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21 Abstract

22 Background

23 Gene co-expression networks (GCNs) describe relationships among expressed genes key to
24 maintaining cellular identity and homeostasis. However, the small sample size of typical

25 RNA-seq experiments which is several orders of magnitude fewer than the number of genes is
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26 too low to infer GCNs reliably. recount3, a publicly available dataset comprised of 316,443
27 uniformly processed human RNA-seq samples, provides an opportunity to improve power for

28 accurate network reconstruction and obtain biological insight from the resulting networks.

29 Results

30 We compared alternate aggregation strategies to identify an optimal workflow for GCN inference
31 by data aggregation and inferred three consensus networks: a universal network, a non-cancer
32 network, and a cancer network in addition to 27 tissue context-specific networks. Central
33 network genes from our consensus networks were enriched for evolutionarily constrained genes
34 and ubiquitous biological pathways, whereas central context-specific network genes included
35 tissue-specific transcription factors and factorization based on the hubs led to clustering of
36 related tissue contexts. We discovered that annotations corresponding to context-specific
37 networks inferred from aggregated data were enriched for trait heritability beyond known
38 functional genomic annotations and were significantly more enriched when we aggregated over a

39 larger number of samples.

40 Conclusion

41 This study outlines best practices for network GCN inference and evaluation by data
42 aggregation. We recommend estimating and regressing confounders in each data set before
43 aggregation and prioritizing large sample size studies for GCN reconstruction. Increased
44 statistical power in inferring context-specific networks enabled the derivation of variant
45 annotations that were enriched for concordant trait heritability independent of functional
46 genomic annotations that are context-agnostic. While we observed strictly increasing held-out

47 log-likelihood with data aggregation, we noted diminishing marginal improvements. Future
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48 directions aimed at alternate methods for estimating confounders and integrating orthogonal
49 information from modalities such as Hi-C and ChIP-seq can further improve GCN inference.

50
51 Background

52 Critical cellular processes including the maintenance of cellular identity, homeostasis,
53 and the cellular response to external stimuli are orchestrated through complex transcriptional
54 co-regulation of multiple genes [1-4]. Gene Co-expression Networks (GCNs) are a commonly
55 used framework to describe gene-gene relationships and are comprised of nodes that represent
56 genes and edges linking co-expressed genes [5]. A comprehensive catalogue of gene
57 co-expression relationships has the potential to characterize genes with unknown functions [6],
58 identify regulatory genes [7], determine changes in regulatory mechanisms that are key to
59 cellular identity [8], and prioritize genes that drive phenotypic variability [9]. Despite the utility
60 of gene networks in understanding biological systems, network inference is still a challenging
61 problem and suffers from both false positive and negative edges [10]. In particular, the typical
62 sample size of most RNA-seq studies is orders of magnitude smaller than the number of gene
63 pairs over which regulatory relationships are inferred, making network inference an
64 underdetermined problem. Additionally, factors such as the stochastic nature of gene expression,
65 experimental noise, missing data, and unobserved technical confounders make it difficult to
66 avoid false positives or negatives. Since the number of possible gene-gene interactions scales
67 with the square of the number of genes examined, a potential solution to increase statistical
68 power by reducing network complexity has been to infer modules or groups of co-expressed
69 genes that are regulated by one or more transcription factors rather than individual gene
70 interactions [11]. While this approach has been successful at decreasing the number of

71 hypotheses tested, and thereby increasing statistical power [12], it does not identify detailed
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72 network structure or distinguish between direct and indirect gene interactions. In contrast,
73 network inference by graphical lasso [13, 14] results in the identification of pairwise edges
74 reflecting direct effects, such that the absence of an edge implies the conditional independence of
75 the genes when all other genes are observed. Further, the formulation of graphical lasso enables
76 flexible penalization based on network density which aids in the identification of a network
77 structure that improves the discovery of true gene-gene interactions while reducing false
78 positives [15]. Here, we focus on improving the statistical power of network inference by
79 significantly increasing the number of samples used in network inference, leveraging large-scale
8o publicly available and uniformly processed RNA-seq data from recount3 [16] which includes
81 human RNA-seq samples from GTEx [17], TCGA [18], and SRA [19, 20].

82 Since the recount3 project consists of RNA-seq data compiled from diverse data sources
83 and multiple tissues with inconsistent sample characteristics, we developed a data pre-processing
g4 pipeline to identify and exclude outliers, harmonize the observed gene expression, and cluster
85 samples into meaningful biological contexts such that we can reliably infer GCNs. We utilized
86 95,280 samples following quality control and pre-processing to infer three consensus networks: a
87 universal network, a cancer network, and a non-cancer network, in addition to 27
g8 context-specific networks which included 7 novel contexts only found in recount3. We compared
89 strategies for confounder adjustment and data aggregation and found that accounting for
90 confounders in each study followed by the weighted aggregation of covariance matrices by
91 prioritizing studies with more samples resulted in networks with better generalizability and
92 increased ability to recapitulate known biological gene-gene relationships. We observed that
93 context-specific networks constructed using a combination of SRA and GTEx samples

94 outperformed tissue-specific networks inferred solely using GTEx samples at recapitulating
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95 known tissue-specific protein-protein interactions (PPIs) and assigning tissue-specific
96 transcription factors to central nodes, demonstrating the value of data aggregation in GCN
97 inference. Furthermore, using S-LDSC [21] we observed that our context-specific networks had
98 significant heritability enrichment attributed to network features when examining traits related to
99 the tissue context. In conclusion, our work provides a carefully annotated RNA-seq data set,
100 outlines best practices for GCN inference by leveraging publicly available RNA-seq data, and a
101 set of consensus and context-specific networks that will aid the scientific community in
102 achieving the full potential of GCN inference in biomedical research.

103
104 Results

105 A. Manual annotation and clustering of RNA-seq data from recount3 identified

106 27 unique biological contexts

107 We downloaded uniformly processed RNA-seq samples from humans using the
108 recount3 R package [16] comprised of experiments from three data sources, The
109 Sequence Read Archive (SRA) [19, 20], Genotype-tissue Expression (GTEx version 8)
110 [17], and The Cancer Genome Atlas (TCGA) [18] and selected 1,747 projects that
111 included 30 or more samples each. Following quality control (Methods), 95,280 human
112 bulk-RNA sequencing samples remained from 50 GTEx tissues (18,828 samples), 33
113 TCGA cancer types (11,091 samples), and 884 SRA studies (65,361 samples) (Fig. 1 A).
114 The aggregated data includes samples from a wide array of tissues, cell types, and
115 diseases. While GTEx and TCGA studies included metadata specifying the tissue of
116 origin and disease status for all samples, SRA studies had inconsistent nomenclature.

117 Therefore, to obtain reliable labels for SRA samples, we manually parsed sample
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118 descriptions to obtain sample characteristics corresponding to tissue type and disease
119 status for 65,361 SRA samples (Methods). Based on curated annotations, 93.5% of
120 TCGA samples and 30.4% of SRA samples were cancer. In contrast, all GTEx samples
121 were non-cancer, as expected (Fig. 1 B). Tissue labels with the greatest number of
122 samples across all three data sources included blood, central nervous system, breast, skin,
123 and lung (Fig. 1 C). SRA included 224 distinct tissue labels derived from manual
124 annotation that was not observed in GTEx or TCGA, and reflected a wide range of
125 disease states including Type I Diabetes, Alzheimer’s disease, bipolar disorder, arthritis,
126 cancer, and infectious conditions (Fig. 1 D). We grouped SRA samples based on their
127 study accession IDs, GTEx samples by tissue, and TCGA samples by cancer code
128 (Methods). To simplify terminology, we defined each group of samples from a data
129 source as a single study. To leverage the extensive biological diversity in the data, we
130 inferred two broad types of networks: consensus and tissue context-specific
131 (context-specific). Our universal consensus network included all samples, regardless of
132 tissue or disease. Our non-cancer consensus network included healthy samples and
133 samples with disease status other than cancer. Finally, our cancer consensus network
134 solely included cancerous samples. We restricted our context-specific networks to
135 non-cancerous samples grouped by tissue context. We did not examine differential
136 coregulation resulting from non-cancer disease, and regressed these effects from gene
137 expression. Thus, by including SRA, recount3 provides an unprecedented opportunity to
138 examine unique contexts that were not previously studied in GTEx and TCGA.

139 Across the three data sources, SRA, GTEx, and TCGA, we obtained 266 unique

140 manually annotated tissue labels with a median sample size of 31 which was much lower
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141 than the number of protein-coding genes. Therefore, we used a study-pooling strategy
142 based on related tissue context to increase power (Methods). Mapping manual
143 annotations to tissue contexts (Additional File 1: Supp. Table I) generated 48 tissue
144 contexts across 63,193 non-cancerous samples for context-specific network analysis. In
145 each context, to ensure that a tissue context represented samples with similar cell-type
146 composition as estimated by xCell [22] deconvolution, we learned a joint
147 lower-dimensional t-SNE embedding using cell-type deconvolution scores, and for 25
148 contexts with more than 500 samples before outlier exclusion, we detected and excluded
149 outliers (Additional File 2: Supp. Fig 1). For the immune context, we observed that
150 samples displayed extensive heterogeneity in cell-type composition. Thus we further
151 separated this group into B cells, PBMCs/ T cells, and myeloid cells (Additional File 2:
152 Supp. Fig 2).

153 In total, we obtained 27 contexts including 7 tissue contexts that were not present
154 in GTEX including airway, eye, human embryonic stem cells, induced pluripotent stem
155 cells, multipotent cells, myeloid cells, and PBMCs / T cells (Fig. 1 E). The number of
156 samples present in each tissue context following outlier exclusion varied from 8,797
157 (Blood) to 485 (Multipotent cells) (Fig. 1 F). Further, for tissues that were present in
158 GTEx, the ratio of the number of samples across all data sets to those in GTEx only
159 ranged from 14.13 (Kidney) to 1.01 (Esophagus) (Fig. 1 F). These harmonized samples
160 have increased context resolution, i.e. include novel contexts which were not examined in
161 GTEx, and increased sample size which can be used to improve the inference of

162 consensus and context-specific networks.
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163 B. Data aggregation improves the inference of consensus and context-specific

164 GCNs

165 The median study-specific sample size across the three data sources was 44 for
166 SRA, 309 for TCGA, and 285 for GTEx. Further, 766 of 884 SRA studies had a sample
167 size lesser than 100. PC-based data correction has been used within a single study to
168 reduce potential false positive gene regulatory associations [23, 24], but best practices for
169 applying PC-based data correction in the context of aggregating multiple studies to infer
170 GCNs have not been fully examined. First, we sought to determine whether data
171 correction should be performed jointly across all samples, across samples belonging to a
172 specific tissue context and multiple studies, or across samples from a specific tissue
173 context and a specific study. We observed that PCs recapitulate different sample
174 characteristics depending on the level at which data aggregation is performed. PCs
175 calculated across all samples were driven predominantly by tissue labels followed by
176 technical confounders (e.g. study and data source) (Additional File 2: Supp. Fig 4 A-D,
177 Supp. Fig 5 A). PCs which were calculated across samples belonging to a single tissue
178 context (blood) but multiple studies were predominantly driven by study and data source.
179 Further, accounting for tissue heterogeneity enabled us to better model cancer status and
180 disease annotations using PCs (Additional File 2: Supp. Fig 4 E-H, Supp. Fig 5 B).
181 Finally, when we limited samples to a specific tissue context and a specific study
182 (GTEx-skeletal muscle), we found that the top PCs were significantly associated with
183 technical batch, consistent with the findings of Parsana et al. [24] (Additional File 2:

184 Supp. Fig 4 I-L, Supp. Fig 5 C). Thus regressing PCs computed by accounting for tissue


https://paperpile.com/c/SMQ1ja/FW6qA+CZTlR
https://paperpile.com/c/SMQ1ja/CZTlR
https://doi.org/10.1101/2024.01.20.576447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.576447; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

185 and cross-study heterogeneity from expression is integral to excluding technical effects
186 and unwanted biological signals.

