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Abstract23

With the application of personalized and precision medicine, more precise and24

efficient antibody drug development technology is urgently needed. Identifica-25

tion of antibody-antigen interactions is crucial to antibody engineering. The26

time-consuming and expensive nature of wet-lab experiments calls for efficient27

computational methods. Taking into account the non-overlapping advantage of28

current structure-dependent and sequence-only computational methods, we pro-29

pose an interpretable antibody-antigen interaction prediction method, S3AI. The30
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introduction of structural knowledge, combined with explicit modeling of chem-31

ical rules, establishes a ’sequence-to-function’ route in S3AI, thereby facilitating32

its perception of intricate molecular interactions through providing route and33

priors guidance. S3AI significantly and comprehensively outperforms the state-34

of-the-art models and exhibits excellent generalization when predicting unknown35

antibody-antigen pairs, surpassing specialized prediction methods designed for36

out-of-distribution generalization in fair comparisons. More importantly, S3AI37

captures the universal pattern of antibody-antigen interactions, which not only38

identifies the CDRs responsible for specific binding to the antigen but also39

unearths the importance of CDR-H3 for the interaction. Structure-free design and40

superior performance make S3AI ideal for large-scale, parallelized antibody opti-41

mization and screening, enabling the rapid and precise identification of promising42

candidates within the extensive antibody space.43

1 Introduction44

As the important immune molecules of the human immune system [1], antibodies are a45

specialized type of protein with the primary role of recognizing and combating invading46

pathogens [2, 3]. The interaction between antibodies and antigens is characterized by47

a remarkable specificity and plays a pivotal role in this immunological process [3].48

Therefore, humans continue to explore methods for preparing antibodies to develop49

antibody drugs and try to apply them in clinical treatments [4, 5]. In recent years,50

the research and development of antibody drugs have entered a new stage, driven51

by the continuous development of technologies such as genomics [6], proteomics [7],52

and immunology [8]. Currently, antibody design methods with higher precision and53

efficiency are urgently needed to meet the promotion and application of personalized54

treatment and precision medicine [9, 10].55

The core of improving the design efficiency of antibody drugs lies in estimating56

the interaction strength of antibodies and antigens. The interaction strength between57

an antibody and an antigen extends beyond a mere binary interaction; it should be58

characterized as a continuous variable. Quantified by metrics such as the dissociation59

constant (Kd) or the half-maximal inhibitory concentration (IC50), this continuum60

encapsulates the depth and strength of the interaction. Although there have been61

several conventional wet-lab experiments [11–14] to estimate the interactions between62

antibodies and antigens, they remain expensive and time-consuming. This presents a63

significant barrier to thoroughly exploring the extensive antibody optimization space,64

limiting the identification of novel and potentially more effective antibody candidates.65

Therefore, efficient computational methods are urgently needed to predict antibody-66

antigen interaction (AAI) to promote antibody optimization and screening.67

As shown in Fig.1a, current computational methods, especially deep-learning meth-68

ods, can be mainly divided into structure-dependent and sequence-only methods for69

characterizing Antibody-Antigen Interactions (AAI). The former exhibits lower task70

complexity since the model takes protein tertiary structure as input, which is closely71
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Fig. 1 Our motivation and methodology. Route and priors guidance are designed to facilitate inter-
pretable prediction of antibody-antigen interactions. a, Two major categories of methods currently
used for antibody-antigen interaction prediction are sequence-only and structure-dependent meth-
ods. b, Structural information distillation transfers structural information into sequence modality
through modality bridging, thereby providing route guidance for interpretable prediction. c, Interac-
tion matrix makes non-covalent interactions explicit through property modeling, thereby providing
priors guidance for interpretable prediction.

related to protein interactions [15–19]. Srivamshi et al. [15] employed graph convo-72

lutional networks and an attention layer to explicitly encode the partner’s context73

in an antibody-antigen complex. While PInet [16] encoded proteins as surface point74

clouds with physicochemical properties and 3D geometry, predicting epitope-paratope75

in antibody-antigen. Another line of research is redesigning the complementarity-76

determining regions (CDRs) to get a broad-spectrum antibody. Shan et al. [20]77

developed a geometric neural network with attention mechanisms for antibody’s CDR78

sequences optimization. However, experimental structure determination methods, such79

as NMR spectroscopy and X-ray crystallography, prove to be both time-intensive and80

expensive, resulting in limited available high-quality structures of antibodies and their81

complexes. Although protein structure prediction methods [21–23] have made break-82

through progress, their inherent errors [24, 25] and the structural characteristics of83

antibodies [26, 27] bring obvious interference to AAI prediction. Naturally, high-quality84

data insufficiency presents an obstacle to training deep-learning models with ideal85

generalization capability. In contrast, sequence-only methods, which take advantage86

of extensive antibody sequence data, offer a more efficient framework for large-scale87
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antibody screening [28–33]. Earlier studies, such as ProABC [28], utilized a sequence-88

only random forest algorithm to predict paratope residues, eliminating the need for89

structured data to achieve accurate predictions. Parapred [29] employed a combina-90

tion of local and global features, harnessing deep learning techniques to analyze AAI.91

Marson et al. [30] introduced a convolutional neural network (MCNN) to predict the92

antigen specificity of antibodies. DeepAAI [31] proposes dividing antigens and anti-93

bodies into ’seen’ and ’unseen’ collections, utilizing graph neural networks to model94

the issue of out-of-distribution (OOD) data. However, a common drawback shared95

by these sequence-only methods is their limited interpretability and prediction per-96

formance, primarily stemming from the alienation of one-dimensional sequences from97

functionality.98

In order to combine the advantages of both types of methods while avoiding the99

disadvantages, it is essential to provide sensible ’sequence-to-function’ guidance to100

structure-free models. Thus, we propose S3AI (Structure-Assisted Antibody-Antigen101

