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Abstract 

We introduce an open-source Python package for the analysis of large-scale electrophysiological 

data called SyNCoPy, for Systems Neuroscience Computing in Python. The package includes 

signal processing analyses across time (e.g. time-lock analysis), frequency (e.g. power spectrum), 

and connectivity (e.g. coherence) domains. It enables user-friendly data analysis on both laptop-

based and high-performance computing systems. SyNCoPy is designed to facilitate trial-parallel 

workflows (parallel processing of trials) making it an ideal tool for large-scale analysis of 

electrophysiological data. Based on parallel processing of trials, the software can support very 

large-scale datasets via innovative out-of-core computation techniques. It also provides seamless 

interoperability with other standard software packages through a range of file format importers 

and exporters and open file formats. The naming of the user functions closely follows the well-

established FieldTrip framework, which is an open-source Matlab toolbox for advanced analysis 

of electrophysiological data. 

 

 

 

Keywords:    Neuroscience, Electrophysiology, Software, Time-frequency Analysis, Connectivity, Granger 

Causality, Magnetoencephalography (MEG), Electroencephalography (EEG)  
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Introduction 

In neuroscience, methods like electroencephalography (EEG), magnetoencephalography (MEG), 

electrocorticography (ECoG) and microelectrode recordings are used to measure electromagnetic 

signals originating from brain activity. Researchers are typically interested in identifying brain 

activity related to certain experimental conditions, e.g., the onset of a stimulus presented to a 

subject. Therefore, experimental tasks are repeated many times, and the resulting trials are later 

averaged to reduce noise and variance. The trial repetitions combined with modern experimental 

setups using an increasing number of recording sites (channels), and high sampling rates can lead 

to very large (> 10 GB) datasets. With these datasets, standard algorithms like all-to-all 

connectivity computations between channels can become impossible to carry out on laptops or 

desktop computers with limited memory, and require workstations or high-performance 

computing (HPC) systems which can be complex to work with. Moreover, recently, there has been 

a significant surge of interest in using the scientific Python tech-stack as an open-source 

environment for data analysis. 

Here, we present SyNCoPy (Systems Neuroscience Computing in Python), a Python package for 

the analysis of large-scale electrophysiology data that combines an easy-to-use, FieldTrip-like 

(Oostenveld et al., 2011) application programming interface (API) with inbuilt support for 

distributed workflows on HPC systems.  

 

Related Software Packages 

Scientific software packages for the analysis of neuro-electromagnetic data include FieldTrip, 

EEGLab (Delorme et al., 2011; Delorme & Makeig, 2004) and Brainstorm (Tadel et al., 2011) for 
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Matlab, and MNE Python (Gramfort et al., 2013, 2014) and Elephant (Denker et al., 2023) for 

Python. 

FieldTrip is a Matlab toolbox that was first published in 2011 and has been actively evolving since 

then. Its features include pre-processing, multivariate time-series and connectivity analysis and 

source localization. It comes with a data browser, interactive data visualizations, and extensive 

documentation. The functional API consists of powerful main functions (e.g., 

ft_preprocessing, ft_freqanalysis, ft_connectivityanalysis) and a 

number of smaller auxiliary functions. Most functions can be called with the input data and a 

config structure as input parameters, and return an output data structure that includes a copy of 

the config, serving as a history of the operations applied to the data and a way to re-apply the 

analysis to different input data. 

EEGLab has been developed since at least 2004 and is an interactive Matlab toolbox for processing 

continuous and event-related EEG, MEG and other electrophysiological data. It includes both a 

graphic user interface (GUI) and an API, and has support for user-contributed code via a plug-in 

interface. Features include interactive visualization, artifact removal, independent component 

analysis (ICA), time-frequency analysis and source modeling. 

The Brainstorm software package is written in Matlab and Java, but can be run as a standalone 

application without the need for a Matlab license. It focuses on a sophisticated GUI and provides 

some batch processing functionalities. 

