bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Central place foragers, prey depletion halos,
and how behavioral niche partitioning
promotes consumer coexistence

Claus Rueffler* and Laurent Lehmann’

Abstract

Many seabirds congregate in large colonies for breeding, a time when they are central
place foragers. An influential idea in seabird ecology posits that competition during breed-
ing results in an area of reduced prey availability around colonies, a phenomenon known
as Ashmole’s halo, and that this limits colony size. This idea has gained empirical support,
including the finding that species coexisting within a colony might be able to do so by for-
aging on a single prey species but at different distances. Here, we provide a comprehensive
mathematical model for central place foragers exploiting a single prey in a two-dimensional
environment, where the prey distribution is the result of intrinsic birth and death, movement
in space and mortality due to foraging birds (we also consider a variant tailored toward colo-
nial social insects). Bird predation at different distances occurs according to an ideal free
foraging distribution that maximizes prey delivery under flight and search costs. We fully
characterize the birds’ ideal free distribution and the prey distribution it generates. Our re-
sults show that prey depletion halos around breeding colonies are a robust phenomenon and
that the birds’ ideal free distribution is sensitive to prey movement. Furthermore, coexistence
of several seabird species on a single prey easily emerges through behavioral niche partition-
ing whenever trait differences between species entail trade-offs between efficiently exploiting
a scarce prey close to the colony and a more abundant prey far away. Such behavioral-based

coexistence-inducing mechanism should generalize to other habitat and diet choice scenarios.
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Significance statement. This study presents a mathematical model to explore the distribution
of foraging trips among seabirds breeding on isolated islands, providing insight into the emer-
gence of prey depletion halos around colonies. Our findings reveal that such halos are a robust
feature of central place foraging, independent of prey dynamics. Additionally, the model shows
that trait-mediated niche partitioning promotes coexistence among species through behavioral
segregation into different circular zones around the island. This partitioning occurs despite a
shared preference to forage close to the island, where flight costs are lowest. The study advances
understanding of ecological coexistence mechanisms and suggests broader applicability to other
predator-prey systems beyond seabird ecology, offering a new perspective on community assem-

bly under shared preferences.

1 Introduction

Seabirds breed in very large colonies (Furness and Monaghan, 1987; Coulson, 2002; Mitchell
et al., 2004 Patterson et al., 2022), and various mechanisms have been proposed to explain the
limits to colony size. The most influential one is due to |Ashmole (1963), who hypothesized
that colony size is regulated through negative density-dependence acting during the breeding
season. He reasoned that during breeding, seabirds only forage in a restricted neighborhood of
the colony because time intervals between visits to the nest cannot be too long and energetic
costs for foraging trips cannot be too high if prey is to be delivered at a sufficiently high rate to
nestlings. This area-restricted foraging process should lead to a zone of prey depletion around
large colonies, a phenomenon later dubbed Ashmole’s halo (Birt et al., [1987), and this depletion
ultimately limits colony size.

While Ashmole’s hypothesis has received strong empirical support (Furness and Birkhead,
1984; Birt et al., 1987; Lewis et al., 2001} |[Forero et al., |2002; |Ainley et al., 2003; |[Elliott et al., 2009;
Oppel et al., 2015; Weber et al., 2021), to date no mathematical model exists that analyzes how
individual behavioral decisions of central place foragers about their foraging trips, the demog-

raphy of these central place foragers and of their prey, jointly determine colony size and prey
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depletion halos. Existing models of central place foragers incorporate some of these aspects while
neglecting others. Assuming that foragers distribute their foraging trips according to the ideal
free distribution in a two-dimensional environment, |Dukas and Edelstein-Keshet (1998) derive
the shape of this distribution, but without incorporating prey dynamics. Thus, a correspond-
ing prey depletion halo is not characterized. |Gaston et al,| (2007), again assuming that foragers
adopt an ideal free distribution, derive the shape of prey depletion halos as they result from
the energy requirements of different seabirds. However, the shape of the ideal free distribution
is not characterized, precluding an understanding of the interdependence of predator behavior
and prey depletion patterns. Lastly, |Weber et al. (2021) study the emergence of a prey depletion
halo given an empirically observed forager distribution, which again does not inform us about
the interdependence of foragers and the distribution of their prey distributions. Formalizing a
model for central place foragers based on an explicit description of prey population dynamics,
the behavioral choice of predators about their foraging grounds, and their demography is nec-
essary to determine the robustness and shape of prey depletion halos. Additionally, this allows
us to understand how these halos are coupled to the forager’s ideal free distribution and how
both prey depletion halos and foraging distributions jointly determine the forager’s equilibrium
colony size.

For seabirds, the interaction between central place foragers and prey depletion halos is even
more complex, since it is common for colonies to consist of several different species. This raises
the question of what allows these species to coexist (Petalas et al., 2024), and how prey depletion
halos form from their joint foraging effort. A study by Weber et al,| (2021), conducted on As-
cension Island, the place of Ashmole’s original research, found that different species of seabirds
preferentially forage at different distances from the breeding colony on Ascension Island. Brown
boobies (Sula leucogaster) forage closest to the island, masked boobies (Sula dactylatra) at interme-
diate distances, and Ascension frigatebirds (Fregata aquila) the furthest away. Weber et al. (2021)
also provide evidence that these species all feed on flying fish, primarily tropical two-winged
flying fish (Exocoetus volitans).

These findings suggest that different bird species can coexist by partitioning foraging space,
even if this space is inhabited by only a single prey species. This idea is somewhat perplexing

since the area close to the colony should be preferred by all species as foraging therein comes
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at the lowest costs, both in terms of time and energy expenditure. This means that central
place foragers coexisting on a single prey species form a community with shared preferences
(Rosenzweig), (1991). To understand under what conditions a pattern as observed by Weber et al.
(2021) can indeed result from the joint interaction of several predator species, each adopting
the ideal free distribution, and a single prey species, is sufficiently complex to again require a
mathematical model. Such a formal analysis seems particularly interesting, given that the bulk
of classical ecological coexistence theory is premised on individuals having distinct preferences,
where species are optimal and prefer a different part of niche space (MacArthur and Levins
1967; MacArthur|1972; see Case|2000; [Mittelbach and McGill 2019; Begon and Townsend 2021/ for
textbook treatments).

We here present a comprehensive mathematical model describing a population of central
place foragers feeding on single prey species in a two-dimensional environment. Our goal is
to understand how individual behavioral foraging decisions together with predator and prey
dynamics jointly determine the forager’s ideal free distribution, its equilibrium population size
and the prey’s equilibrium distribution in the vicinity of the colony (a variant of the model
tailored toward colonial social insects is considered in Box 1). In the full model, we allow for an
arbitrary number of predator species that differ in their foraging traits under the assumption that
these cannot be optimized simultaneously but are coupled by trade-offs. For instance, in seabirds,
species that are efficient flyers, and thereby incur low energetic costs from long distances foraging
trips, might be poor at catching fish and vice versa. We aim at characterizing the conditions under
which different species can coexist, in particular, whether coexistence is achieved by species
partitioning the foraging area around the colony despite having a shared preference for foraging
close to the colony. Our model is strongly inspired by the biology of seabirds breeding in large
colonies on isolated island, and we therefore cast our model in terms of birds and fish, though

our model is not meant to be an accurate description of any particular seabird population.
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2 Model

2.1 Biological assumptions

We consider a population of birds breeding on an isolated island. The number of successfully
raised offspring depends on the amount of prey they catch by foraging in the surrounding ocean
and that they are able to deliver back to their nestlings. The waters surrounding the island are
assumed to be homogeneous and harbor a single prey species. Any two points at equal distance
z from the island are assumed to be visited with equal probability by foraging birds. As a
result, the distribution of prey is radially-symmetric around the island. We denote by R(z) the
equilibrium prey density at distance z from the island.

A foraging trip starts with birds flying from the island in a random direction to a point at
distance z, where they start foraging. Individuals forage at a given location until they catch a
prey, that is, individuals are single prey loaders (we consider multiple prey loaders in
[A.T). After a successful catch, birds fly back to the island to deliver the prey to their nest. If birds
fly with speed v, then it takes a flying time of T¢(z) = 2z/v time units to travel both directions.

The rate at which birds foraging at a point at distance z catch prey is aR(z), where a denotes
the capture efficiency. The time it takes a bird to successfully catch a prey item at distance z is
then exponentially distributed with mean Ts(R(z)) = 1/(aR(z)), referred to as search time. If
birds can extract on average b energy units from a single prey and if ¢; and ¢s denote the energy

costs per time unit flying and searching, respectively, then
B(R(z),z) = b — ¢sT(z) — ¢ Ts(R(2)) M
gives the net energy content of a prey item from distance z. In we show that with

the above assumptions the rate at which birds deliver prey to the nest is given by

FRG)Z) = oy ®

which we recognize as Holling’s type-II functional response (Holling, |1959). The net rate of

energy delivery resulting from foraging at distance z, referred to as payoff and denoted I1(z),
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equals the product of the prey delivery rate and the net energy content per prey, and thus is

I1(z) = f(R(z),2)B(R(z),2). ©)

Hence, payoff at distance z depends on prey density at that distance, both through the functional
response and the net energy content.