187 In addition to comparing the effect of PC-based data correction, before and
188 post-aggregation, where the number of PCs is selected based on the permutation method
189 described by Buja et. al [25] and Leek et. al [23], we sought to examine the consequences
190 of aggregating empirically estimated covariance matrices considering all studies equally
191 (unweighted aggregation) as compared to weighting covariance matrices from studies
192 with a greater number of samples more (weighted aggregation) on GCN inference. Thus,
193 we used 4 paradigms: (1) Aggregating data before PC-based data correction followed by
194 estimation of empirical covariance from residual expression, (2) PC-based data correction
195 applied to individual studies followed by aggregation of residual expression and joint
196 estimation of empirical covariance, (3) Unweighted aggregation of covariance matrices
197 inferred from each study separately after study-specific PC-based correction and (4)
198 Weighted aggregation of covariance matrices computed from individual studies following
199 study-specific PC-based data correction, where the weights were the ratio of the study
200 sample size to the total number of samples used in network reconstruction (Fig. 2 A,
201 Methods).

202 To compare strategies, we split non-cancerous samples into two data splits, GTEx
203 and SRA (Additional File 2: Supp. Fig 6), followed by network inference by graphical
204 lasso on one of the two data splits and evaluation with the held-out split by computing the
205 held-out log-likelihood. Details pertaining to the number of studies, samples and median
206 PCs regressed for incremental data aggregation are provided in Additional File 3: Supp.

207 Table II. Additionally, we assessed the recapitulation of known biological pathways by
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208 computing the Fl-score of finding canonical gene-gene relationships compiled from
209 KEGG [26], Biocarta, and Pathway Interaction Database [27] obtained using Enrichr [28,
210 29] (Additional File 4: Supp. Table III). Paradigms in which PC-based data correction
211 preceded aggregation led to a strict increase in held-out log-likelihood and F1-scores of
212 known gene relationships from canonical pathways with the addition of more studies
213 (Fig. 2 B, C, Additional File 2: Supp. Fig 7, 8). This suggests that data aggregation
214 resulted in GCNs with greater generalizability and recapitulated known biology better
215 when technical confounders were estimated and regressed for individual studies. Since
216 data aggregation led to a decrease in the network density for a particular value of the
217 penalization parameter (Additional File 2: Supp. Fig 9), we tested whether estimating
218 denser networks would result in higher held-out log-likelihood specifically when the
219 networks were inferred over a greater number of samples, but instead observed that
220 higher densities led to overfitting and lower generalizability (Additional File 2: Supp.
221 Fig 10). Further, the marginal improvement in network reconstruction diminished with
222 the subsequent rounds of aggregation. While all methods that estimated technical
223 confounders within each study performed similarly and were superior to estimating
224 technical confounders across all samples when evaluated by held-out log-likelihood (Fig
225 2 D), we found that weighted aggregation of covariance matrices led to a slight
226 improvement in the Fl-score of the networks when compared to canonical pathways
227 (Fig. 2 E), suggesting that this is the optimal strategy among the alternatives compared.

228 We inferred consensus GCNs across diverse tissues by weighted aggregation of
229 covariance matrices estimated from residual expression and graphical lasso (Methods).

230 In addition to a universal consensus network which was inferred across 966 studies with
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231 sample size greater than or equal to 15, amounting to 95,276 samples across 48 tissue
232 contexts, we constructed a non-cancer consensus network and a cancer consensus
233 network. The non-cancer consensus network reflects data aggregated across 629 studies
234 and 63,031 samples, and the cancer network reflects 386 studies and 29,967 samples
235 (Fig. 2 F). We evaluated each consensus network to recapitulate previously reported
236 gene-gene interaction using the F1 score. Across a range of network densities, we
237 obtained a higher estimate of the F1 score from the universal consensus network,
238 followed by non-cancer and cancer consensus networks, which mirrors differences in
239 sample size (Fig. 2 G).

240 We inferred networks across 27 tissue contexts and examined the impact of data
241 aggregation on context-specific network reconstruction by considering GTEx samples
242 (GTEx only) or by aggregating across samples from all data sources for that tissue
243 context. The number of samples, studies, and median study-specific sample size for each
244 tissue context in either aggregation setting are provided in Additional File 2: Supp. Fig
245 3. As in the consensus network inference, we used weighted aggregation of covariance
246 matrices as the input to network inference by graphical lasso (Methods). To quantify the
247 improvement in network reconstruction with data aggregation, we examined two tissue
248 contexts with the largest sample size: blood and central nervous system (CNS). In both
249 cases, we sequentially aggregated the blood or CNS SRA studies and computed the
250 held-out log-likelihood utilizing context-matched GTEx samples. Similar to the results
251 obtained from our consensus network analyses, we found that data aggregation led to a

252 strict increase in held-out log-likelihood with additional studies and the greatest increase
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253 was observed while aggregating the first 20 studies (blood) and 15 studies (CNS)
254 (Methods, Fig. 2 H, I).

255 Orthogonally, we verified that our networks recapitulated known context-specific
256 gene relationships by examining the enrichment of previously known tissue-specific
257 protein-protein interactions (PPIs) from SNAP [30] in edges belonging to six tissue
258 context-specific networks (adipose, blood, CNS, liver, lung, and skin) (Methods). Data
259 aggregation and increased sample size in the network significantly increased the
260 estimated odds ratio of tissue-specific PPIs in the liver (Median GTEx OR = 7.85,
261 Median Aggregate OR = 38.85, p = 0.03) and skin (Median GTEx OR = 21.83, Median
262 Aggregated OR = 27.09, p = 0.05), and there was weak enrichment in adipose (Median
263 GTEx OR = 18.49, Median Aggregated OR = 21.14, p = 0.06). In other tissue contexts,
264 we observed a higher median odds ratio of PPI enrichment in networks inferred by data
265 aggregation compared to GTEx-only networks (Fig. 2 J). Thus, we demonstrated that
266 data aggregation led to the improved inference of consensus networks that capture
267 ubiquitous biological pathways and tissue context-specific networks that capture tissue
268 biology by observing better network generalizability and reproduction of known
269 biological processes.

270 C. Central network nodes are evolutionarily constrained and include genes that

271 are critical to tissue identity
272 The biological information captured by a GCN can be evaluated by comparing
273 individual network edges, by examining whether there are edges between genes that are

274 known to interact in a particular cellular pathway [31], or by examining the properties of


https://docs.google.com/document/d/1SZooHvClU9gPJLg1qtFBTF_H93RL5OhCffPMmcB1WMw/edit#smartreference=3umeno9622fo
https://paperpile.com/c/SMQ1ja/jXwl
https://paperpile.com/c/SMQ1ja/H7yP
https://doi.org/10.1101/2024.01.20.576447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.576447; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

275 hubs [32-34], network nodes with a high number of connections. Since eukaryotic
276 transcriptional networks typically consist of a subset of genes, often transcription factors,
277 that regulate many downstream target genes [35], we chose specific network densities
278 such that the selected networks are approximately scale-free (Methods, Additional File
279 2: Supp. Fig 11; Additional File 5: Supp. Table IV, Additional File 6: Supp. Table V).
280 We computed different measures of centrality corresponding to each network node and
281 tested for the enrichment of genes involved in GO terms that reflect ubiquitous or
282 context-specific processes (Additional File 7: Supp. Table VI) among network nodes
283 selected with progressively increasing thresholds for degree centrality against a
284 background of all 18,882 protein-coding genes (Methods). Central nodes from all three
285 consensus networks were strongly enriched for genes involved in functions such as
286 microtubule-based process, chromosome organization, and regulation of organelle
287 organization (Fig. 3 A, Additional File 2: Supp. Fig 12). In contrast, we found that
288 central nodes from blood context-specific networks were enriched for genes associated
289 with platelet activation, leukocyte differentiation, and leukocyte chemotaxis to a greater
290 extent than central genes derived from either consensus or a discordant context-specific
291 network (CNS) (Fig. 3 B). Further, these trends were reflected across multiple tissue
292 contexts; context-specific networks corresponding to CNS (Fig. 3 C), skin, liver, and
293 lung were enriched for genes associated with tissue-matched GO terms (Additional File
294 2: Supp. Fig 13). Thus, while central genes from consensus networks included genes
295 involved in essential cellular processes, context-specific gene relationships are lost with

296 global aggregation and are unlikely to be recovered by increasing the sample size.
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297 Next, we evaluated whether hub genes were evolutionarily constrained and their
298 role in complex traits or diseases (Methods). We first binned network nodes such that
299 genes with no neighbors were assigned to Quintile 1, and those with at least 1 connecting
300 edge were grouped based on estimated quantiles of closeness centrality. Consensus
301 network hub genes (Quintile 5) had a significantly higher excess overlap (>1) with
302 evolutionarily constrained gene sets than peripheral nodes (Quintiles 1-3), using metrics
303 including high pLI genes, high s, genes, and high missense Z-score genes. These trends
304 were similar in context-specific networks with some variation in the strength of the trend
305 across tissues likely driven by sample size differences and differential power in inferring
306 these networks (Fig. 3 D, Additional File 2: Supp. Fig 15). We then examined the
307 enrichment of eQTL-deficient, ClinVar, OMIM, and FDA drug-targeted genes across
308 quintiles of network centrality (Additional File 2: Supp. Fig 14, 15, Additional File 8:
309 Supp. Table VII). We observed that peripheral genes (Quintile 1) and central genes
310 (Quintile 5) of consensus networks exhibited an excess overlap > 1 of eQTL deficient
311 genes (those which lacked significant cis-regulatory variants), while genes with
312 intermediate connectivity were depleted of eQTL deficient genes, while the six
313 context-specific networks had widely variable trends. While central genes from
314 consensus networks were weakly depleted for OMIM and FDA drug-targeted genes, we
315 observed an excess overlap > 1 of hub genes belonging to context-specific networks. This
316 could be explained by our earlier observations that central nodes from consensus
317 networks were involved in essential and non-specific cellular processes while central
318 nodes from context-specific networks were both specific and critical to tissue identity,

319 thus, altering central consensus network hub nodes may have widespread and potentially
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320 deleterious off-target effects while context-specific hub nodes may identify targetable
321 genes with tissue-specific effects. Finally, we observed that matched tissue-specific
322 transcription factors (TFs) from Pierson et. al [36] (Additional File 9: Supp. Table VIII)
323 had a significantly greater number of neighbors than 88 general TFs for context-specific
324 networks corresponding to blood (p < 1e-4), lung (p < 1e-4), and skin (p < 0.01), while in
325 other tissues, except for CNS, the median degree of tissue-specific TFs was greater than
326 general TFs and non-transcription factors (Methods). In contrast, while tissue-specific
327 and general TFs had more neighbors in consensus networks when compared to
328 non-transcription factors, we found no significant differences in the degree distribution of
329 tissue-specific TFs to general TFs in either the universal or non-cancer consensus
330 network (Fig. 3 E). Therefore, while both consensus and context-specific central genes
331 were enriched for genes under high-selection pressure, context-specific hub nodes were
332 more likely to be OMIM genes, drug targets and tissue-specific TFs.