Elephant is a Python library for the analysis of electrophysiological data with a focus on generic 

analysis functions for spike-train data and time-series recordings from electrodes. 

MNE Python is a Python package that supports data preprocessing, source localization, statistical 

analysis, and estimation of functional connectivity between distributed brain regions. It is built on 
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top of the scientific Python ecosystem, has many contributors and is well integrated with other 

applications using the Neuromag FIF file format. MNE has extensive plotting capabilities and 

documentation, including publicly available example datasets and tutorials. It supports 

parallelization on multiple cores of a single machine via Python's joblib module, but currently 

no direct parallelization support for HPC systems. The API is a combination of fine-grained 

functions and methods defined directly on the data objects. MNE is focused on the analysis of 

EEG and MEG data and local field potentials (LFPs) and supports artifact removal, time/frequency 

analysis and source modeling.  

We developed SyNCoPy to complement some of MNE’s and Elephant’s features, offer an easy, 

FieldTrip-like API, support for time-discrete spike datasets and built-in parallelization on HPC 

systems. 

 

The SyNCoPy Architecture 

The mentioned software solutions are well established and share different features with SyNCoPy. 

However none of them is made for handling very large datasets, and for distributed computing on 

HPC systems. SyNCoPy supports this use case through an architecture that supports trial-parallel 

out-of-core computations. SyNCoPy's core data structures consist of metadata and a multi-

dimensional data array, but the data array is not loaded into memory by default. Instead, when a 

computation is requested, the data is streamed trial-wise from HDF5 (Hierarchical Data Format 5) 

containers stored on the hard disk, and results are written back to disk in a similar fashion. 

Metadata is stored in JavaScript Object Notation (JSON) format. This approach allows for 

memory-efficient processing of very large datasets with many trials, as well as for easy trial-based 

parallelization. On a standard computer, trials can be handled sequentially or in parallel using 
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several cores, if enough memory is available, while on HPC or cloud-based systems, 

parallelization is achieved by having each node handle one trial at a time. This means that large 

numbers of trials can be processed in parallel using today's HPC systems.  

 

 

Figure 1. The SyNCoPy architecture and a typical setup for parallel processing.  

SyNCoPy is started on a laptop (left) to process a multi-trial dataset. When a high-level SyNCoPy API function is 

executed in a Jupyter Notebook, SyNCoPy’s algorithms based on NumPy and SciPy are wrapped in a computational 

routine which connects to a high-performance compute cluster (or a local cluster on the laptop) via Dask and 

automatically distributes the trial-by-trial computations to the available resources. The jobs run in parallel (center), 

with each worker process handling one job at a time and writing the results for a trial into the proper slot of a single 

HDF5 container on disk. When all workers have finished their assigned jobs, the results on disk are complete and 

can be accessed from the SyNCoPy session on the laptop (right). The results can then be visualized with SyNCoPy’s 

plotting API based on matplotlib, exported to NWB format (Neurodata Without Borders), or NumPy arrays can be 

extracted directly for custom post-processing using the standard scientific Python tech stack. 

 

The internal architecture of SyNCoPy and the recommended setup for running parallel 

computations on large datasets is depicted in Figure 1. Users connect to a remote JupyterHub 

instance, for example provided by an institutional High-Performance Computing (HPC) cluster. 
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After creating a global Dask (Rocklin, 2015) client, running SyNCoPy analyses will use the 

available computing resources. The input data should reside on fast storage accessible from the 

cluster, typically a file server. When the user starts a parallel computation, SyNCoPy automatically 

detects and uses the Dask cluster and distributes the work to the HPC cluster nodes. The nodes 

write the results to disk, and the SyNCoPy data structure returned by the SyNCoPy API function 

points to the data on disk. Note that the resulting data is never transferred directly over the network, 

and is never loaded completely into memory. For post-processing, the API offers interfaces to 

matplotlib (Hunter, 2007) for plotting, and NumPy (Harris et al., 2020) and pyNWB (Rübel et al., 

2022) for data export.  