We assume that there are no prey on the island (i.e., R(0) = 0). Away from the island,
equilibrium prey density R(z) at distance z depends on three processes. First, prey regrows
at rate ¢(R(z)), given by the difference between birth and death that cannot be attributed to
predation by birds breeding on the island. Second, prey move homogeneously in space at rate
m (formally, we assume a reaction-diffusion process for the prey, see for details).
Third, prey density is reduced due to mortality from foraging birds. Death through predation
at distance z depends on how often an area at that distance is visited by birds, which, in turn,
depends on the total number of birds and the probability that birds visit an area at distance z.
In the absence of bird predation, prey have the same equilibrium density R* everywhere around
the island.

The probability of birds foraging at a certain distance is assumed to be an individual decision
variable, which thus reflects the birds’ choice. We denote by p(z) the probability density that
an individual forages at distance z € R (i.e, fooo p(z)dz = 1) at a behavioral equilibrium.
Our central behavioral assumption is that this equilibrium strategy is an ideal free distribution
determined by the payoff given by eq. (3). Thus, individuals are able to distribute themselves
“freely” over the different foraging distances, such that their payoff from each distance where
foraging occurs is the same and at least as high as at distances not visited (Fretwell and Lucas,
1970; |Kfivan et al, 2008). In a population consisting of N birds, the number of individuals
foraging at distance z from the island is given by p(z)N. Hence, p(z) can also be interpreted
as the proportion of individuals foraging at distance z. As birds are assumed to fly with equal
probability in all directions, the density of birds foraging at a specific point at that distance
equals the proportion of birds foraging at distance z, multiplied with the bird’s population size,
and divided by the circumference of the circle with radius z, p(z)N/(27tz). The rate of prey

depletion at that point is the product of this density and the functional response.
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Finally, we assume that the average payoff

= [ pm) d: @

to an individual at the ideal free distribution determines the number of successfully raised off-
spring. The average payoff thus affects the birds” population size and hence the number of
competitors at any given distance. Without loss of generality, we assume that this payoff is

converted into offspring with an efficiency equal to one.

2.2 Equilibrium conditions for prey, bird behavior and demography

According to our assumptions, the equilibrium prey density R(z), the ideal free distribution p(z),
and the equilibrium abundance N of birds are determined by the following coupled system of
equations.

First, prey density at distance z reaches an equilibrium when its renewal is balanced by

predation due to foraging birds at that distance. This is the case when

_ pz)N _
G(R(2),2) — f(R(z),2) 2% <o, 6)
where the second term on the left-hand side is the rate of prey removal at distance z, and
B d’R(z) 1dR(z)
GIR() = () +m (S5 + 1947 ) ©

is the prey renewal rate at that distance. The first term on the right-hand side of eq. (6) describes
the prey’s growth rate. The second term in eq. (6) describes movement (or “diffusion”), which is
proportional to the movement rate m and depends on the first and second derivative of the prey
density with respect to distance z (see for why this is so).

Second, the distribution of foraging distances p(z), as it results from the bird’s behavior, is
characterized as an ideal free distribution and thus by the fact that, given individuals in the pop-
ulation follow this behavior, the payoff to all individuals must be identical at all distances where

they forage, and must be at least as high as the payoff individuals would obtain at distances
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where they do not forage. Thus,

I1(z) =B forall z € Ry with p(z) >0 (7a)
I1(z) <B for all z € Ry with p(z) =0, (7b)

where B is the constant payoff obtained from visited foraging distances (the interval of foraging
distances satisfying eq. is the support of the ideal free distribution). Note that, while the
payoff given by eq. (7) does not depend explicitly on p(z) (recall egs. [I}3), a dependence enters
through eq. (5) as the payoff depends on the equilibrium prey density R(z), which depends on
the ideal free distribution expressed by all other individuals in the population. At the ideal free
distribution characterized by eq. (7), the payoff obtained from foraging at any visited distance is
no less than the payoff obtained from foraging at any possible distance (i.e., I1(y) < Il(z) for all
y € Ry and all z € Ry with p(z) > 0). This implies that when individuals in the population
behave according to the ideal free distribution, no individual has an incentive to unilaterally
change behavior and the ideal free distribution is equivalent to a Nash equilibrium (Cressman
et al., 2004; Ktivan et al., [2008). This makes the ideal free distribution a fundamentally relevant
behavioral equilibrium concept.

Third, the forager population is at its demographic equilibrium N when the number of suc-
cessfully raised off-spring is balanced by death, that is, when the average payoff equals the death

rate y1, which is here assumed to be constant,

The birth rate as given by the average payoff depends on N indirectly through the dependence
of the equilibrium prey density R(z) on N (see eq.[5). Note that eq. (7) implies that the average
payoff is IT = B and therefore, due to eq. (), we have I1(z) = u for all z with p(z) > 0.

The coupled system of equations (5)-(8) characterizes the prey equilibrium R(z), the birds’
behavioral equilibrium p(z) and their equilibrium abundance N. In the following section, we

derive explicit expressions for this joint equilibrium.
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3 Analysis

3.1 Single bird species: prey halo and ideal free bird distribution

We start by observing that the flying cost Ty = 2z/v monotonically increases with distance z. As
a consequence, when holding R(z) fixed, the functional response f(R(z),z) (eq.[2), and therefore
the payoff I1(z) (eq. [B), decrease with z and go to zero as z becomes large. Hence, a maximal
traveling distance zmax has to exist beyond which prey is left unconsumed, p(z) = 0 for z > zpmax.
Beyond this maximum, the prey will therefore reach its equilibrium density R* in the absence of

predation. The payoff at this maximum distance satisfies
F(R*, Zmax) B(R*, Zmax) = 1. )

Solving this equation for zmay, using eqgs. ([I)—(2), gives

v(abR* — p — )

2aR*(p + cf) (19)

Zmax =

Solving eq. (7) for R(z), eq. (B) for p(z) and using the equality f(R(z),z) = u/B(R(z),z)), the

normalization [;™ p(z)dz = 1 along with I1(z) = u, we obtain

0

0 forz=0
MG
for 0 < z < zZpmax
R(z) = 2z 11
=) ﬂ<b—v(cf+li)> (1)
| R* for z > Zmax
and 27z B(R G(R
p(z) =4 N M (12)
0 for z > Zmax
where
27T ZmaX
N="T / 2B(R(2),2)G(R(2),2) dz. (13)
0

Egs. (II)-(13) provide an explicit representation of the joint equilibrium for prey, bird behavior
and demography, since eq. provides an explicit expression for R(z), which, in turn, deter-
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mines p(z) and N. Figure [[[a) illustrates the shape of R(z) and p(z) as a function of distance
from the island z. The fact that we can jointly characterize the equilibrium distribution of prey,
bird behavior and demography does not hinge on our specific mechanistic assumptions arising
from seabird ecology (i.e., the details on the right-hand sides of egs. and [6) but holds more
generally whenever predators adopt an ideal free distribution along a continuous resource axis.

The following conclusions can be drawn. First, eq. shows that the equilibrium prey den-
sity R(z) has its lowest value at z = 0, thereafter increases with increasing z, and eventually
reaches the equilibrium in the absence of consumption, R*. This is a prey depletion halo, a
generic feature of our model. The shape of the halo depends only on the biology of the bird
species and thus neither on the details of prey renewal nor movement. This remarkable property
has its counterpart in standard predator-prey theory, where the prey equilibrium density only
depends on properties of the predator as long as the predator’s functional response is indepen-
dent of its own density (e.g., lannelli and Pugliese, 2014, pp. 159). Second, the extent of the
prey depletion halo, as given by zmax (eq. [10), increases with the birds’ flying speed v, the prey’s
energy content b, and the maximum prey density R*, and decreases with flying and search costs,
cs and ¢y, respectively. Third, the distribution of foraging distances p(z) starts at p(0) = 0, and in
the absence of movement (m = 0) ends at p(zzmax) = 0 (for an example, see blue curve in fig. ).
Increasing the prey movement rate increases the value of p(zzmax) (fig. [lh). Hence, higher prey
movement results in birds exploiting distances further away from the island more heavily. This
is because prey diffusion results in a net movement of prey from distances with higher density
to distances with lower density. Fourth, equilibrium colony size N, as given by eq. (13), increase
with the prey’s net energy content B(R(z), z) and its renewal rate G(R(z),z). Since G(R(z),z) is
linearly increasing in the movement rate m, so is the birds’ equilibrium population size, as given

in the legend of fig. [I[a).

