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Abstract

With the application of personalized and precision medicine, more precise and
efficient antibody drug development technology is urgently needed. Identifica-
tion of antibody-antigen interactions is crucial to antibody engineering. The
time-consuming and expensive nature of wet-lab experiments calls for efficient
computational methods. Taking into account the non-overlapping advantage of
current structure-dependent and sequence-only computational methods, we pro-
pose an interpretable antibody-antigen interaction prediction method, S3AI. The
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31 introduction of structural knowledge, combined with explicit modeling of chem-
2 ical rules, establishes a ’sequence-to-function’ route in S3AI, thereby facilitating
3 its perception of intricate molecular interactions through providing route and
34 priors guidance. S3AI significantly and comprehensively outperforms the state-
35 of-the-art models and exhibits excellent generalization when predicting unknown
36 antibody-antigen pairs, surpassing specialized prediction methods designed for
37 out-of-distribution generalization in fair comparisons. More importantly, S3AI
38 captures the universal pattern of antibody-antigen interactions, which not only
39 identifies the CDRs responsible for specific binding to the antigen but also
40 unearths the importance of CDR-H3 for the interaction. Structure-free design and
4 superior performance make S3AT ideal for large-scale, parallelized antibody opti-
2 mization and screening, enabling the rapid and precise identification of promising
43 candidates within the extensive antibody space.

« 1 Introduction

s As the important immune molecules of the human immune system [1], antibodies are a
s specialized type of protein with the primary role of recognizing and combating invading
w pathogens [2, 3]. The interaction between antibodies and antigens is characterized by
s a remarkable specificity and plays a pivotal role in this immunological process [3].
2 Therefore, humans continue to explore methods for preparing antibodies to develop
so antibody drugs and try to apply them in clinical treatments [4, 5]. In recent years,
si1  the research and development of antibody drugs have entered a new stage, driven
2 by the continuous development of technologies such as genomics [6], proteomics [7],
53 and immunology [8]. Currently, antibody design methods with higher precision and
s« efficiency are urgently needed to meet the promotion and application of personalized
s treatment and precision medicine [9, 10].

56 The core of improving the design efficiency of antibody drugs lies in estimating
sz the interaction strength of antibodies and antigens. The interaction strength between
ss an antibody and an antigen extends beyond a mere binary interaction; it should be
so characterized as a continuous variable. Quantified by metrics such as the dissociation
o constant (K,4) or the half-maximal inhibitory concentration (IC5p), this continuum
&1 encapsulates the depth and strength of the interaction. Although there have been
& several conventional wet-lab experiments [11-14] to estimate the interactions between
s antibodies and antigens, they remain expensive and time-consuming. This presents a
6 significant barrier to thoroughly exploring the extensive antibody optimization space,
6 limiting the identification of novel and potentially more effective antibody candidates.
6 Therefore, efficient computational methods are urgently needed to predict antibody-
e antigen interaction (AAI) to promote antibody optimization and screening.

68 As shown in Fig.1a, current computational methods, especially deep-learning meth-
6 ods, can be mainly divided into structure-dependent and sequence-only methods for
o characterizing Antibody-Antigen Interactions (AAI). The former exhibits lower task
n complexity since the model takes protein tertiary structure as input, which is closely
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Fig. 1 Our motivation and methodology. Route and priors guidance are designed to facilitate inter-
pretable prediction of antibody-antigen interactions. a, Two major categories of methods currently
used for antibody-antigen interaction prediction are sequence-only and structure-dependent meth-
ods. b, Structural information distillation transfers structural information into sequence modality
through modality bridging, thereby providing route guidance for interpretable prediction. ¢, Interac-
tion matrix makes non-covalent interactions explicit through property modeling, thereby providing
priors guidance for interpretable prediction.

2= related to protein interactions [15-19]. Srivamshi et al. [15] employed graph convo-
7 lutional networks and an attention layer to explicitly encode the partner’s context
7 in an antibody-antigen complex. While PInet [16] encoded proteins as surface point
75 clouds with physicochemical properties and 3D geometry, predicting epitope-paratope
7 in antibody-antigen. Another line of research is redesigning the complementarity-
7 determining regions (CDRs) to get a broad-spectrum antibody. Shan et al. [20]
7 developed a geometric neural network with attention mechanisms for antibody’s CDR
7 sequences optimization. However, experimental structure determination methods, such
s as NMR spectroscopy and X-ray crystallography, prove to be both time-intensive and
s expensive, resulting in limited available high-quality structures of antibodies and their
22 complexes. Although protein structure prediction methods [21-23] have made break-
ss  through progress, their inherent errors [24, 25] and the structural characteristics of
» antibodies [26, 27] bring obvious interference to AAI prediction. Naturally, high-quality
s data insufficiency presents an obstacle to training deep-learning models with ideal
s generalization capability. In contrast, sequence-only methods, which take advantage
s of extensive antibody sequence data, offer a more efficient framework for large-scale
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s antibody screening [28-33]. Earlier studies, such as ProABC [28], utilized a sequence-
s only random forest algorithm to predict paratope residues, eliminating the need for
w structured data to achieve accurate predictions. Parapred [29] employed a combina-
o1 tion of local and global features, harnessing deep learning techniques to analyze AAIL
« Marson et al. [30] introduced a convolutional neural network (MCNN) to predict the
s antigen specificity of antibodies. DeepAAI [31] proposes dividing antigens and anti-
o bodies into 'seen’ and 'unseen’ collections, utilizing graph neural networks to model
o the issue of out-of-distribution (OOD) data. However, a common drawback shared
o by these sequence-only methods is their limited interpretability and prediction per-
oz formance, primarily stemming from the alienation of one-dimensional sequences from
s functionality.

99 In order to combine the advantages of both types of methods while avoiding the
w0 disadvantages, it is essential to provide sensible ’sequence-to-function’ guidance to
w1 structure-free models. Thus, we propose S3AI (Structure-Assisted Antibody-Antigen
102 Interaction Prediction), a deep-learning method that uses only sequences as inputs to
103 the inference phase.

104 The first form of guidance we introduce aims to establish an implicit route from
105 sequence to structure modalities. Modality bridging is a tangible way to build this
ws route (Fig.1b), where we automatically incorporate protein structural information
w7 through a structural encoding module. By promoting the model’s ability to map from
s sequences to structural latent codes via contrastive learning, we break the barrier
10 between these distinct modalities. In this process, knowledge from the 3D structures
uo  of massive antibodies is captured in the model parameters, allowing the model to
m  introduce implicit structural information automatically in case only sequence input
2 is used. The S3AI model incorporates two sequence feature extraction modules: one
3 dedicated to antigens and the other to antibodies. Considering the volume of available
s structure and sequence data, structural information distillation is applied exclusively
us  to the antibody feature extraction branch. Subsequently, the derived parameters are
ue fine-tuned in several downstream tasks, aiming to enhance the performance of AAI
n7  predictions.

118 Another pivotal guidance of S3AI is the explicit modeling of chemical priors
o (Fig.1c). Recognizing the crucial role of non-covalent interactions in antibody-antigen
120 binding, we devise a module to capture chemical constraints accurately throughout
121 antigen-antibody docking. Beyond the features extracted from sequences using the pro-
122 tein language model, we generate various property maps of non-covalent interactions
123 from the sequences, adhering to universally applicable chemical rules. This provides
12« the model with insights into potential interaction formations through the integration of
125 chemical priors in the deep-learning framework. The concatenated interaction matrix
126 1S passed through convolutional layers, facilitating effective feature aggregation and
127 providing the model with a rich source of localized information. This novel module
128 not only improves interpretability by affording a tangible linkage between molecular
129 interactions and predictive outcomes but also provides local features that synergize
1o with global features extracted in other stages.

131 Overall, S3ATI is an interpretable deep-learning method that introduces route
12 and priors guidance towards understanding antibody-antigen interaction. Downstream
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133 tasks for SARS-CoV-2 and HIV demonstrate the exceptional proficiency of S3AI in
134 predicting AAI, surpassing current state-of-the-art predictors. Importantly, S3AI cap-
135 tures universal patterns of antibody-antigen interactions, revealing antigen-specific
136 binding mechanisms and highlighting sub-regions important for the interaction. More-
1w over, S3AT’s capability to operate without requiring structural input during the
138 inference phase positions it as an ideal solution for large-scale antibody optimization
130 and screening. Naturally, S3AI can be applied to the design of antibodies for various
o targets, making the development of antibody drugs more precise and personalized.