SyNCoPy compute functions (running as a ComputationalRoutine) can attach to any 

running Dask client, and hence harness the full flexibility of the Dask ecosystem, e.g. easy 

deployment to cloud resources.  

SyNCoPy provides specialized data structures and a general method for implementing parallel out-

of-core computations on it, the ComputationalRoutine. The user-exposed functions (high-

level SyNCoPy API, like syncopy.connectivityanalysis) internally evaluate user-

specified configurations and then use the ComputationalRoutine mechanism to execute 

code that typically works on the data of a single trial. Depending on the global Python environment, 

the ComputationalRoutine executes the per-trial code sequentially, or in parallel via Dask 

(see also esi-acme1) to interact with a parallelization backend, e.g., a Slurm job scheduler running 

on an HPC cluster. SyNCoPy analysis scripts are agnostic about the hardware environment, 

meaning analyses can be developed and run locally on single machines like laptops, and the same 

code can later be deployed on distributed computing resources.  

 
1
 https://github.com/esi-neuroscience/acme 
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Feature Overview 

The current features of SyNCoPy can be divided into the broad categories data handling, pre-

processing, time-locked analysis, frequency-domain analysis, and connectivity-based analysis. 

 

Data Structures and Data Handling 

The data handling category includes functions for loading and saving data using SyNCoPy's 

internal data formats, as well as some functions to convert data, i.e. import data and export them 

into other file formats. SyNCoPy's core data structures generally contain a multi-dimensional data 

array and metadata. On disk, the data is represented as an HDF5 file, and when data is loaded into 

memory, it becomes available as a NumPy array. The data structures can be divided into data types 

for continuous data and for discrete data. The AnalogData class is typically used to store raw 

electrophysiological data, i.e., multi-channel, regularly-sampled, analog data with one or more 

trials. If no trial information is available in the data source, the user typically creates a trial 

definition to define the trials. For many analysis types, latency selections are applied to ensure that 

the data is time-locked to a certain event like stimulus onset, which results in a TimeLockData 

instance. Algorithms that output real or complex spectral data store these results in instances of 

the SpectralData class, and those resulting in channel-channel interaction information 

(connectivity measures) return instances of the CrossSpectralData class. The discrete data 

classes SpikeData and EventData are used to store spikes and events, respectively. The 

SpikeData class can store spikes identified in external spike sorting software like SpyKING 

Circus (Yger et al., 2018), including the raw waveform around each spike. The EventData class 

is used to store event times, and is typically used in combination with other data classes. 
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All data classes can be initialized from NumPy arrays and data type-specific metadata, like the 

sampling frequency for AnalogData instances. To facilitate memory-safe data handling also 

during initialization, Python generators producing single-trial NumPy arrays can be fed directly 

into the respective SyNCoPy data class constructors. To improve interoperability with other 

software packages, functions to convert between the data structures of MNE Python and SyNCoPy 

are available. We also provide functions to save and load data in NWB format (Rübel et al., 2022). 

 

Pre-Processing 

SyNCoPy's preprocessing functions work on AnalogData instances and support detrending, 

normalizing and filtering signals, including low-pass, high-pass, band-pass and band-stop filters. 

Resampling and downsampling of time series data is also supported. 

