

1 **Treatment with Metal-Organic Frameworks (MOFs) elicits secondary**
2 **metabolite accumulation in *Aquilaria crassna* (Agarwood) callus culture**

3

4 Sebastian Overmans^{1*}, Yazan Alflayyeh^{1,2}, Sergio Gutiérrez¹, Yousef Aldlaigan²,
5 Kyle J. Lauersen^{1*}

6

7 ¹ Bioengineering Program, Biological and Environmental Sciences and Engineering Division,
8 King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Kingdom of
9 Saudi Arabia

10 ² Plant Tissue Culture & Biotechnology Center, Ministry of Environment Water and Agriculture
11 of Saudi Arabia (MEWA). P.O.Box 11195, Riyadh, Kingdom of Saudi Arabia

12

13 * Co-corresponding authors: sebastian.overmans@kaust.edu.sa,
14 kyle.lauersen@kaust.edu.sa

15

16

17 ORCID

18 Sebastian Overmans: [0000-0003-3462-6629](https://orcid.org/0000-0003-3462-6629)

19 Yazan Alflayyeh: [0009-0009-4650-7070](https://orcid.org/0009-0009-4650-7070)

20 Sergio Gutiérrez: [0000-0002-4374-0645](https://orcid.org/0000-0002-4374-0645)

21 Kyle J. Lauersen: [0000-0002-5538-7201](https://orcid.org/0000-0002-5538-7201)

22 **Abstract**

23 Thymelaceaous trees are prized for accumulating fragrant resins composed of
24 hundreds of secondary metabolites in their woody tissues. Slow growth and increasing
25 consumer demand have stretched natural sources of agarwood trees to being
26 endangered and alternative production modes, including silviculture and tissue
27 culture, are currently being investigated. Dediifferentiated tissue culture of agarwood
28 trees provides a means of cell propagation independent of environmental context.
29 However, secondary metabolite accumulation, as found in fragrant resins, occurs
30 largely in response to wounding. Here, we investigated the application of metal-
31 organic frameworks (MOFs) as potential elicitors of secondary metabolite formation in
32 *Aquilaria crassna* tissue culture samples. Callus cultures were exposed to five
33 commercially available MOFs: UiO-67, MOF-808, HKUST-1, ZIF-67, and MOF-74,
34 and ethanol extracts were used to quantify secondary metabolite accumulation
35 compared to untreated cultures. Samples that were exposed to Zr-based MOFs
36 exhibited similar metabolite production profiles, (trans-2-Carboxy-cyclo-hexyl)-acetic
37 acid was reduced in the presence of all MOFs, the Cu-containing HKUST-1 MOF
38 increased palmitic acid levels, and MOF-808 and ZIF-67 were found to elicit the
39 highest accumulation of secondary metabolites with potential fragrance applications.
40 These results demonstrate the possibility of eliciting secondary metabolites from
41 dedifferentiated agarwood tree cell culture and may provide an alternative means of
42 sourcing fragrant specialty chemicals from these plants.

43

44 **Keywords:** Agarwood, *Aquilaria crassna*, Metal-Organic Frameworks (MOFs), plant
45 callus, tissue culture, secondary metabolites, sustainability

46 1 Introduction

47 *Aquilaria* sp. and other trees belonging to the family Thymelaeaceae are of high
48 economic and cultural value due to the aromatic resin produced within their
49 heartwoods after wounding (Hishamuddin *et al.*, 2019). Their resinous fragrant wood,
50 'agarwood', is extensively used in fragrances, traditional medicine, and as incense
51 across various cultures (López-Sampson and Page, 2018; Shivanand *et al.*, 2022).
52 The formation of agarwood involves accumulating a variety of secondary metabolites
53 produced in response to stressors, such as physical injury or microbial infection (Ma
54 *et al.*, 2023; Shivanand *et al.*, 2022). These metabolites comprise a broad spectrum
55 of chemicals, including sesquiterpenoids, 2-(2-phenylethyl)chromones (PECs),
56 alkaloids, flavonoids, phenolic acids, and triterpenoids among others. These
57 compounds collectively create the unique aromatic and therapeutic properties of
58 agarwood (Gao *et al.*, 2019; Gutiérrez *et al.*, 2024b; He *et al.*, 2022).
59 Global demand for agarwood resin has been increasing, with first-grade samples
60 costing as much as US\$ 100,000 per kilogram (Lee and Mohamed, 2016), while
61 natural reserves are strained due to the slow growth of the trees and inconsistent
62 localized resin accumulation around points of wounding. Recent reports show that
63 demand for agarwood has outpaced the supply of natural resources to the point that
64 the Convention on International Trade in Endangered Species of Wild Fauna and Flora
65 (CITES) has declared *Aquilaria* spp. as potentially threatened with extinction (CITES,
66 2024). Exploration of alternative and more sustainable methods to produce *Aquilaria*
67 secondary metabolites is needed (Gutiérrez *et al.*, 2024b; Shivanand *et al.*, 2022).
68 Various methodologies have been deployed to artificially induce controlled resin
69 formation in agarwood trees (Tan *et al.*, 2019). One approach involves using callus
70 cultures derived from *Aquilaria* sp. shoot segments. When subjected to abiotic stress,

71 these cultures have been observed to exhibit an enhanced production of aromatic
72 terpenoids (Zhang *et al.*, 2021). Various techniques, such as the application of methyl
73 jasmonate, mechanical wounding, and fungal inoculation, have been tested for their
74 potential to induce the requisite stress in plant tissues, with variable outcomes
75 (Ngadiran *et al.*, 2023; Tan *et al.*, 2019; Zang *et al.*, 2016).
76 An approach that has gained attention in recent years is the use of Metal-Organic
77 Frameworks (MOFs). MOFs are crystalline materials composed of metal ions or
78 clusters interconnected by organic ligands that form porous structures and have many
79 applications (James, 2003), such as controlled chemical release (Chauhan *et al.*,
80 2022; Rojas *et al.*, 2022; Wang *et al.*, 2023). MOFs have large surface areas, high
81 porosities, and tunable chemical properties, and are used in diverse fields, including
82 agriculture, gas storage, catalysis, and drug delivery (Abdelhameed *et al.*, 2019;
83 Niknam *et al.*, 2018; Rojas *et al.*, 2022; Zhou *et al.*, 2012). In living organisms, MOFs
84 can act as nanoparticles that physically interact with cells and consequently can elicit
85 stress responses (Al-Rehili *et al.*, 2019; Chauhan *et al.*, 2022; Guan *et al.*, 2021; Hu
86 *et al.*, 2024; Rojas *et al.*, 2022).
87 Here, we aim to evaluate the ability of MOFs to induce abiotic stress in *Aquilaria*
88 *crassna* callus samples, and determine their efficacy in eliciting secondary metabolite
89 accumulation typically observed following physical wounding of mature tree tissue.
90 Five different commercially available MOFs were tested at various concentrations, and
91 changes in the metabolite profiles of *A. crassna* callus samples following MOF
92 application were analyzed. Overall, we observed specific differences in the secondary
93 metabolite production dependent on the type and concentration of MOF. The results
94 presented here highlight the high potential of metal-organic frameworks to potentially

95 offer a new avenue to source agarwood secondary metabolites sustainably from cell

96 cultures rather than mature trees.

