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 Abstract: 
 With  the  growing  interest  in  establishing  brain-based  biomarkers  for  precision  medicine,  there  is  a  need 
 for  noninvasive,  scalable  neuroimaging  devices  that  yield  valid  and  reliable  metrics.  Kernel's 
 second-generation  Flow2  Time-Domain  Functional  Near-Infrared  Spectroscopy  (TD-fNIRS)  system 
 meets  the  requirements  of  noninvasive  and  scalable  neuroimaging,  and  uses  a  validated  modality  to 
 measure  brain  function.  In  this  work,  we  investigate  the  test-retest  reliability  (TRR)  of  a  set  of  metrics 
 derived  from  the  Flow2  recordings.  We  adopted  a  repeated-measures  design  with  49  healthy 
 participants,  and  quantified  TRR  over  multiple  time  points  and  different  headsets—in  different 
 experimental  conditions  including  a  resting  state,  a  sensory,  and  a  cognitive  task.  Results  demonstrated 
 high  reliability  in  resting  state  features  including  hemoglobin  concentrations,  head  tissue  light 
 attenuation,  amplitude  of  low  frequency  fluctuations,  and  functional  connectivity.  Additionally,  passive 
 auditory  and  Go/No-Go  inhibitory  control  tasks  each  exhibited  similar  activation  patterns  across  days. 
 Notably,  areas  with  the  highest  reliability  were  in  auditory  regions  during  the  auditory  task,  and  right 
 prefrontal  regions  during  the  Go/No-Go  task,  consistent  with  prior  literature.  This  study  underscores  the 
 reliability  of  Flow2-derived  metrics,  supporting  its  potential  to  actualize  the  vision  of  using  brain-based 
 biomarkers  for  diagnosis,  treatment  selection  and  treatment  monitoring  of  neuropsychiatric  and 
 neurocognitive disorders. 
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 Introduction: 
 Test-retest  reliability  (TRR)  of  non-invasive  functional  neuroimaging-derived  metrics  has  become  an 
 increasingly  important  avenue  of  research  as  promising  evidence  for  brain-based  biomarkers  and  clinical 
 use  cases  has  grown  over  recent  years.  In  order  for  a  metric  to  have  therapeutic  or  diagnostic  utility,  it 
 must  be  stable  in  the  absence  of  structural  or  functional  changes  in  an  individual.  Under  this  condition, 
 any  change  in  the  metric  can  be  attributed  to  a  bona  fide  underlying  change  in  the  brain-behavior  axis, 
 which may reflect disease progression or response to clinical intervention  1,2  . 

 The  strictest  form  of  TRR  consists  in  repeating  a  measurement  with  the  same  device,  on  the  same  day,  in 
 the  same  individual,  assuming  nothing  changed  between  the  two  assessments.  However,  the  reliability  of 
 interest  for  brain-based  biomarkers  is  of  a  broader  form  3  ,  requiring  stability  across  devices  and  days. 
 Above  all,  measurement  variability  within  an  individual  (which  may  stem  from  different  confounding 
 factors,  such  as  time  of  day,  exercise,  sleep,  neuroactive  substances)  should  be  small  in  relation  to 
 between-subject  variability  (for  diagnostic  purposes)  and  to  within-subject  variability  across  functional 
 changes of interest (for treatment outcome purposes). 

 Furthermore,  reliability  alone  isn’t  sufficient  for  clinical  utility.  A  measurement  must  also  be  valid,  i.e. 
 pertain  to  the  function  that  it  intends  to  measure.  Indeed,  a  very  reliable  measure  could  be  a  reflection  of 
 a  stable  confound  which  is  irrelevant  to  the  function  of  interest.  On  the  other  hand,  an  observed  lack  of 
 reliability  does  not  readily  invalidate  a  measure;  it  may  simply  indicate  that  the  function  of  interest  was 
 not  properly  held  constant  across  measurements,  or  may  represent  a  valid  change.  While  the  bulk  of 
 non-invasive  functional  neuroimaging  studies  has  sought  to  validate  derived  neural  metrics,  a  growing 
 body  of  literature  has  explored  the  TRR  of  these  measurements  in  neuropsychiatric  conditions  such  as 
 depression  1,2  ,  cognitive  decline  4,5  ,  pain  6  ,  stroke  7  ,  aging  8  ,  and  ADHD  9  .  These  studies  are  helpful  to 
 establish  the  current  standard  of  TRR  across  common  noninvasive  neuroimaging  modalities  (functional 
 Magnetic  Resonance  Imaging,  fMRI;  electroencephalography,  EEG;  and  functional  Near-Infrared 
 Spectroscopy, fNIRS). 

 At  the  forefront  of  noninvasive  neuroimaging  is  Functional  Magnetic  Resonance  Imaging  (fMRI),  which 
 has  progressed  our  understanding  of  the  human  brain  both  in  healthy  and  clinical  populations.  However, 
 the  within-subject  stability  of  fMRI  recordings  has  been  called  into  question,  and  the  literature 
 surrounding  TRR,  while  extensive,  is  nuanced  at  best.  These  findings  may  not  be  surprising  given  the 
 inherent  challenges  that  fMRI  faces  in  collecting  homogeneous  data,  such  as  motion,  system  artifacts, 
 and  variability  across  different  scanners  and  sites  3  .  On  one  hand,  there  have  been  resting-state  studies 
 that  demonstrate  good  to  excellent  reliability  (particularly  with  within-visit  repetition)  of  extracted 
 neural  features  in  some  brain  regions  or  when  considering  specific  functional  brain  networks  10,11  .  The 
 details  of  these  papers,  nonetheless,  shed  some  light  on  the  incongruence  of  the  literature  (e.g.,  they 
 showed  altered  reliability  with  different  processing  steps).  On  the  other  hand,  meta-analyses  have  found 
 standard  measures  of  reliability  to  range  from  poor  to  fair,  across  a  variety  of  tasks  12,13  .  In  the  face  of 
 this,  numerous  studies  have  proposed  best  practices  for  enhancing  and  interpreting  fMRI  reliability  14,15  , 
 emphasizing that it is best done alongside the assessment of validity. 

 While  fMRI  measures  hemodynamic  signals,  electroencephalography  (EEG)  measures  electrical  brain 
 activity.  The  TRR  of  both  time-  and  frequency-domain  EEG  metrics  has  been  investigated.  The 
 literature  suggests  that  power  spectra  from  resting  state  measurements  are  more  reliable  than 
 task-evoked  event  related  potentials  (ERPs)  16  .  For  resting  state,  the  measured  reliability  varies  across 
 frequency  bands  (e.g.,  alpha  vs.  others)  and  spatial  location  of  the  electrodes  (e.g.  central  vs. 
 peripheral)  16  .  For  tasks,  it  has  been  shown  that  ERP  reliability  is  affected  by  task  type  17  ,  varies  across 
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 different  ERP  components  (e.g.  P3  vs.  N2)  17,18  ,  and  across  the  ERP  time  course  18  .  Akin  to  differences  in 
 fMRI  scanners  across  different  locations,  EEG  variability  could  stem  from  different  operators,  the  use  of 
 different  caps,  and  different  placements  of  the  same  caps  19–21  .  Taken  together,  the  clinical  utility  of 
 EEG-derived  metrics  may  be  limited  to  those  measures  with  high  reliability  (e.g.,  certain  frequency 
 bands)  and  their  corresponding  experimental  designs  (e.g.,  resting  state).  Another  viable  modality  with 
 fast  recording  time  scales  is  Magnetoencephalography  (MEG).  However,  metrics  derived  from  MEG  are 
 not considered here, as its cost and ecological validity are far from that needed for precision medicine. 

 In  recent  years,  Functional  Near-Infrared  Spectroscopy  (fNIRS)  has  become  an  increasingly  attractive 
 neuroimaging  modality,  as  it  is  portable,  affordable,  and  robust  to  motion  artifacts  22  .  This  method,  which 
 uses  light  to  measure  brain  function,  can  be  particularly  suitable  for  measuring  clinical  populations  as  it 
 is  participant-friendly—there  are  no  loud  scanner  noises,  confinement  concerns,  or  messy  gel  to  apply  to 
 the  scalp  to  make  good  contact.  There  are  also  minimal  restrictions  on  movement  and  speech  23,24  .  In  this 
 domain,  there  have  been  a  number  of  promising  studies  exhibiting  good  to  excellent  reliability  across  a 
 multitude  of  tasks  including  resting  state  25,26  ,  visual  and  auditory  sensory  tasks  27,28  ,  cognitive  tasks  29  ,  and 
 motor  tasks  30  .  It  is  important  to  note  that  while  encouraging,  each  of  these  studies  suffers  from  one  or 
 more  of  the  following:  small  sample  sizes,  selecting  a  region  of  interest  (ROI)  a  priori,  limited  recording 
 coverage  only  over  those  ROIs,  correspondingly  low  channel  counts,  and  a  drop  in  reliability  when  the 
 fNIRS cap/optodes were removed between measurements. 

 fNIRS  comes  in  several  flavors:  continuous-wave  (CW),  frequency-domain  (FD)  and  time-domain 
 (TD).  The  latter  (TD-fNIRS)  is  considered  the  gold  standard  of  non-invasive  optical  brain  imaging 
 systems  31  .  TD-fNIRS  instruments  can  perform  depth-resolved  measurements,  and  provide  improved  and 
 more  quantitative  estimates  for  both  oxy-  and  deoxy-  hemoglobin  concentrations  32–34  .  Until  the 
 development  of  Kernel  Flow,  this  technology  was  not  widely  used  and  had  been  relatively  inaccessible 
 due  to  its  bulky,  expensive,  and  complex  nature  34  .  Kernel’s  first-generation  Flow  headset  was 
 benchmarked  using  a  set  of  standardized  protocols  for  TD-fNIRS  systems  35  and  validated  in  human 
 studies  36,37  .  Nonetheless,  to  our  knowledge—barring  a  few  reports  38  —very  few  studies  to  date  have  done 
 a  comprehensive  TRR  quantification  of  TD-fNIRS  measurements  and  if  so,  they  only  focused  on  very 
 limited  features  of  the  modality.  To  bridge  this  gap,  the  current  study  tested  the  validity  and  stability  of 
 Kernel’s second-generation portable and scalable neural recording system Flow2 in healthy subjects. 

