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Abstract

We introduce an open-source Python package for the analysis of large-scale electrophysiological
data called SyNCoPy, for Systems Neuroscience Computing in Python. The package includes
signal processing analyses across time (e.g. time-lock analysis), frequency (e.g. power spectrum),
and connectivity (e.g. coherence) domains. It enables user-friendly data analysis on both laptop-
based and high-performance computing systems. SyNCoPy is designed to facilitate trial-parallel
workflows (parallel processing of trials) making it an ideal tool for large-scale analysis of
electrophysiological data. Based on parallel processing of trials, the software can support very
large-scale datasets via innovative out-of-core computation techniques. It also provides seamless
interoperability with other standard software packages through a range of file format importers
and exporters and open file formats. The naming of the user functions closely follows the well-
established FieldTrip framework, which is an open-source Matlab toolbox for advanced analysis

of electrophysiological data.
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Introduction

In neuroscience, methods like electroencephalography (EEG), magnetoencephalography (MEG),
electrocorticography (ECoG) and microelectrode recordings are used to measure electromagnetic
signals originating from brain activity. Researchers are typically interested in identifying brain
activity related to certain experimental conditions, e.g., the onset of a stimulus presented to a
subject. Therefore, experimental tasks are repeated many times, and the resulting trials are later
averaged to reduce noise and variance. The trial repetitions combined with modern experimental
setups using an increasing number of recording sites (channels), and high sampling rates can lead
to very large (> 10 GB) datasets. With these datasets, standard algorithms like all-to-all
connectivity computations between channels can become impossible to carry out on laptops or
desktop computers with limited memory, and require workstations or high-performance
computing (HPC) systems which can be complex to work with. Moreover, recently, there has been
a significant surge of interest in using the scientific Python tech-stack as an open-source
environment for data analysis.

Here, we present SyNCoPy (Systems Neuroscience Computing in Python), a Python package for
the analysis of large-scale electrophysiology data that combines an easy-to-use, FieldTrip-like
(Oostenveld et al., 2011) application programming interface (API) with inbuilt support for

distributed workflows on HPC systems.

Related Software Packages
Scientific software packages for the analysis of neuro-electromagnetic data include FieldTrip,

EEGLab (Delorme et al., 2011; Delorme & Makeig, 2004) and Brainstorm (Tadel et al., 2011) for
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Matlab, and MNE Python (Gramfort et al., 2013, 2014) and Elephant (Denker et al., 2023) for
Python.

FieldTrip is a Matlab toolbox that was first published in 2011 and has been actively evolving since
then. Its features include pre-processing, multivariate time-series and connectivity analysis and
source localization. It comes with a data browser, interactive data visualizations, and extensive
documentation. The functional API consists of powerful main functions (e.g.,
ft preprocessing, ft freganalysis, ft connectivityanalysis) and a
number of smaller auxiliary functions. Most functions can be called with the input data and a
config structure as input parameters, and return an output data structure that includes a copy of
the config, serving as a history of the operations applied to the data and a way to re-apply the
analysis to different input data.

EEGLab has been developed since at least 2004 and is an interactive Matlab toolbox for processing
continuous and event-related EEG, MEG and other electrophysiological data. It includes both a
graphic user interface (GUI) and an API, and has support for user-contributed code via a plug-in
interface. Features include interactive visualization, artifact removal, independent component
analysis (ICA), time-frequency analysis and source modeling.

The Brainstorm software package is written in Matlab and Java, but can be run as a standalone
application without the need for a Matlab license. It focuses on a sophisticated GUI and provides
some batch processing functionalities.

Elephant is a Python library for the analysis of electrophysiological data with a focus on generic
analysis functions for spike-train data and time-series recordings from electrodes.

MNE Python is a Python package that supports data preprocessing, source localization, statistical

analysis, and estimation of functional connectivity between distributed brain regions. It is built on
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top of the scientific Python ecosystem, has many contributors and is well integrated with other
applications using the Neuromag FIF file format. MNE has extensive plotting capabilities and
documentation, including publicly available example datasets and tutorials. It supports
parallelization on multiple cores of a single machine via Python's job1ib module, but currently
no direct parallelization support for HPC systems. The API is a combination of fine-grained
functions and methods defined directly on the data objects. MNE is focused on the analysis of
EEG and MEG data and local field potentials (LFPs) and supports artifact removal, time/frequency
analysis and source modeling.