333 We examined similarities and differences between network architectures of the
334 non-cancer consensus and cancer consensus networks based on shared and distinct hub
335 genes, since central genes are likely to be more relevant to network functionality [32],
336 and the identification of hubs has led to the discovery of genes involved in cancer [33,
337 34], tissue regeneration [37], and other diseases [38, 39]. Specifically, we found 296
338 shared hubs between cancer (A = 0.24, 7552 edges) and non-cancer (A = 0.18, 7,355
339 edges) consensus networks, and 312 hubs which were specific to the cancer consensus
340 network (Additional File 10: Supp. Table IX). Cancer-specific hub genes were enriched
341 for pathways such as ncRNA metabolic processing (GO:0034660, p = 5.2e-02) which is

342 believed to play a role in metabolic reprogramming in cancer, DNA damage response
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343 (GO:0006974, p = 1.17e-12) which has been posited to play a role in cancer cell survival
344 in non-optimal conditions, and response to ionizing radiation (GO:0010212, p = 6.1e-04).
345 Further, we found that cancer-specific hub genes were enriched for a plethora of DNA
346 repair and replication pathways including, double-strand break repair via homologous
347 recombination (GO:0000724, p = 6.36e-06), recombinational repair (GO:0000725, p =
348 1.35e-06), interstrand cross-link repair (GO:0036297, p = 5.48e-03), and double-strand
349 break repair via break-induced replication (GO:0000727, p = 1.36e-03) (Additional File
350 11: Supplementary File 1).

351 To examine whether network properties were shared between related tissues we
352 compared the overlap of hub, we considered all hub genes found in at least two tissue
353 contexts (N=1,956). Grouping tissue contexts based on hub genes using non-negative
354 matrix factorization with eight latent factors (Methods) led to the grouping of related
355 tissues such as blood and PBMCs/T cells (Factor 7) (Fig. 3 F, Additional File 12: Supp.
356 Table X). As expected, we found that hub genes that led to the grouping of blood and
357 PBMCs/T cells were enriched for defense response (GO:0006952, p = 2.7-24) and
358 cytokine production (GO:0001816, p = 9.9¢-07) (Additional File 13: Supplementary
359 File 2). Further, Factor 6 which led to the grouping of hESCs, iPSCs, and multipotent
360 cells comprised of hub genes which were enriched for gastrulation (GO:0007369, p =
361 5.9¢-04) and circulatory system development (GO:0072359, p = 6.2e-03) (Additional

362 File 14: Supplementary File 3).
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363 D. Genes with high network centrality are proximal to variants enriched for

364 complex trait heritability

365 Previous work by Kim et al. [40] reported that network topology annotations did
366 not contribute to heritability once the LDSC baseline model [21] was included. We
367 examined whether data aggregation would increase the utility of network features for
368 heritability analysis independently of baseline functional annotations. We meta-analyzed
369 estimates of heritability enrichment, the ratio of the proportion of heritability explained
370 by SNPs belonging to an annotation to the proportion of SNPs in the annotation, and T*,
371 an estimate of the heritability of SNPs unique to the annotation [21], using a random
372 effects model to obtain a summary of effect sizes estimated for a set of 42 independent
373 traits considered by Kim et al. (Methods, Additional File 15: Supp. Table XI). We
374 estimated both heritability enrichment and T by either conditioning an annotation
375 corresponding to whether a variant was located in a 100 kilobase window of all
376 protein-coding genes (all-genes annotation), or conditioning on 97 functional annotations
377 such as known enhancer and promoter regions which are included in the baseline-LLD
378 model and the all-genes annotation (all-genes + baseline). Similar to the results found by
379 Kim et al,, we observed a significant estimate T corresponding to our consensus
380 network-derived annotations when conditioning on just the all-genes annotation,
381 however, when conditioning on the baseline-LD model, the ‘t* observed for consensus
382 network-derived annotations were no longer significant (Fig. 4 A). While we found no
383 significant differences in enrichment across network density when conditioned on the

384 all-genes annotation, we observed that T decreased with a decrease in network density.
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385 There were no significant differences in either enrichment or T with network density
386 when conditioning on the baseline-LD annotations (Additional File 2: Supp. Fig 16).
387 Further, our observations were not dependent on the traits studied and remained
388 consistent when we applied s-LDSC to 219 UKBB traits (Additional File 16: Supp.
389 Table XII; Additional File 2: Supp. Fig 17)

390 A possible explanation for the lack of heritability enrichment signal unique to
391 network annotations is the redundancy between the baseline LD annotations and network
392 topology annotations. Therefore, we hypothesized that context-specific data aggregation
393 could prioritize variants enriched for heritability of concordant traits independent of
394 baseline annotations. We applied s-LDSC to network centrality annotations derived from
395 networks inferred only from GTEx blood samples (blood GTEx), networks inferred by
396 aggregating recount3 blood samples (blood), and as a control, networks inferred by
397 aggregating all samples (universal consensus), for a subset of 9 blood-related traits from
398 the 42 independent traits (Crohn’s disease, rheumatoid arthritis, ulcerative colitis,
399 eosinophil count, platelet count, red blood cell count, red blood cell width, white blood
400 cell count, and eczema) (Additional File 17: Supp. Table XIII). As with the consensus
401 networks, tissue-specific networks displayed similar trends in heritability estimates with
402 network density (Additional File 2: Supp Fig 18, 19). When we conditioned on the
403 baseline-LD annotations, we observed that annotations derived from the blood consensus
404 networks had a significant T across all centrality annotations, while blood GTEx
405 networks had a significant T for strength, degree, maximum weight and page rank (Fig. 4
406 B). In contrast, we did not observe a significant T* corresponding to annotations derived

407 from the universal consensus network. We examined the generalizability of our results by
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408 conducting a similar experiment in CNS samples, another tissue with a large sample size.
409 We applied s-LDSC to annotations derived from CNS networks inferred from GTEx
410 samples (CNS GTEx), CNS networks inferred by aggregating samples from recount3
411 (CNS consensus), and the universal consensus networks for CNS-related traits which
412 included waist-hip ratio adjusted BMI from the earlier set of 42 traits, as well as 7 traits
413 from the Psychiatric Genomics Consortium (Alzheimer's, epilepsy, Parkinson's, bipolar
414 disorder, smoking cessation, schizophrenia, major depressive disorder, and number of
415 alcoholic drinks per week) (Additional File 18: Supp. Table XIV). We found that
416 annotations derived from both universal consensus and CNS-specific networks led to
417 significant non-zero T when conditioning on the baseline-LD model. While we note that
418 significant non-zero T was observed for the consensus networks for the chosen set of
419 CNS traits in contrast to the 42 independent traits, possibly due to power, study quality,
420 and other attributes of the GWAS, we found that annotations from tissue-specific
421 networks led to significantly higher estimates of T and outperformed consensus networks
422 (Fig. 4 C) for all centrality measures except closeness. Further, for betweenness,
423 maximum weight, and page rank centrality, CNS consensus networks outperformed CNS
424 GTEx networks, similar to the results in blood, demonstrating context-specific data
425 aggregation results in network annotations that are enriched for trait heritability across
426 tissue contexts. Across both sets of blood- and CNS-related traits, we found that page
427 rank centrality-derived annotations, which captured both the number of connections that a
428 node has in addition to the centrality of its neighbors to determine the importance of a
429 connection, performed consistently well. We conclude that context-specific aggregation

430 results in identifying network central genes that are enriched for the heritability of
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431 concordant traits, and an increased sample size leads to a greater heritability enrichment

432 signal.

433 Discussion

434 GCNs aid in determining changes in regulatory mechanisms that are key to cellular
435 identity and prioritizing genes that drive phenotypic variability. However, conventional
436 network analyses are often too underpowered to reliably discover gene-gene relationships
437 and are compromised by spurious false positives and false negatives that result from
438 limited power, noise, and unobserved technical confounders. We leveraged publicly
439 available RNA-seq data from recount3 and manually curated tissue/cell type annotations
440 to improve the inference of consensus and context-specific GCNs. Utilizing data splits,
441 we demonstrated that accounting for confounders within individual studies followed by
442 weighted aggregation of empirical covariance matrices led to the best improvement in
443 network characteristics with data aggregation across multiple paradigms.

444 We then inferred three consensus networks (universal, non-cancer, and cancer
445 networks) that recapitulated ubiquitous biological processes. Further, we aggregated data
446 belonging to individual tissue contexts to infer 27 tissue context-specific networks that
447 were enriched for matched tissue-specific PPIs and shared similarities across related
448 tissues. All networks and sample annotations are made publicly available as a resource
449 for future studies.

450 Central genes from both consensus and context-specific networks were enriched
451 for high PLI, and high Phi genes, indicating that hub genes are enriched for genes under
452 high selective pressure. Context-specific hub genes were enriched for FDA-approved

453 drug targets and OMIM genes while central genes from consensus networks which were
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454 inferred over a greater number of samples were depleted for both categories. Thus,
455 context-specific information was lost by global aggregation, cannot be recovered by data
456 aggregation or increased sample sizes, and is important to identifying drug targets and
457 disease mechanisms. While network central genes determined by global data aggregation
458 in the consensus network did not explain trait heritability independent of known
459 functional annotations in the baseline-LD model, we found that context-specific data
460 aggregation prioritized variants enriched for concordant trait heritability that did not
461 overlap with previously known functional annotations. Thus topological properties of
462 genes from context-specific GCNs hold significant promise as a functional annotation
463 for identifying genetic variation that contributes to complex trait heritability.

464 A commonly used approach to identify genes associated with complex traits is to
465 use colocalization analysis between GWAS and eQTL studies, however, often only about
466 half of the signals colocalize with an eQTL [41]. Recent work by Mostafavi et al [41]
467 demonstrated that genes driving GWAS signals were often genes with complex
468 context-dependent regulatory architecture and were depleted for eQTL variants. This has
469 raised a call in the computational genomics community for orthogonal approaches to
470 identify genes involved in complex traits. We found that annotations derived from
471 context-specific GCNs are informative of trait heritability independent of
472 context-agnostic functional annotations. This suggests that tissue- and context-specific
473 network centrality and other network properties could be used to help prioritize genes
474 near GWAS loci [42] or supplement eQTL data.

