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Summary 

Line attractors are emergent population dynamics hypothesized to encode continuous 

variables such as head direction and internal states. In mammals, direct evidence of 

neural implementation of a line attractor has been hindered by the challenge of targeting 

perturbations to specific neurons within contributing ensembles. Estrogen receptor type 

1 (Esr1)-expressing neurons in the ventrolateral subdivision of the ventromedial 

hypothalamus (VMHvl) show line attractor dynamics in male mice during fighting. We 

hypothesized that these dynamics may encode continuous variation in the intensity of an 

internal aggressive state. Here, we report that these neurons also show line attractor 

dynamics in head-fixed mice observing aggression. We exploit this finding to identify and 

perturb line attractor-contributing neurons using 2-photon calcium imaging and 

holographic optogenetic perturbations. On-manifold perturbations demonstrate that 

integration and persistent activity are intrinsic properties of these neurons which drive the 

system along the line attractor, while transient off-manifold perturbations reveal rapid 

relaxation back into the attractor. Furthermore, stimulation and imaging reveal selective 

functional connectivity among attractor-contributing neurons. Intriguingly, individual 

differences among mice in line attractor stability were correlated with the degree of 

functional connectivity among contributing neurons. Mechanistic modelling indicates that 

dense subnetwork connectivity and slow neurotransmission are required to explain our 

empirical findings. Our work bridges circuit and manifold paradigms, shedding light on the 

intrinsic and operational dynamics of a behaviorally relevant mammalian line attractor. 
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Main 

Introduction 

Neural computations have long been studied from two distinct vantage points. One 

focuses on understanding behaviorally specialized neuron types and their functional 

connectivity1-3, while the other investigates emergent properties of neural networks, such 

as attractors4-6. Attractors of different topologies are theorized to encode a variety of 

continuous variables, ranging from head direction7, location in space8 and internal states9. 

Recent data-driven methodologies have allowed for the discovery of such attractor 

mediated computations directly in neural data9-12. Consequently, attractor dynamics have 

received increasing attention as a major type of neural coding mechanism7,8,13 4,10.  

Despite this progress, establishing that these attractors arise from the intrinsic 

dynamics of the observed network remains a formidable challenge4,8. Unaccounted 

external inputs such as feedforward synaptic input can profoundly influence 

computational dynamics observed at a given site13. Therefore, experimental perturbations 

are pivotal to determine whether observed attractor dynamics are locally computed or 

inherited. This calls for combining large-scale recordings with perturbations of neuronal 

activity in vivo. While this has been accomplished for a point attractor that controls motor 

planning in cortical area ALM14,15, spatial ensembles that regulate short term memory16,17, 

and for a ring attractor in Drosophila18,19, there is no study reporting such perturbations 

for a continuous attractor in any mammalian system. While theoretical work on continuous 

attractors in mammals is well-developed8, the lack of direct, neural perturbation-based 

experimental evidence of such attractor dynamics has hindered progress towards a 
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mechanistic circuit-level understanding of such emergent manifold-level network 

features4. 

VMHvlEsr1 neurons comprise a key node in the hypothalamic-extended amygdala 

social behavior network and have been causally implicated in aggression20,21. Calcium 

imaging of these neurons in freely behaving animals has revealed mixed selectivity, with 

aggression sparsely represented at the single-neuron level22,23. Yet aggressive behavior 

can be accurately decoded from population activity23, raising the question of which 

aspect(s) of this activity contain such information. Application of dynamical system 

modeling has revealed an approximate line attractor in VMHvl that correlates with the 

intensity of agonistic behavior, suggesting a population-level encoding of a continuously 

varying aggressive internal state9. This raises the question of whether the observation of 

a line attractor in a dynamical systems model fit to VMHvlEsr1 neuronal activity reflects 

intrinsic dynamics, or rather passive inheritance of such dynamics from an upstream 

source. 

This question can be addressed, in principle, using all-optical methods to observe 

and perturb line attractor-relevant neural activity4,24-26. A challenge in applying these 

methods during aggression is that current technology requires head-fixed preparations, 

and head-fixed mice cannot fight. To overcome this challenge, we exploited the recent 

observation that VMHvlPR neurons (which overlap Esr1 neurons) mirror inter-individual 

aggression.27 Here we show that VMHvlEsr1 neurons also exhibit line attractor dynamics 

during the passive observation of aggression, and that such neurons are largely 

overlapping with line attractor-contributing neurons in attacking mice. Leveraging this 

mirror paradigm to generate line attractor dynamics in head-fixed subjects, we performed 
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dynamical model-guided, closed-loop perturbations of VMHvlEsr1 activity. This approach 

revealed that the VMHvl line attractor indeed reflects intrinsic neural dynamics in this 

nucleus. Furthermore, it identified a neural implementation rooted in selective functional 

connectivity within attractor-weighted ensembles that is likely mediated by slow 

neurotransmission, ensuring the attractor's stability. Collectively, our findings elucidate, 

for the first time, a circuit-level foundation for a continuous attractor in the mammalian 

brain. 

Results 

Line attractor dynamics during observation of aggression. 

Recent studies have demonstrated that VMHvl contains neurons that are active during 

passive observation of as well as active participation in aggression, and that re-activating 

the former can evoke aggressive behavior27. However, those findings were based on a 

very small number of VMHvlPR neurons, which might comprise a specific subset distinct 

from those contributing to the line attractor (the latter represent ~20-25% of Esr1+ 

neurons9). To assess whether these mirror-like responses can be observed in those Esr1+ 

neurons that contribute to line attractor dynamics, we performed microendoscopic 

imaging28 of VMHvlEsr1 neurons expressing jGCaMP7s in the same freely moving animals 

sequentially during engagement in, and observation of, aggression (Extended Data 1a-

e). Analysis using recurrent switching linear dynamical systems (rSLDS)29 to fit a model 

to each dataset revealed an approximate line attractor under both conditions, exhibiting 

ramping and persistent activity aligned and maintained across both performed and 

observed attack bouts (Extended Data 1g-p). Notably, the integration dimension aligned 

with the line attractor (“x1”) was weighted by a consistent set of neurons under both 
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conditions, suggesting that a highly overlapping set of neurons (70%) contributes to line 

attractor dynamics during watching or engaging in fighting (Extended Data 2a-g). 

While these observed attractor dynamics could be intrinsic, they might also arise 

from unmeasured ramping sensory input or dynamics inherited from another brain region. 

Although behavioral perturbations in prior studies have hinted at the intrinsic nature of 

VMHvl line attractor dynamics9, a rigorous test requires manifold-level perturbations30 31 

targeted to cells identified as contributing to the attractor. Direct on-manifold perturbation 

has previously been performed only in the Drosophila ring attractor system7,18; moreover 

off-manifold perturbations were not performed. In mammals, although a point attractor 

has been perturbed using optogenetic manipulation14,15,24, direct single-cell perturbations 

of neurons contributing  to a continuous attractor in vivo has not been reported. 