«w 2 Results

w 2.1 S3AI harnesses the property-driven architecture that
143 bridges structure to sequence

s S3AI achieves unparalleled accuracy and throughput in predicting antibody-antigen
us interactions by effectively integrating structural information with sequence input.
s Prior to the advent of S3AI, methods focusing solely on sequence inputs attempted to
17 predict metrics related to AAI directly from the sequences of antibody-antigen pairs.
us However, these approaches often fell short due to their lack of structural informa-
19 tion, which is crucial for understanding the nuances of interactions. Consequently, the
150 'routes’ constructed are typically blind, intricate, and lack interpretability, making it
151 challenging to derive meaningful insights or predictions.

152 As shown in Fig.2a, S3AI, on the other hand, revolutionizes this approach by
153 actively guiding the mapping from antibody sequences to their structures, thereby
15« providing a more rational and coherent route for predicting AAI from sequence inputs.
155 The above strategy is here called ’structural information distillation’, and its core
156 lies in training a structural encoder through contrastive learning to obtain structure-
157 enhanced features. In the teacher network, the antibody structure is processed by
158 a pre-trained structure network to extract structural features. In the student net-
s work, the antibody sequence is fed to the protein language model (i.e.ESM [34] and
1o then encoded by a learnable structure encoder to obtain features that incorporate
w1 structural information. Finally, the training manner of contrastive learning allows the
12 knowledge from the antibody structure to be transferred to the structure encoder.
13 This manner not only leverages the inherent sequence information but also enriches it
16a  with structural data, enhancing the model’s performance and the interpretability of
165 its predictions. By doing so, S3AI offers a more informed and precise framework for
16 understanding the intricate dynamics of antibody-antigen interactions.

167 Implicit modeling of AAI based on deep learning models is challenging because of
168 the complexity of molecular interactions, which can result in fundamental chemical
169 rules being poorly understood by the neural network. To address this challenge, we
o propose the interaction matrix, which explicitly models chemical rules to introduce
i crucial non-covalent interactions. As shown in Fig.2b, the sequences of an antibody
12 and an antigen are taken to calculate a property matrix containing non-covalent inter-
w3 actions, including hydrogen bonding, electrostatic interactions, van der Waals forces,
w7 and hydrophobic interactions. Take hydrogen bonding as an example, to construct a
15 H-bond map between an antibody and an antigen, we initially analyze their sequences
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Fig. 2 a, Structural information distillation, in which the antibody structure information extracted
by the structure network is distilled into antibody sequence modality, thereby training the structure
encoder to obtain structure-enhanced features. b, Interaction matrix, in which the feature matrix
is calculated by implicit sequence embeddings, and the property matrix contains the physicochem-
ical properties calculated by chemical rules. ¢, The overall framework of S3AI. The input antibody
sequence is extracted with structure-enhanced feature, and the interaction matrix is concatenated
with it after passing through the CNN module. The concatenated feature is then input into the sub-
sequent interaction prediction module for classification (neutralization or not) and regression (ICsg
estimation) tasks.

e to identify the number of hydrogen bond donors and acceptors for each amino acid.
177 This step produces two vectors respectively, with lengths matching those of the anti-
s body and antigen, where each vector element indicates the count of hydrogen bond
1o donors or acceptors at every amino acid position. Next, we compare the corresponding
10 amino acids between the antibody and antigen, determining the minimum number of
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Fig. 3 a, Prediction performance on integrated SARS-CoV-2 datasets. In both classification and
regression tasks, S3AI outperforms state-of-the-art models across the board. b, Visualization of the
impact of each module on the final concatenated features. The interaction matrix has a stronger
impact on features than structural information distillation, and the joint use of the two modules
achieves the best results.

11 available donors and acceptors for each pair. This results in two matrices, sized by the
12 antibody and antigen sequence lengths. These matrices delineate the potential H-bond
183 interactions between each amino acid pair, pinpointing regions with high interaction
18« propensity. Furthermore, the sequences of both the antibody and the antigen are pro-
15 cessed to extract embeddings using protein language model (ESM here), and these
15 embeddings are then used to create a feature matrix. The above property matrix and
17 feature matrix are concatenated to form the final interaction matrix, which contains
1 both implicit and explicit interaction patterns.

189 With the support of structural information distillation and interaction matrix,
1o the overall architecture of S3AI is shown in Fig.2c. The antibody and antigen
1 sequences are passed through the protein language model (ESM here) to obtain cor-
12 responding sequence features, in which the sequence features of core-domain of the
13 antigen—determined by the antigen’s specific type—are adopted to form the feature
14 matrix in the interaction matrix. The interaction matrix performs feature aggregation
105 through the CNN module and is concatenated with the structure-enhanced feature of
s the antibody obtained through the structure encoder. The above-mentioned concate-
17 nated features are input into the interaction prediction module for downstream tasks
108 in the manner of multi-task learning, including the binary classification task of whether
19 the antibody-antigen pair is neutralizing and the regression task of ICyg estimation.
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w 2.2 S3AI significantly outperforms state-of-the-art models

20 In order to comprehensively evaluate the predictive ability of S3AI for AAI, we col-
22 lect SARS-CoV-2-related AAI data from previous studies and integrate them into
203 the largest dataset to date. As shown in Fig.3a, we perform a thorough comparison
24 With a series of models for antibody-antigen interaction prediction on regression tasks
s and classification tasks, including MCNN [30], Parapred [29], Fast-Parapred [35], AG-
s Fast-Parapred [35], PIPR [36], and ResPPI [37]. The detailed implementation can be
27 found in Supplementary information, Section S1. For the regression task of IC5g esti-
28 mation, S3AI significantly surpasses other models. It showcases superior performance
20 by achieving a Spearman correlation coefficient of 0.655 and a Pearson correlation
a0 coefficient of 0.860. Compared to the best-performing existing model, this repre-
a1 sents an improvement of approximately 13.3% in the Spearman correlation and about
22 7.1% in the Pearson correlation. For the classification task of neutralization, S3AI
a3 still comprehensively outperforms other models, with an accuracy of 84.53% and an
ae MCC of 68.50%. Overall, S3AI shows comprehensive superiority in both regression
a5 and classification tasks, stamping a new watermark for antibody-antigen interaction
216 prediction.

a7 Structural information distillation and interaction matrix are crucial to the pre-
a8 diction performance of S3AI, which is demonstrated in the visualization experiment
20 in Fig.3b and Table.S4. Principal component analysis (PCA) is adopted to explore
20 the impact of each module on the concatenated features, i.e., concatenations of
a1 structure-enhanced features, and CNN-processed interaction matrix. Compared with
22 the visualization result on the far right without using the above two modules, the use
23 of any module results in better clustering of features, and the joint use of the two
24 modules achieves the best clustering effect. It is worth noting that the impact of the
25 interaction matrix on the clustering effect is stronger than that of structural informa-
26 tion distillation, which also confirms our hypothesis: it is difficult for neural networks
27 to directly understand intricate molecular interactions, and explicit chemical priors
2»s  modeling tends to provide a more accurate learning route.

» 2.3 S3AI’s generalization performance for out-of-distribution
20 scenarios

a1 Out-of-distribution (OOD) generalization is a common challenge faced by all deep
22 learning models. The above challenge is even more pronounced in the prediction sce-
23 nario of antibody-antigen interactions since most antibodies are 'unseen’, i.e., the
2 interactions of a large number of antibodies with any antigen are unknown [31]. For
25 natural antibodies, the antibody space produced when faced with viral invasion is very
236 large, which makes it time-consuming and costly to measure the interaction strength of
27 any antibody-antigen pair through wet-lab experiments. In addition, the interactions
28 of synthetic antibodies with antigens are also blind to us. Therefore, deep learning
29 models for antibody-antigen interaction prediction require ideal OOD generalization
a0 capabilities.

2n Previous work proposed a deep-learning model, DeepAAI [31], specifically cus-
a2 tomized to predict interactions of 'unseen’ antibody-antigen pairs. In order to evaluate
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Fig. 4 Generalization performance on HIV datasets. a, In the binary classification task of whether an
antibody neutralizes HIV, S3AI comprehensively outperforms the state-of-the-art models specifically
designed for out-of-distribution generalization of antibody-antigen interaction prediction, including
model variants using PSSMs containing rich evolutionary information. b, In the regression task of
1C5p estimation, S3AI outperforms most of the model variants, including all model variants that do
not incorporate features with additional evolutionary information.

