
Systems Neuroscience Computing in Python (SyNCoPy): A Python

Package for Large-scale Analysis of Electrophysiological Data

Gregor Mönke1,*, Tim Schäfer1, Mohsen Parto-Dezfouli1, Diljit Singh Kajal1, Stefan Fürtinger1,

Joscha Tapani Schmiedt3, Pascal Fries1,2,4

Gregor Mönke <grgrmoenke@gmail.com>, ORCID: 0000-0002-3521-715X

Tim Schäfer <tim.schaefer@rcmd.org>, ORCID: 0000-0002-3683-8070

Mohsen Parto-Dezfouli <mohsen.parto-dezfouli@esi-frankfurt.de>, ORCID: 0000-0002-9064-2212

Diljit Singh Kajal <d.jdillu@gmail.com>, ORCID: 0000-0002-0176-5342

Stefan Fürtinger <stefan.fuertinger@esi-frankfurt.de>, ORCID: 0000-0002-8118-036X

Joscha Tapani Schmiedt <schmiedt@brain.uni-bremen.de>, ORCID: 0000-0001-6233-1866

Pascal Fries <pascal.fries@tuebingen.mpg.de>, ORCID: 0000-0002-4270-1468

1: Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt,

Germany.

2: Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen,

Netherlands.

3: Brain Research Institute, Universität Bremen, 28334 Bremen, Germany.

4: Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.

*: Corresponding Author

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

mailto:grgrmoenke@gmail.com
https://orcid.org/0000-0002-3521-715X
mailto:tim.schaefer@rcmd.org
https://orcid.org/0000-0002-3683-8070
mailto:tim.schaefer@esi-frankfurt.de
https://orcid.org/0000-0002-9064-2212
mailto:diljit-singh.kajal@esi-frankfurt.de
https://orcid.org/0000-0002-0176-5342
mailto:stefan.fuertinger@esi-frankfurt.de
https://orcid.org/0000-0002-8118-036X
mailto:schmiedt@brain.uni-bremen.de
https://orcid.org/0000-0001-6233-1866
mailto:pascal.fries@tuebingen.mpg.de
https://orcid.org/0000-0002-4270-1468
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

2

Mönke et al., SyNCoPy

Abstract

We introduce an open-source Python package for the analysis of large-scale electrophysiological

data called SyNCoPy, for Systems Neuroscience Computing in Python. The package includes

signal processing analyses across time (e.g. time-lock analysis), frequency (e.g. power spectrum),

and connectivity (e.g. coherence) domains. It enables user-friendly data analysis on both laptop-

based and high-performance computing systems. SyNCoPy is designed to facilitate trial-parallel

workflows (parallel processing of trials) making it an ideal tool for large-scale analysis of

electrophysiological data. Based on parallel processing of trials, the software can support very

large-scale datasets via innovative out-of-core computation techniques. It also provides seamless

interoperability with other standard software packages through a range of file format importers

and exporters and open file formats. The naming of the user functions closely follows the well-

established FieldTrip framework, which is an open-source Matlab toolbox for advanced analysis

of electrophysiological data.

Keywords: Neuroscience, Electrophysiology, Software, Time-frequency Analysis, Connectivity, Granger

Causality, Magnetoencephalography (MEG), Electroencephalography (EEG)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

3

Mönke et al., SyNCoPy

Introduction

In neuroscience, methods like electroencephalography (EEG), magnetoencephalography (MEG),

electrocorticography (ECoG) and microelectrode recordings are used to measure electromagnetic

signals originating from brain activity. Researchers are typically interested in identifying brain

activity related to certain experimental conditions, e.g., the onset of a stimulus presented to a

subject. Therefore, experimental tasks are repeated many times, and the resulting trials are later

averaged to reduce noise and variance. The trial repetitions combined with modern experimental

setups using an increasing number of recording sites (channels), and high sampling rates can lead

to very large (> 10 GB) datasets. With these datasets, standard algorithms like all-to-all

connectivity computations between channels can become impossible to carry out on laptops or

desktop computers with limited memory, and require workstations or high-performance

computing (HPC) systems which can be complex to work with. Moreover, recently, there has been

a significant surge of interest in using the scientific Python tech-stack as an open-source

environment for data analysis.

Here, we present SyNCoPy (Systems Neuroscience Computing in Python), a Python package for

the analysis of large-scale electrophysiology data that combines an easy-to-use, FieldTrip-like

(Oostenveld et al., 2011) application programming interface (API) with inbuilt support for

distributed workflows on HPC systems.

