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Summary

Line attractors are emergent population dynamics hypothesized to encode continuous
variables such as head direction and internal states. In mammals, direct evidence of
neural implementation of a line attractor has been hindered by the challenge of targeting
perturbations to specific neurons within contributing ensembles. Estrogen receptor type
1 (Esr1)-expressing neurons in the ventrolateral subdivision of the ventromedial
hypothalamus (VMHvI) show line attractor dynamics in male mice during fighting. We
hypothesized that these dynamics may encode continuous variation in the intensity of an
internal aggressive state. Here, we report that these neurons also show line attractor
dynamics in head-fixed mice observing aggression. We exploit this finding to identify and
perturb line attractor-contributing neurons using 2-photon calcium imaging and
holographic optogenetic perturbations. On-manifold perturbations demonstrate that
integration and persistent activity are intrinsic properties of these neurons which drive the
system along the line attractor, while transient off-manifold perturbations reveal rapid
relaxation back into the attractor. Furthermore, stimulation and imaging reveal selective
functional connectivity among attractor-contributing neurons. Intriguingly, individual
differences among mice in line attractor stability were correlated with the degree of
functional connectivity among contributing neurons. Mechanistic modelling indicates that
dense subnetwork connectivity and slow neurotransmission are required to explain our
empirical findings. Our work bridges circuit and manifold paradigms, shedding light on the

intrinsic and operational dynamics of a behaviorally relevant mammalian line attractor.
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Main
Introduction

Neural computations have long been studied from two distinct vantage points. One
focuses on understanding behaviorally specialized neuron types and their functional
connectivity'3, while the other investigates emergent properties of neural networks, such
as attractors*®. Attractors of different topologies are theorized to encode a variety of
continuous variables, ranging from head direction’, location in space® and internal states®.
Recent data-driven methodologies have allowed for the discovery of such attractor
mediated computations directly in neural data®'2. Consequently, attractor dynamics have

received increasing attention as a major type of neural coding mechanism?813 410,

Despite this progress, establishing that these attractors arise from the intrinsic
dynamics of the observed network remains a formidable challenge*®. Unaccounted
external inputs such as feedforward synaptic input can profoundly influence
computational dynamics observed at a given site'3. Therefore, experimental perturbations
are pivotal to determine whether observed attractor dynamics are locally computed or
inherited. This calls for combining large-scale recordings with perturbations of neuronal
activity in vivo. While this has been accomplished for a point attractor that controls motor
planning in cortical area ALM'415, spatial ensembles that regulate short term memory'6.17,
and for a ring attractor in Drosophila'®'®, there is no study reporting such perturbations
for a continuous attractor in any mammalian system. While theoretical work on continuous
attractors in mammals is well-developed?®, the lack of direct, neural perturbation-based

experimental evidence of such attractor dynamics has hindered progress towards a
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mechanistic circuit-level understanding of such emergent manifold-level network

features®.

VMHVIEs™ neurons comprise a key node in the hypothalamic-extended amygdala
social behavior network and have been causally implicated in aggression?%2'. Calcium
imaging of these neurons in freely behaving animals has revealed mixed selectivity, with
aggression sparsely represented at the single-neuron level??23. Yet aggressive behavior
can be accurately decoded from population activity?®, raising the question of which
aspect(s) of this activity contain such information. Application of dynamical system
modeling has revealed an approximate line attractor in VMHUvI that correlates with the
intensity of agonistic behavior, suggesting a population-level encoding of a continuously
varying aggressive internal state®. This raises the question of whether the observation of
a line attractor in a dynamical systems model fit to VMHVIES™ neuronal activity reflects
intrinsic dynamics, or rather passive inheritance of such dynamics from an upstream

source.

This question can be addressed, in principle, using all-optical methods to observe
and perturb line attractor-relevant neural activity*?426. A challenge in applying these
methods during aggression is that current technology requires head-fixed preparations,
and head-fixed mice cannot fight. To overcome this challenge, we exploited the recent
observation that VMHVIPR neurons (which overlap Esr1 neurons) mirror inter-individual
aggression.?’ Here we show that VMHVIFS™ neurons also exhibit line attractor dynamics
during the passive observation of aggression, and that such neurons are largely
overlapping with line attractor-contributing neurons in attacking mice. Leveraging this

mirror paradigm to generate line attractor dynamics in head-fixed subjects, we performed
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dynamical model-guided, closed-loop perturbations of VMHvVIES™ activity. This approach
revealed that the VMHUvI line attractor indeed reflects intrinsic neural dynamics in this
nucleus. Furthermore, it identified a neural implementation rooted in selective functional
connectivity within attractor-weighted ensembles that is likely mediated by slow
neurotransmission, ensuring the attractor's stability. Collectively, our findings elucidate,
for the first time, a circuit-level foundation for a continuous attractor in the mammalian

brain.
Results
Line attractor dynamics during observation of aggression.

Recent studies have demonstrated that VMHvI contains neurons that are active during
passive observation of as well as active participation in aggression, and that re-activating
the former can evoke aggressive behavior?”. However, those findings were based on a
very small number of VMHVIPR neurons, which might comprise a specific subset distinct
from those contributing to the line attractor (the latter represent ~20-25% of Esr1*
neurons®). To assess whether these mirror-like responses can be observed in those Esr1*
neurons that contribute to line attractor dynamics, we performed microendoscopic
imaging?® of VMHVIEs™ neurons expressing jGCaMP7s in the same freely moving animals
sequentially during engagement in, and observation of, aggression (Extended Data 1a-
e). Analysis using recurrent switching linear dynamical systems (rSLDS)?° to fit a model
to each dataset revealed an approximate line attractor under both conditions, exhibiting
ramping and persistent activity aligned and maintained across both performed and
observed attack bouts (Extended Data 1g-p). Notably, the integration dimension aligned

with the line attractor (“x1”) was weighted by a consistent set of neurons under both
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conditions, suggesting that a highly overlapping set of neurons (70%) contributes to line

attractor dynamics during watching or engaging in fighting (Extended Data 2a-g).

While these observed attractor dynamics could be intrinsic, they might also arise
from unmeasured ramping sensory input or dynamics inherited from another brain region.
Although behavioral perturbations in prior studies have hinted at the intrinsic nature of
VMHUVI line attractor dynamics®, a rigorous test requires manifold-level perturbations3© 3
targeted to cells identified as contributing to the attractor. Direct on-manifold perturbation
has previously been performed only in the Drosophila ring attractor system”:'8; moreover
off-manifold perturbations were not performed. In mammals, although a point attractor
has been perturbed using optogenetic manipulation’1524  direct single-cell perturbations

of neurons contributing to a continuous attractor in vivo has not been reported.

To address this, we employed 2-photon (2P) imaging in head-fixed mice
expressing both jGCaMP7s% and ChRmine3? (a red-shifted opsin) during aggression
observation (Figure 1a-c). rSLDS analysis identified an integration dimension with slow
dynamics (x1) aligned to a line attractor and an orthogonal dimension with faster dynamics
(x2) (Figure 1d-g). In neural state space, activity entered the attractor following removal
of the demonstrator mice, decaying according to the system's intrinsic leak rate (Figure
1h). We used the mapping between neural activity and the underlying state space to
directly identify and image neurons contributing to each dimension. Neurons contributing
to the integration dimension displayed more persistence than those aligned with the faster
dimension (Figure 1i-m). Thus, a line attractor can be recapitulated in head-fixed mice

observing aggression, opening the way to 2-photon-based perturbation experiments.
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Holographic activation reveals the intrinsic nature of VMHuvI line attractor dynamics

Next, to determine whether VMHVIES' line attractor dynamics are intrinsic, we performed
holographic activation of a subset of neurons contributing to the integration dimension
(x1). These neurons were identified in real-time using rSLDS fitting of data recorded during
observation of aggression, followed by reactivation of those neurons (in a manual closed-
loop) after removing the demonstrator mice. Approximately 25% of integration-dimension
neurons in the observation field were reactivated during each trial (5 cells/trial). Repeated
pulses of optogenetic stimulation (2 sec, 20 Hz, 5 mW/mm?) were delivered with a 20s

inter-stimulus interval (ISI) (Figure 2a, e).