97

98 **2 Materials and Methods**

99 **2.1 Media and plant growth regulators (PGRs) for callus induction and**
100 **proliferation**

101 The initial *Aquilaria crassna* plant material was provided by the Ministry of
102 Environment, Water, and Agriculture (MEWA) in Saudi Arabia as *in vitro* cultures.
103 Callus cultures were induced from shoot segments, using a modified MS medium
104 based on the formulation by Murashige and Skoog (Murashige and Skoog, 1962). To
105 initiate callus formation and proliferation, the medium was enriched with 3% sucrose,
106 0.6% agar, 2.2 μ M of 2,4-dichloro phenoxy acetic acid (Sigma-Aldrich, St. Louis, USA),
107 and 2.3 μ M of 6-benzyl amino purine (Sigma-Aldrich, St. Louis, USA) (Fig. 1). These
108 specific plant growth regulators (PGRs) are known to be pivotal for plant cell
109 differentiation and growth (Di Mambro *et al.*, 2017; Gaba, 2005; Sabagh *et al.*, 2021),
110 and have been used for callus induction and proliferation in various plant species,
111 including those belonging to the genus *Aquilaria* (Jayaraman *et al.*, 2014; Qinying *et*
112 *al.*, 2001). To provide a suitable environment for growth and development, all callus
113 cultures were incubated at 25 ± 1 °C in darkness for 8 weeks before being used for
114 subsequent experiments.

115

116 **2.2 Determination of suitable solvent for *Aquilaria* metabolite extraction**

117 Before extracting the metabolites from MOF-treated callus samples, a preliminary
118 experiment was conducted to identify the most suitable solvent, characterized by a
119 high extraction efficiency and low GC-MS background signal. Approximately 500 mg
120 of dried and ground *Aquilaria* wood sample was weighed and transferred into each of
121 nine individual microcentrifuge tubes to which 1 mL of one of the following nine
122 solvents was added: methanol, 96% ethanol, acetone, dichloromethane (all from VWR

123 International, Fontenay-sous-Bois, France), n-hexane (Acros Organics, Geel,
124 Belgium), n-dodecane, tetrahydrofuran (both from Sigma-Aldrich, St. Louis, USA), and
125 the two perfluorocarbons FC-770 (Fluorochem, Glossop, UK) and FC-3283 (Acros
126 Organics, Geel, Belgium). The mixtures of wood samples and solvents were briefly
127 vortexed and then shaken at 200 rpm for 2 h at room temperature to facilitate the
128 extraction of metabolites. Afterward, the samples were centrifuged at 8000 x g for
129 15 min to separate all solids from the liquid phase. 150 µL of each supernatant was
130 transferred into a separate amber GC glass vial. The supernatants and blanks of each
131 extraction solvent were analyzed on a gas chromatograph as described below.

132

133 **2.3 Abiotic stress induction in callus cultures using MOFs**

134 To simulate the natural wounding in Aquilaria trees that triggers the production of
135 specialty metabolites, we induced abiotic stress in the callus cultures through
136 exposure to five distinct MOFs (UiO-67, MOF-808, HKUST-1, ZIF-67, MOF-74) that
137 were synthesized at and provided by King Fahd University of Petroleum and Minerals
138 (Dhahran, Saudi Arabia) (Table 1). The selection of these MOFs was based on their
139 commercial availability, varying pore sizes, stability, and chemical functionalities which
140 we postulated could influence the extent of abiotic stress induced in the callus cultures.
141 To address the low solubility of MOFs, firstly slurries were prepared before
142 suspensions of each MOF were prepared at varying concentrations in distilled water
143 (10–40 g L⁻¹) (see Table 1), and autoclaved before further use (Fig. 1).

144 Four replicates of 8-week-old callus samples (n=4) were immersed in the MOF slurry,
145 maintaining homogeneity through continuous shaking. All tools and containers were
146 sterilized, and the procedure was conducted under aseptic conditions in a laminar flow
147 hood. After immersion, the cultures were transferred onto solidified MS medium in

148 Petri dishes and incubated in darkness at $25 \pm 1^\circ\text{C}$ for an additional 8 weeks to
149 facilitate their growth and development (Fig. 1).

150

151 **2.4 Callus recovery and processing for metabolite analysis**

152 After 8 weeks of cultivation, the petri dishes were photographed (Fig. 2), and the callus
153 samples were recovered to assess the impacts the MOFs had on their growth and
154 metabolite production. From each of the four replicate calluses per treatment (n=4),
155 one sample of approximately 150 mg wet weight was cut, weighed, and immersed in
156 1 mL of 96% ethanol. To ensure an efficient extraction of metabolites, the mixtures
157 were agitated at 200 rpm for 8 h. Subsequently, the suspensions were centrifuged at
158 8000 x g for 15 min to segregate the liquid phases from the solid residues. 150 μL of
159 each supernatant was pipetted into amber glass vials for further GC-MS analysis.

160

161 **2.5 Gas chromatography-mass spectrometry (GC-MS) analysis**

162 All solvent samples were analyzed using an Agilent 7890A gas chromatograph (GC)
163 coupled with a 5975C mass spectrometer (MS) with a triple-axis detector (Agilent
164 Technologies, USA). The GC was equipped with a DB-5MS column (Agilent J&W,
165 USA), with helium as the carrier gas at a flow rate of 1 mL per min. A previously
166 described GC oven temperature protocol was used (Overmans and Lauersen, 2022).
167 The analysis was conducted using a splitless injection to ensure maximum sensitivity.
168 After a 13-min solvent delay, mass spectra were recorded across a scanning range of
169 50–750 m/z at a rate of 20 scans per second.

170 Chromatograms were processed and integrated using the MassHunter Workstation
171 software v. B.08.00 (Agilent Technologies, USA). Metabolites were identified by
172 comparing mass spectra against the National Institute of Standards and Technology

173 (NIST) library (Gaithersburg, MD, USA), and standard mixtures of terpenoids were
174 used as internal quality controls for the analysis. The peak areas of metabolites were
175 normalized to the respective sample weight to account for variations in sample size.
176 All GC-MS measurements were performed in technical duplicates (n=2), with manual
177 verification of chromatograms conducted for quality control.

178

179 **2.6 Data analysis**

180 All data analyses and visualizations were performed using JMP version 16 (SAS
181 Institute Inc, NC, USA) and GraphPad Prism v. 10 (GraphPad Software, MA, USA).
182 Callus photographs were processed and white-balance corrected using Affinity Photo
183 v. 1.10.6 (Serif Ltd., West Bridgford, UK). Visual elements were organized and
184 harmonized using Affinity Publisher v. 1.10.6 (Serif Ltd., West Bridgford, UK).

185 **3 Results & Discussion**

186 **3.1 Optimum solvent for extraction of *Aquilaria* metabolites**

187 Before extracting metabolites from the MOF-treated callus samples, a preliminary
188 experiment using dried agarwood was conducted to ascertain the most efficient
189 extraction solvent. The optimum solvent was characterized by high extraction
190 efficiency and minimal GC signal interference at the retention times of the target
191 compounds. Within the retention time range of 14–26 min, where the compounds of
192 interest were expected, 5 solvents: dichloromethane (DCM), dodecane, FC-770,
193 hexane, and tetrahydrofuran (THF) exhibited many background peaks (Fig. 3),
194 rendering them unsuitable for subsequent metabolite extraction due to the
195 complication in identifying target compounds. Among the remaining 4 solvents, FC-
196 3283 demonstrated inefficient metabolite extraction from agarwood, as evidenced by
197 the low diversity and amounts of compounds in the solvent extracts. The relatively
198 lower extraction efficiency of FC-3283 compared to traditional alkanes such as
199 dodecane has recently been discussed (Gutiérrez *et al.*, 2024a; Overmans and
200 Lauersen, 2022). Comparative analysis of chromatograms from acetone, ethanol, and
201 methanol extracts revealed similar profiles between those solvents. Overall, ethanol
202 was identified as the most suitable solvent for further experiments based on its
203 superior efficiency in extracting a diverse and abundant range of agarwood-derived
204 metabolites, as observed from the chromatograms (Fig. 3). This finding is in line with
205 a recent microalgae study in which ethanol was also used as the final solvent to
206 capture terpenoid metabolites typically produced by *Aquilaria* sp. (Gutiérrez *et al.*,
207 2024b). Acetone extracted approximately the same quantities of metabolites as
208 ethanol but was not used for further experiments because it is considered more
209 hazardous and corrosive than ethanol (de Jesus and Filho, 2020; Zou *et al.*, 2021).

