

¹ Aggregation of *recount3* RNA-seq data improves ² inference of consensus and tissue-specific gene ³ co-expression networks

⁴ Prashanthi Ravichandran¹, Princy Parsana², Rebecca Keener¹, Kaspar D.

⁵ Hansen^{1,3,4}, Alexis Battle^{*,2,4,5,6}

- ⁶ 1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- ⁷ 2. Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- ⁸ 3. Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- ⁹ 4. Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- ¹⁰ 5. Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
- ¹¹ 6. Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA

¹² * Corresponding author

¹³

¹⁴ Alexis Battle, PhD

¹⁵ ajbattle@jhu.edu

¹⁶

¹⁷ **Keywords**

¹⁸ Gene co-expression networks (GCNs), Graphical lasso, *recount3*, Public RNA-seq data, SRA,
¹⁹ GTEx, TCGA, Data aggregation, Context-specificity, Complex trait heritability, s-LDSC.

²⁰

²¹ **Abstract**

²² **Background**

²³ Gene co-expression networks (GCNs) describe relationships among expressed genes key to
²⁴ maintaining cellular identity and homeostasis. However, the small sample size of typical
²⁵ RNA-seq experiments which is several orders of magnitude fewer than the number of genes is

26 too low to infer GCNs reliably. *recount3*, a publicly available dataset comprised of 316,443
27 uniformly processed human RNA-seq samples, provides an opportunity to improve power for
28 accurate network reconstruction and obtain biological insight from the resulting networks.

29 Results

30 We compared alternate aggregation strategies to identify an optimal workflow for GCN inference
31 by data aggregation and inferred three consensus networks: a universal network, a non-cancer
32 network, and a cancer network in addition to 27 tissue context-specific networks. Central
33 network genes from our consensus networks were enriched for evolutionarily constrained genes
34 and ubiquitous biological pathways, whereas central context-specific network genes included
35 tissue-specific transcription factors and factorization based on the hubs led to clustering of
36 related tissue contexts. We discovered that annotations corresponding to context-specific
37 networks inferred from aggregated data were enriched for trait heritability beyond known
38 functional genomic annotations and were significantly more enriched when we aggregated over a
39 larger number of samples.

40 Conclusion

41 This study outlines best practices for network GCN inference and evaluation by data
42 aggregation. We recommend estimating and regressing confounders in each data set before
43 aggregation and prioritizing large sample size studies for GCN reconstruction. Increased
44 statistical power in inferring context-specific networks enabled the derivation of variant
45 annotations that were enriched for concordant trait heritability independent of functional
46 genomic annotations that are context-agnostic. While we observed strictly increasing held-out
47 log-likelihood with data aggregation, we noted diminishing marginal improvements. Future

48 directions aimed at alternate methods for estimating confounders and integrating orthogonal
49 information from modalities such as Hi-C and ChIP-seq can further improve GCN inference.

50

51 **Background**

52 Critical cellular processes including the maintenance of cellular identity, homeostasis,
53 and the cellular response to external stimuli are orchestrated through complex transcriptional
54 co-regulation of multiple genes [1–4]. Gene Co-expression Networks (GCNs) are a commonly
55 used framework to describe gene-gene relationships and are comprised of nodes that represent
56 genes and edges linking co-expressed genes [5]. A comprehensive catalogue of gene
57 co-expression relationships has the potential to characterize genes with unknown functions [6],
58 identify regulatory genes [7], determine changes in regulatory mechanisms that are key to
59 cellular identity [8], and prioritize genes that drive phenotypic variability [9]. Despite the utility
60 of gene networks in understanding biological systems, network inference is still a challenging
61 problem and suffers from both false positive and negative edges [10]. In particular, the typical
62 sample size of most RNA-seq studies is orders of magnitude smaller than the number of gene
63 pairs over which regulatory relationships are inferred, making network inference an
64 underdetermined problem. Additionally, factors such as the stochastic nature of gene expression,
65 experimental noise, missing data, and unobserved technical confounders make it difficult to
66 avoid false positives or negatives. Since the number of possible gene-gene interactions scales
67 with the square of the number of genes examined, a potential solution to increase statistical
68 power by reducing network complexity has been to infer modules or groups of co-expressed
69 genes that are regulated by one or more transcription factors rather than individual gene
70 interactions [11]. While this approach has been successful at decreasing the number of
71 hypotheses tested, and thereby increasing statistical power [12], it does not identify detailed

72 network structure or distinguish between direct and indirect gene interactions. In contrast,
73 network inference by graphical lasso [13, 14] results in the identification of pairwise edges
74 reflecting direct effects, such that the absence of an edge implies the conditional independence of
75 the genes when all other genes are observed. Further, the formulation of graphical lasso enables
76 flexible penalization based on network density which aids in the identification of a network
77 structure that improves the discovery of true gene-gene interactions while reducing false
78 positives [15]. Here, we focus on improving the statistical power of network inference by
79 significantly increasing the number of samples used in network inference, leveraging large-scale
80 publicly available and uniformly processed RNA-seq data from *recount3* [16] which includes
81 human RNA-seq samples from GTEx [17], TCGA [18], and SRA [19, 20].

82 Since the *recount3* project consists of RNA-seq data compiled from diverse data sources
83 and multiple tissues with inconsistent sample characteristics, we developed a data pre-processing
84 pipeline to identify and exclude outliers, harmonize the observed gene expression, and cluster
85 samples into meaningful biological contexts such that we can reliably infer GCNs. We utilized
86 95,280 samples following quality control and pre-processing to infer three consensus networks: a
87 universal network, a cancer network, and a non-cancer network, in addition to 27
88 context-specific networks which included 7 novel contexts only found in *recount3*. We compared
89 strategies for confounder adjustment and data aggregation and found that accounting for
90 confounders in each study followed by the weighted aggregation of covariance matrices by
91 prioritizing studies with more samples resulted in networks with better generalizability and
92 increased ability to recapitulate known biological gene-gene relationships. We observed that
93 context-specific networks constructed using a combination of SRA and GTEx samples
94 outperformed tissue-specific networks inferred solely using GTEx samples at recapitulating

95 known tissue-specific protein-protein interactions (PPIs) and assigning tissue-specific
96 transcription factors to central nodes, demonstrating the value of data aggregation in GCN
97 inference. Furthermore, using S-LDSC [21] we observed that our context-specific networks had
98 significant heritability enrichment attributed to network features when examining traits related to
99 the tissue context. In conclusion, our work provides a carefully annotated RNA-seq data set,
100 outlines best practices for GCN inference by leveraging publicly available RNA-seq data, and a
101 set of consensus and context-specific networks that will aid the scientific community in
102 achieving the full potential of GCN inference in biomedical research.

103

104 **Results**

105 A. Manual annotation and clustering of RNA-seq data from *recount3* identified
106 27 unique biological contexts

107 We downloaded uniformly processed RNA-seq samples from humans using the
108 *recount3* R package [16] comprised of experiments from three data sources, The
109 Sequence Read Archive (SRA) [19, 20], Genotype-tissue Expression (GTEx version 8)
110 [17], and The Cancer Genome Atlas (TCGA) [18] and selected 1,747 projects that
111 included 30 or more samples each. Following quality control (**Methods**), 95,280 human
112 bulk-RNA sequencing samples remained from 50 GTEx tissues (18,828 samples), 33
113 TCGA cancer types (11,091 samples), and 884 SRA studies (65,361 samples) (**Fig. 1 A**).
114 The aggregated data includes samples from a wide array of tissues, cell types, and
115 diseases. While GTEx and TCGA studies included metadata specifying the tissue of
116 origin and disease status for all samples, SRA studies had inconsistent nomenclature.
117 Therefore, to obtain reliable labels for SRA samples, we manually parsed sample

descriptions to obtain sample characteristics corresponding to tissue type and disease status for 65,361 SRA samples (**Methods**). Based on curated annotations, 93.5% of TCGA samples and 30.4% of SRA samples were cancer. In contrast, all GTEx samples were non-cancer, as expected (**Fig. 1 B**). Tissue labels with the greatest number of samples across all three data sources included blood, central nervous system, breast, skin, and lung (**Fig. 1 C**). SRA included 224 distinct tissue labels derived from manual annotation that was not observed in GTEx or TCGA, and reflected a wide range of disease states including Type I Diabetes, Alzheimer's disease, bipolar disorder, arthritis, cancer, and infectious conditions (**Fig. 1 D**). We grouped SRA samples based on their study accession IDs, GTEx samples by tissue, and TCGA samples by cancer code (**Methods**). To simplify terminology, we defined each group of samples from a data source as a single study. To leverage the extensive biological diversity in the data, we inferred two broad types of networks: consensus and tissue context-specific (context-specific). Our universal consensus network included all samples, regardless of tissue or disease. Our non-cancer consensus network included healthy samples and samples with disease status other than cancer. Finally, our cancer consensus network solely included cancerous samples. We restricted our context-specific networks to non-cancerous samples grouped by tissue context. We did not examine differential coregulation resulting from non-cancer disease, and regressed these effects from gene expression. Thus, by including SRA, *recount3* provides an unprecedented opportunity to examine unique contexts that were not previously studied in GTEx and TCGA.

Across the three data sources, SRA, GTEx, and TCGA, we obtained 266 unique manually annotated tissue labels with a median sample size of 31 which was much lower

141 than the number of protein-coding genes. Therefore, we used a study-pooling strategy
142 based on related tissue context to increase power (**Methods**). Mapping manual
143 annotations to tissue contexts (**Additional File 1: Supp. Table I**) generated 48 tissue
144 contexts across 63,193 non-cancerous samples for context-specific network analysis. In
145 each context, to ensure that a tissue context represented samples with similar cell-type
146 composition as estimated by xCell [22] deconvolution, we learned a joint
147 lower-dimensional t-SNE embedding using cell-type deconvolution scores, and for 25
148 contexts with more than 500 samples before outlier exclusion, we detected and excluded
149 outliers (**Additional File 2: Supp. Fig 1**). For the immune context, we observed that
150 samples displayed extensive heterogeneity in cell-type composition. Thus we further
151 separated this group into B cells, PBMCs/ T cells, and myeloid cells (**Additional File 2:**
152 **Supp. Fig 2**).

153 In total, we obtained 27 contexts including 7 tissue contexts that were not present
154 in GTEx including airway, eye, human embryonic stem cells, induced pluripotent stem
155 cells, multipotent cells, myeloid cells, and PBMCs / T cells (**Fig. 1 E**). The number of
156 samples present in each tissue context following outlier exclusion varied from 8,797
157 (Blood) to 485 (Multipotent cells) (**Fig. 1 F**). Further, for tissues that were present in
158 GTEx, the ratio of the number of samples across all data sets to those in GTEx only
159 ranged from 14.13 (Kidney) to 1.01 (Esophagus) (**Fig. 1 F**). These harmonized samples
160 have increased context resolution, i.e. include novel contexts which were not examined in
161 GTEx, and increased sample size which can be used to improve the inference of
162 consensus and context-specific networks.

163 B. Data aggregation improves the inference of consensus and context-specific
164 GCNs

165 The median study-specific sample size across the three data sources was 44 for
166 SRA, 309 for TCGA, and 285 for GTEx. Further, 766 of 884 SRA studies had a sample
167 size lesser than 100. PC-based data correction has been used within a single study to
168 reduce potential false positive gene regulatory associations [23, 24], but best practices for
169 applying PC-based data correction in the context of aggregating multiple studies to infer
170 GCNs have not been fully examined. First, we sought to determine whether data
171 correction should be performed jointly across all samples, across samples belonging to a
172 specific tissue context and multiple studies, or across samples from a specific tissue
173 context and a specific study. We observed that PCs recapitulate different sample
174 characteristics depending on the level at which data aggregation is performed. PCs
175 calculated across all samples were driven predominantly by tissue labels followed by
176 technical confounders (e.g. study and data source) (**Additional File 2: Supp. Fig 4 A-D**,
177 **Supp. Fig 5 A**). PCs which were calculated across samples belonging to a single tissue
178 context (blood) but multiple studies were predominantly driven by study and data source.
179 Further, accounting for tissue heterogeneity enabled us to better model cancer status and
180 disease annotations using PCs (**Additional File 2: Supp. Fig 4 E-H, Supp. Fig 5 B**).
181 Finally, when we limited samples to a specific tissue context and a specific study
182 (GTEx-skeletal muscle), we found that the top PCs were significantly associated with
183 technical batch, consistent with the findings of Parsana et al. [24] (**Additional File 2:**
184 **Supp. Fig 4 I-L, Supp. Fig 5 C**). Thus regressing PCs computed by accounting for tissue

185 and cross-study heterogeneity from expression is integral to excluding technical effects
186 and unwanted biological signals.

187 In addition to comparing the effect of PC-based data correction, before and
188 post-aggregation, where the number of PCs is selected based on the permutation method
189 described by Buja et. al [25] and Leek et. al [23], we sought to examine the consequences
190 of aggregating empirically estimated covariance matrices considering all studies equally
191 (unweighted aggregation) as compared to weighting covariance matrices from studies
192 with a greater number of samples more (weighted aggregation) on GCN inference. Thus,
193 we used 4 paradigms: (1) Aggregating data before PC-based data correction followed by
194 estimation of empirical covariance from residual expression, (2) PC-based data correction
195 applied to individual studies followed by aggregation of residual expression and joint
196 estimation of empirical covariance, (3) Unweighted aggregation of covariance matrices
197 inferred from each study separately after study-specific PC-based correction and (4)
198 Weighted aggregation of covariance matrices computed from individual studies following
199 study-specific PC-based data correction, where the weights were the ratio of the study
200 sample size to the total number of samples used in network reconstruction (**Fig. 2 A,**
201 **Methods).**

202 To compare strategies, we split non-cancerous samples into two data splits, GTEx
203 and SRA (**Additional File 2: Supp. Fig 6**), followed by network inference by graphical
204 lasso on one of the two data splits and evaluation with the held-out split by computing the
205 held-out log-likelihood. Details pertaining to the number of studies, samples and median
206 PCs regressed for incremental data aggregation are provided in **Additional File 3: Supp.**
207 **Table II.** Additionally, we assessed the recapitulation of known biological pathways by

208 computing the F1-score of finding canonical gene-gene relationships compiled from
209 KEGG [26], Biocarta, and Pathway Interaction Database [27] obtained using Enrichr [28,
210 29] (**Additional File 4: Supp. Table III**). Paradigms in which PC-based data correction
211 preceded aggregation led to a strict increase in held-out log-likelihood and F1-scores of
212 known gene relationships from canonical pathways with the addition of more studies
213 (**Fig. 2 B, C, Additional File 2: Supp. Fig 7, 8**). This suggests that data aggregation
214 resulted in GCNs with greater generalizability and recapitulated known biology better
215 when technical confounders were estimated and regressed for individual studies. Since
216 data aggregation led to a decrease in the network density for a particular value of the
217 penalization parameter (**Additional File 2: Supp. Fig 9**), we tested whether estimating
218 denser networks would result in higher held-out log-likelihood specifically when the
219 networks were inferred over a greater number of samples, but instead observed that
220 higher densities led to overfitting and lower generalizability (**Additional File 2: Supp.**
221 **Fig 10**). Further, the marginal improvement in network reconstruction diminished with
222 the subsequent rounds of aggregation. While all methods that estimated technical
223 confounders within each study performed similarly and were superior to estimating
224 technical confounders across all samples when evaluated by held-out log-likelihood (**Fig**
225 **2 D**), we found that weighted aggregation of covariance matrices led to a slight
226 improvement in the F1-score of the networks when compared to canonical pathways
227 (**Fig. 2 E**), suggesting that this is the optimal strategy among the alternatives compared.

228 We inferred consensus GCNs across diverse tissues by weighted aggregation of
229 covariance matrices estimated from residual expression and graphical lasso (**Methods**).
230 In addition to a universal consensus network which was inferred across 966 studies with

231 sample size greater than or equal to 15, amounting to 95,276 samples across 48 tissue
232 contexts, we constructed a non-cancer consensus network and a cancer consensus
233 network. The non-cancer consensus network reflects data aggregated across 629 studies
234 and 63,031 samples, and the cancer network reflects 386 studies and 29,967 samples
235 (**Fig. 2 F**). We evaluated each consensus network to recapitulate previously reported
236 gene-gene interaction using the F1 score. Across a range of network densities, we
237 obtained a higher estimate of the F1 score from the universal consensus network,
238 followed by non-cancer and cancer consensus networks, which mirrors differences in
239 sample size (**Fig. 2 G**).

240 We inferred networks across 27 tissue contexts and examined the impact of data
241 aggregation on context-specific network reconstruction by considering GTEx samples
242 (GTEx only) or by aggregating across samples from all data sources for that tissue
243 context. The number of samples, studies, and median study-specific sample size for each
244 tissue context in either aggregation setting are provided in **Additional File 2: Supp. Fig**
245 **3**. As in the consensus network inference, we used weighted aggregation of covariance
246 matrices as the input to network inference by graphical lasso (**Methods**). To quantify the
247 improvement in network reconstruction with data aggregation, we examined two tissue
248 contexts with the largest sample size: blood and central nervous system (CNS). In both
249 cases, we sequentially aggregated the blood or CNS SRA studies and computed the
250 held-out log-likelihood utilizing context-matched GTEx samples. Similar to the results
251 obtained from our consensus network analyses, we found that data aggregation led to a
252 strict increase in held-out log-likelihood with additional studies and the greatest increase

253 was observed while aggregating the first 20 studies (blood) and 15 studies (CNS)
254 (**Methods, Fig. 2 H, I**).

