimum number of genes per cell 

- Maximum number of genes per cell 

- Minimum novelty score per cell 

- Minimum number of ATAC fragments in peaks per cell 

- Minimum TSS enrichment score per cell 

- Minimum FRiP per cell 

- Maximum nucleosome signal per cell 

- Maximum blacklist fraction per cell 
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 The order and number of the specified values need to match the dataset order from the 

“aggregation_metadata.csv” output that is generated by selected “Cell Ranger RNA+ATAC 

Sample” and accessible on the “Files” tab. 

Dataset grouping (optional) 

If the selected “Cell Ranger RNA+ATAC Sample” includes multiple aggregated datasets, each 

dataset can be assigned to a separate group by providing a TSV/CSV file with “library_id” and 

“condition” columns (Table 3). Obtain a template of this file from the “grouping_data.tsv” 

output that is generated by “Cell Ranger RNA+ATAC Sample” and accessible on the “Files” tab.  

Selected cell barcodes (optional) 

Subsetting by cell barcodes can be used to identify sub-populations within the selected cluster(s) 

in the later steps. The user can obtain the list of barcodes by selecting cells in the UCSC Cell 

Browser. Cells of interest are identified by their barcodes and stored in a TSV/CSV file with at 

least one column named “barcode”. All other columns, except for “barcode”, will be added to the 

sc metadata loaded from “Cell Ranger RNA+ATAC Sample” and can be utilized in the current 

or future steps of analysis. 

Cell grouping for MACS2 peak calling 

The user can replace peaks called by Cell Ranger ARC 2.0 with the new ones. Peaks will be 

called by MACS2. There is a sc metadata column to group cells before running MACS2. To 

group cells by dataset, use “dataset”. Custom groups can be defined on the basis of any sc 

metadata column added through the “Selected cell barcodes (optional)” input. Default: use the 

original peaks generated by “Cell Ranger RNA+ATAC Sample”. 

Minimum MACS2 FDR 
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There is a minimum FDR (q-value) cutoff for peaks identified by MACS2 if the “Cells grouping 

for MACS2 peak calling” input is provided. Default: 0.05 

Doublet removal 

There is a QC filtering parameter to remove cells identified as doublets by scDblFinder. 

Depending on the option selected, doublets can be detected and removed for gene expression or 

chromatin accessibility data singly or in combination (union or intersection). Default: “do not 

remove”. 

Minimum number of RNA reads per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the number of RNA 

reads smaller than the provided value. Default: 500. 

Minimum number of genes per cell 

There is QC filtering threshold to exclude from the analysis all cells with the number of 

expressed genes smaller than the provided value. Default: 250. 

Maximum number of genes per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the number of 

expressed genes larger than the provided value. Default: 5000. 

Mitochondrial gene pattern 

The Regex pattern can be used to identify mitochondrial genes on the basis of their names. 

Default: ^mt-|^MT- 

Maximum mitochondrial percentage per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the percentage of 

RNA reads mapped to mitochondrial genes exceeding the provided value. Default: 5. 

Minimum novelty score per cell 
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There is a QC filtering threshold to exclude from the analysis all cells with the novelty scores 

smaller than the provided value. This QC metric indicates the overall transcriptomic dissimilarity 

of the cells and is calculated as the ratio of log10(genes per cell) to log10(RNA reads per cell). 

Default: 0.8. 

Minimum number of ATAC fragments in peaks per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the number of ATAC 

fragments in peaks smaller than the provided value. Default: 1000. 

Minimum TSS enrichment score per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the TSS 

(Transcription Start Site) enrichment score smaller than the provided value. This QC metric is 

calculated on the basis of the ratio of ATAC fragments centered at the genes’ TSS to ATAC 

fragments in the TSS-flanking regions. Default: 2. 

Minimum FRiP per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the FRiP (Fraction of 

Reads in Peaks) smaller than the provided value. Default: 0.15. 

Maximum nucleosome signal per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the nucleosome 

signal higher than the provided value. The nucleosome signal is a measurement of nucleosome 

occupancy. It quantifies the approximate ratio of mononucleosomal to nucleosome-free ATAC 

fragments. Default: 4. 

