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2 
 

Abstract 22 

Thymelaceaous trees are prized for accumulating fragrant resins composed of 23 

hundreds of secondary metabolites in their woody tissues. Slow growth and increasing 24 

consumer demand have stretched natural sources of agarwood trees to being 25 

endangered and alternative production modes, including silviculture and tissue 26 

culture, are currently being investigated. Dedifferentiated tissue culture of agarwood 27 

trees provides a means of cell propagation independent of environmental context. 28 

However, secondary metabolite accumulation, as found in fragrant resins, occurs 29 

largely in response to wounding. Here, we investigated the application of metal-30 

organic frameworks (MOFs) as potential elicitors of secondary metabolite formation in 31 

Aquilaria crassna tissue culture samples. Callus cultures were exposed to five 32 

commercially available MOFs: UiO-67, MOF-808, HKUST-1, ZIF-67, and MOF-74, 33 

and ethanol extracts were used to quantify secondary metabolite accumulation 34 

compared to untreated cultures. Samples that were exposed to Zr-based MOFs 35 

exhibited similar metabolite production profiles, (trans-2-Carboxy-cyclo-hexyl)-acetic 36 

acid was reduced in the presence of all MOFs, the Cu-containing HKUST-1 MOF 37 

increased palmitic acid levels, and MOF-808 and ZIF-67 were found to elicit the 38 

highest accumulation of secondary metabolites with potential fragrance applications. 39 

These results demonstrate the possibility of eliciting secondary metabolites from 40 

dedifferentiated agarwood tree cell culture and may provide an alternative means of 41 

sourcing fragrant specialty chemicals from these plants. 42 

 43 

Keywords: Agarwood, Aquilaria crassna, Metal-Organic Frameworks (MOFs), plant 44 

callus, tissue culture, secondary metabolites, sustainability   45 
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1 Introduction 46 

Aquilaria sp. and other trees belonging to the family Thymelaeaceae are of high 47 

economic and cultural value due to the aromatic resin produced within their 48 

heartwoods after wounding (Hishamuddin et al., 2019). Their resinous fragrant wood, 49 

‘agarwood’, is extensively used in fragrances, traditional medicine, and as incense 50 

across various cultures (López-Sampson and Page, 2018; Shivanand et al., 2022). 51 

The formation of agarwood involves accumulating a variety of secondary metabolites 52 

produced in response to stressors, such as physical injury or microbial infection (Ma 53 

et al., 2023; Shivanand et al., 2022). These metabolites comprise a broad spectrum 54 

of chemicals, including sesquiterpenoids, 2-(2-phenylethyl)chromones (PECs), 55 

alkaloids, flavonoids, phenolic acids, and triterpenoids among others. These 56 

compounds collectively create the unique aromatic and therapeutic properties of 57 

agarwood (Gao et al., 2019; Gutiérrez et al., 2024b; He et al., 2022). 58 

Global demand for agarwood resin has been increasing, with first-grade samples 59 

costing as much as US$ 100,000 per kilogram (Lee and Mohamed, 2016), while 60 

natural reserves are strained due to the slow growth of the trees and inconsistent 61 

localized resin accumulation around points of wounding. Recent reports show that 62 

demand for agarwood has outpaced the supply of natural resources to the point that 63 

the Convention on International Trade in Endangered Species of Wild Fauna and Flora 64 

(CITES) has declared Aquilaria spp. as potentially threatened with extinction (CITES, 65 

2024). Exploration of alternative and more sustainable methods to produce Aquilaria 66 

secondary metabolites is needed (Gutiérrez et al., 2024b; Shivanand et al., 2022). 67 

Various methodologies have been deployed to artificially induce controlled resin 68 

formation in agarwood trees (Tan et al., 2019). One approach involves using callus 69 

cultures derived from Aquilaria sp. shoot segments. When subjected to abiotic stress, 70 
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these cultures have been observed to exhibit an enhanced production of aromatic 71 

terpenoids (Zhang et al., 2021). Various techniques, such as the application of methyl 72 

jasmonate, mechanical wounding, and fungal inoculation, have been tested for their 73 

potential to induce the requisite stress in plant tissues, with variable outcomes 74 