23 the generalization performance of S3AI, we adopt the original architecture of S3AI
s to compare performance with DeepAAI without adding any customized modules for
s OOD. The only adjustment is that we change the multi-task framework of S3AT to the
us  same single-task framework as DeepAAl for a fair comparison. As shown in Fig.4a,
27 in the neutralization classification task, S3AI without customization completely sur-
xus  passed all model variants of DeepAAI. On the regression task of IC5y estimation,
29 S3AT surpasses most model variants, including the two model variants that only input
0 sequences (Fig.4b). We can see that S3AT is slightly worse than the two model variants
;1 whose inputs contain position-specific scoring matrices (PSSMs) with evolutionary
s information. As an extremely time-consuming descriptor, PSSMs are calculated based
»3  on multiple sequence alignments and incorporate rich evolutionary information. How-
»a ever, S3AI is a deep-learning method that only requires input sequences and does not
»5  contain additional homologous information, which may explain why its prediction per-
»6  formance on regression tasks is slightly worse than that of the model variants using
7 PSSMs of DeepAAI. Overall, S3AI still surpasses the state-of-the-art OOD model
»s  under the same input configuration without special modifications to adapt to OOD
»0  scenarios. This indicates that S3AI has learned universal patterns of molecular interac-
%0 tions and thus accurately predicts interactions of never-before-seen antibody-antigen
261  pairs.
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x 2.4 S3AI captures the universal pattern of antigen-antibody
23 interactions

s The aforementioned performance comparison demonstrates the excellent ability of
s S3AI in predicting AAI, and indicates that it has learned universal patterns of molec-
x%6 Ular interactions to a certain extent. What needs to be further explored is whether the
%7 interaction pattern extracted by S3AI is consistent with the actual antibody neutral-
xs  ization mechanism. To this end, we adopt a strategy of calculating the region effective
x0  attribution, in which the higher the attribution of a region to the prediction result,
o the more significant impact it has on the final prediction. There are basic modes of
on neutralization between different antibodies and different antigens, the core of which
o is that the Complementarity Determining Regions (CDRs) are responsible for bind-
o3 ing to the antigen [38, 39]. As shown in Fig.5a, the region effective attributions of
aa - all antibody samples are displayed, and the CDRs of most samples have more signifi-
s cant attributions than other framework regions (FRs) in variable regions. The average
a6 attributions of all samples show that the impact of CDRs is several times that of
an - FRs, which proves that CDR is the most important region for the interaction between
s antibody and antigen. In Fig.5b, the region effective attributions of four antibody
oo samples are shown. The difference between these samples is that the attributions of
20  FRs to the interactions have different characteristics. In sample 1519, all FRs are pos-
2 itive attributions, while in sample 5401, it is exactly the opposite, that is, all FRs are
2 negative attributions. Furthermore, in sample 8485 and sample 27248, negative and
23 positive attributions coexist. The above phenomenon confirms a basic fact that the
24 attributions of FRs to the interactions are flexible and variable, which is caused by
s the binding characteristics of different antibody-antigen pairs.

286 Moreover, CDR includes six sub-regions, namely CDR-L1, CDR-L2, CDR-L3,
.7 CDR-H1, CDR-H2, and CDR-H3. A large number of previous works have agreed
s that CDR-H3 is important for the interaction between antibodies and antigens, which
20 makes us very curious whether S3AI can capture this phenomenon [40—44]. As shown
20 in Fig.5c, sub-regions in the CDRs of four antibody samples are displayed. What
2 the four samples have in common is that CDR-H3 always tends to have signifi-
22 cant effective attribution, which is consistent with the above conclusion. Interestingly,
203 the impacts of sub-regions within the CDRs, aside from CDR-H3, are diverse and
20a irregular [41, 42, 45], which further highlights the complexity of AAI mechanism.

» 3 Discussion

26 Antibodies are important immune molecules that play a crucial role in the immune
27 process. The remarkable specificity of antibodies against antigens has led humans to
28 continue to explore technical routes to develop them into clinical drugs. With the
200 increasingly urgent demand for personalized and precision medicine, the research and
s0 development of antibody drugs requires more efficient and high-precision technical
so - means. Computational methods, especially deep learning methods, have shown great
w2 potential in antibody optimization or screening. However, the two current mainstream
33 methods for predicting AAI, namely structure-dependent and sequence-only methods,
s have obvious shortcomings, which come from the scarcity of structural data and the
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Fig. 5 a, Effective attributions of each region in variable regions to the predictions of antibody-
antigen interactions. Among them, CDRs have the most significant average attribution, which is
consistent with the basic mode of antibody neutralization. b, Effective attributions of four samples
with different characteristics. The structures of antibody variable regions are colored according to
the degree of attributions. ¢, Analysis of effective attributions within CDR regions of four samples.
Different sub-regions in the CDRs are colored according to their attributions. Among them, CDR-H3
always tends to have a significant effective attribution, indicating that this sub-region is crucial for
antibody neutralization, which is consistent with previous research conclusions.
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35 alienation between sequence and function. In addition, the common difficulty faced by
s the above two types of methods is that it is challenging for neural networks to under-
s7  stand intricate molecular interactions. Therefore, the development of an interpretable
s deep-learning model for AAI prediction that overcomes structural or sequence mode
;0 constraints is of great significance for antibody engineering.

310 The first contribution of S3AI is to break the barrier between structure-dependent
su  and sequence-only methods. Predicting AAT based on sequences has a high task com-
sz plexity, which is rooted in the alienation route from sequence to structure and then
a3 to function. This motivates us to utilize structural information implicitly, that is, to
s incorporate knowledge from the protein structure modality to the sequence modal-
a5 ity. In this work, we propose a strategy named structural information distillation to
a6 achieve modality bridging. First, a teacher network with structure as input and a stu-
sz dent network with sequence as input are set up. The training manner of contrastive
a5 learning is further used to store the information from the teacher network to the struc-
a0 ture encoder. The structural encoder is capable of transforming sequence features into
30 structure-enhanced features, eliminating the need for input structure in the down-
s stream task training and inference stages. In short, structural information distillation
3 effectively realizes cross-modal information transfer and promotes the establishment
33 of 'sequence-to-function’ route.

324 S3AT’s second contribution is the explicit modeling of chemical priors to guide
3 neural networks in understanding intricate molecular interactions. Antibody-antigen
36 interactions are primarily driven by non-covalent interactions, so we propose interac-
27 tion matrix to introduce the composite impact of hydrogen bonding, van der Waals
38 forces, electrostatic interaction, and hydrophobic interactions. In general, this inter-
39 action matrix makes up for the shortcomings of the implicit modeling of AAI. In
30 other words, explicit modeling of interaction patterns reduces the task complexity of
s predicting functions directly from sequences.

332 The design of the above two modules ensures S3AI’s excellent performance in
33 predicting AAL In this work, we comprehensively examine the capabilities of S3AI,
s including its generalization performance for out-of-distribution scenarios. S3AI not
s only significantly surpasses the state-of-the-art models but also exhibits ideal OOD
16 generalization capabilities. Without any adjustments for the OOD task, S3AT still out-
s performs all variants of the state-of-the-art model customized for OOD generalization
35 in predicting AAI in the classification task of neutralization or not. In the regres-
39 sion task of IC5p estimation, S3AI outperforms all model variants that only adopt
w0 sequences as input in a fair comparison. The above prediction performance indicates
s that S3AI has a certain degree of understanding of the basic patterns of molecu-
w2 lar interactions, which facilitates its generalization for the prediction of unknown
w3 antibody-antigen pairs. We further intuitively explore the ability of S3AI to capture
s the universal pattern of AAI. Consistent with the antibody neutralization mechanism,
us  S3AI accurately identifies CDRs responsible for specific binding to antigens. Further-
us  more, the importance of sub-region CDR-H3 for AAI is also discovered by S3AI.
w7 The above results demonstrate S3AI’s awareness of molecular interaction mechanisms,
us  which is rooted in the introduction of route and priors guidance.
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349 The potential of S3AI lies in the large-scale optimization and screening of antibod-
0 ies. The structure-free input mode in the inference stage breaks through the dilemma
1 of the scarcity of high-quality antibody structures, ensuring that antibody optimiza-
2 tion and screening are only performed at the sequence level and can be massively
33 parallel. This will greatly improve the efficiency of discovering immunologically active
s or specific antibodies in the huge antibody space, thereby accelerating the develop-
s ment of antibody drugs. However, the prediction performance of S3AI is limited by
6 the low quality of distilled structural information, which is caused by the predicted
7 antibody structures used in the structural information distillation module. It is fore-
s seeable that in the future, as the scale of available high-quality antibody structures
9 increases, the structural information distillation module will be able to extract more
w0 general and precise implicit structural information. In addition, further accurate mod-
1 eling of chemical rules is also a feasible way to improve the prediction performance
2 of S3AL There is also an expectation for a lighter and faster prediction method that
33 could further hasten antibody engineering.

w« 4 Methods

s 4.1 Data
s 4.1.1 Data for structural information distillation

w7 The antibody structure data utilized for structural information distillation in this
s study encompasses two main types: real antibody data collected from the SabDab [46]
w0 and predicted antibody structure data derived from sequences using Igfold [47], which
s is a deep learning model specifically designed for predicting antibody structures. For
sn  the real antibody data, we exclude single-chain antibodies, entries with missing infor-
s»  mation, those with formatting errors (such as redefined atoms), and sequences with
sz discontinuities within the chains. The structural data predicted by IgFold includes
s paired antibodies from the OAS dataset, along with a selection of relevant antibodies
srs  from the coronavirus.

s 4.1.2 SARS—COV—2 data

sn Given the absence of comprehensive studies summarizing IC5y data across various
s antibody-antigen pairs in the field, IC5o data are collected from several biological
s studies [48-51] that measured and published IC5q values between SARS-CoV-2 or
s its variants and human antibodies. These studies encompassed 18 different lineages,
s including those that emerged after Omicron. We obtain mutations of each lineage
2 from outbreak.info [52, 53]. These mutations are then introduced into the spike pro-
3 tein sequences of the wild-type coronavirus, as obtained from GISAID [54]), thereby
s generating the spike protein sequences for each lineage.