210

211 **3.2 Effect of MOF exposure on secondary metabolite production in *Aquilaria***
212 **callus cultures**

213 Exploring the use of metal-organic frameworks (MOFs) to enhance secondary
214 metabolite production in *Aquilaria* species revealed varied effects based on the
215 specific MOF type used. Overall, the MOFs UiO-67 and UiO-74 were found to be less
216 effective in inducing the production of secondary metabolites (Fig. 4). In contrast,
217 exposure to MOFs 808 and ZIF-67 resulted in the highest production of secondary
218 metabolites (Fig. 4). These findings are in agreement with previous studies
219 demonstrating that exogenous metals can significantly alter plant metabolite profiles
220 under stress conditions (Liu *et al.*, 2024; Parwez *et al.*, 2023; Yang *et al.*, 2024).

221 Secondary metabolites with applications in consumer fragrance products such as
222 aristoline, geranyl isovalerate, and juniperol were not at all present in the experimental
223 controls although were detected in some MOF-treated samples (Fig. 5a). The same
224 was observed for the lactone 4-octylbutan-4-olide and pipradrol, which were both only
225 produced by the callus samples following treatment with any MOF. Pipradrol and its
226 derivatives have been studied intensively for their pharmacological potential (Liechti
227 *et al.*, 2014), as they are proposed to enhance neurotransmitters like dopamine and
228 norepinephrine in the brain (White and Archer, 2013).

229 Other high-value compounds, including the terpenoids spathulenol, longicamphor,
230 valencane, and longipinane were present at low concentrations in untreated callus
231 samples. However, exposure to MOFs resulted in concentration increases of up to 10-
232 fold as in the case of longipinane when callus was treated with MOF-808 (Fig 5a).
233 The presence of any MOF led to a reduction in trans-2-carboxycyclohexyl-acetic acid
234 (Fig. 5b). While its potential application remains unclear, this compound has been

235 identified in various studies, notably in the context of natural products and their
236 biological activities. For instance, this chemical has been recognized as a significant
237 component of fractions derived from the bark of the tropical tree *Alstonia boonei*, which
238 is has been investigated for its anti-obesity and anti-lipolytic effects (Anyanwu *et al.*,
239 2018).

240 The MOF HKUST-1, which contains copper as the metal base, greatly enhanced the
241 production of palmitic acid by up to 4-fold compared to controls (Fig. 5b). Palmitic acid
242 is a major component of agarwood (Aqmarina Nasution *et al.*, 2020; Ogita *et al.*, 2015;
243 Wang *et al.*, 2018). An elevated production of this compound indicates the onset of a
244 defense mechanisms involving increased formation of free fatty acids that can trigger
245 oxidative burst and fatty acid oxidation cascades in response to an external stressors
246 (Sen *et al.*, 2017).

247 Samples exposed to MOFs UiO-67 and MOF-808 which contain zirconium exhibited
248 similar metabolite production profiles (Fig. 4; Fig. 5). This metal has no essential
249 functions in plant metabolism and is generally considered to be of low toxicity (Shahid
250 *et al.*, 2013). However, it has been reported that zirconium can reduce the growth of
251 wheat plants and affect their enzyme activity (Fodor *et al.*, 2005), which may explain
252 why callus samples treated with MOFs containing this metal exhibited a perturbed
253 metabolite profile here.

254 We observed no clear trend across MOFs or compounds with regards to the effect of
255 MOF concentration on secondary metabolite production. However, secondary
256 metabolite accumulations were strongly dependent on MOF type and their applied
257 concentration. For example, palmitic acid and valencene decreased with increasing
258 concentrations of UiO-67 and MOF-808 (Zr-based), whereas with MOF-74 (Mn-based)
259 and ZIF-67 (Co-based), more valencene was produced at higher MOF concentrations

260 (Fig. 5a). However, this pattern of gradual changes in production with increasing
261 concentration is not consistent across all compounds. For some secondary
262 metabolites, their production was highest at intermediate MOF concentrations. This
263 finding indicates MOF type and concentration need to be carefully selected to
264 maximize the production of a given target compound without leading to callus
265 senescence.

266

267 **3.3 Conclusion**

268 The use of MOFs for the production of secondary metabolites from the callus of
269 *Aquilaria* sp. presents a promising avenue for future research. Systematic empirical
270 testing of MOFs with *Aquilaria* sp callus and its subsequent metabolite analysis can
271 enable stress-elicitation to obtain valuable compounds from this plant. However,
272 whether this process could be effectively scaled to produce consumer products, like
273 fragrances, remains to be seen. This approach could help improve the sustainability
274 the consumer fragrance industry but also holds potential for applications in
275 pharmaceuticals, agriculture, and other industries requiring plant-derived compounds.

276 **Author contributions**

277 Y ALF performed the experiments, contributed to the research planning, experimental
278 design, data collection and visualization, formal analysis, and reviewed the
279 manuscript. SO and SG contributed to the research planning, experimental design,
280 GC-MS analysis, and data visualization, and wrote the original manuscript draft. The
281 research was conducted in the laboratories of Y ALD and KJL, who were responsible
282 for experimental design, project scope, funding acquisition, supervision, and revision
283 of the manuscript. All authors have read and approved the final manuscript version.

284

285 **Declaration of Competing Interest**

286 The authors declare that the research was conducted without any commercial or
287 financial relationships that could be construed as a potential conflict of interest.

288

289 **Acknowledgments**

290 The authors would like to thank Sultan Al Gethami & Dr. Ko Chien Ying at the Plant
291 Tissue Culture & Biotechnology Center for their assistance with the cultivation of plant
292 material, and Islam Tayeb at KFUPM for synthesizing the MOFs used in this study.
293 The research reported in this publication was supported by KAUST baseline funding
294 awarded to Kyle Lauersen, and through financial support from the Saudi Ministry of
295 Environment Water & Agriculture (MEWA). Yazan Alflayyeh's research stay at the
296 Saudi Ministry of Environment Water & Agriculture (MEWA) was organized by King
297 Abdulaziz and His Companions Foundation for Giftedness and Creativity (Mawhiba).