 We  hypothesized  that  Flow2  measurements  could  potentially  go  above  and  beyond  the  current  state  of 
 fNIRS,  TTR  because:  1)  the  headset  design  enables  reliable  replacement  after  removal;  2)  the  headset 
 boasts  coverage  over  the  whole  scalp  and  provides  high  spatial,  as  well  as  temporal,  resolution;  and  3) 
 recorded  signals  are  more  resilient  to  artifacts  due  the  TD-fNIRS  modality  of  the  system.  Leveraging  the 
 whole-head  coverage  of  Flow2,  we  were  able  to  not  only  demonstrate  the  consistency  of  brain  activation 
 patterns  with  prior  literature,  but  also  evaluate  the  stability  of  brain  activity  across  different  regions  of 
 the  cortex.  Moreover,  with  this  approach,  we  confirmed  that  the  observed  TRR  of  neural  activity  was 
 genuinely  task-related  rather  than  merely  stemming  from  global  signals,  physiological  factors,  or 
 artifacts.  By  employing  a  longitudinal  multi-task  experimental  design,  including  a  resting  state,  sensory, 
 and  cognitive  task,  we  assessed  the  performance  and  stability  of  the  Flow2  within  an  individual  across 
 time  and  across  different  headsets.  Adding  to  the  portable  and  scalable  design  of  Flow2,  this  study 
 provides  a  critical  test  of  its  clinical  utility  by  quantifying  its  ability  to  reliably  measure  various  neural 
 activation features. 
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 Results: 

 Experimental design and data collection 
 The  study  was  a  repeated  measures  design  with  the  primary  objective  of  comparing  brain  activation 
 patterns  to  the  same  tasks  on  two  separate  days.  Participants  were  49  healthy  individuals  (18  female; 
 age=43.94 ±14.57, mean±STD) who completed two study visits (Methods). 

 The  first  study  visit  had  the  following  stages:  (1)  participants  performed  a  resting  state  session 
 immediately  followed  by  a  passive  auditory  task;  (2)  the  headset  was  taken  off  and  participants  rested 
 during  a  portion  of  which  they  filled  out  surveys;  (3)  participants  performed  another  resting  state  session 
 and  a  Go/No-Go  task.  Neural  recordings  were  done  during  stages  (1)  and  (3)  either  using  the  same 
 Kernel  Flow2  device,  or  a  different  device  (half  of  the  participants  were  assigned  to  the  same  device,  i.e. 
 STAY,  cohort).  The  second  study  visit  followed  the  same  structure,  except  the  STAY  cohort  utilized  the 
 other  Flow2  headset  for  this  visit  (Fig.  1a).  This  design  was  chosen  to  ensure  we  could  investigate  both 
 the effect of repeated measurements and alternative headsets (Methods). 

 Figure 1: Overview of study design and experiments. 
 a.  Example  schematic  of  a  study  week.  Note  that  participants  (either  assigned  to  the  group  STAY  or  SWITCH)  completed 
 two  study  visits.  Recordings  during  each  visit  were  split  into  two  parts:  (1)  resting  state  followed  by  a  passive  auditory  task; 
 and  (2)  resting  state  followed  by  a  Go/No-go  task.  The  headset  was  removed  between  these  two  stages.  Different  shades  of 
 purple  denotes  which  headset  was  used  for  a  given  visit/session.  b.  A  model  wearing  the  Flow2  headset  while  performing  the 
 resting  state  session,  which  consisted  of  watching  a  7-minute  audiovisual  segment.  c.  Schematic  of  the  Go/No-Go  task 
 structure.  Shown  are  a  few  representative  trials  at  the  start  of  a  go/no-go  block.  d.  Schematic  of  the  passive  auditory  task  with 
 story and noise blocks (20s each) and 10s of silence in between each block. 

 During  resting  state  sessions,  the  participants  watched  a  7-minute  audiovisual  segment  39  (Fig.  1b).  The 
 Go/No-Go  task,  which  measures  inhibitory  control,  consisted  of  blocks  with  low  demand  of  control 
 (go-only  blocks)  and  high  demand  of  control  (go/no-go  blocks)(Fig.  1c,  Methods).  Finally,  the  passive 
 auditory  task  consisted  of  interleaved  and  pseudorandomized  story  blocks  (20-second  clips  of  TED 
 talks)  and  noise  blocks  (20  second  clips  of  brown  noise)(Fig.  1d,  Methods).  During  these  tasks,  we 
 recorded hemodynamic signals using the Kernel Flow2 whole-head TD-fNIRS system (Fig. 2a). 
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 The  raw  data  from  Kernel  Flow2  consists  of  distributions  of  the  time  of  flight  of  photons  (DTOFs) 
 collected  for  two  wavelengths  (690  and  905nm)  from  many  source-detector  pairs.  Similar  to  Kernel 
 Flow1,  the  Flow2  headset  has  a  modular  design,  with  a  maximum  of  40  modules  (35  of  which  were 
 utilized  for  this  study),  with  each  module  containing  3  sources  and  6  detectors  (Fig.  2b).  A  channel  is 
 formed  between  a  given  source  and  a  given  detector.  The  different  combination  of  within-  and 
 between-module  channels  can  lead  to  thousands  of  channels  with  source-detector  distances  (SDS) 
 between  8-60mm  (Methods).  Raw  data  from  individual  channels  underwent  standard  preprocessing 
 steps  in  order  to  obtain  the  first  three  moments  of  DTOFs  (sum,  mean,  and  variance),  which  were 
 converted  to  the  changes  in  the  concentrations  of  oxygenated  hemoglobin  (HbO)  and  deoxygenated 
 hemoglobin  (HbR),  as  previously  described  36,37  (Methods).  Moreover,  we  retrieved  absolute 
 chromophore  concentrations  with  the  curve  fitting  method,  taking  into  account  the  instrument  response 
 function  (IRF)  which  is  continuously  monitored  for  each  source  in  the  Flow2  headset  40  (Methods). 
 Several other features were subsequently computed, which will be described below (Methods). 

 Figure 2: Kernel Flow2, second-generation Kernel whole-head TD-fNIRS system. 
 a.  Schematic  of  front,  side  and  inside  view  of  the  Flow2  headset.  Note  the  individual  modules  located  throughout  the  headset 
 thus  providing  whole-head  coverage.  b.  Schematic  of  a  module,  which  consists  of  3  sources  (marked  by  white  circles)  and  6 
 detectors. 

 In  order  to  measure  potential  external  sources  of  variability,  participants  were  asked  to  fill  out  surveys 
 (during  stage  (2))  detailing  recent  use  of  substances  (e.g.  caffeine,  nicotine,  etc)  as  well  as  daily 
 activities  (e.g.,  sleep  satisfaction)(Methods).  Only  a  small  percentage  of  participants  reported  deviations 
 in  nicotine,  alcohol,  and  marijuana  use  across  the  two  visits  (Supplementary  Fig.  1a).  A  larger  portion  of 
 participants  reported  changes  in  caffeine  consumption  and  current  sleepiness  (change  in  caffeine 
 consumption:  35%,  change  in  sleepiness:  65%),  though  sleep  satisfaction  was  still  correlated  between 
 the  two  visits  (  ⍴  =0.43,  p=2.25x10  -3  ;  Supplementary  Fig.  1b).  As  such,  these  changes  may  affect  brain 
 activity, thereby altering across-day TRR metrics in the current study  41  . 

 Reliability of headset placement and coverage 
 A  major  source  of  variability  in  neurophysiological  data  in  the  current  study  could  be  due  to  the 
 differences  in  headset  placements  during  data  collection  and  the  resulting  differences  in  optical  channel 
 locations.  The  inconsistency  in  placement  can  be  both  an  issue  within  a  given  visit,  as  the  headset  was 
 removed  between  stages  (1)  and  (3)  listed  above,  as  well  as  between  visits,  i.e.  across  two  different  days. 
 As  such,  AprilTags  42  were  placed  on  the  headsets  and  participants  were  photographed  each  time  the 
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 headset  was  donned  (Supplementary  Fig.  2a).  Utilizing  open-source  computer  vision  algorithms  43  and 
 manual  verification,  we  were  able  to  obtain  horizontal  and  vertical  shifts  (yaw  and  pitch  dimensions)  of 
 the  headset  with  respect  to  the  participant’s  head  for  each  recording  session  (Methods;  Supplementary 
 Fig.  2b).  This  allowed  us  to  compute  the  headset  placement  variability  (i.e.,  standard  deviation)  for  each 
 participant  across  the  4  different  placements.  We  showed  that  this  variability  is  only  on  the  order  of  a 
 few  millimeters  (Supplementary  Fig.  2c;  horizontal  shift:  3.23±1.70  mm,  vertical  shift:3.51±1.94  mm). 
 This  suggests  that  headset  placement  variability  is  lower  than  the  spatial  resolution  of  fNIRS  (over  10 
 mm  44  ),  and  may  have  minimal  effect  on  data  reliability,  although  a  thorough  quantification  of  this  effect 
 remains to be done. 