To address this, we employed 2-photon (2P) imaging in head-fixed mice 

expressing both jGCaMP7s32 and ChRmine33 (a red-shifted opsin) during aggression 

observation (Figure 1a-c). rSLDS analysis identified an integration dimension with slow 

dynamics (x1) aligned to a line attractor and an orthogonal dimension with faster dynamics 

(x2) (Figure 1d-g). In neural state space, activity entered the attractor following removal 

of the demonstrator mice, decaying according to the system's intrinsic leak rate (Figure 

1h). We used the mapping between neural activity and the underlying state space to 

directly identify and image neurons contributing to each dimension. Neurons contributing 

to the integration dimension displayed more persistence than those aligned with the faster 

dimension (Figure 1i-m). Thus, a line attractor can be recapitulated in head-fixed mice 

observing aggression, opening the way to 2-photon-based perturbation experiments. 
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Holographic activation reveals the intrinsic nature of VMHvl line attractor dynamics  

Next, to determine whether VMHvlEsr1 line attractor dynamics are intrinsic, we performed 

holographic activation of a subset of neurons contributing to the integration dimension 

(x1). These neurons were identified in real-time using rSLDS fitting of data recorded during 

observation of aggression, followed by reactivation of those neurons (in a manual closed-

loop) after removing the demonstrator mice. Approximately 25% of integration-dimension 

neurons in the observation field were reactivated during each trial (5 cells/trial). Repeated 

pulses of optogenetic stimulation (2 sec, 20 Hz, 5 mW/mm2) were delivered with a 20s 

inter-stimulus interval (ISI) (Figure 2a, e).  

Under these conditions, activity along the x1 (but not the x2) dimension is expected 

to integrate, based on the time constants of these dimensions extracted from the fit rSLDS 

model (Figure 1e). Consistent with this expectation, optogenetic re-activation of x1 

neurons yielded robust integration along the x1 dimension, as evidenced by progressively 

increasing activity during the ISI following each consecutive pulse (Figure 2b-c; n=8 

mice). Activated x1 neurons exhibited activity levels comparable to their response during 

observation of aggression (Extended Data 3a-c). Similar results were obtained using an 

8s ISI (Figure 2d). Providing the same input to the fit rSLDS model also resulted in 

integration along the x1 dimension similar to that observed in the data (Figure 2f). 

Importantly, x1 stimulation did not evoke discernable activity in the x2 dimension, 

suggesting a lack of functional interaction between these dimensions at a population level 

(Extended Data 3d-f and see below).  

To visualize the effect of re-activation of x1 neurons in neural state space, we 

projected the data into a 2D flow-field based on the first two PCs of the reduced rSLDS 
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space. Activation pulses transiently moved the neural population vector “up” the line 

attractor, followed by relaxation back down the attractor to a point that was higher than 

the initial position of the system (Figure 2h, pulse 1, 2 & 4). To quantify this effect, we 

calculated the Euclidean distance in state space between the initial time point during the 

baseline period (denoted tinitial), to the time point at the end of stimulation or at the end of 

the ISI following each pulse (denoted tstim end and tpost stim respectively) (Figure 2g). This 

revealed that the x1 perturbations resulted in progressive, stable on-manifold movement 

along the attractor with each consecutive stimulation, as measured by the increase in 

both metrics (Figure 2h-j).    

Importantly, as predicted by rSLDS, activation of x2 neurons did not lead to 

integration (Figure 2k, l). Instead, following each pulse we observed stimulus-locked 

transient activity in the x2 dimension followed by a decay back to baseline during the ISI 

period, across stimulation paradigms (Figure 2k-n), with little to no effect on x1 neurons 

(Extended Data 3g-i). In 2D neural state space, we observed that x2 neuron activation 

caused transient off-manifold movements of the population activity vector orthogonal to 

the attractor axis during each pulse (Figure 2q-s). Following each stimulus, the neural 

trajectory relaxed back into the attractor, at the initial location it occupied before the 

stimulus.  The small Euclidean distance between tinitial and tpost stim underscored the 

attractor's stability (Figure 2t). Activation of randomly selected neurons not weighted by 

either dimension did not produce activity along either the x1 or x2 dimension, emphasizing 

the specificity of our on- and off-manifold holographic activation (Extended Data 3j-n). 

Taken together, these findings provide evidence for the intrinsic nature of the VMHvlEsr1 

line attractor. 
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Line attractor-contributing neurons form selective functional ensembles 

Line attractors have traditionally been hypothesized to emerge from recurrent interactions 

within a network (although single neurons can also have the potential to integrate using 

neuromodulator regulated ion channels)34. To determine whether network-level 

interactions contribute to the implementation of the line attractor, we performed single-

cell activation of either individual x1 or x2 neurons combined with imaging of unperturbed 

neurons, to assess functional connectivity within the circuit (Figure 3a). These 

experiments revealed selective functional coupling between x1 neurons, as evidenced by 

an increase in activity during the ISI period in unperturbed x1 neurons following each pulse 

of activation (Figure 3b, d). However, we observed little activity in unperturbed x2 neurons 

upon activation of single x1 neurons (Figure 3c, e), indicating that functional x1 

connectivity is selective.  

In contrast, activation of single x2 neurons revealed a lack of functional coupling 

between x2 neurons (Figure 3g). While there was some increase in activity in unperturbed 

x1 neurons upon activation of single x2 neurons (Figure 3h), that increase was not 

significant, suggesting that x2 neurons might not be coupled with other x1 or x2 neurons 

(Figure 3i, j).   

The functional connectivity we observed could arise either from a population of 

sparsely but strongly inter-connected neurons, or from a population with denser 

connections of intermediate strength35 (Figure 3k, left). To assess this, we calculated the 

distribution of pairwise influences, defined as the average evoked activity in each 

unperturbed integration neuron post stimulus. To estimate an upper bound on the amount 

of influence within the network, we considered the percentage of integration pairs that 
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had influence scores higher than the maximum influence of x1 onto x2 neurons (Figure 

3k, right). This analysis revealed a densely connected integration subnetwork with a 

connection density of about 36% (Figure 3k, right). These data suggest that VMHvlEsr1 

neurons that contribute to the line attractor form functional ensembles, confirming theory-

based predictions34.  

We next used computational approaches to investigate the nature of the observed 

functional connectivity within x1 ensembles. Such connectivity could reflect different types 

of synapses: they could be fast and glutamatergic, as typically assumed for most attractor 

networks34; or they could be slow neuromodulator-based connections that use GPCR-

mediated second messenger pathways to sustain long time-scale changes in synaptic 

conductance. To investigate systematically the density and synaptic kinetics of networks 

capable of generating line attractors with the observed integration-dimension (x1) network 

time constant, we turned to mechanistic modelling using an excitatory integrate and fire 

network36 (Figure 3l). Because VMHvl is exclusively glutamatergic37, we used excitatory 

networks and analytically calculated the network time constant using an eigen-

decomposition of the connectivity matrix34 (Extended Data 4a). By varying the synaptic 

conductance time constant (τ𝑠𝑠) and the density of integration subnetwork connectivity (σ), 

we found that only artificial networks based on relatively sparse connectivity (~8-12%) 

and slow synaptic time constants (20s) could yield network time constants (τ𝑛𝑛) in the 

experimentally observed range (~50-200s; Figure 3m, o; red shading). In contrast, 

networks with fast glutamatergic connectivity failed to do so over the same range of 

connection densities (Figure 3n, p).  
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In these purely excitatory network models, the density of connections that yielded 

network time constants in the observed range was much lower than the experimentally 

measured value (36%).  To match more accurately the empirically observed connection 

density, we incorporated excitation-recruited fast-feedback inhibition into our integrate-

and-fire network36; VMHvl is known to receive dense GABAergic innervation from 

surrounding areas38. The addition of global strong feedback inhibition allowed networks 

to match the observed connection density (36%), but importantly, maintained the slow 

nature of the functional connectivity (20s; Figure 3q, r). Indeed, networks simulated with 

a long τ𝑠𝑠 (20s) and dense σ (36%) could integrate digital optogenetic stimulation in a 

manner similar to that observed experimentally (Figure 3s-t; cf. 3a). In contrast, purely 

glutamatergic networks (τ𝑠𝑠=100 msec) were unable to integrate at the observed 

timescales (Figure 3u-v). Together, these results suggest an implementation of the 

VMHvlEsr1 line attractor that combines slow neurotransmission and dense subnetwork 

interconnectivity within an attractor creating ensemble. 