Interaction Prediction), a deep-learning method that uses only sequences as inputs to102

the inference phase.103

The first form of guidance we introduce aims to establish an implicit route from104

sequence to structure modalities. Modality bridging is a tangible way to build this105

route (Fig.1b), where we automatically incorporate protein structural information106

through a structural encoding module. By promoting the model’s ability to map from107

sequences to structural latent codes via contrastive learning, we break the barrier108

between these distinct modalities. In this process, knowledge from the 3D structures109

of massive antibodies is captured in the model parameters, allowing the model to110

introduce implicit structural information automatically in case only sequence input111

is used. The S3AI model incorporates two sequence feature extraction modules: one112

dedicated to antigens and the other to antibodies. Considering the volume of available113

structure and sequence data, structural information distillation is applied exclusively114

to the antibody feature extraction branch. Subsequently, the derived parameters are115

fine-tuned in several downstream tasks, aiming to enhance the performance of AAI116

predictions.117

Another pivotal guidance of S3AI is the explicit modeling of chemical priors118

(Fig.1c). Recognizing the crucial role of non-covalent interactions in antibody-antigen119

binding, we devise a module to capture chemical constraints accurately throughout120

antigen-antibody docking. Beyond the features extracted from sequences using the pro-121

tein language model, we generate various property maps of non-covalent interactions122

from the sequences, adhering to universally applicable chemical rules. This provides123

the model with insights into potential interaction formations through the integration of124

chemical priors in the deep-learning framework. The concatenated interaction matrix125

is passed through convolutional layers, facilitating effective feature aggregation and126

providing the model with a rich source of localized information. This novel module127

not only improves interpretability by affording a tangible linkage between molecular128

interactions and predictive outcomes but also provides local features that synergize129

with global features extracted in other stages.130

Overall, S3AI is an interpretable deep-learning method that introduces route131

and priors guidance towards understanding antibody-antigen interaction. Downstream132
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tasks for SARS-CoV-2 and HIV demonstrate the exceptional proficiency of S3AI in133

predicting AAI, surpassing current state-of-the-art predictors. Importantly, S3AI cap-134

tures universal patterns of antibody-antigen interactions, revealing antigen-specific135

binding mechanisms and highlighting sub-regions important for the interaction. More-136

over, S3AI’s capability to operate without requiring structural input during the137

inference phase positions it as an ideal solution for large-scale antibody optimization138

and screening. Naturally, S3AI can be applied to the design of antibodies for various139

targets, making the development of antibody drugs more precise and personalized.140

2 Results141

2.1 S3AI harnesses the property-driven architecture that142

bridges structure to sequence143

S3AI achieves unparalleled accuracy and throughput in predicting antibody-antigen144

interactions by effectively integrating structural information with sequence input.145

Prior to the advent of S3AI, methods focusing solely on sequence inputs attempted to146

predict metrics related to AAI directly from the sequences of antibody-antigen pairs.147

However, these approaches often fell short due to their lack of structural informa-148

tion, which is crucial for understanding the nuances of interactions. Consequently, the149

’routes’ constructed are typically blind, intricate, and lack interpretability, making it150

challenging to derive meaningful insights or predictions.151

As shown in Fig.2a, S3AI, on the other hand, revolutionizes this approach by152

actively guiding the mapping from antibody sequences to their structures, thereby153

providing a more rational and coherent route for predicting AAI from sequence inputs.154

The above strategy is here called ’structural information distillation’, and its core155

lies in training a structural encoder through contrastive learning to obtain structure-156

enhanced features. In the teacher network, the antibody structure is processed by157

a pre-trained structure network to extract structural features. In the student net-158

work, the antibody sequence is fed to the protein language model (i.e.ESM [34] and159

then encoded by a learnable structure encoder to obtain features that incorporate160

structural information. Finally, the training manner of contrastive learning allows the161

knowledge from the antibody structure to be transferred to the structure encoder.162

This manner not only leverages the inherent sequence information but also enriches it163

with structural data, enhancing the model’s performance and the interpretability of164

its predictions. By doing so, S3AI offers a more informed and precise framework for165

understanding the intricate dynamics of antibody-antigen interactions.166

Implicit modeling of AAI based on deep learning models is challenging because of167

the complexity of molecular interactions, which can result in fundamental chemical168

rules being poorly understood by the neural network. To address this challenge, we169

propose the interaction matrix, which explicitly models chemical rules to introduce170

crucial non-covalent interactions. As shown in Fig.2b, the sequences of an antibody171

and an antigen are taken to calculate a property matrix containing non-covalent inter-172

actions, including hydrogen bonding, electrostatic interactions, van der Waals forces,173

and hydrophobic interactions. Take hydrogen bonding as an example, to construct a174

H-bond map between an antibody and an antigen, we initially analyze their sequences175
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Fig. 2 a, Structural information distillation, in which the antibody structure information extracted
by the structure network is distilled into antibody sequence modality, thereby training the structure
encoder to obtain structure-enhanced features. b, Interaction matrix, in which the feature matrix
is calculated by implicit sequence embeddings, and the property matrix contains the physicochem-
ical properties calculated by chemical rules. c, The overall framework of S3AI. The input antibody
sequence is extracted with structure-enhanced feature, and the interaction matrix is concatenated
with it after passing through the CNN module. The concatenated feature is then input into the sub-
sequent interaction prediction module for classification (neutralization or not) and regression (IC50

estimation) tasks.

to identify the number of hydrogen bond donors and acceptors for each amino acid.176

This step produces two vectors respectively, with lengths matching those of the anti-177

body and antigen, where each vector element indicates the count of hydrogen bond178

donors or acceptors at every amino acid position. Next, we compare the corresponding179

amino acids between the antibody and antigen, determining the minimum number of180
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a

b IC50 IC50

Fig. 3 a, Prediction performance on integrated SARS-CoV-2 datasets. In both classification and
regression tasks, S3AI outperforms state-of-the-art models across the board. b, Visualization of the
impact of each module on the final concatenated features. The interaction matrix has a stronger
impact on features than structural information distillation, and the joint use of the two modules
achieves the best results.

available donors and acceptors for each pair. This results in two matrices, sized by the181

antibody and antigen sequence lengths. These matrices delineate the potential H-bond182

interactions between each amino acid pair, pinpointing regions with high interaction183

propensity. Furthermore, the sequences of both the antibody and the antigen are pro-184

cessed to extract embeddings using protein language model (ESM here), and these185

embeddings are then used to create a feature matrix. The above property matrix and186

feature matrix are concatenated to form the final interaction matrix, which contains187

both implicit and explicit interaction patterns.188

With the support of structural information distillation and interaction matrix,189

the overall architecture of S3AI is shown in Fig.2c. The antibody and antigen190

sequences are passed through the protein language model (ESM here) to obtain cor-191

responding sequence features, in which the sequence features of core-domain of the192

antigen—determined by the antigen’s specific type—are adopted to form the feature193

matrix in the interaction matrix. The interaction matrix performs feature aggregation194

through the CNN module and is concatenated with the structure-enhanced feature of195

the antibody obtained through the structure encoder. The above-mentioned concate-196

nated features are input into the interaction prediction module for downstream tasks197

in the manner of multi-task learning, including the binary classification task of whether198

the antibody-antigen pair is neutralizing and the regression task of IC50 estimation.199
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2.2 S3AI significantly outperforms state-of-the-art models200

In order to comprehensively evaluate the predictive ability of S3AI for AAI, we col-201

lect SARS-CoV-2-related AAI data from previous studies and integrate them into202

the largest dataset to date. As shown in Fig.3a, we perform a thorough comparison203

with a series of models for antibody-antigen interaction prediction on regression tasks204

and classification tasks, including MCNN [30], Parapred [29], Fast-Parapred [35], AG-205