 Furthermore,  we  explored  how  reliably  we  could  obtain  similar  levels  of  channel  coverage  in  our 
 recordings.  After  each  headset  placement,  different  sources  and  detectors  could  make  good  contact  with 
 the  scalp,  therefore  leading  to  different  numbers  of  analyzable  channels  (henceforth,  referred  to  as 
 retained  channels;  Methods),  a  potential  confound  in  interpreting  the  reliability.  Thus,  we  quantified  this 
 over  multiple  hierarchical  scales  (e.g.,  over  the  whole  head,  over  the  prefrontal  region,  and  on  an 
 individual  module  level)  as  the  fraction  of  retained  channels  in  a  given  region  (i.e.  number  of  usable 
 channels  divided  by  the  total  number  of  possible  channels).  We  then  computed  a  Spearman  correlation 
 coefficient  between  within-visit  and  across-visit  recordings.  Fraction  of  retained  channels,  both  in  the 
 prefrontal  region  (Supplementary  Fig.  3a)  and  over  the  whole-head,  was  highly  reliable  in  both 
 within-visit  and  across-visit.  This  was  indicated  by  a  strong  correlation  value  and  proximity  to  the 
 diagonal  line  (Prefrontal:  within-visit  ⍴=0.96,  across-visit  ⍴=0.94,  p<10  -5  for  both;  Whole-head: 
 within-visit  ⍴=0.99,  across-visit  ⍴=0.98,  p<10  -5  for  both).  Additionally,  we  had  adequate  coverage  over 
 the  head  as  depicted  by  the  number  of  retained  channels  from  a  given  module  (Supplementary  Fig.  3b). 
 This  result  suggests  that  variability  due  to  different  numbers  of  channels  on  different  sessions  may  be 
 minimal. 

 Reliability of resting state features across time and headsets 
 As  noted  above,  participants  completed  a  total  of  four  resting  state  sessions  (Fig.  1a).  Our  experimental 
 design  enabled  us  to  consider  both  within-visit  reliability  (between  two  resting  state  sessions  within  a 
 given  visit)  as  well  as  across-visit  reliability  (between  two  resting  state  sessions  across  visits).  Various 
 features  spanning  physiological,  optical  and  neural  domains  can  be  extracted  from  Flow2  headset 
 recordings  during  resting  state.  In  the  current  study,  we  focused  on  a  non-exhaustive  set  of  features, 
 which  were  affected  by  pharmacological  manipulation  in  our  prior  studies  37  ,  and/or  which  have  strong 
 literature  support  in  terms  of  relating  to  individual  differences.  These  features  are  from  the  four 
 following  categories:  (1)  absolute  HbO/HbR  in  the  prefrontal  region,  (2)  effective  attenuation  coefficient 
 (EAC)  45  calculated  at  two  different  wavelengths  (3)  fractional  amplitude  of  low  frequency  fluctuations 
 (fALFF)  within  the  left  and  and  right  prefrontal  regions  for  HbO/HbR,  (4)  and  functional  connectivity 
 (FC) within the left and right prefrontal regions for HbO/HbR (Methods). 

 Both  within-visit  and  across-visit  reliability  for  participant-level  features  were  assessed  using  correlation 
 analysis  (Methods).  First,  we  found  that  for  both  comparisons,  many  features  of  interest  exhibited  high 
 reliability  as  evidenced  by  the  strong  relationship  and  proximity  to  the  line  of  unity  for  these  features 
 (Fig.  3a).  In  fact,  absolute  HbO/HbR,  EAC,  and  prefrontal  fALFF  showed  strong  correlation  coefficients 
 (>0.5)  for  both  within-visit  and  across-visit  reliability,  while  FC  showed  moderate  to  strong  correlations 
 (>=0.3),  regardless  of  whether  the  same  or  different  headset  was  used  (data  not  shown).  The  results  from 
 all  features  for  both  within-  and  across-visit  reliability  are  summarized  in  Fig.  3b.  When  considering 
 reliability  across  all  four  resting  state  sessions,  we  computed  other  common  metrics,  namely  the 
 intraclass  correlation  coefficient  (ICC)  and  Cronbach’s  alpha.  Both  metrics  demonstrated  reliability 
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 above  fair/acceptable  for  all  features,  and  above  good  for  most  measures  (Fig.  3c).  Although  FC  within 
 the  prefrontal  region  showed  the  lowest  reliability,  we  hypothesize  that  this  may  be  due  to  the  fact  that 
 this metric is more state-dependent (e.g. affected by mood, sleep, etc) compared to the other features. 

 After  investigating  reliability  in  time,  we  wondered  whether  our  recordings  were  reliable  when  using 
 different  headsets.  We  probed  both  within-visit  and  across-visit  effects  of  the  headset  on  the  reliability  of 
 our  features  by  comparing  the  difference  in  features  between  groups  (i.e.,  same  vs.  different  headsets; 
 Methods).  Of  the  twelve  features  of  interest,  and  considering  within-/across-visit  effects,  only  the 
 absolute  prefrontal  HbO  in  the  across-visit  showed  potential  headset  related  differences  (independent 
 t-test  p<0.05;  corrected).  Despite  this  difference,  features  from  both  same  and  different  headset  lie  very 
 close  to  the  line  of  unity,  and  exhibit  high  reliability  as  measured  by  the  correlation  coefficient  (HbO 
 across-visit:  same  headset  ⍴  =0.96,  different  headset  ⍴  =0.83).  Additionally,  it  is  unlikely  that  this 
 observation  is  purely  driven  by  the  use  of  different  headsets  as  the  within-visit  analysis  revealed  no 
 significant  differences.  Taken  together,  the  explored  resting  state  features  were  adequately  reliable 
 despite factors such as the passage of time and using different headsets. 

 Figure 3: Various features revealed within-visit and across-visit reliability during resting state sessions. 
 a.  Different  representative  resting  state  features  (each  row)  were  highly  correlated  between  two  sessions  within  a  given  visit 
 (i.e.  between  visit  1  session  1  and  visit  1  session  2  ;  and  between  between  visit  2  session  1  and  visit  2  session  2;  left  column;  within-visit) 
 and  across  visits  (i.e.  between  visit  1  session  1  and  visit  2  session  1  ;  and  between  visit  1  session  2  and  visit  2  session  2  ;  right  column; 
 across-visit).  The  three  shown  features  are  the  absolute  HbO  [µM]  in  the  prefrontal  region,  EAC  of  the  905  nm  wavelength, 
 and  fALFF  within  the  right  prefrontal  region  HbO.  Note  that  in  addition  to  the  high  correlation  coefficients,  the  values  lie 
 very  close  to  the  diagonal  line  (dashed  line)  indicating  the  similarity  of  the  values.  b.  Within-  and  across-visit  reliability 
 (black  and  gray  vertical  bars  respectively)  as  measured  by  the  Spearman  correlation  coefficient  between  different 
 visits/sessions,  as  described  in  (a),  are  shown  for  all  resting  state  features.  The  colored  background  segments  correspond  to 
 the  commonly-used  thresholds  for  the  strength  of  correlation.  c.  Reliability  of  features  across  all  four  resting  state  sessions 
 were  computed  using  ICC  (top)  and  Cronbach  alpha  (bottom).  Colored  segments  depict  different  reliability  thresholds  as 
 commonly used in the literature. 
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 While  we  could  not  investigate  all  possible  confounding  variables  that  could  affect  reliability—in 
 addition  to  considering  the  effects  of  headset  placement,  channel  coupling,  time 
 (within-visit/across-visit),  and  different  headsets—we  also  considered  participants’  skin  color 
 (Methods).  First,  we  found  that  skin  color  had  a  significant  effect  on  the  total  number  of  retained 
 channels  in  the  prefrontal  area  (Supplementary  Fig.  4a).  Based  on  the  line  of  best  fit,  it  is  anticipated  that 
 prefrontal  channel  count  at  the  highest  melanin  levels  will  still  exceed  200,  providing  ample  coverage 
 for  computing  the  neural  features  reported  in  this  study.  Reinforcing  the  assertion  of  the  practical 
 insignificance  of  this  relationship,  prefrontal  absolute  HbO  was  not  correlated  with  skin  color 
 (Supplementary  Fig.  4b).  This  is  particularly  important  after  the  COVID-19  pandemic  revealed 
 systematic  deviations  in  blood  oxygenation  levels  as  a  function  of  skin  color  46  .  Finally,  we  performed  a 
 median  split  on  participants’  forehead  melanin  levels  and  probed  the  reliability  of  absolute  oxygenation 
 for  low  and  high  melanin  groups  separately.  We  found  high  reliability  across  visits  for  both  groups  (low 
 melanin:  Pearson  r=0.86,  p=5.79x10  -8  ;  high  melanin:  Pearson  r=0.94,  p=2.55x10  -12  ;  Supplementary  Fig. 
 4c).  Absolute  deoxygenation  also  exhibited  similar  levels  of  high  reliability  for  both  groups  (low 
 melanin: Pearson r=0.93, p=5.93x10  -11  ; high melanin  Pearson r=0.96, p=5.94x10  -14  ). 