475 One of the major challenges in network inference remains the presence of

476 unobserved technical confounders and undesirable biological signals which leads to
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477 spurious network edges and precludes causality claims. While PC-based data correction
478 has been extensively utilized to reduce false positives resulting from confounding, recent
479 work by Cote et. al [43] suggests that PC-based data correction, and related methods such
480 as PEER [44] and CONFETI [45], may over-correct expression data and remove
481 biological co-expression of potential interest. Correcting or modeling confounders is
482 essential to network accuracy, so tuning parameters such as the number of latent factors
483 to correct as well as exploring alternative methods will continue to be important.
484 Alternate approaches to handle confounding and infer causal regulatory relationships
485 include instrumental variable analysis through the construction of local genetic
486 instruments as outlined by Lujik et al. [46], however, since central network nodes are
487 evolutionarily constrained and tightly regulated, it can be challenging to construct
488 well-tracking genetic instruments for central genes,. Publicly available RNA-seq data
489 including recount3, the extensive annotations we provide, and recent work which
490 illustrated genotype calling using RNA-seq data [47] could improve our ability to detect
491 context-specific cis-regulatory effects, the reconstruction of local genetic instruments,
492 and hence causal regulatory network inference.

493 Future directions aimed at improving GCN inference could leverage our
494 extensively annotated sample characteristics and data aggregation strategies with
495 complementary strategies including sharing information between related contexts [48] to
496 increase the effective sample size, introducing constraints or priors corresponding to
497 known regulatory relationships [49], and using alternate statistical measures of
498 expression similarity that capture non-linear associations between genes [50].

499 Additionally, heuristic algorithms such as the one proposed by Opgen-Rhein et al. [51]
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500 could be utilized to enrich our current networks with directionality information. Finally,
501 while we studied tissue-contexts, we provide annotations of disease status which can be
502 utilized to infer disease-specific GCNSs.

503 Our finding that marginal improvement in network reconstruction decreases with
504 continued data aggregation suggests that simply addressing statistical considerations due
505 to sample size may have limitations for improving GCNs. Including orthogonal sources
506 of information such as gene-enhancer associations inferred from Hi-C data [52] and
507 transcription factor binding sites from ChIP-seq data [53], in addition to gene expression
508 quantified by RNA-seq in both bulk and single-cell studies, might result in a more
509 accurate understanding of the shared regulatory architecture between genes. Additionally,
510 experimental protocols such as Perturb-Seq [54], which quantifies the transcriptional
511 changes mediated by genetic manipulations on genes, processes, and states, could provide
512 a new avenue for network inference and suggest causal mechanisms and edge
513 directionality.

514 Conclusions

515 We demonstrated that data aggregation improved the inference of consensus and
516 context-specific networks, particularly when properly accounting for latent confounding and
517 between-study variability. While consensus networks prioritized ubiquitous biological processes,
518 context-specific networks captured tissue-specific gene interactions. Further, context-specific
519 networks prioritized variants that are enriched for trait heritability independent of overlap with
520 baseline functional genomic categories suggesting that improving the detection of

521 context-specific gene-gene interactions can shed light on the mechanisms that relate genetic
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522 variants to traits. Thus, meaningful data aggregation improves GCN inference and identifies how
523 genes interact to produce complex phenotypes.

524

525 Methods

526 A. Data pre-processing and quality control

527

528 We downloaded uniformly processed RNA-seq samples from humans using the
529 recount3 R package [16] and selected 1747 projects that included 30 or more samples
530 each (Fig. 1A). Before normalization, we excluded samples with zero expression across
531 all genes and genes that had zero expression across all samples in a project. We used
532 in-built functions from the recount3 package to compute the RPKM transformed count
533 matrix, selected genes that were protein-coding, autosomal, and unambiguously mapped
534 to the reference genome [55, 56], and generated the lo gZ(RPK M + 1) count matrix for
535 each project. Following preliminary processing, we applied a unique data processing
536 pipeline based on the study of origin to exclude samples from micro-RNA and
537 scRNA-seq experiments and summarized replicates. For projects belonging to GTEx, we
538 excluded duplicates (which are labeled as STUDY NA in the project attribute), as well as
539 samples derived from the chronic myelogenous leukemia (CML) cell line and grouped
540 samples by the tissue of origin to obtain 50 groups and 18828 samples.

541 Before identifying replicates, we excluded 67 TCGA samples that did not have
542 sample type specified, followed by 39 samples which did not have patient ID present. We
543 then identified replicates in the remaining TCGA samples as those samples that agreed on

544 both patient ID as well as sample type and aggregated by computing the median across
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545 all replicates. We then grouped samples by their respective cancer code to obtain 33
546 groups and 11091 samples.

547 Finally, for projects from SRA, we began by excluding samples obtained by size
548 fractionation. We then identified replicates, as those samples with an identical experiment
549 accession number and aggregated across replicates by computing the median gene
550 expression, this results in 200499 samples. To exclude microRNA projects that have
551 erroneously been labeled bulk-RNA sequencing experiments, for each sample, we
552 computed the fraction of genes with zero expression and excluded 89,101 samples where
553 this fraction is greater than 50%. The recount3 database includes manually curated tissue
554 types and experiment types for 30473 samples of 373 SRA studies. The experiment types
555 found included 4 categories, bulk RNA-sequencing, single-cell RNA-seq, small/micro
556 RNA-seq and others. Based on the differences in the sparsity patterns of bulk RNA
557 sequencing and other sequencing modalities, the authors developed a predictor to classify
558 samples as either bulk or single-cell-based. We utilized these predicted labels to restrict
559 our analysis to only bulk RNA-sequencing studies. Since predicted labels were not
560 present for all samples, we excluded samples with keywords such as “single cell”,
561 “scRNA”, “snRNA”, and “single nucleus” in the study abstract if it was found. Further,
562 when the library selection information was available, we restricted our analysis to
563 samples that contained either cDNA or RT-PCR in the library selection field. We also
564 excluded studies which are known scRNA-seq experiments including, SRP096986,
565 SRP135684, SRP166966, SRP200058, and SRP063998. For the remaining studies, we
566 performed a text-based analysis to obtain the Study, Tissue, Organ, Biopsy, Cell, Disease,

567 Source and Description from the metadata sample description field. We then
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568 manually annotated 10179 unique combinations of these fields to obtain tissue, cancer
569 status, and disease type. In this manner, we were able to obtain labels for 65361 samples
570 which we grouped on the basis of the study accession IDs to form 884 SRA studies
571 (Additional File 19: Supplementary File 4). While we grouped GTEx samples by tissue
572 of origin, SRA samples by study accession ID, and TCGA samples by cancer accession
573 code, we refer to an individual group of samples as a “study” to simplify nomenclature.
574 Further, we did not distinguish on the basis of disease state or cancer status while
575 organizing the data, until we proceeded to compute the inputs to network inference.

576 B. Identifying tissue type and cancer status

577

578 Wilks et. al [16] demonstrated that for bulk RNA-seq data from humans, the
579 largest source of variation in gene expression was correlated with tissue or cell type of
580 origin, with the clear clustering of samples belonging to the same tissue extending to the
581 top 4 principal components. We manually refined annotated labels and grouped samples
582 by context using t-SNE dimensionality reduction and clustering 95484 samples and 5999
583 genes which had non-zero variance across all samples. Since it was not possible to
584 differentiate cancerous and non-cancerous samples using differential clustering in the
585 t-SNE space, we utilized manually annotated labels to restrict the analysis to
586 non-cancerous samples.

587 Further, to facilitate the greatest possible increase in sample size, we combined
588 similar tissues to form tissue categories (Additional File 1: Supp. Table I). Since
589 differences in gene expression across samples can be driven by factors other than the
590 tissue of origin, such as experimental batch and library size, we obtained the relative

591 enrichment of 64 distinct stromal and immune cell types by comparing the gene
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592 expression profile of an admixture sample from bulk tissue to curated gene expression
593 signatures provided by xCell [22]. Once we computed the cell-type enrichment
594 vectors for each sample, we performed t-SNE dimensionality reduction for visualization
595 and clustering.

596 For 24 tissue categories that have more than 500 samples, we refined our sample
597 selection by eliminating outliers using 6 different methods of outlier calling. These
598 included

599 1. Z-score-based outlier calling: We computed the z-scores for each reduced
600 dimension independently, samples which have a z-score greater than or equal to 3
601 in either dimension are labeled as outliers.

602 2. MAD-based outlier calling: For each dimension we computed the median
603 absolute deviation as given by Eqn. 1

604 MAD = Median(|X, — X|) Eqn. 1
605 Where X , 1s the mean of all observations. We computed the outlier score in each
606 dimension using Eqn. 2

607 SMAD = |Xl, — Median(X)| / MAD Eqn. 2
608 We labelled a sample an outlier if SM D is greater than or equal to 3 in either
609 dimension.

610 3. Tukey outlier calling: We computed the quartiles of each dimension and the
611 IQR = Q3 - Q1' Samples which have a value lower than Q1 — 1.5 X IQR

612 or greater than Q ;T 1.5 X IQR in either dimension are labeled outliers.
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613 For each method below, we computed the Mahalanobis distance (MD) for
614 each sample by estimating the covariance matrix C across all samples. The MD is
615 given by Eqn. 3,

616 MD = (X, - X).C . (X - X) Eqn. 3
617 To identify outliers, we used the additional criteria based on the MD outlined
618 below,

619 4. Mahalanobis Z-score: Computed the z-scores across the MD metrics and labelled
620 samples with a z-score greater than or equal to 3 as outliers.

621 5. Mahalanobis MAD: Computed the MAD-based outlier score on the MD using
622 Eqn. 2, and labelled samples with a score greater than or equal to 3 as outliers.

623 6. Mahalanobis Tukey: Compute the quartiles of the MD estimates and the
624 inter-quartile range (IQR). Label samples with an MD estimate lower than
625 Q1 — 1.5 X IQR or greater than Q3 + 1.5 X IQR as outliers.

626 If a sample within a tissue category is labeled an outlier by at least 2 methods of outlier
627 calling, then we excluded the sample for downstream network reconstruction. While this
628 works with simpler tissue categories such as blood, skeletal muscle or colon where the
629 samples have relatively homogenous cell type compositions, for the immune system,
630 which comprises samples from the distinct myeloid, lymphoid and innate immune
631 systems, these outlier metrics failed due to large intersample variation. Therefore for
632 immune cell types, we first performed K-means clustering with 3 centroids. We annotated
633 the three resulting clusters based on the representation of manually annotated labels in

634 each cluster as either B-cells, myeloid cells (including monocytes and macrophages) and
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635 PBMCs w/ T cells. For each cluster, we performed outlier detection using all six methods

636 outlined above and excluded samples that were found to be outliers in any two methods.