Related Software Packages

Scientific software packages for the analysis of neuro-electromagnetic data include FieldTrip,

EEGLab (Delorme et al., 2011; Delorme & Makeig, 2004) and Brainstorm (Tadel et al., 2011) for

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?rugtjN
https://www.zotero.org/google-docs/?5pQWRg
https://www.zotero.org/google-docs/?1TXeNq
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

4

Mönke et al., SyNCoPy

Matlab, and MNE Python (Gramfort et al., 2013, 2014) and Elephant (Denker et al., 2023) for

Python.

FieldTrip is a Matlab toolbox that was first published in 2011 and has been actively evolving since

then. Its features include pre-processing, multivariate time-series and connectivity analysis and

source localization. It comes with a data browser, interactive data visualizations, and extensive

documentation. The functional API consists of powerful main functions (e.g.,

ft_preprocessing, ft_freqanalysis, ft_connectivityanalysis) and a

number of smaller auxiliary functions. Most functions can be called with the input data and a

config structure as input parameters, and return an output data structure that includes a copy of

the config, serving as a history of the operations applied to the data and a way to re-apply the

analysis to different input data.

EEGLab has been developed since at least 2004 and is an interactive Matlab toolbox for processing

continuous and event-related EEG, MEG and other electrophysiological data. It includes both a

graphic user interface (GUI) and an API, and has support for user-contributed code via a plug-in

interface. Features include interactive visualization, artifact removal, independent component

analysis (ICA), time-frequency analysis and source modeling.

The Brainstorm software package is written in Matlab and Java, but can be run as a standalone

application without the need for a Matlab license. It focuses on a sophisticated GUI and provides

some batch processing functionalities.

Elephant is a Python library for the analysis of electrophysiological data with a focus on generic

analysis functions for spike-train data and time-series recordings from electrodes.

MNE Python is a Python package that supports data preprocessing, source localization, statistical

analysis, and estimation of functional connectivity between distributed brain regions. It is built on

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?ECK3ee
https://www.zotero.org/google-docs/?2zzNsD
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

5

Mönke et al., SyNCoPy

top of the scientific Python ecosystem, has many contributors and is well integrated with other

applications using the Neuromag FIF file format. MNE has extensive plotting capabilities and

documentation, including publicly available example datasets and tutorials. It supports

parallelization on multiple cores of a single machine via Python's joblib module, but currently

no direct parallelization support for HPC systems. The API is a combination of fine-grained

functions and methods defined directly on the data objects. MNE is focused on the analysis of

EEG and MEG data and local field potentials (LFPs) and supports artifact removal, time/frequency

analysis and source modeling.

We developed SyNCoPy to complement some of MNE’s and Elephant’s features, offer an easy,

FieldTrip-like API, support for time-discrete spike datasets and built-in parallelization on HPC

systems.

The SyNCoPy Architecture

The mentioned software solutions are well established and share different features with SyNCoPy.

However none of them is made for handling very large datasets, and for distributed computing on

HPC systems. SyNCoPy supports this use case through an architecture that supports trial-parallel

out-of-core computations. SyNCoPy's core data structures consist of metadata and a multi-

dimensional data array, but the data array is not loaded into memory by default. Instead, when a

computation is requested, the data is streamed trial-wise from HDF5 (Hierarchical Data Format 5)

containers stored on the hard disk, and results are written back to disk in a similar fashion.

Metadata is stored in JavaScript Object Notation (JSON) format. This approach allows for

memory-efficient processing of very large datasets with many trials, as well as for easy trial-based

parallelization. On a standard computer, trials can be handled sequentially or in parallel using

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

6

Mönke et al., SyNCoPy

several cores, if enough memory is available, while on HPC or cloud-based systems,

parallelization is achieved by having each node handle one trial at a time. This means that large

numbers of trials can be processed in parallel using today's HPC systems.

Figure 1. The SyNCoPy architecture and a typical setup for parallel processing.

SyNCoPy is started on a laptop (left) to process a multi-trial dataset. When a high-level SyNCoPy API function is

executed in a Jupyter Notebook, SyNCoPy’s algorithms based on NumPy and SciPy are wrapped in a computational

routine which connects to a high-performance compute cluster (or a local cluster on the laptop) via Dask and

automatically distributes the trial-by-trial computations to the available resources. The jobs run in parallel (center),

with each worker process handling one job at a time and writing the results for a trial into the proper slot of a single

HDF5 container on disk. When all workers have finished their assigned jobs, the results on disk are complete and

can be accessed from the SyNCoPy session on the laptop (right). The results can then be visualized with SyNCoPy’s

plotting API based on matplotlib, exported to NWB format (Neurodata Without Borders), or NumPy arrays can be

extracted directly for custom post-processing using the standard scientific Python tech stack.