Under these conditions, activity along the x1 (but not the x2) dimension is expected
to integrate, based on the time constants of these dimensions extracted from the fit rSLDS
model (Figure 1e). Consistent with this expectation, optogenetic re-activation of xi
neurons yielded robust integration along the x1 dimension, as evidenced by progressively
increasing activity during the ISI following each consecutive pulse (Figure 2b-c; n=8
mice). Activated x1 neurons exhibited activity levels comparable to their response during
observation of aggression (Extended Data 3a-c). Similar results were obtained using an
8s ISI (Figure 2d). Providing the same input to the fit rSLDS model also resulted in
integration along the x1 dimension similar to that observed in the data (Figure 2f).
Importantly, x1 stimulation did not evoke discernable activity in the x2 dimension,
suggesting a lack of functional interaction between these dimensions at a population level

(Extended Data 3d-f and see below).

To visualize the effect of re-activation of x1 neurons in neural state space, we

projected the data into a 2D flow-field based on the first two PCs of the reduced rSLDS
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space. Activation pulses transiently moved the neural population vector “up” the line
attractor, followed by relaxation back down the attractor to a point that was higher than
the initial position of the system (Figure 2h, pulse 1, 2 & 4). To quantify this effect, we
calculated the Euclidean distance in state space between the initial time point during the
baseline period (denoted tinitial), to the time point at the end of stimulation or at the end of
the ISI following each pulse (denoted tstim end @nd tpost stim respectively) (Figure 2g). This
revealed that the x1 perturbations resulted in progressive, stable on-manifold movement
along the attractor with each consecutive stimulation, as measured by the increase in

both metrics (Figure 2h-j).

Importantly, as predicted by rSLDS, activation of x2 neurons did not lead to
integration (Figure 2k, I). Instead, following each pulse we observed stimulus-locked
transient activity in the x2 dimension followed by a decay back to baseline during the ISI
period, across stimulation paradigms (Figure 2k-n), with little to no effect on x1 neurons
(Extended Data 3g-i). In 2D neural state space, we observed that x2 neuron activation
caused transient off-manifold movements of the population activity vector orthogonal to
the attractor axis during each pulse (Figure 2g-s). Following each stimulus, the neural
trajectory relaxed back into the attractor, at the initial location it occupied before the
stimulus. The small Euclidean distance between tinitai and tpost stm underscored the
attractor's stability (Figure 2t). Activation of randomly selected neurons not weighted by
either dimension did not produce activity along either the x1 or x2 dimension, emphasizing
the specificity of our on- and off-manifold holographic activation (Extended Data 3j-n).
Taken together, these findings provide evidence for the intrinsic nature of the VMHvIES"

line attractor.
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Line attractor-contributing neurons form selective functional ensembles

Line attractors have traditionally been hypothesized to emerge from recurrent interactions
within a network (although single neurons can also have the potential to integrate using
neuromodulator regulated ion channels)**. To determine whether network-level
interactions contribute to the implementation of the line attractor, we performed single-
cell activation of either individual x1 or x2 neurons combined with imaging of unperturbed
neurons, to assess functional connectivity within the circuit (Figure 3a). These
experiments revealed selective functional coupling between x1 neurons, as evidenced by
an increase in activity during the ISI period in unperturbed x1 neurons following each pulse
of activation (Figure 3b, d). However, we observed little activity in unperturbed x2 neurons
upon activation of single x1 neurons (Figure 3c, e), indicating that functional xi

connectivity is selective.

In contrast, activation of single x2 neurons revealed a lack of functional coupling
between x2 neurons (Figure 3g). While there was some increase in activity in unperturbed
X1 neurons upon activation of single x2 neurons (Figure 3h), that increase was not
significant, suggesting that x2 neurons might not be coupled with other x1 or x2 neurons

(Figure 3i, j).

The functional connectivity we observed could arise either from a population of
sparsely but strongly inter-connected neurons, or from a population with denser
connections of intermediate strength3® (Figure 3k, left). To assess this, we calculated the
distribution of pairwise influences, defined as the average evoked activity in each
unperturbed integration neuron post stimulus. To estimate an upper bound on the amount

of influence within the network, we considered the percentage of integration pairs that
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had influence scores higher than the maximum influence of x1 onto x2 neurons (Figure
3k, right). This analysis revealed a densely connected integration subnetwork with a
connection density of about 36% (Figure 3k, right). These data suggest that VMHvIEs"
neurons that contribute to the line attractor form functional ensembles, confirming theory-

based predictions3*.

We next used computational approaches to investigate the nature of the observed
functional connectivity within x1 ensembles. Such connectivity could reflect different types
of synapses: they could be fast and glutamatergic, as typically assumed for most attractor
networks3*; or they could be slow neuromodulator-based connections that use GPCR-
mediated second messenger pathways to sustain long time-scale changes in synaptic
conductance. To investigate systematically the density and synaptic kinetics of networks
capable of generating line attractors with the observed integration-dimension (x1) network
time constant, we turned to mechanistic modelling using an excitatory integrate and fire
network3® (Figure 3I). Because VMHVI is exclusively glutamatergic®’, we used excitatory
networks and analytically calculated the network time constant using an eigen-
decomposition of the connectivity matrix34 (Extended Data 4a). By varying the synaptic
conductance time constant () and the density of integration subnetwork connectivity (o),
we found that only artificial networks based on relatively sparse connectivity (~8-12%)
and slow synaptic time constants (20s) could yield network time constants (t,) in the
experimentally observed range (~50-200s; Figure 3m, o; red shading). In contrast,
networks with fast glutamatergic connectivity failed to do so over the same range of

connection densities (Figure 3n, p).

10
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In these purely excitatory network models, the density of connections that yielded
network time constants in the observed range was much lower than the experimentally
measured value (36%). To match more accurately the empirically observed connection
density, we incorporated excitation-recruited fast-feedback inhibition into our integrate-
and-fire network®; VMHvl is known to receive dense GABAergic innervation from
surrounding areas®. The addition of global strong feedback inhibition allowed networks
to match the observed connection density (36%), but importantly, maintained the slow
nature of the functional connectivity (20s; Figure 3q, r). Indeed, networks simulated with
a long 1, (20s) and dense o (36%) could integrate digital optogenetic stimulation in a
manner similar to that observed experimentally (Figure 3s-t; cf. 3a). In contrast, purely
glutamatergic networks (t4,=100 msec) were unable to integrate at the observed
timescales (Figure 3u-v). Together, these results suggest an implementation of the
VMHVIES™ [ine attractor that combines slow neurotransmission and dense subnetwork

interconnectivity within an attractor creating ensemble.
Strength of functional connectivity correlates with attractor stability across mice.

The stability of the line attractor in VMHvI during aggression has previously been
positively correlated with aggressiveness across individual mice®. We therefore
investigated whether individual mouse differences in the stability of the line attractor might
be correlated with the strength of functional connectivity within the x1 ensemble (Figure
4a). To do so, we compared the x1 time constants from rSLDS models fit to imaging data
recorded during attack observation from each mouse (a measure of attractor stability) to
different quantitative metrics of functional connectivity strength (such as average z-scored

activity or area under the curve), measured by optogenetic stimulation of single x1 or x2

11
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neurons and imaging of unperturbed cells in the same animals following removal of the

demonstrator intruder mice (Figure 4b, c).