(Ngadiran et al., 2023; Tan et al., 2019; Zang et al., 2016). 75 

An approach that has gained attention in recent years is the use of Metal-Organic 76 

Frameworks (MOFs). MOFs are crystalline materials composed of metal ions or 77 

clusters interconnected by organic ligands that form porous structures and have many 78 

applications (James, 2003), such as controlled chemical release (Chauhan et al., 79 

2022; Rojas et al., 2022; Wang et al., 2023). MOFs have large surface areas, high 80 

porosities, and tunable chemical properties, and are used in diverse fields, including 81 

agriculture, gas storage, catalysis, and drug delivery (Abdelhameed et al., 2019; 82 

Niknam et al., 2018; Rojas et al., 2022; Zhou et al., 2012). In living organisms, MOFs 83 

can act as nanoparticles that physically interact with cells and consequently can elicit 84 

stress responses (Al-Rehili et al., 2019; Chauhan et al., 2022; Guan et al., 2021; Hu 85 

et al., 2024; Rojas et al., 2022).  86 

Here, we aim to evaluate the ability of MOFs to induce abiotic stress in Aquilaria 87 

crassna callus samples, and determine their efficacy in eliciting secondary metabolite 88 

accumulation typically observed following physical wounding of mature tree tissue. 89 

Five different commercially available MOFs were tested at various concentrations, and 90 

changes in the metabolite profiles of A. crassna callus samples following MOF 91 

application were analyzed. Overall, we observed specific differences in the secondary 92 

metabolite production dependent on the type and concentration of MOF. The results 93 

presented here highlight the high potential of metal-organic frameworks to potentially 94 
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offer a new avenue to source agarwood secondary metabolites sustainably from cell 95 

cultures rather than mature trees. 96 

97 
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2 Materials and Methods 98 

2.1 Media and plant growth regulators (PGRs) for callus induction and 99 

proliferation 100 

The initial Aquilaria crassna plant material was provided by the Ministry of 101 

Environment, Water, and Agriculture (MEWA) in Saudi Arabia as in vitro cultures. 102 

Callus cultures were induced from shoot segments, using a modified MS medium 103 

based on the formulation by Murashige and Skoog (Murashige and Skoog, 1962). To 104 

initiate callus formation and proliferation, the medium was enriched with 3% sucrose, 105 

0.6% agar, 2.2 µM of 2,4-dichloro phenoxy acetic acid (Sigma-Aldrich, St. Louis, USA), 106 

and 2.3 µM of 6-benzyl amino purine (Sigma-Aldrich, St. Louis, USA) (Fig. 1). These 107 

specific plant growth regulators (PGRs) are known to be pivotal for plant cell 108 

differentiation and growth (Di Mambro et al., 2017; Gaba, 2005; Sabagh et al., 2021), 109 

and have been used for callus induction and proliferation in various plant species, 110 

including those belonging to the genus Aquilaria (Jayaraman et al., 2014; Qinying et 111 

al., 2001). To provide a suitable environment for growth and development, all callus 112 

cultures were incubated at 25 ± 1 ºC in darkness for 8 weeks before being used for 113 

subsequent experiments. 114 

 115 

2.2 Determination of suitable solvent for Aquilaria metabolite extraction 116 

Before extracting the metabolites from MOF-treated callus samples, a preliminary 117 

experiment was conducted to identify the most suitable solvent, characterized by a 118 

high extraction efficiency and low GC-MS background signal. Approximately 500 mg 119 

of dried and ground Aquilaria wood sample was weighed and transferred into each of 120 

nine individual microcentrifuge tubes to which 1 mL of one of the following nine 121 

solvents was added: methanol, 96% ethanol, acetone, dichloromethane (all from VWR 122 
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International, Fontenay-sous-Bois, France), n-hexane (Acros Organics, Geel, 123 