The internal architecture of SyNCoPy and the recommended setup for running parallel

computations on large datasets is depicted in Figure 1. Users connect to a remote JupyterHub

instance, for example provided by an institutional High-Performance Computing (HPC) cluster.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

7

Mönke et al., SyNCoPy

After creating a global Dask (Rocklin, 2015) client, running SyNCoPy analyses will use the

available computing resources. The input data should reside on fast storage accessible from the

cluster, typically a file server. When the user starts a parallel computation, SyNCoPy automatically

detects and uses the Dask cluster and distributes the work to the HPC cluster nodes. The nodes

write the results to disk, and the SyNCoPy data structure returned by the SyNCoPy API function

points to the data on disk. Note that the resulting data is never transferred directly over the network,

and is never loaded completely into memory. For post-processing, the API offers interfaces to

matplotlib (Hunter, 2007) for plotting, and NumPy (Harris et al., 2020) and pyNWB (Rübel et al.,

2022) for data export.

SyNCoPy compute functions (running as a ComputationalRoutine) can attach to any

running Dask client, and hence harness the full flexibility of the Dask ecosystem, e.g. easy

deployment to cloud resources.

SyNCoPy provides specialized data structures and a general method for implementing parallel out-

of-core computations on it, the ComputationalRoutine. The user-exposed functions (high-

level SyNCoPy API, like syncopy.connectivityanalysis) internally evaluate user-

specified configurations and then use the ComputationalRoutine mechanism to execute

code that typically works on the data of a single trial. Depending on the global Python environment,

the ComputationalRoutine executes the per-trial code sequentially, or in parallel via Dask

(see also esi-acme1) to interact with a parallelization backend, e.g., a Slurm job scheduler running

on an HPC cluster. SyNCoPy analysis scripts are agnostic about the hardware environment,

meaning analyses can be developed and run locally on single machines like laptops, and the same

code can later be deployed on distributed computing resources.

1
 https://github.com/esi-neuroscience/acme

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?5hdXrN
https://www.zotero.org/google-docs/?ydyhZ0
https://www.zotero.org/google-docs/?LuOVym
https://www.zotero.org/google-docs/?0Mv4gi
https://www.zotero.org/google-docs/?0Mv4gi
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

8

Mönke et al., SyNCoPy

Feature Overview

The current features of SyNCoPy can be divided into the broad categories data handling, pre-

processing, time-locked analysis, frequency-domain analysis, and connectivity-based analysis.

Data Structures and Data Handling

The data handling category includes functions for loading and saving data using SyNCoPy's

internal data formats, as well as some functions to convert data, i.e. import data and export them

into other file formats. SyNCoPy's core data structures generally contain a multi-dimensional data

array and metadata. On disk, the data is represented as an HDF5 file, and when data is loaded into

memory, it becomes available as a NumPy array. The data structures can be divided into data types

for continuous data and for discrete data. The AnalogData class is typically used to store raw

electrophysiological data, i.e., multi-channel, regularly-sampled, analog data with one or more

trials. If no trial information is available in the data source, the user typically creates a trial

definition to define the trials. For many analysis types, latency selections are applied to ensure that

the data is time-locked to a certain event like stimulus onset, which results in a TimeLockData

instance. Algorithms that output real or complex spectral data store these results in instances of

the SpectralData class, and those resulting in channel-channel interaction information

(connectivity measures) return instances of the CrossSpectralData class. The discrete data

classes SpikeData and EventData are used to store spikes and events, respectively. The

SpikeData class can store spikes identified in external spike sorting software like SpyKING

Circus (Yger et al., 2018), including the raw waveform around each spike. The EventData class

is used to store event times, and is typically used in combination with other data classes.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?yYv4oy
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

9

Mönke et al., SyNCoPy

All data classes can be initialized from NumPy arrays and data type-specific metadata, like the

sampling frequency for AnalogData instances. To facilitate memory-safe data handling also

during initialization, Python generators producing single-trial NumPy arrays can be fed directly

into the respective SyNCoPy data class constructors. To improve interoperability with other

software packages, functions to convert between the data structures of MNE Python and SyNCoPy

are available. We also provide functions to save and load data in NWB format (Rübel et al., 2022).

Pre-Processing

SyNCoPy's preprocessing functions work on AnalogData instances and support detrending,

normalizing and filtering signals, including low-pass, high-pass, band-pass and band-stop filters.

Resampling and downsampling of time series data is also supported.