637 C. Data correction and aggregation

638 Principal component (PC) based correction methods can account for technical and
639 biological artifacts that confound gene expression measurements and reduce false
640 positives in gene network inference [24]. However, these methods have been applied to
641 one experiment and not across multiple experiments from disparate sources. We
642 systematically compared 4 strategies of data aggregation including,

643 1. Aggregating data: Identify genes with non-zero expression and non-zero variance
644 across all studies of interest, followed by aggregating the data, quantile
645 normalization, scaling, and PC estimation. We determined the number of PCs to
646 regress using the permutation method described by Buja et. al [25] and Leek et. al
647 [23]. We then obtained the residuals by fitting a linear regression using the
648 number of identified PCs. Finally, we quantile normalized the residuals and scaled
649 each gene to have a mean of zero and unit variance and estimated the empirical
650 covariance matrix.

651 2. Aggregating data adjusted for confounding: We considered each study
652 individually, quantile normalized, scaled the data, and estimated PCs, followed by
653 the determination of the optimal number of components to be regressed. We then
654 obtained the residual gene expression using a linear model to regress latent
655 variables corresponding to confounding. We aggregated across each individually
656 corrected study by selecting genes that have non-zero expression and non-zero

657 variance across all samples. Finally, we quantile normalized and scaled the
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658 aggregated corrected gene expression and estimated the empirical covariance
659 matrix.
660 3. Unweighted aggregation of covariance matrices: For each individual study, we
661 quantile normalized and scaled the data, followed by PC-based data correction
662 and computed residuals. To the residuals, we applied quantile normalization and
663 scaling and estimated the empirical covariance matrix S . for each study k.
664 Assuming equal likelihood of error from each study we computed the unweighted
665 average of covariance matrices Cunweig ntod 33 described in Eqn. 4

TS,
666 Cunweighted - TTI Eqn. 4
667 where |K| is the total number of studies aggregated.
668 4. Weighted aggregation of covariance matrices: We repeated the process described
669 previously in the computation of unweighted aggregation of covariance matrices
670 to estimate study-level empirical covariance matrices S r We then assumed that
671 studies with a larger sample size provide a better estimate of individual

672 covariances and computed the weighted covariance as in Eqn. 5 and Eqn. 6
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673 w, o= Eqn. 5

674 Cweighted = zk‘, WkSk Eqn. 6

675 D. Network reconstruction with graphical lasso

676 Following the computation of aggregate covariance matrices using the strategies outlined
677 in the previous section, we infer gene regulatory relationships using graphical lasso [13].
678 The desired network structure is obtained by identifying the precision matrix, @ = i
679 that maximizes the penalized log-likelihood given by Eqn. 7, where C is the estimated
680 covariance matrix.

681 0 = argmin, tr(C.0) — log|e| + All]], Eqn. 7
682 We estimated the precision matrix O across a range of A between 0.04 to 1.00 in intervals
683 of 0.02. For genes p and q, an edge connecting them exists if the corresponding entry in
684 the precision matrix is non-zero as given by Eqn. 8

685 ﬁp,q -1, if |6M| > 0

686 0, otherwise Eqgn. 8

687 E. Network evaluation to determine the optimal aggregation strategy

688 We applied all 4 methods of data aggregation to infer networks from non-cancerous
689 samples using two data partitions - GTEx and SRA non-cancer. Since GTEx did not
690 include any cancerous samples, we organized the samples by tissue-type and excluded

691 any tissues with fewer than 15 samples, in this case, Kidney-Medulla. For the SRA
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692 non-cancer, we select samples which were annotated to be non-cancerous and organize
693 them by the study accession IDs, we then exclude any studies which had fewer than 15
694 samples, resulting in 566 selected studies. For each data partition, we evaluated network
695 improvement with sequential data aggregation as follows,

696 1. SRA non-cancer: An aggregate network inferred across 566 SRA studies from
697 varying tissues that are non-cancerous. We order the studies by increasing sample
698 size and aggregate 1, 100, 200, 300, 400, 500 and 566 studies to estimate
699 empirical covariance matrices and infer networks using graphical lasso across A
700 ranging from 0.04 to 1.00.

701 2. GTEx non-cancer: An aggregate network inferred across 49 GTEx tissues and cell
702 lines. We order tissues in increasing order of sample size and aggregate tissues in
703 increments of 10 to obtain networks corresponding to 1, 10, 20, 30, 40 and 49
704 tissues across a range of A between 0.04 and 1.00.

705 Details of the number of studies, samples, median sample size and principle components
706 regressed are provided in Additional File 3: Supp. Table II. Following network
707 inference, we evaluated the improvement in network inference as a function of sample
708 size and method of data aggregation using two metrics, held-out log-likelihood and
709 enrichment of known biological pathways. The metrics are computed as follows,

710 1. Held-out log-likelihood: For networks inferred using SRA data, the test set
711 consisted of 6 GTEx tissues including Adipose Subcutaneous, Cells cultured
712 fibroblasts, Heart left ventricle, Artery aorta, and Colon sigmoid. To evaluate
713 networks inferred using GTEx samples we selected SRA studies with matched

714 sample sizes including SRP116272, SRP151763, SRP150552, SRP174638, and
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715 SRP187978. For each test study, we quantile normalized and scaled the data,
716 followed by PC-based data correction and computed residuals. We then quantile
717 normalized and scaled the residuals and computed the corresponding covariances
718 matrices S ; for the i study. We computed the log-likelihood of the data observed
719 in each held-out study as shown in Eqn. 9

720 L = n[loglo] — tr(S . ®)] Eqn. 9
721 We then computed the average log-likelihood across all test data sets i € [as
722 given by Eqn. 10 where |I| is the total number of test data sets.

- zL

723 L = T Eqn. 10
724 2. Prediction of known biological pathways: We downloaded pathway information
725 from KEGG, Biocarta and Pathway Interaction Database from Enrichr and
726 selected those pathways that were annotated as canonical pathways by MSigDB.
727 Additional File 4: Supp. Table III provides details on the number of gene sets
728 from each source. Any pair of genes that have at least one pathway in common
729 were assumed to have a true functional relationship. In total, we identified
730 9648013 such edges (U). For each inferred network /1\7 = {V, E}, where V is the
731 set of genes over which we perform network reconstruction, and E is the set of
732 edges between the gene pairs, we restricted the set of universal pathway edges to
733 those between genes G1’ G2 € V. If Sa” is the set of edges between all possible
734 gene pairs such that |Sa”| = VCZ, then U® = Sall\ U, and EC = Sall\E, we

735 constructed the contingency table as follows,
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736 a. True positives (TP)=|U N E|
737 b. False positives (FP) = |UC n E|

. c C
738 c. True negatives (TN)=|U N E’|
739 d. False negatives (FN)=|U N E C|
740 We computed the precision, recall, and F1-score as described by Eqn. 11, Eqn. 12,
741 Eqgn. 13.

L TP
742 Precision = —- Eqgn. 11
_ TP
743 Recall = =+ Eqn. 12
_ Precision X Recall

744 F1 — score = 2. 5 Eqgn. 13
745 F. Inference of consensus and tissue context-specific networks
746 We inferred consensus networks across samples from disparate tissues and cell types to
747 capture shared biological pathways across contexts. Since weighted covariance
748 aggregation yielded the best results across the 4 methods of data correction and
749 aggregation, we first grouped SRA samples by the study accession ID, GTEx samples by
750 the tissue of origin, and TCGA samples by the cancer code. To estimate the universal
751 consensus network we did not exclude any samples. Thus, we aggregated 65361 samples
752 from 884 SRA studies with a median sample size of 44, 11091 samples from 33 TCGA
753 studies with a median sample size of 309, and 18824 GTEx samples from 49 tissues and
754 a median sample size of 286. Prior to estimating non-cancer consensus networks, we first
755 exclude all cancerous samples from each study, and only retain studies with 15 or more

756 samples. Similarly, prior to estimating cancer consensus networks, we only include
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757 cancerous samples, and exclude studies with fewer than 15 samples. Since weighted
758 covariance aggregation yielded the best results across the 4 methods of data correction
759 and aggregation, we first etimated and adjusted for unknown technical confounders using
760 Principal component analysis (PCA) in each group of samples. We computed the
761 weighted empirical covariance matrix as detailed in Section Il.c. We then inferred the
762 network structure by optimizing penalized log-likelihood Eqn. 7 and thresholded the
763 entries in the precision matrix as described by Eqn. 8 for a range of penalization
764 parameters A ranging from 0.08 - 1.00.

765 We inferred context-specific networks in 27 contexts with 500 or more samples.
766 Details of the number of samples, studies, and median sample size across studies for each
767 context are provided in Additional File 2: Supp. Fig 13. For 20 contexts including
768 adipose, B cells, blood, breast, cardiac, central nervous system, colon, esophagus,
769 fibroblasts, intestine, kidney, liver, lung, nervous system, pancreas, prostate, skeletal
770 muscle, skin, stomach, and vascular we inferred networks either using GTEx sample only
771 or by aggregating context-specific samples from recount3 which included GTEx. For
772 each context-specific network, we first performed PC-based data correction within each
773 study followed by covariance estimation and aggregation by weighting the covariance
774 matrix with the proportion of study-specific sample size to the total number of samples as
775 detailed in Eqn. 5 and Eqn. 6. We then inferred GCNs using graphical lasso using Eqn. 7

776 and Eqn. 8
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777 G. Evaluating the impact of data aggregation on the inference of consensus and

778 context-specific networks

779 To evaluate the improvement in the performance of consensus networks with data
780 aggregation, we computed the precision, recall, and F1-score of observing known gene
781 co-regulatory pairs compiled from KEGG, Biocarta and Pathway Interaction Database
782 which were annotated as canonical pathways by MSigDB as detailed in Methods
783 (Section E). Specifically, we compared the Fl-scores corresponding to the universal,
784 non-cancer, and cancer consensus networks for network densities between 5000 and
785 500,000 edges.

786 In order to evaluate the impact of data aggregation on context-specific networks,
787 we selected two contexts with the highest number of samples - blood and CNS. We
788 obtained 64 SRA studies that were annotated to blood, and 40 SRA studies annotated to
789 CNS. We sequentially aggregated SRA studies five at a time in each context in the
790 increasing order of sample size and inferred GCNs using weighted aggregation of
791 covariance matrices and graphical lasso as detailed in Methods (Sections C, D) over a
792 range of penalization parameters A varying from 0.10 to 1.00. For each data aggregation
793 setting, we evaluated the network performance over a range of network densities by
794 computing the held-out log-likelihood of GTEx samples belonging to the concordant
795 tissue in a manner analogous to Methods (Section E). Specifically, to evaluate the
796 inferred blood networks, we utilized the empirical covariance matrix computed from 850
797 blood GTEx samples. Since GTEx contained 13 brain regions which were all annotated

798 to the CNS context, we computed the held-out log likelihood corresponding to each brain
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799 region and computed the mean across regions to obtain a scalar measure of the network’s
800 generalizability.
801 Additionally, for 6 contexts, adipose, blood, CNS, liver, lung, and skin we
802 compared networks inferred solely from GTEx samples to GCNs inferred from data
803 aggregation based on the inclusion of known tissue-specific protein-protein interactions
804 (PPIs). First, we selected networks that were inferred with the value of the penalization
805 parameter between 0.12 and 0.50. We then downloaded tissue-specific PPIs present in
806 PPT-Ohmnet _tissues-combined.edgelist.gz from SNAP which is compiled across 144
807 unique tissues [57-59]. We mapped the tissue labels present in SNAP to our contexts
808 studied as given in Additional File 20: Supp. Table XV. After converting the protein
809 identifiers using the R package org.Hs.eg.db, we performed Fisher’s test to
810 compute the odds ratio of finding tissue-specific PPIs in our context-specific networks
811 when compared to a fully connected network as background. Specifically, we computed
812 the following contingency matrix that we used as input to the R function
813 fisher.test () where E is the set of edges present in our inferred network, Pt is the
814 set of concordant tissue-specific PPIs, and E° is the set of all edges absent in the network
815 which is obtained by U \ E, where U is the set of all possible edges between the nodes,
816 and |U| = “c 5 where G is the set of genes over which we perform network inference.
Edge present in Edge absent in tissue-specific

tissue-specific PPIs PPIs

Edge present in network |Pt n E| |E| - |Pt n E|
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Edge not present in network P n EC| | EC| —|IP. n EC|
t t
817
818 To compare between context-specific networks inferred solely from GTEx to those
819 inferred across aggregated data, we performed the Wilcoxon rank-sum test to compare
820 the odds ratios from each setting.