3.2 Single bird species at fixed population size

In the above analysis, we assumed that the bird population is at its demographic equilibrium,
emphasizing the fact that the area restricted foraging during breeding indeed sets the limit to
colony size as hypothesized by |Ashmole (1963). However, many seabird populations are not at

this equilibrium, for instance, due to human disturbances (e.g., [Hughes et al., 2008) or limited
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Figure 1: Equilibrium prey density R(z) (hatched lines, left y-axis) and ideal free distribution p(z) (pro-
portion of birds feeding at distance z, solid lines, right y-axes), as a function of distance z from the island
under logistic prey growth (¢(R(z)) = R(z)(r — aR(z)), where r is the intrinsic per-capita growth rate and
« the sensitivity to competition), which describes the density-dependent dynamics of a self-renewing prey
species. (a) Results under the assumption that birds have reached their demographic equilibrium for four
different values of the movement rate m. For the parameters given below, in the order of increasing values
of the movement rate m, the equilibrium colony size N equals 288 858, 307 085, 334 427 and 361 768. Note
that the shape of the prey depletion halo, given by R(z), is independent of m (cf. eq. . At distances
Z > zZmax, the prey density is at its equilibrium in the absence of predation, R* = r/a = 500. (b) Results
for four different fixed population sizes N. Prey depletion halo’s become more pronounced and birds fly
further with increasing population size. To avoid overloading the figure, horizontal lines indicating the
prey density R* at distances z > zmax have been omitted. Parameter values: r = 0.02, « = 0.00004, b =1,
cs=02,¢5=05,a=0.01,0v=70,(a) p =0.05 (b) m =0.
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nesting sites. In this section, we extend our analysis to the case that the bird population size is
fixed for a number N that is not equal to the demographic equilibrium. This allows us to make
predictions about the extent of prey depletion halos depending on current population size. In
this case, the mean payoff B has to fulfill the constraint IT = B (since I1(z) = B for all z, see
eq. [7a), where B is an unknown quantity. Replacing y with B in the expression for the maximum
flying distance zmax given by eq. (10), eq. (@) with zmax as upper boundary in the integral can
be solved for B. This results in an implicit equation for B that can then be solved numerically
given a population size. Once the value of 8 is obtained, egs. (again, after replacing u with
B) and provide an explicit solution for the ideal free distribution p(z) and the equilibrium
prey density R(z). The result is shown in fig. [I[b) for four different population sizes N. This
figure shows that the maximum flying distance roughly doubles with each ten-fold increase in
population size (for the population sizes 200, 2000, 20000, and 200000 the corresponding values
of zZmax are 9.2, 20.6, 47.1, and 109.0). This result is in qualitative agreement with the empirically
determined distributions shown in fig. 2(b) of Patterson et al. (2022) for two species of murres
(Uria spp.) when taking from their study the distances up to where 95% of the foraging trips
occur.

The payoff § at the ideal free distribution for the above population sizes are 1.83, 0.99, 0.41,
and 0.08, respectively. This exemplifies Ashmole’s idea (Ashmole, [1963) that the rate of prey
delivery to nestlings decreases with increasing population size (as supported by several empirical
studies (Hunt et al, 1986; Lewis et al., 2001; Ainley et al., 2004; Ballance et al., 2009; |(Oppel et al.,
2015; Jovani et al., [2016).

We note that for fixed N the equilibrium prey density distribution R(z) is no longer indepen-
dent of the movement rate m. This is illustrated in fig. Higher values of m result in a shorter
maximal flying distance and a higher prey abundance at each distance z. This is in qualitative

agreement with simulation results by Weber et al.| (2021, their fig. 3B).

3.3 Multiple bird species and behavioral niche partitioning

In the above analysis, we considered a single bird species. However, many seabirds breed in
mixed colonies, which raises the question of how these species can coexist despite all foraging

in the same surrounding waters (Petalas et al., 2024)? A possible answer comes from the fol-
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lowing empirical studies. Weber et al. (2021) observed that on Ascension Island, two species of
boobies and frigate birds utilize different distances from the breeding colony. Brown boobies
(Sula leucogaster) forage closer to the colony than its less heavy relative, the Masked booby (Sula
dactylatra). The Ascension frigatebird (Fregata aquila), having a much lower wing-loading (body
weight/wing area) than both boobies, forages even further from the colony. Similarly, Razorbills
(Alca torda) and Common guillemots (Uria aalge), breeding in a mixed colony on the Isle of May,
Scotland, differ in the distribution of their foraging trips (Thaxter et al., 2010). Razorbills, having
a lower wing-loading than Common guillemots, fly on average larger distances. These studies
suggest that coexistence may be the result of spatial niche segregation, with some species forag-
ing primarily near the colony while others venture farther away, and that phenotypic differences
determine which species occupies each foraging zone.

Here, we formalize this idea by assuming that birds are characterized by a quantitative trait x
(x € R) that can affect their capture efficiency 4, their flying speed v, and their flying and search
costs, ¢¢ and cs, respectively, to which we refer collectively as foraging components. Different
species have different trait values x and therefore differ in their foraging components (but we
assume that they have the same death rate y), while individuals of the same species share the
same trait value x. A natural assumption is then that the performance in different tasks is subject
to trade-offs. For instance, a morphology allowing for a high flying speed v might be less efficient
at foraging by plunge-diving and therefore would be coupled to a lower capture efficiency a. For
the Alcidae (auks), a group of seabirds catching prey by wing-propelled diving, it has been
proposed that smaller wings, resulting in a high wing-loading, increase flight costs ¢ but make
for better divers (Gaston, 2004; Elliott et al., 2013), resulting in higher capture efficiency a. This
trade-off has been confirmed by Thaxter et al.|(2010), who demonstrate that Razorbills are poorer
divers compared to Common guillemots.

In the following, we show that such trade-offs indeed allow for the coexistence of multiple
seabird species through a partitioning of the waters surrounding the colony into distinct circular
foraging zones. In this analysis, we assume that each bird species reaches its demographic
equilibrium (as in Section [3.1).

In order to indicate that the foraging components can differ with x, we henceforth write these

as functions of x, for instance, a(x). Similarly, we add the argument x to the payoff function
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(eq. 3 I1(x,z)), the maximum flying distance (eq. Zmax (X)), the equilibrium prey abundance
(eq.[11} R(x,z)), the ideal free distribution (eq. |12} p(x,z)), and the equilibrium bird population
size (eq. (13} N(x)) to indicate that these functions depend on the birds’ phenotype.

To investigate how trait differences allow for coexistence, we start by observing that a species
with trait value x induces a corresponding equilibrium prey density curve R(x, z) (in the absence
of any other species). Figure [§(a) shows such curves for four trait values x under the assump-
tion that capture efficiency and flying speed are negatively correlated (a(x) is a monotonically
increasing function while v(x) is a monotonically decreasing function in x). This figure shows
that for any two species, the curves R(x,z) intersect exactly once. For illustration, let us focus
on two species, say, those characterized by x; = 3 (henceforth called species 1, blue curve) and
x2 = 1 (henceforth called species 2, orange curve). Upon examination of the equilibrium prey
density curves induced by species 1 and 2, denoted R(x3,z) and R(x,z), respectively, we can
draw the following conclusions. First, in the interval between the island (z = 0) and the point
where the two equilibrium prey density curves intersect, species 1 depletes prey to a lower den-
sity compared to species 2. We denote the distance to this intersection point with z;, which in
our example is approximately 40. Second, in the interval between z; ~ 40 and the maximum
flying distance of species 2, zmax(X2), the situation reverses. Here, species 2 depletes prey to a
lower density than species 1. In short, R(x1,z) < R(x2,z) for z € [0,z1] and R(x1,z) > R(xp,2)
for z € [z1,Zmax(x2)]. The fact that R(x1,z) < R(x2,z) in the interval [0,z1] implies that the
payoff from foraging at these distances to species 2 is lower than the death rate (IT(x2,z) < p).
Then, according to eq. (7b), species 2 does not utilize this interval (p(xz,z) = 0 for z € [0, z1]).
The reverse is true for the interval [z1, zmax(¥2)]. Here, I1(x1,z) < p so that species 1 does not
utilize this interval (p(x1,z) = 0). In conclusion, we find a partitioning of the surrounding of the
colony where species 1 only exploits distances close to the island (z € [0,z1]) and species 2 only
exploits distances further away from the island (z € [z1, Zmax(X2)]). In other words, the species
with the trait value inducing the lowest equilibrium prey density at a certain distance z excludes
species with other trait values from foraging at that distance. Our preceding argument shows
that for two species to be able to coexist, it is a necessary (and sufficient) requirement that the
corresponding equilibrium prey density curves R(x, z) intersect with each other. This argument,

which is developed more formally in echoes the resource-ratio rule of community
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ecology. It states that if multiple species compete for a single limiting resource, here the re-
source at distance z, then whichever species can survive at the lowest equilibrium resource level
outcompetes all others (Tilman), 1982; |Grovers, 1997), resulting in competitive exclusion (Levin,
1970).