Strength of functional connectivity correlates with attractor stability across mice. 

The stability of the line attractor in VMHvl during aggression has previously been 

positively correlated with aggressiveness across individual mice9. We therefore 

investigated whether individual mouse differences in the stability of the line attractor might 

be correlated with the strength of functional connectivity within the x1 ensemble (Figure 

4a). To do so, we compared the x1 time constants from rSLDS models fit to imaging data 

recorded during attack observation from each mouse (a measure of attractor stability) to 

different quantitative metrics of functional connectivity strength (such as average z-scored 

activity or area under the curve), measured by optogenetic stimulation of single x1 or x2 
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neurons and imaging of unperturbed cells in the same animals following removal of the 

demonstrator intruder mice (Figure 4b, c).  

Remarkably, there was a strong correlation across mice between the time constant 

of the line attractor measured during the observation of aggression, and the strength of 

functional connectivity among integration-dimension (x1) neurons measured by post-

observation optogenetic stimulation (Figure 4d). The strength of this correlation was 

higher after the third (r2=0.87) than the first (r2=0.59) stimulus, suggesting that individual 

differences in integration dynamics become more apparent once the system has already 

integrated several inputs (Figure 4f). Importantly, this correlation was specific to functional 

connectivity within the integration subnetwork and did not hold when rSLDS time 

constants were compared with the influence strength of stimulated x1 neurons on x2 cells 

(Figure 4e, g). Thus, individual differences among mice in the stability of the line attractor 

during the observation of aggression are correlated with differences in the functional 

connection strength among attractor-contributing neurons, as measured post-observation 

by optogenetic stimulation and imaging of the same cells in the same animals. 

Discussion 

Using model-guided closed-loop all-optical experiments, we have directly demonstrated 

line attractor dynamics in a mammalian system (Figure 4h, i). Attractors are intrinsic 

properties of neural networks that emerge from network interactions. To distinguish such 

intrinsic properties from the inheritance of attractor-like dynamics from upstream inputs, 

specific neural perturbations are essential. Perturbations using bulk optogenetics and 

electrophysiological recording have been pivotal in demonstrating point attractor 

dynamics encoding short term memory in the mammalian brain14. While such 
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experiments can illuminate important features of network stability, our experiments used 

both on- and off-manifold 2-photon optogenetic perturbations at single-cell resolution, in 

combination with calcium imaging, to definitively test the intrinsic nature of a continuous 

line attractor that was initially discovered by rSLDS modeling. While on-manifold 

perturbations were used previously to experimentally move neural activity along a ring 

attractor encoding head-direction in Drosophila, off-manifold perturbations demonstrating 

the key property of “attractiveness” were not performed in that case18,19. To our 

knowledge, therefore the present results constitute the first in vivo on- and off-manifold 

perturbation experiments demonstrating the intrinsic properties of a continuous attractor 

in any system. 

Our data and modeling also provided insight into the implementation of the line 

attractor. We found evidence of dense, specific subnetwork connectivity coupled with 

slow neurotransmission. Although our models confirm the importance of rapid feedback 

inhibition, as indicated in invertebrate ring attractor studies18, they diverge markedly from 

conventional continuous attractor models4,34 by highlighting the role of slow 

neurotransmission over rapid excitation. Numerous theoretical studies have posited that 

continuous attractors relying on fast recurrent connectivity are not robust due to the 

necessity for precise tuning of synaptic weights to sustain stable attractor dynamics34,39. 

The slow neurotransmission predicted by our model could be implemented by GPCR-

mediated signaling triggered by biogenic amines or neuropeptides40. Consistent with this 

prediction, we have recently found that VMHvl line attractor dynamics are dependent on 

signaling through oxytocin and/or vasopressin neuropeptide receptors expressed in Esr1+ 

neurons41. These findings suggest an evolutionary mechanism that favors the robustness 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.21.595051doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

offered by slow neurotransmission in the establishment of a line attractor encoding a 

persistent internal motive state. Whether line attractors in other systems that mediate 

cognitive functions on shorter time-scales11,42 indeed rely primarily on fast glutamatergic 

recurrent connectivity remains to be determined. 

Lastly, our observations indicate a pronounced correlation between individual 

differences in the functional strength of integration subnetwork connectivity, as revealed 

by optogenetic stimulation and imaging, and differences in the measured stability of the 

line attractor evoked by a naturalistic stimulus. This suggests that attributes of the 

attractor, such as its connectivity density or strength, may be modifiable (either by 

genetics and/or experience43), and may underlie individual differences in 

aggressiveness9. Deciphering the underlying mechanisms that grant this attractor its 

apparent flexibility represents a promising avenue for future research. 
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Figure Legends 
Figure 1 | Attractor dynamics in head-fixed mice observing aggression. 

a. Experimental paradigm for 2-photon head-fixed mice observing aggression.  920nm 

2-photon laser was used to monitor activity of VMHvlEsr1 neurons in head-fixed mice 

observing aggression. A dynamical model fit to neural data guided holographic 

activation of specific neurons expressing ChRmine using a 1035nm 2-photon laser. 

b. Example field of view in 2-photon setup through a GRIN lens (top).  Fluorescence 

image of a coronal slice showing expression of jGCaMP7s and ChRmine (bottom). 

Scale bars – 100µm. 

c. Neural and behavioral raster from example mouse observing aggression in the 2-

photon setup. Arrows indicate insertion of submissive BALB/c intruder to the 

observation chamber for interaction with an aggressive Swiss Webster mouse (SW). 

Right: Example neurons from left. 

d. Neural activity projected onto rSLDS dimensions obtained from models fit to 2-photon 

imaging data in one example mouse. 

e. rSLDS time constants across mice (n = 9 mice, ****p<0.0001). 

f. Line attractor score (see methods) across mice (n = 9 mice).  

g. Behavior triggered average of x1 and x2 dimensions, aligned to introduction of BALB/c 

into resident’s cage (n = 9 mice). Dark line – mean activity, shaded surrounding – sem.  

h. Flow fields from 2P imaging data during observation of aggression from one example 

mouse. Red arrows indicate the direction flow of time. 

i. Top: Identification of neurons contributing to x1 dimension from rSLDS model. Weight 

of each neurons shown as absolute value. Bottom: Activity heatmap of five neurons 
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contributing most strongly to x1 dimension. Right: Neural traces of the same neurons 

and an indication of when the systems enters the line attractor 

j. Same as i but for x2 dimension. 

k. Dynamic velocity landscape from 2P imaging data during observation of aggression 

from one example mouse. Blue color reflects stable area in the landscape, red – 

unstable. Black line is the trajectory of the neuronal activity. 

l. Cumulative distributions of autocorrelation half width of neurons contributing to x1 

(green) and x2 (red) dimensions (n = 9 mice, 45 neurons each for x1 and x2 

distributions). 

m. Mean autocorrelation half width across mice for neurons contributing to x1 and x2 

dimensions (n = 9 mice, **p<0.01). 