821 H. Sparsity parameter selection for consensus and context-specific networks

822 Previous analysis of gene regulatory networks indicates that eukaryotic [60] and
823 prokaryotic transcriptional [61] networks exhibit an approximately scale-free degree
824 distribution which concurs with the assumption that few transcription factors have the
825 potential to regulate an multitude of target genes [35]. The power law degree distribution
826 follows Eqn. 14 where p(k) is the probability of a random node having k connections
827 and y is the power law scaling exponent.

828 pk) = C. k' Eqn. 14
829 Taking the logarithm, we get,

830 logp(k) = — ylogk + logC Eqn. 15
831 For each of the 3 consensus networks and 27 tissue-context specific networks, we used
832 the R package igraph to estimate the degree distribution for each value of A and the
833 function 1m ()to estimate the slope (— y) and R Finally, we computed the 95%
834 confidence interval (CI) for the slope using the R function confint (). We then
835 selected networks such that 2 < LL(y) < UL(y) < 3, and the R® > 0.8 where

836 LL(y) and UL(y) correspond to the lower and upper limits of the 95% CI of y. Details
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837 pertaining to the selected consensus networks and their corresponding values of the
838 penalization parameter A, network densities, regression slope and R® are provided in
839 Additional File 5: Supp. Table IV. Similarly, the selected network densities, values of
840 the regression slope and R’ are provided for context-specific networks inferred from
841 GTEx only and across all aggregated samples in 6 contexts which were used in
842 downstream analysis is in Additional File 6: Supp. Table V.

sa3  I. Computing gene centrality measures based on network structure

844 Using measures of network connectivity, we computed centrality scores for each gene in
845 the network. Given a weighted undirected graph G, first, we normalized the edge weights
846 If E is the list of all edges in the network (excluding diagonals) and Ep‘ . is the weight of
847 an edge connecting genes p and q. Then the normalized weight /E\p’ . = E ha / max(E . )
848 forall i, j € Nodes(G) such that i # j. Using normalized edge weights we computed
849 the following centrality scores for each gene p,

850 a. Betweeness(p): The betweeness centrality captures the number of shortest paths
851 in a network that passes through the gene p. The shortest path between nodes
852 i, J € Nodes(G) is the path where the sum of the edge weights is minimum.

853 b. Closeness(p): The closeness centrality captures the distance between a gene p to
854 all other network nodes. We first obtained the weighted distance between gene p

855 and gene i as given by Eqn. 18
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856 dp’i = ? Eqn. 18

857 If the nodes p and i' are disconnected then we set dp, o to 0. Finally, the closeness

858 centrality of a gene p is given by Eqn. 19

859 Clp) = v~ Eqn. 19
ip %p.i

860 c. Degree(p): The degree of a gene p corresponds to the number of neighbors

861 connected to p.

862 d. Maximum weight(p): The maximum weight of a node is the maximum weight of

863 the edges that are connected to the gene p.

864 e. Page rank(p): The page rank of a node p is defined by Eqn. 20,

865 (1— a)/N + a ¥ Pagerank(w)/d () Eqn. 20

u€N(p)

866 Where a is a damping factor, N(v) are the in-neighbors of node p, and d+(u) is

867 the out-degree of u. Because G is an undirected graph, pagerank treats it as a

868 directed graph by making edges bi-directional. Specifically, in addition to the

869 number of neighbors that a node p has, page rank incorporates information

870 pertaining to the connectivity of the neighboring nodes.

871 f. Strength(p): The strength of a node is defined as the sum of the weights of all

872 edges connected to the gene p.

873 J. Enrichment of specific pathways among central genes in consensus and

874 context-specific networks

875 First we developed a general method to test for the enrichment of genes annotated

876 to a specific GO term among network central genes. For a given network N = {V, E}
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877 where V is the set of nodes and E the set of edges, we estimated the degree of each node
878 as described in Methods (Section I) and estimated the maximum degree across all nodes.
879 We then determined a series of degree thresholds, starting at 5 to the maximum degree in
880 increments of 5. For a particular degree threshold, Dt we obtained all the network nodes
881 with a degree b. =D, which forms the test set of genes T, such that T < V. To
882 determine the enrichment of genes associated with a particular GO term corresponding to
883 a biological process (GoG), we first computed the following contingency matrix where G
884 is the set of 19950 protein-coding genes where T = G\T
885
Gene present in GO Gene absent in GO term
term

Gene present in test set T N GoG| IT|- |T N GoG]|

Gene absent in test set |TC N GoG| |TC| _ |TC N GoG|
886
887 We then performed Fisher’s test with the alternative hypothesis that the odds ratio of
888 finding GO related terms is greater in the test set T and estimated p-values.
889 To evaluate the universal, non-cancer and cancer consensus networks, we first
890 selected the value of the penalization parameter such that the resulting network density
891 was ~ 7000 edges. We then determined the odds ratio of finding genes belonging to
892 ubiquitous biological processes among network nodes selected by successively increasing

893 degree thresholds. Further, we computed the odds ratio of finding genes belonging to


https://doi.org/10.1101/2024.01.20.576447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.576447; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

894 ubiquitous processes in blood and CNS networks inferred across all samples from
895 recount3 with ~ 7000 edges.

896 To evaluate a context-specific network such as blood, we first selected a blood
897 network inferred solely from GTEx samples and a network inferred by data aggregation
898 across all samples from recount3 such that the resulting network density was ~7000, and
899 the node degree distribution was scale-free. As negative controls, we included a different
900 context-specific network inferred across aggregated samples, the universal and
901 non-cancer consensus network. For blood, we specifically tested for the enrichment of
902 processes such as leukocyte migration, leukocyte activation and blood coagulation. We
903 repeated this analysis for 5 other context-specific networks - CNS, skin, lung, liver, and
904 adipose by selecting related GO terms and determining the enrichment of functional
905 genes among network central genes. A complete list of GO terms that were tested for
906 each context is described in Additional File 7: Supp. Table VI.

907 K. Excess overlap of genes grouped by centrality measures in consensus with

908 known evolutionarily constrained and functionally prioritized gene sets

909 We group genes for each consensus network such that the first bin includes genes with no
910 edges (with a degree of zero), the second bin contains nodes with a degree in the lowest
911 25™ percentile, the third bin includes nodes with a degree in the 25" - 50™ percentile, the
912 fourth bin includes genes with degree in the 50" - 75™ percentile and the fifth and final
913 bin includes genes with a degree greater than the 75" percentile. For genes in a given bin,
914 we compute the excess overlap with known 9 evolutionarily constrained and functional

915 gene sets used by S.Kim et al. which include,
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916 1. High pLI genes [62]: 3,104 loss-of-function (LoF) genes with pLI > 0.9, i.e.,
917 strongly depleted for protein-truncating variants.

918 2. High S, genes [63]: 2,853 constrained genes with S,.> 0.1 i.e., strong selection
919 against protein-truncating variants.

920 3. High missense Z-score [64]: 1,440 constrained genes strongly depleted for
921 missense mutations, with exp syn>5, syn z sign < 3.09, and mis_z sign > 3.09,
922 as retrieved in Lek et al [62].

923 4. High Phi [65]: 588 LoF-constrained genes with a probability of
924 haploinsufficiency (Phi) > 0.95.

925 5. MGI essential genes [66—68]: 2371 genes for which a homozygous knockout
926 resulted in pre-, peri-, post-natal lethality

927 6. eQTL deficient [69]: 604 genes with no significant variant-gene association in all
928 48 tissues in GTEx v.7 single-tissue cis-eQTL data.

929 7. OMIM [70]: 2,266 genes deposited in the Online Mendelian Inheritance in Man
930 (OMIM), as retrieved in Petrovski et al [71].

931 8. ClinVar [72]: 5,428 genes with a pathogenic or likely pathogenic variant with no
932 conflict among studies.

933 9. DrugBank [73]: 373 genes whose protein products are human targets of
934 FDA-approved drugs with known mechanisms of action.

935 The complete list of genes belonging to each of these categories is provided in
936 Additional File 8: Supp. Table VII. We computed the expected and standard error of
937 excess overlap between genes in each bin Gib fori = 1, 2, 3, 4, 5 and the reference

938 gene set j, Gjr using Eqn. 21 - 24, where Gtot represents all network nodes.
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670G,
939 P = — Eqn. 21
d 1G, |
940
6,06,
941 Ptot = W Eqn. 22
942
i Py
943 excess overlap (G y Gr) = 3 Eqn. 23
944
SE lap G, 67y = o[22 p Eqn. 24
945 excess overlap ( ¥ r) = " / ot qn.
946

947 L. Identifying biological processes associated with shared and distinct hub

948 genes from non-cancer and cancer consensus network

949 In accordance with the scale-free criterion we selected the non-cancer network
950 inferred using a penalization parameter A = 0.18 resulting in a network density of 7355
951 edges and the cancer consensus network corresponding to the penalization parameter A
952 = 0.24 and a network density of 7552 edges to compare the biological processes which
953 are represented by shared and distinct network hubs. First, we defined hub genes as
954 network nodes with a closeness centrality in the 90th percentile independently for each
955 consensus network, such that the non-cancer hub genes are given by HN and the cancer
956 hub genes are given by H - We then identified hub genes shared between cancer and
957 non-cancer consensus networks H. = H n H_., non-cancer specific hub genes

958 HNS = HN N Hc" and cancer-specific hub genes as HCS = Hc N HN' (Additional
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959 File 10: Supp. Table IX). We then used the GOTermFinder tool [74] to identify GO