 Reliability of hemodynamic activity during sensory (passive auditory) task 
 Participants  completed  a  passive  auditory  task  twice  (once  in  each  study  visit),  where  half  of  the 
 participants  donned  the  same  Flow2  device,  while  the  other  half  switched  devices  (Fig.  1a,  d).  To 
 investigate  brain  activation  patterns  associated  with  this  task,  we  employed  a  Generalized  Linear  Model 
 (GLM)  framework,  where  the  activity  of  each  channel  was  modeled  as  a  function  of  block  type  (story 
 and  noise)  and  other  nuisance  regressors  36  .  To  obtain  group-level  activations,  for  each  channel  we 
 pooled  the  fitted  model  weights  (beta  values)  associated  with  the  block  conditions  and  performed  a 
 one-sample  t-test  (Methods).  We  repeated  this  process  for  visit  1  and  visit  2  separately.  Importantly,  we 
 found  that  the  expected  regions  (auditory  cortices)  were  activated  during  the  story  condition  of  the 
 task  47,48  .  This  activation  was  apparent  in  the  group-level  GLMs  for  both  visit  1  and  visit  2,  as  the  foci  of 
 significant activations were in the lateral temporal regions (Fig. 4a). 

 First,  we  quantified  the  reliability  of  these  activations  at  the  resolution  of  individual  channels  by 
 computing  the  dice  coefficient,  a  quantitative  measure  of  the  similarity  (or  overlap)  between  two  sets 
 (Methods).  Applied  here,  the  two  sets  of  interest  were  the  significantly  activated  channels  detected  by  a 
 given  module  in  Visit  1  and  those  in  Visit  2.  For  reference,  sets  containing  the  exact  same  elements  yield 
 a  dice  coefficient  of  1,  and  sets  with  no  common  elements  yield  a  dice  coefficient  of  0.  We  computed  the 
 dice  coefficient  for  each  participant  and  each  module,  obtaining  whole-head  dice  coefficient  maps.  The 
 averaged  (across  participant)  dice  coefficient  map  showed  elevated  measures  in  the  auditory  cortex 
 similar  to  those  reported  in  prior  fNIRS  literature  27  ,  whereas  all  other  regions  exhibited  averages 
 near-zero (Fig. 4b). 

 Next,  in  order  to  assess  the  reliability  of  the  magnitude  of  task  activations,  we  employed  a  module-level 
 approach  and  averaged  participant-level  GLM  test  statistics  over  all  channels  detected  within  a  given 
 module.  For  each  module,  we  computed  the  correlation  between  the  participant-averaged  test  statistics 
 from  visit  1  and  that  from  visit  2  (Methods).  This  analysis  revealed  that  the  magnitude  of 
 participant-level  activations  in  bilateral  auditory  cortex  modules  were  highly  correlated  across  the  two 
 visits  (Left  Temporal  ROI:  ⍴  =0.56,  p=3.58x10  -5  ;  Right  Temporal  ROI:  ⍴  =0.61,  p=3.83x10  -6  ). 
 Importantly  this  relationship  was  close  to  the  line  of  unity  (Fig.  4c)  indicating  consistent  activation  (i.e. 
 no  general  increase  or  decrease  in  activation  between  visits).  Similar  to  the  resting  state  features,  the 
 change  of  headset  did  not  have  a  significant  effect  on  this  reliability  (independent  t-test;  p>0.05  for  all 
 modules).  In  addition  to  Spearman  correlation,  we  also  computed  the  ICC  on  these  same 
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 module-averaged  values  and  visualized  them  over  the  whole  head  (Fig.  4d,  e).  In  accordance  with  the 
 dice  coefficient  analysis,  we  found  auditory  areas  to  have  the  highest  reliability  both  in  terms  of 
 correlation  coefficients  and  ICC  values  (Left  Temporal  ROI:  ICC=0.65;  Right  Temporal  ROI: 
 ICC=0.70).  In  fact,  both  values  exceed  the  recommended  interpretation  thresholds  indicative  of  strong 
 relationships  (r  >  0.5)  and  good  agreement  between  measurements  (ICC  >  0.6).  With  these  findings  in 
 mind, Flow2 can measure reliable brain activations resulting from sensory stimulation. 

 Figure 4. Activations in the auditory cortex during the passive auditory task were reliable across study visits. 
 a.  Group-level  GLMs  for  the  story  condition  during  visit  1  (left)  and  visit  2  (right)  were  qualitatively  similar  as  evidenced  by 
 the  t-statistics  from  a  one-sample  t-test.  Here,  for  each  channel  (each  line)  GLM  beta  values  from  all  participants  were 
 compared  against  zero.  Only  channels  that  were  significantly  different  from  zero  (p<0.01;  uncorrected)  are  shown.  b.  The 
 group-level  dice  coefficient  (a  measure  of  channel-level  reliability)  was  computed  as  the  average  dice  coefficient  of  all 
 participants  for  each  module  (each  color  patch).  Note  the  patches  with  high  values  (>0.4)  in  the  auditory  cortex  areas.  c.  For 
 each  participant  (each  marker),  the  average  GLM  test  statistics  for  each  module  was  calculated  and  compared  between  two 
 recordings  (i.e.  visit  2  GLM  test  statistics  versus  visit  1  GLM  test  statistics).  Two  representative  modules  in  bilateral  auditory 
 regions  showed  strong  and  significant  correlations  (Spearman)  between  the  two  visits.  d,  e  .  Correlation  coefficients 
 (Spearman  ⍴)  (  d  )  and  ICC  values  (  e  )  computed  to  measure  stability  of  GLM  test  statistics  (across  time)  are  shown  for  each 
 module  (each  color  patch).  Note  how  the  reliability  as  measured  by  dice  coefficient  (  b  ),  correlation  coefficient  (  d  )  and  ICC 
 (  e  )  exhibit  consistent  patterns,  with  the  left  and  right  auditory  areas  showing  the  highest  reliability  (bluer  patches  indicate 
 lower  reliability  and  redder  patches  indicate  higher  reliability).  Results  shown  here  are  all  computed  over  the  story  condition 
 of the task. 

 Reliability of hemodynamic activity during cognitive (inhibitory control) task 
 Participants  were  asked  to  perform  a  commonly  employed  inhibitory  control  task  (Go/No-Go)  during 
 each  study  visit.  As  with  the  auditory  task,  we  utilized  different  Flow2  devices  for  half  of  the 
 participants  (Fig.  1a,  c).  By  definition,  cognitive  tasks  are  more  complex  than  sensory  tasks,  and 
 reliability  can  be  affected  by  behavioral  complexities  such  as  strategic  and  attentional  shifts. 
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 Nevertheless,  we  sought  to  measure  the  reliability  of  brain  activity  while  participants  performed  the 
 Go/No-Go  task.  In  an  attempt  to  guard  against  major  changes  in  performance  (and  thus  corresponding 
 changes  in  brain  activity),  participants  were  given  ample  time  to  practice  the  task  prior  to  the  first 
 recording,  and  behavioral  data  (accuracy  and  median  reaction  time  in  go/no-go  blocks)  was  also 
 collected (Methods). 

 Indeed,  behavioral  metrics  were  correlated  across  the  two  visits,  such  that  high  performers  from  visit  1 
 tended  to  be  high  performers  in  visit  2.  These  relationships  (accuracy:  ⍴  =0.77,  p=9.81x10  -11  ;  reaction 
 time:  ⍴  =0.60,  p=6.52x10  -6  )  were  fairly  strong  (Supplementary  Fig.  5)  indicating  that  behavior  was  stable 
 enough  to  expect  a  reflection  of  that  stability  in  the  neural  activity.  While  strong,  it  is  important  to  note 
 that  any  change  in  performance  should  lead  to  'less  stable'  brain  measurements,  as  we  expect  task-related 
 Regions  of  Interest  (ROIs)  to  be  sensitive  and  responsive  to  behavioral  fluctuations.  In  this  way,  TRR  of 
 task performance, sets an upper bound for TRR of neural metrics. 