255 Orthogonally, we verified that our networks recapitulated known context-specific
256 gene relationships by examining the enrichment of previously known tissue-specific
257 protein-protein interactions (PPIs) from SNAP [30] in edges belonging to six tissue
258 context-specific networks (adipose, blood, CNS, liver, lung, and skin) (**Methods**). Data
259 aggregation and increased sample size in the network significantly increased the
260 estimated odds ratio of tissue-specific PPIs in the liver (Median GTEx OR = 7.85,
261 Median Aggregate OR = 38.85, $p = 0.03$) and skin (Median GTEx OR = 21.83, Median
262 Aggregated OR = 27.09, $p = 0.05$), and there was weak enrichment in adipose (Median
263 GTEx OR = 18.49, Median Aggregated OR = 21.14, $p = 0.06$). In other tissue contexts,
264 we observed a higher median odds ratio of PPI enrichment in networks inferred by data
265 aggregation compared to GTEx-only networks (**Fig. 2 J**). Thus, we demonstrated that
266 data aggregation led to the improved inference of consensus networks that capture
267 ubiquitous biological pathways and tissue context-specific networks that capture tissue
268 biology by observing better network generalizability and reproduction of known
269 biological processes.

270 C. Central network nodes are evolutionarily constrained and include genes that
271 are critical to tissue identity

272 The biological information captured by a GCN can be evaluated by comparing
273 individual network edges, by examining whether there are edges between genes that are
274 known to interact in a particular cellular pathway [31], or by examining the properties of

275 hubs [32–34], network nodes with a high number of connections. Since eukaryotic
276 transcriptional networks typically consist of a subset of genes, often transcription factors,
277 that regulate many downstream target genes [35], we chose specific network densities
278 such that the selected networks are approximately scale-free (**Methods, Additional File**
279 **2: Supp. Fig 11; Additional File 5: Supp. Table IV, Additional File 6: Supp. Table V**).
280 We computed different measures of centrality corresponding to each network node and
281 tested for the enrichment of genes involved in GO terms that reflect ubiquitous or
282 context-specific processes (**Additional File 7: Supp. Table VI**) among network nodes
283 selected with progressively increasing thresholds for degree centrality against a
284 background of all 18,882 protein-coding genes (**Methods**). Central nodes from all three
285 consensus networks were strongly enriched for genes involved in functions such as
286 microtubule-based process, chromosome organization, and regulation of organelle
287 organization (**Fig. 3 A, Additional File 2: Supp. Fig 12**). In contrast, we found that
288 central nodes from blood context-specific networks were enriched for genes associated
289 with platelet activation, leukocyte differentiation, and leukocyte chemotaxis to a greater
290 extent than central genes derived from either consensus or a discordant context-specific
291 network (CNS) (**Fig. 3 B**). Further, these trends were reflected across multiple tissue
292 contexts; context-specific networks corresponding to CNS (**Fig. 3 C**), skin, liver, and
293 lung were enriched for genes associated with tissue-matched GO terms (**Additional File**
294 **2: Supp. Fig 13**). Thus, while central genes from consensus networks included genes
295 involved in essential cellular processes, context-specific gene relationships are lost with
296 global aggregation and are unlikely to be recovered by increasing the sample size.

297 Next, we evaluated whether hub genes were evolutionarily constrained and their
298 role in complex traits or diseases (**Methods**). We first binned network nodes such that
299 genes with no neighbors were assigned to Quintile 1, and those with at least 1 connecting
300 edge were grouped based on estimated quantiles of closeness centrality. Consensus
301 network hub genes (Quintile 5) had a significantly higher excess overlap (>1) with
302 evolutionarily constrained gene sets than peripheral nodes (Quintiles 1-3), using metrics
303 including high pLI genes, high s_{het} genes, and high missense Z-score genes. These trends
304 were similar in context-specific networks with some variation in the strength of the trend
305 across tissues likely driven by sample size differences and differential power in inferring
306 these networks (**Fig. 3 D, Additional File 2: Supp. Fig 15**). We then examined the
307 enrichment of eQTL-deficient, ClinVar, OMIM, and FDA drug-targeted genes across
308 quintiles of network centrality (**Additional File 2: Supp. Fig 14, 15, Additional File 8:**
309 **Supp. Table VII**). We observed that peripheral genes (Quintile 1) and central genes
310 (Quintile 5) of consensus networks exhibited an excess overlap > 1 of eQTL deficient
311 genes (those which lacked significant *cis*-regulatory variants), while genes with
312 intermediate connectivity were depleted of eQTL deficient genes, while the six
313 context-specific networks had widely variable trends. While central genes from
314 consensus networks were weakly depleted for OMIM and FDA drug-targeted genes, we
315 observed an excess overlap > 1 of hub genes belonging to context-specific networks. This
316 could be explained by our earlier observations that central nodes from consensus
317 networks were involved in essential and non-specific cellular processes while central
318 nodes from context-specific networks were both specific and critical to tissue identity,
319 thus, altering central consensus network hub nodes may have widespread and potentially

320 deleterious off-target effects while context-specific hub nodes may identify targetable
321 genes with tissue-specific effects. Finally, we observed that matched tissue-specific
322 transcription factors (TFs) from Pierson et. al [36] (**Additional File 9: Supp. Table VIII**)
323 had a significantly greater number of neighbors than 88 general TFs for context-specific
324 networks corresponding to blood ($p < 1e-4$), lung ($p < 1e-4$), and skin ($p < 0.01$), while in
325 other tissues, except for CNS, the median degree of tissue-specific TFs was greater than
326 general TFs and non-transcription factors (**Methods**). In contrast, while tissue-specific
327 and general TFs had more neighbors in consensus networks when compared to
328 non-transcription factors, we found no significant differences in the degree distribution of
329 tissue-specific TFs to general TFs in either the universal or non-cancer consensus
330 network (**Fig. 3 E**). Therefore, while both consensus and context-specific central genes
331 were enriched for genes under high-selection pressure, context-specific hub nodes were
332 more likely to be OMIM genes, drug targets and tissue-specific TFs.

333 We examined similarities and differences between network architectures of the
334 non-cancer consensus and cancer consensus networks based on shared and distinct hub
335 genes, since central genes are likely to be more relevant to network functionality [32],
336 and the identification of hubs has led to the discovery of genes involved in cancer [33,
337 34], tissue regeneration [37], and other diseases [38, 39]. Specifically, we found 296
338 shared hubs between cancer ($\lambda = 0.24$, 7552 edges) and non-cancer ($\lambda = 0.18$, 7,355
339 edges) consensus networks, and 312 hubs which were specific to the cancer consensus
340 network (**Additional File 10: Supp. Table IX**). Cancer-specific hub genes were enriched
341 for pathways such as ncRNA metabolic processing (GO:0034660, $p = 5.2e-02$) which is
342 believed to play a role in metabolic reprogramming in cancer, DNA damage response

343 (GO:0006974, $p = 1.17\text{e-}12$) which has been posited to play a role in cancer cell survival
344 in non-optimal conditions, and response to ionizing radiation (GO:0010212, $p = 6.1\text{e-}04$).
345 Further, we found that cancer-specific hub genes were enriched for a plethora of DNA
346 repair and replication pathways including, double-strand break repair via homologous
347 recombination (GO:0000724, $p = 6.36\text{e-}06$), recombinational repair (GO:0000725, $p =$
348 $1.35\text{e-}06$), interstrand cross-link repair (GO:0036297, $p = 5.48\text{e-}03$), and double-strand
349 break repair via break-induced replication (GO:0000727, $p = 1.36\text{e-}03$) (**Additional File**
350 **11: Supplementary File 1**).

351 To examine whether network properties were shared between related tissues we
352 compared the overlap of hub, we considered all hub genes found in at least two tissue
353 contexts ($N=1,956$). Grouping tissue contexts based on hub genes using non-negative
354 matrix factorization with eight latent factors (**Methods**) led to the grouping of related
355 tissues such as blood and PBMCs/T cells (Factor 7) (**Fig. 3 F, Additional File 12: Supp.**
356 **Table X**). As expected, we found that hub genes that led to the grouping of blood and
357 PBMCs/T cells were enriched for defense response (GO:0006952, $p = 2.7\text{-}24$) and
358 cytokine production (GO:0001816, $p = 9.9\text{e-}07$) (**Additional File 13: Supplementary**
359 **File 2**). Further, Factor 6 which led to the grouping of hESCs, iPSCs, and multipotent
360 cells comprised of hub genes which were enriched for gastrulation (GO:0007369, $p =$
361 $5.9\text{e-}04$) and circulatory system development (GO:0072359, $p = 6.2\text{e-}03$) (**Additional**
362 **File 14: Supplementary File 3**).

363 D. Genes with high network centrality are proximal to variants enriched for
364 complex trait heritability

365 Previous work by Kim et al. [40] reported that network topology annotations did
366 not contribute to heritability once the LDSC baseline model [21] was included. We
367 examined whether data aggregation would increase the utility of network features for
368 heritability analysis independently of baseline functional annotations. We meta-analyzed
369 estimates of heritability enrichment, the ratio of the proportion of heritability explained
370 by SNPs belonging to an annotation to the proportion of SNPs in the annotation, and τ^* ,
371 an estimate of the heritability of SNPs unique to the annotation [21], using a random
372 effects model to obtain a summary of effect sizes estimated for a set of 42 independent
373 traits considered by Kim et al. (**Methods, Additional File 15: Supp. Table XI**). We
374 estimated both heritability enrichment and τ^* by either conditioning an annotation
375 corresponding to whether a variant was located in a 100 kilobase window of all
376 protein-coding genes (all-genes annotation), or conditioning on 97 functional annotations
377 such as known enhancer and promoter regions which are included in the baseline-LD
378 model and the all-genes annotation (all-genes + baseline). Similar to the results found by
379 Kim et al., we observed a significant estimate τ^* corresponding to our consensus
380 network-derived annotations when conditioning on just the all-genes annotation,
381 however, when conditioning on the baseline-LD model, the τ^* observed for consensus
382 network-derived annotations were no longer significant (**Fig. 4 A**). While we found no
383 significant differences in enrichment across network density when conditioned on the
384 all-genes annotation, we observed that τ^* decreased with a decrease in network density.

385 There were no significant differences in either enrichment or τ^* with network density
386 when conditioning on the baseline-LD annotations (**Additional File 2: Supp. Fig 16**).

387 Further, our observations were not dependent on the traits studied and remained
388 consistent when we applied s-LDSC to 219 UKBB traits (**Additional File 16: Supp.**

389 **Table XII; Additional File 2: Supp. Fig 17)**

390 A possible explanation for the lack of heritability enrichment signal unique to
391 network annotations is the redundancy between the baseline LD annotations and network
392 topology annotations. Therefore, we hypothesized that context-specific data aggregation
393 could prioritize variants enriched for heritability of concordant traits independent of
394 baseline annotations. We applied s-LDSC to network centrality annotations derived from
395 networks inferred only from GTEx blood samples (blood GTEx), networks inferred by
396 aggregating *recount3* blood samples (blood), and as a control, networks inferred by
397 aggregating all samples (universal consensus), for a subset of 9 blood-related traits from
398 the 42 independent traits (Crohn's disease, rheumatoid arthritis, ulcerative colitis,
399 eosinophil count, platelet count, red blood cell count, red blood cell width, white blood
400 cell count, and eczema) (**Additional File 17: Supp. Table XIII**). As with the consensus
401 networks, tissue-specific networks displayed similar trends in heritability estimates with
402 network density (**Additional File 2: Supp Fig 18, 19**). When we conditioned on the
403 baseline-LD annotations, we observed that annotations derived from the blood consensus
404 networks had a significant τ^* across all centrality annotations, while blood GTEx
405 networks had a significant τ^* for strength, degree, maximum weight and page rank (**Fig. 4**
406 **B**). In contrast, we did not observe a significant τ^* corresponding to annotations derived
407 from the universal consensus network. We examined the generalizability of our results by

408 conducting a similar experiment in CNS samples, another tissue with a large sample size.

409 We applied s-LDSC to annotations derived from CNS networks inferred from GTEx

410 samples (CNS GTEx), CNS networks inferred by aggregating samples from *recount3*

411 (CNS consensus), and the universal consensus networks for CNS-related traits which

412 included waist-hip ratio adjusted BMI from the earlier set of 42 traits, as well as 7 traits

413 from the Psychiatric Genomics Consortium (Alzheimer's, epilepsy, Parkinson's, bipolar

414 disorder, smoking cessation, schizophrenia, major depressive disorder, and number of

415 alcoholic drinks per week) (**Additional File 18: Supp. Table XIV**). We found that

416 annotations derived from both universal consensus and CNS-specific networks led to

417 significant non-zero τ^* when conditioning on the baseline-LD model. While we note that

418 significant non-zero τ^* was observed for the consensus networks for the chosen set of

419 CNS traits in contrast to the 42 independent traits, possibly due to power, study quality,

420 and other attributes of the GWAS, we found that annotations from tissue-specific

421 networks led to significantly higher estimates of τ^* and outperformed consensus networks

422 (**Fig. 4 C**) for all centrality measures except closeness. Further, for betweenness,

423 maximum weight, and page rank centrality, CNS consensus networks outperformed CNS

424 GTEx networks, similar to the results in blood, demonstrating context-specific data

425 aggregation results in network annotations that are enriched for trait heritability across

426 tissue contexts. Across both sets of blood- and CNS-related traits, we found that page

427 rank centrality-derived annotations, which captured both the number of connections that a

428 node has in addition to the centrality of its neighbors to determine the importance of a

429 connection, performed consistently well. We conclude that context-specific aggregation

430 results in identifying network central genes that are enriched for the heritability of

431 concordant traits, and an increased sample size leads to a greater heritability enrichment
432 signal.

433 Discussion

434 GCNs aid in determining changes in regulatory mechanisms that are key to cellular
435 identity and prioritizing genes that drive phenotypic variability. However, conventional
436 network analyses are often too underpowered to reliably discover gene-gene relationships
437 and are compromised by spurious false positives and false negatives that result from
438 limited power, noise, and unobserved technical confounders. We leveraged publicly
439 available RNA-seq data from *recount3* and manually curated tissue/cell type annotations
440 to improve the inference of consensus and context-specific GCNs. Utilizing data splits,
441 we demonstrated that accounting for confounders within individual studies followed by
442 weighted aggregation of empirical covariance matrices led to the best improvement in
443 network characteristics with data aggregation across multiple paradigms.

444 We then inferred three consensus networks (universal, non-cancer, and cancer
445 networks) that recapitulated ubiquitous biological processes. Further, we aggregated data
446 belonging to individual tissue contexts to infer 27 tissue context-specific networks that
447 were enriched for matched tissue-specific PPIs and shared similarities across related
448 tissues. All networks and sample annotations are made publicly available as a resource
449 for future studies.

450 Central genes from both consensus and context-specific networks were enriched
451 for high PLI, and high Phi genes, indicating that hub genes are enriched for genes under
452 high selective pressure. Context-specific hub genes were enriched for FDA-approved
453 drug targets and OMIM genes while central genes from consensus networks which were

454 inferred over a greater number of samples were depleted for both categories. Thus,
455 context-specific information was lost by global aggregation, cannot be recovered by data
456 aggregation or increased sample sizes, and is important to identifying drug targets and
457 disease mechanisms. While network central genes determined by global data aggregation
458 in the consensus network did not explain trait heritability independent of known
459 functional annotations in the baseline-LD model, we found that context-specific data
460 aggregation prioritized variants enriched for concordant trait heritability that did not
461 overlap with previously known functional annotations. Thus topological properties of
462 genes from context-specific GCNs hold significant promise as a functional annotation
463 for identifying genetic variation that contributes to complex trait heritability.

464 A commonly used approach to identify genes associated with complex traits is to
465 use colocalization analysis between GWAS and eQTL studies, however, often only about
466 half of the signals colocalize with an eQTL [41]. Recent work by Mostafavi et al [41]
467 demonstrated that genes driving GWAS signals were often genes with complex
468 context-dependent regulatory architecture and were depleted for eQTL variants. This has
469 raised a call in the computational genomics community for orthogonal approaches to
470 identify genes involved in complex traits. We found that annotations derived from
471 context-specific GCNs are informative of trait heritability independent of
472 context-agnostic functional annotations. This suggests that tissue- and context-specific
473 network centrality and other network properties could be used to help prioritize genes
474 near GWAS loci [42] or supplement eQTL data.

475 One of the major challenges in network inference remains the presence of
476 unobserved technical confounders and undesirable biological signals which leads to

477 spurious network edges and precludes causality claims. While PC-based data correction
478 has been extensively utilized to reduce false positives resulting from confounding, recent
479 work by Cote et. al [43] suggests that PC-based data correction, and related methods such
480 as PEER [44] and CONFETI [45], may over-correct expression data and remove
481 biological co-expression of potential interest. Correcting or modeling confounders is
482 essential to network accuracy, so tuning parameters such as the number of latent factors
483 to correct as well as exploring alternative methods will continue to be important.
484 Alternate approaches to handle confounding and infer causal regulatory relationships
485 include instrumental variable analysis through the construction of local genetic
486 instruments as outlined by Lujik et al. [46], however, since central network nodes are
487 evolutionarily constrained and tightly regulated, it can be challenging to construct
488 well-tracking genetic instruments for central genes,. Publicly available RNA-seq data
489 including *recount3*, the extensive annotations we provide, and recent work which
490 illustrated genotype calling using RNA-seq data [47] could improve our ability to detect
491 context-specific *cis*-regulatory effects, the reconstruction of local genetic instruments,
492 and hence causal regulatory network inference.