We developed SyNCoPy to complement some of MNE’s and Elephant’s features, offer an easy,
FieldTrip-like API, support for time-discrete spike datasets and built-in parallelization on HPC

systems.

The SyNCoPy Architecture

The mentioned software solutions are well established and share different features with SyNCoPy.
However none of them is made for handling very large datasets, and for distributed computing on
HPC systems. SyNCoPy supports this use case through an architecture that supports trial-parallel
out-of-core computations. SyNCoPy's core data structures consist of metadata and a multi-
dimensional data array, but the data array is not loaded into memory by default. Instead, when a
computation is requested, the data is streamed trial-wise from HDF5 (Hierarchical Data Format 5)
containers stored on the hard disk, and results are written back to disk in a similar fashion.
Metadata is stored in JavaScript Object Notation (JSON) format. This approach allows for
memory-efficient processing of very large datasets with many trials, as well as for easy trial-based

parallelization. On a standard computer, trials can be handled sequentially or in parallel using
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several cores, if enough memory is available, while on HPC or cloud-based systems,
parallelization is achieved by having each node handle one trial at a time. This means that large

numbers of trials can be processed in parallel using today's HPC systems.
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Figure 1. The SyNCoPy architecture and a typical setup for parallel processing.

SyNCoPy is started on a laptop (left) to process a multi-trial dataset. When a high-level SyNCoPy API function is
executed in a Jupyter Notebook, SyNCoPy’s algorithms based on NumPy and SciPy are wrapped in a computational
routine which connects to a high-performance compute cluster (or a local cluster on the laptop) via Dask and
automatically distributes the trial-by-trial computations to the available resources. The jobs run in parallel (center),
with each worker process handling one job at a time and writing the results for a trial into the proper slot of a single
HDFS5 container on disk. When all workers have finished their assigned jobs, the results on disk are complete and
can be accessed from the SyNCoPy session on the laptop (right). The results can then be visualized with SyNCoPy’s
plotting API based on matplotlib, exported to NWB format (Neurodata Without Borders), or NumPy arrays can be

extracted directly for custom post-processing using the standard scientific Python tech stack.

The internal architecture of SyNCoPy and the recommended setup for running parallel
computations on large datasets is depicted in Figure 1. Users connect to a remote JupyterHub

instance, for example provided by an institutional High-Performance Computing (HPC) cluster.
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After creating a global Dask (Rocklin, 2015) client, running SyNCoPy analyses will use the
available computing resources. The input data should reside on fast storage accessible from the
cluster, typically a file server. When the user starts a parallel computation, SyNCoPy automatically
detects and uses the Dask cluster and distributes the work to the HPC cluster nodes. The nodes
write the results to disk, and the SyNCoPy data structure returned by the SyNCoPy API function
points to the data on disk. Note that the resulting data is never transferred directly over the network,
and is never loaded completely into memory. For post-processing, the API offers interfaces to
matplotlib (Hunter, 2007) for plotting, and NumPy (Harris et al., 2020) and pyNWB (Riibel et al.,
2022) for data export.

SyNCoPy compute functions (running as a ComputationalRoutine) can attach to any
running Dask client, and hence harness the full flexibility of the Dask ecosystem, e.g. easy
deployment to cloud resources.

SyNCoPy provides specialized data structures and a general method for implementing parallel out-
of-core computations on it, the ComputationalRoutine. The user-exposed functions (high-
level SyNCoPy API, like syncopy.connectivityanalysis) internally evaluate user-
specified configurations and then use the ComputationalRoutine mechanism to execute
code that typically works on the data of a single trial. Depending on the global Python environment,
the ComputationalRoutine executes the per-trial code sequentially, or in parallel via Dask
(see also esi-acme!) to interact with a parallelization backend, e.g., a Slurm job scheduler running
on an HPC cluster. SyNCoPy analysis scripts are agnostic about the hardware environment,
meaning analyses can be developed and run locally on single machines like laptops, and the same

code can later be deployed on distributed computing resources.

! https://github.com/esi-neuroscience/acme


https://www.zotero.org/google-docs/?5hdXrN
https://www.zotero.org/google-docs/?ydyhZ0
https://www.zotero.org/google-docs/?LuOVym
https://www.zotero.org/google-docs/?0Mv4gi
https://www.zotero.org/google-docs/?0Mv4gi
https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.15.589590; this version posted May 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Feature Overview

The current features of SyNCoPy can be divided into the broad categories data handling, pre-

processing, time-locked analysis, frequency-domain analysis, and connectivity-based analysis.

