bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584660; this version posted March 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Reliability of brain metrics derived from a Time-Domain
Functional Near-Infrared Spectroscopy System

Julien Dubois’, Ryan M. Field?, Sami Jawhar?, Erin M. Koch?, Zahra M. Aghajan®,
Naomi Miller?, Katherine L. Perdue®, Moriah Taylor®

“Kernel, 10361 Jefferson Blvd, Culver City, CA 90232, USA

*Author e-mail address: Katherine.Perdue@kernel.com

Abstract:

With the growing interest in establishing brain-based biomarkers for precision medicine, there is a need
for noninvasive, scalable neuroimaging devices that yield valid and reliable metrics. Kernel's
second-generation Flow2 Time-Domain Functional Near-Infrared Spectroscopy (TD-fNIRS) system
meets the requirements of noninvasive and scalable neuroimaging, and uses a validated modality to
measure brain function. In this work, we investigate the test-retest reliability (TRR) of a set of metrics
derived from the Flow2 recordings. We adopted a repeated-measures design with 49 healthy
participants, and quantified TRR over multiple time points and different headsets—in different
experimental conditions including a resting state, a sensory, and a cognitive task. Results demonstrated
high reliability in resting state features including hemoglobin concentrations, head tissue light
attenuation, amplitude of low frequency fluctuations, and functional connectivity. Additionally, passive
auditory and Go/No-Go inhibitory control tasks each exhibited similar activation patterns across days.
Notably, areas with the highest reliability were in auditory regions during the auditory task, and right
prefrontal regions during the Go/No-Go task, consistent with prior literature. This study underscores the
reliability of Flow2-derived metrics, supporting its potential to actualize the vision of using brain-based
biomarkers for diagnosis, treatment selection and treatment monitoring of neuropsychiatric and
neurocognitive disorders.
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Introduction:

Test-retest reliability (TRR) of non-invasive functional neuroimaging-derived metrics has become an
increasingly important avenue of research as promising evidence for brain-based biomarkers and clinical
use cases has grown over recent years. In order for a metric to have therapeutic or diagnostic utility, it
must be stable in the absence of structural or functional changes in an individual. Under this condition,
any change in the metric can be attributed to a bona fide underlying change in the brain-behavior axis,
which may reflect disease progression or response to clinical intervention'~.

The strictest form of TRR consists in repeating a measurement with the same device, on the same day, in
the same individual, assuming nothing changed between the two assessments. However, the reliability of
interest for brain-based biomarkers is of a broader form®, requiring stability across devices and days.
Above all, measurement variability within an individual (which may stem from different confounding
factors, such as time of day, exercise, sleep, neuroactive substances) should be small in relation to
between-subject variability (for diagnostic purposes) and to within-subject variability across functional
changes of interest (for treatment outcome purposes).

Furthermore, reliability alone isn’t sufficient for clinical utility. A measurement must also be valid, i.e.
pertain to the function that it intends to measure. Indeed, a very reliable measure could be a reflection of
a stable confound which is irrelevant to the function of interest. On the other hand, an observed lack of
reliability does not readily invalidate a measure; it may simply indicate that the function of interest was
not properly held constant across measurements, or may represent a valid change. While the bulk of
non-invasive functional neuroimaging studies has sought to validate derived neural metrics, a growing
body of literature has explored the TRR of these measurements in neuropsychiatric conditions such as
depression'?, cognitive decline*’, pain®, stroke’, aging®, and ADHD’. These studies are helpful to
establish the current standard of TRR across common noninvasive neuroimaging modalities (functional
Magnetic Resonance Imaging, fMRI; electroencephalography, EEG; and functional Near-Infrared
Spectroscopy, fNIRS).

At the forefront of noninvasive neuroimaging is Functional Magnetic Resonance Imaging (fMRI), which
has progressed our understanding of the human brain both in healthy and clinical populations. However,
the within-subject stability of fMRI recordings has been called into question, and the literature
surrounding TRR, while extensive, is nuanced at best. These findings may not be surprising given the
inherent challenges that fMRI faces in collecting homogeneous data, such as motion, system artifacts,
and variability across different scanners and sites’. On one hand, there have been resting-state studies
that demonstrate good to excellent reliability (particularly with within-visit repetition) of extracted
neural features in some brain regions or when considering specific functional brain networks'*'". The
details of these papers, nonetheless, shed some light on the incongruence of the literature (e.g., they
showed altered reliability with different processing steps). On the other hand, meta-analyses have found
standard measures of reliability to range from poor to fair, across a variety of tasks'>"*. In the face of
this, numerous studies have proposed best practices for enhancing and interpreting fMRI reliability'*'>,
emphasizing that it is best done alongside the assessment of validity.

While fMRI measures hemodynamic signals, electroencephalography (EEG) measures electrical brain
activity. The TRR of both time- and frequency-domain EEG metrics has been investigated. The
literature suggests that power spectra from resting state measurements are more reliable than
task-evoked event related potentials (ERPs)'. For resting state, the measured reliability varies across
frequency bands (e.g., alpha vs. others) and spatial location of the electrodes (e.g. central vs.
peripheral)'. For tasks, it has been shown that ERP reliability is affected by task type'’, varies across
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different ERP components (e.g. P3 vs. N2)'”'® and across the ERP time course'®. Akin to differences in
fMRI scanners across different locations, EEG variability could stem from different operators, the use of
different caps, and different placements of the same caps'®?'. Taken together, the clinical utility of
EEG-derived metrics may be limited to those measures with high reliability (e.g., certain frequency
bands) and their corresponding experimental designs (e.g., resting state). Another viable modality with
fast recording time scales is Magnetoencephalography (MEG). However, metrics derived from MEG are
not considered here, as its cost and ecological validity are far from that needed for precision medicine.

In recent years, Functional Near-Infrared Spectroscopy (fNIRS) has become an increasingly attractive
neuroimaging modality, as it is portable, affordable, and robust to motion artifacts*. This method, which
uses light to measure brain function, can be particularly suitable for measuring clinical populations as it
is participant-friendly—there are no loud scanner noises, confinement concerns, or messy gel to apply to
the scalp to make good contact. There are also minimal restrictions on movement and speech®?*. In this
domain, there have been a number of promising studies exhibiting good to excellent reliability across a
multitude of tasks including resting state’>?°, visual and auditory sensory tasks*”*®, cognitive tasks®, and
motor tasks®. It is important to note that while encouraging, each of these studies suffers from one or
more of the following: small sample sizes, selecting a region of interest (ROI) a priori, limited recording
coverage only over those ROIs, correspondingly low channel counts, and a drop in reliability when the
fNIRS cap/optodes were removed between measurements.

fNIRS comes in several flavors: continuous-wave (CW), frequency-domain (FD) and time-domain
(TD). The latter (TD-fNIRS) is considered the gold standard of non-invasive optical brain imaging
systems’. TD-fNIRS instruments can perform depth-resolved measurements, and provide improved and
more quantitative estimates for both oxy- and deoxy- hemoglobin concentrations**?*. Until the
development of Kernel Flow, this technology was not widely used and had been relatively inaccessible
due to its bulky, expensive, and complex nature*. Kernel’s first-generation Flow headset was
benchmarked using a set of standardized protocols for TD-fNIRS systems® and validated in human
studies®®"’. Nonetheless, to our knowledge—barring a few reports*—very few studies to date have done
a comprehensive TRR quantification of TD-fNIRS measurements and if so, they only focused on very
limited features of the modality. To bridge this gap, the current study tested the validity and stability of
Kernel’s second-generation portable and scalable neural recording system Flow?2 in healthy subjects.