Remarkably, there was a strong correlation across mice between the time constant
of the line attractor measured during the observation of aggression, and the strength of
functional connectivity among integration-dimension (x1) neurons measured by post-
observation optogenetic stimulation (Figure 4d). The strength of this correlation was
higher after the third (r=0.87) than the first (r>=0.59) stimulus, suggesting that individual
differences in integration dynamics become more apparent once the system has already
integrated several inputs (Figure 4f). Importantly, this correlation was specific to functional
connectivity within the integration subnetwork and did not hold when rSLDS time
constants were compared with the influence strength of stimulated x1 neurons on xz cells
(Figure 4e, g). Thus, individual differences among mice in the stability of the line attractor
during the observation of aggression are correlated with differences in the functional
connection strength among attractor-contributing neurons, as measured post-observation

by optogenetic stimulation and imaging of the same cells in the same animals.
Discussion

Using model-guided closed-loop all-optical experiments, we have directly demonstrated
line attractor dynamics in a mammalian system (Figure 4h, i). Attractors are intrinsic
properties of neural networks that emerge from network interactions. To distinguish such
intrinsic properties from the inheritance of attractor-like dynamics from upstream inputs,
specific neural perturbations are essential. Perturbations using bulk optogenetics and
electrophysiological recording have been pivotal in demonstrating point attractor

dynamics encoding short term memory in the mammalian brain'. While such
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experiments can illuminate important features of network stability, our experiments used
both on- and off-manifold 2-photon optogenetic perturbations at single-cell resolution, in
combination with calcium imaging, to definitively test the intrinsic nature of a continuous
line attractor that was initially discovered by rSLDS modeling. While on-manifold
perturbations were used previously to experimentally move neural activity along a ring
attractor encoding head-direction in Drosophila, off-manifold perturbations demonstrating
the key property of “attractiveness” were not performed in that case''. To our
knowledge, therefore the present results constitute the first in vivo on- and off-manifold
perturbation experiments demonstrating the intrinsic properties of a continuous attractor

in any system.

Our data and modeling also provided insight into the implementation of the line
attractor. We found evidence of dense, specific subnetwork connectivity coupled with
slow neurotransmission. Although our models confirm the importance of rapid feedback
inhibition, as indicated in invertebrate ring attractor studies'®, they diverge markedly from
conventional continuous attractor models*3** by highlighting the role of slow
neurotransmission over rapid excitation. Numerous theoretical studies have posited that
continuous attractors relying on fast recurrent connectivity are not robust due to the
necessity for precise tuning of synaptic weights to sustain stable attractor dynamics3#3,
The slow neurotransmission predicted by our model could be implemented by GPCR-
mediated signaling triggered by biogenic amines or neuropeptides*. Consistent with this
prediction, we have recently found that VMHUVI line attractor dynamics are dependent on
signaling through oxytocin and/or vasopressin neuropeptide receptors expressed in Esr1*

neurons*'. These findings suggest an evolutionary mechanism that favors the robustness
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offered by slow neurotransmission in the establishment of a line attractor encoding a
persistent internal motive state. Whether line attractors in other systems that mediate
cognitive functions on shorter time-scales'"#? indeed rely primarily on fast glutamatergic

recurrent connectivity remains to be determined.

Lastly, our observations indicate a pronounced correlation between individual
differences in the functional strength of integration subnetwork connectivity, as revealed
by optogenetic stimulation and imaging, and differences in the measured stability of the
line attractor evoked by a naturalistic stimulus. This suggests that attributes of the
attractor, such as its connectivity density or strength, may be modifiable (either by
genetics and/or experience*®), and may underlie individual differences in
aggressiveness®. Deciphering the underlying mechanisms that grant this attractor its

apparent flexibility represents a promising avenue for future research.

References

1 Zeng, H. What is a cell type and how to define it? Cell 185, 2739-2755 (2022).
https://doi.org:https://doi.org/10.1016/j.cell.2022.06.031
2 Tye, K. M. & Uchida, N. Editorial overview: Neurobiology of behavior. Current

Opinion in Neurobiology 49, iv-ix (2018).
https://doi.org:https://doi.org/10.1016/j.conb.2018.02.019
3 Luo, L. Architectures of neuronal circuits. Science 373, eabg7285

https://doi.org:10.1126/science.abq7285

4 Langdon, C., Genkin, M. & Engel, T. A. A unifying perspective on neural manifolds
and circuits for cognition. Nat Rev Neurosci 24, 363-377 (2023).
https://doi.org:10.1038/s41583-023-00693-x

5 Barack, D. L. & Krakauer, J. W. Two views on the cognitive brain. Nat Rev Neurosci
22, 359-371 (2021). https://doi.org:10.1038/s41583-021-00448-6

14


https://doi.org:https:/doi.org/10.1016/j.cell.2022.06.031
https://doi.org:https:/doi.org/10.1016/j.conb.2018.02.019
https://doi.org:10.1126/science.abg7285
https://doi.org:10.1038/s41583-023-00693-x
https://doi.org:10.1038/s41583-021-00448-6
https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.21.595051; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6 Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation Through Neural
Population  Dynamics. Annu Rev  Neurosci 43, 249-275 (2020).
https://doi.org:10.1146/annurev-neuro-092619-094115

7 Hulse, B. K. & Jayaraman, V. Mechanisms Underlying the Neural Computation of
Head Direction. Annu Rev Neurosci 43, 31-54 (2020).
https://doi.org:10.1146/annurev-neuro-072116-031516

8 Khona, M. & Fiete, |. R. Attractor and integrator networks in the brain. Nat Rev
Neurosci 23, 744-766 (2022). https://doi.org:10.1038/s41583-022-00642-0

9 Nair, A. et al. An approximate line attractor in the hypothalamus encodes an
aggressive state. Cell 186, 178-193 e115 (2023).

https://doi.org:10.1016/j.cell.2022.11.027

10 Durstewitz, D., Koppe, G. & Thurm, M. |. Reconstructing computational system

dynamics from neural data with recurrent neural networks. Nat Rev Neurosci
(2023). https://doi.org:10.1038/s41583-023-00740-7

11 Sylwestrak, E. L. et al. Cell-type-specific population dynamics of diverse reward
computations. Cell 185, 3568-3587 e3527 (2022).
https://doi.org:10.1016/j.cell.2022.08.019

12 Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent Network Models of Sequence
Generation and Memory. Neuron 90, 128-142 (2016).
https://doi.org:10.1016/j.neuron.2016.02.009

13 Inagaki, H. K. et al. Neural Algorithms and Circuits for Motor Planning. Annu Rev
Neurosci 45, 249-271 (2022). https://doi.org:10.1146/annurev-neuro-092021-
121730

14 Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics

underlies persistent activity in the frontal cortex. Nature 566, 212-217 (2019).
https://doi.org:10.1038/s41586-019-0919-7

15 Daie, K., Svoboda, K. & Druckmann, S. Targeted photostimulation uncovers circuit

motifs supporting short-term memory. Nat Neurosci 24, 259-265 (2021).
https://doi.org:10.1038/s41593-020-00776-3

15


https://doi.org:10.1146/annurev-neuro-092619-094115
https://doi.org:10.1146/annurev-neuro-072116-031516
https://doi.org:10.1038/s41583-022-00642-0
https://doi.org:10.1016/j.cell.2022.11.027
https://doi.org:10.1038/s41583-023-00740-7
https://doi.org:10.1016/j.cell.2022.08.019
https://doi.org:10.1016/j.neuron.2016.02.009
https://doi.org:10.1146/annurev-neuro-092021-121730
https://doi.org:10.1146/annurev-neuro-092021-121730
https://doi.org:10.1038/s41586-019-0919-7
https://doi.org:10.1038/s41593-020-00776-3
https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.21.595051; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

16 Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling Visually
Guided Behavior by Holographic Recalling of Cortical Ensembles. Cell 178, 447-
457 e445 (2019). https://doi.org:10.1016/j.cell.2019.05.045