493 Future directions aimed at improving GCN inference could leverage our
494 extensively annotated sample characteristics and data aggregation strategies with
495 complementary strategies including sharing information between related contexts [48] to
496 increase the effective sample size, introducing constraints or priors corresponding to
497 known regulatory relationships [49], and using alternate statistical measures of
498 expression similarity that capture non-linear associations between genes [50].
499 Additionally, heuristic algorithms such as the one proposed by Opgen-Rhein et al. [51]

500 could be utilized to enrich our current networks with directionality information. Finally,
501 while we studied tissue-contexts, we provide annotations of disease status which can be
502 utilized to infer disease-specific GCNs.

503 Our finding that marginal improvement in network reconstruction decreases with
504 continued data aggregation suggests that simply addressing statistical considerations due
505 to sample size may have limitations for improving GCNs. Including orthogonal sources
506 of information such as gene-enhancer associations inferred from Hi-C data [52] and
507 transcription factor binding sites from ChIP-seq data [53], in addition to gene expression
508 quantified by RNA-seq in both bulk and single-cell studies, might result in a more
509 accurate understanding of the shared regulatory architecture between genes. Additionally,
510 experimental protocols such as Perturb-Seq [54], which quantifies the transcriptional
511 changes mediated by genetic manipulations on genes, processes, and states, could provide
512 a new avenue for network inference and suggest causal mechanisms and edge
513 directionality.

514 **Conclusions**

515 We demonstrated that data aggregation improved the inference of consensus and
516 context-specific networks, particularly when properly accounting for latent confounding and
517 between-study variability. While consensus networks prioritized ubiquitous biological processes,
518 context-specific networks captured tissue-specific gene interactions. Further, context-specific
519 networks prioritized variants that are enriched for trait heritability independent of overlap with
520 baseline functional genomic categories suggesting that improving the detection of
521 context-specific gene-gene interactions can shed light on the mechanisms that relate genetic

522 variants to traits. Thus, meaningful data aggregation improves GCN inference and identifies how
523 genes interact to produce complex phenotypes.

524

525 Methods

526 A. Data pre-processing and quality control

527

528 We downloaded uniformly processed RNA-seq samples from humans using the
529 *recount3* R package [16] and selected 1747 projects that included 30 or more samples
530 each (**Fig. 1A**). Before normalization, we excluded samples with zero expression across
531 all genes and genes that had zero expression across all samples in a project. We used
532 in-built functions from the *recount3* package to compute the RPKM transformed count
533 matrix, selected genes that were protein-coding, autosomal, and unambiguously mapped
534 to the reference genome [55, 56], and generated the $\log_2(RPKM + 1)$ count matrix for
535 each project. Following preliminary processing, we applied a unique data processing
536 pipeline based on the study of origin to exclude samples from micro-RNA and
537 scRNA-seq experiments and summarized replicates. For projects belonging to GTEx, we
538 excluded duplicates (which are labeled as STUDY_NA in the project attribute), as well as
539 samples derived from the chronic myelogenous leukemia (CML) cell line and grouped
540 samples by the tissue of origin to obtain 50 groups and 18828 samples.

541

542 Before identifying replicates, we excluded 67 TCGA samples that did not have
543 sample type specified, followed by 39 samples which did not have patient ID present. We
544 then identified replicates in the remaining TCGA samples as those samples that agreed on
both patient ID as well as sample type and aggregated by computing the median across

545 all replicates. We then grouped samples by their respective cancer code to obtain 33
546 groups and 11091 samples.

547 Finally, for projects from SRA, we began by excluding samples obtained by size
548 fractionation. We then identified replicates, as those samples with an identical experiment
549 accession number and aggregated across replicates by computing the median gene
550 expression, this results in 200499 samples. To exclude microRNA projects that have
551 erroneously been labeled bulk-RNA sequencing experiments, for each sample, we
552 computed the fraction of genes with zero expression and excluded 89,101 samples where
553 this fraction is greater than 50%. The *recount3* database includes manually curated tissue
554 types and experiment types for 30473 samples of 373 SRA studies. The experiment types
555 found included 4 categories, bulk RNA-sequencing, single-cell RNA-seq, small/micro
556 RNA-seq and others. Based on the differences in the sparsity patterns of bulk RNA
557 sequencing and other sequencing modalities, the authors developed a predictor to classify
558 samples as either bulk or single-cell-based. We utilized these predicted labels to restrict
559 our analysis to only bulk RNA-sequencing studies. Since predicted labels were not
560 present for all samples, we excluded samples with keywords such as “single cell”,
561 “scRNA”, “snRNA”, and “single nucleus” in the study abstract if it was found. Further,
562 when the library selection information was available, we restricted our analysis to
563 samples that contained either cDNA or RT-PCR in the library selection field. We also
564 excluded studies which are known scRNA-seq experiments including, SRP096986,
565 SRP135684, SRP166966, SRP200058, and SRP063998. For the remaining studies, we
566 performed a text-based analysis to obtain the Study, Tissue, Organ, Biopsy, Cell, Disease,
567 Source and Description from the metadata `sample_description` field. We then

568 manually annotated 10179 unique combinations of these fields to obtain tissue, cancer
569 status, and disease type. In this manner, we were able to obtain labels for 65361 samples
570 which we grouped on the basis of the study accession IDs to form 884 SRA studies
571 (**Additional File 19: Supplementary File 4**). While we grouped GTEx samples by tissue
572 of origin, SRA samples by study accession ID, and TCGA samples by cancer accession
573 code, we refer to an individual group of samples as a “study” to simplify nomenclature.
574 Further, we did not distinguish on the basis of disease state or cancer status while
575 organizing the data, until we proceeded to compute the inputs to network inference.

576 B. Identifying tissue type and cancer status

577
578 Wilks et. al [16] demonstrated that for bulk RNA-seq data from humans, the
579 largest source of variation in gene expression was correlated with tissue or cell type of
580 origin, with the clear clustering of samples belonging to the same tissue extending to the
581 top 4 principal components. We manually refined annotated labels and grouped samples
582 by context using t-SNE dimensionality reduction and clustering 95484 samples and 5999
583 genes which had non-zero variance across all samples. Since it was not possible to
584 differentiate cancerous and non-cancerous samples using differential clustering in the
585 t-SNE space, we utilized manually annotated labels to restrict the analysis to
586 non-cancerous samples.

587 Further, to facilitate the greatest possible increase in sample size, we combined
588 similar tissues to form tissue categories (**Additional File 1: Supp. Table I**). Since
589 differences in gene expression across samples can be driven by factors other than the
590 tissue of origin, such as experimental batch and library size, we obtained the relative
591 enrichment of 64 distinct stromal and immune cell types by comparing the gene

592 expression profile of an admixture sample from bulk tissue to curated gene expression
593 signatures provided by xCell [22]. Once we computed the cell-type enrichment
594 vectors for each sample, we performed t-SNE dimensionality reduction for visualization
595 and clustering.

596 For 24 tissue categories that have more than 500 samples, we refined our sample
597 selection by eliminating outliers using 6 different methods of outlier calling. These
598 included

- 599 1. Z-score-based outlier calling: We computed the z-scores for each reduced
600 dimension independently, samples which have a z-score greater than or equal to 3
601 in either dimension are labeled as outliers.
- 602 2. MAD-based outlier calling: For each dimension we computed the median
603 absolute deviation as given by Eqn. 1

$$604 MAD = Median(|X_i - \bar{X}|) \quad \text{Eqn. 1}$$

605 Where \bar{X} is the mean of all observations. We computed the outlier score in each
606 dimension using Eqn. 2

$$607 S_{MAD} = |X_i - Median(X)| / MAD \quad \text{Eqn. 2}$$

608 We labelled a sample an outlier if S_{MAD} is greater than or equal to 3 in either
609 dimension.

- 610 3. Tukey outlier calling: We computed the quartiles of each dimension and the
611 $IQR = Q_3 - Q_1$. Samples which have a value lower than $Q_1 - 1.5 \times IQR$
612 or greater than $Q_3 + 1.5 \times IQR$ in either dimension are labeled outliers.

613 For each method below, we computed the Mahalanobis distance (MD) for
614 each sample by estimating the covariance matrix C across all samples. The MD is
615 given by Eqn. 3,

616
$$MD = (X_1 - X_2)^T \cdot C^{-1} \cdot (X_1 - X_2)$$
 Eqn. 3

617 To identify outliers, we used the additional criteria based on the MD outlined
618 below,

- 619 4. Mahalanobis Z-score: Computed the z-scores across the MD metrics and labelled
620 samples with a z-score greater than or equal to 3 as outliers.
- 621 5. Mahalanobis MAD: Computed the MAD-based outlier score on the MD using
622 Eqn. 2, and labelled samples with a score greater than or equal to 3 as outliers.
- 623 6. Mahalanobis Tukey: Compute the quartiles of the MD estimates and the
624 inter-quartile range (IQR). Label samples with an MD estimate lower than
625 $Q_1 - 1.5 \times IQR$ or greater than $Q_3 + 1.5 \times IQR$ as outliers.

626 If a sample within a tissue category is labeled an outlier by at least 2 methods of outlier
627 calling, then we excluded the sample for downstream network reconstruction. While this
628 works with simpler tissue categories such as blood, skeletal muscle or colon where the
629 samples have relatively homogenous cell type compositions, for the immune system,
630 which comprises samples from the distinct myeloid, lymphoid and innate immune
631 systems, these outlier metrics failed due to large intersample variation. Therefore for
632 immune cell types, we first performed K-means clustering with 3 centroids. We annotated
633 the three resulting clusters based on the representation of manually annotated labels in
634 each cluster as either B-cells, myeloid cells (including monocytes and macrophages) and

635 PBMCs w/ T cells. For each cluster, we performed outlier detection using all six methods
636 outlined above and excluded samples that were found to be outliers in any two methods.

637 C. Data correction and aggregation

638 Principal component (PC) based correction methods can account for technical and
639 biological artifacts that confound gene expression measurements and reduce false
640 positives in gene network inference [24]. However, these methods have been applied to
641 one experiment and not across multiple experiments from disparate sources. We
642 systematically compared 4 strategies of data aggregation including,

643 1. Aggregating data: Identify genes with non-zero expression and non-zero variance
644 across all studies of interest, followed by aggregating the data, quantile
645 normalization, scaling, and PC estimation. We determined the number of PCs to
646 regress using the permutation method described by Buja et. al [25] and Leek et. al
647 [23]. We then obtained the residuals by fitting a linear regression using the
648 number of identified PCs. Finally, we quantile normalized the residuals and scaled
649 each gene to have a mean of zero and unit variance and estimated the empirical
650 covariance matrix.

651 2. Aggregating data adjusted for confounding: We considered each study
652 individually, quantile normalized, scaled the data, and estimated PCs, followed by
653 the determination of the optimal number of components to be regressed. We then
654 obtained the residual gene expression using a linear model to regress latent
655 variables corresponding to confounding. We aggregated across each individually
656 corrected study by selecting genes that have non-zero expression and non-zero
657 variance across all samples. Finally, we quantile normalized and scaled the

658 aggregated corrected gene expression and estimated the empirical covariance
659 matrix.

660 3. Unweighted aggregation of covariance matrices: For each individual study, we
661 quantile normalized and scaled the data, followed by PC-based data correction
662 and computed residuals. To the residuals, we applied quantile normalization and
663 scaling and estimated the empirical covariance matrix S_k for each study k .
664 Assuming equal likelihood of error from each study we computed the unweighted
665 average of covariance matrices $C_{unweighted}$ as described in Eqn. 4

$$666 \quad C_{unweighted} = \frac{\sum_k S_k}{|K|} \quad \text{Eqn. 4}$$

667 where $|K|$ is the total number of studies aggregated.

668 4. Weighted aggregation of covariance matrices: We repeated the process described
669 previously in the computation of unweighted aggregation of covariance matrices
670 to estimate study-level empirical covariance matrices S_k . We then assumed that
671 studies with a larger sample size provide a better estimate of individual
672 covariances and computed the weighted covariance as in Eqn. 5 and Eqn. 6

673
$$w_k = \frac{n_k}{\sum_k n_k}$$
 Eqn. 5

674
$$C_{weighted} = \sum_k w_k S_k$$
 Eqn. 6

675 D. Network reconstruction with graphical lasso

676 Following the computation of aggregate covariance matrices using the strategies outlined
677 in the previous section, we infer gene regulatory relationships using graphical lasso [13].

678 The desired network structure is obtained by identifying the precision matrix, $\Theta = \Sigma^{-1}$
679 that maximizes the penalized log-likelihood given by Eqn. 7, where C is the estimated
680 covariance matrix.

681
$$\widehat{\Theta} = \operatorname{argmin}_{\Theta} \operatorname{tr}(C \cdot \Theta) - \log |\Theta| + \lambda \|\Theta\|_1$$
 Eqn. 7

682 We estimated the precision matrix Θ across a range of λ between 0.04 to 1.00 in intervals
683 of 0.02. For genes p and q , an edge connecting them exists if the corresponding entry in
684 the precision matrix is non-zero as given by Eqn. 8

685
$$\widehat{N}_{p,q} = 1, \quad \text{if } |\widehat{\Theta}_{p,q}| > 0$$

686
$$0, \quad \text{otherwise}$$
 Eqn. 8

687 E. Network evaluation to determine the optimal aggregation strategy

688 We applied all 4 methods of data aggregation to infer networks from non-cancerous
689 samples using two data partitions - GTEx and SRA non-cancer. Since GTEx did not
690 include any cancerous samples, we organized the samples by tissue-type and excluded
691 any tissues with fewer than 15 samples, in this case, Kidney-Medulla. For the SRA

692 non-cancer, we select samples which were annotated to be non-cancerous and organize
693 them by the study accession IDs, we then exclude any studies which had fewer than 15
694 samples, resulting in 566 selected studies. For each data partition, we evaluated network
695 improvement with sequential data aggregation as follows,

696 1. SRA non-cancer: An aggregate network inferred across 566 SRA studies from
697 varying tissues that are non-cancerous. We order the studies by increasing sample
698 size and aggregate 1, 100, 200, 300, 400, 500 and 566 studies to estimate
699 empirical covariance matrices and infer networks using graphical lasso across λ
700 ranging from 0.04 to 1.00.

701 2. GTEx non-cancer: An aggregate network inferred across 49 GTEx tissues and cell
702 lines. We order tissues in increasing order of sample size and aggregate tissues in
703 increments of 10 to obtain networks corresponding to 1, 10, 20, 30, 40 and 49
704 tissues across a range of λ between 0.04 and 1.00.

705 Details of the number of studies, samples, median sample size and principle components
706 regressed are provided in **Additional File 3: Supp. Table II**. Following network
707 inference, we evaluated the improvement in network inference as a function of sample
708 size and method of data aggregation using two metrics, held-out log-likelihood and
709 enrichment of known biological pathways. The metrics are computed as follows,

710 1. Held-out log-likelihood: For networks inferred using SRA data, the test set
711 consisted of 6 GTEx tissues including Adipose Subcutaneous, Cells cultured
712 fibroblasts, Heart left ventricle, Artery aorta, and Colon sigmoid. To evaluate
713 networks inferred using GTEx samples we selected SRA studies with matched
714 sample sizes including SRP116272, SRP151763, SRP150552, SRP174638, and

715 SRP187978. For each test study, we quantile normalized and scaled the data,
716 followed by PC-based data correction and computed residuals. We then quantile
717 normalized and scaled the residuals and computed the corresponding covariances
718 matrices S_i for the i^{th} study. We computed the log-likelihood of the data observed
719 in each held-out study as shown in Eqn. 9

720
$$L_i = n_i [\log |\hat{\Theta}| - \text{tr}(S_i \cdot \Theta)] \quad \text{Eqn. 9}$$

721 We then computed the average log-likelihood across all test data sets $i \in I$ as
722 given by Eqn. 10 where $|I|$ is the total number of test data sets.

723
$$\bar{L} = \frac{\sum_i L_i}{|I|} \quad \text{Eqn. 10}$$

724 2. Prediction of known biological pathways: We downloaded pathway information
725 from KEGG, Biocarta and Pathway Interaction Database from Enrichr and
726 selected those pathways that were annotated as canonical pathways by MSigDB.
727 **Additional File 4: Supp. Table III** provides details on the number of gene sets
728 from each source. Any pair of genes that have at least one pathway in common
729 were assumed to have a true functional relationship. In total, we identified
730 9648013 such edges (U). For each inferred network $\hat{N} = \{V, E\}$, where V is the
731 set of genes over which we perform network reconstruction, and E is the set of
732 edges between the gene pairs, we restricted the set of universal pathway edges to
733 those between genes $G_1, G_2 \in V$. If S_{all} is the set of edges between all possible
734 gene pairs such that $|S_{all}| = {}^V C_2$, then $U^C = S_{all} \setminus U$, and $E^C = S_{all} \setminus E$, we
735 constructed the contingency table as follows,

736 a. True positives (TP) = $|U \cap E|$

737 b. False positives (FP) = $|U^C \cap E|$

738 c. True negatives (TN) = $|U^C \cap E^C|$

739 d. False negatives (FN) = $|U \cap E^C|$

740 We computed the precision, recall, and F1-score as described by Eqn. 11, Eqn. 12,
741 Eqn. 13.

$$742 \quad \text{Precision} = \frac{TP}{TP + FP} \quad \text{Eqn. 11}$$

$$743 \quad \text{Recall} = \frac{TP}{TP + FN} \quad \text{Eqn. 12}$$

$$744 \quad \text{F1-score} = 2. \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad \text{Eqn. 13}$$

745 F. Inference of consensus and tissue context-specific networks

746 We inferred consensus networks across samples from disparate tissues and cell types to
747 capture shared biological pathways across contexts. Since weighted covariance
748 aggregation yielded the best results across the 4 methods of data correction and
749 aggregation, we first grouped SRA samples by the study accession ID, GTEx samples by
750 the tissue of origin, and TCGA samples by the cancer code. To estimate the universal
751 consensus network we did not exclude any samples. Thus, we aggregated 65361 samples
752 from 884 SRA studies with a median sample size of 44, 11091 samples from 33 TCGA
753 studies with a median sample size of 309, and 18824 GTEx samples from 49 tissues and
754 a median sample size of 286. Prior to estimating non-cancer consensus networks, we first
755 exclude all cancerous samples from each study, and only retain studies with 15 or more
756 samples. Similarly, prior to estimating cancer consensus networks, we only include

757 cancerous samples, and exclude studies with fewer than 15 samples. Since weighted
758 covariance aggregation yielded the best results across the 4 methods of data correction
759 and aggregation, we first estimated and adjusted for unknown technical confounders using
760 Principal component analysis (PCA) in each group of samples. We computed the
761 weighted empirical covariance matrix as detailed in Section II.c. We then inferred the
762 network structure by optimizing penalized log-likelihood Eqn. 7 and thresholded the
763 entries in the precision matrix as described by Eqn. 8 for a range of penalization
764 parameters λ ranging from 0.08 - 1.00.