298

References

299 Abdelhameed, R.M., Abdelhameed, R.E., Kamel, H.A. (2019) Iron-based metal-organic-
300 frameworks as fertilizers for hydroponically grown *Phaseolus vulgaris*. *Materials*
301 *Letters*, 237, 72-79. <https://doi.org/10.1016/j.matlet.2018.11.072>

302 Al-Rehili, S., Alyami, M., Zhang, Y., Moosa, B., Yang, P., Alamoudi, K., Alharbi, S., Alharbi,
303 O., Sougrat, R., AlMalik, A. (2019) Self-Assembled Metal-Organic Complexes for
304 Thermally Reversible Permeabilization of Cell Membranes. *ACS Applied Bio*
305 *Materials*, 2, 970-974. <https://doi.org/10.1021/acsabm.8b00720>

306 Anyanwu, G.O., Onyeneke, C.E., Iqbal, J., Ejaz, S.A., Zaib, S., Rauf, K., Rehman, N.U.
307 (2018) In vitro Antibesity Activities and In vivo Anti-Lipolytic Effect of *Alstonia boonei*
308 Stem Bark Fraction. *Proceedings for Annual Meeting of The Japanese*
309 *Pharmacological Society*, WCP2018, PO4-8-3.
310 <https://doi.org/10.1254/ipssuppl.WCP2018.0.PO4-8-3>

311 Aqmarina Nasution, A., Siregar, U.J., Miftahudin, Turjaman, M. (2020) Identification of
312 chemical compounds in agarwood-producing species *Aquilaria malaccensis* and
313 *Gyrinops versteegii*. *Journal of Forestry Research*, 31, 1371-1380.
314 <https://doi.org/10.1007/s11676-018-00875-9>

315 Chauhan, D., Omar, R.A., Mangalaraja, R., Ashfaq, M., Talreja, N. (2022) Metal-organic
316 framework as an emerging material: a novel plant growth stimulant, Nanotechnology-
317 based sustainable alternatives for the management of plant diseases. Elsevier, pp.
318 323-339.

319 CITES (2024) Convention on International Trade in Endangered Species of Wild Fauna and
320 Flora: Appendices I, II, III. UNEP, Geneva, Switzerland.
321 <https://cites.org/eng/app/appendices.php>

322 de Jesus, S.S., Filho, R.M. (2020) Recent advances in lipid extraction using green solvents.
323 *Renewable and Sustainable Energy Reviews*, 133, 110289.
324 <https://doi.org/10.1016/j.rser.2020.110289>

325 Di Mambro, R., De Ruvo, M., Pacifici, E., Salvi, E., Sozzani, R., Benfey, P.N., Busch, W.,
326 Novak, O., Ljung, K., Di Paola, L., Maree, A.F.M., Costantino, P., Grieneisen, V.A.,
327 Sabatini, S. (2017) Auxin minimum triggers the developmental switch from cell
328 division to cell differentiation in the *Arabidopsis* root. *Proc Natl Acad Sci U S A*, 114,
329 E7641-E7649. <https://doi.org/10.1073/pnas.1705833114>

330 Fodor, M., Hegedüs, A., Stefanovits-Bányai, E. (2005) Zirconium induced physiological
331 alterations in wheat seedlings. *Biologia Plantarum*, 49, 633-636.
332 <https://doi.org/10.1007/s10535-005-0065-y>

333 Gaba, V.P. (2005) Plant growth regulators in plant tissue culture and development, in:
334 Trigiano, R.N., Gray, D.J. (Eds.), *Plant Development and Biotechnology*. CRC Press,
335 Boca Raton, USA, pp. 87-99.

336 Gao, M., Han, X., Sun, Y., Chen, H., Yang, Y., Liu, Y., Meng, H., Gao, Z., Xu, Y., Zhang, Z.,
337 Han, J. (2019) Overview of sesquiterpenes and chromones of agarwood originating
338 from four main species of the genus *Aquilaria*. *RSC Adv*, 9, 4113-4130.
339 <https://doi.org/10.1039/c8ra09409h>

340 Guan, X., Li, Q., Maimaiti, T., Lan, S., Ouyang, P., Ouyang, B., Wu, X., Yang, S.-T. (2021)
341 Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea
342 seedlings. *Journal of Hazardous Materials*, 409, 124521.
343 <https://doi.org/10.1016/j.jhazmat.2020.124521>

344 Gutiérrez, S., Overmans, S., Wellman, G., Lauersen, K.J. (2024a) Compartmentalized
345 sesquiterpenoid biosynthesis and functionalization in the *Chlamydomonas reinhardtii*
346 plastid. *bioRxiv*. <https://doi.org/10.1101/2024.08.21.608953>

347 Gutiérrez, S., Overmans, S., Wellman, G.B., Samaras, V.G., Oviedo, C., Gede, M., Szekely,
348 G., Lauersen, K.J. (2024b) A synthetic biology and green bioprocess approach to
349 recreate agarwood sesquiterpenoid mixtures. *Green Chemistry*, 26, 2577-2591.
350 <https://doi.org/10.1039/d3gc03708h>

351 He, D., Dong, W.H., Li, W., Yang, L., Yuan, J.Z., Gai, C.J., Cai, C.H., Dai, H.F., Wang, H.,
352 Mei, W.L. (2022) LC-MS-guided isolation of 2-(2-phenylethyl)chromone dimers from
353 red soil agarwood of *Aquilaria crassna*. *Fitoterapia*, 158, 105162.
354 <https://doi.org/10.1016/j.fitote.2022.105162>

355 Hishamuddin, M.S., Lee, S.Y., Isa, N.M., Lamasudin, D.U., Zainal Abidin, S.A., Mohamed,
356 R. (2019) Time-based LC-MS/MS analysis provides insights into early responses to
357 mechanical wounding, a major trigger to agarwood formation in *Aquilaria malaccensis*
358 Lam. *RSC Adv*, 9, 18383-18393. <https://doi.org/10.1039/c8ra10616a>

359 Hu, R., Huang, H., Chen, H., Zhang, J., Zhong, Q., Wu, X., Yang, S. (2024) Phytotoxicity of
360 metal-organic framework MOF-74(Co) nanoparticles to pea seedlings. *Environmental*
361 *Science: Processes & Impacts*, 26, 710-720. <https://doi.org/10.1039/D3EM00503H>

362 James, S.L. (2003) Metal-organic frameworks. *Chem Soc Rev*, 32, 276-288.
363 <https://doi.org/10.1039/b200393g>

364 Jayaraman, S., Daud, N.H., Halis, R., Mohamed, R. (2014) Effects of plant growth
365 regulators, carbon sources and pH values on callus induction in *Aquilaria malaccensis*
366 leaf explants and characteristics of the resultant calli. *Journal of Forestry Research*,
367 25, 535-540. <https://doi.org/10.1007/s11676-014-0492-8>

368 Lee, S.Y., Mohamed, R. (2016) The origin and domestication of *Aquilaria*, an important
369 agarwood-producing genus, in: Mohamed, R. (Ed.), Agarwood: Science Behind the
370 Fragrance. Springer Nature, Singapore, pp. 1-20.

371 Liechti, M., Simmler, L., Rickli, A., Hoener, M. (2014) In vitro pharmacology of pipradrol
372 derivatives, 3,4-methylenedioxypyrovalerone, and naphyrone (1145.3). *The FASEB*
373 *Journal*, 28, 1145.1143. https://doi.org/10.1096/fasebj.28.1_supplement.1145.3

374 Liu, Y., Lin, Y., Wang, W., Min, K., Ling, W., Ma, W., Zhang, W., Hou, X., Wei, L., Liu, Q.,
375 Jiang, G. (2024) Dose-Dependent Effect on Plant Growth of Exposure to Metal-
376 Organic Framework MIL-101(Cr). *Environ Sci Technol*, 58, 8009-8019.
377 <https://doi.org/10.1021/acs.est.3c09086>

378 López-Sampson, A., Page, T. (2018) History of Use and Trade of Agarwood. *Economic*
379 *Botany*, 72, 107-129. <https://doi.org/10.1007/s12231-018-9408-4>

380 Ma, Y., Ran, J., Li, G., Wang, M., Yang, C., Wen, X., Geng, X., Zhang, L., Li, Y., Zhang, Z.
381 (2023) Revealing the Roles of the JAZ Family in Defense Signaling and the Agarwood
382 Formation Process in *Aquilaria sinensis*. *Int J Mol Sci*, 24.
383 <https://doi.org/10.3390/ijms24129872>