17 Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and
recalling cortical ensembles. Science 353, 691-694 (2016).
https://doi.org:10.1126/science.aaf7560

18 Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics
in the Drosophila central brain. Science 356, 849-853 (2017).
https://doi.org:10.1126/science.aal4835

19 Green, J., Vijayan, V., Mussells Pires, P., Adachi, A. & Maimon, G. A neural
heading estimate is compared with an internal goal to guide oriented navigation.
Nat Neurosci 22, 1460-1468 (2019). https://doi.org:10.1038/s41593-019-0444-x

20 Mei, L., Osakada, T. & Lin, D. Hypothalamic control of innate social behaviors.
Science 382, 399-404 (2023). https://doi.org:10.1126/science.adh8489

21 Wei, D., Talwar, V. & Lin, D. Neural circuits of social behaviors: Innate yet flexible.
Neuron 109, 1600-1620 (2021). https://doi.org:10.1016/j.neuron.2021.02.012

22 Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting
behaviour in mice. Nature 589, 258-263 (2021). https://doi.org:10.1038/s41586-
020-2995-0

23 Remedios, R. et al. Social behaviour shapes hypothalamic neural ensemble

representations of conspecific sex. Nature 550, 388-392 (2017).
https://doi.org:10.1038/nature23885

24 Carrillo-Reid, L. & Yuste, R. Playing the piano with the cortex: role of neuronal

ensembles and pattern completion in perception and behavior. Current Opinion in
Neurobiology 64, 89-95 (2020).
https://doi.org:https://doi.org/10.1016/j.conb.2020.03.014

25 Emiliani, V. et al. Optogenetics for light control of biological systems. Nature
Reviews Methods Primers 2, 55 (2022). https://doi.org:10.1038/s43586-022-
00136-4

16


https://doi.org:10.1016/j.cell.2019.05.045
https://doi.org:10.1126/science.aaf7560
https://doi.org:10.1126/science.aal4835
https://doi.org:10.1038/s41593-019-0444-x
https://doi.org:10.1126/science.adh8489
https://doi.org:10.1016/j.neuron.2021.02.012
https://doi.org:10.1038/s41586-020-2995-0
https://doi.org:10.1038/s41586-020-2995-0
https://doi.org:10.1038/nature23885
https://doi.org:https:/doi.org/10.1016/j.conb.2020.03.014
https://doi.org:10.1038/s43586-022-00136-4
https://doi.org:10.1038/s43586-022-00136-4
https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.21.595051; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

26 Russell, L. E. et al. All-optical interrogation of neural circuits in behaving mice.
Nature Protocols 17, 1579-1620 (2022). https://doi.org:10.1038/s41596-022-
00691-w

27 Yang, T. et al. Hypothalamic neurons that mirror aggression. Cell 186, 1195-1211
e1119 (2023). https://doi.org:10.1016/j.cell.2023.01.022

28 Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat
Methods 8, 871-878 (2011). https://doi.org:10.1038/nmeth.1694

29 Linderman, S. W. et al. Bayesian Learning and Inference in Recurrent Switching
Linear Dynamical Systems. Pr Mach Learn Res 54, 914-922 (2017).

30 Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423-426 (2014).
https://doi.org:10.1038/nature 13665

31 Jazayeri, M. & Afraz, A. Navigating the Neural Space in Search of the Neural Code.
Neuron 93, 1003-1014 (2017). https://doi.org:10.1016/j.neuron.2017.02.019

32 Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal

populations and microcompartments. Nature Methods 16, 649-657 (2019).
https://doi.org:10.1038/s41592-019-0435-6

33 Marshel, J. H. et al. Cortical layer—specific critical dynamics triggering perception.
Science 365, eaaw5202 (2019). https://doi.org:10.1126/science.aaw5202

34 Goldman, M. S., Compte, A. & Wang, X. J. in Encyclopedia of Neuroscience (ed
Larry R. Squire) 165-178 (Academic Press, 2009).

35 Brunel, N. Is cortical connectivity optimized for storing information? Nat Neurosci
19, 749-755 (2016). https://doi.org:10.1038/nn.4286

36 Kennedy, A. et al. Stimulus-specific hypothalamic encoding of a persistent
defensive state. Nature 586, 730-734 (2020). https://doi.org:10.1038/s41586-020-
2728-4

37 Hashikawa, Y., Hashikawa, K., Falkner, A. L. & Lin, D. Ventromedial
Hypothalamus and the Generation of Aggression. Front Syst Neurosci 11, 94
(2017). https://doi.org:10.3389/fnsys.2017.00094

38 Yamamoto, R., Ahmed, N., Ito, T., Gungor, N. Z. & Pare, D. Optogenetic Study of
Anterior BNST and Basomedial Amygdala Projections to the Ventromedial
Hypothalamus. eNeuro 5 (2018). https://doi.org:10.1523/ENEURO.0204-18.2018

17


https://doi.org:10.1038/s41596-022-00691-w
https://doi.org:10.1038/s41596-022-00691-w
https://doi.org:10.1016/j.cell.2023.01.022
https://doi.org:10.1038/nmeth.1694
https://doi.org:10.1038/nature13665
https://doi.org:10.1016/j.neuron.2017.02.019
https://doi.org:10.1038/s41592-019-0435-6
https://doi.org:10.1126/science.aaw5202
https://doi.org:10.1038/nn.4286
https://doi.org:10.1038/s41586-020-2728-4
https://doi.org:10.1038/s41586-020-2728-4
https://doi.org:10.3389/fnsys.2017.00094
https://doi.org:10.1523/ENEURO.0204-18.2018
https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.21.595051; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

39 Sebastian Seung, H. Continuous attractors and oculomotor control. Neural Netw
11, 1253-1258 (1998). https://doi.org:10.1016/s0893-6080(98)00064-1

40 Robinson, D. A. Integrating with neurons. Annu Rev Neurosci 12, 33-45 (1989).
https://doi.org:10.1146/annurev.ne.12.030189.000341

41 Mountoufaris, G., Nair, A., Yang, B., Kim, D.-W. & Anderson, D. J. Neuropeptide
Signaling Is Required To Implement A Line Attractor Encoding A Persistent
Internal  Behavioral State. bioRxiv, 2023.2011.2001.565073 (2023).
https://doi.org:10.1101/2023.11.01.565073

42 Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).
https://doi.org:10.1038/nature 12742

43 Stagkourakis, S., Spigolon, G., Liu, G. & Anderson, D. J. Experience-dependent

plasticity in an innate social behavior is mediated by hypothalamic LTP. Proc Nat/
Acad Sci U S A 117, 25789-25799 (2020).
https://doi.org:10.1073/pnas.2011782117

44 Yang, B., Karigo, T. & Anderson, D. J. Transformations of neural representations
in a social behaviour network. Nature 608, 741-749 (2022).
https://doi.org:10.1038/s41586-022-05057-6

45 Paxinos, G. & Franklin, K. B. Paxinos and Franklin's the mouse brain in stereotaxic

coordinates. (Academic press, 2019).
46 Lin, D. et al. Functional identification of an aggression locus in the mouse
hypothalamus. Nature 470, 221-226 (2011). https://doi.org:10.1038/nature09736
47 Segalin, C. et al. The Mouse Action Recognition System (MARS) software pipeline

for automated analysis of social behaviors in mice. eLife 10, e63720 (2021).
https://doi.org:10.7554/eLife.63720
48 Dubbs, A., Guevara, J. & Yuste, R. moco: Fast Motion Correction for Calcium

Imaging. Frontiers in Neuroinformatics 10 (2016).
https://doi.org:10.3389/fninf.2016.00006

49 Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from

microendoscopic video data. elLife 7, e28728 (2018).
https://doi.org:10.7554/eLife.28728

18


https://doi.org:10.1016/s0893-6080(98)00064-1
https://doi.org:10.1146/annurev.ne.12.030189.000341
https://doi.org:10.1101/2023.11.01.565073
https://doi.org:10.1038/nature12742
https://doi.org:10.1073/pnas.2011782117
https://doi.org:10.1038/s41586-022-05057-6
https://doi.org:10.1038/nature09736
https://doi.org:10.7554/eLife.63720
https://doi.org:10.3389/fninf.2016.00006
https://doi.org:10.7554/eLife.28728
https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.21.595051; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

50 Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S. & Sussillo, D. Vol. 32
(eds H. Wallach et al.) (2019).