Data Structures and Data Handling

The data handling category includes functions for loading and saving data using SyNCoPy's
internal data formats, as well as some functions to convert data, i.e. import data and export them
into other file formats. SyNCoPy's core data structures generally contain a multi-dimensional data
array and metadata. On disk, the data is represented as an HDFS5 file, and when data is loaded into
memory, it becomes available as a NumPy array. The data structures can be divided into data types
for continuous data and for discrete data. The AnalogData class is typically used to store raw
electrophysiological data, i.e., multi-channel, regularly-sampled, analog data with one or more
trials. If no trial information is available in the data source, the user typically creates a trial
definition to define the trials. For many analysis types, latency selections are applied to ensure that
the data is time-locked to a certain event like stimulus onset, which results in a TimeLockData
instance. Algorithms that output real or complex spectral data store these results in instances of
the SpectralData class, and those resulting in channel-channel interaction information
(connectivity measures) return instances of the CrossSpectralData class. The discrete data
classes SpikeData and EventData are used to store spikes and events, respectively. The
SpikeData class can store spikes identified in external spike sorting software like SpyKING
Circus (Yger et al., 2018), including the raw waveform around each spike. The EventData class

is used to store event times, and is typically used in combination with other data classes.
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All data classes can be initialized from NumPy arrays and data type-specific metadata, like the
sampling frequency for AnalogData instances. To facilitate memory-safe data handling also
during initialization, Python generators producing single-trial NumPy arrays can be fed directly
into the respective SyNCoPy data class constructors. To improve interoperability with other
software packages, functions to convert between the data structures of MNE Python and SyNCoPy

are available. We also provide functions to save and load data in NWB format (Riibel et al., 2022).

Pre-Processing
SyNCoPy's preprocessing functions work on AnalogData instances and support detrending,
normalizing and filtering signals, including low-pass, high-pass, band-pass and band-stop filters.

Resampling and downsampling of time series data is also supported.

Time-frequency Analysis

SyNCoPy provides functions for frequency analysis and time-frequency analysis on input of type
AnalogData. The (Multi-)tapered Fourier transform (MTMFFT) algorithms perform spectral
analysis on time-series data using either a single taper window or many tapers based on the discrete
prolate spheroidal sequence (DPSS). The effective frequency smoothing width can be directly
controlled in Hertz with the tapsmofrg parameter as in FieldTrip. The single tapers available
in SyNCoPy are imported from SciPy’s signal module (Virtanen et al., 2020). The resulting spectra
can be post-processed using the FOOOF method (Fitting Oscillations and One-over-f) (Donoghue
et al., 2020). A sliding window short-time Fourier transform is also available, as well as Welch's
method for the estimation of power spectra based on time-averaging over short, modified

periodograms (Welch, 1967). Both the non-orthogonal continuous wavelet transform (Torrence &
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Compo, 1998) and superlets, which can reveal fast transient oscillations with high resolution in
both time and frequency (Moca et al., 2021), are available in SyNCoPy for time-frequency

analysis.

Connectivity Analysis

The connectivity analysis module reveals functional connectivity between channels. It provides
algorithms for cross-spectral density estimation (CSD), coherence, pairwise phase consistency
(PPC), (Vinck et al., 2010), nonparametric Granger causality (Dhamala et al., 2008), and cross-
correlation. Running connectivity analysis requires SpectralData input. If an AnalogData
instance is passed, an implicit MTFFT analysis is run with default parameters to obtain a

SpectralData instance.

Statistics

SyNCoPy provides functions to compute the mean, median, standard deviation, and variance along
arbitrary axes of its data classes. The inter-trial coherence can be computed for input of type
SpectralData. Jackknifing (Richter et al., 2015) is also implemented and can be used to
compute confidence intervals for coherence or Granger causality results. The peristimulus time

histogram (PSTH) can be computed for SpikeData instances (Palm et al., 1988).

Plotting and Utility Functions

We provide plotting functions for various SyNCoPy data types, including AnalogData,
SpectralData and SpikeData. The SyNCoPy plotting functions are intended to give
scientists a quick and easy overview of their data during the development of the data analysis

10
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pipeline and for project presentations, but not to provide publication-ready figures. The functions
internally use matplotlib (Hunter, 2007), and the resulting figures can be post-processed by users
if needed.