 Figure 5. Reliability of the right prefrontal regions was observed in a Go/No-Go inhibitory control task. 
 a.  Shown  are  the  t-statistics  from  a  one-sample  t-test  on  channel-wise  GLM  beta  values  for  each  participant,  for  the  contrast 
 go/no-go.  These  group-level  GLMs  showed  similarity  in  brain  activation  patterns  during  the  task  between  visit  1  (left)  and 
 visit  2  (right).  Only  channels  that  were  significantly  different  from  zero  (p<0.01;  uncorrected)  are  shown.  b.  The  dice 
 coefficient  of  all  participants  were  averaged  for  each  module  to  obtain  the  group-level  dice  coefficient  (a  measure  of 
 channel-level  reliability).  Each  patch  represents  a  module.  Note  the  presence  of  patches  with  high  values  in  the  following 
 areas:  right  prefrontal,  right  auditory,  and  left  auditory/motor.  c.  Two  representative  modules  in  the  right  prefrontal  region 
 showed  strong  and  significant  correlations  (Spearman)  between  the  two  visits.  Each  marker  represents  the  average  GLM  test 
 statistics  for  each  module  for  a  given  participant  compared  between  two  recordings  (i.e.  visit  2  GLM  test  statistics  versus  visit 
 1  GLM  test  statistics).  d,  e  .  Module-level  reliability  of  GLM  test  statistics  (across  time)  is  shown  using  correlation 
 coefficient  (Spearman  ⍴)  (  d  )  and  ICC  values  (  e  ).  Each  color  patch  represents  a  module.  Several  regions,  and  primarily  the 
 right  prefrontal  region,  showed  high  reliability  consistently  across  all  three  measures  of  reliability  (  b,  d,  e  ).  Results  shown 
 here  are  all  computed  over  the  go/no-go  condition  of  the  task.  In  all  heatmaps  bluer  patches  indicate  lower  reliability  and 
 redder patches indicate higher reliability. 
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 For  this  task,  we  similarly  fitted  a  GLM  to  the  neural  activity  from  the  recordings  and  performed  the 
 same  analyses  (here,  the  block  types  were  go-only  and  go/no-go).  Group-level  analysis  on  the  GLMs  for 
 visit  1  and  visit  2  revealed  significant  activations  in  right  prefrontal  regions  during  the  go/no-go  blocks, 
 a  result  that  is  in  agreement  with  this  area's  role  in  inhibitory  control  36,49–51  .  With  whole-head  coverage 
 we  observed  significant  activations  in  other  areas,  such  as  the  right  auditory  cortex  and  the  left 
 auditory/motor  regions  (Fig.  5a.).  The  noted  auditory  activation  is  consistent  with  the  trial-level  auditory 
 feedback  (Methods).  One  possible  explanation  for  the  left  motor  activation  is  the  propensity  of 
 right-handedness in participants (88%), who were asked to respond with spacebar presses in this task. 

 Subsequent  dice  coefficient  analysis  revealed  elevated  reliability  in  each  of  these  regions  at  the 
 population-level,  indicating  consistent  channel-level  activations  in  these  regions  across  the  two  visits  (on 
 average)  (Fig.  5b).  Correlation  analysis  on  the  GLM  test  statistics  revealed  a  strong  agreement  within 
 ROIs  in  the  right  prefrontal  cortex  (Right  Prefrontal  Module  A:  ⍴  =0.61,  p=2.80x10  -6  ;  Right  Prefrontal 
 Module  B:  ⍴  =0.65,  p=4.37x10  -7  )(Fig.  5c,  d).  In  accordance  with  the  auditory  task,  none  of  the  ROIs 
 showed  significant  differences  in  reliability  when  using  the  same  or  different  headsets  for  recordings 
 (independent  t-test;  p>0.05  corrected).  Last,  ICC  was  computed  over  the  module-level  GLM  test 
 statistics  (Fig.  5e)  and  the  same  two  modules  positioned  over  the  right  prefrontal  cortex  showed  the 
 highest  ICC  values  (Right  Prefrontal  Module  A:  ICC=0.60;  Right  Prefrontal  Module  B:  ICC=0.64)(Fig. 
 5e).  While  evoking  and  measuring  reliable  brain  activity  as  it  pertains  to  cognitive  tasks  has  its 
 challenges,  here  we  showed  that  brain  activity  recorded  by  Flow2  produced  reliable  brain  metrics  that 
 were  on  par  with  the  stability  of  the  task  performance  across  visits  and  consistent  with  prior  fMRI 
 literature  52  . 

 Discussion 
 The  present  study  examined  the  reliability  of  neuroimaging  measurements  in  participants  performing 
 resting  state,  sensory  and  cognitive  tasks  while  their  data  were  recorded  using  Kernel  Flow2  TD-fNIRS 
 system.  To  achieve  this,  we  incorporated  multiple  factors  that  could  lead  to  measurement  variability  into 
 our  experimental  design,  such  as  (1)  passage  of  time  between  measurements;  (2)  using  a  different 
 system  for  data  acquisition;  and  (3)  variability  in  headset  placement  and  its  consequences  (e.g.  different 
 number  of  useable  channels).  We  demonstrate  valid  and  stable  measurements  across  several  neural 
 features computed from tasks and resting state Flow2 recordings. 

 By  extracting  a  combination  of  neural,  physiological  and  optical  features  from  the  resting  state  sessions, 
 our  data  revealed  a  reliability  in  the  good  to  excellent  range  for  most  investigated  features  across 
 standard  reliability  metrics  (e.g.,  correlation  coefficient,  ICC  and  cronbach  alpha).  This  reliability  was 
 observed  both  across  time  and  the  use  of  different  headsets.  It  is  worth  noting  that  although  our 
 reliability  metrics  were  comparable,  and  at  times  superior,  to  those  reported  in  fMRI  10,11,13  and  fNIRS  25  , 
 other  studies  may  have  used  different  metrics  to  evaluate  reliability.  Additionally,  the  limited  number  of 
 features  used  to  assess  the  reliability  of  resting  state  in  the  current  study  were  spatially  crude  (e.g., 
 fALFF  over  the  entire  right  prefrontal  region).  It  is  possible  that  reliability  metrics  would  improve,  or 
 deteriorate, if more granular ROIs are considered—an investigation worth pursuing in future studies. 

 Reliability  of  neural  activations  during  tasks  has  been  a  topic  of  interest  in  both  fMRI  12  and  fNIRS  27–30 

 communities.  Although  one  expects  to  observe  very  stable  neural  responses  during  sensory  tasks  27  , 
 which  was  indeed  the  case  in  our  passive  auditory  task,  activation  stability  during  cognitive  tasks  is 
 more  nuanced.  Even  in  the  absence  of  any  neural  recordings,  behavioral  performance  during  cognitive 
 tasks  and  cognitive  scores  can  vary  from  day  to  day  52,53  .  In  parallel,  it  is  well-known  that  measured  brain 
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 activations  in  the  prefrontal  regions  can  be  related  to  performance  on  Go/No-Go  tasks  36,49–51  ;  As  such,  it 
 is  possible  that  the  variability  in  behavioral  performance,  albeit  inevitable,  may  impose  an  upper  bound 
 on  the  stability  of  corresponding  neural  responses  during  cognitive  tasks.  Even  still,  in  the  current  study 
 we  found  adequately  high  reliability  during  our  Go/No-Go  task  that  matched  inhibitory  control 
 reliability in fMRI  52  ; and provided a more thorough  analysis by utilizing complementary metrics. 

 When  assessing  task-based  reliability,  we  examined  a  wide  range  of  metrics  to  ensure  consistency  across 
 these  metrics.  For  example,  in  conjunction  with  the  traditional  metrics  such  as  correlation  and  ICC,  we 
 also  considered  the  dice  coefficient.  Even  though  we  obtained  confirmatory  results  between  all  our 
 metrics,  we  believe  they  can  paint  different  pictures  of  how  reliability  is  measured.  While  the  dice 
 coefficient  can  provide  a  great  metric  for  spatial  stability  of  responses,  the  correlation  and  ICC  values 
 provide  a  complementary  metric  that  also  incorporates  the  magnitude  of  responses  in  each  region. 
 Furthermore,  most  fNIRS-based  TRR  studies  only  consider  a  priori  defined  regions  of  interest  that  are 
 thought  to  be  implicated  in  the  task  27–30  due  to  the  limited  number  of  available  optodes.  One  of  the 
 advantages  of  the  whole-head  Flow2  system  is  that  it  allows  for  probing  reliability  beyond  these 
 predefined  regions.  Here,  we  were  able  to  determine  that  brain  activation  patterns  and  stability  varied 
 across  the  cortex  with  task-related  regions  showing  the  strongest  measures  –  an  important  validation  that 
 system  measurements  are  being  driven  by  brain  activity  (and  not  noise  or  global  signals).  Outside  of  the 
 expected  region  of  interest,  we  observed  an  area  in  the  auditory  region  that  exhibited  high  reliability  in 
 the  Go/No-go  task,  which  we  believe  may  reflect  a  response  to  the  auditory  feedback  participants 
 received during the task. 

 It  must  be  borne  in  mind  that  the  current  study,  similar  to  other  TD-fNIRS  studies,  has  multiple 
 limitations.  First  due  to  the  nature  of  this  modality,  it  is  only  possible  to  report  reliability  in  superficial 
 brain  regions.  Second,  our  study  design  measured  test-retest  reliability  over  one  week,  so  we  cannot 
 report  on  reliability  over  longer  timescales,  and  we  did  not  explore  systematic  changes  in  underlying 
 metrics  due  to  factors  like  circadian  rhythms  or  seasonal  changes  54  .  Third,  our  post-hoc  analysis  revealed 
 a  statistically  significant  relationship  between  melanin  and  total  number  of  retained  prefrontal  channels; 
 however,  the  practical  significance  of  this  relationship  was  demonstrated  to  be  negligible  as  anticipated 
 channel  count  (>  200  across  skin  colors)  was  more  than  adequate  for  the  extraction  of  the  neural  metrics 
 considered  here  (e.g.  the  absolute  HbO/HbR  metric).  Still,  our  current  study  was  not  specifically 
 designed  to  address  the  effect  of  skin  color  on  our  recordings  and  we  did  not  make  recruitment  decisions 
 based  on  this  factor.  As  such  the  participants  were  not  balanced  across  melanin  levels,  which  could 
 affect  the  interpretability  of  the  analyses  we  performed;  nonetheless,  our  recruited  demographics  were 
 similar  to  that  of  the  Greater  Los  Angeles  area  (data  not  shown).  Lastly,  we  know  that  hair  color  and 
 texture  can  also  affect  fNIRS  recording  quality.  Although,  on  average,  we  had  adequate  number  of 
 channels  over  the  head,  a  proper  quantification  of  how  this  relates  to  hair  texture  remains  to  be  done  in 
 future studies. 