765 We inferred context-specific networks in 27 contexts with 500 or more samples.
766 Details of the number of samples, studies, and median sample size across studies for each
767 context are provided in **Additional File 2: Supp. Fig 13**. For 20 contexts including
768 adipose, B cells, blood, breast, cardiac, central nervous system, colon, esophagus,
769 fibroblasts, intestine, kidney, liver, lung, nervous system, pancreas, prostate, skeletal
770 muscle, skin, stomach, and vascular we inferred networks either using GTEx sample only
771 or by aggregating context-specific samples from recount3 which included GTEx. For
772 each context-specific network, we first performed PC-based data correction within each
773 study followed by covariance estimation and aggregation by weighting the covariance
774 matrix with the proportion of study-specific sample size to the total number of samples as
775 detailed in Eqn. 5 and Eqn. 6. We then inferred GCNs using graphical lasso using Eqn. 7
776 and Eqn. 8

777 G. Evaluating the impact of data aggregation on the inference of consensus and
778 context-specific networks

779 To evaluate the improvement in the performance of consensus networks with data
780 aggregation, we computed the precision, recall, and F1-score of observing known gene
781 co-regulatory pairs compiled from KEGG, Biocarta and Pathway Interaction Database
782 which were annotated as canonical pathways by MSigDB as detailed in **Methods**
783 (**Section E**). Specifically, we compared the F1-scores corresponding to the universal,
784 non-cancer, and cancer consensus networks for network densities between 5000 and
785 500,000 edges.

786 In order to evaluate the impact of data aggregation on context-specific networks,
787 we selected two contexts with the highest number of samples - blood and CNS. We
788 obtained 64 SRA studies that were annotated to blood, and 40 SRA studies annotated to
789 CNS. We sequentially aggregated SRA studies five at a time in each context in the
790 increasing order of sample size and inferred GCNs using weighted aggregation of
791 covariance matrices and graphical lasso as detailed in **Methods (Sections C, D)** over a
792 range of penalization parameters λ varying from 0.10 to 1.00. For each data aggregation
793 setting, we evaluated the network performance over a range of network densities by
794 computing the held-out log-likelihood of GTEx samples belonging to the concordant
795 tissue in a manner analogous to **Methods (Section E)**. Specifically, to evaluate the
796 inferred blood networks, we utilized the empirical covariance matrix computed from 850
797 blood GTEx samples. Since GTEx contained 13 brain regions which were all annotated
798 to the CNS context, we computed the held-out log likelihood corresponding to each brain

799 region and computed the mean across regions to obtain a scalar measure of the network's
800 generalizability.

801 Additionally, for 6 contexts, adipose, blood, CNS, liver, lung, and skin we
802 compared networks inferred solely from GTEx samples to GCNs inferred from data
803 aggregation based on the inclusion of known tissue-specific protein-protein interactions
804 (PPIs). First, we selected networks that were inferred with the value of the penalization
805 parameter between 0.12 and 0.50. We then downloaded tissue-specific PPIs present in
806 [PPT-Ohmnet_tissues-combined.edgelist.gz](#) from SNAP which is compiled across 144
807 unique tissues [57–59]. We mapped the tissue labels present in SNAP to our contexts
808 studied as given in **Additional File 20: Supp. Table XV**. After converting the protein
809 identifiers using the R package `org.Hs.eg.db`, we performed Fisher's test to
810 compute the odds ratio of finding tissue-specific PPIs in our context-specific networks
811 when compared to a fully connected network as background. Specifically, we computed
812 the following contingency matrix that we used as input to the R function
813 `fisher.test()` where E is the set of edges present in our inferred network, P_t is the
814 set of concordant tissue-specific PPIs, and E^c is the set of all edges absent in the network
815 which is obtained by $U \setminus E$, where U is the set of all possible edges between the nodes,
816 and $|U| = {}^G C_2$ where G is the set of genes over which we perform network inference.

	Edge present in tissue-specific PPIs	Edge absent in tissue-specific PPIs
Edge present in network	$ P_t \cap E $	$ E - P_t \cap E $

Edge not present in network	$ P_t \cap E^c $	$ E^c - P_t \cap E^c $
-----------------------------	------------------	--------------------------

817

818 To compare between context-specific networks inferred solely from GTEx to those
819 inferred across aggregated data, we performed the Wilcoxon rank-sum test to compare
820 the odds ratios from each setting.

821 H. Sparsity parameter selection for consensus and context-specific networks

822 Previous analysis of gene regulatory networks indicates that eukaryotic [60] and
823 prokaryotic transcriptional [61] networks exhibit an approximately scale-free degree
824 distribution which concurs with the assumption that few transcription factors have the
825 potential to regulate a multitude of target genes [35]. The power law degree distribution
826 follows Eqn. 14 where $p(k)$ is the probability of a random node having k connections
827 and γ is the power law scaling exponent.

828
$$p(k) = C \cdot k^{-\gamma} \quad \text{Eqn. 14}$$

829 Taking the logarithm, we get,

830
$$\log p(k) = -\gamma \log k + \log C \quad \text{Eqn. 15}$$

831 For each of the 3 consensus networks and 27 tissue-context specific networks, we used
832 the R package `igraph` to estimate the degree distribution for each value of λ and the
833 function `lm()` to estimate the slope ($-\gamma$) and R^2 . Finally, we computed the 95%
834 confidence interval (CI) for the slope using the R function `confint()`. We then
835 selected networks such that $2 \leq LL(\gamma) \leq UL(\gamma) \leq 3$, and the $R^2 > 0.8$ where
836 $LL(\gamma)$ and $UL(\gamma)$ correspond to the lower and upper limits of the 95% CI of γ . Details

837 pertaining to the selected consensus networks and their corresponding values of the
838 penalization parameter λ , network densities, regression slope and R^2 are provided in
839 **Additional File 5: Supp. Table IV**. Similarly, the selected network densities, values of
840 the regression slope and R^2 are provided for context-specific networks inferred from
841 GTEX only and across all aggregated samples in 6 contexts which were used in
842 downstream analysis is in **Additional File 6: Supp. Table V**.

843 I. Computing gene centrality measures based on network structure

844 Using measures of network connectivity, we computed centrality scores for each gene in
845 the network. Given a weighted undirected graph G , first, we normalized the edge weights
846 If E is the list of all edges in the network (excluding diagonals) and $E_{p,q}$ is the weight of
847 an edge connecting genes p and q . Then the normalized weight $\hat{E}_{p,q} = E_{p,q} / \max(E_{i,j})$
848 for all $i, j \in \text{Nodes}(G)$ such that $i \neq j$. Using normalized edge weights we computed
849 the following centrality scores for each gene p ,

850 a. Betweenness(p): The betweenness centrality captures the number of shortest paths
851 in a network that passes through the gene p . The shortest path between nodes
852 $i, j \in \text{Nodes}(G)$ is the path where the sum of the edge weights is minimum.
853 b. Closeness(p): The closeness centrality captures the distance between a gene p to
854 all other network nodes. We first obtained the weighted distance between gene p
855 and gene i as given by Eqn. 18

856
$$d_{p,i} = \frac{1}{E_{p,i}}$$
 Eqn. 18

857 If the nodes p and i' are disconnected then we set $d_{p,i'}$ to 0. Finally, the closeness
858 centrality of a gene p is given by Eqn. 19

859
$$C(p) = \frac{1}{\sum_{i \neq p} d_{p,i}}$$
 Eqn. 19

860 c. Degree(p): The degree of a gene p corresponds to the number of neighbors
861 connected to p .

862 d. Maximum weight(p): The maximum weight of a node is the maximum weight of
863 the edges that are connected to the gene p .

864 e. Page rank(p): The page rank of a node p is defined by Eqn. 20,

865
$$(1 - \alpha)/N + \alpha \sum_{u \in N(p)} \text{PageRank}(u)/d^+(u)$$
 Eqn. 20

866 Where α is a damping factor, $N(v)$ are the in-neighbors of node p , and $d^+(u)$ is
867 the out-degree of u . Because G is an undirected graph, pagerank treats it as a
868 directed graph by making edges bi-directional. Specifically, in addition to the
869 number of neighbors that a node p has, page rank incorporates information
870 pertaining to the connectivity of the neighboring nodes.

871 f. Strength(p): The strength of a node is defined as the sum of the weights of all
872 edges connected to the gene p .

873 J. Enrichment of specific pathways among central genes in consensus and
874 context-specific networks

875 First we developed a general method to test for the enrichment of genes annotated
876 to a specific GO term among network central genes. For a given network $N = \{V, E\}$

877 where V is the set of nodes and E the set of edges, we estimated the degree of each node
878 as described in **Methods (Section I)** and estimated the maximum degree across all nodes.
879 We then determined a series of degree thresholds, starting at 5 to the maximum degree in
880 increments of 5. For a particular degree threshold, D_t we obtained all the network nodes
881 with a degree $D_i \leq D_t$, which forms the test set of genes T , such that $T \subseteq V$. To
882 determine the enrichment of genes associated with a particular GO term corresponding to
883 a biological process (*GoG*), we first computed the following contingency matrix where G
884 is the set of 19950 protein-coding genes where $T^c = G \setminus T$

885

	Gene present in GO term	Gene absent in GO term
Gene present in test set	$ T \cap GoG $	$ T - T \cap GoG $
Gene absent in test set	$ T^c \cap GoG $	$ T^c - T^c \cap GoG $

886

887 We then performed Fisher's test with the alternative hypothesis that the odds ratio of
888 finding GO related terms is greater in the test set T and estimated p-values.

889 To evaluate the universal, non-cancer and cancer consensus networks, we first
890 selected the value of the penalization parameter such that the resulting network density
891 was ~ 7000 edges. We then determined the odds ratio of finding genes belonging to
892 ubiquitous biological processes among network nodes selected by successively increasing
893 degree thresholds. Further, we computed the odds ratio of finding genes belonging to

894 ubiquitous processes in blood and CNS networks inferred across all samples from
895 *recount3* with ~ 7000 edges.

896 To evaluate a context-specific network such as blood, we first selected a blood
897 network inferred solely from GTEx samples and a network inferred by data aggregation
898 across all samples from *recount3* such that the resulting network density was ~7000, and
899 the node degree distribution was scale-free. As negative controls, we included a different
900 context-specific network inferred across aggregated samples, the universal and
901 non-cancer consensus network. For blood, we specifically tested for the enrichment of
902 processes such as leukocyte migration, leukocyte activation and blood coagulation. We
903 repeated this analysis for 5 other context-specific networks - CNS, skin, lung, liver, and
904 adipose by selecting related GO terms and determining the enrichment of functional
905 genes among network central genes. A complete list of GO terms that were tested for
906 each context is described in **Additional File 7: Supp. Table VI.**

907 K. Excess overlap of genes grouped by centrality measures in consensus with
908 known evolutionarily constrained and functionally prioritized gene sets
909 We group genes for each consensus network such that the first bin includes genes with no
910 edges (with a degree of zero), the second bin contains nodes with a degree in the lowest
911 25th percentile, the third bin includes nodes with a degree in the 25th - 50th percentile, the
912 fourth bin includes genes with degree in the 50th - 75th percentile and the fifth and final
913 bin includes genes with a degree greater than the 75th percentile. For genes in a given bin,
914 we compute the excess overlap with known 9 evolutionarily constrained and functional
915 gene sets used by S.Kim et al. which include,

916 1. High pLI genes [62]: 3,104 loss-of-function (LoF) genes with pLI > 0.9, i.e.,
917 strongly depleted for protein-truncating variants.

918 2. High S_{het} genes [63]: 2,853 constrained genes with $S_{het} > 0.1$ i.e., strong selection
919 against protein-truncating variants.

920 3. High missense Z-score [64]: 1,440 constrained genes strongly depleted for
921 missense mutations, with $exp_syn \geq 5$, $syn_z_sign < 3.09$, and $mis_z_sign > 3.09$,
922 as retrieved in Lek et al [62].

923 4. High Phi [65]: 588 LoF-constrained genes with a probability of
924 haploinsufficiency (Phi) > 0.95.

925 5. MGI essential genes [66–68]: 2371 genes for which a homozygous knockout
926 resulted in pre-, peri-, post-natal lethality

927 6. eQTL deficient [69]: 604 genes with no significant variant-gene association in all
928 48 tissues in GTEx v.7 single-tissue cis-eQTL data.

929 7. OMIM [70]: 2,266 genes deposited in the Online Mendelian Inheritance in Man
930 (OMIM), as retrieved in Petrovski et al [71].

931 8. ClinVar [72]: 5,428 genes with a pathogenic or likely pathogenic variant with no
932 conflict among studies.

933 9. DrugBank [73]: 373 genes whose protein products are human targets of
934 FDA-approved drugs with known mechanisms of action.

935 The complete list of genes belonging to each of these categories is provided in
936 **Additional File 8: Supp. Table VII.** We computed the expected and standard error of
937 excess overlap between genes in each bin G_b^i for $i = 1, 2, 3, 4, 5$ and the reference
938 gene set j , G_r^j using Eqn. 21 - 24, where G_{tot} represents all network nodes.

939

$$P_d = \frac{|G_r^j \cap G_b^i|}{|G_b^i|} \quad \text{Eqn. 21}$$

940

941

$$P_{tot} = \frac{|G_r^j \cap G_{tot}|}{|G_{tot}|} \quad \text{Eqn. 22}$$

942

943

$$\text{excess overlap}(G_b^i, G_r^j) = \frac{P_d}{P_{tot}} \quad \text{Eqn. 23}$$

944

945

$$\text{SE excess overlap}(G_b^i, G_r^j) = \sqrt{\frac{P_d(1-P_d)}{|G_b^i|}} / P_{tot} \quad \text{Eqn. 24}$$

946

947 L. Identifying biological processes associated with shared and distinct hub
948 genes from non-cancer and cancer consensus network

949 In accordance with the scale-free criterion we selected the non-cancer network
950 inferred using a penalization parameter $\lambda = 0.18$ resulting in a network density of 7355
951 edges and the cancer consensus network corresponding to the penalization parameter λ
952 = 0.24 and a network density of 7552 edges to compare the biological processes which
953 are represented by shared and distinct network hubs. First, we defined hub genes as
954 network nodes with a closeness centrality in the 90th percentile independently for each
955 consensus network, such that the non-cancer hub genes are given by H_N and the cancer
956 hub genes are given by H_C . We then identified hub genes shared between cancer and
957 non-cancer consensus networks $H_S = H_N \cap H_C$, non-cancer specific hub genes
958 $H_{NS} = H_N \cap H_C'$, and cancer-specific hub genes as $H_{CS} = H_C \cap H_N'$ (**Additional**

959 **File 10: Supp. Table IX).** We then used the GOTermFinder tool [74] to identify GO
960 terms that are shared by the genes in the sets H_S , H_{NS} , and H_{CS} .

961 M. Examining the differences in the degree distribution of tissue-specific vs.
962 general transcription factors in consensus and context-specific networks

963 We selected context-specific networks inferred from CNS, blood, cardiac, skin,
964 lung, skeletal muscle, and pancreas samples from *recount3* which had an approximate
965 density of 7,000 edges (**Additional File 21: Supp. Table XVI**). Additionally, we selected
966 values of the penalization parameter λ which yielded universal and non-cancer consensus
967 networks with an approximate density of 7,000 edges. We referred to Pierson et al. [36]
968 to obtain a list of tissue-specific and general transcription factors which are provided in
969 **Additional File 9: Supp. Table VIII**. In order to select a background set of non-TFs, we
970 first obtained the intersection of genes which were included in each network considered,
971 then we excluded both general and tissue-specific TFs from this list, and randomly select
972 100 of these genes. The selected background is provided in **Additional File 9: Supp.**
973 **Table VIII**. For each network, we compared the degree distribution of tissue-specific and
974 general transcription factors to non-TFs and the degree distribution of tissue-specific to
975 general transcription factors using the Wilcoxon rank-sum test. Across all tests, we
976 adjusted for multiple hypothesis correction using the Holm-Bonferroni method.