384 Murashige, T., Skoog, F. (1962) A Revised Medium for Rapid Growth and Bio Assays with
385 Tobacco Tissue Cultures. *Physiologia Plantarum*, 15, 473-497.
386 <https://doi.org/10.1111/j.1399-3054.1962.tb08052.x>

387 Ngadiran, S., Baba, S., Nor, N.F.A., Yahayu, M., Muhamad, M.F., Kushairi, A.K.A., Zaidel,
388 D.N.A., Muhamad, I.I. (2023) The induction techniques of resinous agarwood
389 formation: A review. *Bioresource Technology Reports*, 21, 101337.
390 <https://doi.org/10.1016/j.biteb.2023.101337>

391 Niknam, E., Panahi, F., Daneshgar, F., Bahrami, F., Khalafi-Nezhad, A. (2018) Metal-
392 Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean
393 Synthesis of Benzoazoles. *ACS Omega*, 3, 17135-17144.
394 <https://doi.org/10.1021/acsomega.8b02309>

395 Ogita, S., Lee, J.B., Kurosaki, F., Kato, Y. (2015) The biosynthetic activities of primary and
396 secondary metabolites in suspension cultures of *Aquilaria microcarpa*. *Nat Prod*
397 *Commun*, 10, 779-782. <https://doi.org/10.1177/1934578X1501000520>

398 Overmans, S., Lauersen, K.J. (2022) Biocompatible fluorocarbon liquid underlays for in situ
399 extraction of isoprenoids from microbial cultures. *RSC Adv*, 12, 16632-16639.
400 <https://doi.org/10.1039/d2ra01112c>

401 Parwez, R., Aftab, T., Khan, M.M.A., Naeem, M. (2023) Exogenous abscisic acid fine-tunes
402 heavy metal accumulation and plant's antioxidant defence mechanism to optimize
403 crop performance and secondary metabolite production in *Trigonella foenum-graecum*
404 L. under nickel stress. *Plant Sci*, 332, 111703.
405 <https://doi.org/10.1016/j.plantsci.2023.111703>

406 Qinying, L., Chunyan, F., Huiying, H., Zhiying, C. (2001) Mature embryo culture and plantlet
407 regeneration of the *Aquilaria sinensis*. *Guangxi Nongye Shengwu Kexue= Journal of*
408 *Agricultural and Biological Science*, 20, 231-232.

409 Rojas, S., Rodriguez-Dieguez, A., Horcajada, P. (2022) Metal-Organic Frameworks in
410 Agriculture. *ACS Appl Mater Interfaces*, 14, 16983-17007.
<https://doi.org/10.1021/acsami.2c00615>

411 Sabagh, A.E.L., Mbarki, S., Hossain, A., Iqbal, M.A., Islam, M.S., Raza, A., Llanes, A.,
412 Reginato, M., Rahman, M.A., Mahboob, W., Singhal, R.K., Kumari, A., Rajendran, K.,
413 Wasaya, A., Javed, T., Shabbir, R., Rahim, J., Barutçular, C., Habib Ur Rahman, M.,
414 Raza, M.A., Ratnasekera, D., Konuskan I, Ö., Hossain, M.A., Meena, V.S., Ahmed,
415 S., Ahmad, Z., Mubeen, M., Singh, K., Skalicky, M., Brestic, M., Sytar, O., Karademir,
416 E., Karademir, C., Erman, M., Farooq, M. (2021) Potential Role of Plant Growth
417 Regulators in Administering Crucial Processes Against Abiotic Stresses. *Frontiers in*
418 *Agronomy*, 3, 648694. <https://doi.org/10.3389/fagro.2021.648694>

419 Sen, S., Dehingia, M., Talukdar, N.C., Khan, M. (2017) Chemometric analysis reveals links
420 in the formation of fragrant bio-molecules during agarwood (*Aquilaria malaccensis*)
421 and fungal interactions. *Sci Rep*, 7, 44406. <https://doi.org/10.1038/srep44406>

422 Shahid, M., Ferrand, E., Schreck, E., Dumat, C. (2013) Behavior and Impact of Zirconium in
423 the Soil-Plant System: Plant Uptake and Phytotoxicity, in: Whitacre, D.M. (Ed.),
424 Reviews of Environmental Contamination and Toxicology. Springer New York, New
425 York, NY, pp. 107-127.

426 Shivanand, P., Arbie, N.F., Krishnamoorthy, S., Ahmad, N. (2022) Agarwood-The Fragrant
427 Molecules of a Wounded Tree. *Molecules*, 27.
<https://doi.org/10.3390/molecules27113386>

428 Tan, C.S., Isa, N.M., Ismail, I., Zainal, Z. (2019) Agarwood Induction: Current Developments
429 and Future Perspectives. *Front Plant Sci*, 10, 122.
<https://doi.org/10.3389/fpls.2019.00122>

430 Wang, C.Y., Qin, J.C., Yang, Y.W. (2023) Multifunctional Metal-Organic Framework (MOF)-
431 Based Nanoplatforms for Crop Protection and Growth Promotion. *J Agric Food Chem*,
432 71, 5953-5972. <https://doi.org/10.1021/acs.jafc.3c01094>

433 Wang, M.R., Li, W., Luo, S., Zhao, X., Ma, C.H., Liu, S.X. (2018) GC-MS Study of the
434 Chemical Components of Different *Aquilaria sinensis* (Lour.) Gilgorgans and
435 Agarwood from Different Asian Countries. *Molecules*, 23, 2168.
<https://doi.org/10.3390/molecules23092168>

436 White, M.W., Archer, J.R.H. (2013) Pipradrol and Pipradrol Derivatives, in: Dargan, P.I.,
437 Wood, D.M. (Eds.), Novel Psychoactive Substances. Academic Press, Boston, pp.
438 233-259.

439 Yang, L., Chen, H., Du, P., Miao, X., Huang, S., Cheng, D., Xu, H., Zhang, Z. (2024)
440 Inhibition mechanism of *Rhizoctonia solani* by pectin-coated iron metal-organic
441 framework nanoparticles and evidence of an induced defense response in rice. *J*
442 *Hazard Mater*, 474, 134807. <https://doi.org/10.1016/j.jhazmat.2024.134807>

443 Zang, Q., Zhou, L., Zhuge, F., Yang, H., Wang, X., Lin, X. (2016) Callus induction and
444 regeneration via shoot tips of *Dendrocalamus hamiltonii*. *Springerplus*, 5, 1799.
<https://doi.org/10.1186/s40064-016-3520-7>

445 Zhang, N., Xue, S., Song, J., Zhou, X., Zhou, D., Liu, X., Hong, Z., Xu, D. (2021) Effects of
446 various artificial agarwood-induction techniques on the metabolome of *Aquilaria*
447 *sinensis*. *BMC Plant Biol*, 21, 591. <https://doi.org/10.1186/s12870-021-03378-8>

448 Zhou, H.C., Long, J.R., Yaghi, O.M. (2012) Introduction to metal-organic frameworks. *Chem*
449 *Rev*, 112, 673-674. <https://doi.org/10.1021/cr300014x>

450 Zou, D., Nunes, S.P., Vankelecom, I.F.J., Figoli, A., Lee, Y.M. (2021) Recent advances in
451 polymer membranes employing non-toxic solvents and materials. *Green Chemistry*,
452 23, 9815-9843. <https://doi.org/10.1039/d1gc03318b>

