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Abstract

Thymelaceaous trees are prized for accumulating fragrant resins composed of
hundreds of secondary metabolites in their woody tissues. Slow growth and increasing
consumer demand have stretched natural sources of agarwood trees to being
endangered and alternative production modes, including silviculture and tissue
culture, are currently being investigated. Dedifferentiated tissue culture of agarwood
trees provides a means of cell propagation independent of environmental context.
However, secondary metabolite accumulation, as found in fragrant resins, occurs
largely in response to wounding. Here, we investigated the application of metal-
organic frameworks (MOFs) as potential elicitors of secondary metabolite formation in
Aquilaria crassna tissue culture samples. Callus cultures were exposed to five
commercially available MOFs: UiO-67, MOF-808, HKUST-1, ZIF-67, and MOF-74,
and ethanol extracts were used to quantify secondary metabolite accumulation
compared to untreated cultures. Samples that were exposed to Zr-based MOFs
exhibited similar metabolite production profiles, (trans-2-Carboxy-cyclo-hexyl)-acetic
acid was reduced in the presence of all MOFs, the Cu-containing HKUST-1 MOF
increased palmitic acid levels, and MOF-808 and ZIF-67 were found to elicit the
highest accumulation of secondary metabolites with potential fragrance applications.
These results demonstrate the possibility of eliciting secondary metabolites from
dedifferentiated agarwood tree cell culture and may provide an alternative means of

sourcing fragrant specialty chemicals from these plants.

Keywords: Agarwood, Aquilaria crassna, Metal-Organic Frameworks (MOFs), plant

callus, tissue culture, secondary metabolites, sustainability
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1 Introduction

Aquilaria sp. and other trees belonging to the family Thymelaeaceae are of high
economic and cultural value due to the aromatic resin produced within their
heartwoods after wounding (Hishamuddin et al., 2019). Their resinous fragrant wood,
‘agarwood’, is extensively used in fragrances, traditional medicine, and as incense
across various cultures (Lépez-Sampson and Page, 2018; Shivanand et al., 2022).
The formation of agarwood involves accumulating a variety of secondary metabolites
produced in response to stressors, such as physical injury or microbial infection (Ma
et al., 2023; Shivanand et al., 2022). These metabolites comprise a broad spectrum
of chemicals, including sesquiterpenoids, 2-(2-phenylethyl)chromones (PECS),
alkaloids, flavonoids, phenolic acids, and triterpenoids among others. These
compounds collectively create the unique aromatic and therapeutic properties of
agarwood (Gao et al., 2019; Gutiérrez et al., 2024b; He et al., 2022).

Global demand for agarwood resin has been increasing, with first-grade samples
costing as much as US$ 100,000 per kilogram (Lee and Mohamed, 2016), while
natural reserves are strained due to the slow growth of the trees and inconsistent
localized resin accumulation around points of wounding. Recent reports show that
demand for agarwood has outpaced the supply of natural resources to the point that
the Convention on International Trade in Endangered Species of Wild Fauna and Flora
(CITES) has declared Aquilaria spp. as potentially threatened with extinction (CITES,
2024). Exploration of alternative and more sustainable methods to produce Aquilaria
secondary metabolites is needed (Gutiérrez et al., 2024b; Shivanand et al., 2022).
Various methodologies have been deployed to artificially induce controlled resin
formation in agarwood trees (Tan et al., 2019). One approach involves using callus

cultures derived from Aquilaria sp. shoot segments. When subjected to abiotic stress,
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these cultures have been observed to exhibit an enhanced production of aromatic
terpenoids (Zhang et al., 2021). Various techniques, such as the application of methyl
jasmonate, mechanical wounding, and fungal inoculation, have been tested for their
potential to induce the requisite stress in plant tissues, with variable outcomes
(Ngadiran et al., 2023; Tan et al., 2019; Zang et al., 2016).

An approach that has gained attention in recent years is the use of Metal-Organic
Frameworks (MOFs). MOFs are crystalline materials composed of metal ions or
clusters interconnected by organic ligands that form porous structures and have many
applications (James, 2003), such as controlled chemical release (Chauhan et al.,
2022; Rojas et al., 2022; Wang et al., 2023). MOFs have large surface areas, high
porosities, and tunable chemical properties, and are used in diverse fields, including
agriculture, gas storage, catalysis, and drug delivery (Abdelhameed et al., 2019;
Niknam et al., 2018; Rojas et al., 2022; Zhou et al., 2012). In living organisms, MOFs
can act as nanoparticles that physically interact with cells and consequently can elicit
stress responses (Al-Rehili et al., 2019; Chauhan et al., 2022; Guan et al., 2021; Hu
et al., 2024; Rojas et al., 2022).