Maximum blacklist fraction per cell 

There is a QC filtering threshold to exclude from the analysis all cells with the fraction of ATAC 

fragments in genomic blacklist regions larger than the provided value. Default: 0.05. 
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2 Single-Cell RNA-Seq Dimensionality Reduction Analysis 

Normalization method 

The normalization and scaling methods serve to remove technical variability between the cells: 

“sct” – uses SCTransform function for variance-stabilizing transformation [37]; “sctglm” – uses 

SCTransform function with glmGamPoi [38, 39] support for variance-stabilizing transformation; 

or “log” – uses NormalizeData and ScaleData functions for log-normalization and subsequent 

gene-level scaling [9]. All of these methods are preferred to the normalization by sub-sampling 

that is available in the “Cell Ranger Aggregate (RNA+ATAC)” and “Cell Ranger Aggregate 

(RNA, RNA+VDJ)” pipelines. When “log” is selected a single scaling factor will be applied 

across all genes in a cell. This leads to inefficient normalization of highly expressed genes [37]. 

Both “sct” and “sctglm” overcome this problem by using Pearson residuals from the regularized 

negative binomial regression model as the variance-stabilized gene expression levels. The latter 

are completely independent of the sequencing depth while preserving the biological variation. 

“sctglm” provides the support of the improved parameters estimation using glmGamPoi [39] R 

package that substantially increases the speed of calculation. Default: “sctglm” 

Integration method 

The integration methods serve to match shared cell types and states across experimental batches, 

donors, conditions or datasets: “seurat” – uses cross-dataset pairs of cells that are in a matched 

biological state (“anchors”) to correct for technical differences; “harmony” – uses Harmony 

algorithm to iteratively correct PCA (Principal Component Analysis) embeddings; or “none” – 

does not run integration, merges datasets instead. Select “harmony” when the batch effect is 

known and can be defined by the “Batch correction (harmony)” parameter. Compared to 
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“seurat”, “harmony” requires less computational resources but might be biased toward major cell 

types [40]. Default: “seurat” 

Batch correction (harmony) 

When “harmony” is selected as “Integration method”, the batch effects are corrected on the basis 

of the provided factors. Specifically, “dataset” is used to integrate out the influence of the cells’ 

dataset of origin, while the factor “condition” is used to eliminate the influence of dataset 

grouping. Default: “dataset” 

Target dimensionality 

The target dimensionality is the number of principal components to be used in the PCA and 

UMAP projection, with accepted values ranging from 1 to 50. Use an elbow plot as a guide to 

identify the number of principal components where the curve starts to plateau. Default: 40. 

Cell cycle gene set 

Assign the cell cycle score and phase on the basis of the gene set for the selected organism. The 

available options are “human”, “mouse”, or “none”. When selecting “none”, skip the cell cycle 

score assignment. Default: “none” 

Remove cell cycle 

The user can remove the influence of the cell cycle phase on the dimensionality reduction 

results: “completely”, “partially”, or “do not remove”. When selecting “completely”, regress all 

signals associated with the cell cycle phase. For “partially”, regress only the differences in the 

cell cycle phase among proliferating cells; signals separating non-cycling and cycling cells will 

be maintained. When selecting “do not remove”, do not regress the signals associated with the 

cell cycle phase. Any selection will be ignored if the “Cell cycle gene set” input is not provided. 

Default: “do not remove” 
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Datasets metadata (optional) 

If the selected sc analysis includes multiple aggregated datasets, each of them can be assigned to 

a separate group by one or multiple categories. This can be achieved by providing a TSV/CSV 

file with “library_id” as the first column and any number of additional columns with unique 

names, representing the desired grouping categories. To obtain a proper template for this file, 

download the “datasets_metadata.tsv” output from the “Files” tab of the selected “Single-cell 

Analysis with Filtered RNA-Seq Datasets” and add extra columns as needed. 

Selected cell barcodes (optional) 

Subsetting by cell barcodes can be used to identify sub-populations within the selected cluster(s) 

in the later steps. The user can obtain the list of barcodes by selecting the cells in the UCSC Cell 

Browser. Cells of interest are identified by their barcodes and stored in a TSV/CSV file with at 

least one column named “barcode”. All other columns, except for “barcode”, will be added to the 

sc metadata loaded from “Single-cell Analysis with Filtered RNA-Seq Datasets” and can be 

utilized in the current or future steps of analysis. 

Number of highly variable genes 

The number of highly variable genes is used in gene expression scaling, dataset integration, and 

dimensionality reduction. To keep only the biological signal and exclude possible noise, use the 

lower values for less heterogeneous datasets. The accepted range is from 500 to 5000 [41]. 