Fast-Parapred [35], PIPR [36], and ResPPI [37]. The detailed implementation can be206

found in Supplementary information, Section S1. For the regression task of IC50 esti-207

mation, S3AI significantly surpasses other models. It showcases superior performance208

by achieving a Spearman correlation coefficient of 0.655 and a Pearson correlation209

coefficient of 0.860. Compared to the best-performing existing model, this repre-210

sents an improvement of approximately 13.3% in the Spearman correlation and about211

7.1% in the Pearson correlation. For the classification task of neutralization, S3AI212

still comprehensively outperforms other models, with an accuracy of 84.53% and an213

MCC of 68.50%. Overall, S3AI shows comprehensive superiority in both regression214

and classification tasks, stamping a new watermark for antibody-antigen interaction215

prediction.216

Structural information distillation and interaction matrix are crucial to the pre-217

diction performance of S3AI, which is demonstrated in the visualization experiment218

in Fig.3b and Table.S4. Principal component analysis (PCA) is adopted to explore219

the impact of each module on the concatenated features, i.e., concatenations of220

structure-enhanced features, and CNN-processed interaction matrix. Compared with221

the visualization result on the far right without using the above two modules, the use222

of any module results in better clustering of features, and the joint use of the two223

modules achieves the best clustering effect. It is worth noting that the impact of the224

interaction matrix on the clustering effect is stronger than that of structural informa-225

tion distillation, which also confirms our hypothesis: it is difficult for neural networks226

to directly understand intricate molecular interactions, and explicit chemical priors227

modeling tends to provide a more accurate learning route.228

2.3 S3AI’s generalization performance for out-of-distribution229

scenarios230

Out-of-distribution (OOD) generalization is a common challenge faced by all deep231

learning models. The above challenge is even more pronounced in the prediction sce-232

nario of antibody-antigen interactions since most antibodies are ’unseen’, i.e., the233

interactions of a large number of antibodies with any antigen are unknown [31]. For234

natural antibodies, the antibody space produced when faced with viral invasion is very235

large, which makes it time-consuming and costly to measure the interaction strength of236

any antibody-antigen pair through wet-lab experiments. In addition, the interactions237

of synthetic antibodies with antigens are also blind to us. Therefore, deep learning238

models for antibody-antigen interaction prediction require ideal OOD generalization239

capabilities.240

Previous work proposed a deep-learning model, DeepAAI [31], specifically cus-241

tomized to predict interactions of ’unseen’ antibody-antigen pairs. In order to evaluate242
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a

b

Fig. 4 Generalization performance on HIV datasets. a, In the binary classification task of whether an
antibody neutralizes HIV, S3AI comprehensively outperforms the state-of-the-art models specifically
designed for out-of-distribution generalization of antibody-antigen interaction prediction, including
model variants using PSSMs containing rich evolutionary information. b, In the regression task of
IC50 estimation, S3AI outperforms most of the model variants, including all model variants that do
not incorporate features with additional evolutionary information.

the generalization performance of S3AI, we adopt the original architecture of S3AI243

to compare performance with DeepAAI without adding any customized modules for244

OOD. The only adjustment is that we change the multi-task framework of S3AI to the245

same single-task framework as DeepAAI for a fair comparison. As shown in Fig.4a,246

in the neutralization classification task, S3AI without customization completely sur-247

passed all model variants of DeepAAI. On the regression task of IC50 estimation,248

S3AI surpasses most model variants, including the two model variants that only input249

sequences (Fig.4b). We can see that S3AI is slightly worse than the two model variants250

whose inputs contain position-specific scoring matrices (PSSMs) with evolutionary251

information. As an extremely time-consuming descriptor, PSSMs are calculated based252

on multiple sequence alignments and incorporate rich evolutionary information. How-253

ever, S3AI is a deep-learning method that only requires input sequences and does not254

contain additional homologous information, which may explain why its prediction per-255

formance on regression tasks is slightly worse than that of the model variants using256

PSSMs of DeepAAI. Overall, S3AI still surpasses the state-of-the-art OOD model257

under the same input configuration without special modifications to adapt to OOD258

scenarios. This indicates that S3AI has learned universal patterns of molecular interac-259

tions and thus accurately predicts interactions of never-before-seen antibody-antigen260

pairs.261
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2.4 S3AI captures the universal pattern of antigen-antibody262

interactions263

The aforementioned performance comparison demonstrates the excellent ability of264

S3AI in predicting AAI, and indicates that it has learned universal patterns of molec-265

ular interactions to a certain extent. What needs to be further explored is whether the266

interaction pattern extracted by S3AI is consistent with the actual antibody neutral-267

ization mechanism. To this end, we adopt a strategy of calculating the region effective268

attribution, in which the higher the attribution of a region to the prediction result,269

the more significant impact it has on the final prediction. There are basic modes of270

neutralization between different antibodies and different antigens, the core of which271

is that the Complementarity Determining Regions (CDRs) are responsible for bind-272

ing to the antigen [38, 39]. As shown in Fig.5a, the region effective attributions of273

all antibody samples are displayed, and the CDRs of most samples have more signifi-274

cant attributions than other framework regions (FRs) in variable regions. The average275

attributions of all samples show that the impact of CDRs is several times that of276

FRs, which proves that CDR is the most important region for the interaction between277

antibody and antigen. In Fig.5b, the region effective attributions of four antibody278

samples are shown. The difference between these samples is that the attributions of279

FRs to the interactions have different characteristics. In sample 1519, all FRs are pos-280

itive attributions, while in sample 5401, it is exactly the opposite, that is, all FRs are281

negative attributions. Furthermore, in sample 8485 and sample 27248, negative and282

positive attributions coexist. The above phenomenon confirms a basic fact that the283

attributions of FRs to the interactions are flexible and variable, which is caused by284

the binding characteristics of different antibody-antigen pairs.285

Moreover, CDR includes six sub-regions, namely CDR-L1, CDR-L2, CDR-L3,286

CDR-H1, CDR-H2, and CDR-H3. A large number of previous works have agreed287

that CDR-H3 is important for the interaction between antibodies and antigens, which288

makes us very curious whether S3AI can capture this phenomenon [40–44]. As shown289

in Fig.5c, sub-regions in the CDRs of four antibody samples are displayed. What290

the four samples have in common is that CDR-H3 always tends to have signifi-291

cant effective attribution, which is consistent with the above conclusion. Interestingly,292

the impacts of sub-regions within the CDRs, aside from CDR-H3, are diverse and293

irregular [41, 42, 45], which further highlights the complexity of AAI mechanism.294