453

454

455

456

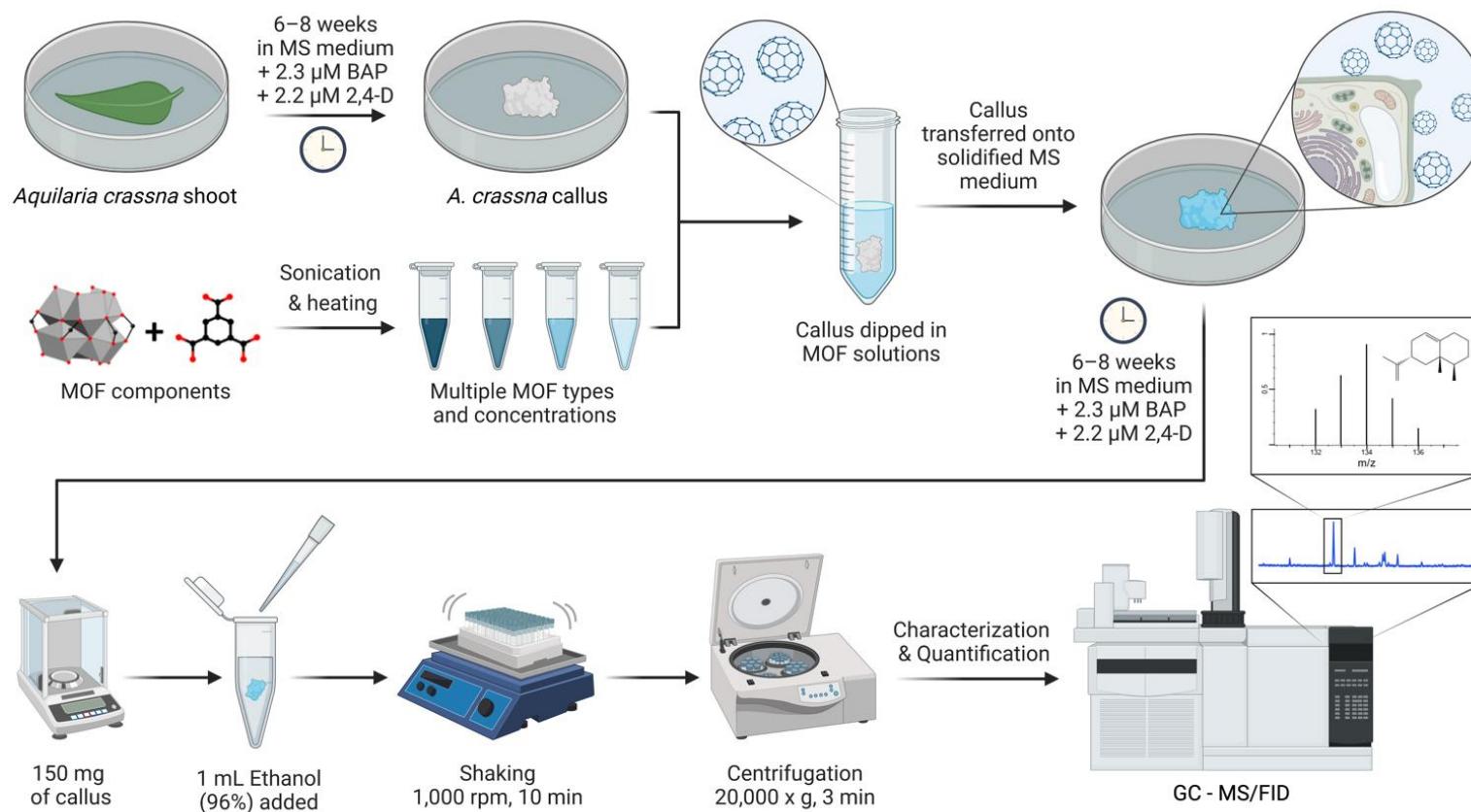
457

458

459

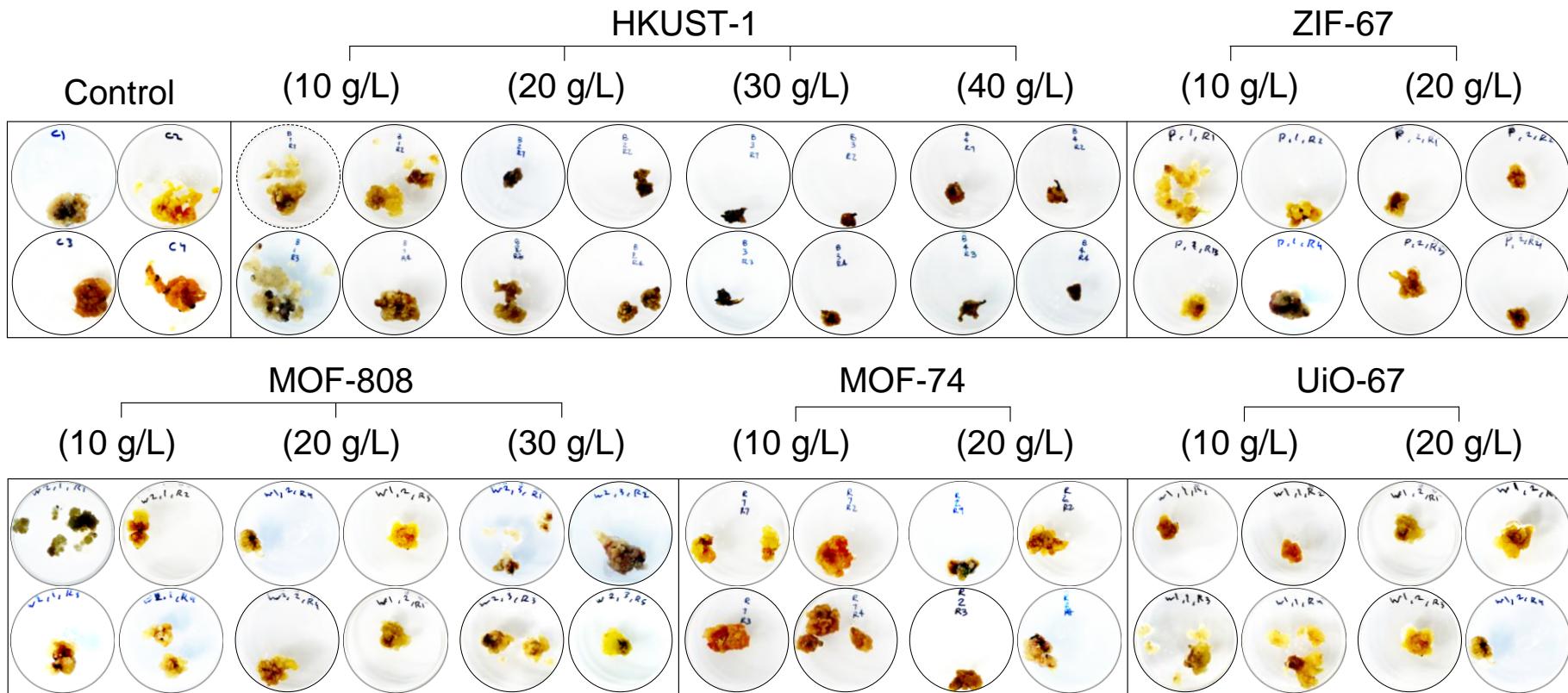
Tables

460 **Table 1.** Codes and properties of MOFs used in the study. Displayed are the MOFs' identification codes, molecular formulas, CAS
 461 numbers, metals, ligands, colors, and the concentrations of MOF solutions tested in the present study.
 462