 

Time-frequency Analysis 

SyNCoPy provides functions for frequency analysis and time-frequency analysis on input of type 

AnalogData. The (Multi-)tapered Fourier transform (MTMFFT) algorithms perform spectral 

analysis on time-series data using either a single taper window or many tapers based on the discrete 

prolate spheroidal sequence (DPSS). The effective frequency smoothing width can be directly 

controlled in Hertz with the tapsmofrq parameter as in FieldTrip. The single tapers available 

in SyNCoPy are imported from SciPy’s signal module (Virtanen et al., 2020). The resulting spectra 

can be post-processed using the FOOOF method (Fitting Oscillations and One-over-f) (Donoghue 

et al., 2020). A sliding window short-time Fourier transform is also available, as well as Welch's 

method for the estimation of power spectra based on time-averaging over short, modified 

periodograms (Welch, 1967). Both the non-orthogonal continuous wavelet transform (Torrence & 
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Compo, 1998) and superlets, which can reveal fast transient oscillations with high resolution in 

both time and frequency (Moca et al., 2021), are available in SyNCoPy for time-frequency 

analysis. 

      

Connectivity Analysis 

The connectivity analysis module reveals functional connectivity between channels. It provides 

algorithms for cross-spectral density estimation (CSD), coherence, pairwise phase consistency 

(PPC), (Vinck et al., 2010), nonparametric Granger causality (Dhamala et al., 2008), and cross-

correlation. Running connectivity analysis requires SpectralData input. If an AnalogData 

instance is passed, an implicit MTFFT analysis is run with default parameters to obtain a 

SpectralData instance. 

 

Statistics 

SyNCoPy provides functions to compute the mean, median, standard deviation, and variance along 

arbitrary axes of its data classes. The inter-trial coherence can be computed for input of type 

SpectralData. Jackknifing (Richter et al., 2015) is also implemented and can be used to 

compute confidence intervals for coherence or Granger causality results. The peristimulus time 

histogram (PSTH) can be computed for SpikeData instances (Palm et al., 1988). 

 

Plotting and Utility Functions 

We provide plotting functions for various SyNCoPy data types, including AnalogData, 

SpectralData and SpikeData. The SyNCoPy plotting functions are intended to give 

scientists a quick and easy overview of their data during the development of the data analysis 
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pipeline and for project presentations, but not to provide publication-ready figures. The functions 

internally use matplotlib (Hunter, 2007), and the resulting figures can be post-processed by users 

if needed.  

The synthdata module in SyNCoPy contains utility functions to create synthetic datasets, 

which is useful for training purposes and to test custom algorithms and assess their performance. 

Apart from standard processes like white noise or Poisson shot noise to simulate spike data, we 

also offer red noise (AR(1) process) and a phase-diffusion algorithm (Schulze, 2005) to mimic 

experimental LFP signals.  

Basic algebraic operations like addition and multiplication are supported (and parallelized) for all 

SyNCoPy data classes and NumPy arrays, allowing for flexible synthetic data construction and 

standard operations like baseline corrections. 

 

Example Step-by-Step Analysis Pipeline for a Real Electrophysiological Dataset 

In the following, we present an example of a step-by-step analysis pipeline to demonstrate how to 

use SyNCoPy for analyzing extracellular electrophysiology data. For comparison, the same 

analysis was carried out in Matlab with FieldTrip. The source code for the SyNCoPy version and 

the FieldTrip version is available online at https://github.com/frieslab/syncopy_paper. 
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Figure 2. SyNCoPy analysis pipeline for an example electrophysiological dataset. 

A) Analysis pipeline and SyNCoPy functions used to process an example electrophysiological dataset.  

B) During presentation of the full-field flash stimulus lasting for 250 ms, LFP and spiking activity were recorded 

from different brain areas of awake mice. 

C) The averaged LFP response over trials and channels of area A, time-locked to stimulus onset.  

D, E) Time-lock raster plot (D) and peri-stimulus time histogram (E) of spiking activity of 150 trials in a sample 

neuron.  

F) Spectra of LFP power ratio between stimulus and baseline period in frequency range of 1-95 Hz averaged over 

trials and channels of Area A. 

G-I) Same as F but for coherence between LFPs of Area A and Area B (G), pairwise phase consistency between 

LFPs of Area A and Area B (H), Granger causality between the LFPs of Area A and Area B (I). Black lines are 

FieldTrip results and red-shaded lines are SyNCoPy results. Solid line is feedforward and dashed line is feedback 

direction (I). 