3 Discussion295

Antibodies are important immune molecules that play a crucial role in the immune296

process. The remarkable specificity of antibodies against antigens has led humans to297

continue to explore technical routes to develop them into clinical drugs. With the298

increasingly urgent demand for personalized and precision medicine, the research and299

development of antibody drugs requires more efficient and high-precision technical300

means. Computational methods, especially deep learning methods, have shown great301

potential in antibody optimization or screening. However, the two current mainstream302

methods for predicting AAI, namely structure-dependent and sequence-only methods,303

have obvious shortcomings, which come from the scarcity of structural data and the304
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Region Effective Attribution

Samples

Average Attributiona

b
Sample 1519 Sample 5401

Sample 8485 Sample 27248

c

negative 

positive

Sample 44 Sample 60 Sample 68 Sample 93

Fig. 5 a, Effective attributions of each region in variable regions to the predictions of antibody-
antigen interactions. Among them, CDRs have the most significant average attribution, which is
consistent with the basic mode of antibody neutralization. b, Effective attributions of four samples
with different characteristics. The structures of antibody variable regions are colored according to
the degree of attributions. c, Analysis of effective attributions within CDR regions of four samples.
Different sub-regions in the CDRs are colored according to their attributions. Among them, CDR-H3
always tends to have a significant effective attribution, indicating that this sub-region is crucial for
antibody neutralization, which is consistent with previous research conclusions.
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alienation between sequence and function. In addition, the common difficulty faced by305

the above two types of methods is that it is challenging for neural networks to under-306

stand intricate molecular interactions. Therefore, the development of an interpretable307

deep-learning model for AAI prediction that overcomes structural or sequence mode308

constraints is of great significance for antibody engineering.309

The first contribution of S3AI is to break the barrier between structure-dependent310

and sequence-only methods. Predicting AAI based on sequences has a high task com-311

plexity, which is rooted in the alienation route from sequence to structure and then312

to function. This motivates us to utilize structural information implicitly, that is, to313

incorporate knowledge from the protein structure modality to the sequence modal-314

ity. In this work, we propose a strategy named structural information distillation to315

achieve modality bridging. First, a teacher network with structure as input and a stu-316

dent network with sequence as input are set up. The training manner of contrastive317

learning is further used to store the information from the teacher network to the struc-318

ture encoder. The structural encoder is capable of transforming sequence features into319

structure-enhanced features, eliminating the need for input structure in the down-320

stream task training and inference stages. In short, structural information distillation321

effectively realizes cross-modal information transfer and promotes the establishment322

of ’sequence-to-function’ route.323

S3AI’s second contribution is the explicit modeling of chemical priors to guide324

neural networks in understanding intricate molecular interactions. Antibody-antigen325

interactions are primarily driven by non-covalent interactions, so we propose interac-326

tion matrix to introduce the composite impact of hydrogen bonding, van der Waals327

forces, electrostatic interaction, and hydrophobic interactions. In general, this inter-328

action matrix makes up for the shortcomings of the implicit modeling of AAI. In329

other words, explicit modeling of interaction patterns reduces the task complexity of330

predicting functions directly from sequences.331

The design of the above two modules ensures S3AI’s excellent performance in332

predicting AAI. In this work, we comprehensively examine the capabilities of S3AI,333

including its generalization performance for out-of-distribution scenarios. S3AI not334

only significantly surpasses the state-of-the-art models but also exhibits ideal OOD335

generalization capabilities. Without any adjustments for the OOD task, S3AI still out-336

performs all variants of the state-of-the-art model customized for OOD generalization337

in predicting AAI in the classification task of neutralization or not. In the regres-338

sion task of IC50 estimation, S3AI outperforms all model variants that only adopt339

sequences as input in a fair comparison. The above prediction performance indicates340

that S3AI has a certain degree of understanding of the basic patterns of molecu-341

lar interactions, which facilitates its generalization for the prediction of unknown342

antibody-antigen pairs. We further intuitively explore the ability of S3AI to capture343

the universal pattern of AAI. Consistent with the antibody neutralization mechanism,344

S3AI accurately identifies CDRs responsible for specific binding to antigens. Further-345

more, the importance of sub-region CDR-H3 for AAI is also discovered by S3AI.346

The above results demonstrate S3AI’s awareness of molecular interaction mechanisms,347

which is rooted in the introduction of route and priors guidance.348
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The potential of S3AI lies in the large-scale optimization and screening of antibod-349

ies. The structure-free input mode in the inference stage breaks through the dilemma350

of the scarcity of high-quality antibody structures, ensuring that antibody optimiza-351

tion and screening are only performed at the sequence level and can be massively352

parallel. This will greatly improve the efficiency of discovering immunologically active353

or specific antibodies in the huge antibody space, thereby accelerating the develop-354

ment of antibody drugs. However, the prediction performance of S3AI is limited by355

the low quality of distilled structural information, which is caused by the predicted356

antibody structures used in the structural information distillation module. It is fore-357

seeable that in the future, as the scale of available high-quality antibody structures358

increases, the structural information distillation module will be able to extract more359

general and precise implicit structural information. In addition, further accurate mod-360

eling of chemical rules is also a feasible way to improve the prediction performance361

of S3AI. There is also an expectation for a lighter and faster prediction method that362

could further hasten antibody engineering.363

4 Methods364

4.1 Data365

4.1.1 Data for structural information distillation366

The antibody structure data utilized for structural information distillation in this367

study encompasses two main types: real antibody data collected from the SabDab [46]368

and predicted antibody structure data derived from sequences using Igfold [47], which369

is a deep learning model specifically designed for predicting antibody structures. For370

the real antibody data, we exclude single-chain antibodies, entries with missing infor-371

mation, those with formatting errors (such as redefined atoms), and sequences with372

discontinuities within the chains. The structural data predicted by IgFold includes373

paired antibodies from the OAS dataset, along with a selection of relevant antibodies374

from the coronavirus.375

4.1.2 SARS-CoV-2 data376

Given the absence of comprehensive studies summarizing IC50 data across various377

antibody-antigen pairs in the field, IC50 data are collected from several biological378

studies [48–51] that measured and published IC50 values between SARS-CoV-2 or379

its variants and human antibodies. These studies encompassed 18 different lineages,380

including those that emerged after Omicron. We obtain mutations of each lineage381

from outbreak.info [52, 53]. These mutations are then introduced into the spike pro-382

tein sequences of the wild-type coronavirus, as obtained from GISAID [54]), thereby383

generating the spike protein sequences for each lineage.384

Manual standardization is necessary because the IC50 values originated from385

diverse papers with varying experimental conditions. For example, the reporting of386

negative sample values (where IC50 ≥ 10µg/ml) varies across studies, with some list-387

ing them as ’>10’, ’>100’, or specifying a particular value over 10, or even a constant388

value (e.g., 1000µg/ml). In our study, we standardize all negative IC50 samples to389
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a uniform value of 10µg/ml. Similarly, we classify samples with IC50 ≥ 10µg/ml as390

non-neutralizing, while those with values below 10µg/ml are deemed neutralizing.391