 To  summarize,  quantifying  the  test-retest  reliability  of  the  metrics  derived  from  a  neuroimaging  system 
 is  critical.  If  a  system  were  to  be  used  for  diagnostic  purposes  and  identification  of  neuropsychiatric 
 and/or  neurodegenerative  biomarkers,  a  lack  of  adequate  reliability  could  obscure  any  true  underlying 
 signals  1  .  The  reliability  of  signals  recorded  from  Kernel  Flow2—on  a  variety  of  tasks,  at  multiple  time 
 points,  and  using  different  headsets—suggests  its  potential  to  fill  a  need  for  scalable  multi-device  and 
 even multi-site neuroimaging in the scientific and medical communities. 
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 Methods 

 Participants and screening procedures 
 Forty  nine  healthy  participants  (18  female,  age=43.94±14.57,  mean±STD)  completed  two  study  visits  in 
 a  repeated-measures  study  design  within  a  week  (time  between  visits:  mean±STD=2.02±0.78  days, 
 range=1–6  days)(Fig.  1a).  Inclusion  criteria  were:  (1)  healthy  adults  who  are  18  years  or  older  at  the 
 time  of  enrollment;  (2)  must  have  the  ability  to  consent  for  themselves;  (3)  must  be  fluent  in  English 
 (speaking  and  reading),  and  (4)  must  be  willing  to  attend  planned  study  visits  at  the  research  site. 
 Exclusion  criteria  were:  (1)  major  visual  or  auditory  deficits  that  would  prevent  them  from  completing  a 
 study  task;  (2)  being  or  the  possibility  of  being  pregnant  (for  people  of  childbearing  potential  [POCBP]); 
 (3)  any  history  of  severe  neurological  or  severe  psychiatric  disorders,  including  head  trauma  with 
 serious  results  (coma,  unconscious  for  >2  hrs,  or  skull  fracture);  (4)  any  other  psychiatric  disorder  with 
 unstable  treatment  in  the  prior  6  months;  (5)  lifetime  substance  or  alcohol  dependence,  and/or  alcohol  or 
 substance  abuse  as  determined  by  CAGE-AID  assessment  for  drug  and  alcohol  abuse  55  (a  score  of  2  or 
 higher  would  result  in  exclusion);  (6)  current  or  recent  (in  the  past  6  months)  chemotherapy  and/or 
 radiation  for  any  cancer;  (7)  hospitalizations  and/or  unstable  health/medical  condition/treatment  in  the 
 last  30  days;  and  (8)  does  not  agree  to  image  recording,  including  photographs,  videos,  and/or  3D  scans 
 of the head and face, during the study. 
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 Participants  gave  written  informed  consent  before  beginning  the  study  in  accordance  with  the  ethical 
 review  of  the  Advarra  IRB  (#Pro00074416),  which  approved  this  study,  and  the  Declaration  of  Helsinki. 
 All  experimental  protocols  were  approved  by  the  IRB.  Participants  received  monetary  compensation  for 
 their time, effort, and travel expenses. 

 In  this  study  49  participants  are  included  in  the  analysis.  We  recorded  data  from  an  additional  6 
 participants,  but  excluded  them  from  analysis  for  the  following  reasons:  missed  visit  (n=2),  headset 
 discomfort  (n=2),  gum  chewed  during  recording  (n=1),  and  desire  to  not  remove  head  bandana  for 
 recording  (n=1).  All  Flow2  data  was  rigorously  checked  for  quality  before  being  included  in  data 
 analysis.  Importantly,  no  data  was  lost  due  to  technical  issues;  therefore  all  49  participants  are  included 
 in  all  of  the  analyses.  For  the  cognitive  task,  performance  was  adequate  to  ensure  that  participants 
 understood the task in all cases. 

 Study design 

 General description 

 The  study  was  a  repeated-measures  randomized  design  with  participants  completing  two  study  visits 
 within  a  week  (Fig.  1).  To  measure  test-retest  reliability  (TTR),  participants  completed  the  following 
 sequence  during  visit  1:  (i)  a  resting  state  session;  (ii)  a  passive  auditory  task;  (iii)  filling  out  surveys  + 
 misc  (see  below);  the  headset  was  removed  during  this  phase;  (iv)  another  resting  state  session;  and  (v)  a 
 Go/No-Go  task.  Participants’  brain  activity  during  stages  i,  ii,  iv  and  v  was  recorded  with  Kernel  Flow2 
 Time  Domain  functional  Near-infrared  Spectroscopy  (TD-fNIRS).  The  second  study  visit  followed  the 
 exact same structure. 

 During  their  first  visit,  a  few  additional  steps  were  completed.  Prior  to  data  collection,  participants 
 listened  to  all  audio  clips  included  in  the  passive  auditory  task  to  eliminate  the  effect  of  novelty  on 
 neural  signals  during  the  experiment.  Furthermore,  during  phase  (iii),  participants  were  trained  on  the 
 Go/No-Go  task  by  practicing  on  six  shortened  blocks  (15  trials  instead  of  the  original  24  trials),  three 
 with  go-only  trials  and  three  with  both  go  and  no-go  trials,  in  attempts  to  remove  learning  effects  from 
 the  neural  recordings.  During  phase  (iii),  we  recorded  the  melanin  index  56  on  the  parietal  regions  of  the 
 scalp/hair  as  well  as  on  the  forehead  using  a  colorimeter  (Cortex  Technology  DSM  III  Color  Meter, 
 CyberDerm,  Broomall,  PA).  Only  the  data  from  the  forehead  readings,  which  were  considered  to  be  pure 
 measures  of  the  skin  color  (unoccluded  by  any  hair),  were  used  for  further  analyses.  Lastly,  participants 
 were  asked  to  fill  out  a  self-report  demographics  questionnaire  part  of  which  includes  the  Fitzpatrick 
 scale for skin typing. 

 In  addition  to  investigating  reliability  over  time,  we  sought  to  explore  the  reliability  across  two  different 
 Flow2  headsets.  To  this  end,  participants  were  randomly  assigned  to  one  of  the  following  two  groups 
 (Fig. 1a): 

 1.  STAY  group:  during  the  first  visit,  headset  1  was  used  for  both  the  first  half  (i,ii)  and 
 second  half  of  the  visit  (iv,  v);  during  the  second  visit,  a  different  headset,  i.e.  headset  2, 
 was used for both halves. 
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 2.  SWITCH  group:  during  the  first  visit,  headset  1  was  used  for  the  first  half  (i,ii)  and 
 headset  2  was  used  for  the  second  half  of  the  visit  (iv,  v);  during  the  second  visit,  the 
 same headset order was used. 

 This  study  design  allowed  for  investigation  of  within-visit  reliability  with  the  same  headset,  within-visit 
 reliability  with  different  headsets,  across-visit  reliability  with  the  same  headset,  and  across-visit 
 reliability with different headsets. 

 At  each  visit,  participants  filled  out  a  survey  during  phase  (iii)  that  asked  about  recent  daily  activities, 
 including:  quality  of  sleep  (scale  1–10),  current  sleepiness  level,  caffeine  consumption  (within  the  last 
 12  hours),  nicotine  use  (within  the  last  3  hours),  alcohol  consumption  (within  the  last  12  hours),  and 
 marijuana  (within  the  last  72  hours).  With  the  exception  of  sleep  quality  all  of  the  questions  were 
 qualitative multiple choice. 

 Go/No-Go task paradigm 

 The  task,  designed  and  presented  using  Unity  game  engine,  consisted  of  two  block  types:  go-only  and 
 go/no-go.  The  overall  structure  of  the  task  was  similar  to  the  one  used  in  a  prior  publication  36  .  Briefly, 
 participants  completed  a  total  of  10  blocks  alternating  between  go-only  (n=5)  and  go/no-go  (n=5)  with 
 each  block  consisting  of  24  trials.  Stimuli  were  green  leaf  cartoon  images  (for  go  trials)  and  red  flower 
 images  (for  no-go  trials)  that  were  presented  in  a  pseudorandom  order,  which  was  pre-set  and  unique  for 
 each  run.  During  go/no-go  blocks,  30%  of  the  trials  were  chosen  to  be  no-go  trials.  A  different  run  of  the 
 task  was  presented  at  each  study  visit,  however,  all  participants  completed  the  same  versions  in  the  same 
 order. 

 The  task  included  a  15-second  rest  at  the  beginning  and  a  20s  rest  at  the  end.  The  task  also  included  a 
 screen  to  remind  the  participant  of  task  instructions  (e.g.  pressing  the  spacebar  when  seeing  a  green  leaf 
 and  refraining  from  pressing  when  seeing  a  red  flower)  prior  to  each  block.  Stimulus  presentation  time 
 was  400  ms  followed  by  a  600ms±100ms  inter-trial  interval  during  which  only  the  background  was 
 displayed.  Participants  were  asked  to  provide  a  response  within  the  400ms  presentation  period.  A 
 pleasant  or  unpleasant  tone,  played  immediately  after  participants’  response,  was  used  to  provide 
 positive  (for  hits)  and  negative  feedback  (for  false-alarms),  respectively.  The  overall  task  duration  was 
 approximately 7 minutes (Fig. 1c). 