Belgium), n-dodecane, tetrahydrofuran (both from Sigma-Aldrich, St. Louis, USA), and 124 

the two perfluorocarbons FC-770 (Fluorochem, Glossop, UK) and FC-3283 (Acros 125 

Organics, Geel, Belgium). The mixtures of wood samples and solvents were briefly 126 

vortexed and then shaken at 200 rpm for 2 h at room temperature to facilitate the 127 

extraction of metabolites. Afterward, the samples were centrifuged at 8000 x g for 128 

15 min to separate all solids from the liquid phase. 150 µL of each supernatant was 129 

transferred into a separate amber GC glass vial. The supernatants and blanks of each 130 

extraction solvent were analyzed on a gas chromatograph as described below. 131 

 132 

2.3 Abiotic stress induction in callus cultures using MOFs 133 

To simulate the natural wounding in Aquilaria trees that triggers the production of 134 

specialty metabolites, we induced abiotic stress in the callus cultures through 135 

exposure to five distinct MOFs (UiO-67, MOF-808, HKUST-1, ZIF-67, MOF-74) that 136 

were synthesized at and provided by King Fahd University of Petroleum and Minerals 137 

(Dhahran, Saudi Arabia) (Table 1). The selection of these MOFs was based on their 138 

commercial availability, varying pore sizes, stability, and chemical functionalities which 139 

we postulated could influence the extent of abiotic stress induced in the callus cultures. 140 

To address the low solubility of MOFs, firstly slurries were prepared before 141 

suspensions of each MOF were prepared at varying concentrations in distilled water 142 

(10–40 g L–1) (see Table 1), and autoclaved before further use (Fig. 1). 143 

Four replicates of 8-week-old callus samples (n=4) were immersed in the MOF slurry, 144 

maintaining homogeneity through continuous shaking. All tools and containers were 145 

sterilized, and the procedure was conducted under aseptic conditions in a laminar flow 146 

hood. After immersion, the cultures were transferred onto solidified MS medium in 147 
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Petri dishes and incubated in darkness at 25 ± 1C for an additional 8 weeks to 148 

facilitate their growth and development (Fig. 1). 149 

 150 

2.4 Callus recovery and processing for metabolite analysis 151 

After 8 weeks of cultivation, the petri dishes were photographed (Fig. 2), and the callus 152 

samples were recovered to assess the impacts the MOFs had on their growth and 153 

metabolite production. From each of the four replicate calluses per treatment (n=4), 154 

one sample of approximately 150 mg wet weight was cut, weighed, and immersed in 155 

1 mL of 96% ethanol. To ensure an efficient extraction of metabolites, the mixtures 156 

were agitated at 200 rpm for 8 h. Subsequently, the suspensions were centrifuged at 157 

8000 x g for 15 min to segregate the liquid phases from the solid residues. 150 µL of 158 

each supernatant was pipetted into amber glass vials for further GC-MS analysis. 159 

 160 

2.5 Gas chromatography-mass spectrometry (GC-MS) analysis 161 

All solvent samples were analyzed using an Agilent 7890A gas chromatograph (GC) 162 

coupled with a 5975C mass spectrometer (MS) with a triple-axis detector (Agilent 163 

Technologies, USA). The GC was equipped with a DB-5MS column (Agilent J&W, 164 

USA), with helium as the carrier gas at a flow rate of 1 mL per min. A previously 165 

described GC oven temperature protocol was used (Overmans and Lauersen, 2022). 166 

The analysis was conducted using a splitless injection to ensure maximum sensitivity. 167 

After a 13-min solvent delay, mass spectra were recorded across a scanning range of 168 