The synthdata module in SyNCoPy contains utility functions to create synthetic datasets,
which is useful for training purposes and to test custom algorithms and assess their performance.
Apart from standard processes like white noise or Poisson shot noise to simulate spike data, we
also offer red noise (AR(1) process) and a phase-diffusion algorithm (Schulze, 2005) to mimic
experimental LFP signals.

Basic algebraic operations like addition and multiplication are supported (and parallelized) for all
SyNCoPy data classes and NumPy arrays, allowing for flexible synthetic data construction and

standard operations like baseline corrections.

Example Step-by-Step Analysis Pipeline for a Real Electrophysiological Dataset

In the following, we present an example of a step-by-step analysis pipeline to demonstrate how to
use SyNCoPy for analyzing extracellular electrophysiology data. For comparison, the same
analysis was carried out in Matlab with FieldTrip. The source code for the SyNCoPy version and

the FieldTrip version is available online at https://github.com/frieslab/syncopy_paper.

11
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Figure 2. SyNCoPy analysis pipeline for an example electrophysiological dataset.

A) Analysis pipeline and SyNCoPy functions used to process an example electrophysiological dataset.

B) During presentation of the full-field flash stimulus lasting for 250 ms, LFP and spiking activity were recorded
from different brain areas of awake mice.

C) The averaged LFP response over trials and channels of area A, time-locked to stimulus onset.

D, E) Time-lock raster plot (D) and peri-stimulus time histogram (E) of spiking activity of 150 trials in a sample
neuron.

F) Spectra of LFP power ratio between stimulus and baseline period in frequency range of 1-95 Hz averaged over
trials and channels of Area A.

G-I) Same as F but for coherence between LFPs of Area A and Area B (G), pairwise phase consistency between
LFPs of Area A and Area B (H), Granger causality between the LFPs of Area A and Area B (I). Black lines are

FieldTrip results and red-shaded lines are SyNCoPy results. Solid line is feedforward and dashed line is feedback

direction (I).

Figure 2 depicts the analysis pipeline and SyNCoPy functions used to process a sample brain

signal. The dataset used in the analyses is a publicly available dataset and comes from the Allen

12
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Institute Visual Coding — Neuropixels project? and has been described previously (Siegle et al.,
2021). In summary, LFP and spiking activity were simultaneously recorded through high-density
Neuropixel extracellular electrophysiology probes. These recordings encompass various regions
of the mouse brain during the processing of visual stimuli. The LFP data was recorded using Open
Ephys (Siegle et al., 2017), and spike data was extracted with Kilosort (Pachitariu et al., 2023).
During the experiment, mice were presented with different visual stimuli. Here, the full-field flash
stimulus with duration of 250 ms was considered as stimulus epoch, while the 250 ms period before
stimulus onset was used as baseline (Figure 2B). In order to also evaluate connectivity analyses,
two visual areas from one sample session were selected (Area A, in the Allen dataset referred to
as Area VISI, corresponding to Primary visual area, lateral part; Area B, in the Allen dataset
referred to as Area VISrl, corresponding to Primary visual area, rostral part). After preprocessing
data for aligning the data to stimulus onset, the aforementioned time-domain and frequency-
domain analyses were tested on the data. Figure 2C shows the LFP response averaged across
different trials and channels of area A. It indicates an evoked response with a short latency after
visual stimulus presentation. Time-locked raster plots and the peri-stimulus time histogram

(PSTH) of the spike trains are shown for 150 trials of a sample neuron (Figures 2D and 2FE,

respectively). Subsequently, we calculated the power spectrum of the LFP from Area A, the
coherence spectrum between the LFPs of Area A and Area B, the pairwise phase consistency
(PPC) spectrum between the LFPs of Area A and Area B, and the nonparametric Granger causality
(GC) spectrum between the LFPs of Area A and Area B, as four common frequency-domain

analyses.

2 https://allensdk.readthedocs.io/en/latest/visual coding neuropixels.html
13
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These analyses were calculated in both SyNCoPy and FieldTrip for demonstration purposes and
to illustrate the comparability of the outputs. To this end, the data was first zero padded. Next,
based on the MTMFFT method and using the Hann window, the power spectrum was calculated
during the stimulus period and the baseline period for each trial and recording channel. MTMFFT
conducts frequency analysis on time-series trial data by employing either a single taper (such as
Hann) or by utilizing multiple tapers derived from discrete prolate spheroidal sequences (DPSS).
For each recording channel separately, the power spectra of the stimulus period and the baseline
period were separately averaged, and the ratio of stimulus- over baseline-power calculated.
Subsequently, the power-ratio spectra were averaged over channels (Figure 2F).