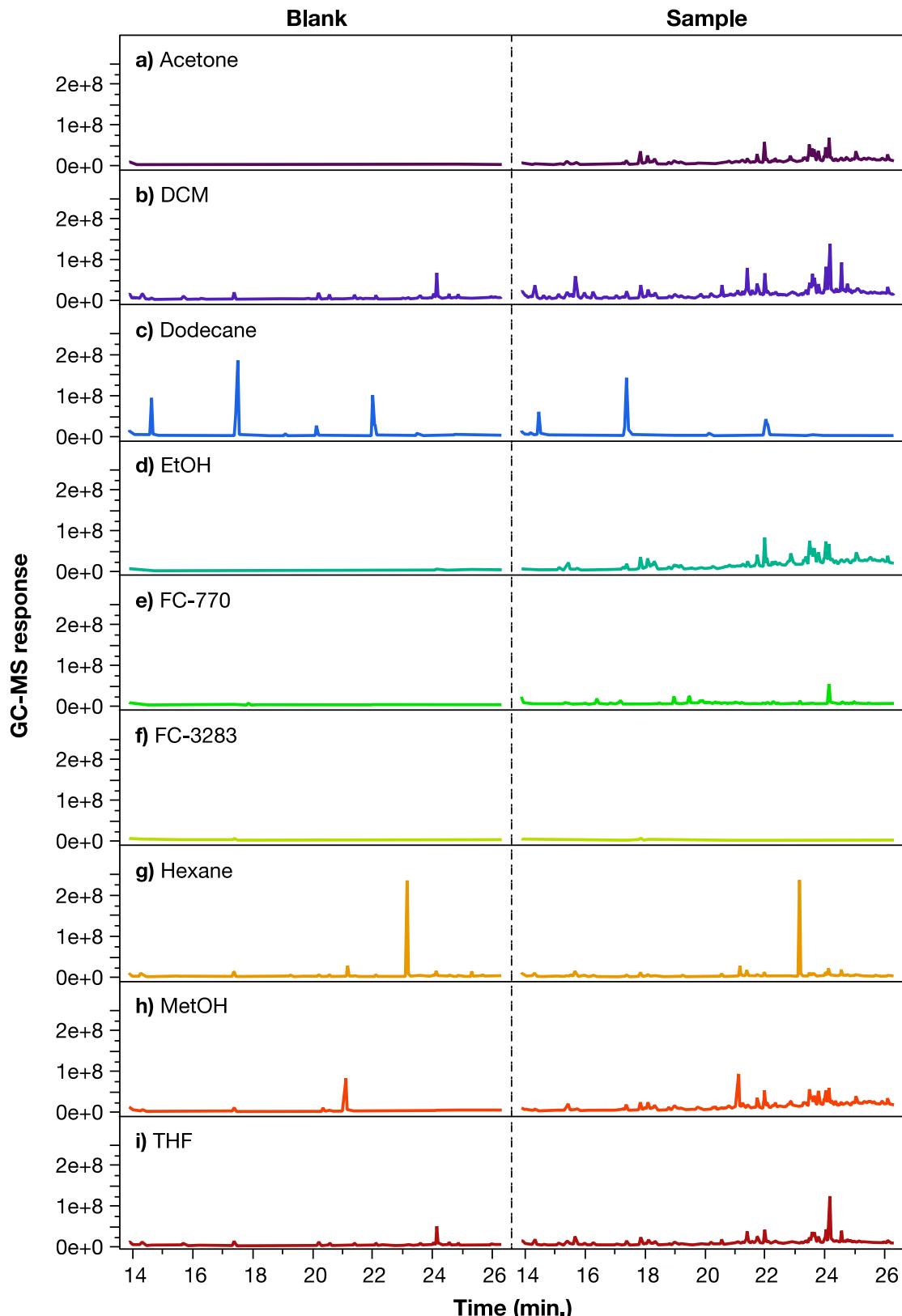

MOF ID	Molecular Formula	MOF CAS No.	Metal	Ligand	Color/code	Concentration (g/L)
UiO-67	C ₈₄ H ₅₂ O ₃₂ Zr ₆	1072413-83-2	Zr	4,4'-Biphenyldicarboxylic acid (CAS: 787-70-2)	white/ W1	10, 20
MOF-808	C ₂₄ H ₁₆ O ₃₂ Zr ₆	1579984-19-2	Zr	Trimesic acid (CAS: 554-95-0)	white/ W2	10, 20, 30
HKUST-1	C ₁₈ H ₁₂ Cu ₃ O ₁₅	222404-02-6	Cu	Trimesic acid (CAS: 554-95-0)	blue/ B	10, 20, 30, 40
ZIF-67	C ₈ H ₁₂ N ₄ .Co	46201-07-4	Co	2-Methylimidazole (CAS: 693-98-1)	purple/ P	10, 20
MOF-74	C ₈ H ₄ O ₈ Mn ₂	1235342-69-4	Mn	2,5-Dihydroxyterephthalic acid (CAS: 610-92-4)	red/ R	10, 20