Moreover, during the de-duplication process of antibody sequences, discrepancies392

in IC50 values for the same antibody-antigen pair across different studies are observed.393

Such inconsistent data are identified as errors and excluded to ensure dataset accu-394

racy. We yield IC50 values for 29,483 pairs of coronavirus antigens and corresponding395

antibodies.396

4.1.3 HIV data397

The HIV data used to test OOD performance in our study comes from the Com-398

pile Analyze and Tally NAb Panels (CATNAP) at the Los Alamos HIV Database399

(LANL) [55], as published by DeepAAI. We follow the dataset’s split between ’seen’400

and ’unseen’ data, conducting OOD tests on the ’unseen’ dataset.401

4.2 Architecture overview402

S3AI is built on the protein language model that takes paired antibody and antigen403

sequences as input. The heavy and light chain sequences of the input antibody are404

concatenated and then encoded by ESM. For antigens, the protein sequence is fed into405

a separate ESM to produce the sequence feature:406

Zseq
ab = ESMab(ABH ⊕ABL), (1)

Zseq
ag = ESMag(AG), (2)

where ABH = (ab1, ab2 · · · , abk) and ABL = (abk+1, abk+2, · · · , abm) represent the407

sequences of the heavy and light chains of antibody, respectively, while AG =408

(ag1, ag2, · · · , agn) denotes the sequence of antigen. Structure encoder introduces409

structural information to sequence features of antibody Zseq
ab , producing Zseq2str

ab (see410

Section 4.3). Meanwhile, the sequence features Zseq
ab , Zseq

ag , along with their respec-411

tive sequences, are leveraged to generate the interaction matrix Zinter. This matrix412

is subsequently processed by Convolutional Neural Network (CNN) module, aimed at413

extracting interaction-related feature Zconv (refer to Section 4.4). Two different mul-414

tilayer perceptrons (MLPs) are employed to subsequently process the concatenated415

features, yielding predictions for both classification and regression tasks:416

ŷ(cls) = σsigmoid(ψ
cls(Zseq2str

ab ⊕ Zconv)), (3)

ŷ(reg) = ψreg(Zseq2str
ab ⊕ Zconv), (4)

where ψcls and ψreg represent the MLPs for classification and regression tasks,417

respectively; ⊕ donates the concatenation operation on the final features.418
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4.3 Structural information distillation419

The tertiary structure and sequence of antibodies can be considered two distinct420

modalities. In AAI problems, the structural modality often contributes more signifi-421

cantly than the sequence modality. However, the scarcity or even absence of structural422

data in many application scenarios leads to performance loss. To address this chal-423

lenge, we look towards a series of cross-modal distillation methods [56–58], which offer424

a strategy to address the issue of missing modalities.425

Building on this foundation and inspired by the recent advancements in the field426

of molecular property prediction, notably the 3DInfomax [59], we leverage contrastive427

learning to facilitate knowledge transfer between structural and sequence networks.428

This process can be regarded as a form of cross-modal distillation technique.429

Structural information distillation involves two networks: a teacher network fstr(·)430

that receives antibody structural inputs and outputs structural representations, and431

a student network fseq(·) that takes sequence inputs to generate sequence features.432

The teacher network’s weights are derived from pretraining on a protein structure433

dataset and remain fixed throughout this process. The student network, comprised of434

concatenated ESM and structure encoder, is tasked with extracting features from the435

antibody sequence. During the training process, the student network’s parameters are436

updated, enabling it to learn how to incorporate structural information into sequence437

features. For an antibody x = (xseq, xstr) in a dataset, its sequence and structure are438

input into fseq(·) and fstr(·), respectively, yielding representations zseq2str and zstr.439

The training objective at this stage is to maximize the similarity between representa-440

tions of the same antibody zseq2stri and zstri while minimizing the similarity between441

unmatched representations zseq2stri and zstrj (i ̸= j).442

The similarity measurement function is defined as the cosine similarity, which is443

given by the formula:444

sim(zseq2stri , zstrj ) =
zseq2stri · zstrj

∥zseq2stri ∥∥zstrj ∥
. (5)

To guide this process, the NT-Xent (normalized temperature-scaled cross entropy)445

loss is utilized[60]:446

Li,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 I[k ̸=i] exp (sim (zi, zk) /τ)
, (6)

where the indicator function I[k ̸=i] takes values from {0, 1}, is used to determine447

whether k is not equal to i (evaluating to 1 if and only if k ̸= i). Additionally, τ448

represents a temperature parameter that adjusts the scale of the loss. The NT-Xent449

loss is calculated for all positive pairs within a mini-batch, ensuring symmetry in the450

evaluation of pairwise similarities.451

We adopt the structural representation network proposed in [61] as our teacher452

network, utilizing the pretrained weights they provided. The teacher network is solely453

engaged in the process of structural information distillation, extracting representations454

from structural data, and does not participate in the training or inference processes of455

downstream tasks. The parameters of the structure encoder within the student network456

are used for initialization and undergo further fine-tuning on downstream tasks.457
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4.4 Interaction matrix458

Within the array of structure-independent methods, beyond the previously mentioned459

challenge of diminished accuracy stemming from an absence of structural data, lies an460

additional complication: the issue of ambiguous interpretability. In response, several461

studies [62–65] have investigated the incorporation of attention mechanisms to enhance462

interpretability. However, the intricate nature of molecular interactions presents a463

significant challenge to the implicit modeling efforts of AAI through deep learning464

models.Thus, given two sequences, the antibody AB = (ab1, ab2 · · · , abm) and the465

antigen AG = (ag1, ag2, · · · , agn), we propose interaction matrix Zinter ∈ Rm×n×d to466

capture the interaction pattern between antibody and antigen. The interaction matrix467

is composed of two parts:468

Zinter =
[
Zfeat,Zprop

]
. (7)

The feature matrix Zfeat is derived from the element-wise multiplication of latent469

codes, capturing sequence information:470

zfeatij = hAb
i ⊙ hAg

j . (8)