We hypothesized that Flow2 measurements could potentially go above and beyond the current state of
fNIRS, TTR because: 1) the headset design enables reliable replacement after removal; 2) the headset
boasts coverage over the whole scalp and provides high spatial, as well as temporal, resolution; and 3)
recorded signals are more resilient to artifacts due the TD-fNIRS modality of the system. Leveraging the
whole-head coverage of Flow2, we were able to not only demonstrate the consistency of brain activation
patterns with prior literature, but also evaluate the stability of brain activity across different regions of
the cortex. Moreover, with this approach, we confirmed that the observed TRR of neural activity was
genuinely task-related rather than merely stemming from global signals, physiological factors, or
artifacts. By employing a longitudinal multi-task experimental design, including a resting state, sensory,
and cognitive task, we assessed the performance and stability of the Flow2 within an individual across
time and across different headsets. Adding to the portable and scalable design of Flow2, this study
provides a critical test of its clinical utility by quantifying its ability to reliably measure various neural
activation features.
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Results:

Experimental design and data collection

The study was a repeated measures design with the primary objective of comparing brain activation
patterns to the same tasks on two separate days. Participants were 49 healthy individuals (18 female;
age=43.94 +14.57, mean+=STD) who completed two study visits (Methods).

The first study visit had the following stages: (1) participants performed a resting state session
immediately followed by a passive auditory task; (2) the headset was taken off and participants rested
during a portion of which they filled out surveys; (3) participants performed another resting state session
and a Go/No-Go task. Neural recordings were done during stages (1) and (3) either using the same
Kernel Flow2 device, or a different device (half of the participants were assigned to the same device, i.e.
STAY, cohort). The second study visit followed the same structure, except the STAY cohort utilized the
other Flow2 headset for this visit (Fig. 1a). This design was chosen to ensure we could investigate both
the effect of repeated measurements and alternative headsets (Methods).

a

Data collection Data collection
Example StUdy Week with Flow Device 1 with Flow Device 2
go trial: hit
Cue 3s _a
Monday Tuesday Wednesday Thursday
Stimulus=
Group STAY Group SWITCH Group STAY Group SWITCH 400 ms no-go trial:
Visit1 Visit1 Visit 2 Visit 2 false alarm
ITI 600 _a—m
+100 ms
Session 1 et 1
. go trial:
miss
AN
............... T space bar pressed
@ pleasant tone .
@ unpleasant tone .
Session 2
\ Fixation= 10 £2s

d Story |'m Noise l'@ Silence

@ |'.m | .. |'W @ %

20 sec 10 sec 20 sec 10 sec 20 sec 10 sec o} 10 sec

Figure 1: Overview of study design and experiments.

a. Example schematic of a study week. Note that participants (either assigned to the group STAY or SWITCH) completed
two study visits. Recordings during each visit were split into two parts: (1) resting state followed by a passive auditory task;
and (2) resting state followed by a Go/No-go task. The headset was removed between these two stages. Different shades of
purple denotes which headset was used for a given visit/session. b. A model wearing the Flow2 headset while performing the
resting state session, which consisted of watching a 7-minute audiovisual segment. e¢. Schematic of the Go/No-Go task
structure. Shown are a few representative trials at the start of a go/no-go block. d. Schematic of the passive auditory task with
story and noise blocks (20s each) and 10s of silence in between each block.

During resting state sessions, the participants watched a 7-minute audiovisual segment®®(Fig. 1b). The
Go/No-Go task, which measures inhibitory control, consisted of blocks with low demand of control
(go-only blocks) and high demand of control (go/no-go blocks)(Fig. 1c, Methods). Finally, the passive
auditory task consisted of interleaved and pseudorandomized story blocks (20-second clips of TED
talks) and noise blocks (20 second clips of brown noise)(Fig. 1d, Methods). During these tasks, we
recorded hemodynamic signals using the Kernel Flow2 whole-head TD-fNIRS system (Fig. 2a).
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The raw data from Kernel Flow2 consists of distributions of the time of flight of photons (DTOFs)
collected for two wavelengths (690 and 905nm) from many source-detector pairs. Similar to Kernel
Flowl, the Flow2 headset has a modular design, with a maximum of 40 modules (35 of which were
utilized for this study), with each module containing 3 sources and 6 detectors (Fig. 2b). A channel is
formed between a given source and a given detector. The different combination of within- and
between-module channels can lead to thousands of channels with source-detector distances (SDS)
between 8-60mm (Methods). Raw data from individual channels underwent standard preprocessing
steps in order to obtain the first three moments of DTOFs (sum, mean, and variance), which were
converted to the changes in the concentrations of oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR), as previously described*®*’ (Methods). Moreover, we retrieved absolute
chromophore concentrations with the curve fitting method, taking into account the instrument response
function (IRF) which is continuously monitored for each source in the Flow2 headset” (Methods).
Several other features were subsequently computed, which will be described below (Methods).

[ -
7

Figure 2: Kernel Flow2, second-generation Kernel whole-head TD-fNIRS system.

a. Schematic of front, side and inside view of the Flow2 headset. Note the individual modules located throughout the headset
thus providing whole-head coverage. b. Schematic of a module, which consists of 3 sources (marked by white circles) and 6
detectors.

In order to measure potential external sources of variability, participants were asked to fill out surveys
(during stage (2)) detailing recent use of substances (e.g. caffeine, nicotine, etc) as well as daily
activities (e.g., sleep satisfaction)(Methods). Only a small percentage of participants reported deviations
in nicotine, alcohol, and marijuana use across the two visits (Supplementary Fig. 1a). A larger portion of
participants reported changes in caffeine consumption and current sleepiness (change in caffeine
consumption: 35%, change in sleepiness: 65%), though sleep satisfaction was still correlated between
the two visits (p=0.43, p=2.25x107; Supplementary Fig. 1b). As such, these changes may affect brain
activity, thereby altering across-day TRR metrics in the current study*'.