Figure Legends
Figure 1 | Attractor dynamics in head-fixed mice observing aggression.

a. Experimental paradigm for 2-photon head-fixed mice observing aggression. 920nm
2-photon laser was used to monitor activity of VMHVIES™ neurons in head-fixed mice
observing aggression. A dynamical model fit to neural data guided holographic

activation of specific neurons expressing ChRmine using a 1035nm 2-photon laser.

b. Example field of view in 2-photon setup through a GRIN lens (top). Fluorescence
image of a coronal slice showing expression of [GCaMP7s and ChRmine (bottom).

Scale bars — 100um.

c. Neural and behavioral raster from example mouse observing aggression in the 2-
photon setup. Arrows indicate insertion of submissive BALB/c intruder to the
observation chamber for interaction with an aggressive Swiss Webster mouse (SW).

Right: Example neurons from left.

d. Neural activity projected onto rSLDS dimensions obtained from models fit to 2-photon

imaging data in one example mouse.
e. rSLDS time constants across mice (n = 9 mice, ****p<0.0001).
f. Line attractor score (see methods) across mice (n = 9 mice).

g. Behavior triggered average of x1 and x2 dimensions, aligned to introduction of BALB/c

into resident’s cage (n = 9 mice). Dark line — mean activity, shaded surrounding —sem.

h. Flow fields from 2P imaging data during observation of aggression from one example

mouse. Red arrows indicate the direction flow of time.

i. Top: Identification of neurons contributing to x1 dimension from rSLDS model. Weight

of each neurons shown as absolute value. Bottom: Activity heatmap of five neurons
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contributing most strongly to x1 dimension. Right: Neural traces of the same neurons

and an indication of when the systems enters the line attractor
j- Same as i but for x2 dimension.

k. Dynamic velocity landscape from 2P imaging data during observation of aggression
from one example mouse. Blue color reflects stable area in the landscape, red —

unstable. Black line is the trajectory of the neuronal activity.

I.  Cumulative distributions of autocorrelation half width of neurons contributing to x1
(green) and x2 (red) dimensions (n = 9 mice, 45 neurons each for x1 and x2

distributions).

m. Mean autocorrelation half width across mice for neurons contributing to x1 and x2

dimensions (n = 9 mice, **p<0.01).
Figure 2 | Holographic perturbations reveal line attractor dynamics in the VMHvI.

a. Field of view of five x1 neurons selected for 2-photon activation in example mouse 1.

b. Neural activity projected onto x1 dimension after grouped optogenetic activation of five
X1 neurons in example mouse 1 (top). Neural activity projected onto x2 dimension from
activation of the same x1 neurons (bottom). Blue vertical lines indicate the time of
holographic activation of x1 neurons. Dashed blue lines indicate the time of
holographic activation on non-activated x2 neurons.

c. Left: Average activity projected onto x1 dimension from activation of x1 neurons across
mice using 20s inter stimulus interval (n = 8 mice). Right: Quantification of average z-
scored activity of projected x1 dimension during baseline or various inter stimulus
intervals (n = 8 mice, **p<0.01).

d. Same as “c” but for 8s inter stimulus interval.

e. Stimulation paradigm for grouped activation of x1 neurons using 20s ISI.

Data and model prediction of applying stimulation paradigm in 2e to rSLDS model
trained on observation of aggression.

g. Cartoon showing quantification of perturbation along line attractor in neural state

space. The Euclidian distance between time points tinitial (baseline before stimulation)
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and tstm end (end of stimulation) as well as between tinitial and tpost stim (end of ISI of
stimulation) are calculated.

h. Flow fields from example mouse 1, showing perturbations along line attractor upon
activation of x1 neurons.

i. Euclidian distance between time points tintai and tstm end across mice (*p<0.05,
**p<0.01).

j-  Same as 2i but for time points tinitial and tpost stim across mice (*p<0.05, **p<0.01).

k. Field of view of five x2 neurons selected for activation in example mouse 1.

[.  Neural activity projected onto x1 dimension after grouped optogenetic activation of x2
neurons in example mouse 1 (top). Neural activity projected onto x2 dimension from
activation of same x1 neurons (bottom).

m. Left: Average of activation of x2 neurons across mice using 20s inter stimulus interval
(n = 8 mice). Right: Quantification of average z-scored activity during baseline or inter
stimulus intervals (n.s, n = 8 mice).

n. Left: Average activity projected onto x2 dimension from activation of x2 neurons across
mice using 8s inter stimulus interval (n = 7 mice). Right: Quantification of average z-
scored activity of projected x2 dimension during baseline or inter stimulus intervals
(n.s, n =7 mice).

o. Stimulation paradigm for grouped activation of x2 neurons using 20s ISI.

p. Data and model prediction of applying stimulation paradigm in 20 to rSLDS model
trained on observing aggression.

g. Same as 2g but for an example perturbation orthogonal to a line attractor.

r. Flow fields from example mouse 1, showing perturbations orthogonal to line attractor
upon activation of x2 neurons.

s. Same as 2i but for x2 activation.

t. Same as 2j but for x2 activation.

Figure 3 | Neural implementation of a line attractor guided by functional

connectivity.
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a. Left: Paradigm for examining activity in unperturbed x1 and x2 neurons upon activation
of single x1 neurons. Right: Average z-score activity of perturbed x1 neurons (25 single

neurons from n = 8 mice).

b. Average z-score activity of unperturbed x1 neurons upon perturbation of single x1

neurons (n = 8 mice).

c. Average z-score activity of unperturbed x2 neurons upon perturbation of single xi

neurons (n = 8 mice).

d. Quantification of activity in unperturbed x1 neurons upon perturbation of single x1

neurons (**p<0.01, n = 8 mice).

e. Quantification of activity in unperturbed x1 neurons upon perturbation of single x2

neurons (n.s, n = 8 mice).

f. Left: Paradigm for examining activity in unperturbed x1 and x2 neurons upon activation
of single x2 neurons. Right: Average z-score activity of perturbed x2 neurons (18 single

neurons from n = 7 mice).

g. Average z-score activity of unperturbed x2 neurons upon perturbation of single x2

neurons (n = 7 mice).

h. Average z-score activity of unperturbed x1 neurons upon perturbation of single x2

neurons (n = 7 mice).

i. Quantification of activity in unperturbed x1 neurons upon perturbation of single x2

neurons (n.s, n =7 mice).

j- Quantification of activity in unperturbed x2 neurons upon perturbation of single x2

neurons (n.s, n =7 mice).

k. Left: Cartoon illustrating either strong but sparse connectivity among x1 neurons (1),
or dense and interconnectivity within subnetwork (2). Right: Empirical distribution of
pairwise functional connectivity between x1 neurons (green) and from x1 to x2 neurons

(red) (n = 99 pairs, n = 7 mice).