960 terms that are shared by the genes in the sets Hs ,H NS and H cs

91 M. Examining the differences in the degree distribution of tissue-specific vs.

962 general transcription factors in consensus and context-specific networks

963 We selected context-specific networks inferred from CNS, blood, cardiac, skin,
964 lung, skeletal muscle, and pancreas samples from recount3 which had an approximate
965 density of 7,000 edges (Additional File 21: Supp. Table XVI). Additionally, we selected
966 values of the penalization parameter A which yielded universal and non-cancer consensus
967 networks with an approximate density of 7,000 edges. We referred to Pierson et al. [36]
968 to obtain a list of tissue-specific and general transcription factors which are provided in
969 Additional File 9: Supp. Table VIII. In order to select a background set of non-TFs, we
970 first obtained the intersection of genes which were included in each network considered,
971 then we excluded both general and tissue-specific TFs from this list, and randomly select
972 100 of these genes. The selected background is provided in Additional File 9: Supp.
973 Table VIII. For each network, we compared the degree distribution of tissue-specific and
974 general transcription factors to non-TFs and the degree distribution of tissue-specific to
975 general transcription factors using the Wilcoxon rank-sum test. Across all tests, we

976 adjusted for multiple hypothesis correction using the Holm-Bonferroni method.
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977 N. Non-negative matrix factorization to determine shared co-regulatory

978 relationships in similar tissues

979 We selected context-specific networks with a density of ~7000 across 27 contexts
980 for which we inferred GCNs by aggregating samples assigned to the context from
981 recount3 (Additional File 21: Supp. Table XVI). Further, the selected networks were in
982 accordance with the scale-free selection criterion detailed in Methods (Section H). For
983 each network, we identified hub genes as network nodes with a degree centrality in the
984 95th percentile. Across the 27 contexts, we found 3682 unique hubs. We subset to hubs
985 that are present in at least 2 contexts which results in 1956 hubs. We then used the R
986 package RcppML to perform non-negative matrix factorization to learn 8 underlying
987 factors to group similar patterns of hub genes. Specifically, H is a binary matrix of
988 dimensions NHubS X N r where NC 1s 27 the number of contexts. H L = 1 when the ith
989 gene is a hub gene in context j and H i s 0 otherwise. We then obtain matrices W of
990 dimensions N, o % 8, and C of dimensions N_x 8 by solving the following
991 optimization function,

992 min||[H — WC'||suchthat W =0, C = 0 Eqn. 25
993 Finally, we chose a solution after 10 iterations that resulted in the greatest
994 sparsity, i.e. smallest values of ||| |1 and ||C| |1. To interpret the resulting context cluster,
995 we examine the genes that contributed the most to the corresponding factor. Specifically,
996 for a given factor, W[: , p], we first obtain genes with loadings in the 80% percentile.
997 Then for each gene, we compute the maximum difference between the loading of the

998 gene on factor p to all other factors and select genes where this difference is > 5e-5. Thus
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999 we obtain a set of factor-specific hub genes Gp (Additional File 12: Supp. Table X). We
1000 then used the GOTermFinder tool [74] to identify GO terms that were more likely to
1001 be present in the set Gp than a background of all protein-coding genes by estimating the
1002 odds ratio and p-value by applying the hypergeometric test.

1003 O. Stratified LD-Score regression to quantify the heritability enrichment of

1004 variants proximal to central network genes in consensus and context-specific
1005 networks

1006 We applied stratified LD-score regression (s-LDSC) [21] to quantify the
1007 contribution of node centrality estimated from our consensus and context-specific GCNs
1008 towards explaining complex-trait heritability. First, we transformed all centrality scores
1009 derived from our universal consensus, non-cancer consensus, blood and CNS
1010 context-specific networks to lie between 0 and 1. Next, we annotated SNPs within 100
1011 Kb of a gene with the centrality score assigned to the gene. If an SNP was within 100 Kb
1012 of more than one gene, we assigned the maximum centrality score across all
1013 corresponding genes to the SNP. We generated six network centrality-based annotations
1014 (Methods, Section I) corresponding to each network studied and estimated their
1015 heritability enrichment and the standardized effect size (TC *) of an annotation c as
1016 described by S. Kim et. al [40].

1017 Given an SNP j with a trait-specific effect size of Bj and a corresponding
1018 annotation value a, pertaining to category c, the variance of the effect size B,- is assumed

1019 to be a linear additive combination of the annotation c¢ as given by Eqn. 25.
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= Eqn. 2
1020 var(Bj) EC] a T, qn. 25
1021
1022 Here T, is the per-SNP contribution of the category c to the heritablity of the trait.
1023 s-LDSC then estimates T using the regression model specified by Eqn. 26.
1024 E[sz] = NY I(J, C)Tc + 1 Eqn. 26
c
1025 Where N is the number of samples in the GWAS and [(j, c) is the LD score of SNP j to
1026 the annotation ¢ computed as given by Eqn. 27.
. _ 2
1027 g, o) = % a T ik Eqn. 27
1028 Where a ., is the annotation value of SNP k and rzj . is the correlation between SNPs j
1029 and k. We can then compute the enrichment of an annotation as the proportion of
1030 heritability explained by SNPs in a given annotation divided by the proportion of SNPs in
1031 the annotation. This definition can be extended to continuous annotations as given by
1032 Eqn. 28.
, %h, 20 hgz(c) M
1033 Enrichment = BSNP (O 5 Eqn. 28
Ya .h
j o] 9
1034 Where hgz(c) is the heritability captured by the ¢ annotation, hg2 is the estimated
1035 SNP-heritability and M is the total number of SNPs used to compute hg2 which in this
1036 case is 5,961,159. When the annotation is enriched for trait heritability, the computed
1037 enrichment is > 1. To compute the significance of the enrichment, we used the block

1038 jack-knife method presented in previous studies [21, 40, 75, 76].
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1039 Finally, we computed the standardized effect size T * 1.e. the proportionate change in the
1040 per-SNP heritability associated with a single standard deviation increase in the value of
1041 the annotation ¢ conditioned on all other annotations in the model as given by Eqn. 29.
T sd (c)

1042 T * = ’:gZ/M Egn. 29
1043 Where sd(c) is the standard deviation of the annotation c. T * thus captures the effect
1044 unique to the focal annotation, ¢ unlike enrichment. The significance for the effect size of
1045 each annotation is computed by assuming T */ se(rc *) ~ N(O, 1) as done previously
1046 [40, 75, 77].

1047 We used European samples from the 1000G phase 3 project [49] to obtain
1048 reference SNPs. Regression SNPs were obtained from HapMap 3 [78] and regression
1049 weights were obtained excluding SNPs in the major histocompatibility complex (MHC)
1050 from 1000G_Phase3 weights hm3 no MHC.tgz . We estimated heritability enrichment
1051 and annotation effect size T * , using two model settings. In the first, we included
1052 annotations corresponding to variants located in a 100 Kb window of all protein-coding
1053 genes (all-genes annotation), in the second setting we included annotations corresponding
1054 to variants located in a 100 Kb window of all protein-coding genes and 97 annotations
1055 present in the baseline-LD model v2.2 (all-genes + baseline). Specifically, we
1056 downloaded the 1000G_Phase3 baselineLD v2.2 ldscores.tgz file which included 97
1057 variant annotations such as the annotations provided by Gazal et. al [79], Hujoel et. al
1058 [80], promoter and enhancer specific annotations from Villar et. al [81], and promoter and

1059 enhancer age annotations from Marnetto et. al [82].
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1060 To examine the heritability enrichment and effect size of annotations derived from
1061 the universal and non-cancer consensus networks which were selected based on the
1062 scale-free distribution of node degree detailed in Methods (Section H) we used two sets
1063 of traits.

1064 1. 42 traits considered by S. Kim et al, such that the Z-score of total SNP-heritability
1065 was at least 6 and the genetic correlation between any pair of traits estimated by
1066 cross-trait LDSC was lower than 0.9. A complete list of traits is provided in
1067 Additional File 15: Supp. Table XI

1068 2. 219 UKBB traits with a heritability Z-score >= 7, and the genetic correlation
1069 estimated by cross-trait LDSC is lower than 0.5. A complete list of traits is
1070 provided in Additional File 16: Supp. Table XII.

1071 To examine the heritability enrichment of blood context-specific networks derived
1072 from samples solely from GTEx and inferred across all aggregated samples we utilized
1073 GWAS summary statistics corresponding to 9 blood-derived traits including, ulcerative
1074 colitis [83], rheumatoid arthritis [84], and Crohn’s disease [83], as well as eczema, white
1075 cell count, red cell count, red blood cell width, platelet count, eosinophil count from
1076 UKBB (Additional File 17: Supp. Table XII). Networks derived from blood samples
1077 were selected based on the scale-free criterion for node degree distribution detailed in
1078 Methods (Section H).

1079 To examine the heritability of CNS context-specific networks derived from
1080 samples solely from GTEx and inferred across all aggregated samples we utilized GWAS
1081 summary statistics from the Psychiatric Genomics Consortium [85] corresponding to

1082 Alzheimer’s disease [86], epilepsy [87], Parkinson's, bipolar disorder [88], smoking
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1083 cessation [89], schizophrenia [90], major depressive disorder [91], number of drinks per
1084 week [89], and waist-hip-ratio adjusted BMI from UKBB (Additional File 18: Supp.
1085 Table XIV). Networks derived from CNS samples were selected based on the scale-free
1086 criterion for node degree distribution detailed in Methods (Section H). Following the
1087 computation of heritability enrichment and T * for each trait, as well as their respective
1088 standard deviations we performed a random-effects meta-analysis across traits by using
1089 the function meta.summaries () from the R package rmeta.
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1131 effect of sample size (N) on network density across varying penalization parameters A. Supp.
1132 Fig 10. Held-out log-likelihood of networks inferred by sequential data aggregation of GTEx and
1133 SRA studies. Supp. Fig 11. Linear model between the log empirical degree distribution and log
1134 degree for consensus networks. Supp. Fig 12. Odds ratio for ubiquitous biological processes
1135 across networks. Supp. Fig 13. Odds ratio for tissue specific biological processes across

1136 networks. Supp. Fig 14. Excess overlap of functional gene sets across networks. Supp. Fig 15.
1137 Excess overlap of functional gene sets across context-specific networks. Supp. Fig 16. S-LDSC
1138 results meta-analyzed across 42 traits for annotations from consensus networks. Supp. Fig 17.
1139 S-LDSC results meta-analyzed across 219 UKBB traits for annotations from consensus
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1140 networks. Supp. Fig 18. S-LDSC results meta-analyzed across 9 blood traits. Supp. Fig 19.
1141 S-LDSC results meta-analyzed across 9 CNS traits.

1142

1143 Additional File 3: Supp. Table II: Details pertaining to the number of samples, median sample
1144 size across aggregated studies , number of PCs regressed when data is aggregated prior to

1145 correction for technical, and median number of PCs regressed from each study prior to

1146 aggregation for sequential aggregation of 566 non-cancerous studies from SRA and 49 studies
1147 from GTEx.

1148

1149 Additional File 4: Supp. Table III: Specification of data sources used in the compilation of
1150 pathways including the number of gene sets obtained from each source.

1151

1152 Additional File 5: Supp. Table IV: Selection of penalization parameter Lambda for consensus
1153 networks based on the scale-free criterion for degree distribution.

1154

1155 Additional File 6: Supp. Table V: Selection of penalization parameter Lambda for

1156 context-specific networks based on the scale-free criterion for degree distribution.

1157

1158 Additional File 7: Supp. Table VI: Details of GO terms that were tested for enrichment as a
1159 function of degree thresholds in consensus and context-specific networks.