Reliability of headset placement and coverage

A major source of variability in neurophysiological data in the current study could be due to the
differences in headset placements during data collection and the resulting differences in optical channel
locations. The inconsistency in placement can be both an issue within a given visit, as the headset was
removed between stages (1) and (3) listed above, as well as between visits, i.e. across two different days.
As such, AprilTags* were placed on the headsets and participants were photographed each time the
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headset was donned (Supplementary Fig. 2a). Utilizing open-source computer vision algorithms* and
manual verification, we were able to obtain horizontal and vertical shifts (yaw and pitch dimensions) of
the headset with respect to the participant’s head for each recording session (Methods; Supplementary
Fig. 2b). This allowed us to compute the headset placement variability (i.e., standard deviation) for each
participant across the 4 different placements. We showed that this variability is only on the order of a
few millimeters (Supplementary Fig. 2c; horizontal shift: 3.23+1.70 mm, vertical shift:3.51£1.94 mm).
This suggests that headset placement variability is lower than the spatial resolution of fNIRS (over 10
mm*), and may have minimal effect on data reliability, although a thorough quantification of this effect
remains to be done.

Furthermore, we explored how reliably we could obtain similar levels of channel coverage in our
recordings. After each headset placement, different sources and detectors could make good contact with
the scalp, therefore leading to different numbers of analyzable channels (henceforth, referred to as
retained channels; Methods), a potential confound in interpreting the reliability. Thus, we quantified this
over multiple hierarchical scales (e.g., over the whole head, over the prefrontal region, and on an
individual module level) as the fraction of retained channels in a given region (i.e. number of usable
channels divided by the total number of possible channels). We then computed a Spearman correlation
coefficient between within-visit and across-visit recordings. Fraction of retained channels, both in the
prefrontal region (Supplementary Fig. 3a) and over the whole-head, was highly reliable in both
within-visit and across-visit. This was indicated by a strong correlation value and proximity to the
diagonal line (Prefrontal: within-visit p=0.96, across-visit p=0.94, p<10~ for both; Whole-head:
within-visit p=0.99, across-visit p=0.98, p<10~ for both). Additionally, we had adequate coverage over
the head as depicted by the number of retained channels from a given module (Supplementary Fig. 3b).
This result suggests that variability due to different numbers of channels on different sessions may be
minimal.

Reliability of resting state features across time and headsets

As noted above, participants completed a total of four resting state sessions (Fig. 1a). Our experimental
design enabled us to consider both within-visit reliability (between two resting state sessions within a
given visit) as well as across-visit reliability (between two resting state sessions across visits). Various
features spanning physiological, optical and neural domains can be extracted from Flow2 headset
recordings during resting state. In the current study, we focused on a non-exhaustive set of features,
which were affected by pharmacological manipulation in our prior studies’’, and/or which have strong
literature support in terms of relating to individual differences. These features are from the four
following categories: (1) absolute HbO/HbR in the prefrontal region, (2) effective attenuation coefficient
(EAC)*® calculated at two different wavelengths (3) fractional amplitude of low frequency fluctuations
(fALFF) within the left and and right prefrontal regions for HbO/HbR, (4) and functional connectivity
(FC) within the left and right prefrontal regions for HbO/HbR (Methods).

Both within-visit and across-visit reliability for participant-level features were assessed using correlation
analysis (Methods). First, we found that for both comparisons, many features of interest exhibited high
reliability as evidenced by the strong relationship and proximity to the line of unity for these features
(Fig. 3a). In fact, absolute HbO/HbR, EAC, and prefrontal fALFF showed strong correlation coefficients
(>0.5) for both within-visit and across-visit reliability, while FC showed moderate to strong correlations
(>=0.3), regardless of whether the same or different headset was used (data not shown). The results from
all features for both within- and across-visit reliability are summarized in Fig. 3b. When considering
reliability across all four resting state sessions, we computed other common metrics, namely the
intraclass correlation coefficient (ICC) and Cronbach’s alpha. Both metrics demonstrated reliability
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above fair/acceptable for all features, and above good for most measures (Fig. 3¢). Although FC within
the prefrontal region showed the lowest reliability, we hypothesize that this may be due to the fact that
this metric is more state-dependent (e.g. affected by mood, sleep, etc) compared to the other features.

After investigating reliability in time, we wondered whether our recordings were reliable when using
different headsets. We probed both within-visit and across-visit effects of the headset on the reliability of
our features by comparing the difference in features between groups (i.e., same vs. different headsets;
Methods). Of the twelve features of interest, and considering within-/across-visit effects, only the
absolute prefrontal HbO in the across-visit showed potential headset related differences (independent
t-test p<0.05; corrected). Despite this difference, features from both same and different headset lie very
close to the line of unity, and exhibit high reliability as measured by the correlation coefticient (HbO
across-visit: same headset p=0.96, different headset p=0.83). Additionally, it is unlikely that this
observation is purely driven by the use of different headsets as the within-visit analysis revealed no
significant differences. Taken together, the explored resting state features were adequately reliable
despite factors such as the passage of time and using different headsets.
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Figure 3: Various features revealed within-visit and across-visit reliability during resting state sessions.

a. Different representative resting state features (each row) were highly correlated between two sessions within a given visit
(i.e. between visit;session; and visit;session,; and between between visit,session; and visit,session,. left column; within-visit)
and across visits (i.e. between visit;session; and visit,session;; and between visit;session, and visit,session,; right column;
across-visit). The three shown features are the absolute HbO [uM] in the prefrontal region, EAC of the 905 nm wavelength,
and fALFF within the right prefrontal region HbO. Note that in addition to the high correlation coefficients, the values lie
very close to the diagonal line (dashed line) indicating the similarity of the values. b. Within- and across-visit reliability
(black and gray vertical bars respectively) as measured by the Spearman correlation coefficient between different
visits/sessions, as described in (a), are shown for all resting state features. The colored background segments correspond to
the commonly-used thresholds for the strength of correlation. e¢. Reliability of features across all four resting state sessions
were computed using ICC (top) and Cronbach alpha (bottom). Colored segments depict different reliability thresholds as
commonly used in the literature.
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While we could not investigate all possible confounding variables that could affect reliability—in
addition to considering the effects of headset placement, channel coupling, time
(within-visit/across-visit), and different headsets—we also considered participants’ skin color
(Methods). First, we found that skin color had a significant effect on the total number of retained
channels in the prefrontal area (Supplementary Fig. 4a). Based on the line of best fit, it is anticipated that
prefrontal channel count at the highest melanin levels will still exceed 200, providing ample coverage
for computing the neural features reported in this study. Reinforcing the assertion of the practical
insignificance of this relationship, prefrontal absolute HbO was not correlated with skin color
(Supplementary Fig. 4b). This is particularly important after the COVID-19 pandemic revealed
systematic deviations in blood oxygenation levels as a function of skin color*. Finally, we performed a
median split on participants’ forehead melanin levels and probed the reliability of absolute oxygenation
for low and high melanin groups separately. We found high reliability across visits for both groups (low
melanin: Pearson r=0.86, p=5.79x10%; high melanin: Pearson r=0.94, p=2.55x10"'?; Supplementary Fig.
4c). Absolute deoxygenation also exhibited similar levels of high reliability for both groups (low
melanin: Pearson r=0.93, p=5.93x10"""; high melanin Pearson 1=0.96, p=5.94x10"'%).