Similarly, the coherence (Figure 2G), PPC (Figure 2H), and Granger causality (Figure 2I) between
the selected area pairs were measured after zero padding the signals. The results are essentially
identical between SyNCoPy and FieldTrip for power, coherence, and PPC, and they are very

similar for GC (Figures 2F-I).

Memory benchmarks

Peak memory consumption - Methods

We investigated the peak memory consumption (PMC) of SyNCoPy for several algorithms in a
typical usage scenario, i.e., during parallel processing on an HPC cluster. Specifically, the
”small” queue of the Raven cluster at the Max Planck Computing and Data Facility (MPCDF) of
the Max-Planck Society was used. In order to assess the memory consumption as a function of
the dataset size, we created synthetic datasets of increasing size with SyNCoPy's synthdata
module, and processed them with SyNCoPy. We evaluated (1) pre-processing with a Butterworth

+ Hilbert filter, (2) the MTMFFT, (3) the MTMFFT f.t. algorithm (here, f.t. specifies that a fixed
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number of tapers was used for better comparison, as explained in more detail below), (4)
wavelets, and (5) coherence. The starting dataset size was 10 trials, 5000 samples per trial and 50
channels, which requires about 10 MB of space. We created scripts to run each algorithm with
different dataset sizes. After each call to a SyNCoPy API function, the Python garbage collector
was called to ensure meaningful measurements. During each run, the PMC was monitored with
the memory profiler package® for Python. The PMC is the highest amount of memory
consumption of the submitting process and one worker that was measured during a run. We
repeated the process 20 times for each unique combination of dataset size and algorithm to

obtain robust results. We report the mean and the standard deviation over the 20 runs in Figure 3.

A B C
300 2000 Butterworth + Hilbert
_ _ MTMFFT 4000
@ 200 m 3000 MTMFFT f. t. m
E E Wavelet E
[®) L 2000 Coherence Y 2000
= 100 = ;=
o 2 1000 a
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Figure 3. SYNCoPy memory efficiency

Peak memory consumption (PMC) as a function of input size for selected algorithms. The PMC measurements are
based on synthetic data. The starting dataset size is 10 trials, 5000 samples and 50 channels. Each datapoint shows
PMC mean and standard deviation of 20 independent runs.

A) PMC is largely independent of the number of trials. The total size of the test dataset varied over almost three orders
of magnitude (10 trials to 7,000 trials, ~10MB to 7GB), while the size of a single trial was kept constant at 1MB.

B) PMC depends on the number of samples per trial and the algorithm. The number of samples (length of the signals)
varied from 10 to 40 000. C) PMC depends on the number of channels and the algorithm. Channel numbers varied

from two to 250.

3 https://github.com/pythonprofilers/memory_ profiler
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Peak memory consumption - Results

The results of the peak memory consumption (PMC) measurements are illustrated in Figure 3.
First, we investigated the effect of the trial count on PMC (Figure 3A). We incrementally increased
the number of trials from 10 up to 40,000 while keeping the samples per trial and the number of
channels constant. At each datapoint, we performed 20 independent runs with the respective
algorithm. The PMC stayed largely constant, irrespective of the trial count, for all algorithms. The
PMC was lowest for the Butterworth filter, followed by the MTMFFT, Coherence and Wavelets.
Second, we demonstrate the effect of increasing the number of samples per trial on memory
consumption (Figure 3B). We gradually increased the number of samples per trial from 10 to
40,000 while keeping the trial count and channel count constant. For the wavelets, the multi-taper
analysis with a fixed number of tapers (MTMFFT f.t.), and coherence computation, a linear effect
on the PMC is visible. For the Butterworth filter, memory consumption is essentially constant, as
for this method we employ SciPy’s signal.sosfiltfilt implementation, which works on
finite sections of the input data. For the full multi-taper analysis (MTMFFT), the PCM increases
quadratically with the sample count: The FFT itself has a PMC that is a linear function of the
number of samples, and the number of tapers needed to achieve a consistent frequency smoothing
(tapsmofrq parameter) also scales with the number of samples. Finally, we observe the effect of
increasing the number of channels on the PMC of the algorithms (Figure 3C). For the wavelets
and the MTMFFT, a linear effect on the PMC is shown. For the Butterworth filter, the PMC again
is almost constant. Coherence shows quadratic scaling of PMC with the number of channels, which

directly follows from combinatorics

16


https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.15.589590; this version posted May 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Discussion