Here, hAb
i and hAg

j are the latent codes for the ith amino acid in the antibody and the471

jth amino acid in the antigen, respectively.472

For each type of non-covalent interaction, the property matrix Zprop introduces473

specific channels, including hydrogen bonding, electrostatic interactions, van der Waals474

forces, and hydrophobic interactions.475

We first focus on hydrogen bonding, a fundamental interaction widely prevalent476

across various protein-protein interactions. For each pair of amino acids, abi from the477

antibody and agj from the antigen, the calculation for the H-bond matrix is as follows:478

z
(1)
ij = min (Pacceptor(abi), Pdonor(agj)) ,

z
(2)
ij = min (Pdonor(abi), Pacceptor(agj)) ,

(9)

where Pacceptor and Pdonor represent the counts of hydrogen acceptor and donor479

atoms, respectively, of an amino acid. This process iterates over each amino acid480

pair between the two sequences, generating a comprehensive interaction profile that481

captures potential hydrogen bonding.482

Another type of important non-covalent interaction between antibodies and anti-483

gens is electrostatic interactions. These interactions are primarily governed by the484

charge properties of the amino acids. To incorporate electrostatic interactions into the485

property matrix, a specific channel is introduced, which quantifies the potential for486

electrostatic interactions between each pair of amino acids. The calculation for this487

part of the property matrix can be represented as follows:488

z
(3)
ij = I [Q(abi) ·Q(agj) < 0] , (10)

where Q(x) denotes the charge of amino acid x, which can be positive, negative, or489

neutral. This binary representation streamlines the modeling of electrostatic interac-490

tions by directly identifying when opposite charges are present between amino acids,491
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thus indicating potential attractive forces that can enhance the interaction. In this492

context, only pairs of amino acids with opposite charges are considered to possibly493

contribute to the interaction potential.494

Building on the foundation laid by the analysis of hydrogen bonding and electro-495

static interactions, we next turn our attention to van der Waals forces. While subtler496

than the previously mentioned forces, van der Waals interactions play a crucial role497

in the nuanced dance of molecular recognition, acting as the fine threads that help498

weave the intricate tapestry of antibody-antigen interactions.499

To capture potential van der Waals forces within interaction matrix, we intro-500

duce an additional layer of analysis. Based on the relationship between distances and501

interaction strengths between amino acids [66], we employ a Gaussian formula to502

approximate the effect of distance on van der Waals forces, taking into account the503

complementary nature of steric hindrance of amino acid side chains. The calculation504

of this addition to our property matrix is as follows:505

z
(4)
ij = exp

(
− (V (abi) + V (agj)− V0)

2

2σ2

)
. (11)

Here, V (x) denotes the van der Waals volume [67] of an amino acid x. V0 and σ2 are506

derived from a Gaussian fit to the aggregate of possible amino acid pair volumes.507

As the final piece of our interaction matrix, we leverage the hydropathy index [68]508

to capture hydrophobic interactions. The calculation method is simple yet effective:509

z
(5)
ij = 1−

∣∣H(abi)−H(agj)
∣∣

M
, (12)

where H(x) represents the hydropathy index of amino acid x. The term M stands510

for the maximum absolute difference in hydropathy indices across all possible pairs of511

amino acids, ensuring the subtraction operation yields a normalized score that reflects512

the relative hydrophobic compatibility between abi and agj . This channel provides513

information on hydrophobic interactions through a simple assessment of the differences514

in hydrophobic and hydrophilic between interacting amino acids.515

Given the approximations and simplifications involved in creating the property516

matrix, as well as the complexity of actual interactions, we further extract features517

from the interaction matrix using a CNN module. This module enriches the network518

with local feature information. Through interpretability analysis (see Section 4.8),519

we have also proven its effectiveness in capturing the patterns of antibody-antigen520

interactions.521

4.5 Multi-task focal loss522

Due to the specificity of the interaction between antibodies and antigens, most of the523

recorded antibody-antigen pairs do not exhibit neutralization. This has resulted in524

an imbalance of positive and negative samples in our collected SARS-CoV-2 dataset.525

Additionally, differences in fitness among different virus lineages lead to a non-uniform526

data distribution at the lineage level. (see Supplementary information, Fig.S1) More-527

over, since the IC50 values in the dataset come from different sources, and the528
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experimental conditions and methods cannot be guaranteed to be completely consis-529

tent, the dataset also contains some unavoidable noise. To address these issues, we530

have adopted a multi-task framework (see Section 4.2) along with the corresponding531

focal loss [69, 70] for training downstream tasks. The overall loss consists of regression532

and classification loss:533

L = βLreg + (1− β)Lcls, (13)

where β is a weighting factor to balance the regression and classification tasks. The534

regression part of focal loss is defined as:535

Lreg =
1

n

n∑
i=1

(yi − ŷi)
2. (14)

For the binary classification neutralization prediction task, we adopt the classical focal536

loss:537

Lcls = − 1

n

n∑
i=1

(α(1− pi)
γ log(pi) + (1− α)pγi log(1− pi)) , (15)

where (1− pi) and pi are the model’s estimated probabilities for the class with label538

y = 0 and y = 1, respectively; α is a weighting factor for the class; γ is the focusing539

parameter that smoothly adjusts the rate at which easy examples are down-weighted.540

(Supplementary information, Table.S8)541

4.6 Evaluation metrics for regression and classification tasks542

Mean Absolute Error (MAE)543

MAE, conversely, measures the average magnitude of errors in a set of predictions544

without considering their direction. It’s calculated as the average of the absolute dif-545

ferences between predicted and actual values, thus providing an intuitive measure of546

prediction accuracy:547

MAE =
1

N

N∑
i=1

|yi − ŷi|. (16)

Root Mean Square Error (RMSE)548

RMSE is a standard way to measure the error of a model in predicting quantitative549

data. The formula for RMSE is given by:550

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (17)

where N is the number of observations, yi is the actual value of an observation, and551

ŷi is the predicted value.552
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Pearson and Spearman Correlation553

IC50 values originate from wet-lab experiments across various batches and different554

laboratories. Thus, given the diversity in experimental conditions, Spearman’s rank555

correlation coefficient (Spearman’s ρ) is particularly apt for measuring the relation-556

ship between ordinal variables, such as comparing the magnitudes of different IC50557

values. It assesses how well the relationship between two variables can be described558

using a monotonic function, focusing on the ranks of values rather than their direct559

magnitudes:560

ρ = 1− 6
∑
d2i

n(n2 − 1)
, (18)

where di is the difference between the ranks of corresponding values, and n is the561

number of observations.562

We also consider Pearson’s correlation coefficient (Pearson’s r) for its ability to563

measure the linear correlation between two variables, offering a comprehensive analysis564

when the data distribution permits:565

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
, (19)

where xi and yi are the individual sample points indexed with i, x̄ and ȳ are the566

sample means.567

Considering the variability in IC50 data due to different experimental setups,568

Spearman’s ρ becomes a more suitable choice for evaluating the ordinal relationship569

between IC50 values, providing a robust measure against the non-uniformity of data570

collection methods. Pearson’s r complements this by quantifying the degree of linear571

relationship where applicable, together offering a nuanced approach to assess predictive572

accuracy in the context of IC50 value prediction.573

Accuracy, F1 Score, and Matthews Correlation Coefficient (MCC)574

In evaluating binary classification models, especially with imbalanced datasets like575

the SARS-CoV-2 datasets, accuracy alone can be misleading. Thus, we supplement it576

with the F1 Score and the Matthews Correlation Coefficient (MCC). The F1 Score,577

calculated as the harmonic mean of precision p (correct positive predictions out of578

all positive predictions) and recall r (correct positive predictions out of all actual579

positives), offers a balanced metric:580

F1 = 2 · p · r
p+ r

. (20)