22


https://doi.org/10.1101/2024.05.21.595051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.21.595051; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

|.  Cartoon illustrating different elements of an excitatory network that can determine
network level persistent activity including synaptic conductance time constant (ts) and

density of subnetwork connectivity (o).

m. Model simulation result showing network time constant (tn) by varying o in range 0O-
20% density values and ts in range 0-20s. The blue portions of the image refer to

configurations that result in unstable networks with runaway excitation.

n. Zoomed in version of 3m but for glutamatergic networks with synaptic conductance

time constant (ts) in range 0.01-0.5s.

o. Plot of network time constant (tn) against density of integration subnetwork for slow
neurotransmitter networks (ts:10,15,20s). The network time constant tn varies

monotonically with density for large values of ts.
p. Same as 3o but for glutamatergic networks (ts:0.01,0.1,0.2,0.3s).
g. Cartoon showing modified VMHUVI circuit with fast feedback inhibition incorporated.

r. Left: Plot of network time constant (tn) against density of integration subnetwork for a
slow neurotransmitter network with ts = 20s, for different values of strength of inhibition
(inhibitory gain, ginh: 1.25,5,10). Right: Same as left but for a glutamatergic network
with ts= 0.1s.

s. Model simulation of a slow neurotransmitter network with fast feedback inhibition
(ts:20s, 36% density of subnetwork connectivity). Top: Input (20s ISI) provided to
model, Bottom: Spiking activity in network. The first 200 neurons (20%) comprise the

interconnected integration subnetwork.

t. Ca?* activity convolved from firing rate (see Methods) of integration subnetwork (top)

and remaining neurons (bottom).

u. Same as 3s but for a fast transmitter network (ts:0.1s, 36% density of subnetwork

connectivity).

v. Same as 3t but for a fast transmitter network (1s:0.1s, 36% density of subnetwork

connectivity).
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Figure 4 | Strength of functional connectivity infers line attractor’s decay rate.

a. Example neural activity projected onto x1 (integration) dimension of three mice that
display varying rates of decay following removal of a Balb/c intruder from cage while
observing aggression (i.e movement down the line attractor).

b. Z-score activity on unperturbed x1 neurons upon activation of single x1 neurons in the
same mice from 4a.

c. lllustration of different quantification approaches to the change in activity of
unperturbed x1 neurons from 4b as either mean z-score activity following first stimulus
or area under the curve (auc).

d. Correlation between rSLDS time constant obtained from observation of aggression
and average z-score across unperturbed x1 neurons across 8 mice measured using
either average z-score (left) or AUC (right) post first stimulus (r?: 0.59, *p<0.05).

e. Correlation between rSLDS time constant obtained from observation of aggression
and average z-score across unperturbed x2 neurons across 8 mice measured using
either average z-score (left) or AUC (right) post first stimulus (r?: 0.06, n.s).

f. Same as 4d but quantified post third stimulus. (r%: 0.87, ***p<0.001)

g. Same as 4e but quantified post third stimulus. (r?: 0.0, n.s)

h. Cartoon depicting summary of results illustrating intrinsic dynamics of hypothalamic
line attractor.

i. Cartoon depicting implementation of a hypothalamic line attractor encoding a

behavioral internal state.

Extended Data 1 | Shared line attractor dynamics in engaging and observing

aggression.

a. Implantation of miniscope, field of view (top) and fluorescence image showing

histology (bottom) with jGCaMP7s expression in VMHUVI.
b. Experimental paradigm to record VMHvVIEs™ activity in mice engaging in aggression.

c. Left: neural & behavioral raster of example mouse 1 when engaging in aggression.

Right: example neurons.
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Experimental paradigm to record VMHvVIEs™ activity in same mice in Ex. Data 1c during

observation of aggression.

Left: neural & behavioral raster of example mouse 1 during observation of aggression.

Right: example neurons.
Overview of rSLDS analysis.

Left: rSLDS time constants in example mouse 1. Right: Neural activity projected onto

two dimensions (x1 & x2) of dynamical system.

Behavior triggered average of x1 and x2 dimensions, aligned to introduction of male

intruder (n = 5 mice)
Behavior triggered average of x1 dimensions, aligned to first attack onset (n = 5 mice).

Left: rSLDS time constants in example mouse 1 during observation of aggression.

Right: Neural activity projected onto two dimensions (x1 & x2) of dynamical system.

Behavior triggered average of x1 and x2 dimensions from observation of aggression,

aligned to introduction of Balb-c into resident’s cage (n = 5 mice).

Behavior triggered average of x1 dimensions from observation of aggression, aligned

to first bout of watching attack (n = 5 mice).

. rSLDS time constants across mice engaging in aggression (n = 5 mice).

Line attractor score across mice engaging in aggression (n = 5 mice).
rSLDS time constants across mice during observation of aggression (n = 5 mice).

Line attractor score across mice during observation of aggression (n = 5 mice).

Extended Data 2 | Single cell comparison of integration neurons across conditions.

a.

b.

Single cell contribution of x1 dimension (rSLDS weights) from engaging in aggression

in example mouse.

Z-score activity of weighted neurons from Ex. Data 2a during engaging in aggression

from same mouse.
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c. Z-score activity of weighted neurons from Ex. Data 2a during observation of

aggression from same mouse.

d. Single cell contribution of x1 dimension (rSLDS weights) from observation of

aggression in example mouse.

e. Z-score activity of weighted neurons from Ex. Data 2d during engaging in aggression

from same mouse.

f. Z-score activity of weighted neurons from Ex. Data 2d during observation of

aggression from same mouse.

g. Overlap in neurons contributing to line attractor (x1) & x2 dimension from rSLDS
performing independently in engaging versus observing aggression. Left: Example

mouse, Right: Average across 5 mice.

Extended Data 3 | Interaction between dimensions and activation of random

neurons

a. Neural activity of five x1 neurons selected for grouped optogenetic perturbation during

observation of aggression.

b. Neural activity of same five x1 neurons in Ex. Data 3a during grouped optogenetic

activation.

c. Comparison of peak z-score of x1 neurons selected for grouped optogenetic activation

during observation of aggression and during optogenetic activation (n = 9 mice).

d. Paradigm for examining activity in x2 dimension upon grouped holographic activation

of x1 neurons.

e. Average z-score activity of neural activity projected onto x2 dimension across mice (n

= 8 mice).

f. Quantification of activity in unperturbed x2 dimension upon grouped holographic

activation of x1 neurons (n.s, n = 8 mice).

g. Paradigm for examining activity in x1 dimension upon grouped holographic activation

of x2 neurons.
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h. Average z-score activity of neural activity projected onto x1 dimension across mice (n

= 8 mice).

i. Quantification of activity in unperturbed x1 dimension upon grouped holographic

activation of x2 neurons (*p<0.05, n = 8 mice).

j. Effect of grouped holographic activation of randomly selected neurons on activated

neurons.

k. Average z-score activity of unperturbed x1 dimension upon activation of random

neurons (n = 5 mice).

|. Average z-score activity of unperturbed x2 dimension upon activation of random

neurons (n = 5 mice).

m. Left: Quantification of activity in unperturbed x1 dimension upon grouped holographic
activation of random neurons (n.s, n = 5 mice). Right: Comparison of grouped
activation of x1 neurons (green, reproduced from Fig. 2c, right) and grouped activation
of random neurons on activity of x1 dimension (black, reproduced from Ex. Data 3m,
left).

n. Quantification of activity in unperturbed x2 dimension upon grouped holographic

activation of random neurons (n.s, n = 5 mice).
Extended Data 4 | Deriving network time constant for model simulations

a. Analytical derivation of network time constant from connectivity matrix of purely

excitatory recurrent neural network.
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Methods
Mice