More generally, in we show that any two equilibrium prey density curves
R(x,z) intersect at most once. From this follows, that two curves R(x,z) intersect with each
other if and only if the values of the equilibrium prey density at distance z = 0 (R(x,0)) and
the maximum flying distance zmax(x) have the same ordering. For our example above, fig.
shows that R(x1,0) < R(x2,0) and zZmax(¥1) < Zmax(x2). Thus, the trade-off between foraging
components induces a trade-off in the efficiency to forage at short and long distances from the
colony. Species 1, having a higher capture efficiency, is more efficient at exploiting prey close to
the colony, resulting in a lower equilibrium prey density at z = 0, at the cost of having a shorter
maximum traveling distance, while for species 2, having a higher flying speed, the situation is
reversed.

In we show that the above arguments generalize to any finite community
X = {x1,x2,...,x,} with n > 2 bird species (fig. [2| shows it for n = 4). Thus, whenever we have
coexistence of a set of species, they forage in mutually exclusive distance intervals around the
island (until a distance is reached beyond which no individual forages), each species occupying
exactly one interval. In each interval, the prey distribution is determined by the foraging com-
ponents, and thus the trait value x, of the species occupying that interval according to eq. (11).
The corresponding ideal free distribution and abundance of that species are fully characterized
analytically and given by analogues of eqs. (12)-(13), where the ideal free distributions of each
species ranges over an interval that depends on the trait values of all other species in the commu-
nity (see eqs. [CI4HC16). The result is a multi-species prey depletion halo, as shown in fig. (a),
and a multi-species ideal free distribution, as shown in fig. 2{b). Hence, our main finding is that,
in the presence of trade-offs between foraging components, multiple bird species can coexist on
a single prey species by partitioning the area around the colony into discrete distance intervals, a
form of behavioral niche portioning. Just as in the single-species case, prey movement does not
affect the equilibrium prey distribution. As a consequence, prey movement does not affect the

partitioning of distances of coexisting bird species. However, just as in the single species case,
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Figure 2: Equilibrium prey density R(x,z) in (a) and ideal free distribution p(x,z) (proportion of birds
feeding at distance z) in (b) as a function of distance z from the island for four different trait values x.
The lowest equilibrium prey density curve is shown as a thick line. Due to competitive exclusion, bird
species differing in their trait value x only forage at distances where they reduce prey density to a lower
value than the other species, resulting in the multi-species ideal free distribution shown in (b) and a multi-
species prey depletion halo, given by the composite thick line in (a). Grey vertical lines, connecting panel
(a) and (b), are drawn at the z-values where species identity changes. The ideal free distribution is shown
for two values of the movement rate; solid lines correspond to m = 0 and hatched lines to m = 0.8. For
m = 0, the equilibrium population size for the four bird species equal, presented in order of decreasing
x-values, 8087, 29531, 51422, and 192356. For m = 0.8 the populations sizes, following the same order,
equal 9941, 32278, 54907, and 262 241. Parameter values as in fig. a), except that the values for a2 and v
are now trait dependent according to the functions a(x) = ag + a;x and v(x) = vy/ (1 + v1x), respectively,
with ag = 0.01, a; = 0.01, vg = 70, v1 = 0.5.
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prey movement results in a shift of the ideal free distribution of each species towards higher
distances due to a net movement of prey individuals toward distances with lower prey density
(see fig. 2b).

Figure [2| is based on the assumption that capture efficiency a(x) and flying speed v(x) are
negatively correlated. In we determine for all possible pairwise trade-offs between
foraging components whether they have the potential to induce a trade-off between R(0, x) and
Zmax (¥), which is the prerequisite for species coexistence (allowing for more than two foraging
components to vary with x does not result in qualitative new results). The result is summarized
in table |1, Two different outcomes occur. First, a trade-off between foraging components does
not induce a trade-off in the efficiency to forage at different distances. This case is illustrated in
tig. Second, whether a trade-off between foraging components induces a trade-off between
R(0,x) and zmax(x) depends on parameter and trait values. Figure [2| shows an example where
indeed four species can coexist, while fig.|C2|shows an example where coexistence is possible for
some species but not for others.

Table 1: The four foraging components capture efficiency a, flying speed v, flight costs ¢; and search costs

cs allow for six different pairwise combinations. For each combination, we determine whether a negative

correlation between the foraging components has the potential to mediate coexistence of species with
different trait values x. See [Appendix D|for details.

coexistence a&v|a&c|a&ces | v&cer | v&cs | cf &g
parameter-dependent | v v v v
not possible v v

The results from Table [1| can be understood as follows. Foraging comes with two costs (see
eq. [1), namely costs associated with flying (c;2z/v) and costs associated with searching for prey
(cs/(aR(z)). Flight costs increase and search costs decrease with distance z from the island. The
latter is a consequence of the prey depletion halo around the island. Different species can coexist
if they are specialized to forage on different distances from the island by either experiencing low
costs when foraging on depleted prey close to the island (high a or low cs) at the cost of higher
costs when foraging on less depleted prey further away from the island (low v or high ¢) or vice

versa (high v or low ¢ at the cost of low a or high ;).
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4 Discussion

Inspired by the evidence provided by Weber et al. (2021) for (i) a prey depletion halo around the
seabird colony on Ascension Island and (ii) the spatial partitioning of the feeding grounds sur-
rounding the colony between coexisting seabirds, we here present a comprehensive mathematical
model studying the ideal free distribution of foraging trips of central place foragers exploiting
a single prey species in a two-dimensional environment. By analytically solving the joint equi-
librium of the prey distribution, the behavior of the forager and its demography, we show that
a prey depletion halo is a robust outcome of central place foraging. Its shape, given by eq.
and illustrated in figs. (I|and [2} is robust in the sense that it is independent of the specifics of the
prey population dynamics, including its movement rate, as all parameters in eq. describe
properties of the forager.

Our full model includes an arbitrary number of species, where, due to species-specific mor-
phological and physiological trait values, individuals can differ in flying speed, capture efficiency,
travel and search costs. We show that coexistence is a robust outcome that emerges whenever
species differences result in some species experiencing lower costs when foraging on a prey at
low density close to the breeding colony, while others experience lower costs when flying long
distances to forage on a prey at high density. A qualitatively similar result has been found by
Bolin et al. (2018) in a model describing the foraging behavior of solitary bees, assuming that
species vary along a trade-off of low flight costs and efficient resource use. We want to stress
that, in contrast to Bolin et al.|(2018), coexistence in our model occurs in the presence of a single
biological prey species. As explained above, the key to understand this coexistence is that for
different species the same prey — but at different distances from the colony — comes with dif-
ferent costs. The result is a multi-species ideal free distribution (fig. 2b) and a multi-species prey
depletion halo (fig. [Za), where no two bird species forage at the same distance. Instead, different
species exploit mutually exclusive circular zones around the island.

The sorting of species into mutually exclusive foraging zones occurs despite the fact that, in
principle, the area close to the colony would be preferred by all species. It is in this vicinity
that catching prey comes at the lowest travel costs, both in terms of the time needed to reach the
foraging area and the energy investment to do so. Thus, a community of coexisting species that

are central place foragers, all feeding on the same prey species, is an example of a community
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with shared preferences. This is significant since theory in community ecology is dominated
by models with distinct preferences, despite indications that shared preference might be the
more common scenario (Rosenzweig), 1991;|Wisheu, 1998). With distinct preferences, each species
performs best in a different part of the niche space, regardless in which community they occur. In
our model, where all species perform best close to the island in the absence of competing species,
it is in the presence of competitors that deplete prey to such low values that the immediate
surrounding of the colony is not sufficiently profitable to be used by species that are less efficient
foragers. Thus, for each species, the fundamental niche consists of the circular area around the
colony that is limited by the species specific maximum flying distance. However, in the presence
of competitors, the realized niche of each species consists of the circular zone around the island
where that species is able to deplete the prey to a lower density than any other species.

A consequence of the fact that coexistence results from behavioral niche partitioning is that
the conditions for coexistence are relatively mild compared to models where coexistence is only
mediated by trait differences without linked behavioral differences. A corresponding result has
been found in a model where consumers compete for two resources and where individuals can
choose to either attack or ignore a prey item, depending on their expected energy gain from doing
so, which depends both on their phenotype and on the abundance of resources as determined
by the competitors (Rueffler et al., 2007). In that model, optimal diet choice greatly enlarges the
set of pairs of trait values that allow for coexistence. Furthermore, coexistence in our model is
generally not a transient phenomenon if one allows for evolutionary change in the trait values x
that characterize the different species. This can be seen from fig. 2l Changes in the trait value x
of the four coexisting species changes the pattern of intersections of the equilibrium prey density
curves only quantitatively but not qualitatively. Thus, coexistence does not easily break down
under evolutionary change. In fact, the opposite is likely to be true. An input of individuals
with different trait values, either by mutation or immigration, can readily increase diversity (see
fig. [C2) for an example).