Figure 2 | Holographic perturbations reveal line attractor dynamics in the VMHvl. 

a. Field of view of five x1 neurons selected for 2-photon activation in example mouse 1. 

b. Neural activity projected onto x1 dimension after grouped optogenetic activation of five 

x1 neurons in example mouse 1 (top). Neural activity projected onto x2 dimension from 

activation of the same x1 neurons (bottom). Blue vertical lines indicate the time of 

holographic activation of x1 neurons. Dashed blue lines indicate the time of 

holographic activation on non-activated x2 neurons.  

c. Left: Average activity projected onto x1 dimension from activation of x1 neurons across 

mice using 20s inter stimulus interval (n = 8 mice). Right: Quantification of average z-

scored activity of projected x1 dimension during baseline or various inter stimulus 

intervals (n = 8 mice, **p<0.01). 

d. Same as “c” but for 8s inter stimulus interval. 

e. Stimulation paradigm for grouped activation of x1 neurons using 20s ISI.  

f. Data and model prediction of applying stimulation paradigm in 2e to rSLDS model 

trained on observation of aggression.  

g. Cartoon showing quantification of perturbation along line attractor in neural state 

space. The Euclidian distance between time points tinitial (baseline before stimulation) 
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and tstim end (end of stimulation) as well as between tinitial and tpost stim (end of ISI of 

stimulation) are calculated. 

h. Flow fields from example mouse 1, showing perturbations along line attractor upon 

activation of x1 neurons. 

i. Euclidian distance between time points tinitial and tstim end across mice (*p<0.05, 

**p<0.01). 

j. Same as 2i but for time points tinitial and tpost stim across mice (*p<0.05, **p<0.01). 

k. Field of view of five x2 neurons selected for activation in example mouse 1. 

l. Neural activity projected onto x1 dimension after grouped optogenetic activation of x2 

neurons in example mouse 1 (top). Neural activity projected onto x2 dimension from 

activation of same x1 neurons (bottom). 

m. Left: Average of activation of x2 neurons across mice using 20s inter stimulus interval 

(n = 8 mice). Right: Quantification of average z-scored activity during baseline or inter 

stimulus intervals (n.s, n = 8 mice). 

n. Left: Average activity projected onto x2 dimension from activation of x2 neurons across 

mice using 8s inter stimulus interval (n = 7 mice). Right: Quantification of average z-

scored activity of projected x2 dimension during baseline or inter stimulus intervals 

(n.s, n = 7 mice). 

o. Stimulation paradigm for grouped activation of x2 neurons using 20s ISI.  

p. Data and model prediction of applying stimulation paradigm in 2o to rSLDS model 

trained on observing aggression.  

q. Same as 2g but for an example perturbation orthogonal to a line attractor. 

r. Flow fields from example mouse 1, showing perturbations orthogonal to line attractor 

upon activation of x2 neurons. 

s. Same as 2i but for x2 activation. 

t. Same as 2j but for x2 activation. 

 
Figure 3 | Neural implementation of a line attractor guided by functional 
connectivity. 
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a. Left: Paradigm for examining activity in unperturbed x1 and x2 neurons upon activation 

of single x1 neurons. Right: Average z-score activity of perturbed x1 neurons (25 single 

neurons from n = 8 mice). 

b. Average z-score activity of unperturbed x1 neurons upon perturbation of single x1 

neurons (n = 8 mice). 

c. Average z-score activity of unperturbed x2 neurons upon perturbation of single x1 

neurons (n = 8 mice). 

d. Quantification of activity in unperturbed x1 neurons upon perturbation of single x1 

neurons (**p<0.01, n = 8 mice). 

e. Quantification of activity in unperturbed x1 neurons upon perturbation of single x2 

neurons (n.s, n = 8 mice). 

f. Left: Paradigm for examining activity in unperturbed x1 and x2 neurons upon activation 

of single x2 neurons. Right: Average z-score activity of perturbed x2 neurons (18 single 

neurons from n = 7 mice). 

g. Average z-score activity of unperturbed x2 neurons upon perturbation of single x2 

neurons (n = 7 mice). 

h. Average z-score activity of unperturbed x1 neurons upon perturbation of single x2 

neurons (n = 7 mice). 

i. Quantification of activity in unperturbed x1 neurons upon perturbation of single x2 

neurons (n.s, n = 7 mice). 

j. Quantification of activity in unperturbed x2 neurons upon perturbation of single x2 

neurons (n.s, n = 7 mice). 

k. Left: Cartoon illustrating either strong but sparse connectivity among x1 neurons (1), 

or dense and interconnectivity within subnetwork (2). Right: Empirical distribution of 

pairwise functional connectivity between x1 neurons (green) and from x1 to x2 neurons 

(red) (n = 99 pairs, n = 7 mice).  
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l. Cartoon illustrating different elements of an excitatory network that can determine 

network level persistent activity including synaptic conductance time constant (ts) and 

density of subnetwork connectivity (σ). 

m. Model simulation result showing network time constant (tn) by varying σ in range 0-

20% density values and ts in range 0-20s. The blue portions of the image refer to 

configurations that result in unstable networks with runaway excitation. 

n. Zoomed in version of 3m  but for glutamatergic networks with synaptic conductance 

time constant (ts) in range 0.01-0.5s. 

o. Plot of network time constant (tn) against density of integration subnetwork for slow 

neurotransmitter networks (ts:10,15,20s). The network time constant tn varies 

monotonically with density for large values of ts. 

p. Same as 3o but for glutamatergic networks (ts:0.01,0.1,0.2,0.3s).  

q. Cartoon showing modified VMHvl circuit with fast feedback inhibition incorporated. 

r. Left: Plot of network time constant (tn) against density of integration subnetwork for a 

slow neurotransmitter network with ts = 20s, for different values of strength of inhibition 

(inhibitory gain, ginh: 1.25,5,10). Right: Same as left but for a glutamatergic network 

with ts= 0.1s. 

s. Model simulation of a slow neurotransmitter network with fast feedback inhibition 

(ts:20s, 36% density of subnetwork connectivity). Top: Input (20s ISI) provided to 

model, Bottom: Spiking activity in network. The first 200 neurons (20%) comprise the 

interconnected integration subnetwork. 

t. Ca2+ activity convolved from firing rate (see Methods) of integration subnetwork (top) 

and remaining neurons (bottom). 

u. Same as 3s but for a fast transmitter network (ts:0.1s, 36% density of subnetwork 

connectivity). 

v. Same as 3t but for a fast transmitter network (ts:0.1s, 36% density of subnetwork 

connectivity). 
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Figure 4 | Strength of functional connectivity infers line attractor’s decay rate. 

a. Example neural activity projected onto x1 (integration) dimension of three mice that 

display varying rates of decay following removal of a Balb/c intruder from cage while 

observing aggression (i.e movement down the line attractor). 

b. Z-score activity on unperturbed x1 neurons upon activation of single x1 neurons in the 

same mice from 4a. 

c. Illustration of different quantification approaches to the change in activity of 

unperturbed x1 neurons from 4b as either mean z-score activity following first stimulus 

or area under the curve (auc). 

d. Correlation between rSLDS time constant obtained from observation of aggression 

and average z-score across unperturbed x1 neurons across 8 mice measured using 

either average z-score (left) or AUC (right) post first stimulus (r2: 0.59, *p<0.05). 

e. Correlation between rSLDS time constant obtained from observation of aggression 

and average z-score across unperturbed x2 neurons across 8 mice measured using 

either average z-score (left) or AUC (right) post first stimulus (r2: 0.06, n.s). 

f. Same as 4d but quantified post third stimulus. (r2: 0.87, ***p<0.001) 

g. Same as 4e but quantified post third stimulus. (r2: 0.0, n.s) 

h. Cartoon depicting summary of results illustrating intrinsic dynamics of hypothalamic 

line attractor. 

i. Cartoon depicting implementation of a hypothalamic line attractor encoding a 

behavioral internal state. 