Default: 3000 

Regress mitochondrial percentage 

The user can regress the percentage of RNA reads mapped to mitochondrial genes as a 

confounding source of variation. Default: false 

Regress genes 
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The user can regress expression of the selected genes as a confounding source of variation. 

Default: None 

3 Single-Cell RNA-Seq Cluster Analysis 

Target dimensionality 

Target dimensionality is the number of principal components to be used in constructing the 

nearest-neighbor graph as part of the clustering algorithm. The accepted values range from 1 to 

50. Default: 40 

Clustering resolution 

The resolution defines the “granularity” of the clustered data. Larger resolution values lead to 

more clusters. The optimal resolution often increases with the number of cells. For a dataset of 

3,000 cells, a value within the 0.3-1.2 range usually returns good results. Default: 0.3 

Find gene markers 

The user can identify upregulated genes in each cluster compared to all other cells. The results 

include only genes that are expressed in at least 10% of the cells coming from either the current 

cluster or from all other clusters together. Genes with the log2FoldChange values smaller than 

0.25 are excluded. The p-values are calculated with the Wilcoxon Rank Sum test and adjusted 

for multiple comparisons using the Bonferroni correction. Default: true 

Genes of interest 

A comma- or space-separated list of genes of interest can be used to visualize gene expression. 

Default: None 

4 Single-Cell ATAC-Seq Dimensionality Reduction Analysis 

Normalization method 
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The TF-IDF (Term Frequency–Inverse Document Frequency) normalization methods serve to 

correct for differences in cellular sequencing depth. Available options are: “log-tfidf” [9], “tf-

logidf” [42], “logtf-logidf” [43] and “idf” [44]. Although each of these normalization methods 

produces reasonable results [43], we suggest using the default for Signac, which is the “log-tfidf” 

normalization method. Default: “log-tfidf” 

Integration method 

The integration methods serve to match shared cell types and states across experimental batches, 

donors, conditions or datasets: “signac” – uses cross-dataset pairs of cells that are in a matched 

biological state (“anchors”) to correct for technical differences; “harmony” – uses the Harmony 

algorithm to iteratively correct LSI (Latent Semantic Indexing) [45] embeddings; or “none” – 

does not run integration, merges datasets instead. Default: “signac” 

Batch correction (harmony) 

When “harmony” is selected as “Integration method”, batch effects are corrected on the basis of 

the provided factors. Specifically, “dataset” is used to integrate out the influence of the cells’ 

dataset of origin, while the factor “condition” is used to eliminate the influence of dataset 

grouping. Default: “dataset” 

Target dimensionality 

Target dimensionality is the number of dimensions to be used in LSI, datasets integration and 

UMAP projection. The accepted values range from 2 to 50. Default: 40 

Datasets metadata (optional) 

If the selected sc analysis includes multiple aggregated datasets, each of them can be assigned to 

a separate group by one or multiple categories. This can be achieved by providing a TSV/CSV 

file with “library_id” as the first column and any number of additional columns with unique 
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names, representing the desired grouping categories. To obtain a proper template for this file, 

download the “datasets_metadata.tsv” output from the “Files” tab of the selected “Single-Cell 

Analysis with Filtered ATAC-Seq Datasets”, and add extra columns as needed. 

Selected cell barcodes (optional) 

Subsetting by cell barcodes can be used to identify sub-populations within the selected cluster(s) 

in the later steps. The user can obtain the list of barcodes by selecting the cells in the UCSC Cell 

Browser. Cells of interest are identified by their barcodes and stored in a TSV/CSV file with at 

least one column named “barcode”. All other columns, except for “barcode”, will be added to the 

sc metadata loaded from “Single-Cell Analysis with Filtered ATAC-Seq Datasets” and can be 

utilized in the current or future steps of analysis. 

Minimum percentile of highly variable peaks 

Set a minimum percentile for identifying the topmost common peaks as highly variable. For 

example, setting to 5 percent will use the top 95 percent most common among all cells peaks as 

highly variable. The selected peaks are then used for dataset integration, scaling and 

dimensionality reduction. Default: 0 (use all available peaks) 

5 Single-Cell ATAC-Seq Cluster Analysis 

Target dimensionality 

Target dimensionality is the number of LSI components to be used in constructing the nearest-

neighbor graph as part of the clustering algorithm. The accepted values range from 2 to 50. The 

first dimension is always excluded. Default: 40 

Clustering resolution 

The resolution defines the “granularity” of the clustered data. Larger values lead to more 

clusters. The optimal resolution often increases with the number of cells. Default: 0.3 
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Find peak markers 

The user can identify differentially accessible peaks in each cluster compared to all other cells. 