MCC further provides a comprehensive measure by accounting for all aspects of the581

confusion matrix, capturing the quality of binary classifications beyond the limitations582

of accuracy and F1 Score. This approach ensures a more accurate assessment of model583

performance in handling the skewed class distribution typical of the SARS-CoV-2584

dataset.585

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (21)
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where TP is the number of true positives, TN is the number of true negatives, FP is586

the number of false positives, and FN is the number of false negatives.587

Precision–Recall Area Under the Curve (PC-AUC) and Area Under the588

Receiver Operating Characteristic (ROC-AUC)589

PR-AUC measures the trade-off between precision and recall across different thresh-590

olds. It is particularly valuable in the SARS-CoV-2 datasets, where positive samples591

(neutralizing pairs) are much less common than negative ones.592

ROC-AUC evaluates how well the model distinguishes between neutralizing and593

non-neutralizing pairs over various threshold settings. It plots the true positive rate594

(recall) against the false positive rate (the ratio of incorrectly identified negatives) to595

show the model’s discrimination capability.596

4.7 Module ablation study and principal component analysis597

To further investigate and analyze the impact of structural information distillation598

and interaction matrix on model performance, we conduct module ablation study and599

PCA analysis on the final concatenated features.600

We employ four configurations of the model: the original S3AI, one without struc-601

tural information distillation, one without interaction matrix, and one without both602

components. For the version without structural information distillation, we randomly603

initialize the structural encoding module. For the variant lacking interaction matrix,604

we pool the sequence features of the antibody and antigen along their length, con-605

catenate them with the other final features, and then feed them into the interaction606

prediction module for prediction. All models are trained under identical settings. After607

training, we use PCA analysis to visualize the concatenated features of the best check-608

point for each model on all samples in the test set. The final performance of ablation609

study is presented in Table.S4.610

4.8 Region effective attribution calculation611

Attribution evaluation612

We use the Shapley value [71] to measure the attribution of the regions in the input613

antibody to the prediction result. The Shapley value is a renowned game-theoretic614

metric for assessing the attribution/importance of each input variable to the output615

of the deep learning model. It has been recognized as the sole attribution method616

that adheres to the axioms of anonymity, symmetry, dummy, additivity, and efficiency.617

Accordingly, the Shapley value [72] of the i-th variable is computed as follows:618

ϕ(i) =
∑

S⊆N\{i}

|S|!(r − |S| − 1)!

r!
·
[
v(S ∪ {i})− v(S)

]
, (22)

where N denotes the set of variables and | · | denotes the cardinality of the set. Here,619

we use v(S) to simplify the notation of v(xS), and v(xS) denotes the model output620

on a masked sample xS . In the masked sample xS , variables in S are present, and621

variables in N \S are masked. In this way, v(∅) represents the model output when all622
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input variables are masked, and v(N) denotes the model output on the original input623

sample x.624

Attribution of FRs and entire CDRs625

As the first step of estimating the attribution of the CDRs, we visualize the effects of626

the entire CDRs on the prediction result.627

For an input antibody AB, let Zinter ∈ Rm×n×d denote the interaction matrix,628

where m, n, and d denote the length of the antibody AB, the length of the antigen629

AG and channel number of the interaction matrix, respectively. We select the feature630

of the entire CDRs as a single variable and divide the remained feature of FRs in631

Zinter into t continuous regions. These regions and the CDRs are selected as t + 1632

input variables, which consist of the input variable set N , to calculate the Shapley633

value. Then, we set v(N) as the prediction output for antibody-antigen interactions,634

and v(S) denotes the prediction output when the variable in N \ S is masked.635

Attribution of each CDR sub-region636

After calculating the attribution of the entire CDRs, we estimate the attribution of637

each CDR sub-region.638

Given an intermediate-layer feature of an input antibody, the entire CDRs consist639

of 6 parts: CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3. We select640

the feature of these 6 parts as input variables, which consist of the input variable set641

N . Then, we set v(N) as the attribution of the entire CDRs in this input antibody642

AB and v(S) denotes the attribution of the entire CDRs when the variable in N \ S643

is masked.644

Mask method645

When we calculate the prediction output v(S) on a masked input antibody, we system-646

atically mask the selected variables in N \S, which represent features in the interaction647

matrix, and observe their impact on the model’s output. This method involves iter-648

atively masking each feature while measuring the change in the model’s predictions.649

By comparing the model’s output with masked and present variables, Shapley val-650

ues can be calculated to quantify the feature’s contribution to the prediction. This651

method requires a faithful baseline value to mask the variable, which does not provide652

additional prior information and does not cause the masked feature to be out of the653

distribution of the original features in the interaction matrix.654

For the attribution of the entire CDRs, the baseline value to mask the variable655

is set as the variable’s average feature vector across the dataset, which is a widely656

used method to set the baseline value, providing a reference point for evaluating the657

significance of individual features.658

For the attribution of each CDR sub-region, since v(N) is the attribution of the659

entire CDRs, we calculate the masked output v(S) by replacing the features of the660

regions in the CDRs that belong to N \ S with baseline values when calculating the661

attribution entire CDRs. The baseline value to mask the variable is set as the variable’s662

average feature vector across the dataset.663
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Variable selection664

In order to encourage greater faithful effective attribution, we generate many parti-665

tions of variables for calculating the Shapley value. In the selection of Shapley values666

for the attribution of the entire CDRs, the process involves randomly selecting con-667

tiguous regions from the input antibody after choosing CDRs as a whole, and for the668

attribution of each CDR sub-region, we also use these randomly selected regions to669

get several attribution value outputs.670

Besides, these remaining regions can be randomly sampled in various sizes to create671

different scales of variables. These selected regions form the variables for computing672

the Shapley value. Through various combinations of these selections, attributions are673

calculated for each variable, and the average result across all selections represents the674

final attribution of the entire CDRs.675

By calculating the attribution for each variable and averaging the results across676

all partitions, we obtain a comprehensive assessment of the entire CDRs’ attribution677

to the prediction outcome. Additionally, by averaging the attribution values outputs678