50–750 m/z at a rate of 20 scans per second. 169 

Chromatograms were processed and integrated using the MassHunter Workstation 170 

software v. B.08.00 (Agilent Technologies, USA). Metabolites were identified by 171 

comparing mass spectra against the National Institute of Standards and Technology 172 
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(NIST) library (Gaithersburg, MD, USA), and standard mixtures of terpenoids were 173 

used as internal quality controls for the analysis. The peak areas of metabolites were 174 

normalized to the respective sample weight to account for variations in sample size. 175 

All GC-MS measurements were performed in technical duplicates (n=2), with manual 176 

verification of chromatograms conducted for quality control. 177 

 178 

2.6 Data analysis 179 

All data analyses and visualizations were performed using JMP version 16 (SAS 180 

Institute Inc, NC, USA) and GraphPad Prism v. 10 (GraphPad Software, MA, USA). 181 

Callus photographs were processed and white-balance corrected using Affinity Photo 182 

v. 1.10.6 (Serif Ltd., West Bridgford, UK). Visual elements were organized and 183 

harmonized using Affinity Publisher v. 1.10.6 (Serif Ltd., West Bridgford, UK).  184 
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3 Results & Discussion 185 

3.1 Optimum solvent for extraction of Aquilaria metabolites 186 

Before extracting metabolites from the MOF-treated callus samples, a preliminary 187 

experiment using dried agarwood was conducted to ascertain the most efficient 188 

extraction solvent. The optimum solvent was characterized by high extraction 189 

efficiency and minimal GC signal interference at the retention times of the target 190 

compounds. Within the retention time range of 14–26 min, where the compounds of 191 

interest were expected, 5 solvents: dichloromethane (DCM), dodecane, FC-770, 192 

hexane, and tetrahydrofuran (THF) exhibited many background peaks (Fig. 3), 193 

rendering them unsuitable for subsequent metabolite extraction due to the 194 

complication in identifying target compounds. Among the remaining 4 solvents, FC-195 

3283 demonstrated inefficient metabolite extraction from agarwood, as evidenced by 196 

the low diversity and amounts of compounds in the solvent extracts. The relatively 197 

lower extraction efficiency of FC-3283 compared to traditional alkanes such as 198 

dodecane has recently been discussed (Gutiérrez et al., 2024a; Overmans and 199 

Lauersen, 2022). Comparative analysis of chromatograms from acetone, ethanol, and 200 

methanol extracts revealed similar profiles between those solvents. Overall, ethanol 201 

was identified as the most suitable solvent for further experiments based on its 202 

superior efficiency in extracting a diverse and abundant range of agarwood-derived 203 

metabolites, as observed from the chromatograms (Fig. 3). This finding is in line with 204 

a recent microalgae study in which ethanol was also used as the final solvent to 205 

capture terpenoid metabolites typically produced by Aquilaria sp. (Gutiérrez et al., 206 

2024b). Acetone extracted approximately the same quantities of metabolites as 207 

ethanol but was not used for further experiments because it is considered more 208 

hazardous and corrosive than ethanol (de Jesus and Filho, 2020; Zou et al., 2021). 209 
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 210 

3.2 Effect of MOF exposure on secondary metabolite production in Aquilaria 211 

callus cultures 212 

Exploring the use of metal-organic frameworks (MOFs) to enhance secondary 213 

metabolite production in Aquilaria species revealed varied effects based on the 214 

specific MOF type used. Overall, the MOFs UiO-67 and UiO-74 were found to be less 215 

effective in inducing the production of secondary metabolites (Fig. 4). In contrast, 216 

exposure to MOFs 808 and ZIF-67 resulted in the highest production of secondary 217 

metabolites (Fig. 4). These findings are in agreement with previous studies 218 

demonstrating that exogenous metals can significantly alter plant metabolite profiles 219 

under stress conditions (Liu et al., 2024; Parwez et al., 2023; Yang et al., 2024). 220 