385 Manual standardization is necessary because the ICjy values originated from
s diverse papers with varying experimental conditions. For example, the reporting of
ss7  negative sample values (where IC5¢ > 10 ug/ml) varies across studies, with some list-
s ing them as ">10’, ’>100’, or specifying a particular value over 10, or even a constant
0 value (e.g., 1000 pug/ml). In our study, we standardize all negative IC59 samples to
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s0 a uniform value of 10 ug/ml. Similarly, we classify samples with IC5¢ > 10 ug/ml as
s non-neutralizing, while those with values below 10 pug/ml are deemed neutralizing.

302 Moreover, during the de-duplication process of antibody sequences, discrepancies
s in IC5g values for the same antibody-antigen pair across different studies are observed.
s Such inconsistent data are identified as errors and excluded to ensure dataset accu-
s racy. We yield IC5g values for 29,483 pairs of coronavirus antigens and corresponding
s antibodies.

w7 4.1.3 HIV data

s The HIV data used to test OOD performance in our study comes from the Com-
s pile Analyze and Tally NAb Panels (CATNAP) at the Los Alamos HIV Database
w (LANL) [55], as published by DeepAAI. We follow the dataset’s split between ’seen’
w1 and 'unseen’ data, conducting OOD tests on the 'unseen’ dataset.

w 4.2 Architecture overview

w3 S3AI is built on the protein language model that takes paired antibody and antigen
ws  sequences as input. The heavy and light chain sequences of the input antibody are
w5 concatenated and then encoded by ESM. For antigens, the protein sequence is fed into
ws a separate ESM to produce the sequence feature:

7" = ESMy,(ABy & ABL), (1)

Z." = ESM,,(AG), (2)
wr where ABy = (aby,aby--- ,aby) and ABp = (abgy1,abgia,- - ,ab,,) represent the
w8 sequences of the heavy and light chains of antibody, respectively, while AG =
w  (agi,aga,- - ,ag,) denotes the sequence of antigen. Structure encoder introduces
a0 structural information to sequence features of antibody Z.3?, producing Zfliqz‘m (see
a1 Section 4.3). Meanwhile, the sequence features Z3?, Z357, along with their respec-

a2 tive sequences, are leveraged to generate the interaction matrix Z***". This matrix
a3 is subsequently processed by Convolutional Neural Network (CNN) module, aimed at
ae  extracting interaction-related feature Z™" (refer to Section 4.4). Two different mul-
a5 tilayer perceptrons (MLPs) are employed to subsequently process the concatenated
as  features, yielding predictions for both classification and regression tasks:

g(cls) = Usigmoid(w6l8(222q28tr D Zcon'u))’ (3)
g(f‘eg) _ wreg(ziiq%‘tf ® Zconv)7 (4)

a7 where 9 and "% represent the MLPs for classification and regression tasks,
as  respectively; @ donates the concatenation operation on the final features.
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a0 4.3 Structural information distillation

w20 The tertiary structure and sequence of antibodies can be considered two distinct
a1 modalities. In AAT problems, the structural modality often contributes more signifi-
w22 cantly than the sequence modality. However, the scarcity or even absence of structural
23 data in many application scenarios leads to performance loss. To address this chal-
w2 lenge, we look towards a series of cross-modal distillation methods [56-58], which offer
w5 a strategy to address the issue of missing modalities.

226 Building on this foundation and inspired by the recent advancements in the field
«r  of molecular property prediction, notably the 3DInfomax [59], we leverage contrastive
w28 learning to facilitate knowledge transfer between structural and sequence networks.
a0 This process can be regarded as a form of cross-modal distillation technique.

430 Structural information distillation involves two networks: a teacher network fg,(+)
a1 that receives antibody structural inputs and outputs structural representations, and
s a student network fe.,(-) that takes sequence inputs to generate sequence features.
a3 The teacher network’s weights are derived from pretraining on a protein structure
2 dataset and remain fixed throughout this process. The student network, comprised of
a5 concatenated ESM and structure encoder, is tasked with extracting features from the
a5 antibody sequence. During the training process, the student network’s parameters are
.7 updated, enabling it to learn how to incorporate structural information into sequence
s features. For an antibody z = (29, 2°!") in a dataset, its sequence and structure are
5o input into feeq(-) and fs(+), respectively, yielding representations 2°¢92' and 25",
wo  The training objective at this stage is to maximize the similarity between representa-
w1 tions of the same antibody z****"" and 2" while minimizing the similarity between
« unmatched representations 27°9**"" and 257 (i # §)-

a3 The similarity measurement function is defined as the cosine similarity, which is
as  given by the formula:

seq2str
2 q . Zstr

Sim(2599%50 sty = LT 5
S FEa T ®)
s To guide this process, the NT-Xent (normalized temperature-scaled cross entropy)
ws  loss is utilized[60]:
1o exp (sim (2, z;) /7) (6)
i =

Zﬁﬁl Ij2q exp (sim (z;, 21) /7) 7

w7 where the indicator function Ij,; takes values from {0,1}, is used to determine
us  whether k is not equal to i (evaluating to 1 if and only if k& # ¢). Additionally, 7
mo  represents a temperature parameter that adjusts the scale of the loss. The NT-Xent
w0 loss is calculated for all positive pairs within a mini-batch, ensuring symmetry in the
1 evaluation of pairwise similarities.

452 We adopt the structural representation network proposed in [61] as our teacher
3 network, utilizing the pretrained weights they provided. The teacher network is solely
sa engaged in the process of structural information distillation, extracting representations
s from structural data, and does not participate in the training or inference processes of
a6 downstream tasks. The parameters of the structure encoder within the student network
ss7 - are used for initialization and undergo further fine-tuning on downstream tasks.
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s 4.4 Interaction matrix

w0 Within the array of structure-independent methods, beyond the previously mentioned
wo challenge of diminished accuracy stemming from an absence of structural data, lies an
w1 additional complication: the issue of ambiguous interpretability. In response, several
w2 studies [62-65] have investigated the incorporation of attention mechanisms to enhance
w3 interpretability. However, the intricate nature of molecular interactions presents a
ws  significant challenge to the implicit modeling efforts of AAI through deep learning
w5 models.Thus, given two sequences, the antibody AB = (aby,aby - ,aby,) and the
ws antigen AG = (agy,ags, -+ ,agy,), we propose interaction matrix Z"" € Rm*"xd o
w7 capture the interaction pattern between antibody and antigen. The interaction matrix
ws 1s composed of two parts:

Zinter _ [Zfeat7 Zprop] . (7)
w The feature matrix Z® is derived from the element-wise multiplication of latent
an  codes, capturing sequence information:

2ot = p @ hi. (8)
m  Here, h{* and hj‘g are the latent codes for the i*" amino acid in the antibody and the
w2 j" amino acid in the antigen, respectively.
a73 For each type of non-covalent interaction, the property matrix ZP™P introduces

ana specific channels, including hydrogen bonding, electrostatic interactions, van der Waals
a5 forces, and hydrophobic interactions.

a76 We first focus on hydrogen bonding, a fundamental interaction widely prevalent
a7 across various protein-protein interactions. For each pair of amino acids, ab; from the
«s  antibody and ag; from the antigen, the calculation for the H-bond matrix is as follows:

Zz(jl) = min (Pacceptor(abi); Pdonor(agj)) ) (9)
Zz(j) = min (Pdonor(abi)7 Pacceptor(agj)) ,

ao where Pyeceptor and Pgonor represent the counts of hydrogen acceptor and donor
w0 atoms, respectively, of an amino acid. This process iterates over each amino acid
w1 pair between the two sequences, generating a comprehensive interaction profile that
a2 captures potential hydrogen bonding.