Weber et al. (2021) report the distribution of seabirds both as the proportion of time birds
spend foraging at different distances from the island (their fig. 2A) and as density (their fig. 2B).
The first corresponds to the ideal free distribution, as shown in fig.[2(b). Obviously, their distribu-

tion markedly differs from ours. For several reasons, this is not surprising. First, our derivation
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assumes that foragers are “ideal”, that is, they have complete information about both their envi-
ronment and their own abilities. This is certainly not true for natural systems, where individuals
have to build up this information through constant probing (as documented in the Northern
gannet (Morus bassanus), Votier et al., 2017). Second, intraspecific phenotypic variation occurring
in natural populations, both within (Sommerfeld et al., 2013) and between the sexes (Weimer-
skirch et al., 2009), causes that different individuals of the same species differ in their foraging
decisions, while in our model all individuals of a species are identical. Even for a monomorphic
species it has been documented that the sexes can differ in their foraging decisions (Lewis et al.,
2022). Third, Weber et al.| (2021, Table S1) show that, for their investigated seabird species, small
differences in diet composition do occur, and Ascension frigatebirds to some extent forage by
kleptoparasitism, both complications not present in our model. Fourth, |Weber et al.| (2021) sug-
gest that the prey depletion halo around Ascension Island expands during the breeding season.
Hence, their system is not at equilibrium, while our analysis indeed assumes that the system
has equilibrated. In we present results showing how the ideal free distribution of
foraging birds translates into bird densities at different distances. We consider three different
functions for the prey growth rate, including one where we extend our model to the case that
the prey’s growth rate depends directly on distance from the island, describing a gradient due
to distance-dependent primary productivity. We show that the shape of the distribution of bird
densities is both quantitatively and qualitatively sensitive to the specifics of the growth function,
and empirical predictions thus seem only possible given knowledge of empirical details.

It is noteworthy that our model is agnostic as to whether the ideal free distribution is com-
posed of individuals that all distribute their foraging trips according to the ideal free distribution
(mixed strategy) or of individuals that each utilize a single distance and that the frequency distri-
bution of individuals utilizing the different distances follows the ideal free distribution (mixture
of pure strategies). This pure-mixed strategy equivalence occurs since what determines energy
intake at a given distance is the realized density of individuals at that distance, and that at the
ideal free distribution the net energy gain is the same at all visited distances. In a review, Ceia
and Ramos (2015) report that in seabirds, individual specialization in foraging strategies has been
documented in 87% of the studies investigating this phenomenon, suggesting that the ideal free

distribution is more likely the result of a mixture of pure strategies. In the absence of diffusion,
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our model should also be agnostic as to whether prey individuals move in response to predation.
This is because the equilibrium prey density R(z) can be seen as the product of the total prey
population size times the proportion that reproduces at distance z. This proportion, in turn, can
be interpreted as an ideal free distribution for prey reproducing at different distances from the
island when payoff at distance z is taken to be the per-capita growth rate at that distance that
equalizes at all distances. Hence, we suggest that our results can also be read as characterizing
the joint predator-prey behavioral and demographic equilibrium.

Finally, we want to emphasize that our results are obtained under the assumption that birds
act as individual payoff maximizers. Central place foragers that are selected to maximize group
payoff, such as colonies of social insects consisting of highly related individuals, do not follow an
ideal free distribution (see fig.[). Instead, we show that colony payoff is maximized by increasing

maximum travel distance and simultaneously underexploiting the vicinity of the colony.

4.1 Conclusion

In his influential study of seabirds on Ascension Island, |Ashmole| (1963) proposed that seabirds
breeding in large colonies locally reduce their prey, generating a prey depletion halo around the
colony. Strong evidence for such halos has been provided by Weber et al. (2021), a study that
further suggests that coexistence of seabirds is made possible by individual foraging decisions
resulting in a spatial segregation into different circular zones around the colony. Our model,
which is based on features shared by many seabirds breeding in large colonies without incorpo-
rating the details of any specific colony, shows that prey depletion halos are a robust outcome,
suggesting they should generally be associated with central place foraging and extend beyond
seabird ecology. We also show that trait mediated behavioral niche partitioning results in robust
coexistence. We suggest that this process facilitates species coexistence compared to standard
theory based on trait-mediated niche partitioning as developed in the wake of MacArthur and
Levins (1967)’s seminal work. Our trait-dependent multi-species ideal free distribution—a Nash
equilibrium of a population game-is not limited to central place foragers, and holds for other
predator-prey systems whenever predators adopt an ideal free distribution along a continuous
resource axis and the functional response does not depend on predator density. Our results may

thus play a more general role in ecology as a coexistence promoting mechanism.
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Box 1: Group versus individual foragers

The results in the main section are derived under the assumption that selection acts to
maximize individual payoff. For highly related social insects, however, it is appropriate
to assume that there is no conflict between group members and selection acts to maxi-
mize colony payoff. Here, we consider a central-place foraging model for such foraging
groups, where we search for the behavioral strategy p(z) that maximizes the net per-capita
rate of energy delivery of group members. Our results are based on a non-self-renewing
resources, such as nectar in flowers. The equilibrium behavior p(z) maximizing group
payoff is derived in using all biological assumptions of the individual forag-
ing model, except that (i) group size is N fixed, and (ii) movement of resources is absent

(m=0).
/I\T 500 _l T d d T l T T T T , T ] 0-015
— — p(2) individua 1 —~
R~ | D
= - - R(z) individual -
= 400F n
2 p(2) group s
0 {001 4
e R(2) group RS
o 300} 2
:
2 e
S 200} g
g —40.005 g
-
.2 et
= 100 F _ - ®)
R PP 2
.51 Y
o Q,
Q) O _I 1 1 1 1 1 1 1 ] O

0 20 40 60 80 100 120 140
distance from the colony, z

Figure 3: Equilibrium prey density R(z) (hatched lines, left y-axis) and proportion of individuals
foraging p(z) (solid lines, right y-axes) as a function of distance z from the colony for individual
(in blue) and group foragers (in orange) under constant resource renewal (”chemostat dynamics”;
¢(R(z)) = br — drR(z), where bg and dg, are the constant resource renewal and per-capita death
rate, respectively). For the used parameters, equilibrium population size of individual foragers
equals N = 36859, and this value is used as a parameter for group foragers. Hence, given equal
population size, group foragers use distances close to the colony less intensively and instead utilize
a larger area around the colony (zmax = 152 for group foragers vs. zmax = 125 for individual
foragers). Note that the two curves for R(z) and for p(z) intersect with each other at the same
value (z = 112). The reason is that the resource equilibrium density at distance z is a direct
consequence of the number of individuals foraging at that distance. Parameters for chemostat
dynamics: bg = 0.4 and dr = 0.0008. All other parameters as in fig.

We find that at the group foraging equilibrium, the maximum travel distance is larger and
the distribution of travel distances is more skewed toward large distances compared to
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the equilibrium for individual foragers (fig. B). Thus, group foragers exploit regions close
to the colony less intensely and instead use a larger foraging area. As a result, group
foragers do not equalize payoff from different distances but distribute themselves such
that payoffs at short distances exceeds payoffs at long distances (fig.[4), generalizing results
from two-patch models by Brown| (1998), Dukas and Edelstein-Keshet| (1998), and Morris
et al.| (2001), and from a simulation study by [Robinson et al. (2022). This can be explained
by the avoidance of kin competition at distances close to the colony where travel costs are
lowest. By exploiting resources at large distances, group foragers decrease competition
for relatives foraging close to the colony. The increase in payoff due to this decrease
in competition more than outweighs the decrease in payoff suffered by individuals from
increased competition far away from the colony and by individuals flying further than
the maximum travel distance of individual foragers. This results in higher average payoff
under group foraging (IT = 0.096 compared to IT = 0.05 under individual foraging). Thus,
group foragers exploit resources more efficiently. Both these trends, decreases in payoff
with distance and higher average payoff, are expected to be robust outcomes under group
foraging, since they are both direct consequences of the reduced competition entailed by
maximizing group payoff.

1k

Py — individual
™ 075
= group
[Ty
‘2; 0.5F
S
Q.

0.25F

20 40 60 80 100 120 140

distance from the colony, z

Figure 4: Payoff I1(z) for group (in orange) and individual (in blue) foragers. As a result of
the ideal free distribution, individual foragers have an identical payoff at all distances (equal to
# = 0.05, up to zmax = 125). In contrast, group foragers under-exploit resources at short distances
and over-exploit resources at large distances (fig.[3). As a result, individual payoff is monotonically
decreasing with distance z (up to zmax = 152). The two payoff curves Il(z) intersect with each
other at the same distance as the equilibrium resource curves (z = 112, cf. fig[3), as payoff is a
direct consequence of resource abundance. Parameters as in fig.

23


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

References

Ainley, D. G, R. G. Ford, E. D. Brown, R. M. Suryan, and D. B. Irons. 2003. Prey resources, competition,
and geographic structure of kittiwake colonies in Prince William Sound. Ecology 84:709-723.

Ainley, D. G., C. A. Ribic, G. Ballard, S. Heath, I. Gaffney, B. ]. Karl, K. ]. Barton, P. R. Wilson, and S. Webb.
2004. Geographic structure of Adélie penguin populations: Overlap in colony-specific foraging areas.

Ecological Monographs 74:159-178.
Ashmole, N. P. 1963. The regulation of numbers of tropical oceanic birds. Ibis 103B:458—-473.