Secondary metabolites with applications in consumer fragrance products such as 221 

aristoline, geranyl isovalerate, and juniperol were not at all present in the experimental 222 

controls although were detected in some MOF-treated samples (Fig. 5a). The same 223 

was observed for the lactone 4-octylbutan-4-olide and pipradrol, which were both only 224 

produced by the callus samples following treatment with any MOF. Pipradrol and its 225 

derivatives have been studied intensively for their pharmacological potential (Liechti 226 

et al., 2014), as they are proposed to enhance neurotransmitters like dopamine and 227 

norepinephrine in the brain (White and Archer, 2013). 228 

Other high-value compounds, including the terpenoids spathulenol, longicamphor, 229 

valencane, and longipinane were present at low concentrations in untreated callus 230 

samples. However, exposure to MOFs resulted in concentration increases of up to 10-231 

fold as in the case of longipinane when callus was treated with MOF-808 (Fig 5a). 232 

The presence of any MOF led to a reduction in trans-2-carboxycyclohexyl-acetic acid 233 

(Fig. 5b). While its potential application remains unclear, this compound has been 234 
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identified in various studies, notably in the context of natural products and their 235 

biological activities. For instance, this chemical has been recognized as a significant 236 

component of fractions derived from the bark of the tropical tree Alstonia boonei, which 237 

is has been investigated for its anti-obesity and anti-lipolytic effects (Anyanwu et al., 238 

2018). 239 

The MOF HKUST-1, which contains copper as the metal base, greatly enhanced the 240 

production of palmitic acid by up to 4-fold compared to controls (Fig. 5b). Palmitic acid 241 

is a major component of agarwood (Aqmarina Nasution et al., 2020; Ogita et al., 2015; 242 

Wang et al., 2018). An elevated production of this compound indicates the onset of a 243 

defense mechanisms involving increased formation of free fatty acids that can trigger 244 

oxidative burst and fatty acid oxidation cascades in response to an external stressors 245 

(Sen et al., 2017). 246 

Samples exposed to MOFs UiO-67 and MOF-808 which contain zirconium exhibited 247 

similar metabolite production profiles (Fig. 4; Fig. 5). This metal has no essential 248 

functions in plant metabolism and is generally considered to be of low toxicity (Shahid 249 

et al., 2013). However, it has been reported that zirconium can reduce the growth of 250 

wheat plants and affect their enzyme activity (Fodor et al., 2005), which may explain 251 

why callus samples treated with MOFs containing this metal exhibited a perturbed 252 

metabolite profile here. 253 

We observed no clear trend across MOFs or compounds with regards to the effect of 254 

MOF concentration on secondary metabolite production. However, secondary 255 

metabolite accumulations were strongly dependent on MOF type and their applied 256 

concentration. For example, palmitic acid and valencene decreased with increasing 257 

concentrations of UiO-67 and MOF-808 (Zr-based), whereas with MOF-74 (Mn-based) 258 

and ZIF-67 (Co-based), more valencene was produced at higher MOF concentrations 259 
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(Fig. 5a). However, this pattern of gradual changes in production with increasing 260 

concentration is not consistent across all compounds. For some secondary 261 

metabolites, their production was highest at intermediate MOF concentrations. This 262 

finding indicates MOF type and concentration need to be carefully selected to 263 

maximize the production of a given target compound without leading to callus 264 

senescence. 265 

 266 

3.3 Conclusion 267 

The use of MOFs for the production of secondary metabolites from the callus of 268 

Aquilaria sp. presents a promising avenue for future research. Systematic empirical 269 

testing of MOFs with Aquilaria sp callus and its subsequent metabolite analysis can 270 

enable stress-elicitation to obtain valuable compounds from this plant. However, 271 

whether this process could be effectively scaled to produce consumer products, like 272 

fragrances, remains to be seen. This approach could help improve the sustainability 273 

the consumer fragrance industry but also holds potential for applications in 274 

pharmaceuticals, agriculture, and other industries requiring plant-derived compounds.  275 
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Tables 459 

Table 1. Codes and properties of MOFs used in the study. Displayed are the MOFs’ identification codes, molecular formulas, CAS 460 

numbers, metals, ligands, colors, and the concentrations of MOF solutions tested in the present study. 461 