483 Another type of important non-covalent interaction between antibodies and anti-
se  gens is electrostatic interactions. These interactions are primarily governed by the
w5 charge properties of the amino acids. To incorporate electrostatic interactions into the
s property matrix, a specific channel is introduced, which quantifies the potential for
w7 electrostatic interactions between each pair of amino acids. The calculation for this
s part of the property matrix can be represented as follows:

28 = 11Q(aby) - Qlag;) < 0], (10)
w0 where Q(z) denotes the charge of amino acid z, which can be positive, negative, or
w0 mneutral. This binary representation streamlines the modeling of electrostatic interac-
w1 tions by directly identifying when opposite charges are present between amino acids,
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w2 thus indicating potential attractive forces that can enhance the interaction. In this
w3 context, only pairs of amino acids with opposite charges are considered to possibly
s contribute to the interaction potential.

405 Building on the foundation laid by the analysis of hydrogen bonding and electro-
w6 static interactions, we next turn our attention to van der Waals forces. While subtler
w7 than the previously mentioned forces, van der Waals interactions play a crucial role
w8 in the nuanced dance of molecular recognition, acting as the fine threads that help
w0 weave the intricate tapestry of antibody-antigen interactions.

500 To capture potential van der Waals forces within interaction matrix, we intro-
s duce an additional layer of analysis. Based on the relationship between distances and
s interaction strengths between amino acids [66], we employ a Gaussian formula to
s3  approximate the effect of distance on van der Waals forces, taking into account the
se  complementary nature of steric hindrance of amino acid side chains. The calculation
ss  of this addition to our property matrix is as follows:

2 = exp (— (Viaby) + V{ag;) - VO)2> .

ij 202 (11)
s Here, V(x) denotes the van der Waals volume [67] of an amino acid z. V; and o2 are
sor  derived from a Gaussian fit to the aggregate of possible amino acid pair volumes.

508 As the final piece of our interaction matrix, we leverage the hydropathy index [68]
s0  to capture hydrophobic interactions. The calculation method is simple yet effective:

_ |H(ab) — Heag)|
M b
so where H(x) represents the hydropathy index of amino acid . The term M stands
su  for the maximum absolute difference in hydropathy indices across all possible pairs of
sz amino acids, ensuring the subtraction operation yields a normalized score that reflects
si3  the relative hydrophobic compatibility between ab; and ag;. This channel provides
s information on hydrophobic interactions through a simple assessment of the differences
si5  in hydrophobic and hydrophilic between interacting amino acids.
516 Given the approximations and simplifications involved in creating the property
si7 - matrix, as well as the complexity of actual interactions, we further extract features
sis from the interaction matrix using a CNN module. This module enriches the network
siv - with local feature information. Through interpretability analysis (see Section 4.8),
s0 we have also proven its effectiveness in capturing the patterns of antibody-antigen
s interactions.

2D = (12)

s 4.5 Multi-task focal loss

53 Due to the specificity of the interaction between antibodies and antigens, most of the
s recorded antibody-antigen pairs do not exhibit neutralization. This has resulted in
ss  an imbalance of positive and negative samples in our collected SARS-CoV-2 dataset.
s Additionally, differences in fitness among different virus lineages lead to a non-uniform
sz data distribution at the lineage level. (see Supplementary information, Fig.S1) More-
s over, since the IC5p values in the dataset come from different sources, and the
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so0  experimental conditions and methods cannot be guaranteed to be completely consis-
s tent, the dataset also contains some unavoidable noise. To address these issues, we
sn  have adopted a multi-task framework (see Section 4.2) along with the corresponding
sz focal loss [69, 70] for training downstream tasks. The overall loss consists of regression
s13 and classification loss:

L= B[’Teg + (1 _ B)Edsy (13)
s where [ is a weighting factor to balance the regression and classification tasks. The
s35  regression part of focal loss is defined as:

n

1
Lre9 = = i —0i)°. 14
2 Dl (14
s3s  For the binary classification neutralization prediction task, we adopt the classical focal
537 10Ss:
1s 1<
L = - Z (a(l —p;)"log(pi) + (1 — a)p] log(1 — p;)), (15)
i=1

s where (1 — p;) and p; are the model’s estimated probabilities for the class with label
sy = 0 and y = 1, respectively; a is a weighting factor for the class; v is the focusing
s parameter that smoothly adjusts the rate at which easy examples are down-weighted.
s (Supplementary information, Table.S8)

=« 4.6 Evaluation metrics for regression and classification tasks
ss. Mean Absolute Error (MAE)

sas - MAE, conversely, measures the average magnitude of errors in a set of predictions
ss  without considering their direction. It’s calculated as the average of the absolute dif-
ss6  ferences between predicted and actual values, thus providing an intuitive measure of
sev  prediction accuracy:

E

1
MAE = — : — il 16
N - lyi — Uil (16)

1

ss  Root Mean Square Error (RMSE)

s RMSE is a standard way to measure the error of a model in predicting quantitative
sso  data. The formula for RMSE is given by:

N
1 N
RMSE =, | + > (i — 902, (17)

i=1
ssi. where IV is the number of observations, y; is the actual value of an observation, and
ss2 9); is the predicted value.
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53 Pearson and Spearman Correlation

ssa 1C50 values originate from wet-lab experiments across various batches and different
55 laboratories. Thus, given the diversity in experimental conditions, Spearman’s rank
6 correlation coefficient (Spearman’s p) is particularly apt for measuring the relation-
ss7 - ship between ordinal variables, such as comparing the magnitudes of different 1C5sq
sss values. It assesses how well the relationship between two variables can be described
ss0  using a monotonic function, focusing on the ranks of values rather than their direct
s0  magnitudes:

2
M7 (18)
n(n? —1)

ss1  where d; is the difference between the ranks of corresponding values, and n is the
sz number of observations.

563 We also consider Pearson’s correlation coefficient (Pearson’s r) for its ability to
ssa  measure the linear correlation between two variables, offering a comprehensive analysis
s6s  when the data distribution permits:

Y -Dw-9)
V(i =22y —9)?
s6s where x; and y; are the individual sample points indexed with ¢, & and ¢ are the
s7  sample means.
568 Considering the variability in IC5y data due to different experimental setups,
s0  Spearman’s p becomes a more suitable choice for evaluating the ordinal relationship
s between ICyg values, providing a robust measure against the non-uniformity of data
sn - collection methods. Pearson’s r complements this by quantifying the degree of linear
sz relationship where applicable, together offering a nuanced approach to assess predictive
sz accuracy in the context of IC5g value prediction.

p=1-

(19)

su Accuracy, F1 Score, and Matthews Correlation Coefficient (MCC)

s In evaluating binary classification models, especially with imbalanced datasets like
s the SARS-CoV-2 datasets, accuracy alone can be misleading. Thus, we supplement it
s with the F1 Score and the Matthews Correlation Coefficient (MCC). The F1 Score,
s calculated as the harmonic mean of precision p (correct positive predictions out of
so  all positive predictions) and recall r (correct positive predictions out of all actual
0 positives), offers a balanced metric:

Fl=2.2"T (20)
p+r
581 MCC further provides a comprehensive measure by accounting for all aspects of the

se2 - confusion matrix, capturing the quality of binary classifications beyond the limitations
se3 of accuracy and F1 Score. This approach ensures a more accurate assessment of model
ssa  performance in handling the skewed class distribution typical of the SARS-CoV-2
sss  dataset.

TP x TN — FP x FN
MCC = : (21)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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sss  where TP is the number of true positives, TN is the number of true negatives, FP is
ss7 the number of false positives, and FN is the number of false negatives.

sss  Precision—Recall Area Under the Curve (PC-AUC) and Area Under the
ss0 Receiver Operating Characteristic (ROC-AUC)

so  PR-AUC measures the trade-off between precision and recall across different thresh-
sn olds. It is particularly valuable in the SARS-CoV-2 datasets, where positive samples
s (neutralizing pairs) are much less common than negative ones.

503 ROC-AUC evaluates how well the model distinguishes between neutralizing and
sa non-neutralizing pairs over various threshold settings. It plots the true positive rate
ss (recall) against the false positive rate (the ratio of incorrectly identified negatives) to
s show the model’s discrimination capability.

v 4.7 Module ablation study and principal component analysis

ss 1o further investigate and analyze the impact of structural information distillation
so0 and interaction matrix on model performance, we conduct module ablation study and
s PCA analysis on the final concatenated features.