 

Extended Data 1 | Shared line attractor dynamics in engaging and observing 
aggression. 

a. Implantation of miniscope, field of view (top) and fluorescence image showing 

histology (bottom) with jGCaMP7s expression in VMHvl. 

b. Experimental paradigm to record VMHvlEsr1 activity in mice engaging in aggression. 

c. Left: neural & behavioral raster of example mouse 1 when engaging in aggression. 

Right: example neurons. 
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d. Experimental paradigm to record VMHvlEsr1 activity in same mice in Ex. Data 1c during 

observation of aggression. 

e. Left: neural & behavioral raster of example mouse 1 during observation of aggression. 

Right: example neurons. 

f. Overview of rSLDS analysis.  

g. Left: rSLDS time constants in example mouse 1. Right: Neural activity projected onto 

two dimensions (x1 & x2) of dynamical system. 

h. Behavior triggered average of x1 and x2 dimensions, aligned to introduction of male 

intruder (n = 5 mice) 

i. Behavior triggered average of x1 dimensions, aligned to first attack onset (n = 5 mice). 

j. Left: rSLDS time constants in example mouse 1 during observation of aggression. 

Right: Neural activity projected onto two dimensions (x1 & x2) of dynamical system. 

k. Behavior triggered average of x1 and x2 dimensions from observation of aggression, 

aligned to introduction of Balb-c into resident’s cage (n = 5 mice). 

l. Behavior triggered average of x1 dimensions from observation of aggression, aligned 

to first bout of watching attack (n = 5 mice). 

m. rSLDS time constants across mice engaging in aggression (n = 5 mice).  

n. Line attractor score across mice engaging in aggression (n = 5 mice). 

o. rSLDS time constants across mice during observation of aggression (n = 5 mice).  

p. Line attractor score across mice during observation of aggression (n = 5 mice). 

Extended Data 2 | Single cell comparison of integration neurons across conditions. 

a. Single cell contribution of x1 dimension (rSLDS weights) from engaging in aggression 

in example mouse. 

b. Z-score activity of weighted neurons from Ex. Data 2a during engaging in aggression 

from same mouse. 
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c.  Z-score activity of weighted neurons from Ex. Data 2a during observation of 

aggression from same mouse. 

d. Single cell contribution of x1 dimension (rSLDS weights) from observation of 

aggression in example mouse. 

e. Z-score activity of weighted neurons from Ex. Data 2d during engaging in aggression 

from same mouse. 

f.  Z-score activity of weighted neurons from Ex. Data 2d during observation of 

aggression from same mouse. 

g. Overlap in neurons contributing to line attractor (x1) & x2 dimension from rSLDS 

performing independently in engaging versus observing aggression. Left: Example 

mouse, Right: Average across 5 mice. 

Extended Data 3 | Interaction between dimensions and activation of random 
neurons 

a. Neural activity of five x1 neurons selected for grouped optogenetic perturbation during 

observation of aggression.  

b. Neural activity of same five x1 neurons in Ex. Data 3a during grouped optogenetic 

activation. 

c. Comparison of peak z-score of x1 neurons selected for grouped optogenetic activation 

during observation of aggression and during optogenetic activation (n = 9 mice).  

d. Paradigm for examining activity in x2 dimension upon grouped holographic activation 

of x1 neurons. 

e. Average z-score activity of neural activity projected onto x2 dimension across mice (n 

= 8 mice). 

f. Quantification of activity in unperturbed x2 dimension upon grouped holographic 

activation of x1 neurons (n.s, n = 8 mice). 

g. Paradigm for examining activity in x1 dimension upon grouped holographic activation 

of x2 neurons. 
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h. Average z-score activity of neural activity projected onto x1 dimension across mice (n 

= 8 mice). 

i. Quantification of activity in unperturbed x1 dimension upon grouped holographic 

activation of x2 neurons (*p<0.05, n = 8 mice). 

j. Effect of grouped holographic activation of randomly selected neurons on activated 

neurons. 

k. Average z-score activity of unperturbed x1 dimension upon activation of random 

neurons (n = 5 mice). 

l. Average z-score activity of unperturbed x2 dimension upon activation of random 

neurons (n = 5 mice). 

m. Left: Quantification of activity in unperturbed x1 dimension upon grouped holographic 

activation of random neurons (n.s, n = 5 mice). Right: Comparison of grouped 

activation of x1 neurons (green, reproduced from Fig. 2c, right) and grouped activation 

of random neurons on activity of x1 dimension (black, reproduced from Ex. Data 3m, 

left).  

n. Quantification of activity in unperturbed x2 dimension upon grouped holographic 

activation of random neurons (n.s, n = 5 mice). 

Extended Data 4 | Deriving network time constant for model simulations 

a. Analytical derivation of network time constant from connectivity matrix of purely 

excitatory recurrent neural network.  
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Methods 

Mice 

All experimental procedures involving the use of live mice, or their tissues were carried 

out in accordance with NIH guidelines and were approved by the Institute Animal Care 

and Use Committee and the Institute Biosafety Committee at the California Institute of 

Technology (Caltech). All C57BL/6N (Bl/6N) mice used in this study, including wild-type 

and transgenic mice, were bred at Caltech. Swiss Webster (SW) male Residents and 

BALB/c male intruder mice were bred at Caltech. Experimental Bl/6N mice and resident 

SW mice were used at the age of 8–20 weeks. Intruder BALB/c mice were used at the 

age of 6–12 weeks and were maintained with three to five cage mates to reduce their 

aggression. Esr1Cre/+ knock-in mice (Jackson Laboratory, stock no. 017911) were back-

crossed into the Bl/6N background (>N10) and bred at Caltech. Heterozygous Esr1Cre/+ 

mice were used for cell-specific targeting experiments and were genotyped by PCR 

analysis using genomic DNA from ear tissue. All mice were housed in ventilated micro-

isolator cages in a temperature-controlled environment (median temperature 23 °C, 

humidity 60%), under a reversed 11/13-h dark/light cycle, with ad libitum access to food 

and water. Mouse cages were changed weekly. 

Viruses 

The following adeno-associated viruses (AAVs), along with the supplier, injection titers 

(in viral genome copies ml–1 (vg ml–1) and injection volumes (in nanoliters), were used 

in this study: AAV1-syn-FLEX-jGCaMP7s-WPRE (Addgene, no. 104492, roughly 2 × 1012 

vg ml–1, 200 nl per injection), AAVdj- Ef1a-DIO-ChRmine-mScarlet-Kv2.1-WPRE 

(Janelia Vector Core, around 2 × 1012 vg ml–1, 200 nl per injection).  