All experimental procedures involving the use of live mice, or their tissues were carried
out in accordance with NIH guidelines and were approved by the Institute Animal Care
and Use Committee and the Institute Biosafety Committee at the California Institute of
Technology (Caltech). All C57BL/6N (BI/6N) mice used in this study, including wild-type
and transgenic mice, were bred at Caltech. Swiss Webster (SW) male Residents and
BALB/c male intruder mice were bred at Caltech. Experimental BI/6N mice and resident
SW mice were used at the age of 8-20 weeks. Intruder BALB/c mice were used at the
age of 6-12 weeks and were maintained with three to five cage mates to reduce their
aggression. Esr1Cre/+ knock-in mice (Jackson Laboratory, stock no. 017911) were back-
crossed into the BI/6N background (>N10) and bred at Caltech. Heterozygous Esr1Cre/+
mice were used for cell-specific targeting experiments and were genotyped by PCR
analysis using genomic DNA from ear tissue. All mice were housed in ventilated micro-
isolator cages in a temperature-controlled environment (median temperature 23 °C,
humidity 60%), under a reversed 11/13-h dark/light cycle, with ad libitum access to food

and water. Mouse cages were changed weekly.
Viruses

The following adeno-associated viruses (AAVs), along with the supplier, injection titers
(in viral genome copies ml-1 (vg ml-1) and injection volumes (in nanoliters), were used
in this study: AAV1-syn-FLEX-jGCaMP7s-WPRE (Addgene, no. 104492, roughly 2 x 102
vgml-1, 200nl per injection), AAVdj- Ef1a-DIO-ChRmine-mScarlet-Kv2.1-WPRE

(Janelia Vector Core, around 2 x 10'2 vg ml—1, 200 nl per injection).
Histology

Following completion of 2-photon\miniscope experiments, histological verification of virus
expression and implant placement were performed on all mice. Mice lacking virus
expression or correct implant placement were excluded from the analysis. Mice were
perfused transcardially with 0.9% saline at room temperature, followed by 4%

paraformaldehyde (PFA) in 1x PBS. Brains were extracted and post-fixed in 4% PFA
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overnight at 4 °C, followed by 24 h in 30% sucrose/PBS at 4 °C. Brains were embedded
in OCT mounting medium, frozen on dry ice and stored at —-80 °C for subsequent
sectioning. Brains were sectioned in 80-um thickness on a cryostat (Leica Biosystems).
Sections were washed with 1x PBS and mounted on Superfrost slides, then incubated
for 30 min at room temperature in DAPI/PBS (0.5 pg/ml) for counterstaining, washed
again and coverslipped. Sections were imaged with epifluorescent microscope (Olympus
VS120).

Stereotaxic Surgeries

Surgeries were performed on sexually experienced adult male Esr1Cre/+mice aged 6—
12 weeks. Virus injection and implantation were performed as described previously??44,
Briefly, animals were anaesthetized with isoflurane (5%for induction and 1.5% for
maintenance) and placed on a stereotaxic frame (David Kopf Instruments). Virus was
injected into the target area using a pulled-glass capillary (World Precision Instruments)
and a pressure injector (Micro4 controller, World Precision Instruments), at a flow rate of
50 nl min-1. The glass capillary was left in place for 5 min following injection before
withdrawal. Stereotaxic injection coordinates were based on the Paxinos and Franklin
atlas*®. Virus injection: VMHvI, AP: -1.5, ML: £0.75, DV: -5.75. For 2-photon experiments
GRIN lenses (0.6 x 7.3 mm, Inscopix) were slowly lowered into the brain and fixed to the
skull with dental cement (Metabond, Parkell). Coordinates for GRIN lens implantation:
VMHvI: AP: -1.5, ML: -0.75, DV: -5.55). A permanent head-bar was attached to the skull
with Secure Resin cement (parkell). For micro-endoscope experiments an additional

baseplate was attached to the skull (Inscopix).
Housing conditions for behavioral experiments

All male BI/6N mice used in this study were socially and sexually experienced. Mice aged
8—-12 weeks were initially co-housed with a female BI/6N female mouse for 1 day and
were then screened for attack behaviors. Mice that showed attack towards males during
a 10 min resident intruder assay were selected for surgery and subsequent behavior
experiments. From this point forward, these male mice were always co-housed with a

female.
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Behavior annotations

Behavior videos were manually annotated using a custom MATLAB-based behavior
annotation interface*64”. A 'baseline' period of 5min when the animal was alone in its
home cage was recorded at the start of every recording session. Two behaviors during
the resident intruder assays were annotated: sniff (face, body, genital-directed sniffing)

towards male intruders, and attack (bite, lunge).
Behavioral assays

An observation arena was built from a transparent acrylic (18x 12.5x 18 cm, LxWxH),
and a perforated part was put in front of the mice observing aggression. Perforations were
1.27 cm diameter and spread evenly throughout the bottom third of the panel. Before
initiation of the assay, the observation arena was scattered with soiled bedding from the
cage of the aggressive SW demonstrator. For observation of aggression in freely
behaving animals (miniscope experiments) an observer was first habituates for 15
minutes. Then, a singly housed SW male demonstrator was introduced into the
observation arena, followed 1 min later with the insertion of a socially housed stimulus
male (BALB/c) in the same compartment. The observation of aggressive encounters
persisted for ~1 min, then after 2 minutes a different intruder was introduced for another
minute. Observation assays were conducted under white light illumination. For
experiments in engaging aggression, the resident mouse was first habituated 15 minutes
then a BALB/c intruder mouse was introduced twice for 1-2 minutes. For the experiments
comparing neural activity of mice observing aggression and mice engaging aggression,
we randomly changed the order of sessions. For mice observing aggression in the 2P
setup similar the approach was similar except that the observer mouse was head-fixed

and on a treadmill instead of freely behaving in his home cage.
Micro-endoscopic imaging

On the day of imaging, mice were habituated for at least 15 min after installation of the
miniscope in their home cage before the start of the behavior tests. Imaging data were
acquired at 30 Hz with 2x spatial downsampling; light-emitting diode power (0.1-0.5) and

gain (1-7x) were adjusted depending on the brightness of GCaMP expression as
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determined by the image histogram according to the user manual. A transistor—transistor
logic (TTL) pulse from the Sync port of the data acquisition box (DAQ, Inscopix) was used

for synchronous triggering of StreamPix7 (Norpix) for video recording.
2-photon imaging and holographic optogenetics

Two to three weeks after surgery mice were habituated to the experimenter's hand by
handling 15 minutes a day for three consecutive days. Once animals where habituated to
the experimenter’s hand, they were manually scooped and gently placed on the treadmill.
Mice were head-fixation 3 consecutive days for habituation. Head-fixation was achieved
by securing the head bar into a metal clamp attached to a custom head-stage. During
habituation, mice were placed underneath the objective for 15 minutes and given access
to random presentations of chocolate milk. Following habituation, combined two-photon
imaging and behavior sessions were conducted. [GCaMP7s imaging was acquired via an
Ultima 2P Plus and the Prairie View Software (Bruker Fluorescence Microscopy, USA).
Individual frames were acquired at 10Hz using a galvo-resonant scanner with a resolution
of 1024px x 1024px. We used a long working distance 20x air objective designed for
infrared wavelengths (Olympus, LCPLN20XIR, 0.45 numerical aperture (NA), 8.3mm

working distance) combined with femtosecond-pulsed laser beam (Chameleon

Discovery, Coherent). GCaMP was excited using a 920nm wavelength. For targeted
photostimulation, the same microscope and acquisition system (Bruker) was used with a
second laser path consisting of a 1035nm high power femtosecond pulsed laser (Monaco
1035-40-40, Coherent), spatial light modulator (512x512-pixel density) to generate multi-
point stimulation montages (NeuraLight 3D, Bruker).. Neurons were selected for targeted
photostimulation based on their weights from the rSLDS model. During the
photostimulation sessiona 128-frame average image was generated in order to clearly
highlight all neurons. Using the spiral stimulation targets (10pym diameter) were manually
placed on top of GCaMP expressing neurons. Laser power was adjusted to be 1.5-5.5mW
of stimulation per target. We used prairie software elicit holographic photostimulation
(10hz, 2s, 10ms pulse width). Photostimulations were done between frames to avoid laser
artefacts. Importantly, to reduce cross activation of the ChRmine from the 920nm laser

we kept laser power for imaging to be less than 30mW.
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To extract regions of interest, data from mice observing aggression was uploaded to
Imaged. Then, videos were motion corrected using the moco plugin*®. Motion corrected
videos were averaged, and additional contrast and brightness adjustments were made to
clearly highlight all neurons in the field of view. Then cells were manually extracted and
an rSLDS model was used to identify x1 and x2 dimension neurons. Neurons were then
identified on the field of view using the prairie view software and were targeted for photo-
stimulation. While rSLDS models was running (15-20 minutes, see below), control

experiments were conducted.
Micro-endoscopic data extraction
Preprocessing

Miniscope data were acquired using the Inscopix Data Acquisition Software as
2x downsampled .isxd files. Preprocessing and motion correction were performed using
Inscopix Data Processing Software. Briefly, raw imaging data were cropped,
2x downsampled, median filtered and motion corrected. A spatial band-pass filter was
then applied to remove out-of-focus background. Filtered imaging data were temporally

downsampled to 10 Hz and exported as a .tiff image stack.
Calcium data extraction