Time-frequency Analysis

SyNCoPy provides functions for frequency analysis and time-frequency analysis on input of type

AnalogData. The (Multi-)tapered Fourier transform (MTMFFT) algorithms perform spectral

analysis on time-series data using either a single taper window or many tapers based on the discrete

prolate spheroidal sequence (DPSS). The effective frequency smoothing width can be directly

controlled in Hertz with the tapsmofrq parameter as in FieldTrip. The single tapers available

in SyNCoPy are imported from SciPy’s signal module (Virtanen et al., 2020). The resulting spectra

can be post-processed using the FOOOF method (Fitting Oscillations and One-over-f) (Donoghue

et al., 2020). A sliding window short-time Fourier transform is also available, as well as Welch's

method for the estimation of power spectra based on time-averaging over short, modified

periodograms (Welch, 1967). Both the non-orthogonal continuous wavelet transform (Torrence &

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?eImEdB
https://www.zotero.org/google-docs/?rsv5Fa
https://www.zotero.org/google-docs/?3FEhBf
https://www.zotero.org/google-docs/?3FEhBf
https://www.zotero.org/google-docs/?XefQvY
https://www.zotero.org/google-docs/?hwUcFT
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

10

Mönke et al., SyNCoPy

Compo, 1998) and superlets, which can reveal fast transient oscillations with high resolution in

both time and frequency (Moca et al., 2021), are available in SyNCoPy for time-frequency

analysis.

Connectivity Analysis

The connectivity analysis module reveals functional connectivity between channels. It provides

algorithms for cross-spectral density estimation (CSD), coherence, pairwise phase consistency

(PPC), (Vinck et al., 2010), nonparametric Granger causality (Dhamala et al., 2008), and cross-

correlation. Running connectivity analysis requires SpectralData input. If an AnalogData

instance is passed, an implicit MTFFT analysis is run with default parameters to obtain a

SpectralData instance.

Statistics

SyNCoPy provides functions to compute the mean, median, standard deviation, and variance along

arbitrary axes of its data classes. The inter-trial coherence can be computed for input of type

SpectralData. Jackknifing (Richter et al., 2015) is also implemented and can be used to

compute confidence intervals for coherence or Granger causality results. The peristimulus time

histogram (PSTH) can be computed for SpikeData instances (Palm et al., 1988).

Plotting and Utility Functions

We provide plotting functions for various SyNCoPy data types, including AnalogData,

SpectralData and SpikeData. The SyNCoPy plotting functions are intended to give

scientists a quick and easy overview of their data during the development of the data analysis

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?hwUcFT
https://www.zotero.org/google-docs/?0tAkQI
https://www.zotero.org/google-docs/?9vWhqE
https://www.zotero.org/google-docs/?USY9A9
https://www.zotero.org/google-docs/?nOprwm
https://www.zotero.org/google-docs/?3BGcZP
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

11

Mönke et al., SyNCoPy

pipeline and for project presentations, but not to provide publication-ready figures. The functions

internally use matplotlib (Hunter, 2007), and the resulting figures can be post-processed by users

if needed.

The synthdata module in SyNCoPy contains utility functions to create synthetic datasets,

which is useful for training purposes and to test custom algorithms and assess their performance.

Apart from standard processes like white noise or Poisson shot noise to simulate spike data, we

also offer red noise (AR(1) process) and a phase-diffusion algorithm (Schulze, 2005) to mimic

experimental LFP signals.

Basic algebraic operations like addition and multiplication are supported (and parallelized) for all

SyNCoPy data classes and NumPy arrays, allowing for flexible synthetic data construction and

standard operations like baseline corrections.

Example Step-by-Step Analysis Pipeline for a Real Electrophysiological Dataset

In the following, we present an example of a step-by-step analysis pipeline to demonstrate how to

use SyNCoPy for analyzing extracellular electrophysiology data. For comparison, the same

analysis was carried out in Matlab with FieldTrip. The source code for the SyNCoPy version and

the FieldTrip version is available online at https://github.com/frieslab/syncopy_paper.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?ydyhZ0
https://www.zotero.org/google-docs/?P7h91A
https://github.com/frieslab/syncopy_paper
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

12

Mönke et al., SyNCoPy

Figure 2. SyNCoPy analysis pipeline for an example electrophysiological dataset.

A) Analysis pipeline and SyNCoPy functions used to process an example electrophysiological dataset.

B) During presentation of the full-field flash stimulus lasting for 250 ms, LFP and spiking activity were recorded

from different brain areas of awake mice.

C) The averaged LFP response over trials and channels of area A, time-locked to stimulus onset.

D, E) Time-lock raster plot (D) and peri-stimulus time histogram (E) of spiking activity of 150 trials in a sample

neuron.