Reliability of hemodynamic activity during sensor assive auditory) task

Participants completed a passive auditory task twice (once in each study visit), where half of the
participants donned the same Flow2 device, while the other half switched devices (Fig. la, d). To
investigate brain activation patterns associated with this task, we employed a Generalized Linear Model
(GLM) framework, where the activity of each channel was modeled as a function of block type (story
and noise) and other nuisance regressors®®. To obtain group-level activations, for each channel we
pooled the fitted model weights (beta values) associated with the block conditions and performed a
one-sample t-test (Methods). We repeated this process for visit 1 and visit 2 separately. Importantly, we
found that the expected regions (auditory cortices) were activated during the story condition of the
task*’*3, This activation was apparent in the group-level GLMs for both visit 1 and visit 2, as the foci of
significant activations were in the lateral temporal regions (Fig. 4a).

First, we quantified the reliability of these activations at the resolution of individual channels by
computing the dice coefficient, a quantitative measure of the similarity (or overlap) between two sets
(Methods). Applied here, the two sets of interest were the significantly activated channels detected by a
given module in Visit 1 and those in Visit 2. For reference, sets containing the exact same elements yield
a dice coefficient of 1, and sets with no common elements yield a dice coefficient of 0. We computed the
dice coefficient for each participant and each module, obtaining whole-head dice coeftficient maps. The
averaged (across participant) dice coefficient map showed elevated measures in the auditory cortex
similar to those reported in prior fNIRS literature’’, whereas all other regions exhibited averages
near-zero (Fig. 4b).

Next, in order to assess the reliability of the magnitude of task activations, we employed a module-level
approach and averaged participant-level GLM test statistics over all channels detected within a given
module. For each module, we computed the correlation between the participant-averaged test statistics
from visit 1 and that from visit 2 (Methods). This analysis revealed that the magnitude of
participant-level activations in bilateral auditory cortex modules were highly correlated across the two
visits (Left Temporal ROI: p=0.56, p=3.58x10"; Right Temporal ROI: p=0.61, p=3.83x10°).
Importantly this relationship was close to the line of unity (Fig. 4c) indicating consistent activation (i.e.
no general increase or decrease in activation between visits). Similar to the resting state features, the
change of headset did not have a significant effect on this reliability (independent t-test; p>0.05 for all
modules). In addition to Spearman correlation, we also computed the ICC on these same
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module-averaged values and visualized them over the whole head (Fig. 4d, e). In accordance with the
dice coefficient analysis, we found auditory areas to have the highest reliability both in terms of
correlation coefficients and ICC values (Left Temporal ROI: ICC=0.65; Right Temporal ROI:
ICC=0.70). In fact, both values exceed the recommended interpretation thresholds indicative of strong
relationships (r > 0.5) and good agreement between measurements (ICC > 0.6). With these findings in
mind, Flow2 can measure reliable brain activations resulting from sensory stimulation.
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Figure 4. Activations in the auditory cortex during the passive auditory task were reliable across study visits.

a. Group-level GLMs for the story condition during visit 1 (left) and visit 2 (right) were qualitatively similar as evidenced by
the t-statistics from a one-sample t-test. Here, for each channel (each line) GLM beta values from all participants were
compared against zero. Only channels that were significantly different from zero (p<0.01; uncorrected) are shown. b. The
group-level dice coefficient (a measure of channel-level reliability) was computed as the average dice coefficient of all
participants for each module (each color patch). Note the patches with high values (>0.4) in the auditory cortex areas. ¢. For
each participant (each marker), the average GLM test statistics for each module was calculated and compared between two
recordings (i.e. visit 2 GLM test statistics versus visit 1 GLM test statistics). Two representative modules in bilateral auditory
regions showed strong and significant correlations (Spearman) between the two visits. d, e. Correlation coefficients
(Spearman p) (d) and ICC values (e) computed to measure stability of GLM test statistics (across time) are shown for each
module (each color patch). Note how the reliability as measured by dice coefficient (b), correlation coefficient (d) and ICC
(e) exhibit consistent patterns, with the left and right auditory areas showing the highest reliability (bluer patches indicate
lower reliability and redder patches indicate higher reliability). Results shown here are all computed over the story condition
of the task.

Reliability of hemodynamic activity during cognitive (inhibitory control) task

Participants were asked to perform a commonly employed inhibitory control task (Go/No-Go) during
each study visit. As with the auditory task, we utilized different Flow2 devices for half of the
participants (Fig. la, c). By definition, cognitive tasks are more complex than sensory tasks, and
reliability can be affected by behavioral complexities such as strategic and attentional shifts.
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Nevertheless, we sought to measure the reliability of brain activity while participants performed the
Go/No-Go task. In an attempt to guard against major changes in performance (and thus corresponding
changes in brain activity), participants were given ample time to practice the task prior to the first
recording, and behavioral data (accuracy and median reaction time in go/no-go blocks) was also
collected (Methods).