SyNCoPy is a Python package for the analysis of electrophysiological data, with a focus on
extracellular electrophysiology. It stands out from similar software packages by its ability to scale
easily from laptops to HPC systems and thus support very large datasets, and an API similar to
FieldTrip's. SyNCoPy's support for big data is based on its architecture, which (1) allows for easy
usage of typical HPC systems available at many scientific institutions, (2) streams data from disk
to memory only when needed and (3) isolates computations on the minimal amount of data
required for independent computations. We demonstrated SyNCoPy’s memory efficiency by
benchmarking peak memory consumption (PMC) for a number of algorithms. The results
demonstrate that SyNCoPy's architecture is indeed able to provide largely constant PMC,
independent of the number of trials. Moreover, the PMC scales as expected for the respective
algorithms with increases in single-trial size.

From a feature perspective, SyNCoPy currently focuses on preprocessing of raw data, time-
frequency analysis and connectivity measures. We expect that neuroscience users may want to
employ SyNCoPy in combination with other well-established software packages like MNE
Python, Elephant (Denker et al., 2023) and others that contain complementary functionality. To
facilitate this, we provide support for converting MNE Python data structures and importing and
exporting standard file formats like NWB. Also, the SyNCoPy file format is based on the open
standards HDF5 and JSON, and can thus be read by standard libraries available for a variety of
languages.

SyNCoPy does not have a graphical user interface and relies on scripting. While this may require
a certain initial time investment for users completely new to programming, we believe that the

standardization and increased reproducibility offered by this approach pays off quickly. FieldTrip
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is largely based on the same approach and has reached a large user community. To help new users,
SyNCoPy comes with full API documentation and includes a set of articles that demonstrate
typical analysis workflows. Questions and issues can be reported and discussed on the SyNCoPy
Github repository”.

Limitations

First, it is important to acknowledge that memory efficiency is a software requirement that, in
some situations, conflicts with performance in the sense of processing speed: for a small dataset,
it is faster to load everything into memory at once than to stream chunks of the data on demand.
However, for large datasets, this computing strategy prevents the processing of datasets larger than
(a certain fraction of) the machine's RAM and thus is not feasible.

Second, SyNCoPy is focused on trial-parallel processing, which is from our perspective a very
common scenario in Neuroscience. However, in some situations or for certain algorithms, it may
be beneficial to support parallelization along different axes. While SyNCoPy does have built-in
support for parallelization over channels for some algorithms, it does not in general support
parallelization along an arbitrary axis of the data set.

Third, extension of SyNCoPy with new algorithms is possible by creating a custom Computational
Routine, but this process currently requires a good understanding of both parallel computing and
some SyNCoPy internals, and is thus intended for more advanced users.

Fourth, the target audience of SyNCoPy consists of neuroscientists who need to process larger
datasets. The exact limitation for the size of the data set depends on the specific algorithms and
the settings used, of course. But what always holds is that a single trial must easily fit into the

RAM of the machine, i.e., typically the HPC cluster node that runs the computations. It is important

4 https://github.com/esi-neuroscience/syncopy/issues
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to understand that certain operations used while loading and saving data, or in the algorithms
themselves, will need to create one, or in some cases even more, copies of the trial data in memory.
Therefore, working with a dataset that has almost the size of the RAM is not feasible in reality.
This is not a limitation of SyNCoPy, but applies to all operations on computers, including the
standard NumPy and SciPy libraries used internally by SyNCoPy to implement or run the
algorithms on the data of a single trial. The required memory typically is a small multiple of the
single-trial size.

Conclusion

SyNCoPy provides seamless scaling of trial-based workflows for the analysis of large
electrophysiology datasets in Python. In this paper, we demonstrated its ability to scale to very
large datasets by measuring the peak memory consumption over a range of algorithms for data sets
with varying numbers of trials, samples per trial, and channels. Furthermore, we illustrated how to
use SyNCoPy on a real-world dataset, along with a direct comparison of the same analyses carried
out with the well-established FieldTrip toolbox.

SyNCoPy was built to integrate well into the current ecosystem of neuroscience tools. We hope
that it will help researchers to work with large datasets in a reproducible way and lower the barrier

to fully utilize existing HPC resources in neuroscience.

19


https://doi.org/10.1101/2024.04.15.589590
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.15.589590; this version posted May 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Availability

SyNCoPy is free software, available at https://github.com/esi-neuroscience/syncopy and on PyPI

and conda-forge.
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