F) Spectra of LFP power ratio between stimulus and baseline period in frequency range of 1-95 Hz averaged over

trials and channels of Area A.

G-I) Same as F but for coherence between LFPs of Area A and Area B (G), pairwise phase consistency between

LFPs of Area A and Area B (H), Granger causality between the LFPs of Area A and Area B (I). Black lines are

FieldTrip results and red-shaded lines are SyNCoPy results. Solid line is feedforward and dashed line is feedback

direction (I).

Figure 2 depicts the analysis pipeline and SyNCoPy functions used to process a sample brain

signal. The dataset used in the analyses is a publicly available dataset and comes from the Allen

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

13

Mönke et al., SyNCoPy

Institute Visual Coding – Neuropixels project2 and has been described previously (Siegle et al.,

2021). In summary, LFP and spiking activity were simultaneously recorded through high-density

Neuropixel extracellular electrophysiology probes. These recordings encompass various regions

of the mouse brain during the processing of visual stimuli. The LFP data was recorded using Open

Ephys (Siegle et al., 2017), and spike data was extracted with Kilosort (Pachitariu et al., 2023).

During the experiment, mice were presented with different visual stimuli. Here, the full-field flash

stimulus with duration of 250 ms was considered as stimulus epoch, while the 250 ms period before

stimulus onset was used as baseline (Figure 2B). In order to also evaluate connectivity analyses,

two visual areas from one sample session were selected (Area A, in the Allen dataset referred to

as Area VISl, corresponding to Primary visual area, lateral part; Area B, in the Allen dataset

referred to as Area VISrl, corresponding to Primary visual area, rostral part). After preprocessing

data for aligning the data to stimulus onset, the aforementioned time-domain and frequency-

domain analyses were tested on the data. Figure 2C shows the LFP response averaged across

different trials and channels of area A. It indicates an evoked response with a short latency after

visual stimulus presentation. Time-locked raster plots and the peri-stimulus time histogram

(PSTH) of the spike trains are shown for 150 trials of a sample neuron (Figures 2D and 2E,

respectively). Subsequently, we calculated the power spectrum of the LFP from Area A, the

coherence spectrum between the LFPs of Area A and Area B, the pairwise phase consistency

(PPC) spectrum between the LFPs of Area A and Area B, and the nonparametric Granger causality

(GC) spectrum between the LFPs of Area A and Area B, as four common frequency-domain

analyses.

2
 https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?XCTaRm
https://www.zotero.org/google-docs/?XCTaRm
https://www.zotero.org/google-docs/?jyvxq8
https://www.zotero.org/google-docs/?2M4abz
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

14

Mönke et al., SyNCoPy

These analyses were calculated in both SyNCoPy and FieldTrip for demonstration purposes and

to illustrate the comparability of the outputs. To this end, the data was first zero padded. Next,

based on the MTMFFT method and using the Hann window, the power spectrum was calculated

during the stimulus period and the baseline period for each trial and recording channel. MTMFFT

conducts frequency analysis on time-series trial data by employing either a single taper (such as

Hann) or by utilizing multiple tapers derived from discrete prolate spheroidal sequences (DPSS).

For each recording channel separately, the power spectra of the stimulus period and the baseline

period were separately averaged, and the ratio of stimulus- over baseline-power calculated.

Subsequently, the power-ratio spectra were averaged over channels (Figure 2F).

Similarly, the coherence (Figure 2G), PPC (Figure 2H), and Granger causality (Figure 2I) between

the selected area pairs were measured after zero padding the signals. The results are essentially

identical between SyNCoPy and FieldTrip for power, coherence, and PPC, and they are very

similar for GC (Figures 2F-I).

Memory benchmarks

Peak memory consumption - Methods

We investigated the peak memory consumption (PMC) of SyNCoPy for several algorithms in a

typical usage scenario, i.e., during parallel processing on an HPC cluster. Specifically, the

”small” queue of the Raven cluster at the Max Planck Computing and Data Facility (MPCDF) of

the Max-Planck Society was used. In order to assess the memory consumption as a function of

the dataset size, we created synthetic datasets of increasing size with SyNCoPy's synthdata

module, and processed them with SyNCoPy. We evaluated (1) pre-processing with a Butterworth

+ Hilbert filter, (2) the MTMFFT, (3) the MTMFFT f.t. algorithm (here, f.t. specifies that a fixed

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

15

Mönke et al., SyNCoPy

number of tapers was used for better comparison, as explained in more detail below), (4)

wavelets, and (5) coherence. The starting dataset size was 10 trials, 5000 samples per trial and 50

channels, which requires about 10 MB of space. We created scripts to run each algorithm with

different dataset sizes. After each call to a SyNCoPy API function, the Python garbage collector

was called to ensure meaningful measurements. During each run, the PMC was monitored with

the memory_profiler package3 for Python. The PMC is the highest amount of memory

consumption of the submitting process and one worker that was measured during a run. We

repeated the process 20 times for each unique combination of dataset size and algorithm to

obtain robust results. We report the mean and the standard deviation over the 20 runs in Figure 3.