Indeed, behavioral metrics were correlated across the two visits, such that high performers from visit 1
tended to be high performers in visit 2. These relationships (accuracy: p=0.77, p=9.81x10™""; reaction
time: p=0.60, p=6.52x10°) were fairly strong (Supplementary Fig. 5) indicating that behavior was stable
enough to expect a reflection of that stability in the neural activity. While strong, it is important to note
that any change in performance should lead to 'less stable' brain measurements, as we expect task-related
Regions of Interest (ROIs) to be sensitive and responsive to behavioral fluctuations. In this way, TRR of
task performance, sets an upper bound for TRR of neural metrics.
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Figure 5. Reliability of the right prefrontal regions was observed in a Go/No-Go inhibitory control task.

a. Shown are the t-statistics from a one-sample t-test on channel-wise GLM beta values for each participant, for the contrast
go/no-go. These group-level GLMs showed similarity in brain activation patterns during the task between visit 1 (left) and
visit 2 (right). Only channels that were significantly different from zero (p<0.01; uncorrected) are shown. b. The dice
coefficient of all participants were averaged for each module to obtain the group-level dice coefficient (a measure of
channel-level reliability). Each patch represents a module. Note the presence of patches with high values in the following
areas: right prefrontal, right auditory, and left auditory/motor. ¢. Two representative modules in the right prefrontal region
showed strong and significant correlations (Spearman) between the two visits. Each marker represents the average GLM test
statistics for each module for a given participant compared between two recordings (i.e. visit 2 GLM test statistics versus visit
1 GLM test statistics). d, e. Module-level reliability of GLM test statistics (across time) is shown using correlation
coefficient (Spearman p) (d) and ICC values (e). Each color patch represents a module. Several regions, and primarily the
right prefrontal region, showed high reliability consistently across all three measures of reliability (b, d, e). Results shown
here are all computed over the go/no-go condition of the task. In all heatmaps bluer patches indicate lower reliability and
redder patches indicate higher reliability.
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For this task, we similarly fitted a GLM to the neural activity from the recordings and performed the
same analyses (here, the block types were go-only and go/no-go). Group-level analysis on the GLMs for
visit 1 and visit 2 revealed significant activations in right prefrontal regions during the go/no-go blocks,
a result that is in agreement with this area's role in inhibitory control***=!. With whole-head coverage
we observed significant activations in other areas, such as the right auditory cortex and the left
auditory/motor regions (Fig. 5a.). The noted auditory activation is consistent with the trial-level auditory
feedback (Methods). One possible explanation for the left motor activation is the propensity of
right-handedness in participants (88%), who were asked to respond with spacebar presses in this task.

Subsequent dice coefficient analysis revealed elevated reliability in each of these regions at the
population-level, indicating consistent channel-level activations in these regions across the two visits (on
average) (Fig. 5b). Correlation analysis on the GLM test statistics revealed a strong agreement within
ROIs in the right prefrontal cortex (Right Prefrontal Module A: p=0.61, p=2.80x10¢; Right Prefrontal
Module B: p=0.65, p=4.37x107)(Fig. 5c, d). In accordance with the auditory task, none of the ROIs
showed significant differences in reliability when using the same or different headsets for recordings
(independent t-test; p>0.05 corrected). Last, ICC was computed over the module-level GLM test
statistics (Fig. 5e) and the same two modules positioned over the right prefrontal cortex showed the
highest ICC values (Right Prefrontal Module A: ICC=0.60; Right Prefrontal Module B: ICC=0.64)(Fig.
5e). While evoking and measuring reliable brain activity as it pertains to cognitive tasks has its
challenges, here we showed that brain activity recorded by Flow2 produced reliable brain metrics that
were on par with the stability of the task performance across visits and consistent with prior fMRI
literature®.

Discussion

The present study examined the reliability of neuroimaging measurements in participants performing
resting state, sensory and cognitive tasks while their data were recorded using Kernel Flow2 TD-fNIRS
system. To achieve this, we incorporated multiple factors that could lead to measurement variability into
our experimental design, such as (1) passage of time between measurements; (2) using a different
system for data acquisition; and (3) variability in headset placement and its consequences (e.g. different
number of useable channels). We demonstrate valid and stable measurements across several neural
features computed from tasks and resting state Flow2 recordings.

By extracting a combination of neural, physiological and optical features from the resting state sessions,
our data revealed a reliability in the good to excellent range for most investigated features across
standard reliability metrics (e.g., correlation coefficient, ICC and cronbach alpha). This reliability was
observed both across time and the use of different headsets. It is worth noting that although our
reliability metrics were comparable, and at times superior, to those reported in fMRI'*!""* and fNIRS%,
other studies may have used different metrics to evaluate reliability. Additionally, the limited number of
features used to assess the reliability of resting state in the current study were spatially crude (e.g.,
fALFF over the entire right prefrontal region). It is possible that reliability metrics would improve, or
deteriorate, if more granular ROIs are considered—an investigation worth pursuing in future studies.

Reliability of neural activations during tasks has been a topic of interest in both fMRI'? and fNIRS*>°
communities. Although one expects to observe very stable neural responses during sensory tasks®,
which was indeed the case in our passive auditory task, activation stability during cognitive tasks is
more nuanced. Even in the absence of any neural recordings, behavioral performance during cognitive
tasks and cognitive scores can vary from day to day>*>. In parallel, it is well-known that measured brain
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activations in the prefrontal regions can be related to performance on Go/No-Go tasks***='; As such, it
is possible that the variability in behavioral performance, albeit inevitable, may impose an upper bound
on the stability of corresponding neural responses during cognitive tasks. Even still, in the current study
we found adequately high reliability during our Go/No-Go task that matched inhibitory control
reliability in fMRI*?; and provided a more thorough analysis by utilizing complementary metrics.

When assessing task-based reliability, we examined a wide range of metrics to ensure consistency across
these metrics. For example, in conjunction with the traditional metrics such as correlation and ICC, we
also considered the dice coefficient. Even though we obtained confirmatory results between all our
metrics, we believe they can paint different pictures of how reliability is measured. While the dice
coefficient can provide a great metric for spatial stability of responses, the correlation and ICC values
provide a complementary metric that also incorporates the magnitude of responses in each region.
Furthermore, most fNIRS-based TRR studies only consider a priori defined regions of interest that are
thought to be implicated in the task®’>° due to the limited number of available optodes. One of the
advantages of the whole-head Flow2 system is that it allows for probing reliability beyond these
predefined regions. Here, we were able to determine that brain activation patterns and stability varied
across the cortex with task-related regions showing the strongest measures — an important validation that
system measurements are being driven by brain activity (and not noise or global signals). Outside of the
expected region of interest, we observed an area in the auditory region that exhibited high reliability in
the Go/No-go task, which we believe may reflect a response to the auditory feedback participants
received during the task.

It must be borne in mind that the current study, similar to other TD-fNIRS studies, has multiple
limitations. First due to the nature of this modality, it is only possible to report reliability in superficial
brain regions. Second, our study design measured test-retest reliability over one week, so we cannot
report on reliability over longer timescales, and we did not explore systematic changes in underlying
metrics due to factors like circadian rhythms or seasonal changes®*. Third, our post-hoc analysis revealed
a statistically significant relationship between melanin and total number of retained prefrontal channels;
however, the practical significance of this relationship was demonstrated to be negligible as anticipated
channel count (> 200 across skin colors) was more than adequate for the extraction of the neural metrics
considered here (e.g. the absolute HbO/HbR metric). Still, our current study was not specifically
designed to address the effect of skin color on our recordings and we did not make recruitment decisions
based on this factor. As such the participants were not balanced across melanin levels, which could
affect the interpretability of the analyses we performed; nonetheless, our recruited demographics were
similar to that of the Greater Los Angeles area (data not shown). Lastly, we know that hair color and
texture can also affect fNIRS recording quality. Although, on average, we had adequate number of
channels over the head, a proper quantification of how this relates to hair texture remains to be done in
future studies.