977 N. Non-negative matrix factorization to determine shared co-regulatory
978 relationships in similar tissues

979 We selected context-specific networks with a density of ~7000 across 27 contexts
980 for which we inferred GCNs by aggregating samples assigned to the context from
981 *recount3* (**Additional File 21: Supp. Table XVI**). Further, the selected networks were in
982 accordance with the scale-free selection criterion detailed in **Methods (Section H)**. For
983 each network, we identified hub genes as network nodes with a degree centrality in the
984 95th percentile. Across the 27 contexts, we found 3682 unique hubs. We subset to hubs
985 that are present in at least 2 contexts which results in 1956 hubs. We then used the R
986 package `RcppML` to perform non-negative matrix factorization to learn 8 underlying
987 factors to group similar patterns of hub genes. Specifically, H is a binary matrix of
988 dimensions $N_{Hubs} \times N_c$, where N_c is 27 the number of contexts. $H_{i,j} = 1$ when the i^{th}
989 gene is a hub gene in context j and $H_{i,j} = 0$ otherwise. We then obtain matrices W of
990 dimensions $N_{Hubs} \times 8$, and C of dimensions $N_c \times 8$ by solving the following
991 optimization function,

992
$$\min ||H - WC^T|| \text{ such that } W \geq 0, C \geq 0 \quad \text{Eqn. 25}$$

993 Finally, we chose a solution after 10 iterations that resulted in the greatest
994 sparsity, i.e. smallest values of $||W||_1$ and $||C||_1$. To interpret the resulting context cluster,
995 we examine the genes that contributed the most to the corresponding factor. Specifically,
996 for a given factor, $W[:, p]$, we first obtain genes with loadings in the 80% percentile.
997 Then for each gene, we compute the maximum difference between the loading of the
998 gene on factor p to all other factors and select genes where this difference is $\geq 5e-5$. Thus

999 we obtain a set of factor-specific hub genes G_p (**Additional File 12: Supp. Table X**). We
1000 then used the `GOTermFinder` tool [74] to identify GO terms that were more likely to
1001 be present in the set G_p than a background of all protein-coding genes by estimating the
1002 odds ratio and p-value by applying the hypergeometric test.

1003 O. Stratified LD-Score regression to quantify the heritability enrichment of
1004 variants proximal to central network genes in consensus and context-specific
1005 networks

1006 We applied stratified LD-score regression (s-LDSC) [21] to quantify the
1007 contribution of node centrality estimated from our consensus and context-specific GCNs
1008 towards explaining complex-trait heritability. First, we transformed all centrality scores
1009 derived from our universal consensus, non-cancer consensus, blood and CNS
1010 context-specific networks to lie between 0 and 1. Next, we annotated SNPs within 100
1011 Kb of a gene with the centrality score assigned to the gene. If an SNP was within 100 Kb
1012 of more than one gene, we assigned the maximum centrality score across all
1013 corresponding genes to the SNP. We generated six network centrality-based annotations
1014 (**Methods, Section I**) corresponding to each network studied and estimated their
1015 heritability enrichment and the standardized effect size (τ_c^*) of an annotation c as
1016 described by S. Kim et. al [40].

1017 Given an SNP j with a trait-specific effect size of β_j and a corresponding
1018 annotation value $a_{c,j}$ pertaining to category c , the variance of the effect size β_j is assumed
1019 to be a linear additive combination of the annotation c as given by Eqn. 25.

1020 $var(\beta_j) = \sum_c a_{c,j} \tau_c$ Eqn. 25

1021

1022 Here τ_c is the per-SNP contribution of the category c to the heritability of the trait.

1023 s-LDSC then estimates τ_c using the regression model specified by Eqn. 26.

1024 $E[\chi_j^2] = N \sum_c l(j, c) \tau_c + 1$ Eqn. 26

1025 Where N is the number of samples in the GWAS and $l(j, c)$ is the LD score of SNP j to
1026 the annotation c computed as given by Eqn. 27.

1027 $l(j, c) = \sum_k a_{c,k} r_{j,k}^2$ Eqn. 27

1028 Where $a_{c,k}$ is the annotation value of SNP k and $r_{j,k}^2$ is the correlation between SNPs j
1029 and k . We can then compute the enrichment of an annotation as the proportion of
1030 heritability explained by SNPs in a given annotation divided by the proportion of SNPs in
1031 the annotation. This definition can be extended to continuous annotations as given by
1032 Eqn. 28.

1033 $Enrichment = \frac{\% h_g^2(c)}{\% SNP(c)} = \frac{h_g^2(c) \cdot M}{\sum_j a_{c,j} \cdot h_g^2}$ Eqn. 28

1034 Where $h_g^2(c)$ is the heritability captured by the c^{th} annotation, h_g^2 is the estimated
1035 SNP-heritability and M is the total number of SNPs used to compute h_g^2 which in this
1036 case is 5,961,159. When the annotation is enriched for trait heritability, the computed
1037 enrichment is > 1 . To compute the significance of the enrichment, we used the block
1038 jack-knife method presented in previous studies [21, 40, 75, 76].

1039 Finally, we computed the standardized effect size τ_c^* i.e. the proportionate change in the
1040 per-SNP heritability associated with a single standard deviation increase in the value of
1041 the annotation c conditioned on all other annotations in the model as given by Eqn. 29.

1042

$$\tau_c^* = \frac{\tau_c sd(c)}{h_g^2 / M} \quad \text{Eqn. 29}$$

1043 Where $sd(c)$ is the standard deviation of the annotation c . τ_c^* thus captures the effect
1044 unique to the focal annotation, c unlike enrichment. The significance for the effect size of
1045 each annotation is computed by assuming $\tau_c^* / se(\tau_c^*) \sim N(0, 1)$ as done previously
1046 [40, 75, 77].

1047 We used European samples from the 1000G phase 3 project [49] to obtain
1048 reference SNPs. Regression SNPs were obtained from HapMap 3 [78] and regression
1049 weights were obtained excluding SNPs in the major histocompatibility complex (MHC)
1050 from [1000G_Phase3_weights_hm3_no_MHC.tgz](#). We estimated heritability enrichment
1051 and annotation effect size τ_c^* , using two model settings. In the first, we included
1052 annotations corresponding to variants located in a 100 Kb window of all protein-coding
1053 genes (all-genes annotation), in the second setting we included annotations corresponding
1054 to variants located in a 100 Kb window of all protein-coding genes and 97 annotations
1055 present in the baseline-LD model v2.2 (all-genes + baseline). Specifically, we
1056 downloaded the [1000G_Phase3_baselineLD_v2.2_ldscores.tgz](#) file which included 97
1057 variant annotations such as the annotations provided by Gazal et. al [79], Hujoel et. al
1058 [80], promoter and enhancer specific annotations from Villar et. al [81], and promoter and
1059 enhancer age annotations from Marnetto et. al [82].

1060 To examine the heritability enrichment and effect size of annotations derived from
1061 the universal and non-cancer consensus networks which were selected based on the
1062 scale-free distribution of node degree detailed in **Methods (Section H)** we used two sets
1063 of traits.

1064 1. 42 traits considered by S. Kim et al, such that the Z-score of total SNP-heritability
1065 was at least 6 and the genetic correlation between any pair of traits estimated by
1066 cross-trait LDSC was lower than 0.9. A complete list of traits is provided in

1067 **Additional File 15: Supp. Table XI**

1068 2. 219 [UKBB](#) traits with a heritability Z-score ≥ 7 , and the genetic correlation
1069 estimated by cross-trait LDSC is lower than 0.5. A complete list of traits is
1070 provided in **Additional File 16: Supp. Table XII**.

1071 To examine the heritability enrichment of blood context-specific networks derived
1072 from samples solely from GTEx and inferred across all aggregated samples we utilized
1073 GWAS summary statistics corresponding to 9 blood-derived traits including, ulcerative
1074 colitis [83], rheumatoid arthritis [84], and Crohn's disease [83], as well as eczema, white
1075 cell count, red cell count, red blood cell width, platelet count, eosinophil count from
1076 [UKBB](#) (**Additional File 17: Supp. Table XII**). Networks derived from blood samples
1077 were selected based on the scale-free criterion for node degree distribution detailed in
1078 **Methods (Section H)**.

1079 To examine the heritability of CNS context-specific networks derived from
1080 samples solely from GTEx and inferred across all aggregated samples we utilized GWAS
1081 summary statistics from the Psychiatric Genomics Consortium [85] corresponding to
1082 Alzheimer's disease [86], epilepsy [87], Parkinson's, bipolar disorder [88], smoking

1083 cessation [89], schizophrenia [90], major depressive disorder [91], number of drinks per
1084 week [89], and waist-hip-ratio adjusted BMI from [UKBB](#) (**Additional File 18: Supp.**
1085 **Table XIV**). Networks derived from CNS samples were selected based on the scale-free
1086 criterion for node degree distribution detailed in **Methods (Section H)**. Following the
1087 computation of heritability enrichment and τ_c^* for each trait, as well as their respective
1088 standard deviations we performed a random-effects meta-analysis across traits by using
1089 the function `meta.summaries()` from the R package `rmeta`.

1090 Ethics Declarations

1091 Ethics approval and consent to participate

1092 Ethical approval is not applicable for this manuscript.

1093

1094 Consent for publication

1095 Consent for publication is not applicable for this manuscript.

1096

1097 Availability of data and materials

1098 Scripts to reproduce the analysis and figures included in this manuscript can be found at:

1099 https://github.com/prashanthi-ravichandran/recount3_networks

1100

1101 Networks and annotations used in this project can be obtained from:

1102 **10.5281/zenodo.10480999**

1103 Competing interests

1104 A.B. is a consultant for Third Rock Ventures, LLC, a shareholder in Alphabet, Inc, and a

1105 founder of CellCipher, Inc.

1106 Funding

1107 Alexis Battle was supported by NIH/NIGMS R35GM139580. Kaspar Hansen and Alexis Battle
1108 were supported by NIH/NIGMS R01GM121459.

1109 Authors' contributions

1110 P.R., P.P., and A.B. conceived the project. P.R., P.P., and A.B. designed the analyses. P.R. and P.P.
1111 performed the analyses. R.K. and K.H. contributed feedback to experimental design and interpretation.
1112 P.R., R.K., and A.B. organized and wrote the paper with input from all authors.

1113

1114 Acknowledgements

1115 The authors would like to thank helpful discussions from Battle lab members throughout the course of
1116 this work, particularly Joshua Weinstock and Eric Kernfeld for code review and manuscript feedback.

1117

1118 Supplementary Information

1119

1120 Additional File 1: Supp. Table I

1121 Assignment of tissue labels obtained by manual curation to 48 contexts.

1122

1123 Additional File 2: Supp. Fig 1 - 19

1124 **Supp. Fig 1.** Identification of outlier samples across contexts. **Supp. Fig 2.** Immune cells were
1125 separated into three clusters: Melyoid, PBMCs/T cells, and B cells. **Supp. Fig 3.** Comparison of
1126 GTEx to Tissue consensus networks across tissue contexts. **Supp. Fig 4.** Characteristics of PCs
1127 at varying levels of data aggregation. **Supp. Fig 5.** ANOVA of top 10 PCs at varying levels of
1128 data aggregation. **Supp. Fig 6.** Prevalence of tissues in GTEx and SRA. **Supp. Fig 7.** Held-out
1129 Log-likelihood calculated reciprocally for GTEx and SRA. **Supp. Fig 8.** F1 scores calculated
1130 reciprocally for GTEx and SRA. **Supp. Fig 9.** Regression estimate (β) and standard errors of the
1131 effect of sample size (N) on network density across varying penalization parameters λ . **Supp.**
1132 **Fig 10.** Held-out log-likelihood of networks inferred by sequential data aggregation of GTEx and
1133 SRA studies. **Supp. Fig 11.** Linear model between the log empirical degree distribution and log
1134 degree for consensus networks. **Supp. Fig 12.** Odds ratio for ubiquitous biological processes
1135 across networks. **Supp. Fig 13.** Odds ratio for tissue specific biological processes across
1136 networks. **Supp. Fig 14.** Excess overlap of functional gene sets across networks. **Supp. Fig 15.**
1137 Excess overlap of functional gene sets across context-specific networks. **Supp. Fig 16.** S-LDSC
1138 results meta-analyzed across 42 traits for annotations from consensus networks. **Supp. Fig 17.**
1139 S-LDSC results meta-analyzed across 219 UKBB traits for annotations from consensus

1140 networks. **Supp. Fig 18.** S-LDSC results meta-analyzed across 9 blood traits. **Supp. Fig 19.**

1141 S-LDSC results meta-analyzed across 9 CNS traits.

1142

1143 **Additional File 3:** Supp. Table II: Details pertaining to the number of samples, median sample

1144 size across aggregated studies , number of PCs regressed when data is aggregated prior to

1145 correction for technical, and median number of PCs regressed from each study prior to

1146 aggregation for sequential aggregation of 566 non-cancerous studies from SRA and 49 studies

1147 from GTEx.

1148

1149 **Additional File 4:** Supp. Table III: Specification of data sources used in the compilation of

1150 pathways including the number of gene sets obtained from each source.

1151

1152 **Additional File 5:** Supp. Table IV: Selection of penalization parameter Lambda for consensus

1153 networks based on the scale-free criterion for degree distribution.

1154

1155 **Additional File 6:** Supp. Table V: Selection of penalization parameter Lambda for

1156 context-specific networks based on the scale-free criterion for degree distribution.

1157

1158 **Additional File 7:** Supp. Table VI: Details of GO terms that were tested for enrichment as a

1159 function of degree thresholds in consensus and context-specific networks.

1160

1161 **Additional File 8:** Supp. Table VII: Details of evolutionarily constrained and functional gene

1162 sets for which excess overlap is computed across network nodes binned by degree centrality.

1163

1164 **Additional File 9:** Supp. Table VIII: List of general and tissue-specific transcription factors

1165 derived from Pierson. et. al, as well as randomly selected background genes used to evalute the

1166 differences in the centrality scores obtained from consensus and context-specific networks

1167

1168 **Additional File 10:** Supp. Table IX: Hub genes that are shared and distinct between non-cancer

1169 consensus network with 11,110 edges ($\lambda = 0.16$) and the cancer consensus network with 10,482

1170 edges ($\lambda = 0.22$).

1171

1172 **Additional File 11:** Supplementary File 1: Enrichment of GO terms in cancer-specific hub

1173 genes.

1174

1175 **Additional File 12:** Supp. Table X: Hub genes selected to describe each factor such that, the

1176 loading of the gene on the factor was in the 80th percentile, and the minimum difference between

1177 the weight of the gene on the selected factor and all other factors is $\geq 5e-5$.

1178

1179 **Additional File 13:** Supplementary File 2: Enrichment of GO terms among hub genes which are

1180 specific to Factor 7 which results in the grouping of PBMCs/ T cells.

1181

1182 **Additional File 14:** Supplementary File 3: Enrichment of GO terms among hub genes which are
1183 specific to Factor 6 which results in the grouping of hESCs, iPSCs, and multipotent cells.

1184

1185 **Additional File 15:** Supp. Table XI: 42 Independent traits examined by S.Kim et. al, and their
1186 corresponding references, heritability, Z-score and number of individuals in the GWAS

1187

1188 **Additional File 16:** Supp. Table XII: 219 UKBB traits that are selected based on having a
1189 Z-score ≥ 7 , and pairwise correlation between traits is lesser than or equal to 0.5 as estimated
1190 by LDSC.

1191

1192 **Additional File 17:** Supp. Table XIII: 9 blood-related traits which were used to examine
1193 heritability enrichment of blood specific networks.

1194

1195 **Additional File 18:** Supp. Table XIV: 9 CNS-related traits which were used to examine
1196 heritability enrichment of CNS specific networks.

1197

1198 **Additional File 19:** Supplementary File 4: Manually curated annotations corresponding to
1199 tissue, cancer status and disease type of SRA samples based on text-based analysis of Study,
1200 Tissue, Organ, Biopsy, Cell, Disease, Source and Description from the metadata
1201 sample_description field.

1202

1203 **Additional File 20:** Supp. Table XV: Mapping between annotation categories present in
1204 tissue-specific PPI interactions obtained from SNAP and contexts across which context-specific
1205 networks were inferred.

1206

1207 **Additional File 21:** Supp. Table XVI: Selection of context-specific networks used in matrix
1208 factorization of shared hubs and edges.