Histology 

Following completion of 2-photon\miniscope experiments, histological verification of virus 

expression and implant placement were performed on all mice. Mice lacking virus 

expression or correct implant placement were excluded from the analysis. Mice were 

perfused transcardially with 0.9% saline at room temperature, followed by 4% 

paraformaldehyde (PFA) in 1× PBS. Brains were extracted and post-fixed in 4% PFA 
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overnight at 4 °C, followed by 24 h in 30% sucrose/PBS at 4 °C. Brains were embedded 

in OCT mounting medium, frozen on dry ice and stored at −80 °C for subsequent 

sectioning. Brains were sectioned in 80-μm thickness on a cryostat (Leica Biosystems). 

Sections were washed with 1× PBS and mounted on Superfrost slides, then incubated 

for 30 min at room temperature in DAPI/PBS (0.5 μg/ml) for counterstaining, washed 

again and coverslipped. Sections were imaged with epifluorescent microscope (Olympus 

VS120). 

Stereotaxic Surgeries 

Surgeries were performed on sexually experienced adult male Esr1Cre/+mice aged 6–

12 weeks. Virus injection and implantation were performed as described previously22,44. 

Briefly, animals were anaesthetized with isoflurane (5%for induction and 1.5% for 

maintenance) and placed on a stereotaxic frame (David Kopf Instruments). Virus was 

injected into the target area using a pulled-glass capillary (World Precision Instruments) 

and a pressure injector (Micro4 controller, World Precision Instruments), at a flow rate of 

50 nl min-1. The glass capillary was left in place for 5 min following injection before 

withdrawal. Stereotaxic injection coordinates were based on the Paxinos and Franklin 

atlas45. Virus injection: VMHvl, AP: −1.5, ML: ±0.75, DV: −5.75. For 2-photon experiments 

GRIN lenses (0.6 × 7.3 mm, Inscopix) were slowly lowered into the brain and fixed to the 

skull with dental cement (Metabond, Parkell). Coordinates for GRIN lens implantation: 

VMHvl: AP: −1.5, ML: −0.75, DV: −5.55). A permanent head-bar was attached to the skull 

with Secure Resin cement (parkell). For micro-endoscope experiments an additional 

baseplate was attached to the skull (Inscopix). 

Housing conditions for behavioral experiments 

All male Bl/6N mice used in this study were socially and sexually experienced. Mice aged 

8–12 weeks were initially co-housed with a female Bl/6N female mouse for 1 day and 

were then screened for attack behaviors. Mice that showed attack towards males during 

a 10 min resident intruder assay were selected for surgery and subsequent behavior 

experiments. From this point forward, these male mice were always co-housed with a 

female. 
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Behavior annotations 

Behavior videos were manually annotated using a custom MATLAB-based behavior 

annotation interface46,47. A 'baseline' period of 5 min when the animal was alone in its 

home cage was recorded at the start of every recording session. Two behaviors during 

the resident intruder assays were annotated: sniff (face, body, genital-directed sniffing) 

towards male intruders, and attack (bite, lunge).  

Behavioral assays 

An observation arena was built from a transparent acrylic (18× 12.5× 18 cm, LxWxH), 

and a perforated part was put in front of the mice observing aggression. Perforations were 

1.27 cm diameter and spread evenly throughout the bottom third of the panel. Before 

initiation of the assay, the observation arena was scattered with soiled bedding from the 

cage of the aggressive SW demonstrator. For observation of aggression in freely 

behaving animals (miniscope experiments) an observer was first habituates for 15 

minutes. Then, a singly housed SW male demonstrator was introduced into the 

observation arena, followed 1 min later with the insertion of a socially housed stimulus 

male (BALB/c) in the same compartment. The observation of aggressive encounters 

persisted for ~1 min, then after 2 minutes a different intruder was introduced for another 

minute. Observation assays were conducted under white light illumination. For 

experiments in engaging aggression, the resident mouse was first habituated 15 minutes 

then a BALB/c intruder mouse was introduced twice for 1-2 minutes.  For the experiments 

comparing neural activity of mice observing aggression and mice engaging aggression, 

we randomly changed the order of sessions.  For mice observing aggression in the 2P 

setup similar the approach was similar except that the observer mouse was head-fixed 

and on a treadmill instead of freely behaving in his home cage. 

Micro-endoscopic imaging 

On the day of imaging, mice were habituated for at least 15 min after installation of the 

miniscope in their home cage before the start of the behavior tests. Imaging data were 

acquired at 30 Hz with 2× spatial downsampling; light-emitting diode power (0.1–0.5) and 

gain (1–7×) were adjusted depending on the brightness of GCaMP expression as 
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determined by the image histogram according to the user manual. A transistor–transistor 

logic (TTL) pulse from the Sync port of the data acquisition box (DAQ, Inscopix) was used 

for synchronous triggering of StreamPix7 (Norpix) for video recording.  

2-photon imaging and holographic optogenetics 

Two to three weeks after surgery mice were habituated to the experimenter’s hand by 

handling 15 minutes a day for three consecutive days. Once animals where habituated to 

the experimenter’s hand, they were manually scooped and gently placed on the treadmill. 

Mice were head-fixation 3 consecutive days for habituation. Head-fixation was achieved 

by securing the head bar into a metal clamp attached to a custom head-stage. During 

habituation, mice were placed underneath the objective for 15 minutes and given access 

to random presentations of chocolate milk. Following habituation, combined two-photon 

imaging and behavior sessions were conducted. jGCaMP7s imaging was acquired via an 

Ultima 2P Plus and the Prairie View Software (Bruker Fluorescence Microscopy, USA). 

Individual frames were acquired at 10Hz using a galvo-resonant scanner with a resolution 

of 1024px x 1024px. We used a long working distance 20x air objective designed for 

infrared wavelengths (Olympus, LCPLN20XIR, 0.45 numerical aperture (NA), 8.3mm 

working distance) combined with femtosecond-pulsed laser beam (Chameleon 

Discovery, Coherent). GCaMP was excited using a 920nm wavelength. For targeted 

photostimulation, the same microscope and acquisition system (Bruker) was used with a 

second laser path consisting of a 1035nm high power femtosecond pulsed laser (Monaco 

1035-40-40, Coherent), spatial light modulator (512×512-pixel density) to generate multi-

point stimulation montages (NeuraLight 3D, Bruker).. Neurons were selected for targeted 

photostimulation based on their weights from the rSLDS model. During the 

photostimulation sessiona 128-frame average image was generated in order to clearly 

highlight all neurons. Using the spiral stimulation targets (10µm diameter) were manually 

placed on top of GCaMP expressing neurons. Laser power was adjusted to be 1.5-5.5mW 

of stimulation per target. We used prairie software elicit holographic photostimulation 

(10hz, 2s, 10ms pulse width). Photostimulations were done between frames to avoid laser 

artefacts. Importantly, to reduce cross activation of the ChRmine from the 920nm laser 

we kept laser power for imaging to be less than 30mW. 
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To extract regions of interest, data from mice observing aggression was uploaded to 

ImageJ. Then, videos were motion corrected using the moco plugin48. Motion corrected 

videos were averaged, and additional contrast and brightness adjustments were made to 

clearly highlight all neurons in the field of view. Then cells were manually extracted and 

an rSLDS model was used to identify x1 and x2 dimension neurons. Neurons were then 

identified on the field of view using the prairie view software and were targeted for photo-

stimulation. While rSLDS models was running (15-20 minutes, see below), control 

experiments were conducted. 