601 We employ four configurations of the model: the original S3AI, one without struc-
62 tural information distillation, one without interaction matrix, and one without both
603 components. For the version without structural information distillation, we randomly
64 initialize the structural encoding module. For the variant lacking interaction matrix,
ss we pool the sequence features of the antibody and antigen along their length, con-
es catenate them with the other final features, and then feed them into the interaction
s7  prediction module for prediction. All models are trained under identical settings. After
ss training, we use PCA analysis to visualize the concatenated features of the best check-
60 point for each model on all samples in the test set. The final performance of ablation
60 study is presented in Table.S4.

a1 4.8 Region effective attribution calculation

ez Attribution evaluation

a3 We use the Shapley value [71] to measure the attribution of the regions in the input
eu antibody to the prediction result. The Shapley value is a renowned game-theoretic
a5 metric for assessing the attribution/importance of each input variable to the output
s1s  of the deep learning model. It has been recognized as the sole attribution method
ez that adheres to the axioms of anonymity, symmetry, dummy, additivity, and efficiency.
as  Accordingly, the Shapley value [72] of the i-th variable is computed as follows:

POED DI < MU R ) (22)

7l
s9 where N denotes the set of variables and | - | denotes the cardinality of the set. Here,
s20 we use v(S) to simplify the notation of v(zg), and v(zg) denotes the model output
¢ on a masked sample zg. In the masked sample zg, variables in S are present, and
e variables in N\ S are masked. In this way, v((}) represents the model output when all
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23 input variables are masked, and v(/N) denotes the model output on the original input
64 Sample x.

o Attribution of FRs and entire CDRs

e As the first step of estimating the attribution of the CDRs, we visualize the effects of
e7 the entire CDRs on the prediction result.

628 For an input antibody AB, let Z™"¢" € R™*"*4 denote the interaction matrix,
620 where m, n, and d denote the length of the antibody AB, the length of the antigen
e AG and channel number of the interaction matrix, respectively. We select the feature
e of the entire CDRs as a single variable and divide the remained feature of FRs in
sz Z™° into t continuous regions. These regions and the CDRs are selected as t + 1
633 input variables, which consist of the input variable set N, to calculate the Shapley
e3¢ value. Then, we set v(IN) as the prediction output for antibody-antigen interactions,
s and v(S) denotes the prediction output when the variable in N \ S is masked.

e Attribution of each CDR sub-region

sv  After calculating the attribution of the entire CDRs, we estimate the attribution of
s each CDR sub-region.

639 Given an intermediate-layer feature of an input antibody, the entire CDRs consist
a0 of 6 parts: CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3. We select
e1  the feature of these 6 parts as input variables, which consist of the input variable set
s2  N. Then, we set v(IN) as the attribution of the entire CDRs in this input antibody
s3  AB and v(S) denotes the attribution of the entire CDRs when the variable in N \ S
ea 1S masked.

os  Mask method

ss  When we calculate the prediction output v(.S) on a masked input antibody, we system-
sr  atically mask the selected variables in N\ S, which represent features in the interaction
es  matrix, and observe their impact on the model’s output. This method involves iter-
a9 atively masking each feature while measuring the change in the model’s predictions.
e0 By comparing the model’s output with masked and present variables, Shapley val-
es1  ues can be calculated to quantify the feature’s contribution to the prediction. This
es2  method requires a faithful baseline value to mask the variable, which does not provide
&3 additional prior information and does not cause the masked feature to be out of the
ea  distribution of the original features in the interaction matrix.

655 For the attribution of the entire CDRs, the baseline value to mask the variable
o6 1S set as the variable’s average feature vector across the dataset, which is a widely
o7 used method to set the baseline value, providing a reference point for evaluating the
es  significance of individual features.

659 For the attribution of each CDR sub-region, since v(IN) is the attribution of the
w0 entire CDRs, we calculate the masked output v(S) by replacing the features of the
s1  regions in the CDRs that belong to N \ .S with baseline values when calculating the
o2 attribution entire CDRs. The baseline value to mask the variable is set as the variable’s
o3 average feature vector across the dataset.
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s Variable selection

6s In order to encourage greater faithful effective attribution, we generate many parti-
es tions of variables for calculating the Shapley value. In the selection of Shapley values
e7 for the attribution of the entire CDRs, the process involves randomly selecting con-
e tiguous regions from the input antibody after choosing CDRs as a whole, and for the
e attribution of each CDR sub-region, we also use these randomly selected regions to
o0 get several attribution value outputs.

671 Besides, these remaining regions can be randomly sampled in various sizes to create
o2 different scales of variables. These selected regions form the variables for computing
o3 the Shapley value. Through various combinations of these selections, attributions are
e calculated for each variable, and the average result across all selections represents the
o5 final attribution of the entire CDRs.

676 By calculating the attribution for each variable and averaging the results across
ez all partitions, we obtain a comprehensive assessment of the entire CDRs’ attribution
es  to the prediction outcome. Additionally, by averaging the attribution values outputs
s {v(S)} from all partitions, this approach ensures a comprehensive evaluation of the
eo attribution for each CDR sub-region.

« Data availability

2 The SabDab data is available at https://opig.stats.ox.ac.uk/webapps/
s3 sabdab-sabpred/sabdab. The processed HIV data is freely available at
¢ https://github.com/enai4bio/DeepAAI. SARS-CoV-2 data can be downloaded from
s https://github.com/stau-7001/S3AIL.

« (Code availability

s Relevant code and models are available at https://github.com/stau-7001/S3AI.

« References
0 [1] Jerne, N. K. The immune system. Scientific American 229, 52-63 (1973).

00 [2] Nimmerjahn, F. & Ravetch, J. V. Antibody-mediated modulation of immune

601 responses. Immaunological reviews 236, 265-275 (2010).

s [3] Parkin, J. & Cohen, B. An overview of the immune system. The Lancet 357,
693 1777-1789 (2001).

s¢  [4] Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for
695 the next generation of antibody—drug conjugates. Nature reviews Drug discovery
696 16, 315-337 (2017).

wr  [b] Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody—
698 drug conjugates for cancer therapy. Nature Reviews Clinical Oncology 18, 327-344
699 (2021).

22


https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab
https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab
https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab
https://github.com/enai4bio/DeepAAI
https://github.com/stau-7001/S3AI
https://github.com/stau-7001/S3AI
https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

w0 [6] Bustamante, C. D., De La Vega, F. M. & Burchard, E. G. Genomics for the

701 world. Nature 475, 163-165 (2011).

w2 [7] Patterson, S. D. & Aecbersold, R. H. Proteomics: the first decade and beyond.
703 Nature genetics 33, 311-323 (2003).

e [8] Varadé, J., Magaddn, S. & Gonzdlez-Fernandez, A. Human immunology and
705 immunotherapy: main achievements and challenges.  Cellular & Molecular
706 Immunology 18, 805-828 (2021).

w [9] Krzyszezyk, P. et al. The growing role of precision and personalized medicine for
708 cancer treatment. Technology 6, 79-100 (2018).

w0 [10] Johnson, K. B. et al. Precision medicine, ai, and the future of personalized health
710 care. Clinical and translational science 14, 86-93 (2021).

m  [11] Lee, C. M., Iorno, N., Sierro, F. & Christ, D. Selection of human antibody
72 fragments by phage display. Nature protocols 2, 3001-3008 (2007).

ns  [12] Butler, J. E. Enzyme-linked immunosorbent assay. Journal of immunoassay 21,
714 165-209 (2000).

ns  [13] Munoz-Fontela, C. et al. Animal models for covid-19. Nature 586, 509-515 (2020).

76 [14] Schmidt, F. et al. Measuring sars-cov-2 neutralizing antibody activity using pseu-

7 dotyped and chimeric viruses. Journal of Experimental Medicine 217, €20201181
718 (2020).

no  [15] Pittala, S. & Bailey-Kellogg, C. Learning context-aware structural representations
720 to predict antigen and antibody binding interfaces. Bioinformatics 36, 3996-4003
1 (2020).

= [16] Dai, B. & Bailey-Kellogg, C. Protein interaction interface region prediction by
3 geometric deep learning. Bioinformatics 2580-2588 (2021). URL http://dx.doi.
724 org/10.1093 /bioinformatics/btabl54.

= [17) Myung, Y., Pires, D. E. & Ascher, D. B. Csm-ab: graph-based antibody—antigen
726 binding affinity prediction and docking scoring function. Bioinformatics 38, 1141—
727 1143 (2022).

2s  [18] Yang, Y. X., Huang, J. Y., Wang, P. & Zhu, B. T. Area-affinity: A web server
729 for machine learning-based prediction of protein—protein and antibody—protein
730 antigen binding affinities. Journal of Chemical Information and Modeling 63,
e 3230-3237 (2023).