 Passive Auditory task paradigm 

 This  task  was  also  programmed  and  presented  in  Unity.  The  design  consisted  of  two  types  of  blocks, 
 each  lasting  for  20s:  story  blocks  (n=8;  6  unique  clips  and  2  repeated  clips)  during  which  participants 
 listened  to  short  clips  from  TED  talks;  and  noise  blocks  (n=7)  during  which  participants  listened  to 
 brown  noise.  After  an  initial  10s  rest  period,  the  story  and  noise  blocks  were  presented  in  a  preset 
 pseudo-randomized  order  with  10s  of  silence  between  each  block  (Fig.  1d).  Participants  wore  earbuds 
 and  were  instructed  to  look  at  a  white  fixation  cross  presented  on  a  black  background  throughout  the 
 task.  This  task  required  no  cognitive  demand  and  was  purely  a  passive  auditory  task.  All  participants 
 listened  to  the  same  version  of  the  task  (i.e.  in  terms  of  the  audio  clips  and  their  order)  in  both  visits, 
 with the exception of three participants who listened to a different version of the task in the second visit. 
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 Headset placement analysis 
 This  procedure  involved  multiple  steps:  (1)  four  distinct  AprilTags  42  were  installed  on  each  headset  in 
 fixed  locations  (Supplementary  Fig.  2a);  (2)  A  front-facing  photograph  of  each  participant  was  taken 
 each  time  the  headset  was  placed  on  their  head  (immediately  before  data  collection  started),  yielding 
 four  pictures  per  participant;  (3)  Finally,  a  computer  vision  (CV)  approach  43  was  used  to  calculate 
 horizontal  and  vertical  shifts  of  the  headset  relative  to  facial  features,  and  in  turn  within-participant 
 variability of operator headset placement. 

 For  processing,  each  photo  was  converted  to  a  JPG,  resized  to  a  standard  pixel  dimension,  and  converted 
 to  grayscale.  Two  python  packages  were  used  to  implement  facial  feature  detection  and  AprilTag 
 detection:  The  dlib  library  was  used  to  detect  faces  and  facial  features  in  images  (68-landmark  shape 
 predictor  model),  and  the  Apriltag  library  was  used  to  detect  AprilTags  in  the  images.  Detection  results 
 included  tag  corners  and  center  coordinates.  These  locations  were  then  used  to  quantify  alignment  of  the 
 headset  as  follows  (Supplementary  Fig.  2b):  i)  horizontal  shift  (yaw)  was  measured  as  the  horizontal 
 distance  between  the  nose-line  (defined  by  the  landmarks  detected  along  the  nose)  and  the  center  of  the 
 two  frontal,  innermost  april  tags  ,  and  ii)  vertical  shift  (pitch)  was  computed  as  the  average  length  of  the 
 line connecting  the center of each eye to the AprilTag above it. All metrics are reported in millimeters. 

 Photographs  were  missing  from  4  of  the  196  placements.  Of  the  remaining  192  photos,  140  photographs 
 across  42  participants  were  included  in  the  analysis  because  a  subset  of  photos  could  not  be  analyzed. 
 Some  of  these  photos  were  excluded  due  to  failure  to  detect  necessary  AprilTags  (n=44),  or  due  to 
 camera  angle  (n=1).  After  the  previous  exclusions,  7  participants  had  only  one  analyzable  photograph, 
 which  was  insufficient  for  reliability  calculations;  therefore,  their  photos  (n=7)  were  also  removed  from 
 the  analysis.  Manual  verification  of  facial  landmark  locations  was  performed  on  44  of  the  analyzed 
 photos,  due  to  failure  of  the  CV  algorithm  to  accurately  detect  facial  landmarks.  The  photos  were  taken 
 head-on  with  a  fixed  position  front-facing  iPhone  camera.  Therefore,  for  ease  of  computation  we 
 assumed  a  simplified  model  that  neglects  the  effects  of  curvature.  While  this  assumption  might  introduce 
 slight  deviations  in  our  results,  these  are  anticipated  to  be  minimal  and  do  not  significantly  impact  the 
 overall conclusions within the context of our study. Results are shown in Supplementary Figure 2c. 

 fNIRS data collection and feature extraction 

 Data acquisition 

 Participants  wore  the  Kernel  Flow2  TD-fNIRS  headset  (the  second  generation  of  Flow,  Kernel,  Culver 
 City,  CA,  USA)  35,37  for  neurophysiological  recordings.  The  system  collects  distributions  of  the  times  of 
 flight  of  photons  (DTOFs)  from  more  than  3000  channels  across  the  head  with  source-detector  distances 
 spanning  8-60mm.  The  system  uses  two  wavelengths  (690  nm  and  905  nm)  and  samples  at  an  effective 
 rate  of  3.76  Hz.  The  modular  design  of  the  headset  can  allow  up  to  40  modules  arranged  to  provide 
 coverage  over  prefrontal,  parietal,  temporal,  and  occipital  regions  across  both  hemispheres  (Fig.  2a). 
 Each  module  consists  of  three  sources  and  six  detectors  yielding  both  within-module  channels  (up  to 
 18)(Fig.  2b)  as  well  as  between  module  channels  (variable  number  depending  upon  module  location). 
 For  this  study,  we  used  a  35-module  system  by  removing  the  most  posterior  modules  that  covered 
 inferior occipital regions, which were deemed to be the least relevant to our tasks. 
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 Data preprocessing and relative hemoglobin concentrations 

 Data  preprocessing  steps  are  described  at  length  in  prior  work  37  .  We  first  implemented  a  channel 
 selection  procedure  using  histogram  shape  criteria  35  .  Next,  histograms  from  the  selected  channels  were 
 used  to  compute  the  moments  of  the  DTOFs–specifically  the  sum,  mean,  and  variance  moments  57,58  .  The 
 relative  changes  in  preprocessed  DTOF  moments  were  converted  to  relative  changes  in  absorption 
 coefficients  for  each  wavelength  using  the  sensitivities  of  the  different  moments  to  changes  in 
 absorption  coefficients  (moments  Jacobians,  i.e.  derivative  of  each  moment  with  respect  to  a  change  in 
 absorption  coefficient),  following  the  procedure  recently  described  in  33  .  To  obtain  the  sensitivities  of  the 
 different  moments,  we  used  a  2-layer  medium  with  a  12-mm  superficial  layer.  We  used  a  finite  element 
 modeling  (FEM)  forward  model  from  NIRFAST  59,60  ,  and  integrated  the  moment  Jacobians  within  each 
 layer  to  compute  sensitivities.  We  converted  the  changes  in  absorption  coefficients  at  each  wavelength  to 
 changes  in  oxyhemoglobin  and  deoxyhemoglobin  concentrations  (HbO  and  HbR,  respectively)  using  the 
 extinction  coefficients  for  the  two  wavelengths  and  the  modified  Beer–Lambert  law  (mBLL)  61  . 
 HbO/HbR  underwent  further  preprocessing  using  a  motion  correction  algorithm,  Temporal  Derivative 
 Distribution  Repair  (TDDR)  62  .  TDDR  can  leave  spiking  artifacts  in  the  presence  of  baseline  shifts;  we 
 detected  those  and  corrected  them  using  cubic  spline  interpolation  63  .  Finally,  we  detrended  the  data  using 
 a  moving  average  with  a  100-second  kernel  and  applied  short  channel  regression  to  remove  superficial 
 physiological  signals  from  brain  activity  64  (here,  short  within-module  channels  with  SDS=8mm  were 
 used). 

 Absolute hemoglobin concentrations 

 The  DTOF  is  the  convolution  between  the  time-resolved  temporal  point  spread  function  (TPSF)  and  the 
 Instrument  Response  Function  (IRF).  We  leveraged  Flow2’s  online  IRF  measurements  (dedicated 
 detector  within  a  module,  which  records  photons  that  come  directly  from  the  laser),  and  used  a  curve 
 fitting  procedure  to  retrieve  absolute  optical  properties  of  the  underlying  tissue.  We  used  an  analytical 
 solution  of  the  diffusion  equation  for  a  semi-infinite  homogeneous  medium  to  generate  candidate 
 TPSFs,  which  we  convolved  with  the  known  IRF,  and  compared  with  the  recorded  DTOF;  the  search  for 
 optical  properties  was  conducted  using  the  Levenberg-Marquardt  algorithm,  focusing  on  the  fit  in  the 
 region  that  spans  from  80%  of  the  peak  on  the  rising  edge  to  0.1%  of  the  peak  on  the  falling  edge.  The 
 refractive  index  was  set  to  1.4.  This  provided  an  approximate  estimate  of  absorption  coefficients  as  the 
 semi-infinite  assumption  is  an  idealization.  These  absolute  estimates  of  absorption  coefficients  were 
 converted  to  HbO  and  HbR  concentrations,  as  described  above.  To  obtain  a  single  value  for  HbO  and 
 HbR,  we  computed  the  median  value  across  well-coupled  long,  within-module  prefrontal  channels 
 (SDS=26.5mm) in the first 30s of a given resting state session. 

 Extraction of optical properties 

 During  resting  state  sessions,  we  sought  to  measure  head  tissue  opacity  to  near-infrared  light,  which 
 provides  information  about  the  health  status  of  the  brain’s  cortical  mantle.  We  computed  the  Effective 
 Attenuation  Coefficient  (EAC)  45  using  the  slope  of  the  log(SNR)  of  the  signal,  here  the  total  counts  (i.e., 
 the sum moment) of DTOFs, as a function of source–detector distance. 