 

Figure 2 depicts the analysis pipeline and SyNCoPy functions used to process a sample brain 

signal. The dataset used in the analyses is a publicly available dataset and comes from the Allen 
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Institute Visual Coding – Neuropixels project2 and has been described previously (Siegle et al., 

2021). In summary, LFP and spiking activity were simultaneously recorded through high-density 

Neuropixel extracellular electrophysiology probes. These recordings encompass various regions 

of the mouse brain during the processing of visual stimuli. The LFP data was recorded using Open 

Ephys (Siegle et al., 2017), and spike data was extracted with Kilosort (Pachitariu et al., 2023). 

During the experiment, mice were presented with different visual stimuli. Here, the full-field flash 

stimulus with duration of 250 ms was considered as stimulus epoch, while the 250 ms period before 

stimulus onset was used as baseline (Figure 2B). In order to also evaluate connectivity analyses, 

two visual areas from one sample session were selected (Area A, in the Allen dataset referred to 

as Area VISl, corresponding to Primary visual area, lateral part; Area B, in the Allen dataset 

referred to as Area VISrl, corresponding to Primary visual area, rostral part). After preprocessing 

data for aligning the data to stimulus onset, the aforementioned time-domain and frequency-

domain analyses were tested on the data. Figure 2C shows the LFP response averaged across 

different trials and channels of area A. It indicates an evoked response with a short latency after 

visual stimulus presentation. Time-locked raster plots and the peri-stimulus time histogram 

(PSTH) of the spike trains are shown for 150 trials of a sample neuron (Figures 2D and 2E, 

respectively). Subsequently, we calculated the power spectrum of the LFP from Area A, the 

coherence spectrum between the LFPs of Area A and Area B, the pairwise phase consistency 

(PPC) spectrum between the LFPs of Area A and Area B, and the nonparametric Granger causality 

(GC) spectrum between the LFPs of Area A and Area B, as four common frequency-domain 

analyses.  

 
2
 https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html 
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These analyses were calculated in both SyNCoPy and FieldTrip for demonstration purposes and 

to illustrate the comparability of the outputs. To this end, the data was first zero padded. Next, 

based on the MTMFFT method and using the Hann window, the power spectrum was calculated 

during the stimulus period and the baseline period for each trial and recording channel. MTMFFT 

conducts frequency analysis on time-series trial data by employing either a single taper (such as 

Hann) or by utilizing multiple tapers derived from discrete prolate spheroidal sequences (DPSS). 

For each recording channel separately, the power spectra of the stimulus period and the baseline 

period were separately averaged, and the ratio of stimulus- over baseline-power calculated. 

Subsequently, the power-ratio spectra were averaged over channels (Figure 2F). 

Similarly, the coherence (Figure 2G), PPC (Figure 2H), and Granger causality (Figure 2I) between 

the selected area pairs were measured after zero padding the signals. The results are essentially 

identical between SyNCoPy and FieldTrip for power, coherence, and PPC, and they are very 

similar for GC (Figures 2F-I). 

 

Memory benchmarks 

Peak memory consumption - Methods 

We investigated the peak memory consumption (PMC) of SyNCoPy for several algorithms in a 

typical usage scenario, i.e., during parallel processing on an HPC cluster. Specifically, the 

”small” queue of the Raven cluster at the Max Planck Computing and Data Facility (MPCDF) of 

the Max-Planck Society was used. In order to assess the memory consumption as a function of 

the dataset size, we created synthetic datasets of increasing size with SyNCoPy's synthdata 

module, and processed them with SyNCoPy. We evaluated (1) pre-processing with a Butterworth 