Here, we aim to evaluate the ability of MOFs to induce abiotic stress in Aquilaria
crassna callus samples, and determine their efficacy in eliciting secondary metabolite
accumulation typically observed following physical wounding of mature tree tissue.
Five different commercially available MOFs were tested at various concentrations, and
changes in the metabolite profiles of A. crassna callus samples following MOF
application were analyzed. Overall, we observed specific differences in the secondary
metabolite production dependent on the type and concentration of MOF. The results

presented here highlight the high potential of metal-organic frameworks to potentially
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95 offer a new avenue to source agarwood secondary metabolites sustainably from cell

96 cultures rather than mature trees.

97
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98 2 Materials and Methods

99 2.1 Media and plant growth regulators (PGRs) for callus induction and
100 proliferation
101 The initial Aquilaria crassna plant material was provided by the Ministry of
102 Environment, Water, and Agriculture (MEWA) in Saudi Arabia as in vitro cultures.
103 Callus cultures were induced from shoot segments, using a modified MS medium
104 based on the formulation by Murashige and Skoog (Murashige and Skoog, 1962). To
105 initiate callus formation and proliferation, the medium was enriched with 3% sucrose,
106  0.6% agar, 2.2 uM of 2,4-dichloro phenoxy acetic acid (Sigma-Aldrich, St. Louis, USA),
107 and 2.3 uM of 6-benzyl amino purine (Sigma-Aldrich, St. Louis, USA) (Fig. 1). These
108 specific plant growth regulators (PGRs) are known to be pivotal for plant cell
109 differentiation and growth (Di Mambro et al., 2017; Gaba, 2005; Sabagh et al., 2021),
110 and have been used for callus induction and proliferation in various plant species,
111 including those belonging to the genus Aquilaria (Jayaraman et al., 2014; Qinying et
112 al.,, 2001). To provide a suitable environment for growth and development, all callus
113 cultures were incubated at 25 £ 1 °C in darkness for 8 weeks before being used for
114  subsequent experiments.
115
116 2.2 Determination of suitable solvent for Aquilaria metabolite extraction
117 Before extracting the metabolites from MOF-treated callus samples, a preliminary
118 experiment was conducted to identify the most suitable solvent, characterized by a
119 high extraction efficiency and low GC-MS background signal. Approximately 500 mg
120 of dried and ground Aquilaria wood sample was weighed and transferred into each of
121 nine individual microcentrifuge tubes to which 1 mL of one of the following nine

122  solvents was added: methanol, 96% ethanol, acetone, dichloromethane (all from VWR
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123 International, Fontenay-sous-Bois, France), n-hexane (Acros Organics, Geel,
124  Belgium), n-dodecane, tetrahydrofuran (both from Sigma-Aldrich, St. Louis, USA), and
125 the two perfluorocarbons FC-770 (Fluorochem, Glossop, UK) and FC-3283 (Acros
126  Organics, Geel, Belgium). The mixtures of wood samples and solvents were briefly
127 vortexed and then shaken at 200 rpm for 2 h at room temperature to facilitate the
128 extraction of metabolites. Afterward, the samples were centrifuged at 8000 x g for
129 15 min to separate all solids from the liquid phase. 150 pL of each supernatant was
130 transferred into a separate amber GC glass vial. The supernatants and blanks of each
131 extraction solvent were analyzed on a gas chromatograph as described below.

132

133 2.3 Abiotic stress induction in callus cultures using MOFs

134 To simulate the natural wounding in Aquilaria trees that triggers the production of
135 specialty metabolites, we induced abiotic stress in the callus cultures through
136 exposure to five distinct MOFs (UiO-67, MOF-808, HKUST-1, ZIF-67, MOF-74) that
137  were synthesized at and provided by King Fahd University of Petroleum and Minerals
138 (Dhahran, Saudi Arabia) (Table 1). The selection of these MOFs was based on their
139 commercial availability, varying pore sizes, stability, and chemical functionalities which
140 we postulated could influence the extent of abiotic stress induced in the callus cultures.
141 To address the low solubility of MOFs, firstly slurries were prepared before
142  suspensions of each MOF were prepared at varying concentrations in distilled water
143 (10-40 g L) (see Table 1), and autoclaved before further use (Fig. 1).