To summarize, quantifying the test-retest reliability of the metrics derived from a neuroimaging system
is critical. If a system were to be used for diagnostic purposes and identification of neuropsychiatric
and/or neurodegenerative biomarkers, a lack of adequate reliability could obscure any true underlying
signals'. The reliability of signals recorded from Kernel Flow2—on a variety of tasks, at multiple time
points, and using different headsets—suggests its potential to fill a need for scalable multi-device and
even multi-site neuroimaging in the scientific and medical communities.
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Methods

Participants and screening procedures

Forty nine healthy participants (18 female, age=43.94£14.57, mean+STD) completed two study visits in
a repeated-measures study design within a week (time between visits: mean+STD=2.02+0.78 days,
range=1-6 days)(Fig. 1a). Inclusion criteria were: (1) healthy adults who are 18 years or older at the
time of enrollment; (2) must have the ability to consent for themselves; (3) must be fluent in English
(speaking and reading), and (4) must be willing to attend planned study visits at the research site.
Exclusion criteria were: (1) major visual or auditory deficits that would prevent them from completing a
study task; (2) being or the possibility of being pregnant (for people of childbearing potential [POCBPY));
(3) any history of severe neurological or severe psychiatric disorders, including head trauma with
serious results (coma, unconscious for >2 hrs, or skull fracture); (4) any other psychiatric disorder with
unstable treatment in the prior 6 months; (5) lifetime substance or alcohol dependence, and/or alcohol or
substance abuse as determined by CAGE-AID assessment for drug and alcohol abuse™ (a score of 2 or
higher would result in exclusion); (6) current or recent (in the past 6 months) chemotherapy and/or
radiation for any cancer; (7) hospitalizations and/or unstable health/medical condition/treatment in the
last 30 days; and (8) does not agree to image recording, including photographs, videos, and/or 3D scans
of the head and face, during the study.
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Participants gave written informed consent before beginning the study in accordance with the ethical
review of the Advarra IRB (#Pro00074416), which approved this study, and the Declaration of Helsinki.
All experimental protocols were approved by the IRB. Participants received monetary compensation for
their time, effort, and travel expenses.

In this study 49 participants are included in the analysis. We recorded data from an additional 6
participants, but excluded them from analysis for the following reasons: missed visit (n=2), headset
discomfort (n=2), gum chewed during recording (n=1), and desire to not remove head bandana for
recording (n=1). All Flow2 data was rigorously checked for quality before being included in data
analysis. Importantly, no data was lost due to technical issues; therefore all 49 participants are included
in all of the analyses. For the cognitive task, performance was adequate to ensure that participants
understood the task in all cases.

Study design

General description

The study was a repeated-measures randomized design with participants completing two study visits
within a week (Fig. 1). To measure test-retest reliability (TTR), participants completed the following
sequence during visit 1: (i) a resting state session; (ii) a passive auditory task; (iii) filling out surveys +
misc (see below); the headset was removed during this phase; (iv) another resting state session; and (v) a
Go/No-Go task. Participants’ brain activity during stages i, ii, iv and v was recorded with Kernel Flow?2
Time Domain functional Near-infrared Spectroscopy (TD-fNIRS). The second study visit followed the
exact same structure.

During their first visit, a few additional steps were completed. Prior to data collection, participants
listened to all audio clips included in the passive auditory task to eliminate the effect of novelty on
neural signals during the experiment. Furthermore, during phase (iii), participants were trained on the
Go/No-Go task by practicing on six shortened blocks (15 trials instead of the original 24 trials), three
with go-only trials and three with both go and no-go trials, in attempts to remove learning effects from
the neural recordings. During phase (iii), we recorded the melanin index*® on the parietal regions of the
scalp/hair as well as on the forehead using a colorimeter (Cortex Technology DSM III Color Meter,
CyberDerm, Broomall, PA). Only the data from the forehead readings, which were considered to be pure
measures of the skin color (unoccluded by any hair), were used for further analyses. Lastly, participants
were asked to fill out a self-report demographics questionnaire part of which includes the Fitzpatrick
scale for skin typing.

In addition to investigating reliability over time, we sought to explore the reliability across two different
Flow2 headsets. To this end, participants were randomly assigned to one of the following two groups
(Fig. 1a):
1. STAY group: during the first visit, headset 1 was used for both the first half (i,ii) and
second half of the visit (iv, v); during the second visit, a different headset, i.e. headset 2,
was used for both halves.
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2. SWITCH group: during the first visit, headset 1 was used for the first half (i,ii) and
headset 2 was used for the second half of the visit (iv, v); during the second visit, the
same headset order was used.

This study design allowed for investigation of within-visit reliability with the same headset, within-visit
reliability with different headsets, across-visit reliability with the same headset, and across-visit
reliability with different headsets.

At each visit, participants filled out a survey during phase (ii1) that asked about recent daily activities,
including: quality of sleep (scale 1-10), current sleepiness level, caffeine consumption (within the last
12 hours), nicotine use (within the last 3 hours), alcohol consumption (within the last 12 hours), and
marijuana (within the last 72 hours). With the exception of sleep quality all of the questions were
qualitative multiple choice.

Go/No-Go task paradigm

The task, designed and presented using Unity game engine, consisted of two block types: go-only and
go/no-go. The overall structure of the task was similar to the one used in a prior publication®. Briefly,
participants completed a total of 10 blocks alternating between go-only (n=5) and go/no-go (n=5) with
each block consisting of 24 trials. Stimuli were green leaf cartoon images (for go trials) and red flower
images (for no-go trials) that were presented in a pseudorandom order, which was pre-set and unique for
each run. During go/no-go blocks, 30% of the trials were chosen to be no-go trials. A different run of the
task was presented at each study visit, however, all participants completed the same versions in the same
order.

The task included a 15-second rest at the beginning and a 20s rest at the end. The task also included a
screen to remind the participant of task instructions (e.g. pressing the spacebar when seeing a green leaf
and refraining from pressing when seeing a red flower) prior to each block. Stimulus presentation time
was 400 ms followed by a 600ms+100ms inter-trial interval during which only the background was
displayed. Participants were asked to provide a response within the 400ms presentation period. A
pleasant or unpleasant tone, played immediately after participants’ response, was used to provide
positive (for hits) and negative feedback (for false-alarms), respectively. The overall task duration was
approximately 7 minutes (Fig. 1c).