1209

1210 References

1211 1. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology.
1212 Nature 402:C47–52

1213 2. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230

1214 3. Oltvai ZN, Barabási A-L (2002) Systems biology. Life's complexity pyramid. Science 298:763–764

1215 4. Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867

1216 5. Stuart JM, Segal E, Koller D, Kim SK (2003) A Gene-Coexpression Network for Global Discovery

1217 of Conserved Genetic Modules. *Science*. <https://doi.org/10.1126/science.1087447>

1218 6. Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, Ukkonen E, Brazma A (2003) From gene
1219 networks to gene function. *Genome Res* 13:2568–2576

1220 7. Narang V, Ramli MA, Singhal A, Kumar P, de Libero G, Poidinger M, Monterola C (2015)
1221 Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks. *PLoS*
1222 *Comput Biol* 11:e1004504

1223 8. Wang X, Choi D, Roeder K (2021) Constructing local cell-specific networks from single-cell data.
1224 *Proc Natl Acad Sci U S A*. <https://doi.org/10.1073/pnas.2113178118>

1225 9. van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP (2017) Gene co-expression
1226 analysis for functional classification and gene–disease predictions. *Brief Bioinform* 19:575–592

1227 10. Diaz LPM, Stumpf MPH (2022) Gaining confidence in inferred networks. *Sci Rep*.
1228 <https://doi.org/10.1038/s41598-022-05402-9>

1229 11. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N (2003) Module networks:
1230 identifying regulatory modules and their condition-specific regulators from gene expression data.
1231 *Nat Genet*. <https://doi.org/10.1038/ng1165>

1232 12. Wolf DM, Lenburg ME, Yau C, Boudreau A, van 't Veer LJ (2014) Gene Co-Expression Modules as
1233 Clinically Relevant Hallmarks of Breast Cancer Diversity. *PLoS One*.
1234 <https://doi.org/10.1371/journal.pone.0088309>

1235 13. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical
1236 lasso. *Biostatistics* 9:432–441

1237 14. Hastie T, Tibshirani R, Friedman J (2013) The Elements of Statistical Learning: Data Mining,
1238 Inference, and Prediction. Springer Science & Business Media

1239 15. Huang Y-J, Lu T-P, Hsiao CK (2020) Application of graphical lasso in estimating network structure
1240 in gene set. *Annals of Translational Medicine*. <https://doi.org/10.21037/atm-20-6490>

1241 16. Wilks C, Zheng SC, Chen FY, et al (2021) recount3: summaries and queries for large-scale RNA-seq
1242 expression and splicing. *Genome Biol* 22:323

1243 17. Consortium TG, The GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory
1244 effects across human tissues. *Science* 369:1318–1330

1245 18. Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an
1246 immeasurable source of knowledge. *Contemp Oncol* 19:A68–77

1247 19. Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O'Sullivan C (2022) The Sequence Read
1248 Archive: a decade more of explosive growth. *Nucleic Acids Res* 50:D387–D390

1249 20. Kodama Y, Shumway M, Leinonen R, on behalf of the International Nucleotide Sequence Database
1250 Collaboration (2012) The sequence read archive: explosive growth of sequencing data. *Nucleic*
1251 *Acids Research* 40:D54–D56

1252 21. Finucane HK, Bulik-Sullivan B, Gusev A, et al (2015) Partitioning heritability by functional
1253 annotation using genome-wide association summary statistics. *Nat Genet* 47:1228–1235

1254 22. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape.
1255 *Genome Biol* 18:220

1256 23. Leek JT, Evan Johnson W, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing
1257 batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*
1258 28:882–883

1259 24. Parsana P, Ruberman C, Jaffe AE, Schatz MC, Battle A, Leek JT (2019) Addressing confounding
1260 artifacts in reconstruction of gene co-expression networks. *Genome Biol* 20:94

1261 25. Buja A, Eyuboglu N (1992) Remarks on Parallel Analysis. *Multivariate Behav Res* 27:509–540

1262 26. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res*
1263 28:27–30

1264 27. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the
1265 Pathway Interaction Database. *Nucleic Acids Res* 37:D674–9

1266 28. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A (2013) Enrichr:
1267 interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics*
1268 14:128

1269 29. Kuleshov MV, Jones MR, Rouillard AD, et al (2016) Enrichr: a comprehensive gene set enrichment
1270 analysis web server 2016 update. *Nucleic Acids Res* 44:W90–7

1271 30. Leskovec J, Sosić R (2016) SNAP: A General Purpose Network Analysis and Graph Mining Library.
1272 *ACM Trans Intell Syst Technol*. <https://doi.org/10.1145/2898361>

1273 31. Ha MJ, Baladandayuthapani V, Do K-A (2015) DINGO: differential network analysis in genomics.
1274 *Bioinformatics* 31:3413–3420

1275 32. Pastor-Satorras R, Rubi M, Diaz-Guilera A (2003) Statistical Mechanics of Complex Networks.
1276 Springer Science & Business Media

1277 33. Chou W-C, Cheng A-L, Brotto M, Chuang C-Y (2014) Visual gene-network analysis reveals the
1278 cancer gene co-expression in human endometrial cancer. *BMC Genomics* 15:300

1279 34. Oh E-Y, Christensen SM, Ghanta S, et al (2015) Extensive rewiring of epithelial-stromal
1280 co-expression networks in breast cancer. *Genome Biol* 16:128

1281 35. Albert R (2005) Scale-free networks in cell biology. *Journal of Cell Science* 118:4947–4957

1282 36. Pierson E, GTEx Consortium, Koller D, et al (2015) Sharing and Specificity of Co-expression
1283 Networks across 35 Human Tissues. *PLoS Comput Biol* 11:e1004220

1284 37. Rodius S, Fournier A, Götz L, et al (2016) Analysis of the dynamic co-expression network of heart
1285 regeneration in the zebrafish. *Sci Rep* 6:26822

1286 38. Keller MP, Choi Y, Wang P, et al (2008) A gene expression network model of type 2 diabetes links
1287 cell cycle regulation in islets with diabetes susceptibility. *Genome Res* 18:706–716

1288 39. Presson AP, Sobel EM, Papp JC, Suarez CJ, Whistler T, Rajeevan MS, Vernon SD, Horvath S (2008)
1289 Integrated weighted gene co-expression network analysis with an application to chronic fatigue

1290 syndrome. *BMC Syst Biol* 2:95

1291 40. Kim SS, Dai C, Hormozdiari F, et al (2019) Genes with High Network Connectivity Are Enriched
1292 for Disease Heritability. *Am J Hum Genet* 105:1302

1293 41. Mostafavi H, Spence JP, Naqvi S, Pritchard JK (2022) Limited overlap of eQTLs and GWAS hits
1294 due to systematic differences in discovery. *bioRxiv* 2022.05.07.491045

1295 42. Zhu X, Duren Z, Wong WH (2021) Modeling regulatory network topology improves genome-wide
1296 analyses of complex human traits. *Nat Commun* 12:1–15

1297 43. Cote AC, Young HE, Huckins LM (2022) Comparison of confound adjustment methods in the
1298 construction of gene co-expression networks. *Genome Biol* 23:44

1299 44. Stegle O, Parts L, Piipari M, Winn J, Durbin R (2012) Using probabilistic estimation of expression
1300 residuals (PEER) to obtain increased power and interpretability of gene expression analyses. *Nat
1301 Protoc* 7:500–507

1302 45. Ju JH, Shenoy SA, Crystal RG, Mezey JG (2017) An independent component analysis confounding
1303 factor correction framework for identifying broad impact expression quantitative trait loci. *PLoS
1304 Comput Biol* 13:e1005537

1305 46. Luijk R, Dekkers KF, van Iterson M, et al (2018) Genome-wide identification of directed gene
1306 networks using large-scale population genomics data. *Nat Commun* 9:3097

1307 47. Deelen P, Zhernakova DV, de Haan M, et al (2015) Calling genotypes from public RNA-sequencing
1308 data enables identification of genetic variants that affect gene-expression levels. *Genome Med* 7:30

1309 48. Omranian N, Eloundou-Mbebi JMO, Mueller-Roeber B, Nikoloski Z (2016) Gene regulatory
1310 network inference using fused LASSO on multiple data sets. *Sci Rep* 6:20533

1311 49. Hellstern M, Ma J, Yue K, Shojaie A (2021) netgsa: Fast computation and interactive visualization
1312 for topology-based pathway enrichment analysis. *PLoS Comput Biol* 17:e1008979

1313 50. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006)
1314 ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian
1315 Cellular Context. *BMC Bioinformatics* 7:1–15

1316 51. Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate
1317 learning algorithm and its application to high-dimensional plant gene expression data. *BMC Syst
1318 Biol* 1:37

1319 52. Babaei S, Mahfouz A, Hulsman M, Lelieveldt BPF, de Ridder J, Reinders M (2015) Hi-C Chromatin
1320 Interaction Networks Predict Co-expression in the Mouse Cortex. *PLoS Comput Biol* 11:e1004221

1321 53. Zhou K-R, Liu S, Sun W-J, Zheng L-L, Zhou H, Yang J-H, Qu L-H (2016) ChIPBase v2.0: decoding
1322 transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq
1323 data. *Nucleic Acids Res* 45:D43–D50

1324 54. Dixit A, Parnas O, Li B, et al (2016) Perturb-Seq: Dissecting Molecular Circuits with Scalable
1325 Single-Cell RNA Profiling of Pooled Genetic Screens. *Cell* 167:1853–1866.e17

1326 55. Battle A (2019) Pre-computed cross-mappability resources for human genomes (hg19 and GRCh38).

1327 https://doi.org/10.6084/m9.figshare.c.4297352.v4

1328 56. Saha A, Battle A (2018) False positives in trans-eQTL and co-expression analyses arising from
1329 RNA-sequencing alignment errors. *F1000Res* 7:1860

1330 57. Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks.
1331 *Bioinformatics* 33:i190–i198

1332 58. Greene CS, Krishnan A, Wong AK, et al (2015) Understanding multicellular function and disease
1333 with human tissue-specific networks. *Nat Genet* 47:569–576

1334 59. Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D (2015)
1335 BRENDa in 2015: exciting developments in its 25th year of existence. *Nucleic Acids Res*
1336 43:D439–46

1337 60. van Noort V, Snel B, Huynen MA (2004) The yeast coexpression network has a small-world,
1338 scale-free architecture and can be explained by a simple model. *EMBO reports* 5:280–284

1339 61. Resendis-Antonio O, Freyre-González JA, Menchaca-Méndez R, Gutiérrez-Ríos RM,
1340 Martínez-Antonio A, Avila-Sánchez C, Collado-Vides J (2005) Modular analysis of the
1341 transcriptional regulatory network of *E. coli*. *Trends Genet* 21:16–20

1342 62. Lek M, Karczewski KJ, Minikel EV, et al (2016) Analysis of protein-coding genetic variation in
1343 60,706 humans. *Nature* 536:285–291

1344 63. Cassa CA, Weghorn D, Balick DJ, et al (2017) Estimating the selective effects of heterozygous
1345 protein-truncating variants from human exome data. *Nat Genet* 49:806–810

1346 64. Samocha KE, Robinson EB, Sanders SJ, et al (2014) A framework for the interpretation of de novo
1347 mutation in human disease. *Nat Genet* 46:944–950

1348 65. Bartha I, Rausell A, McLaren PJ, Mohammadi P, Tardaguila M, Chaturvedi N, Fellay J, Telenti A
1349 (2015) The Characteristics of Heterozygous Protein Truncating Variants in the Human Genome.
1350 *PLoS Comput Biol* 11:e1004647

1351 66. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome Database Group (2011) The
1352 Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and
1353 genetics. *Nucleic Acids Res* 39:D842–8

1354 67. Georgi B, Voight BF, Bućan M (2013) From mouse to human: evolutionary genomics analysis of
1355 human orthologs of essential genes. *PLoS Genet* 9:e1003484

1356 68. Liu X, Jian X, Boerwinkle E (2013) dbNSFP v2.0: a database of human non-synonymous SNVs and
1357 their functional predictions and annotations. *Hum Mutat* 34:E2393–402

1358 69. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working
1359 Group, Statistical Methods groups—Analysis Working Group, et al (2017) Genetic effects on gene
1360 expression across human tissues. *Nature* 550:204–213

1361 70. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian
1362 Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. *Nucleic Acids*
1363 *Res* 33:D514–7

1364 71. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB (2013) Genic intolerance to functional
1365 variation and the interpretation of personal genomes. *PLoS Genet* 9:e1003709

1366 72. Landrum MJ, Lee JM, Benson M, et al (2018) ClinVar: improving access to variant interpretations
1367 and supporting evidence. *Nucleic Acids Res* 46:D1062–D1067

1368 73. Wishart DS, Feunang YD, Guo AC, et al (2018) DrugBank 5.0: a major update to the DrugBank
1369 database for 2018. *Nucleic Acids Res* 46:D1074–D1082

1370 74. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004)
1371 GO::TermFinder--open source software for accessing Gene Ontology information and finding
1372 significantly enriched Gene Ontology terms associated with a list of genes. *Bioinformatics*
1373 20:3710–3715

1374 75. Hormozdiari F, Gazal S, van de Geijn B, et al (2018) Leveraging molecular quantitative trait loci to
1375 understand the genetic architecture of diseases and complex traits. *Nat Genet* 50:1041–1047

1376 76. Finucane HK, Reshef YA, Anttila V, et al (2018) Heritability enrichment of specifically expressed
1377 genes identifies disease-relevant tissues and cell types. *Nat Genet* 50:621–629

1378 77. Gazal S, Finucane HK, Furlotte NA, et al (2017) Linkage disequilibrium-dependent architecture of
1379 human complex traits shows action of negative selection. *Nat Genet* 49:1421–1427

1380 78. International HapMap 3 Consortium, Altshuler DM, Gibbs RA, et al (2010) Integrating common and
1381 rare genetic variation in diverse human populations. *Nature* 467:52–58

1382 79. Gazal S, Loh P-R, Finucane HK, Ganna A, Schoech A, Sunyaev S, Price AL (2018) Functional
1383 architecture of low-frequency variants highlights strength of negative selection across coding and
1384 non-coding annotations. *Nat Genet* 50:1600–1607

1385 80. Hujoel MLA, Gazal S, Hormozdiari F, van de Geijn B, Price AL (2019) Disease Heritability
1386 Enrichment of Regulatory Elements Is Concentrated in Elements with Ancient Sequence Age and
1387 Conserved Function across Species. *Am J Hum Genet*. <https://doi.org/10.1016/j.ajhg.2019.02.008>

1388 81. Villar D, Berthelot C, Aldridge S, et al (2015) Enhancer evolution across 20 mammalian species.
1389 *Cell* 160:554–566

1390 82. Marnetto D, Mantica F, Molineris I, Grassi E, Pesando I, Provero P (2018) Evolutionary Rewiring of
1391 Human Regulatory Networks by Waves of Genome Expansion. *Am J Hum Genet* 102:207–218

1392 83. Jostins L, Ripke S, Weersma RK, et al (2012) Host-microbe interactions have shaped the genetic
1393 architecture of inflammatory bowel disease. *Nature* 491:119–124

1394 84. Okada Y, Wu D, Trynka G, et al (2014) Genetics of rheumatoid arthritis contributes to biology and
1395 drug discovery. *Nature* 506:376–381

1396 85. Sullivan PF, Agrawal A, Bulik CM, et al (2018) Psychiatric Genomics: An Update and an Agenda.
1397 *Am J Psychiatry* 175:15–27

1398 86. Jansen IE, Savage JE, Watanabe K, et al (2019) Genome-wide meta-analysis identifies new loci and
1399 functional pathways influencing Alzheimer's disease risk. *Nat Genet* 51:404–413

1400 87. International League Against Epilepsy Consortium on Complex Epilepsies. Electronic address:

1401 epilepsy-austin@unimelb.edu.au (2014) Genetic determinants of common epilepsies: a meta-analysis
1402 of genome-wide association studies. Lancet Neurol 13:893–903

1403 88. Stahl EA, Breen G, Forstner AJ, et al (2019) Genome-wide association study identifies 30 loci
1404 associated with bipolar disorder. Nat Genet 51:793–803

1405 89. Liu M, Jiang Y, Wedow R, et al (2019) Association studies of up to 1.2 million individuals yield new
1406 insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244

1407 90. (2019) GENOMIC DISSECTION OF BIPOLAR DISORDER AND SCHIZOPHRENIA IN 50K
1408 CASES, 50K CONTROLS AND 28 SUBPHENOTYPES. Eur Neuropsychopharmacol
1409 29:S814–S815

1410 91. Wray NR, Ripke S, Mattheisen M, et al (2018) Genome-wide association analyses identify 44 risk
1411 variants and refine the genetic architecture of major depression. Nat Genet 50:668–681

1412

1413 Figure Legends

1414

1415 Fig. 1

1416 **Overview of data pre-processing and annotations (A)** Gene expression data was RPKM
1417 normalized and log-transformed along with gene-specific and sample-specific filters. Based on
1418 the data source, normalized gene expression was processed to merge replicates, and exclude
1419 miRNA and scRNA seq samples. **(B)** Number of samples which were annotated to be
1420 non-cancer, cancer, and unknown based on available metadata across GTEx, SRA, and TCGA.
1421 **(C)** Top 10 tissue labels by sample size across all three data sources: SRA, GTEx, and TCGA.
1422 **(D)** Top 20 diseases by sample size found in SRA that are not cancer. **(E)** t-SNE projection of
1423 xCell deconvolution scores of 63,193 non-cancerous samples colored by the tissue of origin. **(F)**
1424 Increase in the sample size of 27 tissue contexts by using SRA samples compared to GTEx only.
1425 SRA studies included 7 novel contexts which were not available in GTEx.