144  Four replicates of 8-week-old callus samples (n=4) were immersed in the MOF slurry,
145 maintaining homogeneity through continuous shaking. All tools and containers were
146  sterilized, and the procedure was conducted under aseptic conditions in a laminar flow

147 hood. After immersion, the cultures were transferred onto solidified MS medium in
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148 Petri dishes and incubated in darkness at 25 + 1°C for an additional 8 weeks to

149 facilitate their growth and development (Fig. 1).

150

151 2.4 Callus recovery and processing for metabolite analysis

152  After 8 weeks of cultivation, the petri dishes were photographed (Fig. 2), and the callus
153 samples were recovered to assess the impacts the MOFs had on their growth and
154  metabolite production. From each of the four replicate calluses per treatment (n=4),
155 one sample of approximately 150 mg wet weight was cut, weighed, and immersed in
156 1 mL of 96% ethanol. To ensure an efficient extraction of metabolites, the mixtures
157 were agitated at 200 rpm for 8 h. Subsequently, the suspensions were centrifuged at
158 8000 x g for 15 min to segregate the liquid phases from the solid residues. 150 uL of
159 each supernatant was pipetted into amber glass vials for further GC-MS analysis.
160

161 2.5 Gas chromatography-mass spectrometry (GC-MS) analysis

162  All solvent samples were analyzed using an Agilent 7890A gas chromatograph (GC)
163 coupled with a 5975C mass spectrometer (MS) with a triple-axis detector (Agilent
164  Technologies, USA). The GC was equipped with a DB-5MS column (Agilent J&W,
165 USA), with helium as the carrier gas at a flow rate of 1 mL per min. A previously
166 described GC oven temperature protocol was used (Overmans and Lauersen, 2022).
167 The analysis was conducted using a splitless injection to ensure maximum sensitivity.
168  After a 13-min solvent delay, mass spectra were recorded across a scanning range of
169 50-750 m/z at a rate of 20 scans per second.

170 Chromatograms were processed and integrated using the MassHunter Workstation
171 software v. B.08.00 (Agilent Technologies, USA). Metabolites were identified by

172  comparing mass spectra against the National Institute of Standards and Technology
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173  (NIST) library (Gaithersburg, MD, USA), and standard mixtures of terpenoids were
174  used as internal quality controls for the analysis. The peak areas of metabolites were
175 normalized to the respective sample weight to account for variations in sample size.
176  All GC-MS measurements were performed in technical duplicates (n=2), with manual
177  verification of chromatograms conducted for quality control.

178

179 2.6 Data analysis

180 All data analyses and visualizations were performed using JMP version 16 (SAS
181 Institute Inc, NC, USA) and GraphPad Prism v. 10 (GraphPad Software, MA, USA).
182  Callus photographs were processed and white-balance corrected using Affinity Photo
183 v. 1.10.6 (Serif Ltd., West Bridgford, UK). Visual elements were organized and

184  harmonized using Affinity Publisher v. 1.10.6 (Serif Ltd., West Bridgford, UK).
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185 3 Results & Discussion

186 3.1 Optimum solvent for extraction of Aquilaria metabolites

187 Before extracting metabolites from the MOF-treated callus samples, a preliminary
188 experiment using dried agarwood was conducted to ascertain the most efficient
189 extraction solvent. The optimum solvent was characterized by high extraction
190 efficiency and minimal GC signal interference at the retention times of the target
191 compounds. Within the retention time range of 14—-26 min, where the compounds of
192 interest were expected, 5 solvents: dichloromethane (DCM), dodecane, FC-770,
193 hexane, and tetrahydrofuran (THF) exhibited many background peaks (Fig. 3),
194 rendering them unsuitable for subsequent metabolite extraction due to the
195 complication in identifying target compounds. Among the remaining 4 solvents, FC-
196 3283 demonstrated inefficient metabolite extraction from agarwood, as evidenced by
197 the low diversity and amounts of compounds in the solvent extracts. The relatively
198 lower extraction efficiency of FC-3283 compared to traditional alkanes such as
199 dodecane has recently been discussed (Gutiérrez et al., 2024a; Overmans and
200 Lauersen, 2022). Comparative analysis of chromatograms from acetone, ethanol, and
201 methanol extracts revealed similar profiles between those solvents. Overall, ethanol
202 was identified as the most suitable solvent for further experiments based on its
203  superior efficiency in extracting a diverse and abundant range of agarwood-derived
204 metabolites, as observed from the chromatograms (Fig. 3). This finding is in line with
205 a recent microalgae study in which ethanol was also used as the final solvent to
206 capture terpenoid metabolites typically produced by Aquilaria sp. (Gutiérrez et al.,
207  2024b). Acetone extracted approximately the same quantities of metabolites as
208 ethanol but was not used for further experiments because it is considered more

209 hazardous and corrosive than ethanol (de Jesus and Filho, 2020; Zou et al., 2021).