Ballance, L. T., D. G. Ainley, G. Ballard, and K. Barton. 2009. An energetic correlate between colony size
and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. Journal of Avian

Biology 40:279-288.
Begon, M., and C. R. Townsend. 2021. Ecology: From Individuals to Ecosystems. 5th ed. Wiley.

Birt, V. L., T. P. Birt, D. Goulet, D. K. Cairns, and W. A. Montevecchi. 1987. Ashmole’s halo: direct evidence
for prey depletion by a seabird. Marine Ecology - Progress Series 40:205-208.

Bolin, A., H. G. Smith, E. V. Lonsdorf, and O. Olsson. 2018. Scale-dependent foraging tradeoff allows
competitive coexistence. Oikos 127:1575-1585.

Brown, J. S. 1998. Game Theory and Animal Behavior, chap. Game Theory and Habitat Selection, pages
188-220. Oxford University Press.

Bryson, A. E., and Y.-C. Ho. 1975. Applied Optimal Control: Optimization, Estimation and Control. CRC

Press, New York.
Case, T. J. 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press.

Ceia, F. R,, and J. A. Ramos. 2015. Individual specialization in the foraging and feeding strategies of

seabirds: a review. Marine Biology 162:1923-1938.

Coulson, J. C. 2002. Colonial breeding in seabirds. In E. A. Schreiber and J. Burger, eds., Biology of Marine
Birds. CRC Press.

Cressman, R., V. K¥ivan, and J. Garay. 2004. Ideal free distributios, evolutionary games, and population

dynamics in multiple-species environments. The American Naturalist 164:473-489.

Dukas, R., and L. Edelstein-Keshet. 1998. The spatial distribution of colonial food provisioners. Journal of

Theoretical Biology 190:121-134.
Edelstein-Keshet, L. 1988. Mathematical Models in Biology. The Random House/Birkhduser Mathematics

Series.

Elliott, K. H.,, R. E. Ricklefs, A. J. Gaston, S. A. Hatch, J. R. Speakman, and G. K. Davoren. 2013. High flight

costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins.

24


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Proceedings of the National Academy of Sciences USA 110:9380-9384.
Elliott, K. H., K. J. Woo, A.]. Gaston, S. Benvenuti, L. Dall’Antonia, and G. K. Davoren. 2009. Central-place

foraging in an arctic seabird provides evidence for storer-ashmole’s halo. The Auk 126:613-625.

Forero, M. G, J. L. Tella, K. A. Hobson, M. Bertellotti, and G. Blanco. 2002. Conspecific food competition
explains variability in colony size: A test in magellanic penguins. Ecology 83:3466-3475.

Fretwell, S. D., and H. J. Lucas. 1970. On territorial behavior and other factors influencing habitat distri-
bution in birds. Acta Biotheoretica 19:16-36.

Furness, R. W.,, and T. R. Birkhead. 1984. Seabird colony distributions suggest competition for food
supplies during the breeding season. Nature 311:655-656.

Furness, R. W,, and P. Monaghan. 1987. Seabird Ecology. Chapman and Hall, New York.
Gaston, A. J. 2004. Seabirds: A Natural History. Yale University Press.

Gaston, A. J., R. C. Ydenberg, and G. E. J. Smith. 2007. Ashmole’s halo and population regulation in
seabirds. Marine Ornithology 35:119-126.

Grovers, J. P. 1997. Resource Competition. Chapman and Hall, New York.

Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian

Entomologist 91:385-398.
Hughes, B. J., G. R. Martin, and S. J. Reynolds. 2008. Cats and seabirds: effects of feral domestic cat Felis

silvestris catus eradication on the population of sooty terns Onychoprion fuscata on Ascension Island,

South Atlantic. Ibis 150:122-131.

Hunt, J., George L., Z. A. Eppley, and D. C. Schneider. 1986. Reproductive Performance of Seabirds: The
Importance of Population and Colony Size. The Auk 103:306-317.

Iannelli, M., and A. Pugliese. 2014. An Introduction to Mathematical Population Dynamics. Springer.

Jovani, R., B. Lascelles, L. Z. Garamszegi, R. Mavor, C. B. Thaxter, and D. Oro. 2016. Colony size and
foraging range in seabirds. Oikos 125:968-974.

Kfivan, V., R. Cressman, and C. Schneider. 2008. The ideal free distribution: A review and synthesis of the
game-theoretic perspective. Theoretical Population Biology 73:403-425.

Levin, S. A. 1970. Community equilibria and stability, and an extension of the competitive exclusion

principle. American Naturalist 104:413-423.
Lewis, S., S. Benvenuti, L. Dall’Antonia, R. Griffiths, L. Money, T. N. Sherratt, S. Wanless, and K. C.

Hamer. 2022. Sex-specific foraging behaviour in a monomorphic seabird. Proceedings of the Royal

Society London B 269:1687-1693.

Lewis, S., T. N. Sherrat, K. C. Hamer, and S. Wanless. 2001. Evidence of intra-specific competition for food

25


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

in a pelagic seabird. Nature 412:816-819.

MacArthur, R. H. 1972. Geographical Ecology. Harper & Row, NY.

MacArthur, R. H.,, and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting
species. The American Naturalist 101:377-385.

Mitchell, P. I, S. F. Newton, N. Ratcliffe, and T. E. Dunn, eds. 2004. Seabird Populations of Britain and
Ireland: results of the Seabird 2000 census (1998-2002). T and A.D. Poyser, London.

Mittelbach, G. G., and B. J. McGill. 2019. Community Ecology. 2nd ed. Oxford University Press.

Morris, D. W., P. Lundberg, and J. Ripa. 2001. Hamilton’s rule confronts ideal free habitat selection.
Proceedings of the Royal Society London B 268:921-924.

Oppel, S., A. Beard, D. Fox, E. Mackley, E. Leat, L. Henry, E. Clingham, N. Fowler, J. Sim, ]. Sommerfeld,
N. Weber, S. Weber, and M. Bolton. 2015. Foraging distribution of a tropical seabird supports Ashmole’s
hypothesis of population regulation. Behavioral Ecology and Sociobiology 69:915-926.

Patterson, A., H. G. Gilchrist, S. Benjaminsen, M. Bolton, A. S. Bonnet-Lebrun, G. K. Davoren, S. Descamps,
K. E. Erikstad, M. Frederiksen, A. J. Gaston, J. Gulka, J. Hentati-Sundberg, N. P. Huffeldt, K. L. Johansen,
A. L. Labansen, J. E. Linnebjerg, O. P. Love, M. L. Mallory, F. R. Merkel, W. A. Montevecchi, A. Mosbech,
O. Olsson, E. Owen, N. Ratcliffe, P. M. Regular, T. K. Reiertsen, Y. Ropert-Coudert, H. Strem, T. L.
Thorarinsson, and K. H. Elliott. 2022. Foraging range scales with colony size in high-latitude seabirds.
Current Biology 32:3800-3807.e3.

Petalas, C., F. Van Oordt, R. A. Lavoie, and K. H. Elliott. 2024. A review of niche segregation across
sympatric breeding seabird assemblages. Ibis .

Robinson, S. V. ]., S. E. Hoover, S. E. Pernal, and R. V. Cartar. 2022. Optimal distributions of central-place
foragers: honey bee foraging in a mass flowering crop. Behavioral Ecology 33:386-397.

Rosenzweig, M. L. 1991. Habitat selection and population interactions: The search for mechanism. The
American Naturalist 137:55-528.

Rueffler, C., T. J. M. Van Dooren, and J. A. J. Metz. 2007. The interplay between behavior and morphology
in the evolutionary dynamics of resource specialization. The American Naturalist 169:E34-E52.

Seierstad, A., and K. Sydseeter. 1987. Optimal control Theory With Economic Applications. North-Holland,
Amsterdam.

Sommerfeld, J., A. Kato, Y. Ropert-Coudert, S. Garthe, and M. A. Hindell. 2013. The individual counts:
within sex differences in foraging strategies are as important as sex-specific differences in masked
boobies sula dactylatra. Journal of Avian Biology 44:531-540.

Sydseeter, K., P. Hammond, A. Seierstad, and A. Strem. 2008. Further Mathematics for Economic Analysis.
2nd ed. Prentice Hall, Essex.

26


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Sydseeter, K., and P. J. Hammond. 1995. Mathematics for Economic Analysis. Prentice-Hall.

Thaxter, C. B., S. Wanless, F. Daunt, M. P. Harris, S. Benvenuti, Y. Watanuki, D. Grémillet, and K. C.
Hamer. 2010. Influence of wing loading on the trade-off between pursuit-diving and flight in common
guillemots and razorbills. The Journal of Experimental Biology 213:1018-1025.

Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, New Jersey.

Votier, S. C., A. L. Fayet, S. Bearhop, T. W. Bodey, B. L. Clark, J. Grecian, T. Guilford, K. C. Hamer, J. W. E.
Jeglinski, G. Morgan, E. Wakefield, and S. C. Patrick. 2017. Effects of age and reproductive status
on individual foraging site fidelity in a long-lived marine predator. Proceedings of the Royal Society
London, B 284:20171068.