The results include only peaks that are present in at least 5% of the cells coming from either the 

current cluster or from all other clusters together. Peaks with log2FoldChange values smaller 

than 0.25 are excluded. The p-values are calculated using the logistic regression framework and 

adjusted for multiple comparisons using the Bonferroni correction. Default: false 

Genes of interest 

A comma- or space-separated list of genes of interest can be used to generate ATAC fragment 

coverage plots. This is ignored if the “Cell Ranger ATAC or RNA+ATAC Sample (optional)” 

input is not provided. Default: None 

6 Single-Cell WNN Cluster Analysis 

Target RNA dimensionality 

The target RNA dimensionality is the number of principal components to be used in constructing 

the weighted nearest-neighbor graph before clustering. The accepted values range from 1 to 50. 

Default: 40 

Target ATAC dimensionality 

The target ATAC dimensionality is the number of LSI dimensions to be used in constructing the 

weighted nearest-neighbor graph before clustering. The accepted values range from 2 to 50. The 

first dimension is always excluded. Default: 40 

Clustering resolution 

The resolution defines the “granularity” of the clustered data. Larger values lead to more 

clusters. The optimal resolution often increases with the number of cells. Default: 0.3 

Find gene markers 
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The user can identify upregulated genes in each cluster compared to all other cells. The results 

include only genes that are expressed in at least 10% of the cells coming from either the current 

cluster or from all other clusters together. Genes with log2FoldChange values smaller than 0.25 

are excluded. The p-values are calculated with the Wilcoxon Rank Sum test and adjusted for 

multiple comparisons using the Bonferroni correction. Default: true 

Find peak markers 

The user can identify differentially accessible peaks in each cluster compared to all other cells. 

The results include only peaks that are present in at least 5% of the cells coming from either the 

current cluster or from all other clusters together. Peaks with log2FoldChange values smaller 

than 0.25 are excluded. The p-values are calculated using the logistic regression framework and 

adjusted for multiple comparisons using the Bonferroni correction. Default: false 

Genes of interest 

A comma- or space-separated list of genes of interest can be used to visualize gene expression 

and to generate ATAC fragment coverage plots. This is ignored if the “Cell Ranger RNA+ATAC 

Sample (optional)” input is not provided. Default: None 

7 Single-Cell Manual Cell Type Assignment 

Cell types 

Cell types are established using a TSV/CSV file with two columns named “cluster” and 

“celltype”. The first column includes the cluster numbers from the experiment selected in the 

“Single-cell Cluster Analysis” dropdown menu. The second column includes names to be 

assigned to each cluster. Depending the on the values of “Dimensionality reduction” and 

“Clustering resolution” parameters the same upstream experiment can be used for cell type 

assignment on the basis of scRNA-Seq, scATAC-Seq, or WNN clustering results. 
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Dimensionality reduction 

Dimensionality reduction previously applied to the datasets. When combined with the 

“Clustering resolution” defines the cell groups for cluster names assignment. Available options 

are: “RNA”, “ATAC” and “WNN”. Default: “RNA” 

Clustering resolution 

Clustering resolution for the selected “Dimensionality reduction” is used to define clusters and 

assign cluster names. 

Criteria to split every cluster by (optional) 

The user can additionally split each cluster into several groups on the basis of the provided 

criteria. Available options are: “dataset”, “condition”, or “none”. Default: none 

Find gene markers 

The user can identify upregulated genes in each cell type compared to all other cells. The results 

include only genes that are expressed in at least 10% of the cells coming from either the current 

cell type or from all other cell types together. Genes with log2FoldChange values smaller than 

0.25 are excluded. The p-values are calculated with the Wilcoxon Rank Sum test and adjusted 

for multiple comparisons using the Bonferroni correction. Default: true 

Find peak markers 

The user can identify differentially accessible peaks in each cell type compared to all other cells. 

The results include only peaks that are present in at least 5% of the cells coming from either the 

current cell type or from all other cell types together. Peaks with log2FoldChange values smaller 

than 0.25 are excluded. The p-values are calculated using the logistic regression framework and 

adjusted for multiple comparisons using the Bonferroni correction. Default: false 

Genes of interest 
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A comma- or space-separated list of genes of interest can be used to visualize gene expression 

and to generate ATAC fragment coverage plots. This is ignored if the “Cell Ranger ATAC or 

RNA+ATAC Sample (optional)” input is not provided. Default: None 
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