Passive Auditory task paradigm

This task was also programmed and presented in Unity. The design consisted of two types of blocks,
each lasting for 20s: story blocks (n=8; 6 unique clips and 2 repeated clips) during which participants
listened to short clips from TED talks; and noise blocks (n=7) during which participants listened to
brown noise. After an initial 10s rest period, the story and noise blocks were presented in a preset
pseudo-randomized order with 10s of silence between each block (Fig. 1d). Participants wore earbuds
and were instructed to look at a white fixation cross presented on a black background throughout the
task. This task required no cognitive demand and was purely a passive auditory task. All participants
listened to the same version of the task (i.e. in terms of the audio clips and their order) in both visits,
with the exception of three participants who listened to a different version of the task in the second visit.
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Headset placement analysis

This procedure involved multiple steps: (1) four distinct AprilTags** were installed on each headset in
fixed locations (Supplementary Fig. 2a); (2) A front-facing photograph of each participant was taken
each time the headset was placed on their head (immediately before data collection started), yielding
four pictures per participant; (3) Finally, a computer vision (CV) approach®* was used to calculate
horizontal and vertical shifts of the headset relative to facial features, and in turn within-participant
variability of operator headset placement.

For processing, each photo was converted to a JPG, resized to a standard pixel dimension, and converted
to grayscale. Two python packages were used to implement facial feature detection and AprilTag
detection: The dlib library was used to detect faces and facial features in images (68-landmark shape
predictor model), and the Apriltag library was used to detect AprilTags in the images. Detection results
included tag corners and center coordinates. These locations were then used to quantify alignment of the
headset as follows (Supplementary Fig. 2b): 1) horizontal shift (yaw) was measured as the horizontal
distance between the nose-line (defined by the landmarks detected along the nose) and the center of the
two frontal, innermost april tags , and ii) vertical shift (pitch) was computed as the average length of the
line connecting the center of each eye to the AprilTag above it. All metrics are reported in millimeters.

Photographs were missing from 4 of the 196 placements. Of the remaining 192 photos, 140 photographs
across 42 participants were included in the analysis because a subset of photos could not be analyzed.
Some of these photos were excluded due to failure to detect necessary AprilTags (n=44), or due to
camera angle (n=1). After the previous exclusions, 7 participants had only one analyzable photograph,
which was insufficient for reliability calculations; therefore, their photos (n=7) were also removed from
the analysis. Manual verification of facial landmark locations was performed on 44 of the analyzed
photos, due to failure of the CV algorithm to accurately detect facial landmarks. The photos were taken
head-on with a fixed position front-facing iPhone camera. Therefore, for ease of computation we
assumed a simplified model that neglects the effects of curvature. While this assumption might introduce
slight deviations in our results, these are anticipated to be minimal and do not significantly impact the
overall conclusions within the context of our study. Results are shown in Supplementary Figure 2c.

fNIRS data collection and feature extraction

Data acquisition

Participants wore the Kernel Flow2 TD-fNIRS headset (the second generation of Flow, Kernel, Culver
City, CA, USA)***7 for neurophysiological recordings. The system collects distributions of the times of
flight of photons (DTOFs) from more than 3000 channels across the head with source-detector distances
spanning 8-60mm. The system uses two wavelengths (690 nm and 905 nm) and samples at an effective
rate of 3.76 Hz. The modular design of the headset can allow up to 40 modules arranged to provide
coverage over prefrontal, parietal, temporal, and occipital regions across both hemispheres (Fig. 2a).
Each module consists of three sources and six detectors yielding both within-module channels (up to
18)(Fig. 2b) as well as between module channels (variable number depending upon module location).
For this study, we used a 35-module system by removing the most posterior modules that covered
inferior occipital regions, which were deemed to be the least relevant to our tasks.
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Data preprocessing and relative hemoglobin concentrations

Data preprocessing steps are described at length in prior work®. We first implemented a channel
selection procedure using histogram shape criteria®®. Next, histograms from the selected channels were
used to compute the moments of the DTOFs—specifically the sum, mean, and variance moments®, The
relative changes in preprocessed DTOF moments were converted to relative changes in absorption
coefficients for each wavelength using the sensitivities of the different moments to changes in
absorption coefficients (moments Jacobians, i.e. derivative of each moment with respect to a change in
absorption coefficient), following the procedure recently described in **. To obtain the sensitivities of the
different moments, we used a 2-layer medium with a 12-mm superficial layer. We used a finite element
modeling (FEM) forward model from NIRFAST**®°, and integrated the moment Jacobians within each
layer to compute sensitivities. We converted the changes in absorption coefficients at each wavelength to
changes in oxyhemoglobin and deoxyhemoglobin concentrations (HbO and HbR, respectively) using the
extinction coefficients for the two wavelengths and the modified Beer—Lambert law (mBLL)%".
HbO/HbR underwent further preprocessing using a motion correction algorithm, Temporal Derivative
Distribution Repair (TDDR)®. TDDR can leave spiking artifacts in the presence of baseline shifts; we
detected those and corrected them using cubic spline interpolation®. Finally, we detrended the data using
a moving average with a 100-second kernel and applied short channel regression to remove superficial
physiological signals from brain activity® (here, short within-module channels with SDS=8mm were
used).

Absolute hemoglobin concentrations

The DTOF is the convolution between the time-resolved temporal point spread function (TPSF) and the
Instrument Response Function (IRF). We leveraged Flow2’s online IRF measurements (dedicated
detector within a module, which records photons that come directly from the laser), and used a curve
fitting procedure to retrieve absolute optical properties of the underlying tissue. We used an analytical
solution of the diffusion equation for a semi-infinite homogeneous medium to generate candidate
TPSFs, which we convolved with the known IRF, and compared with the recorded DTOF; the search for
optical properties was conducted using the Levenberg-Marquardt algorithm, focusing on the fit in the
region that spans from 80% of the peak on the rising edge to 0.1% of the peak on the falling edge. The
refractive index was set to 1.4. This provided an approximate estimate of absorption coefficients as the
semi-infinite assumption is an idealization. These absolute estimates of absorption coefficients were
converted to HbO and HbR concentrations, as described above. To obtain a single value for HbO and
HbR, we computed the median value across well-coupled long, within-module prefrontal channels
(SDS=26.5mm) in the first 30s of a given resting state session.

Extraction of optical properties

During resting state sessions, we sought to measure head tissue opacity to near-infrared light, which
provides information about the health status of the brain’s cortical mantle. We computed the Effective
Attenuation Coefficient (EAC)* using the slope of the log(SNR) of the signal, here the total counts (i.e.,
the sum moment) of DTOFs, as a function of source—detector distance.