= [19] Yang, Y. X., Wang, P. & Zhu, B. T. Binding affinity prediction for antibody—
733 protein antigen complexes: A machine learning analysis based on interface and
734 surface areas. Journal of Molecular Graphics and Modelling 118, 108364 (2023).

23


http://dx.doi.org/10.1093/bioinformatics/btab154
http://dx.doi.org/10.1093/bioinformatics/btab154
http://dx.doi.org/10.1093/bioinformatics/btab154
https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

75 [20] Shan, S. et al. Deep learning guided optimization of human antibody against

736 SARS-COV-2 variants with broad neutralization. Proceedings of the National
737 Academy of Sciences 119, €2122954119 (2022).

1s  [21] Jumper, J. et al. Highly accurate protein structure prediction with alphafold.
730 Nature 596, 583-589 (2021).

o [22] Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with
1 a language model. Science 379, 1123-1130 (2023).

2 [23] Evans, R. et al. Protein complex prediction with alphafold-multimer. biorziv
73 2021-10 (2021).

ue  [24] Yin, R., Feng, B. Y., Varshney, A. & Pierce, B. G. Benchmarking alphafold for
75 protein complex modeling reveals accuracy determinants. Protein Science 31,
746 e4379 (2022).

wr [25] Stevens, A. O. & He, Y. Benchmarking the accuracy of alphafold 2 in loop
748 structure prediction. Biomolecules 12, 985 (2022).

uo  [26] Ruffolo, J. A., Sulam, J. & Gray, J. J. Antibody structure prediction using
750 interpretable deep learning. Patterns 3 (2022).

w1 [27) Edelman, G. M. Antibody structure and molecular immunology. Science 180,
75 830-840 (1973).

3 [28] Olimpieri, P. P., Chailyan, A., Tramontano, A. & Marcatili, P. Prediction of
754 site-specific interactions in antibody-antigen complexes: the proabc method and
755 server. Bioinformatics 29, 2285-2291 (2013).

6 [29] Liberis, E., Velickovié¢, P., Sormanni, P., Vendruscolo, M. & Lid, P. Parapred:
757 antibody paratope prediction using convolutional and recurrent neural networks.
758 Bioinformatics 34, 2944-2950 (2018).

0 [30] Mason, D. M. et al. Optimization of therapeutic antibodies by predicting anti-
760 gen specificity from antibody sequence via deep learning. Nature Biomedical
761 Engineering 5, 600-612 (2021).

w2 [31] Zhang, J. et al. Predicting unseen antibodies’ neutralizability via adaptive graph
763 neural networks. Nature Machine Intelligence 4, 964-976 (2022).

e [32] Huang, Y., Zhang, Z. & Zhou, Y. Abagintpre: A deep learning method for pre-
765 dicting antibody-antigen interactions based on sequence information. Frontiers
766 in Immunology 13, 1053617 (2022).

e [33] Yuan, Y., Chen, Q., Mao, J., Li, G. & Pan, X. Dg-affinity: predicting antigen—
768 antibody affinity with language models from sequences. BMC bioinformatics 24,
769 430 (2023).

24


https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

m [34] Lin, Z. et al. Language models of protein sequences at the scale of evolution
m enable accurate structure prediction. bioRziv (2022).

7 [35] Deac, A., VeliCkovié, P. & Sormanni, P.  Attentive cross-modal paratope
3 prediction. Journal of Computational Biology 26, 536-545 (2019).

m  [36] Chen, M. et al. Multifaceted protein—protein interaction prediction based on
775 siamese residual renn. Bioinformatics 35, i305-1314 (2019).

m  [37) Lu, S., Hong, Q., Wang, B. & Wang, H. Efficient resnet model to predict protein-

m protein interactions with gpu computing. IEEE Access 8, 127834-127844 (2020).
s [38] Davies, D. R. & Cohen, G. H. Interactions of protein antigens with antibodies.
79 Proceedings of the National Academy of Sciences 93, 7T-12 (1996).

70 [39] Padlan, E. A., Abergel, C. & Tipper, J. P. Identification of specificity-determining
781 residues in antibodies. The FASEB journal 9, 133-139 (1995).

72 [40] Shirai, H., Kidera, A. & Nakamura, H. Structural classification of cdr-h3 in
783 antibodies. FEBS letters 399, 1-8 (1996).

7 [41] Miller, N. L., Clark, T., Raman, R. & Sasisekharan, R. Learned features of
785 antibody-antigen binding affinity. Frontiers in Molecular Biosciences 10, 1112738
786 (2023).

wr [42] Osajima, T. & Hoshino, T. Roles of the respective loops at complementarity
788 determining region on the antigen-antibody recognition. Computational Biology
789 and Chemistry 64, 368-383 (2016).

w0 [43] Tsuchiya, Y. & Mizuguchi, K. The diversity of h 3 loops determines the antigen-
701 binding tendencies of antibody cdr loops. Protein Science 25, 815-825 (2016).
2 [44] Aburatani, T., Ueda, H. & Nagamune, T. Importance of a cdr h3 basal residue in
703 vh/vl interaction of human antibodies. The journal of biochemistry 132, 775-782
704 (2002).

w5 [45] Flyak, A. I et al. An ultralong cdrh2 in hev neutralizing antibody demonstrates
796 structural plasticity of antibodies against €2 glycoprotein. Elife 9, 53169 (2020).
797 [46] Dunbar, J. et al. Sabdab: the structural antibody database. Nucleic acids research
798 42, D1140-D1146 (2014).

w0 [47] Ruffolo, J. A., Chu, L.-S., Mahajan, S. P. & Gray, J. J. Fast, accurate antibody
800 structure prediction from deep learning on massive set of natural antibodies.
801 Nature communications 14, 2389 (2023).

sz [48] Cao, Y. et al. Imprinted sars-cov-2 humoral immunity induces convergent omicron
803 rbd evolution. Nature 614, 521-529 (2023).

25


https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

s [49] Cao, Y. et al. Omicron escapes the majority of existing sars-cov-2 neutralizing

505 antibodies. Nature 602, 657-663 (2022).

we  [50] Cho, A. et al. Anti-sars-cov-2 receptor-binding domain antibody evolution after
807 mrna vaccination. Nature 600, 517-522 (2021).

s [51] Wang, Z. et al. mrna vaccine-elicited antibodies to sars-cov-2 and circulating
809 variants. Nature 592, 616-622 (2021).

s [52] Gangavarapu, K. et al. Outbreak. info genomic reports: scalable and dynamic
811 surveillance of sars-cov-2 variants and mutations. Nature Methods 20, 512-522
812 (2023).

sz [53] Tsueng, G. et al. Outbreak. info research library: A standardized, searchable
814 platform to discover and explore covid-19 resources. Nature Methods 20, 536—-540
815 (2023).

ss  [54] Khare, S. et al. Gisaid’s role in pandemic response. China CDC weekly 3, 1049
817 (2021).

ss  [55] Yoon, H. et al. Catnap: a tool to compile, analyze and tally neutralizing antibody
819 panels. Nucleic acids research 43, W213-W219 (2015).

w0 [56] Zhang, L., Chen, Z. & Qian, Y. Knowledge distillation from multi-modality to
a1 single-modality for person verification. Proc. Interspeech 2021 1897-1901 (2021).
s2  [57] Afouras, T., Chung, J. S. & Zisserman, A. Asr is all you need: Cross-modal
823 distillation for lip reading, 2143-2147 (IEEE, 2020).

s [58] Jin, Y. et al. Cross-modal distillation for speaker recognition, Vol. 37, 12977-12985
825 (2023).

we  [59] Stérk, H. et al. 3d infomax improves gnns for molecular property prediction, Vol.
827 162 of Proceedings of Machine Learning Research, 20479-20502 (PMLR, 2022).
ws [60] Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. E. A simple framework for
829 contrastive learning of visual representations, Vol. 119 of Proceedings of Machine
830 Learning Research, 1597-1607 (PMLR, 2020).

an [61] Guo, Y., Wu, J., Ma, H. & Huang, J. Self-supervised pre-training for protein
83 embeddings using tertiary structures, 6801-6809 (AAAI Press, 2022).

s [62] Hosseini, S. & Ilie, L. Pithia: Protein interaction site prediction using multiple
834 sequence alignments and attention. International Journal of Molecular Sciences
- 23, 12814 (2022).

w6 [63] Chen, L. et al. Transformercpi: improving compound-protein interaction pre-
837 diction by sequence-based deep learning with self-attention mechanism and label

26


https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

838 reversal experiments. Bioinformatics 36, 4406-4414 (2020).