Weber, S. B., A. J. Richardson, J. Brown, M. Bolton, B. L. Clark, B. J. Godley, E. Leat, S. Oppel, L. Shearer,
K. E. R. Soetaert, N. Weber, and A. C. Broderick. 2021. Direct evidence of a prey depletion “halo” sur-
rounding a pelagic predator colony. Proceedings of the National Academy of Sciences 118:€2101325118.

Weimerskirch, H., S. A. Shaffer, Y. Tremblay, D. P. Costa, H. Gadenne, A. Kato, Y. Ropert-Coudert, K. Sato,
and D. Aurioles. 2009. Species- and sex-specific differences in foraging behaviour and foraging zones
in blue-footed and brown boobies in the gulf of california. Marine Ecology Progress Series 391:267-278.

Wisheu, 1. C. 1998. How organisms parition habitats: different types of communty organization can

produce identical patterns. Oikos 83:246-258.

27


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Appendix A Model components

Throughout this appendix, our notation makes explicit that each bird is characterized by a quan-
titative trait x € IR and is part of a community consisting of n different species whose trait values

are collected in the set X' = {xq,xp,..., %, }.

Appendix A.1 Rate of energy delivery by birds

We here derive the payoff function given by eq. in the main text. Payoff is defined as the
net rate of energy delivery to its nestlings of an individual foraging at distance z. A foraging
trip consists of two activities, flying from the island to a foraging area at distance z and back,
and searching for prey at that distance. We here assume that birds fly back to the island after
catching ny, prey items, that is, they are np-prey loaders. All results in the main text are for
single-prey loaders (n;, = 1). We here show that this does not restrict the generality of the
model. The time it takes an individual with trait value x to fly from the island to distance z and
back is T¢(x,z) = 2z/v(x) and Ts(x,z) = np/(a(x)R(z)) is the average time for that individual
to successfully catch n, prey items when foraging at distance z. This follows from the rule
for compounding exponential distributions, since the mean waiting time for a single catch is
exponentially distributed with mean 1/ (a(x)R(z)).

The total time per foraging trip is thus T¢(x,z) + Ts(x,z) and let E(x,z) be the net amount of

energy gained during such a foraging trip. The net energy gain per time unit is then

E(x,z)

I(x,z) = Te(x,2) + To(x,2)

(A)

According to our assumptions (section [2.1), birds catch prey at rate a(x)R(z), where a(x) is the
capture efficiency of an individual with trait value x and R(z) the equilibrium prey density at
distance z. Furthermore, each prey item contains on average b energy units. The net amount of

energy gained during a foraging trip is then given by
E(x,z) = ba(x)R(z)Ts(x,z) — ce(x) Ti(x,z) — cs(x) Ts(x, z), (A2)

where c¢(x) and ¢s(x) are the energy costs per time unit spend flying and foraging, respectively.
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Substituting the expression for E(x, z), T(x,z) and Ts(x, z) into eq. (AI), we obtain

a(x)R(z) (b — ce(x)T¢(x, z) /n — cs(x) Ts(x, 2) /1) .

M(x2) = 1+a(x)R(z)Ti(x,z) /nL (A3)
This can be rewritten as
I1(x,z) = f(x,R(z),z)B(R(z),2), (A4)
where
_ a(x)R(z)
f(xR(z),2) = 1+ a(x)R(z)T¢(x,z)/nL (AS)
is the functional response of an individual foraging at distance z, and
B(R(2),2) = b— cy(x) T2 _ ¢ () B 2) (A6)

nL ny

is the net energy content of a prey item from that distance. For n;, = 1 and dropping the explicit
dependence on the trait x in all functions results in eq. (2) in the main text. Note that n; > 1
does not qualitatively affect the functional form of the model, since it scales the flying and search

times equally.

Appendix A.2 Reaction-diffusion process for the prey

We here derive eq. (5). We assume that the prey follows a radially symmetric reaction-diffusion
process with homogeneous diffusion, and ignore reflecting boundary effects of the island, which
is assumed to be a single point in space where the prey density is assumed to be zero. We
then assume that the partial differential equation describing the dynamics of the density of prey

R(t,z) at time f is defined for all z € (0, o) according to

dR(t,z) _md (ZBR(t,z)

= =3, R > —F(R(t,z),z,1). (A7)

reaction

diffusion

The first term on the right-hand side represents diffusion, occurring at rate m, to which we refer
in the main text as movement rate. The second term represents reaction, which is some function
of prey density, possibly distance from the island and time. Eq. corresponds to the two-
dimensional reaction-diffusion process given by eq. (40) in Edelstein-Keshet (1988, Chapter 9).
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But since the process is radially symmetric, it is written here in polar coordinates using eq. (61)
in Edelstein-Keshet| (1988, Chapter 9). The reaction term F(R(t,z),z,t) is detailed below. Note
that for a reaction term F(z) that is independent of prey density and time, representing fixed
consumption, eq. is equivalent to the consumption-dispersion model of |Weber et al.| (2021,
their eq. 5).

At equilibrium, R(t,z) = R(z) and thus dR(t,z)/0t = 0 and 0"R(t,z)/9z" = d"R(z)/ dz".

Next, let us assume that the reaction term at such an equilibrium is given by

_ P 2N ()
F(R(,2),2.1) = g(R(z) — ¥ flxR(),2) P22 20,

xeX

(A8)

The right-hand side is time-independent and the sum of a density-dependent prey growth rate
2(R(z)) at distance z and the depletion rate f(x, R(z),z)p(x,z)N(x)/(27z) due to birds foraging
at distance z, summed over all bird species with trait values in X = {x1,x2,...,x,}. Here,
p(x,z)N(x)/(2mz) is the density of individuals with trait value x at distance z. The denominator
27z accounts for the fact that individuals foraging at distance z distribute themselves randomly
over the circumferences of the circle centered at the island and N(x) is the number of individuals

for the species with trait value x. Hence, at equilibrium, eq. (A7) can be written as

2R(z z x,z)N(x
O:g(R(Z))-i-m(dCﬁ(Z ) +id1§1(z)> — EXf(X,R(Z),z)p(’ZBIZZ\]()_ (A9)
Let us define
d’R(z) 1dR(z)
GIR(2),2) = g(R(=) +m (T + 1) (A10)

as the endogenous rate of change of prey density at distance z, called renewal rate in the main
text. Assuming that the bird community consists of only a single species (X = {x}), so that the
argument x can be dropped in all relevant functions, and substituting G(R(z, z) into eq. (A9), we
obtain eq. (5) in the main text.

In the absence of consumption, the last term on the right-hand side of eq. equals zero.
We assume that the resulting equilibrium prey density is homogeneous over space and denote it

as R*. This satisfies eq. (A9) with g(R*) = 0.
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Appendix B The single species ideal free distribution expressed as

density

In their fig. 2B, Weber et al|(2021) present the empirically determined distributions of foraging
birds around Ascension Island — when expressed as densities. In this appendix, we present re-
sults from our model about how the density of birds (number of birds/area) foraging at distance
z from the island changes with distance. We do this for the case of a single bird species and thus
drop the argument x from all quantities.

The density of birds at distance z is given by

n(z) = EON (B1)

n(z) = : (B2)

The shape of this function depends on the shape of the prey renewal rate G(R(z),z), which
is equal to the prey growth rate g(R(z)) in the absence of prey movement (m = 0, eq.[6). To
illustrate how different biological assumptions about the prey’s growth rate affect the density of

birds feeding at a given distance, we consider three different growth functions.

Logistic growth. Logistic growth describes the density-dependent dynamics of a self-renewing

prey and can be written as

8(R(z)) = R(z)(r — aR(z)), (B3)

where r is the intrinsic per-capita growth rate and a the sensitivity to competition. The right-
hand side of eq. is a quadratic function in R(z), representing a parabola that is open to the
bottom, intersects with the x-axis at R(z) = 0 and R(z) = r/a. The growth rate of the prey
population increases with population density as more individuals can produce more offspring,
but this is counteracted by increased negative density dependence. These two opposing forces
cause that the growth rate is maximal when the prey density equals half the equilibrium density,

R(z) = r/(2a). We discuss the effect of logistic prey dynamics on the density of birds after we
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Figure B1: Equilibrium prey distribution R(z) (first row), proportion of birds p(z) (second row), bird

density n(z) (third row), prey renewal rate G(R(z),z) (fourth row), and net energy content B(R(z),z)

(fifth row) as a function of distance z from the island under the maturation model for the four different
growth functions g¢(R) shown in fig. [B2|(in columns). Note that the panels within the first and last row are

identical to each other, since neither the equilibrium prey density nor the net energy content depend on
2(R(z)) (egs. and respectively). Parameter values: m =0,b =1, ¢; = 0.2, a = 0.0024, v = 80, u = 0.4.
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Figure B2: Growth rate ¢(R) of adult prey as a function of adult density R for four parameter combinations
of the maturation model (eq. [B8). Parameters are chosen such that the equilibrium density of adult prey
in the absence of predation by birds equals 500 and the maximum growth rate equals 5. (a) bg = 1.5dR:
The maximum growth rate occurs for a density that lies above 250. (b) bg = 2dr: The maximum growth
rate occurs at a density of 250. In the interval (0,500) the function ¢(R) is symmetric. The shape of this
function is very similar to that of the logistic growth function given by eq. given parameters that fulfill
the same constraints (equilibrium at 500 and maximum growth rate of 5). (c) bg = 4dg: The maximum
growth rate occurs for a density that lies below 250. (d) bg = 10dr: The maximum growth rate is shifted
to an even lower density. The consequences of these different growth function for the distribution of bird
densities are shown in fig.

introduced the next growth function.