Micro-endoscopic data extraction 

Preprocessing 

Miniscope data were acquired using the Inscopix Data Acquisition Software as 

2× downsampled .isxd files. Preprocessing and motion correction were performed using 

Inscopix Data Processing Software. Briefly, raw imaging data were cropped, 

2× downsampled, median filtered and motion corrected. A spatial band-pass filter was 

then applied to remove out-of-focus background. Filtered imaging data were temporally 

downsampled to 10 Hz and exported as a .tiff image stack. 

Calcium data extraction 

After preprocessing, calcium traces were extracted and deconvolved using the CNMF-

E49 large data pipeline with the following parameters: patch_dims = [4], gSig = 3, 

gSiz = 13, ring_radius = 17, min_corr = 0.7, min_pnr = 8. The spatial and temporal 

components of every extracted unit were carefully inspected manually (SNR, PNR, size, 

motion artefacts, decay kinetics and so on) and outliers (obvious deviations from the 

normal distribution) were discarded. 

Dynamical system models of neural data 

Recurrent-switching linear dynamical system (rSLDS) models16,29 are fit to neural data as 

previously described15. Briefly, rSLDS is a generative state-space model that 

decomposes non-linear time series data into a set of discrete states, each with simple 

linear dynamics. The model describes three sets of variables: a set of discrete states (z), 
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a set of latent factors (x) that captures the low-dimensional nature of neural activity, and 

the activity of recorded neurons (y). While the model can also allow for the incorporation 

of external inputs based on behavior features, such external inputs were not included in 

our first analysis.  

The model is formulated as follows: At each timepoint, there is a discrete state 𝑧𝑧𝑡𝑡 ∈

{1, … ,𝐾𝐾} that depends recurrently on the continuous latent factors (x) as follows: 

 𝑝𝑝(𝑧𝑧𝑡𝑡+1 ∣ 𝑧𝑧𝑡𝑡 = 𝑘𝑘, 𝑥𝑥𝑡𝑡) = softmax{𝑅𝑅𝑘𝑘𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑘𝑘} (1) 

where 𝑅𝑅𝑘𝑘 ∈ ℝ𝐾𝐾×𝐾𝐾 and 𝑟𝑟𝑘𝑘 ∈ ℝ𝐾𝐾 parameterizes a map from the previous discrete state and 

continuous state to a distribution over the next discrete states using a softmax link 

function. The discrete state 𝑧𝑧𝑡𝑡 determines the linear dynamical system used to generate 

the latent factors at any time t: 

 

 𝑥𝑥𝑡𝑡 =   𝐴𝐴𝑧𝑧𝑡𝑡𝑥𝑥𝑡𝑡−1 + 𝑏𝑏𝑧𝑧𝑡𝑡 + 𝜖𝜖𝑡𝑡 (2) 

where 𝐴𝐴𝑘𝑘 ∈ ℝ𝑑𝑑×𝑑𝑑 is a dynamics matrix and 𝑏𝑏𝑘𝑘 ∈ ℝ𝐷𝐷 is a bias vector, where 𝐷𝐷 is the 

dimensionality of the latent space and 𝜖𝜖𝑡𝑡 ~ 𝑁𝑁(0,𝑄𝑄𝑧𝑧𝑡𝑡) is a Gaussian-distributed noise (aka 

innovation) term.  

Lastly, we can recover the activity of recorded neurons by modelling activity as a linear 

noisy Gaussian observation 𝑦𝑦𝑡𝑡 ∈ ℝ𝑁𝑁 where N is the number of recorded neurons: 

 𝑦𝑦𝑡𝑡 =   𝐶𝐶𝑥𝑥𝑡𝑡  + 𝑑𝑑 + 𝛿𝛿𝑡𝑡 (3) 

For 𝐶𝐶 ∈ ℝ𝑁𝑁×𝐷𝐷 and 𝛿𝛿𝑡𝑡 ~ 𝑁𝑁(0, 𝑆𝑆), a Gaussian noise term. Overall, the system parameters 

that rSLDS needs to learn consists of the state transition dynamics, library of linear 

dynamical system matrices and neuron-specific emission parameters, which we write as: 

𝜃𝜃 = {{𝐴𝐴𝑘𝑘𝑏𝑏𝑘𝑘,𝑄𝑄𝑘𝑘,𝑅𝑅𝑘𝑘 , 𝑟𝑟𝑘𝑘}𝑘𝑘=1𝐾𝐾 ,  𝐶𝐶,𝑑𝑑, 𝑆𝑆} 

We evaluate model performance using both the evidence lower bound (ELBO) and the 

forward simulation accuracy (FSA) (Fig. 3a) described in Nair et al., 202315 as well as by 

calculating the variance explained by the model on data. 
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We employed two-dimensional models, selecting the optimal number of states through 5-

fold cross-validation. To ascertain which neurons contributed to each of the two model 

dimensions (x1 and x2), we initially confirmed the orthogonality of these dimensions by 

computing the subspace angle between them, (88.1 ± 0. 87º, n = 9 mice). Given this near 

orthogonality, we then utilized the columns of the emission matrix C to identify neurons 

that contributed to the two separate dimensions of the model. 

Estimation of time constants 

We estimated the time constant of each dimension of linear dynamical systems using 

eigenvalues 𝜆𝜆𝑎𝑎 of the dynamics matrix of that system, derived previously as50: 

𝜏𝜏𝑎𝑎 =  �
1

log(|𝜆𝜆𝑎𝑎|)
� 

Calculation of line attractor score 

To provide a quantitative measure of the presence of line attractor dynamics, we devised 

a line attractor score as defined in Nair et al., 2023 as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  log2
𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛−1

 

where 𝑡𝑡𝑛𝑛 is the largest time constant of the dynamics matrix of a dynamical system and 

𝑡𝑡𝑛𝑛−1 is the second largest time constant. 

Calculation of auto-correlation half-width 

We computed autocorrelation halfwidths by calculating the autocorrelation function for 

each neuron timeseries data (yt) for a set of lags as described previously12.  Briefly, for a 

time series (yt), the autocorrelation for lag k is: 

𝑟𝑟𝑘𝑘 =
𝑐𝑐𝑘𝑘
𝑐𝑐0

 

where 𝑐𝑐𝑘𝑘 is defined as:  

𝑐𝑐𝑘𝑘 =  
1
𝑇𝑇
� (𝑦𝑦𝑡𝑡 − 𝑦𝑦�)(𝑦𝑦𝑡𝑡+𝑘𝑘 − 𝑦𝑦�)
𝑇𝑇−𝑘𝑘 

𝑡𝑡=1
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and 𝑐𝑐0 is the sample variance of the data. 