10
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210

211 3.2 Effect of MOF exposure on secondary metabolite production in Aquilaria
212 callus cultures

213  Exploring the use of metal-organic frameworks (MOFs) to enhance secondary
214  metabolite production in Aquilaria species revealed varied effects based on the
215 specific MOF type used. Overall, the MOFs UiO-67 and UiO-74 were found to be less
216 effective in inducing the production of secondary metabolites (Fig. 4). In contrast,
217 exposure to MOFs 808 and ZIF-67 resulted in the highest production of secondary
218 metabolites (Fig. 4). These findings are in agreement with previous studies
219 demonstrating that exogenous metals can significantly alter plant metabolite profiles
220 under stress conditions (Liu et al., 2024; Parwez et al., 2023; Yang et al., 2024).

221  Secondary metabolites with applications in consumer fragrance products such as
222  aristoline, geranyl isovalerate, and juniperol were not at all present in the experimental
223  controls although were detected in some MOF-treated samples (Fig. 5a). The same
224  was observed for the lactone 4-octylbutan-4-olide and pipradrol, which were both only
225 produced by the callus samples following treatment with any MOF. Pipradrol and its
226 derivatives have been studied intensively for their pharmacological potential (Liechti
227 etal., 2014), as they are proposed to enhance neurotransmitters like dopamine and
228 norepinephrine in the brain (White and Archer, 2013).

229  Other high-value compounds, including the terpenoids spathulenol, longicamphor,
230 valencane, and longipinane were present at low concentrations in untreated callus
231 samples. However, exposure to MOFs resulted in concentration increases of up to 10-
232 fold as in the case of longipinane when callus was treated with MOF-808 (Fig 5a).
233 The presence of any MOF led to a reduction in trans-2-carboxycyclohexyl-acetic acid

234  (Fig. 5b). While its potential application remains unclear, this compound has been

11
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235 identified in various studies, notably in the context of natural products and their
236 biological activities. For instance, this chemical has been recognized as a significant
237  component of fractions derived from the bark of the tropical tree Alstonia boonei, which
238 is has been investigated for its anti-obesity and anti-lipolytic effects (Anyanwu et al.,
239 2018).

240 The MOF HKUST-1, which contains copper as the metal base, greatly enhanced the
241  production of palmitic acid by up to 4-fold compared to controls (Fig. 5b). Palmitic acid
242 is a major component of agarwood (Agmarina Nasution et al., 2020; Ogita et al., 2015;
243 Wang et al., 2018). An elevated production of this compound indicates the onset of a
244  defense mechanisms involving increased formation of free fatty acids that can trigger
245  oxidative burst and fatty acid oxidation cascades in response to an external stressors
246 (Senetal., 2017).

247  Samples exposed to MOFs UiO-67 and MOF-808 which contain zirconium exhibited
248 similar metabolite production profiles (Fig. 4; Fig. 5). This metal has no essential
249  functions in plant metabolism and is generally considered to be of low toxicity (Shahid
250 et al., 2013). However, it has been reported that zirconium can reduce the growth of
251 wheat plants and affect their enzyme activity (Fodor et al., 2005), which may explain
252  why callus samples treated with MOFs containing this metal exhibited a perturbed
253  metabolite profile here.

254  We observed no clear trend across MOFs or compounds with regards to the effect of
255 MOF concentration on secondary metabolite production. However, secondary
256 metabolite accumulations were strongly dependent on MOF type and their applied
257  concentration. For example, palmitic acid and valencene decreased with increasing
258 concentrations of UiO-67 and MOF-808 (Zr-based), whereas with MOF-74 (Mn-based)

259 and ZIF-67 (Co-based), more valencene was produced at higher MOF concentrations

12
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260 (Fig. 5a). However, this pattern of gradual changes in production with increasing
261 concentration is not consistent across all compounds. For some secondary
262 metabolites, their production was highest at intermediate MOF concentrations. This
263 finding indicates MOF type and concentration need to be carefully selected to
264 maximize the production of a given target compound without leading to callus
265 senescence.