Figure 3. SyNCoPy memory efficiency

Peak memory consumption (PMC) as a function of input size for selected algorithms. The PMC measurements are

based on synthetic data. The starting dataset size is 10 trials, 5000 samples and 50 channels. Each datapoint shows

PMC mean and standard deviation of 20 independent runs.

A) PMC is largely independent of the number of trials. The total size of the test dataset varied over almost three orders

of magnitude (10 trials to 7,000 trials, ~10MB to 7GB), while the size of a single trial was kept constant at 1MB.

B) PMC depends on the number of samples per trial and the algorithm. The number of samples (length of the signals)

varied from 10 to 40 000. C) PMC depends on the number of channels and the algorithm. Channel numbers varied

from two to 250.

3
 https://github.com/pythonprofilers/memory_profiler

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

16

Mönke et al., SyNCoPy

Peak memory consumption - Results

The results of the peak memory consumption (PMC) measurements are illustrated in Figure 3.

First, we investigated the effect of the trial count on PMC (Figure 3A). We incrementally increased

the number of trials from 10 up to 40,000 while keeping the samples per trial and the number of

channels constant. At each datapoint, we performed 20 independent runs with the respective

algorithm. The PMC stayed largely constant, irrespective of the trial count, for all algorithms. The

PMC was lowest for the Butterworth filter, followed by the MTMFFT, Coherence and Wavelets.

Second, we demonstrate the effect of increasing the number of samples per trial on memory

consumption (Figure 3B). We gradually increased the number of samples per trial from 10 to

40,000 while keeping the trial count and channel count constant. For the wavelets, the multi-taper

analysis with a fixed number of tapers (MTMFFT f.t.), and coherence computation, a linear effect

on the PMC is visible. For the Butterworth filter, memory consumption is essentially constant, as

for this method we employ SciPy’s signal.sosfiltfilt implementation, which works on

finite sections of the input data. For the full multi-taper analysis (MTMFFT), the PCM increases

quadratically with the sample count: The FFT itself has a PMC that is a linear function of the

number of samples, and the number of tapers needed to achieve a consistent frequency smoothing

(tapsmofrq parameter) also scales with the number of samples. Finally, we observe the effect of

increasing the number of channels on the PMC of the algorithms (Figure 3C). For the wavelets

and the MTMFFT, a linear effect on the PMC is shown. For the Butterworth filter, the PMC again

is almost constant. Coherence shows quadratic scaling of PMC with the number of channels, which

directly follows from combinatorics

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

17

Mönke et al., SyNCoPy

Discussion

SyNCoPy is a Python package for the analysis of electrophysiological data, with a focus on

extracellular electrophysiology. It stands out from similar software packages by its ability to scale

easily from laptops to HPC systems and thus support very large datasets, and an API similar to

FieldTrip's. SyNCoPy's support for big data is based on its architecture, which (1) allows for easy

usage of typical HPC systems available at many scientific institutions, (2) streams data from disk

to memory only when needed and (3) isolates computations on the minimal amount of data

required for independent computations. We demonstrated SyNCoPy’s memory efficiency by

benchmarking peak memory consumption (PMC) for a number of algorithms. The results

demonstrate that SyNCoPy's architecture is indeed able to provide largely constant PMC,

independent of the number of trials. Moreover, the PMC scales as expected for the respective

algorithms with increases in single-trial size.

From a feature perspective, SyNCoPy currently focuses on preprocessing of raw data, time-

frequency analysis and connectivity measures. We expect that neuroscience users may want to

employ SyNCoPy in combination with other well-established software packages like MNE

Python, Elephant (Denker et al., 2023) and others that contain complementary functionality. To

facilitate this, we provide support for converting MNE Python data structures and importing and

exporting standard file formats like NWB. Also, the SyNCoPy file format is based on the open

standards HDF5 and JSON, and can thus be read by standard libraries available for a variety of

languages.

SyNCoPy does not have a graphical user interface and relies on scripting. While this may require

a certain initial time investment for users completely new to programming, we believe that the

standardization and increased reproducibility offered by this approach pays off quickly. FieldTrip

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://www.zotero.org/google-docs/?129FOh
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

18

Mönke et al., SyNCoPy

is largely based on the same approach and has reached a large user community. To help new users,

SyNCoPy comes with full API documentation and includes a set of articles that demonstrate

typical analysis workflows. Questions and issues can be reported and discussed on the SyNCoPy

Github repository4.