Local neural activity: fractional Amplitude of Low Frequency Fluctuations (fALFF)

The time series of data from each channel (for each chromophore) during resting state sessions was
converted to the frequency domain using an FFT. The ratio of the power in the 0.01-0.08 Hz frequency
range was calculated relative to the full 0—0.25Hz frequency range. We focused our analyses on left and
right prefrontal regions only. As such, fALFF values for each chromophore were computed by averaging
all left/right prefrontal channels.
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Functional Connectivity (FC)

To obtain FC during resting state sessions, the time series of each channel was further processed by
applying a low-pass filter (an acausal finite impulse response (FIR) filter). The pass band was
0.01-0.1Hz, as is customary in the literature®. Functional connectivity was computed for all pairs of
channels as the Pearson correlation coefficient between their time courses, for each chromophore
independently. Similar to fALFF, we focused on left/right prefrontal regions only. Values from the FC
matrix within each of these regions were then averaged for each chromophore.

Generalized Linear Model (GLM) approach

The approach we employed was similar to methods previously described®. Each of the measured time
courses, y (here, channel-wise relative HbO), were modeled as a function of a design matrix, X (a set of
task specific regressors), and residuals, €, as follows: y = Xf + £, where the p coefficients represent the
contribution of each regressor to the data. This multiple linear regression problem is then solved using a
least-squares solution that includes prewhitening the time courses with an autoregressive model. The
design matrix, X, included a combination of block-level and standard nuisance regressors such as (1)
time course of the task blocks (square waves convolved with a a canonical hemodynamic response
function for each block type); (2) drift regressors; and (3) low frequency cosine terms. GLM Contrasts
(test statistics) and their corresponding significance (p-value) were then computed between conditions of
interest via statistical tests (t-tests) on the fitted p coefficients. We used this approach for both the
passive auditory and Go/No-Go tasks.

1. Passive auditory task: Given that there were two types of blocks in the experimental design,
story and noise blocks, the four possible contrasts were: story, noise, story - noise, and noise -
story. For the purpose of this manuscript, we only considered the “story” contrast.

2. Go/No-Go: Similar to the audio task, there were two block types in the experimental design,
go-only and go/no-go blocks. As such, the four possible contrasts were: go-only, go/no-go,
go-only - go/no-go and go/no-go - go-only. For the purpose of this manuscript, we only
considered the “go/no-go” contrast.

Statistical analyses:

Resting state

Note that for each participant, there were a total of four resting state sessions. Two were done during the
first visit (referred to as sessions la and 1b) and the remaining two during the second visit (referred to
as sessions 2a and 2b). For each session, we considered the following features: (1) Absolute HbO/HbR
in the prefrontal region; (2) EAC for each wavelength; (3) fALFF computed for HbO and HbR in left
and right prefrontal regions separately; and (4) FC matrix computed for HbO and HbR averaged within
left and right prefrontal regions separately. Additionally, two different headsets were used for resting
state recordings; for a detailed description, see Study Design section as well as Fig. 1a.

1. Pairwise Correlations: We considered both within-visit relationships, i.e. between sessions 1a/1b
and between sessions 2a/2b as well as across-visit relationships, i.e. between sessions 1a/2a and
sessions 1b/2b. For each of these pairs, a Spearman correlation coefficient was computed for
each feature of interest. The results are shown in Fig. 3a, b.

2. Intra-class correlations and Cronbach's alpha: In addition to pairwise correlations, we used the

features from all four resting state sessions and computed the Intra-class correlation coefficient
(ICC) as well as Cronbach’s alpha, both of which are commonly used metrics for reliability. We
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used the pingouin Python package®® for both ICC (specifically ICC2, known as the single
random rater method) and Cronbach’s alpha calculations (participant IDs were used as
targets/subjects variables and session IDs were used as raters/items variables for ICC/Cronbach
alpha). Participant-level values were then averaged and the results are shown in Fig. 3c.

Headset reliability: To assess whether correlation reliability (within-visit or across-visit)
depended on which headset was used, we took the following approach: (1) for both within-visit
and across-visit session pairs, we computed the pairwise difference for each feature, which
resulted in Afeature; (i.e. change in a given feature between sessions 1 and j for all participants);
(2) this quantity was then split between session pairs that used the same headset (Afeature;>*™*)
and those that use a different headset (Afeature;”™"); (3) finally, an independent t-test was
performed between Afeature;>*™* and Afeature;®™", with p<0.05 suggesting a difference in TRR
when using different headsets. The results are reported in the “Results: Reliability of resting state
features” section of the manuscript.

Each participant completed each task twice: once during the first visit (referred to as visit 1) and once
during the second visit (referred to as visit 2). For each session, metrics of interest were first obtained at
the channel level (test statistics and p-values from the GLM) as described above. The metrics described
below were then considered at the module-level (resulting in one value for each of the 35 modules
covering the head).

1.

2.

3.

Dice coefficient: The Dice coefficient was computed to assess the similarity between the set of

task-activated channels from visit 1, X, and the set from visit 2, Y. In order to disentangle reliable
task activations and reliable scalp coupling we only considered the channels that were shared
across visits for a given participant. Then for each visit, channels that were detected by a given
module, i, and had a GLM p-value < 0.05 defined the set of significant channels for that module,
yielding X ; and Yi. Finally, the Dice -coefficient for each module was defined as

21X N Yl,| /(X i| + |Yl_|) , or double the size of the intersection of the sets divided by the sum

of the size of each set. This analysis yielded whole-head maps of Dice coefficients for each
participant and each task. To assess this metric at the group-level, we averaged these maps over
participants, yielding one population-average Dice coefficient map for the Auditory task (Fig.
4b) and one for the Go/No-Go task (Fig. 5b).

Pairwise Correlations: For each participant, visit, and module, test statistics from the GLM were
averaged (where a channel was assigned to the module it was detected by). Then for each ROI
(here, each module) we computed the Spearman correlation between the set of average test
statistics from Visit 1 to that from Visit 2. This allowed us to not only assess the reliability of
activity within regions associated with each task, but to also compare to other brain areas. The
results are displayed as scatter plots for ROIs in Fig. 4c (Auditory task) and Fig. 5¢ (Go/No-Go
task). Whole-head correlations are shown in Fig. 4d (Auditory task) and Fig. 5d (Go/No-Go
task).

Headset reliability: This analysis was done exactly the same as the resting state with the
exception that only across-visit reliability could be considered because each task was only
performed once per visit.
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4. Intra-class correlations: On the same module-level sets of averaged GLM test statistics from (2),
we computed the ICC using the methods described in the resting state statistical analyses.
Whole-head ICC results are shown in Fig. 4e (Auditory task) and Fig. 5e (Go/No-Go task).
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