 Local neural activity: fractional Amplitude of Low Frequency Fluctuations (fALFF) 

 The  time  series  of  data  from  each  channel  (for  each  chromophore)  during  resting  state  sessions  was 
 converted  to  the  frequency  domain  using  an  FFT.  The  ratio  of  the  power  in  the  0.01–0.08Hz  frequency 
 range  was  calculated  relative  to  the  full  0–0.25Hz  frequency  range.  We  focused  our  analyses  on  left  and 
 right  prefrontal  regions  only.  As  such,  fALFF  values  for  each  chromophore  were  computed  by  averaging 
 all left/right prefrontal channels. 
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 Functional Connectivity (FC) 

 To  obtain  FC  during  resting  state  sessions,  the  time  series  of  each  channel  was  further  processed  by 
 applying  a  low-pass  filter  (an  acausal  finite  impulse  response  (FIR)  filter).  The  pass  band  was 
 0.01-0.1Hz,  as  is  customary  in  the  literature  65  .  Functional  connectivity  was  computed  for  all  pairs  of 
 channels  as  the  Pearson  correlation  coefficient  between  their  time  courses,  for  each  chromophore 
 independently.  Similar  to  fALFF,  we  focused  on  left/right  prefrontal  regions  only.  Values  from  the  FC 
 matrix within each of these regions were then averaged for each chromophore. 

 Generalized Linear Model (GLM) approach 
 The  approach  we  employed  was  similar  to  methods  previously  described  36  .  Each  of  the  measured  time 
 courses,  y  (here,  channel-wise  relative  HbO),  were  modeled  as  a  function  of  a  design  matrix,  X  (a  set  of 
 task  specific  regressors),  and  residuals,  ,  as  follows:  y  =  X   +  ,  where  the    coefficients  represent  the 
 contribution  of  each  regressor  to  the  data.  This  multiple  linear  regression  problem  is  then  solved  using  a 
 least-squares  solution  that  includes  prewhitening  the  time  courses  with  an  autoregressive  model.  The 
 design  matrix,  X,  included  a  combination  of  block-level  and  standard  nuisance  regressors  such  as  (1) 
 time  course  of  the  task  blocks  (square  waves  convolved  with  a  a  canonical  hemodynamic  response 
 function  for  each  block  type);  (2)  drift  regressors;  and  (3)  low  frequency  cosine  terms.  GLM  Contrasts 
 (test  statistics)  and  their  corresponding  significance  (p-value)  were  then  computed  between  conditions  of 
 interest  via  statistical  tests  (t-tests)  on  the  fitted    coefficients.  We  used  this  approach  for  both  the 
 passive auditory and Go/No-Go tasks. 

 1.  Passive  auditory  task  :  Given  that  there  were  two  types  of  blocks  in  the  experimental  design, 
 story  and  noise  blocks,  the  four  possible  contrasts  were:  story,  noise,  story  -  noise,  and  noise  - 
 story. For the purpose of this manuscript, we only considered the “story” contrast. 

 2.  Go/No-Go  :  Similar  to  the  audio  task,  there  were  two  block  types  in  the  experimental  design, 
 go-only  and  go/no-go  blocks.  As  such,  the  four  possible  contrasts  were:  go-only,  go/no-go, 
 go-only  -  go/no-go  and  go/no-go  -  go-only.  For  the  purpose  of  this  manuscript,  we  only 
 considered the “go/no-go” contrast. 

 Statistical analyses: 

 Resting state 

 Note  that  for  each  participant,  there  were  a  total  of  four  resting  state  sessions.  Two  were  done  during  the 
 first  visit  (referred  to  as  sessions  1a  and  1b)  and  the  remaining  two  during  the  second  visit  (referred  to 
 as  sessions  2a  and  2b).  For  each  session,  we  considered  the  following  features:  (1)  Absolute  HbO/HbR 
 in  the  prefrontal  region;  (2)  EAC  for  each  wavelength;  (3)  fALFF  computed  for  HbO  and  HbR  in  left 
 and  right  prefrontal  regions  separately;  and  (4)  FC  matrix  computed  for  HbO  and  HbR  averaged  within 
 left  and  right  prefrontal  regions  separately.  Additionally,  two  different  headsets  were  used  for  resting 
 state recordings; for a detailed description, see Study Design section as well as Fig. 1a. 

 1.  Pairwise  Correlations  :  We  considered  both  within-visit  relationships,  i.e.  between  sessions  1a/1b 
 and  between  sessions  2a/2b  as  well  as  across-visit  relationships,  i.e.  between  sessions  1a/2a  and 
 sessions  1b/2b.  For  each  of  these  pairs,  a  Spearman  correlation  coefficient  was  computed  for 
 each feature of interest. The results are shown in Fig. 3a, b. 

 2.  Intra-class  correlations  and  Cronbach’s  alpha:  In  addition  to  pairwise  correlations,  we  used  the 
 features  from  all  four  resting  state  sessions  and  computed  the  Intra-class  correlation  coefficient 
 (ICC)  as  well  as  Cronbach’s  alpha,  both  of  which  are  commonly  used  metrics  for  reliability.  We 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.12.584660doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584660
http://creativecommons.org/licenses/by-nc-nd/4.0/


 used  the  pingouin  Python  package  66  for  both  ICC  (specifically  ICC2,  known  as  the  single 
 random  rater  method)  and  Cronbach’s  alpha  calculations  (participant  IDs  were  used  as 
 targets/subjects  variables  and  session  IDs  were  used  as  raters/items  variables  for  ICC/Cronbach 
 alpha). Participant-level values were then averaged and the results are shown in Fig. 3c. 

 3.  Headset  reliability:  To  assess  whether  correlation  reliability  (within-visit  or  across-visit) 
 depended  on  which  headset  was  used,  we  took  the  following  approach:  (1)  for  both  within-visit 
 and  across-visit  session  pairs,  we  computed  the  pairwise  difference  for  each  feature,  which 
 resulted  in  Δfeature  ij  (i.e.  change  in  a  given  feature  between  sessions  i  and  j  for  all  participants); 
 (2)  this  quantity  was  then  split  between  session  pairs  that  used  the  same  headset  (Δfeature  ij  SAME  ) 
 and  those  that  use  a  different  headset  (Δfeature  ij  DIFF  );  (3)  finally,  an  independent  t-test  was 
 performed  between  Δfeature  ij  SAME  and  Δfeature  ij  DIFF  ,  with  p<0.05  suggesting  a  difference  in  TRR 
 when  using  different  headsets.  The  results  are  reported  in  the  “Results:  Reliability  of  resting  state 
 features” section of the manuscript. 

 Tasks 

 Each  participant  completed  each  task  twice:  once  during  the  first  visit  (referred  to  as  visit  1)  and  once 
 during  the  second  visit  (referred  to  as  visit  2).  For  each  session,  metrics  of  interest  were  first  obtained  at 
 the  channel  level  (test  statistics  and  p-values  from  the  GLM)  as  described  above.  The  metrics  described 
 below  were  then  considered  at  the  module-level  (resulting  in  one  value  for  each  of  the  35  modules 
 covering the head). 

 1.  Dice  coefficient:  The  Dice  coefficient  was  computed  to  assess  the  similarity  between  the  set  of 
 task-activated  channels  from  visit  1,  ,  and  the  set  from  visit  2,  .  In  order  to  disentangle  reliable  𝑋  𝑌 
 task  activations  and  reliable  scalp  coupling  we  only  considered  the  channels  that  were  shared 
 across  visits  for  a  given  participant.  Then  for  each  visit,  channels  that  were  detected  by  a  given 
 module,  ,  and  had  a  GLM  p-value  <  0.05  defined  the  set  of  significant  channels  for  that  module,  𝑖 
 yielding  and  .  Finally,  the  Dice  coefficient  for  each  module  was  defined  as  𝑋 
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 of  the  size  of  each  set.  This  analysis  yielded  whole-head  maps  of  Dice  coefficients  for  each 
 participant  and  each  task.  To  assess  this  metric  at  the  group-level,  we  averaged  these  maps  over 
 participants,  yielding  one  population-average  Dice  coefficient  map  for  the  Auditory  task  (Fig. 
 4b) and one for the Go/No-Go task (Fig. 5b). 

 2.  Pairwise  Correlations  :  For  each  participant,  visit,  and  module,  test  statistics  from  the  GLM  were 
 averaged  (where  a  channel  was  assigned  to  the  module  it  was  detected  by).  Then  for  each  ROI 
 (here,  each  module)  we  computed  the  Spearman  correlation  between  the  set  of  average  test 
 statistics  from  Visit  1  to  that  from  Visit  2.  This  allowed  us  to  not  only  assess  the  reliability  of 
 activity  within  regions  associated  with  each  task,  but  to  also  compare  to  other  brain  areas.  The 
 results  are  displayed  as  scatter  plots  for  ROIs  in  Fig.  4c  (Auditory  task)  and  Fig.  5c  (Go/No-Go 
 task).  Whole-head  correlations  are  shown  in  Fig.  4d  (Auditory  task)  and  Fig.  5d  (Go/No-Go 
 task). 

 3.  Headset  reliability:  This  analysis  was  done  exactly  the  same  as  the  resting  state  with  the 
 exception  that  only  across-visit  reliability  could  be  considered  because  each  task  was  only 
 performed once per visit. 
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 4.  Intra-class  correlations:  On  the  same  module-level  sets  of  averaged  GLM  test  statistics  from  (2), 
 we  computed  the  ICC  using  the  methods  described  in  the  resting  state  statistical  analyses. 
 Whole-head ICC results are shown in Fig. 4e (Auditory task) and Fig. 5e (Go/No-Go task). 
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