Limitations

First, it is important to acknowledge that memory efficiency is a software requirement that, in

some situations, conflicts with performance in the sense of processing speed: for a small dataset,

it is faster to load everything into memory at once than to stream chunks of the data on demand.

However, for large datasets, this computing strategy prevents the processing of datasets larger than

(a certain fraction of) the machine's RAM and thus is not feasible.

Second, SyNCoPy is focused on trial-parallel processing, which is from our perspective a very

common scenario in Neuroscience. However, in some situations or for certain algorithms, it may

be beneficial to support parallelization along different axes. While SyNCoPy does have built-in

support for parallelization over channels for some algorithms, it does not in general support

parallelization along an arbitrary axis of the data set.

Third, extension of SyNCoPy with new algorithms is possible by creating a custom Computational

Routine, but this process currently requires a good understanding of both parallel computing and

some SyNCoPy internals, and is thus intended for more advanced users.

Fourth, the target audience of SyNCoPy consists of neuroscientists who need to process larger

datasets. The exact limitation for the size of the data set depends on the specific algorithms and

the settings used, of course. But what always holds is that a single trial must easily fit into the

RAM of the machine, i.e., typically the HPC cluster node that runs the computations. It is important

4
 https://github.com/esi-neuroscience/syncopy/issues

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

19

Mönke et al., SyNCoPy

to understand that certain operations used while loading and saving data, or in the algorithms

themselves, will need to create one, or in some cases even more, copies of the trial data in memory.

Therefore, working with a dataset that has almost the size of the RAM is not feasible in reality.

This is not a limitation of SyNCoPy, but applies to all operations on computers, including the

standard NumPy and SciPy libraries used internally by SyNCoPy to implement or run the

algorithms on the data of a single trial. The required memory typically is a small multiple of the

single-trial size.

Conclusion

SyNCoPy provides seamless scaling of trial-based workflows for the analysis of large

electrophysiology datasets in Python. In this paper, we demonstrated its ability to scale to very

large datasets by measuring the peak memory consumption over a range of algorithms for data sets

with varying numbers of trials, samples per trial, and channels. Furthermore, we illustrated how to

use SyNCoPy on a real-world dataset, along with a direct comparison of the same analyses carried

out with the well-established FieldTrip toolbox.

SyNCoPy was built to integrate well into the current ecosystem of neuroscience tools. We hope

that it will help researchers to work with large datasets in a reproducible way and lower the barrier

to fully utilize existing HPC resources in neuroscience.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

20

Mönke et al., SyNCoPy

Availability

SyNCoPy is free software, available at https://github.com/esi-neuroscience/syncopy and on PyPI

and conda-forge.

Acknowledgements

The authors would like to thank Robert Oostenveld and Jan-Mathijs Schoffelen for their invaluable

input and insightful feedback throughout the development of SyNCoPy, Mukesh Dhamala for

providing help with the Python implementation of the Granger causality algorithm, and Katharine

Shapcott and Muad Abd El Hay for early testing of the software, suggestions and discussions.

Additionally, the authors acknowledge the Max Planck Computing and Data Facility (MPCDF)

and the IT team at ESI for providing generous access to high-performance computing resources.

Conflict of Interest Statement

P.F. has a patent on thin-film electrodes and is member of the Advisory Board of CorTec GmbH

(Freiburg, Germany). The other authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

GM: Core development, focus on methods and algorithms. Memory benchmarking. TS: Core

development, focus on backend engineering and visualizations. Wrote the initial draft of the

manuscript. DSK: Software testing, contributions to software design and development. MP: Data

analysis SyNCoPy and FieldTrip. SF: Core development, focus on data backend. JS: Contribution

to core development. PF: Initiated and conceptualized the project, prioritization of software

functionality, input from neuroscience perspective, funding. All authors read and approved the

final version of the manuscript.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://github.com/esi-neuroscience/syncopy
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

21

Mönke et al., SyNCoPy

References

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial

EEG dynamics including independent component analysis. Journal of Neuroscience

Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A., &

Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for

Advanced EEG Processing. Computational Intelligence and Neuroscience, 2011,

e130714. https://doi.org/10.1155/2011/130714

Denker, M., Köhler, C., Jurkus, R., Kern, M., Kurth, A. C., Kleinjohann, A., Bouss, P., Davison,

A., Morales-Gregorio, A., Kramer, M., & Ito, J. (2023). Elephant 0.13.0 [Computer

software]. Zenodo. https://doi.org/10.5281/zenodo.8144467

Dhamala, M., Rangarajan, G., & Ding, M. (2008). Analyzing information flow in brain networks

with nonparametric Granger causality. NeuroImage, 41(2), 354–362.

https://doi.org/10.1016/j.neuroimage.2008.02.020

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A.