s0  [64] Li, M., Lu, Z., Wu, Y. & Li, Y. Bacpi: a bi-directional attention neural network
840 for compound-protein interaction and binding affinity prediction. Bioinformatics
81 38, 1995-2002 (2022).

s2  [65] Chen, C., Wu, T., Guo, Z. & Cheng, J. Combination of deep neural network with
843 attention mechanism enhances the explainability of protein contact prediction.
844 Proteins: Structure, Function, and Bioinformatics 89, 697-707 (2021).

ws [66] Chari, R., Jerath, K., Badkar, A. V. & Kalonia, D. S. Long-and short-range
846 electrostatic interactions affect the rheology of highly concentrated antibody
o7 solutions. Pharmaceutical research 26, 26072618 (2009).

ss  [67) Zamyatnin, A. Protein volume in solution. Progress in biophysics and molecular
849 biology 24, 107-123 (1972).

ss0  [68] Eisenberg, D. Three-dimensional structure of membrane and surface proteins.
851 Annual review of biochemistry 53, 595-623 (1984).

s2  [69] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollér, P. Focal loss for dense object
653 detection, 2980-2988 (2017).

sse  [70] Nie, Z. et al. Evolution-guided large language model is a predictor of virus
855 mutation trends. bioRziv 2023-11 (2023).

ss6  [71] Lundberg, S. M. & Lee, S. Guyon, . et al. (eds) A unified approach to interpreting
857 model predictions. (eds Guyon, L. et al.) Advances in Neural Information Process-
858 ing Systems 30: Annual Conference on Neural Information Processing Systems
850 2017, December 4-9, 2017, Long Beach, CA, USA, 4765-4774 (2017).

so [72] Shapley, L. S. et al. A value for n-person games (1953).

« Acknowledgements

s2 This work is financially supported by the National Key R&D Program of China
w3 (No. 2022ZD0118201, 2020YFA0908100, 2023YFF1204401), Natural Science Founda-
se  tion of China (No. 61972217, 32071459, 62176249, 62006133, 62271465, 61825101,
w5 62088102, 21991132, 21925102, 92056118, 22331003, 22301010), Shenzhen Medical
ss  Research Fund (No. B2302037), and Beijing National Laboratory for Molecular Sci-
sr  ences (BNLMS-CXXM-202006). The work is also supported by the National Center
ws for Protein Sciences at Peking University. W.-B.Z. acknowledges Bayer Pharma
so for the Bayer Investigator Award. We appreciate the support of AI for Science
g0 (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, China.

27


https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

= Competing interests

sz The authors declare no competing interests.

28


https://doi.org/10.1101/2024.03.09.584264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.09.584264; this version posted April 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

#» Supplementary information

a: S1 Baseline methods

a5 In conducting the comparative experiments, as the models utilized for comparison are
ars  not all originally designed for 1C5q regression or classification tasks, we implement sev-
s eral essential adjustments. For the Parapred-series models (Parapred, Fast-Parapred,
es  and AG-Fast-Parapred), originally intended for predicting binding sites, as well as the
sv  PPI prediction models PIPR and ResPPI, we modify their output head to replicate
so the structure of S3AI, thereby enabling the prediction of IC5y values and binary clas-
g1 sification outputs. For MCNN, in addition to the modifications mentioned above, we
s2 incorporate a module with the same architecture as the one originally designed for
a3 processing antibody inputs. This new module is designed for handling antigen inputs,
sa  allowing MCNN to accommodate the diverse antigen inputs in the dataset. All models
ses  are trained using the same multitask focal loss as employed by S3AIL

w 952 Overview of SARS-CoV-2 data
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Fig. S1 The distribution of ICs¢ values across different SARS-CoV-2 lineages
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w 93 Results for SARS-CoV-2 test set

Metric MCNN  ResPPI  Parapred Fast-parapred AG-fast-parapred PIPR  S3AI
MAE | 0.911 0.818 0.967 0.981 1.171 1.045 0.605
RMSE | 1.605 1.475 1.524 1.467 1.697 1.673  1.243
Spearmanr 1 0.525 0.579 0.566 0.575 0.528 0.511  0.655
Pearsonr 1 0.756 0.803 0.780 0.802 0.743 0.731  0.860
Accuracy 1 0.780 0.821 0.801 0.815 0.767 0.768  0.845
F1 scoref 0.844 0.863 0.851 0.859 0.837 0.836  0.870
PR-AUC ¢t 0.852 0.898 0.888 0.917 0.881 0.843 0.945
ROC-AUC 1 0.811 0.874 0.857 0.884 0.846 0.805 0.921
MCC 7t 0.523 0.612 0.564 0.597 0.499 0.492  0.685

Table S1 Performance of models on SARS-CoV-2 test set.

wes 94 Results for HIV test set

Model Accuracy T FlscoreT PR-AUC1T ROC-AUC1T MCC?T
DeepAAI (sequence) 0.768 0.744 0.830 0.851 0.533
DeepAAI (k-mer+PSSM) 0.768 0.740 0.828 0.845 0.533
DeepAAI (PSSM+sequence) 0.777 0.757 0.842 0.858 0.552
DeepAAI (k-mer-+sequence) 0.777 0.752 0.844 0.862 0.552
DeepAAI (k-mer+PSSM-+sequence) 0.776 0.749 0.841 0.859 0.549
S3AI 0.807 0.774 0.861 0.880 0.606

Table S2 Classification Performance of models on OOD test (HIV unseen test set for classification).

Model MSE | MAE |
DeepAAI (sequence) 5.15 1.68
DeepAAI (k-mer+PSSM) 3.28 1.36
DeepAAI (PSSM + sequence) 3.63 1.37
DeepAAI (k-mer+sequence) 4.99 1.66
DeepAAI (k-mer+PSSM-+sequence) 4.98 1.66
S3AI 4.39 1.59

Table S3 Regression Performance of models on OOD test
(HIV unseen test set for regression).
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= S50 Results for module ablation study

Model Baseline  Structural Information Distillation  Interaction Matrix  S3AI
MAE | 0.955 0.899 0.645 0.605
RMSE | 1.634 1.578 1.262 1.243
Spearmanr 1 0.544 0.552 0.626 0.655
Pearsonr 1 0.752 0.761 0.854 0.860
Accuracy 1 0.791 0.799 0.837 0.845
F1 score 1 0.838 0.847 0.866 0.870
PR-AUC 1 0.876 0.881 0.936 0.945
ROC-AUC 1 0.836 0.842 0.909 0.921
MCC 1 0.545 0.559 0.660 0.685

Table S4 Results for module ablation study, including four configurations of the model: the
original S3AI, one without structural information distillation (Interaction Matrix), one without
interaction matrix (Structural Information Distillation), and one without both components
(Baseline).

= 356 Region effective attribution

FR1 FR2 FR3 FR4 FR5 FR6 CDRs
1.601e-02  5.857e-02  9.106e-03  9.721e-02  2.373e-02  4.919e-02  1.526e-01

Table S5 Average region effective attribution of FRs and entire CDRs in Fig.5a

Sample FR1 FR2 FR3 FR4 FR5 FR6 CDRs

1519 3.180e-02 9.545e-02 5.059e-02 9.721e-02 3.774e-02 9.212e-02  1.978e-01
5401 -7.455e-04  -1.046e-03  -4.464e-04  -4.709e-04 -1.063e-03 -1.361e-03  4.985e-03
8488 4.115e-02  -8.567e-02  -8.890e-02  5.021e-02  -9.608e-02 -1.039e-01  2.902e-01
27248 -9.986e-03  5.151e-02 1.751e-02  -1.747e-02  4.270e-02 1.611e-02  6.545e-02

Table S6 Region effective attribution of FRs and entire CDRs in Fig.5b

Sample CDR-L1 CDR-L2 CDR-L3 CDR-H1 CDR-H2 CDR-H3

44 -9.326e-03  -1.902e-02  -3.844e-02  -1.459e-02  3.083e-02  1.128e-01
60 2.932e-02  -3.881e-03  2.634e-02  -3.949e-02  2.932e-02  6.291e-02
68 -5.323e-02  1.369e-01  -2.485e-01 1.823e-01 3.043e-01  2.035e-01
93 3.145e-02 3.879e-02 5.390e-02  -5.350e-02  -7.830e-02  1.449e-01

Table S7 Region effective attribution of CDRs in Fig.5¢
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o1 S7 Hyperparameters

Hyperparameter Value
Learning rate 0.0001
Number of epochs 200
o 1
B 0.8
ESM embedding dim 640 (150M)
Dropout rate 0.6
Convolution layers 3
Kernel size 3

Table S8 Hyperparameters of the
model
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