1426

1427 Fig. 2

1428 Comparison of aggregation strategies to optimize network reconstruction (A) Outline of
strategies to compare data correction before and after aggregation and weighted and unweighted
aggregation of single tissue/ study covariance matrices included (1) Aggregating data before
PC-based data correction followed by estimation of empirical covariance from residual
expression (Aggregating data, orange), (2) PC-based data correction applied to individual studies
followed by aggregation of residual expression and joint estimation of empirical covariance
(Aggregating data adjusted for confounding, brick red), (3) Unweighted aggregation of
covariance matrices inferred from each study separately after study-specific PC-based correction
(Unweighted covariance aggregation, purple) and (4) Weighted aggregation of covariance
matrices computed from individual studies following study-specific PC-based data correction
(Weighted covariance aggregation, magenta). **(B)** Held-out log-likelihood of networks inferred
by sequentially aggregating either 10 GTEx studies or 100 SRA studies at a time. **(C)** F1-score
of networks inferred by sequentially aggregating either 10 GTEx studies or 100 SRA studies at a
time when compared to canonical pathways compiled from KEGG, Biocarta, and Pathway
Interaction Database. **(D)** Comparison of held-out log-likelihood corresponding to networks
inferred over 49 GTEx studies or 566 SRA studies using four different aggregation strategies
including aggregating data, aggregating data adjusted for confounding, unweighted, and
weighted aggregation of covariance matrices. **(E)** Comparison of F1-scores of obtaining edges
corresponding to canonical pathways from KEGG, Biocarta, and Pathway Interaction Database
in networks inferred over 49 GTEx studies or 566 SRA studies using four different aggregation
strategies including aggregating data, aggregating data adjusted for confounding, unweighted,
and weighted aggregation of covariance matrices. **(F)** Total number of samples, number of
individual studies, and the median sample size of each study which were used in the inference of

1451 universal consensus, non-cancer consensus, and cancer consensus networks. **(G)** Comparison of
1452 F1-scores of obtaining edges corresponding to canonical pathways in the three consensus
1453 networks, universal, non-cancer, and cancer, across networks with density (E) varying between
1454 5e3 to 5e6 edges. **(H)** Log-likelihood of GTEx blood samples based on networks inferred by
1455 sequentially aggregating SRA blood studies five at a time for densities ranging from 1e3 to 1e5
1456 edges. **(I)** Log-likelihood of GTEx CNS samples based on networks inferred by sequentially
1457 aggregating SRA CNS studies five at a time for densities ranging from 1e3 to 1e5 edges. **(J)**
1458 Odds ratio of finding edges corresponding to tissue-specific protein-protein interactions (PPIs)
1459 derived from SNAP in tissue-context-specific networks inferred using all available samples vs.
1460 only samples found in GTEx for six tissue contexts.

1461

1462 **Fig. 3**

1463 **Properties of central network nodes of consensus and context-specific networks (A-C)**

1464 Enrichment of genes involved in GO processes among network genes selected with increasing
1465 thresholds of degree connectivity in three consensus networks, universal ($\lambda = 0.18$, 7087 edges),
1466 non-cancer ($\lambda = 0.18$, 7355 edges), and cancer ($\lambda = 0.24$, 7552 edges), as well as two
1467 context-specific networks blood ($\lambda = 0.24$, 7283 edges) and CNS ($\lambda = 0.28$, 8430 edges).

1468 Tissue-context-specific networks were inferred only using non-cancerous samples. Blood
1469 (GTEx) or CNS (GTEx) networks were inferred using samples only found in GTEx while Blood
1470 and CNS networks were inferred using samples from GTEx and SRA. **(D)** Distribution of the
1471 excess overlap of evolutionarily conserved gene sets (Methods) for network nodes binned by the
1472 number of neighbors (degree) corresponding to universal consensus networks ($\lambda = 0.14$, 0.16,
1473 0.18, 0.20), non-cancer consensus network ($\lambda = 0.14$, 0.16, 0.18, 0.20), cancer consensus

1474 networks ($\lambda = 0.20, 0.22, 0.24, 0.26$), blood network ($\lambda = 0.18, 0.20, 0.22, 0.24, 0.26$), and CNS
1475 network ($\lambda = 0.24, 0.26, 0.28, 0.30, 0.32$). Quintile 1 reflects nodes with no neighbors. Nodes
1476 with non-zero neighbors are split based on the degree quartile they belong to (Quintiles 2-5). We
1477 evaluated the excess overlap of 3,104 loss-of-function (LoF) genes with pLI > 0.9 , 2,853 genes
1478 with a $S_{het} > 0.1$, 588 genes with a Phi-score > 0.95 , and 1,440 genes strongly depleted for
1479 missense mutations (high missense z-score). **(E)** The degree distribution of network nodes that
1480 are tissue-specific transcription factors (TFs) in blood (52 TFs), lung (58 TFs), skin (10 TFs),
1481 pancreas (16 TFs), cardiac (17 TFs), muscle (7 TFs), CNS (51 TFs), general transcription factors
1482 (88 TFs), and protein-coding genes which are not transcription factors in universal consensus (λ
1483 = 0.18, 7,087 edges), non-cancer consensus ($\lambda = 0.18$, 7,355 edges), skin ($\lambda = 0.26$, 7,567 edges),
1484 skeletal muscle ($\lambda = 0.26$, 6,254 edges), pancreas ($\lambda = 0.32$, 7,615 edges), lung ($\lambda = 0.30$, 6,349
1485 edges), CNS ($\lambda = 0.30$, 6,316 edges), cardiac ($\lambda = 0.30$, 6,481 edges), blood ($\lambda = 0.24$, 7,283
1486 edges). Pairs with no significance reported were not statistically distinct ($p > 0.1$). **(F)** Factor
1487 weights were obtained by non-negative matrix factorization of the presence of hub genes in
1488 tissue-specific networks with $\sim 7,000$ edges. Details of the penalization parameter λ and density
1489 of selected networks for each tissue context are provided in **Supp. Table X**.

1490

1491 **Fig. 4**

1492 **Heritability enrichment of network annotations** Mean and standard deviation of heritability
1493 enrichment and the coefficient τ^* , an estimate of the heritability of SNPs unique to the
1494 annotation. All genes: whether a variant was located in a 100 kilobase window of all
1495 protein-coding genes, All genes + baseline: all-genes annotation in addition to 97 functional
1496 annotations such as known enhancer and promoter regions. **(A)** Meta-analysis of 42 independent

1497 traits for six centrality measures obtained from the universal consensus network and non-cancer

1498 consensus networks corresponding to values of the penalization parameter λ between 0.14 - 0.20.

1499 (B) Meta-analysis of 9 blood-related traits including, Crohn's disease, Ulcerative colitis,

1500 Rheumatoid arthritis, Allergy Eczema, Eosinophil count, Red blood cell count, White blood cell

1501 count, Red blood cell width, and Platelet count for network annotations from Blood GTEx ($\lambda =$

1502 0.24 - 0.32), Blood consensus ($\lambda = 0.18 - 0.26$), and Universal consensus network ($\lambda = 0.14 -$

1503 0.20). **(C)** Meta-analysis of 9 CNS-related traits including, Alzheimer's disease, Epilepsy,

1504 Parkinson's disease, Bipolar disorder, Smoking cessation, Waist-hip-ratio adjusted BMI,

1505 Schizophrenia, Major depressive disorder, and Number of alcoholic drinks per week, for network

1506 annotations corresponding to 6 centrality measures derived from CNS GTEx ($\lambda = 0.26 - 0.32$),

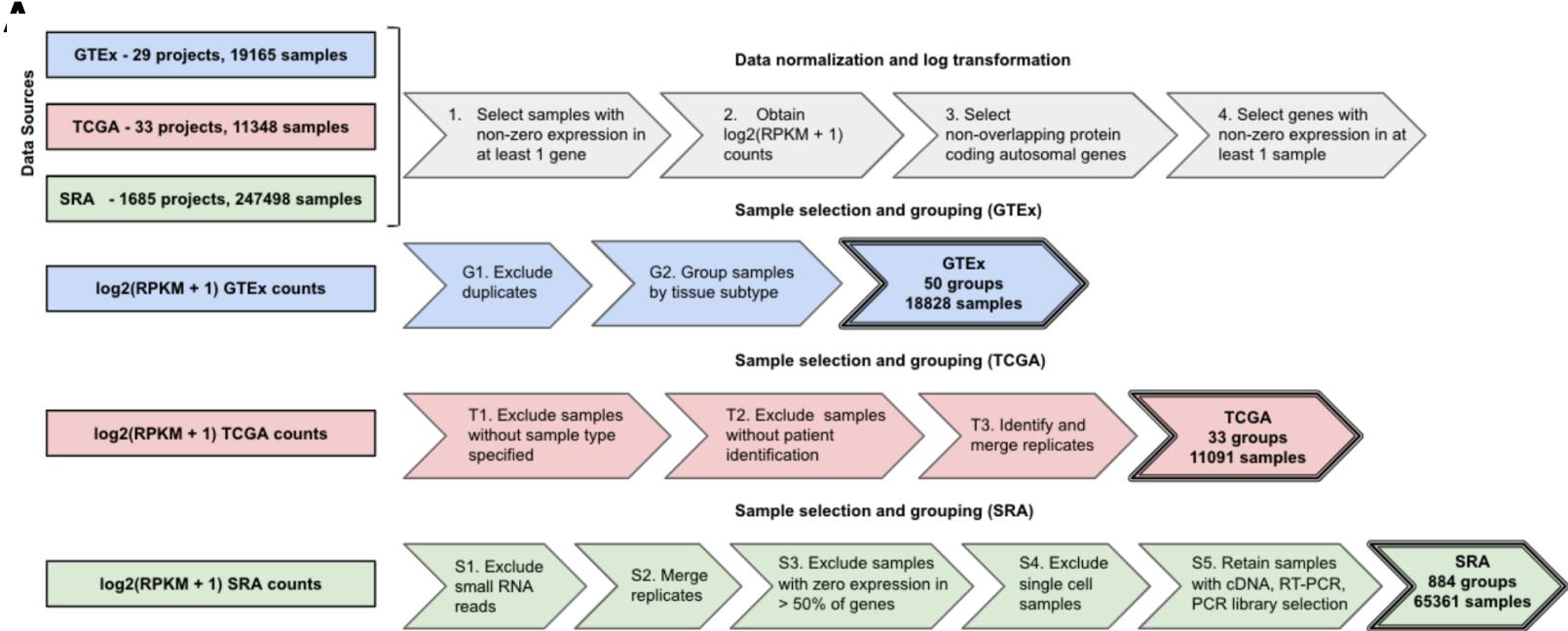
1507 CNS ($\lambda = 0.20 - 0.28$), and Universal consensus network ($\lambda = 0.14 - 0.20$).

1508

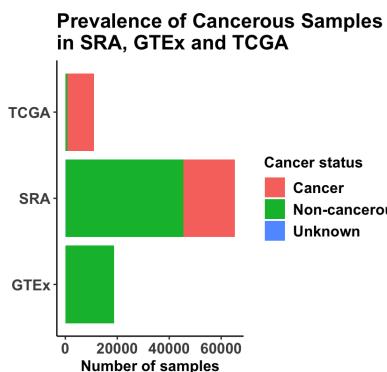
1509

1510

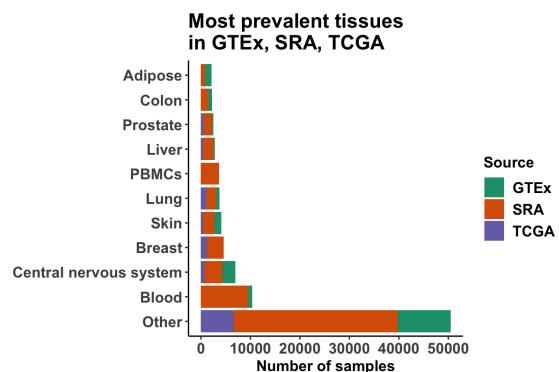
Figure 1



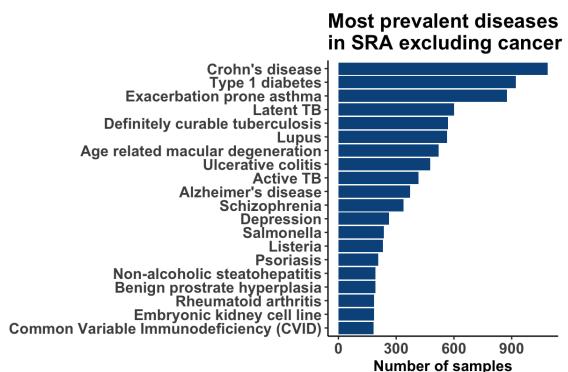
B



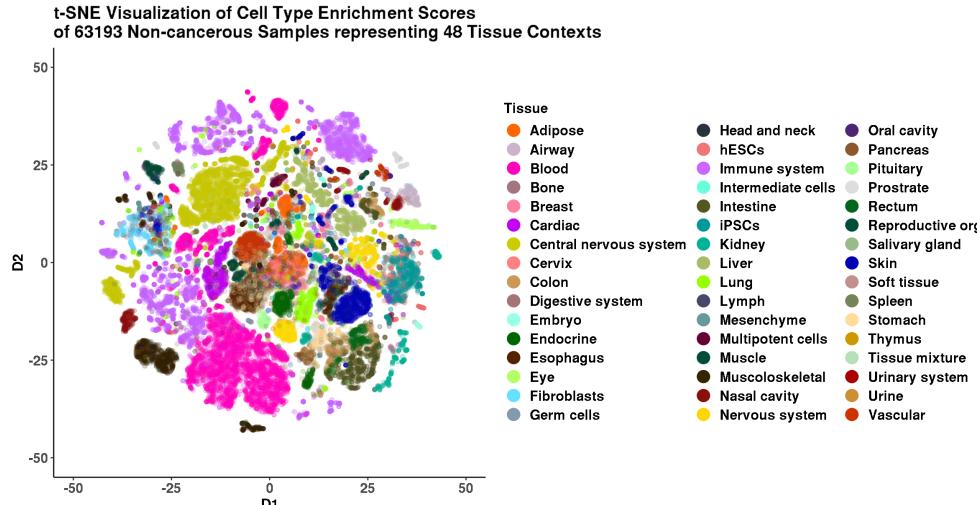
C



D



E



F

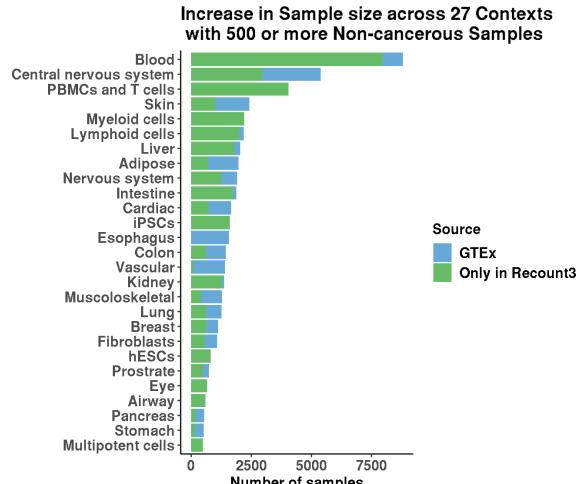
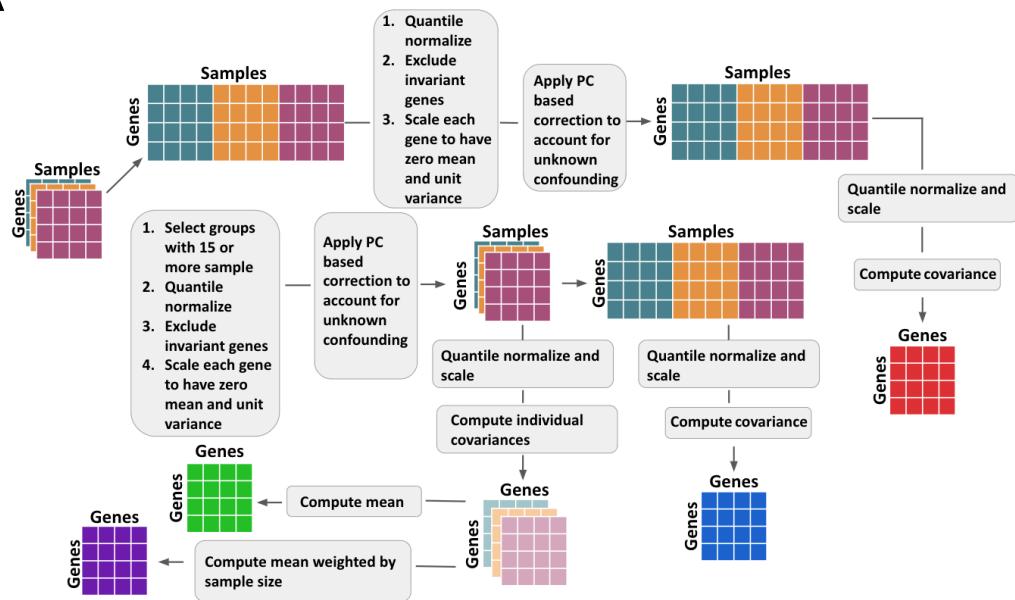
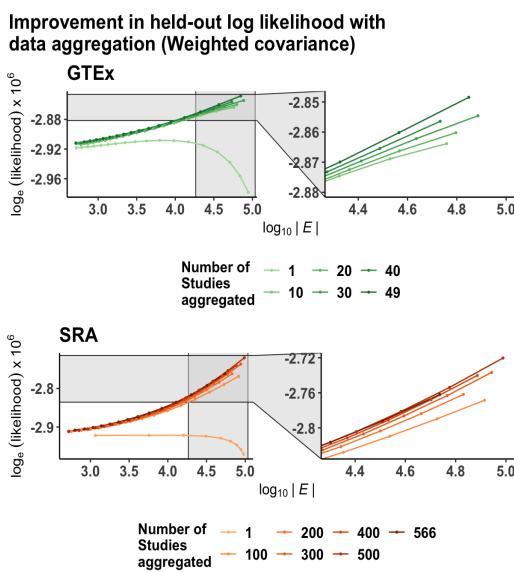