H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural

power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12),

Article 12. https://doi.org/10.1038/s41593-020-00744-x

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,

Parkkonen, L., & Hämäläinen, M. S. (2014). MNE software for processing MEG and

EEG data. NeuroImage, 86, 446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Goj, R., Jas,

M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

22

Mönke et al., SyNCoPy

with MNE-Python. Frontiers in Neuroscience, 7.

https://www.frontiersin.org/articles/10.3389/fnins.2013.00267

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van

Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., …

Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), Article

7825. https://doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Moca, V. V., Bârzan, H., Nagy-Dăbâcan, A., & Mureșan, R. C. (2021). Time-frequency super-

resolution with superlets. Nature Communications, 12(1), Article 1.

https://doi.org/10.1038/s41467-020-20539-9

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software

for advanced analysis of MEG, EEG, and invasive electrophysiological data.

Computational Intelligence and Neuroscience, 2011, 1:1-1:9.

https://doi.org/10.1155/2011/156869

Pachitariu, M., Sridhar, S., & Stringer, C. (2023). Solving the spike sorting problem with Kilosort

(p. 2023.01.07.523036). bioRxiv. https://doi.org/10.1101/2023.01.07.523036

Palm, G., Aertsen, A. M. H. J., & Gerstein, G. L. (1988). On the significance of correlations

among neuronal spike trains. Biological Cybernetics, 59(1), 1–11.

https://doi.org/10.1007/BF00336885

Richter, C. G., Thompson, W. H., Bosman, C. A., & Fries, P. (2015). A jackknife approach to

quantifying single-trial correlation between covariance-based metrics undefined on a

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

23

Mönke et al., SyNCoPy

single-trial basis. NeuroImage, 114, 57–70.

https://doi.org/10.1016/j.neuroimage.2015.04.040

Rübel, O., Tritt, A., Ly, R., Dichter, B. K., Ghosh, S., Niu, L., Baker, P., Soltesz, I., Ng, L.,

Svoboda, K., Frank, L., & Bouchard, K. E. (2022). The Neurodata Without Borders

ecosystem for neurophysiological data science. eLife, 11, e78362.

https://doi.org/10.7554/eLife.78362

Schulze, H. (2005). Stochastic Models for Phase Noise. In International OFDM-Workshop.

Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., Heller, G., Ramirez, T. K.,

Choi, H., Luviano, J. A., Groblewski, P. A., Ahmed, R., Arkhipov, A., Bernard, A.,

Billeh, Y. N., Brown, D., Buice, M. A., Cain, N., Caldejon, S., … Koch, C. (2021).

Survey of spiking in the mouse visual system reveals functional hierarchy. Nature,

592(7852), Article 7852. https://doi.org/10.1038/s41586-020-03171-x

Siegle, J. H., López, A. C., Patel, Y. A., Abramov, K., Ohayon, S., & Voigts, J. (2017). Open

Ephys: An open-source, plugin-based platform for multichannel electrophysiology.

Journal of Neural Engineering, 14(4), 045003. https://doi.org/10.1088/1741-2552/aa5eea

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A User-

Friendly Application for MEG/EEG Analysis. Computational Intelligence and

Neuroscience, 2011, e879716. https://doi.org/10.1155/2011/879716

Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the

American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-

0477(1998)079<0061:APGTWA>2.0.CO;2

Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., & Pennartz, C. M. A. (2010). The

pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

24

Mönke et al., SyNCoPy

NeuroImage, 51(1), 112–122. https://doi.org/10.1016/j.neuroimage.2010.01.073

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,

… van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing

in Python. Nature Methods, 17(3), Article 3. https://doi.org/10.1038/s41592-019-0686-2

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A

method based on time averaging over short, modified periodograms. IEEE Transactions

on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901

Yger, P., Spampinato, G. L., Esposito, E., Lefebvre, B., Deny, S., Gardella, C., Stimberg, M.,

Jetter, F., Zeck, G., Picaud, S., Duebel, J., & Marre, O. (2018). A spike sorting toolbox

for up to thousands of electrodes validated with ground truth recordings in vitro and in

vivo. eLife, 7, e34518. https://doi.org/10.7554/eLife.34518

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 30, 2024. ; https://doi.org/10.1101/2024.04.15.589590doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