+ Hilbert filter, (2) the MTMFFT, (3) the MTMFFT f.t. algorithm (here, f.t. specifies that a fixed 
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number of tapers was used for better comparison, as explained in more detail below), (4) 

wavelets, and (5) coherence. The starting dataset size was 10 trials, 5000 samples per trial and 50 

channels, which requires about 10 MB of space. We created scripts to run each algorithm with 

different dataset sizes. After each call to a SyNCoPy API function, the Python garbage collector 

was called to ensure meaningful measurements. During each run, the PMC was monitored with 

the memory_profiler package3 for Python. The PMC is the highest amount of memory 

consumption of the submitting process and one worker that was measured during a run. We 

repeated the process 20 times for each unique combination of dataset size and algorithm to 

obtain robust results. We report the mean and the standard deviation over the 20 runs in Figure 3.  

  

Figure 3. SyNCoPy memory efficiency 

Peak memory consumption (PMC) as a function of input size for selected algorithms. The PMC measurements are 

based on synthetic data. The starting dataset size is 10 trials, 5000 samples and 50 channels. Each datapoint shows 

PMC mean and standard deviation of 20 independent runs. 

A) PMC is largely independent of the number of trials. The total size of the test dataset varied over almost three orders 

of magnitude (10 trials to 7,000 trials, ~10MB to 7GB), while the size of a single trial was kept constant at 1MB. 

B) PMC depends on the number of samples per trial and the algorithm. The number of samples (length of the signals) 

varied from 10 to 40 000. C) PMC depends on the number of channels and the algorithm. Channel numbers varied 

from two to 250.  

 
3
 https://github.com/pythonprofilers/memory_profiler 
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Peak memory consumption - Results 

The results of the peak memory consumption (PMC) measurements are illustrated in Figure 3. 

First, we investigated the effect of the trial count on PMC (Figure 3A). We incrementally increased 

the number of trials from 10 up to 40,000 while keeping the samples per trial and the number of 

channels constant. At each datapoint, we performed 20 independent runs with the respective 

algorithm. The PMC stayed largely constant, irrespective of the trial count, for all algorithms. The 

PMC was lowest for the Butterworth filter, followed by the MTMFFT, Coherence and Wavelets. 

Second, we demonstrate the effect of increasing the number of samples per trial on memory 

consumption (Figure 3B). We gradually increased the number of samples per trial from 10 to 

40,000 while keeping the trial count and channel count constant. For the wavelets, the multi-taper 

analysis with a fixed number of tapers (MTMFFT f.t.), and coherence computation, a linear effect 

on the PMC is visible. For the Butterworth filter, memory consumption is essentially constant, as 

for this method we employ SciPy’s signal.sosfiltfilt implementation, which works on 

finite sections of the input data. For the full multi-taper analysis (MTMFFT), the PCM increases 

quadratically with the sample count: The FFT itself has a PMC that is a linear function of the 

number of samples, and the number of tapers needed to achieve a consistent frequency smoothing 

(tapsmofrq parameter) also scales with the number of samples. Finally, we observe the effect of 

increasing the number of channels on the PMC of the algorithms (Figure 3C). For the wavelets 

and the MTMFFT, a linear effect on the PMC is shown. For the Butterworth filter, the PMC again 

is almost constant. Coherence shows quadratic scaling of PMC with the number of channels, which 

directly follows from combinatorics 
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Discussion 

SyNCoPy is a Python package for the analysis of electrophysiological data, with a focus on 

extracellular electrophysiology. It stands out from similar software packages by its ability to scale 

easily from laptops to HPC systems and thus support very large datasets, and an API similar to 

FieldTrip's. SyNCoPy's support for big data is based on its architecture, which (1) allows for easy 

usage of typical HPC systems available at many scientific institutions, (2) streams data from disk 

to memory only when needed and (3) isolates computations on the minimal amount of data 

required for independent computations. We demonstrated SyNCoPy’s memory efficiency by 

benchmarking peak memory consumption (PMC) for a number of algorithms. The results 

demonstrate that SyNCoPy's architecture is indeed able to provide largely constant PMC, 

independent of the number of trials. Moreover, the PMC scales as expected for the respective 

algorithms with increases in single-trial size. 