Figure 2

A

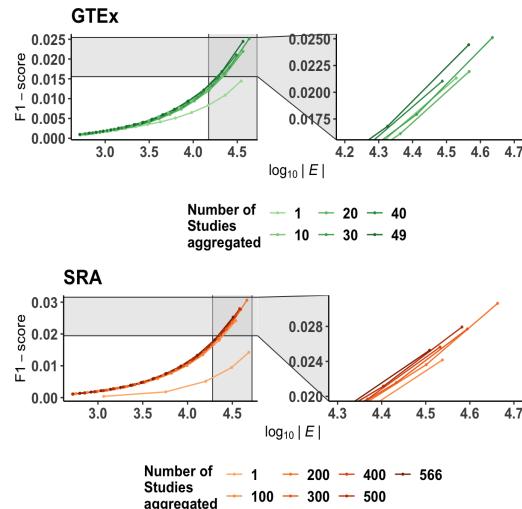


B



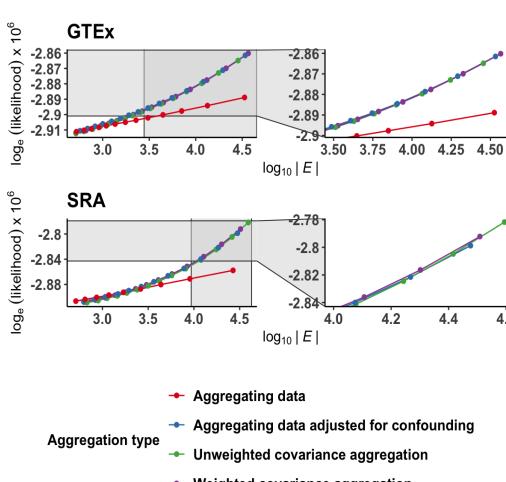
C

Improvement in F1-score with data aggregation (Weighted covariance)



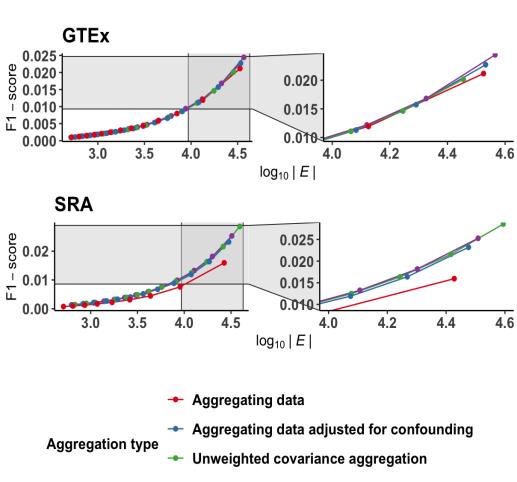
D

Comparison across aggregation strategies (Likelihood)

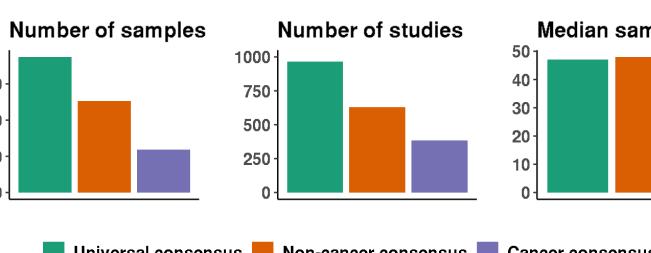


E

Comparison across aggregation strategies (F1-score)

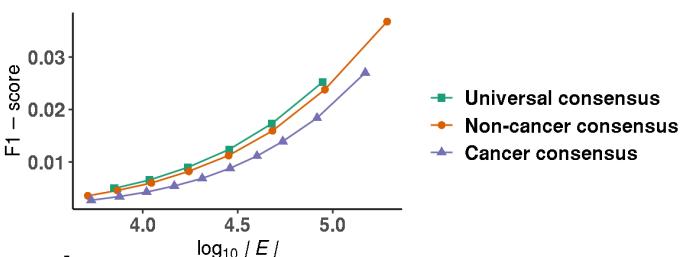


F



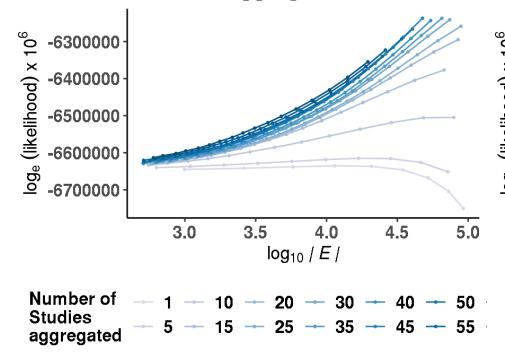
G

F1-score of consensus networks

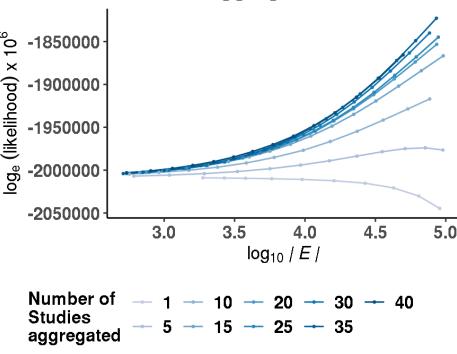


H

Held-out loglikelihood increases with data aggregation in blood



Held-out loglikelihood increases with data aggregation in CNS



I

Replication of known protein-protein interactions in tissue-specific networks

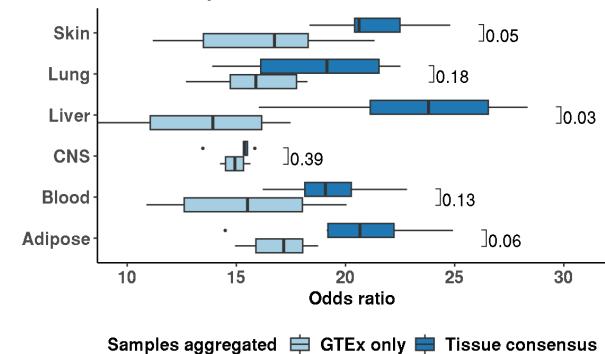
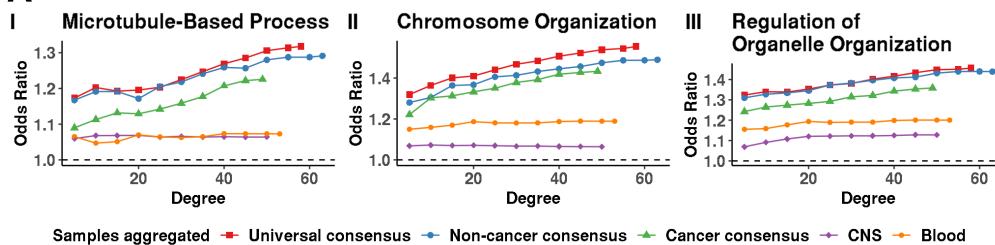
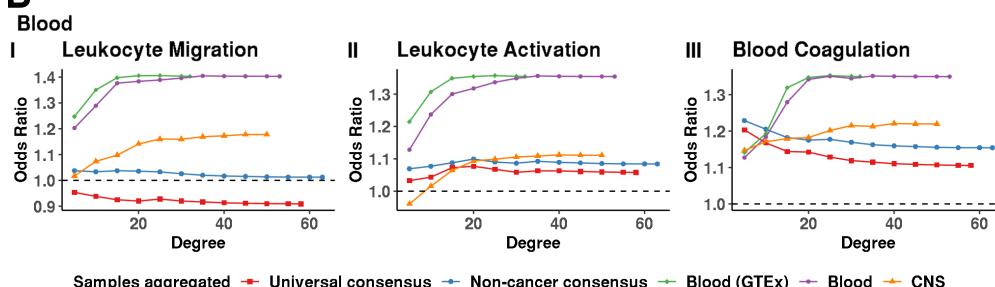


Figure 3

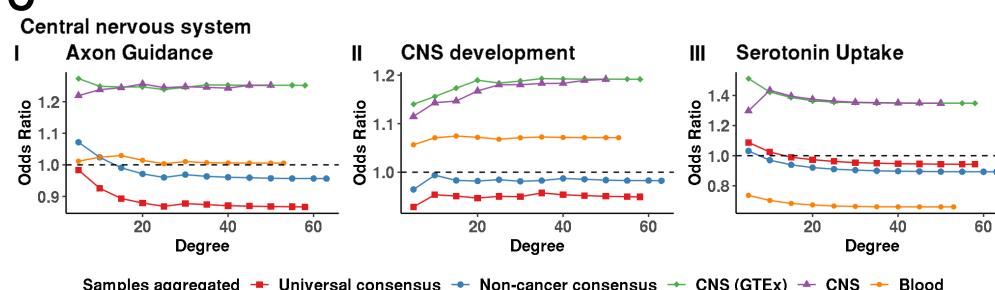
A



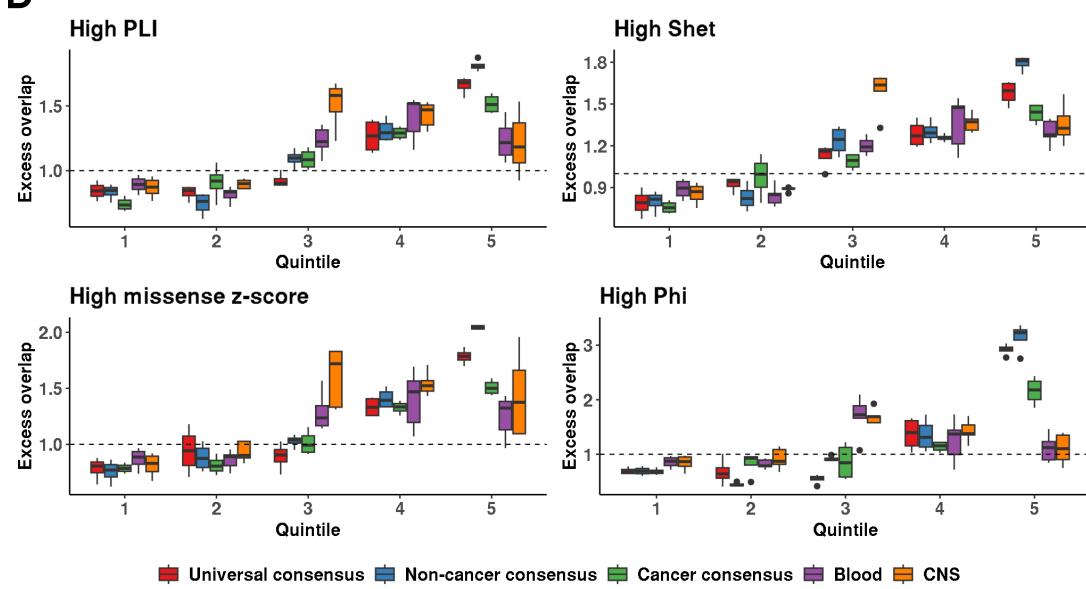
B



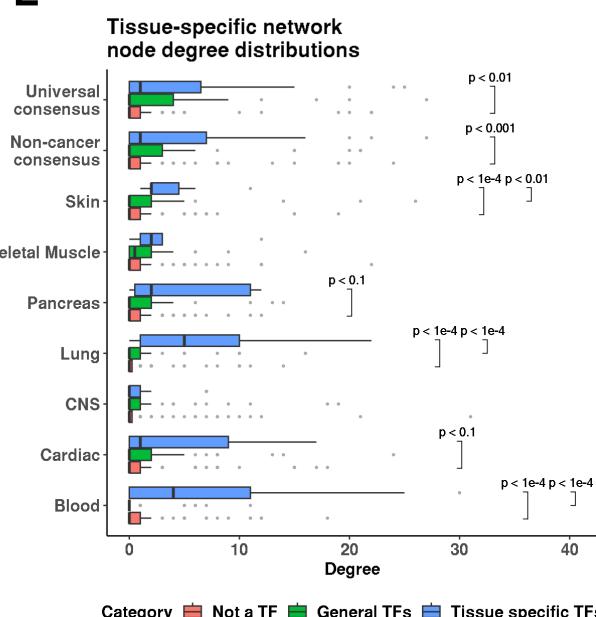
C



D



E



F

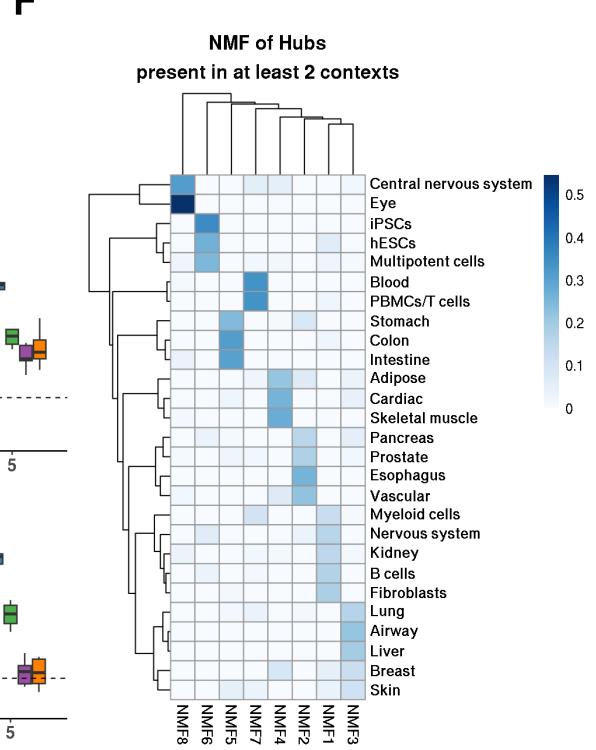
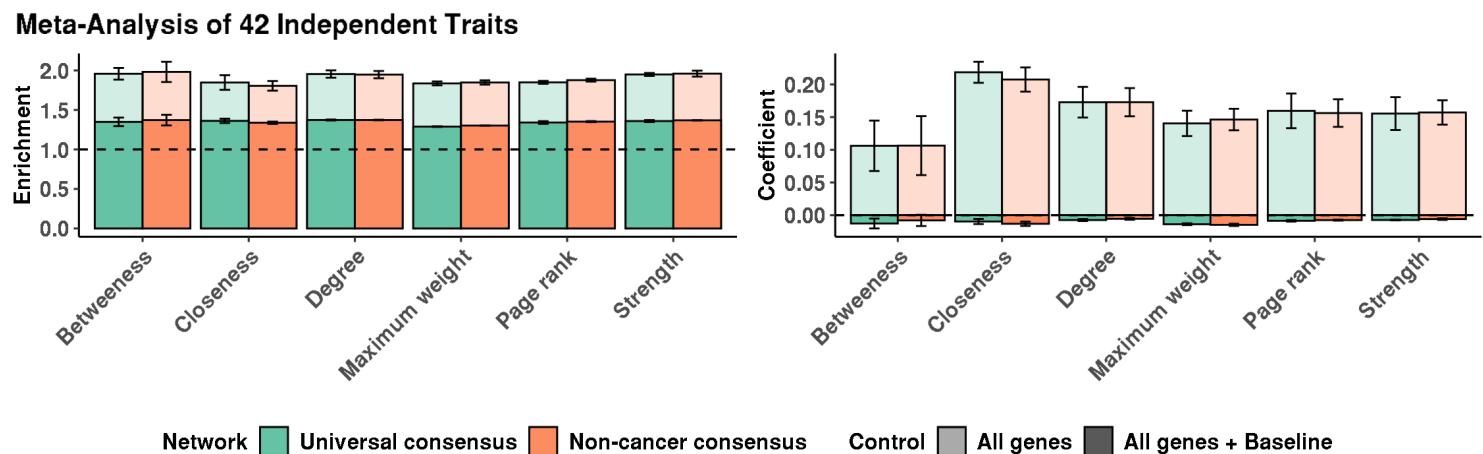
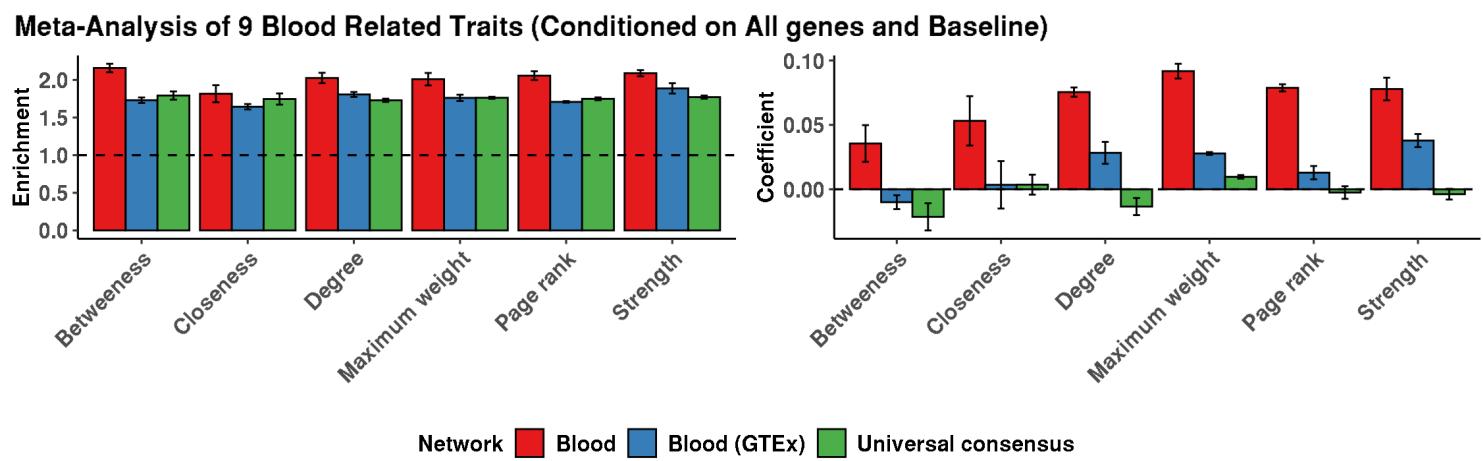


Figure 4

A



B



C