Mechanistic modelling 

We constructed a model population of N = 1,000 standard current-based leaky integrate-

and-fire neurons as previously performed22,36. We first modelled a purely excitatory 

spiking network in which each neuron has membrane potential 𝑥𝑥𝑖𝑖 characterized by 

dynamics: 

 𝜏𝜏𝑚𝑚
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑥𝑥𝑖𝑖(𝑡𝑡) +  𝑔𝑔∑ 𝑊𝑊𝑝𝑝𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 + 𝑤𝑤𝑖𝑖𝑠𝑠(𝑡𝑡)  

where 𝜏𝜏𝑚𝑚 = 20𝑚𝑚𝑚𝑚  is the membrane time constant, W is the synaptic weight matrix, 𝑠𝑠 is 

an input term representing external inputs and 𝑝𝑝 represents recurrent inputs. To model 

spiking, we set a threshold (θ = 0.1), such that when the membrane potential 𝑥𝑥𝑖𝑖(𝑡𝑡) >  θ, 

𝑥𝑥𝑖𝑖(𝑡𝑡) is set to zero and the instantaneous spiking rate 𝑟𝑟𝑖𝑖(𝑡𝑡) is set to 1.  

Spiking-evoked input was modelled as a synaptic current with dynamics: 

 𝜏𝜏𝑠𝑠
𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑝𝑝𝑖𝑖(𝑡𝑡) + 𝑟𝑟𝑖𝑖(𝑡𝑡),  

where 𝜏𝜏𝑠𝑠 is the synaptic conductance time constant. In excitatory networks, the network 

time constant 𝜏𝜏𝑛𝑛 was derived as 𝜏𝜏𝑠𝑠
|1−𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚|

 , where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the largest eigenvalue of the 

synaptic weight matrix W34.  

We designed the synaptic connectivity matrix to include a subnetwork of 200 neurons 

(20% of the network), designated the integration subnetwork as suggested by empirical 

measurements, with varying densities of random connectivity as highlighted in Fig 3. 

Weights of the overall network were sampled from a uniform distribution:𝑊𝑊𝑖𝑖𝑖𝑖~ 𝑈𝑈(0,1/√𝑁𝑁), 

while weights of the subnetwork were sampled as 𝑊𝑊𝑖𝑖𝑖𝑖~ 𝑈𝑈(0,1/�𝑁𝑁𝑝𝑝), where 𝑁𝑁𝑝𝑝 = 200.  

External input was provided to the network as a smoothened step function consisting of 

four pulses at 20 ISI as provided in vivo. This stimulus drove a random 25% of neurons 

in the network. 

To account for finite size effects and runaway excitation in networks, we also simulated 

models with fast feedback inhibition. This was modelled as recurrent inhibition from a 
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single graded input 𝐼𝐼𝑖𝑖𝑖𝑖ℎ representing an inhibitory population that receives equal input 

from and provides equal input to, all excitatory units. The dynamics of 𝐼𝐼𝑖𝑖𝑖𝑖ℎ  evolves as:  

𝜏𝜏𝐼𝐼
𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖ℎ
𝑑𝑑𝑑𝑑

=  −𝐼𝐼𝑖𝑖𝑖𝑖ℎ(𝑡𝑡) + 1
𝑁𝑁
∑ 𝑟𝑟𝑁𝑁(𝑡𝑡)𝑁𝑁
𝑛𝑛=1 , 

 where 𝜏𝜏𝐼𝐼 = 50𝑚𝑚𝑚𝑚 is the decay time constant for inhibitory currents. In this model, outside 

spiking events, the membrane potential evolved as: 

𝜏𝜏𝑚𝑚
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑
  =   − 𝑥𝑥𝑖𝑖(𝑡𝑡) +  𝑔𝑔(∑ 𝑊𝑊𝑝𝑝𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 − 𝑔𝑔𝑖𝑖𝑖𝑖ℎ𝐼𝐼𝑖𝑖𝑖𝑖ℎ(𝑡𝑡)) + 𝑤𝑤𝑖𝑖𝑠𝑠(𝑡𝑡)  

Model dynamics were simulated in discrete time using Euler’s method with a timestep of 

1ms and a small gaussian noise term 𝜂𝜂𝑖𝑖~𝑁𝑁(0,1)/5 was added at each time step. We used 

𝑔𝑔 = 1 and varied 𝑔𝑔𝑖𝑖𝑖𝑖ℎ = 1,5,10 as suggested by measurements of inhibitory input to 

VMHvl38. 

Statistical analysis 

Data were processed and analyzed using Python, MATLAB, and GraphPad (GraphPad 

PRISM 9). All data were analyzed using two-tailed non-parametric tests. Mann-Whitney 

test were used for binary paired samples. Friedman test was used for non-binary paired 

samples. Kolmogorov-Smirnov test was used for non-paired samples. Multiple 

comparisons were corrected with Dunn’s multiple comparisons correction. Not significant 

(n.s), p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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Figure 4: Strength of functional connectivity infers stability of line attractor

0
-1

0

1

2

3

4

50 100

m99 m167m168

time (s)

z-
sc

or
e 

ac
tiv

ity

0 50 100
0

2

4

m99 m167m168

in
te

gr
at

io
n 

di
m

en
.

(n
or

m
. a

ct
)

the strength of functional connectivity correlates with the stability and decay of the line attractor

BALB/c out

decay along 
attractor

decay

a b

maintanence of
behavioral
internal state

line attractor
x1 integration 
neurons

x2 
neurons

VMHvl

x2 dimension

x1 dimension

line attractor

x2 dimension

x1 dimension

h

0.8 1.2 1.6
0

50

100

150

200

250

average z-score

x1 (int) x1 (int)

r2 : 0.59
*p<0.05

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

m167

m168

m99

-0.5 0.0 0.5 1.0

50

100

150

200

250

x1 (int) x2 

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

)

m167

m99

m168

influence (avg zscore)

r2 : 0.06
n.s

d e

0

50

100

150

200

250

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

area under the curve (auc)

r2 : 0.59
*p<0.05

1 2 3
0

50

100

150

200

250

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

r2 : 0.87
***p<0.001

200 400 600 800
0

50

100

150

200

250

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

r2 : 0.87
***p<0.001

-500 0 500 1000

50

100

150

200

250

1000 1800
area under the curve (auc)

m167

m168

m99

area under the curve (auc)average z-score

r2 : 0.06
n.s

-0.5 0.0 0.5 1.0

50

100

150

200

250

50

100

150

200

250

influence (avg zscore)
2000-200

area under the curve (auc)

m167

m99

m168

r2 : 0
n.s

r2 : 0
n.s

0
-1

0

1

2

3

50 100
time (s)

z-
sc

or
e 

ac
tiv

ity

area
under the 
curve

average 
zscore

x1 (int) x1 (int) x1 (int) x2 

c

f g

functional influence on x1 neurons
post first stimulus

functional influence on x2 neurons
post first stimulus

functional influence on x1 neurons
post third stimulus

functional influence on x2 neurons
post third stimulus

n1

n100

...

n2

n3

neural data

dynamical model 
guided manifold discovery

single cell
2P imaging 

model guided 2P
manifold perturbation

intrinsic dynamics of a hypothalamic line attractor

i

VMHvl

implementation of a line attractor encoding an internal state

dense
 functional

connectivity

slow
neurotransmitter

release

Esr1-cre

SW

BALB/c

time 

attack

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

rS
LD

S 
tim

e 
co

ns
ta

nt
 (s

) 

time (s)

ac
tiv

ity

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.21.595051doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/


line attractor dynamics in freely behaving mice with miniscope engaging in aggression
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holographic activation of random neurons does not lead to robust activation of either x1 or x2 dimension  
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Ex. Figure 3:  Interaction between dimensions and activation of random neurons
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deriving the network time constant
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Ex. Figure 4:  Derivation of network time constant for model simulations

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.21.595051doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