266

267 3.3 Conclusion

268 The use of MOFs for the production of secondary metabolites from the callus of
269 Aquilaria sp. presents a promising avenue for future research. Systematic empirical
270 testing of MOFs with Aquilaria sp callus and its subsequent metabolite analysis can
271 enable stress-elicitation to obtain valuable compounds from this plant. However,
272  whether this process could be effectively scaled to produce consumer products, like
273 fragrances, remains to be seen. This approach could help improve the sustainability
274 the consumer fragrance industry but also holds potential for applications in

275 pharmaceuticals, agriculture, and other industries requiring plant-derived compounds.

13
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459 Tables

460 Table 1. Codes and properties of MOFs used in the study. Displayed are the MOFs’ identification codes, molecular formulas, CAS
461 numbers, metals, ligands, colors, and the concentrations of MOF solutions tested in the present study.

462
Molecular MOF Concentration
MOF ID Formula CAS No. Metal Ligand Color/code (g/L)
uUio-67 Cs4Hs520327r6 1072413-83-2 Zr 4,4'-Biphenyldicarboxylic acid (CAS: 787-70-2) white/ W1 10, 20
MOF-808 C24H16032Zr6 1579984-19-2 Zr Trimesic acid (CAS: 554-95-0) white/ W2 10, 20, 30
HKUST-1 C18H12Cus015 222404-02-6 Cu Trimesic acid (CAS: 554-95-0) blue/ B 10, 20, 30, 40
ZIF-67 CsH12N4.Co 46201-07-4 Co 2-Methylimidazole (CAS: 693-98-1) purple/ P 10, 20
MOF-74 CsH4OsMn2 1235342-69-4 Mn 2,5-Dihydroxyterephthalic acid (CAS: 610-92-4) red/ R 10, 20
463
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467  Figure 1. Workflow of callus cultivation, MOF treatment, and subsequent sample processing and specialty metabolite GC-MS/FID
468 quantification/identification that were used in the present study. Figure was created with BioRender.com.
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Figure 2. Photographs of callus samples that were briefly dipped in one of five different types of MOFs at varying concentrations
(10-40 g/L), and of callus samples that were not exposed to any MOF (Control). All photographs were taken after 8-week cultivation

on solidified MS growth medium. For each treatment, four replicate callus samples are shown (n=4).
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473

474  Figure 3. GC chromatograms of pure solvents (left panels) and of agarwood extracts
475  (right panels) from the preliminary extraction-solvent experiment with acetone,
476  dichloromethane (DCM), dodecane, ethanol (EtOH), FC-770, FC-3283, hexane,
477  methanol (MetOH), and tetrahydrofuran (THF).
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478 (min)

479  Figure 4. GC-MS chromatograms and metabolite identification. a) Representative
480 GC-MS chromatograms showing retention times of metabolites from A. crassna callus
481 tissue exposed to different MOFs. Chromatogram annotation code: (A) Ethanol blank;
482 (B) Negative control (no MOF); (C, D) UiO-67 treatments (10-20 g/L); (E, F, G) MOF-
483 808 treatments (10-30 g/L); (H, I, J, K) HKUST-1 treatments (10—40 g/L); (L, M) MOF-
484 74 treatments (10-20 g/L); (N, O) ZIF-67 treatments (10-20 g/L). b) Selection of
485 chromatograms highlighting peaks of metabolites identified after comparison against
486 the NIST Library. Identified metabolites and retention times (RT) include: (1) Pipradrol
487 (RT 13.2), (2) Spathulenol (RT 14.3), (3) Aristoline (RT 14.6), (4) Butylated
488 hydroxyanisole (RT 16.8), (5) trans-2-Carboxy-cyclohexyl-acetic acid (RT 17.9), (6)
489  Geranyl isovalerate (RT 18.2), (7) Longicamphor (RT 19.5), (8) 4-Octylbutan-4-Olide
490 (RT 20.4), (9) Valencene (RT 21.2), (10) Juniperol (RT 24.3), (11) Longipinane (RT
491 24.6), (12) Hexadecanoic acid, ethyl ester (RT 26.3), (13) Palmitic acid (RT 26.8).
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492
493 Figure 5. Relative quantification (as GC-MS peak area/mg callus) of various a) fragrant metabolites and b) other prominent

494  compounds produced by A. crassna callus cultures following different MOF treatments. RT refers to the GC retention time in minutes.
495 Numbers inside boxes represent mean values of four replicates (n=4). The highest value in each row is underlined.
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