1160

1161 Additional File 8: Supp. Table VII: Details of evolutionarily constrained and functional gene
1162 sets for which excess overlap is computed across network nodes binned by degree centrality.
1163

1164 Additional File 9: Supp. Table VIII: List of general and tissue-specific transcription factors
1165 derived from Pierson. et. al, as well as randomly selected background genes used to evalute the
1166 differences in the centrality scores obtained from consensus and context-specific networks

1167

1168 Additional File 10: Supp. Table IX: Hub genes that are shared and distinct between non-cancer
1169 consensus network with 11,110 edges (A = 0.16) and the cancer consensus network with 10,482
1170 edges (A = 0.22).

1171

1172 Additional File 11: Supplementary File 1: Enrichment of GO terms in cancer-specific hub
1173 genes.

1174

1175 Additional File 12: Supp. Table X: Hub genes selected to describe each factor such that, the
1176 loading of the gene on the factor was in the 80th percentile, and the minimum difference between
1177 the weight of the gene on the selected factor and all other factors is >= Se-5.

1178

1179 Additional File 13: Supplementary File 2: Enrichment of GO terms among hub genes which are
1180 specific to Factor 7 which results in the grouping of PBMCs/ T cells.
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1181

1182 Additional File 14: Supplementary File 3: Enrichment of GO terms among hub genes which are
1183 specific to Factor 6 which results in the grouping of hESCs, iPSCs, and multipotent cells.

1184

1185 Additional File 15: Supp. Table XI: 42 Independent traits examined by S.Kim et. al, and their
1186 corresponding references, heritability, Z-score and number of individuals in the GWAS

1187

1188 Additional File 16: Supp. Table XII: 219 UKBB traits that are selected based on having a
1189 Z-score >= 7, and pairwise correlation between traits is lesser than or equal to 0.5 as estimated
1190 by LDSC.

1191

1192 Additional File 17: Supp. Table XIII: 9 blood-related traits which were used to examine

1193 heritability enrichment of blood specific networks.

1194

1195 Additional File 18: Supp. Table XIV: 9 CNS-related traits which were used to examine

1196 heritability enrichment of CNS specific networks.

1197

1198 Additional File 19: Supplementary File 4: Manually curated annotations corresponding to
1199 tissue, cancer status and disease type of SRA samples based on text-based analysis of Study,
1200 Tissue, Organ, Biopsy, Cell, Disease, Source and Description from the metadata

1201 sample description field.

1202

1203 Additional File 20: Supp. Table XV: Mapping between annotation categories present in

1204 tissue-specific PPI interactions obtained from SNAP and contexts across which context-specific
1205 networks were inferred.

1206

1207 Additional File 21: Supp. Table XVI: Selection of context-specific networks used in matrix
1208 factorization of shared hubs and edges.
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113 Figure Legends

1414
1415 Fig. 1

1416 Overview of data pre-processing and annotations (A) Gene expression data was RPKM
1417 normalized and log-transformed along with gene-specific and sample-specific filters. Based on
1418 the data source, normalized gene expression was processed to merge replicates, and exclude
1419 miRNA and scRNA seq samples. (B) Number of samples which were annotated to be
1420 non-cancer, cancer, and unknown based on available metadata across GTEx, SRA, and TCGA.
1421 (C) Top 10 tissue labels by sample size across all three data sources: SRA, GTEx, and TCGA.
1422 (D) Top 20 diseases by sample size found in SRA that are not cancer. (E) t-SNE projection of
1423 xCell deconvolution scores of 63,193 non-cancerous samples colored by the tissue of origin. (F)
1424 Increase in the sample size of 27 tissue contexts by using SRA samples compared to GTEx only.
1425 SRA studies included 7 novel contexts which were not available in GTEx.

1426

1427 Fig. 2
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1428 Comparison of aggregation strategies to optimize network reconstruction (A) Outline of
1429 strategies to compare data correction before and after aggregation and weighted and unweighted
1430 aggregation of single tissue/ study covariance matrices included (1) Aggregating data before
1431 PC-based data correction followed by estimation of empirical covariance from residual
1432 expression (Aggregating data, orange), (2) PC-based data correction applied to individual studies
1433 followed by aggregation of residual expression and joint estimation of empirical covariance
1434 (Aggregating data adjusted for confounding, brick red), (3) Unweighted aggregation of
1435 covariance matrices inferred from each study separately after study-specific PC-based correction
1436 (Unweighted covariance aggregation, purple) and (4) Weighted aggregation of covariance
1437 matrices computed from individual studies following study-specific PC-based data correction
1438 (Weighted covariance aggregation, magenta). (B) Held-out log-likelihood of networks inferred
1439 by sequentially aggregating either 10 GTEx studies or 100 SRA studies at a time. (C) F1-score
1440 of networks inferred by sequentially aggregating either 10 GTEx studies or 100 SRA studies at a
1441 time when compared to canonical pathways compiled from KEGG, Biocarta, and Pathway
1442 Interaction Database. (D) Comparison of held-out log-likelihood corresponding to networks
1443 inferred over 49 GTEx studies or 566 SRA studies using four different aggregation strategies
1444 including aggregating data, aggregating data adjusted for confounding, unweighted, and
1445 weighted aggregation of covariance matrices. (E) Comparison of Fl-scores of obtaining edges
1446 corresponding to canonical pathways from KEGG, Biocarta, and Pathway Interaction Database
1447 in networks inferred over 49 GTEx studies or 566 SRA studies using four different aggregation
1448 strategies including aggregating data, aggregating data adjusted for confounding, unweighted,
1449 and weighted aggregation of covariance matrices. (F) Total number of samples, number of

1450 individual studies, and the median sample size of each study which were used in the inference of
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1451 universal consensus, non-cancer consensus, and cancer consensus networks. (G) Comparison of
1452 Fl-scores of obtaining edges corresponding to canonical pathways in the three consensus
1453 networks, universal, non-cancer, and cancer, across networks with density (£) varying between
1454 5e3 to Se6 edges. (H) Log-likelihood of GTEx blood samples based on networks inferred by
1455 sequentially aggregating SRA blood studies five at a time for densities ranging from 1e3 to 1e5
1456 edges. (I) Log-likelihood of GTEx CNS samples based on networks inferred by sequentially
1457 aggregating SRA CNS studies five at a time for densities ranging from 1e3 to 1e5 edges. (J)
1458 Odds ratio of finding edges corresponding to tissue-specific protein-protein interactions (PPIs)
1459 derived from SNAP in tissue-context-specific networks inferred using all available samples vs.
1460 only samples found in GTEX for six tissue contexts.

1461

1462 Fig. 3

1463 Properties of central network nodes of consensus and context-specific networks (A-C)
1464 Enrichment of genes involved in GO processes among network genes selected with increasing
1465 thresholds of degree connectivity in three consensus networks, universal (A = 0.18, 7087 edges),
1466 non-cancer (A = 0.18, 7355 edges), and cancer (A = 0.24, 7552 edges), as well as two
1467 context-specific networks blood (A = 0.24, 7283 edges) and CNS (A = 0.28, 8430 edges).
1468 Tissue-context-specific networks were inferred only using non-cancerous samples. Blood
1469 (GTEX) or CNS (GTEx) networks were inferred using samples only found in GTEx while Blood
1470 and CNS networks were inferred using samples from GTEx and SRA. (D) Distribution of the
1471 excess overlap of evolutionarily conserved gene sets (Methods) for network nodes binned by the
1472 number of neighbors (degree) corresponding to universal consensus networks (A = 0.14, 0.16,

1473 0.18, 0.20), non-cancer consensus network (A = 0.14, 0.16, 0.18, 0.20), cancer consensus


https://doi.org/10.1101/2024.01.20.576447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.20.576447; this version posted January 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1474 networks (A = 0.20, 0.22, 0.24, 0.26), blood network (A =0.18, 0.20, 0.22, 0.24, 0.26), and CNS
1475 network (A = 0.24, 0.26, 0.28, 0.30, 0.32). Quintile 1 reflects nodes with no neighbors. Nodes
1476 with non-zero neighbors are split based on the degree quartile they belong to (Quintiles 2-5). We
1477 evaluated the excess overlap of 3,104 loss-of-function (LoF) genes with pLI > 0.9,2,853 genes
1478 with a S, > 0.1, 588 genes with a Phi-score > 0.95, and 1,440 genes strongly depleted for
1479 missense mutations (high missense z-score). (E) The degree distribution of network nodes that
1480 are tissue-specific transcription factors (TFs) in blood (52 TFs), lung (58 TFs), skin (10 TFs),
1481 pancreas (16 TFs), cardiac (17 TFs), muscle (7 TFs), CNS (51 TFs), general transcription factors
1482 (88 TFs), and protein-coding genes which are not transcription factors in universal consensus (A
1483 = (.18, 7,087 edges), non-cancer consensus (A = 0.18, 7,355 edges), skin (A = 0.26, 7,567 edges),
1484 skeletal muscle (A = 0.26, 6,254 edges), pancreas (A = 0.32, 7,615 edges), lung (A = 0.30, 6,349
1485 edges), CNS (A = 0.30, 6,316 edges), cardiac (A = 0.30, 6,481 edges), blood (A = 0.24, 7,283
1486 edges). Pairs with no significance reported were not statistically distinct (p > 0.1). (F) Factor
1487 weights were obtained by non-negative matrix factorization of the presence of hub genes in
1488 tissue-specific networks with ~ 7,000 edges. Details of the penalization parameter A and density
1489 of selected networks for each tissue context are provided in Supp. Table X.

1490

1491 Fig. 4

1492 Heritability enrichment of network annotations Mean and standard deviation of heritability

1493 enrichment and the coefficient T, an estimate of the heritability of SNPs unique to the
1494 annotation. All genes: whether a variant was located in a 100 kilobase window of all
1495 protein-coding genes, All genes + baseline: all-genes annotation in addition to 97 functional

1496 annotations such as known enhancer and promoter regions. (A) Meta-analysis of 42 independent
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1497 traits for six centrality measures obtained from the universal consensus network and non-cancer
1498 consensus networks corresponding to values of the penalization parameter A between 0.14 - 0.20.
1499 (B) Meta-analysis of 9 blood-related traits including, Crohn’s disease, Ulcerative colitis,
1500 Rheumatoid arthritis, Allergy Eczema, Eosinophil count, Red blood cell count, White blood cell
1501 count, Red blood cell width, and Platelet count for network annotations from Blood GTEx (A =
1502 0.24 - 0.32), Blood consensus (A = 0.18 - 0.26), and Universal consensus network (A = 0.14 -
1503 0.20). (C) Meta-analysis of 9 CNS-related traits including, Alzheimer’s disease, Epilepsy,
1504 Parkinson’s disease, Bipolar disorder, Smoking cessation, Waist-hip-ratio adjusted BMI,
1505 Schizophrenia, Major depressive disorder, and Number of alcoholic drinks per week, for network
1506 annotations corresponding to 6 centrality measures derived from CNS GTEx (A = 0.26 - 0.32),
1507 CNS (A =0.20 - 0.28), and Universal consensus network(A = 0.14 - 0.20).

1508

1509

1510
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