From a feature perspective, SyNCoPy currently focuses on preprocessing of raw data, time-

frequency analysis and connectivity measures. We expect that neuroscience users may want to 

employ SyNCoPy in combination with other well-established software packages like MNE 

Python, Elephant (Denker et al., 2023) and others that contain complementary functionality. To 

facilitate this, we provide support for converting MNE Python data structures and importing and 

exporting standard file formats like NWB. Also, the SyNCoPy file format is based on the open 

standards HDF5 and JSON, and can thus be read by standard libraries available for a variety of 

languages. 

SyNCoPy does not have a graphical user interface and relies on scripting. While this may require 

a certain initial time investment for users completely new to programming, we believe that the 

standardization and increased reproducibility offered by this approach pays off quickly. FieldTrip 
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is largely based on the same approach and has reached a large user community. To help new users, 

SyNCoPy comes with full API documentation and includes a set of articles that demonstrate 

typical analysis workflows. Questions and issues can be reported and discussed on the SyNCoPy 

Github repository4. 

Limitations 

First, it is important to acknowledge that memory efficiency is a software requirement that, in 

some situations, conflicts with performance in the sense of processing speed: for a small dataset, 

it is faster to load everything into memory at once than to stream chunks of the data on demand. 

However, for large datasets, this computing strategy prevents the processing of datasets larger than 

(a certain fraction of) the machine's RAM and thus is not feasible.  

Second, SyNCoPy is focused on trial-parallel processing, which is from our perspective a very 

common scenario in Neuroscience. However, in some situations or for certain algorithms, it may 

be beneficial to support parallelization along different axes. While SyNCoPy does have built-in 

support for parallelization over channels for some algorithms, it does not in general support 

parallelization along an arbitrary axis of the data set.  

Third, extension of SyNCoPy with new algorithms is possible by creating a custom Computational 

Routine, but this process currently requires a good understanding of both parallel computing and 

some SyNCoPy internals, and is thus intended for more advanced users.  

Fourth, the target audience of SyNCoPy consists of neuroscientists who need to process larger 

datasets. The exact limitation for the size of the data set depends on the specific algorithms and 

the settings used, of course. But what always holds is that a single trial must easily fit into the 

RAM of the machine, i.e., typically the HPC cluster node that runs the computations. It is important 

 
4
 https://github.com/esi-neuroscience/syncopy/issues 
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to understand that certain operations used while loading and saving data, or in the algorithms 

themselves, will need to create one, or in some cases even more, copies of the trial data in memory. 

Therefore, working with a dataset that has almost the size of the RAM is not feasible in reality. 

This is not a limitation of SyNCoPy, but applies to all operations on computers, including the 

standard NumPy and SciPy libraries used internally by SyNCoPy to implement or run the 

algorithms on the data of a single trial. The required memory typically is a small multiple of the 

single-trial size. 

Conclusion 

SyNCoPy provides seamless scaling of trial-based workflows for the analysis of large 

electrophysiology datasets in Python. In this paper, we demonstrated its ability to scale to very 

large datasets by measuring the peak memory consumption over a range of algorithms for data sets 

with varying numbers of trials, samples per trial, and channels. Furthermore, we illustrated how to 

use SyNCoPy on a real-world dataset, along with a direct comparison of the same analyses carried 

out with the well-established FieldTrip toolbox.  

SyNCoPy was built to integrate well into the current ecosystem of neuroscience tools. We hope 

that it will help researchers to work with large datasets in a reproducible way and lower the barrier 

to fully utilize existing HPC resources in neuroscience.  
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Availability 

SyNCoPy is free software, available at https://github.com/esi-neuroscience/syncopy and on PyPI 

and conda-forge. 
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