 462 

MOF ID 

Molecular 

Formula 

MOF 

CAS No. Metal Ligand Color/code 

Concentration 

(g/L) 

UiO-67 C84H52O32Zr6 1072413-83-2 Zr 4,4'-Biphenyldicarboxylic acid (CAS: 787-70-2) white/ W1 10, 20 

MOF-808 C24H16O32Zr6 1579984-19-2 Zr Trimesic acid (CAS: 554-95-0) white/ W2 10, 20, 30 

HKUST-1 C18H12Cu3O15 222404-02-6 Cu Trimesic acid (CAS: 554-95-0) blue/ B 10, 20, 30, 40 

ZIF-67 C8H12N4.Co 46201-07-4 Co 2-Methylimidazole (CAS: 693-98-1) purple/ P 10, 20 

MOF-74 C8H4O8Mn2 1235342-69-4 Mn 2,5-Dihydroxyterephthalic acid (CAS: 610-92-4) red/ R 10, 20 

  463 
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Figures 464 

 465 

 466 

Figure 1. Workflow of callus cultivation, MOF treatment, and subsequent sample processing and specialty metabolite GC-MS/FID 467 

quantification/identification that were used in the present study. Figure was created with BioRender.com. 468 
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 469 

Figure 2. Photographs of callus samples that were briefly dipped in one of five different types of MOFs at varying concentrations 470 

(10–40 g/L), and of callus samples that were not exposed to any MOF (Control). All photographs were taken after 8-week cultivation 471 

on solidified MS growth medium. For each treatment, four replicate callus samples are shown (n=4).472 

(20 g/L)(40 g/L) (10 g/L)(20 g/L)(10 g/L) (30 g/L)
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 473 

Figure 3. GC chromatograms of pure solvents (left panels) and of agarwood extracts 474 

(right panels) from the preliminary extraction-solvent experiment with acetone, 475 

dichloromethane (DCM), dodecane, ethanol (EtOH), FC-770, FC-3283, hexane, 476 

methanol (MetOH), and tetrahydrofuran (THF).  477 
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 478 

Figure 4. GC-MS chromatograms and metabolite identification. a) Representative 479 

GC-MS chromatograms showing retention times of metabolites from A. crassna callus 480 

tissue exposed to different MOFs. Chromatogram annotation code: (A) Ethanol blank; 481 

(B) Negative control (no MOF); (C, D) UiO-67 treatments (10–20 g/L); (E, F, G) MOF-482 

808 treatments (10–30 g/L); (H, I, J, K) HKUST-1 treatments (10–40 g/L); (L, M) MOF-483 

74 treatments (10–20 g/L); (N, O) ZIF-67 treatments (10–20 g/L). b) Selection of 484 

chromatograms highlighting peaks of metabolites identified after comparison against 485 

the NIST Library. Identified metabolites and retention times (RT) include: (1) Pipradrol 486 

(RT 13.2), (2) Spathulenol (RT 14.3), (3) Aristoline (RT 14.6), (4) Butylated 487 

hydroxyanisole (RT 16.8), (5) trans-2-Carboxy-cyclohexyl-acetic acid (RT 17.9), (6) 488 

Geranyl isovalerate (RT 18.2), (7) Longicamphor (RT 19.5), (8) 4-Octylbutan-4-Olide 489 

(RT 20.4), (9) Valencene (RT 21.2), (10) Juniperol (RT 24.3), (11) Longipinane (RT 490 

24.6), (12) Hexadecanoic acid, ethyl ester (RT 26.3), (13) Palmitic acid (RT 26.8).491 
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 492 
Figure 5. Relative quantification (as GC-MS peak area/mg callus) of various a) fragrant metabolites and b) other prominent 493 

compounds produced by A. crassna callus cultures following different MOF treatments. RT refers to the GC retention time in minutes. 494 

Numbers inside boxes represent mean values of four replicates (n=4). The highest value in each row is underlined. 495 
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