{v(S)} from all partitions, this approach ensures a comprehensive evaluation of the679

attribution for each CDR sub-region.680

Data availability681

The SabDab data is available at https://opig.stats.ox.ac.uk/webapps/682

sabdab-sabpred/sabdab. The processed HIV data is freely available at683

https://github.com/enai4bio/DeepAAI. SARS-CoV-2 data can be downloaded from684

https://github.com/stau-7001/S3AI.685

Code availability686

Relevant code and models are available at https://github.com/stau-7001/S3AI.687

References688

[1] Jerne, N. K. The immune system. Scientific American 229, 52–63 (1973).689

[2] Nimmerjahn, F. & Ravetch, J. V. Antibody-mediated modulation of immune690

responses. Immunological reviews 236, 265–275 (2010).691

[3] Parkin, J. & Cohen, B. An overview of the immune system. The Lancet 357,692

1777–1789 (2001).693

[4] Beck, A., Goetsch, L., Dumontet, C. & Corväıa, N. Strategies and challenges for694
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Supplementary information873

S1 Baseline methods874

In conducting the comparative experiments, as the models utilized for comparison are875

not all originally designed for IC50 regression or classification tasks, we implement sev-876

eral essential adjustments. For the Parapred-series models (Parapred, Fast-Parapred,877

and AG-Fast-Parapred), originally intended for predicting binding sites, as well as the878

PPI prediction models PIPR and ResPPI, we modify their output head to replicate879

the structure of S3AI, thereby enabling the prediction of IC50 values and binary clas-880

sification outputs. For MCNN, in addition to the modifications mentioned above, we881

incorporate a module with the same architecture as the one originally designed for882

processing antibody inputs. This new module is designed for handling antigen inputs,883

allowing MCNN to accommodate the diverse antigen inputs in the dataset. All models884

are trained using the same multitask focal loss as employed by S3AI.885

S2 Overview of SARS-CoV-2 data886

Fig. S1 The distribution of IC50 values across different SARS-CoV-2 lineages
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S3 Results for SARS-CoV-2 test set887

Metric MCNN ResPPI Parapred Fast-parapred AG-fast-parapred PIPR S3AI

MAE ↓ 0.911 0.818 0.967 0.981 1.171 1.045 0.605
RMSE ↓ 1.605 1.475 1.524 1.467 1.697 1.673 1.243

Spearmanr ↑ 0.525 0.579 0.566 0.575 0.528 0.511 0.655
Pearsonr ↑ 0.756 0.803 0.780 0.802 0.743 0.731 0.860
Accuracy ↑ 0.780 0.821 0.801 0.815 0.767 0.768 0.845
F1 score↑ 0.844 0.863 0.851 0.859 0.837 0.836 0.870
PR-AUC ↑ 0.852 0.898 0.888 0.917 0.881 0.843 0.945
ROC-AUC ↑ 0.811 0.874 0.857 0.884 0.846 0.805 0.921

MCC ↑ 0.523 0.612 0.564 0.597 0.499 0.492 0.685

Table S1 Performance of models on SARS-CoV-2 test set.

S4 Results for HIV test set888

Model Accuracy ↑ F1 score ↑ PR-AUC ↑ ROC-AUC ↑ MCC ↑

DeepAAI (sequence) 0.768 0.744 0.830 0.851 0.533
DeepAAI (k-mer+PSSM) 0.768 0.740 0.828 0.845 0.533

DeepAAI (PSSM+sequence) 0.777 0.757 0.842 0.858 0.552
DeepAAI (k-mer+sequence) 0.777 0.752 0.844 0.862 0.552

DeepAAI (k-mer+PSSM+sequence) 0.776 0.749 0.841 0.859 0.549
S3AI 0.807 0.774 0.861 0.880 0.606

Table S2 Classification Performance of models on OOD test (HIV unseen test set for classification).

Model MSE ↓ MAE ↓

DeepAAI (sequence) 5.15 1.68
DeepAAI (k-mer+PSSM) 3.28 1.36

DeepAAI (PSSM + sequence) 3.63 1.37
DeepAAI (k-mer+sequence) 4.99 1.66

DeepAAI (k-mer+PSSM+sequence) 4.98 1.66
S3AI 4.39 1.59

Table S3 Regression Performance of models on OOD test
(HIV unseen test set for regression).
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S5 Results for module ablation study889

Model Baseline Structural Information Distillation Interaction Matrix S3AI

MAE ↓ 0.955 0.899 0.645 0.605
RMSE ↓ 1.634 1.578 1.262 1.243

Spearmanr ↑ 0.544 0.552 0.626 0.655
Pearsonr ↑ 0.752 0.761 0.854 0.860
Accuracy ↑ 0.791 0.799 0.837 0.845
F1 score ↑ 0.838 0.847 0.866 0.870
PR-AUC ↑ 0.876 0.881 0.936 0.945
ROC-AUC ↑ 0.836 0.842 0.909 0.921

MCC ↑ 0.545 0.559 0.660 0.685

Table S4 Results for module ablation study, including four configurations of the model: the
original S3AI, one without structural information distillation (Interaction Matrix), one without
interaction matrix (Structural Information Distillation), and one without both components
(Baseline).

S6 Region effective attribution890

FR1 FR2 FR3 FR4 FR5 FR6 CDRs

1.601e-02 5.857e-02 9.106e-03 9.721e-02 2.373e-02 4.919e-02 1.526e-01

Table S5 Average region effective attribution of FRs and entire CDRs in Fig.5a

Sample FR1 FR2 FR3 FR4 FR5 FR6 CDRs

1519 3.180e-02 9.545e-02 5.059e-02 9.721e-02 3.774e-02 9.212e-02 1.978e-01
5401 -7.455e-04 -1.046e-03 -4.464e-04 -4.709e-04 -1.063e-03 -1.361e-03 4.985e-03
8488 4.115e-02 -8.567e-02 -8.890e-02 5.021e-02 -9.608e-02 -1.039e-01 2.902e-01
27248 -9.986e-03 5.151e-02 1.751e-02 -1.747e-02 4.270e-02 1.611e-02 6.545e-02

Table S6 Region effective attribution of FRs and entire CDRs in Fig.5b

Sample CDR-L1 CDR-L2 CDR-L3 CDR-H1 CDR-H2 CDR-H3

44 -9.326e-03 -1.902e-02 -3.844e-02 -1.459e-02 3.083e-02 1.128e-01
60 2.932e-02 -3.881e-03 2.634e-02 -3.949e-02 2.932e-02 6.291e-02
68 -5.323e-02 1.369e-01 -2.485e-01 1.823e-01 3.043e-01 2.035e-01
93 3.145e-02 3.879e-02 5.390e-02 -5.350e-02 -7.830e-02 1.449e-01

Table S7 Region effective attribution of CDRs in Fig.5c
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S7 Hyperparameters891

Hyperparameter Value

Learning rate 0.0001
Number of epochs 200

γ 1
β 0.8

ESM embedding dim 640 (150M)
Dropout rate 0.6

Convolution layers 3
Kernel size 3

Table S8 Hyperparameters of the
model
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