463

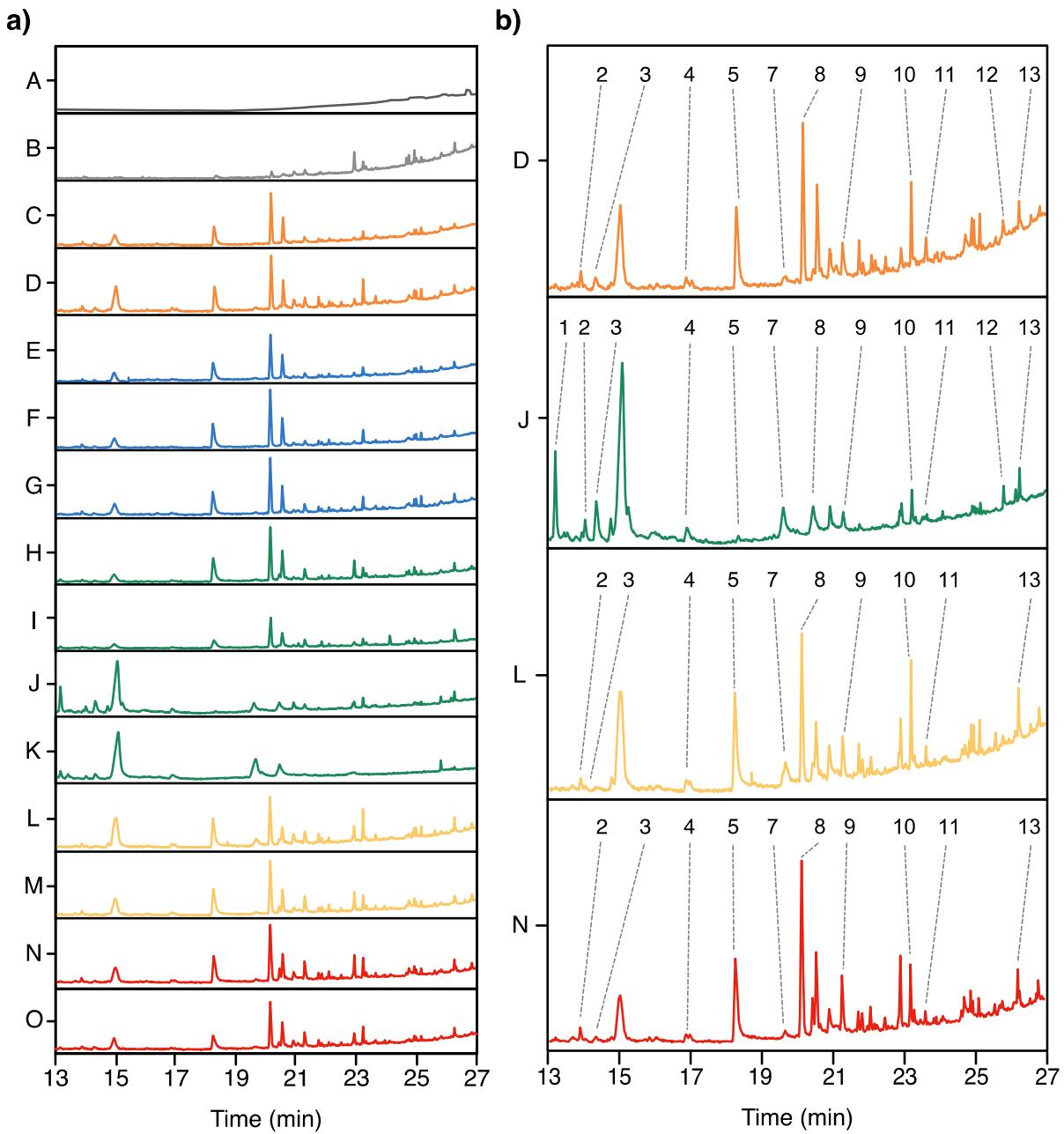
464


Figures

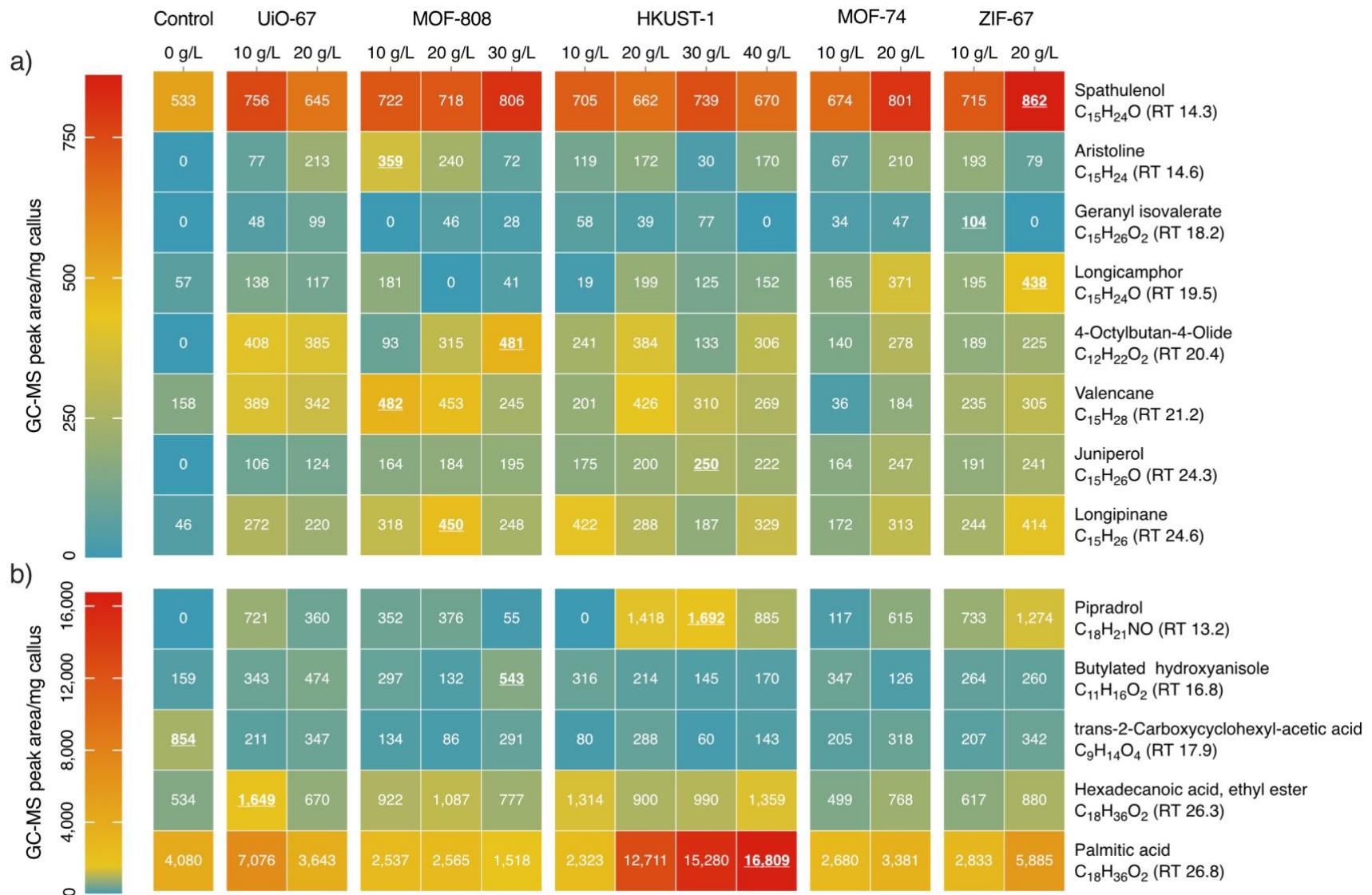
465


466

467 **Figure 1.** Workflow of callus cultivation, MOF treatment, and subsequent sample processing and specialty metabolite GC-MS/FID
 468 quantification/identification that were used in the present study. Figure was created with BioRender.com.


469

470 **Figure 2.** Photographs of callus samples that were briefly dipped in one of five different types of MOFs at varying concentrations
 471 (10–40 g/L), and of callus samples that were not exposed to any MOF (Control). All photographs were taken after 8-week cultivation
 472 on solidified MS growth medium. For each treatment, four replicate callus samples are shown (n=4).


473

474 **Figure 3.** GC chromatograms of pure solvents (left panels) and of agarwood extracts
475 (right panels) from the preliminary extraction-solvent experiment with acetone,
476 dichloromethane (DCM), dodecane, ethanol (EtOH), FC-770, FC-3283, hexane,
477 methanol (MetOH), and tetrahydrofuran (THF).

478

479 **Figure 4.** GC-MS chromatograms and metabolite identification. **a)** Representative
480 GC-MS chromatograms showing retention times of metabolites from *A. crassna* callus
481 tissue exposed to different MOFs. Chromatogram annotation code: **(A)** Ethanol blank;
482 **(B)** Negative control (no MOF); **(C, D)** UiO-67 treatments (10–20 g/L); **(E, F, G)** MOF-
483 808 treatments (10–30 g/L); **(H, I, J, K)** HKUST-1 treatments (10–40 g/L); **(L, M)** MOF-
484 74 treatments (10–20 g/L); **(N, O)** ZIF-67 treatments (10–20 g/L). **b)** Selection of
485 chromatograms highlighting peaks of metabolites identified after comparison against
486 the NIST Library. Identified metabolites and retention times (RT) include: **(1)** Pipradrol
487 (RT 13.2), **(2)** Spathulenol (RT 14.3), **(3)** Aristoline (RT 14.6), **(4)** Butylated
488 hydroxyanisole (RT 16.8), **(5)** trans-2-Carboxy-cyclohexyl-acetic acid (RT 17.9), **(6)**
489 Geranyl isovalerate (RT 18.2), **(7)** Longicamphor (RT 19.5), **(8)** 4-Octylbutan-4-Olide
490 (RT 20.4), **(9)** Valencene (RT 21.2), **(10)** Juniperol (RT 24.3), **(11)** Longipinane (RT
491 24.6), **(12)** Hexadecanoic acid, ethyl ester (RT 26.3), **(13)** Palmitic acid (RT 26.8).

492
493
494
495

Figure 5. Relative quantification (as GC-MS peak area/mg callus) of various **a)** fragrant metabolites and **b)** other prominent compounds produced by *A. crassna* callus cultures following different MOF treatments. RT refers to the GC retention time in minutes. Numbers inside boxes represent mean values of four replicates (n=4). The highest value in each row is underlined.