After preprocessing, calcium traces were extracted and deconvolved using the CNMF-
E*° large data pipeline with the following parameters: patch_dims=[4], gSig=3,
gSiz=13, ring_radius=17, min_corr=0.7, min_pnr=8. The spatial and temporal
components of every extracted unit were carefully inspected manually (SNR, PNR, size,
motion artefacts, decay kinetics and so on) and outliers (obvious deviations from the

normal distribution) were discarded.
Dynamical system models of neural data

Recurrent-switching linear dynamical system (rSLDS) models'®?° are fit to neural data as
previously described'. Briefly, rSLDS is a generative state-space model that
decomposes non-linear time series data into a set of discrete states, each with simple

linear dynamics. The model describes three sets of variables: a set of discrete states (z),
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a set of latent factors (x) that captures the low-dimensional nature of neural activity, and
the activity of recorded neurons (y). While the model can also allow for the incorporation
of external inputs based on behavior features, such external inputs were not included in

our first analysis.

The model is formulated as follows: At each timepoint, there is a discrete state z, €

{1, ..., K} that depends recurrently on the continuous latent factors (x) as follows:
P(Zey1 | 2z = k, x;) = softmax{Ryx; + 13} (1)

where R;, € R¥*X and r, € RX parameterizes a map from the previous discrete state and
continuous state to a distribution over the next discrete states using a softmax link
function. The discrete state z; determines the linear dynamical system used to generate

the latent factors at any time t:

Xe = Az X1 +by, + € (2)

where 4, € R%*? is a dynamics matrix and b, € R” is a bias vector, where D is the
dimensionality of the latent space and ¢, ~ N(0, Q,,) is a Gaussian-distributed noise (aka

innovation) term.

Lastly, we can recover the activity of recorded neurons by modelling activity as a linear

noisy Gaussian observation y, € RY where N is the number of recorded neurons:
yt = Cxt + d + 5t (3)

For ¢ € R¥*P and 6, ~ N(0,S), a Gaussian noise term. Overall, the system parameters
that rSLDS needs to learn consists of the state transition dynamics, library of linear

dynamical system matrices and neuron-specific emission parameters, which we write as:
6 = {{Axby, Q, Ri, 1ic}ie=1, €, d, S}

We evaluate model performance using both the evidence lower bound (ELBO) and the
forward simulation accuracy (FSA) (Fig. 3a) described in Nair et al., 2023'° as well as by

calculating the variance explained by the model on data.
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We employed two-dimensional models, selecting the optimal number of states through 5-
fold cross-validation. To ascertain which neurons contributed to each of the two model
dimensions (x1 and x2), we initially confirmed the orthogonality of these dimensions by
computing the subspace angle between them, (88.1 £ 0. 87°, n = 9 mice). Given this near
orthogonality, we then utilized the columns of the emission matrix C to identify neurons

that contributed to the two separate dimensions of the model.
Estimation of time constants

We estimated the time constant of each dimension of linear dynamical systems using

eigenvalues 1, of the dynamics matrix of that system, derived previously as®:

1
Tg = |T—5<
“ |10g(|/1al)
Calculation of line attractor score

To provide a quantitative measure of the presence of line attractor dynamics, we devised

a line attractor score as defined in Nair et al., 2023 as:

tn

line attractor score = log,
n-1

where t,, is the largest time constant of the dynamics matrix of a dynamical system and

t,—, is the second largest time constant.
Calculation of auto-correlation half-width

We computed autocorrelation halfwidths by calculating the autocorrelation function for
each neuron timeseries data (yt) for a set of lags as described previously'. Briefly, for a
time series (yt), the autocorrelation for lag k is:

Ck
Co

Ty =

where ¢, is defined as:

T—k

1 _ _

Ce =7 Z Ot = V) Otsk —¥)
t=1
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and ¢, is the sample variance of the data.
Mechanistic modelling

We constructed a model population of N = 1,000 standard current-based leaky integrate-
and-fire neurons as previously performed??36. We first modelled a purely excitatory
spiking network in which each neuron has membrane potential x; characterized by

dynamics:

dx;
Tm—t = —x(0) + gT) Wpi () + wis(t)
where 7, = 20ms is the membrane time constant, 7 is the synaptic weight matrix, s is
an input term representing external inputs and p represents recurrent inputs. To model
spiking, we set a threshold (6 = 0.1), such that when the membrane potential x;(t) > 6,

x;(t) is set to zero and the instantaneous spiking rate r;(t) is set to 1.

Spiking-evoked input was modelled as a synaptic current with dynamics:

dpi
Tsd_i = —p;(t) + (2,

where 7, is the synaptic conductance time constant. In excitatory networks, the network
Ts

time constant t,, was derived as
[1-Amaxl

, Where 1,,., is the largest eigenvalue of the

synaptic weight matrix w34,

We designed the synaptic connectivity matrix to include a subnetwork of 200 neurons
(20% of the network), designated the integration subnetwork as suggested by empirical

measurements, with varying densities of random connectivity as highlighted in Fig 3.
Weights of the overall network were sampled from a uniform distribution:W;; ~ U(0,1/VN),

while weights of the subnetwork were sampled as W;;~ U(0,1/,/N,), where N,, = 200.

External input was provided to the network as a smoothened step function consisting of
four pulses at 20 ISI as provided in vivo. This stimulus drove a random 25% of neurons

in the network.

To account for finite size effects and runaway excitation in networks, we also simulated

models with fast feedback inhibition. This was modelled as recurrent inhibition from a
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single graded input I;,,;, representing an inhibitory population that receives equal input

from and provides equal input to, all excitatory units. The dynamics of I;,;, evolves as:

di; 1
TI# = —linn(t) + ;Zﬁﬂ v (8,

where t; = 50ms is the decay time constant for inhibitory currents. In this model, outside

spiking events, the membrane potential evolved as:

dx;
Tm—t = = x(6) + g Wpi(6) = Ginnlinn () + wis ()
Model dynamics were simulated in discrete time using Euler's method with a timestep of
1ms and a small gaussian noise term n;~N(0,1)/5 was added at each time step. We used
g = 1 and varied g;,» = 1,5,10 as suggested by measurements of inhibitory input to
VMHVI®E,

Statistical analysis

Data were processed and analyzed using Python, MATLAB, and GraphPad (GraphPad
PRISM 9). All data were analyzed using two-tailed non-parametric tests. Mann-Whitney
test were used for binary paired samples. Friedman test was used for non-binary paired
samples. Kolmogorov-Smirnov test was used for non-paired samples. Multiple
comparisons were corrected with Dunn’s multiple comparisons correction. Not significant
(n.s), p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 1: Attractor dynamics in head-fixed mice observing aggression
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activation of single neurons reveals functional connectivity among x, dimension but not x, dimension neurons
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Figure 3: Neural implementation of a line attractor guided by functional connectivity
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the strength of functional connectivity correlates with the stability and decay of the line attractor
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Ex. Figure 1: Shared line attractor dynamics in engaging and observing aggression
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