Maturation dynamics. Logistic growth describes a population of identical individuals. As an
alternative, we now derive a growth function when the prey population is stage-structured,
with birds feeding on adults that result from maturation of juveniles. We assume that juveniles,
with density J(z) at distance z, are produced by adults, with density R(z) at distance z, at a
per-capita birth rate bg and die at a per-capita death rate d;. Juveniles mature into adults at a
density-dependent per-capita maturation rate m;/(k; + J(z)), where m; denotes the maximum
maturation rate and k; the density of juveniles at which maturation is half-maximal. Adults
move at rate m, while juveniles are assumed to be too small to show significant movement.
Finally, adults die from causes other than predation by birds at a per-capita death rate dg. Then,

at equilibrium the density of juvenile and adult prey fulfill

0 =bgR(z) — d;](z) — m (B4)
2 ya Z X,z X
0 =g(R(z), 1) +m (S + 1) - pir), o P, (85)
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where

¢(R(2),](2)) = ,m 4R (z). (B6)

Solving eq. (B4), a quadratic function in J(z), we find that the relevant root for J(z) is

1

J(z) = 271] (bRR(Z) + \/(d]k] + }’I’l])z + br (2(d]k] — m])R(Z) + bRR(Z)2> —my— d}k}) , (B?7)

which, on substituting into eq. (B6), results in the growth rate of adult prey taking the form

$(R(z) = 5 (mf gy + (o~ 2400R() ks )2 + b (20— mp)R(2) +0eR()2)

(B8)
We refer to this growth function as the maturation model. In short, this function describes the
growth rate of an adult prey population at distance z at equilibrium as it results from maturation
of juveniles.

Now recall (eq.[B1) that bird density n(z) is the product of prey renewal G(R(z), z) and the net
energy value B(R(z), z) per prey item. These quantities are shown in fig.[B1|as a function of z for
three different values of the search costs cs. Note that fig. [Bl|assumes m = 0 so that G(R(z),z) =
2(R(z),z) (see eq. @ To understand the shape of the renewal function, shown in the fourth row
of fig.[BI)), we start by investigating it as a function of R. This is shown in fig.[B2] for four different
parameter combinations. Using symbolic calculation, it can be shown that eq. is an unimodal
function of R that passes through zero at R = 0 and R = (mj(bg — dr) — djdrky)/(dr(br —dR)),
which is the equilibrium density for adult prey in the absence of predation by birds. Furthermore,
for br = 2dg (fig.[B2b), this function has its maximum at half the equilibrium density. Numerical
calculations show that the position of the maximum increases if bg is decreased relative to dg
(fig. ) and decreases if by is increased relative to dg (fig. ,d). The reason that ¢(R) decreases
when R passes a certain threshold is that the prey population becomes maturation limited—
more adults producing offspring results in stronger density dependence among juveniles, and
this slows down maturation. This effect becomes more pronounced as br increases relative to
dr. Hence, the larger br relative to dg, the larger the interval of R-values for which ¢(R(z))
decreases. This observation translates to the shape of g(R(z)) when plotted as a function of

distance z. Panels (c) and (d) in the fourth row of fig. corresponding to the leftward-shifts
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of the maximum growth rate (due to bg > 2dg) shown in panels (c) and (d) of fig. show a
monotonic decline in the growth rate, simply because the prey equilibrium density at the island,
R(0), shown in the top row of fig. exceeds the R-value where the growth function has its
maximum. In contrast, for bg < 2dg (column (a) and (b) in fig. [BI), whether the function g(R(z))
is unimodal in z depends on the search costs cs. Lower search costs result in a more pronounced
prey depletion halo (lower value of R(0), see first row in fig. [B1), and g(R(z)) is hump-shaped
(blue and orange line in fig. a) and blue line in (b)) if the value of R(0) is lower than the value
of R where g(R) has a maximum (fig. and monotonically decreasing otherwise.

The shape of the graphs for n(z) (third row in fig. closely follows those for g(R(z)), and
are only modified slightly by the change of the net energy value B(R(z),z) (fifth row in fig.
with distance from the island. In the absence of search costs (¢cs = 0, blue lines), B(R(z),z)
decreases with z due to increasing flight costs. If ¢, is sufficiently high, however, B(R(z),z)
increases with distance. This is because the time to catch a prey item decreases with increased
prey density, so that the costs spend on catching prey decrease with z.

The logistic growth function described by eq. is very similar to the curve shown in
tig. b), as both curves are symmetric around the R-value that is equal to half the equilib-
rium density in the absence of predation. As a consequence, the graphs in column (b) in fig.
are virtually indistinguishable from those that would result from logistic growth. Hence, quali-
tatively logistic growth can be interpreted as a special case of the maturation model that results

when bg = 2dg.

Logistic growth with productivity gradient. Eq. assumes that the parameters r and a
do not depend on the distance from the island. This assumption approximates the situation
around isolated volcanic islands, where the sea floor drops sharply with increasing distance
from the island so that the surrounding waters can be considered approximately homogeneous.
This assumption is less appropriate for colonies where the surrounding sea shows a gradient in
primary productivity with increasing z. Such productivity gradients can easily be incorporated

in our model. To do this, we extend the logistic growth model (eq. to

8(R(2),2) = R(2)(r(z) — aR(z)), (B9)
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where
z

- (B10)

T(Z) = 'max — (rmax - rmin)

This function for 7(z) is monotonically decreasing in z, starting at 7max for z = 0 and approaching
min as z goes to infinity. The parameter k, denotes the distance at which the intrinsic growth rate
has dropped by 1/2(rmax — 'min). In the absence of prey movement (m = 0), egs. (11)-(13) apply
unchanged.

In eq. (BY), the growth function depends directly on z. This generalization of the model does
affect the equilibrium prey density and the ideal free distribution, as given by egs. and (12),
respectively, since these results do not hinge on the functional form of G(R(z),z). But we need
to recalculate the maximum flying distance. To do this, we replace R* with R* = r(zmax)/a in
eq. (9. With this change, eq. (9) becomes a quadratic equation in zmax, and we find that the

relevant root equals

—9 + /7% — 8armin(ct + p)krv(a(cs + p) — abrmax)
4armin(cf + ]1)

(B11)

Zmax =

with
¥ = 2akyrmax (¢t + ) + va(cs + ) — abrmino. (B12)

Figure [B3| shows three examples of how productivity gradients can affect the distribution of
bird densities. The panels in the first row show, for m = 0 such that G(R(z),z) = g(R(z), z), the
equilibrium prey density r(z)/a at distance z for productivity gradients of increasing strength.
Productivity gradients cause prey renewal g(R(z),z) (fifth row) to drop sharply close to the
island. Depending on the strength of the productivity gradient, this decrease continues until the
maximum flying distance (green line in column (b), and all lines in column (c)) or peaks at an
intermediate distance. Note, that ¢(R(z),z) also varies with the search costs c;, as this affects
prey abundance R(z). The peak at intermediate distances under a weak productivity gradient
(and under low search costs under an intermediate productivity gradient) results from g(R(z), z),
when viewed as a function of R, having a maximum at an intermediate prey density, just as under
the maturation and logistic growth models. The shape of the graphs for n(z) (fourth row) again
closely follows those for g(R(z),z), and is only modified slightly by the slope of the net energy

content B(R(z),z) (sixth row) per prey, just as under the maturation and logistic prey models.
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Figure B3: Figure legend on next page.

37


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure B3: The effect of productivity gradients is illustrated under logistic prey dynamics for three param-
eter combinations determining the intrinsic growth rate r(z) as given by eq. (in columns, parameters:
Tmax = 0.02 and (@) 7min = 0.37max, kr = 30, (b) *min = 0.2rmax, kr = 20, and () #min = 0.1rmax, kr = 10)
and three values of the search costs cs (colored lines). The top row shows the equilibrium prey density
R* = r(z)/wa in the absence of predation by birds, showing that the prey productivity gradient becomes
steeper and more pronounced from left to right. The second row shows the equilibrium prey density R(z)
in the presence of predation by birds, that is, the prey depletion halo. Curves for R(z) of the same color
are identical across the three columns but are cut off at different distances, since the maximum flying
distance zmax (eq. decreases with the severity of the productivity gradient. The third row shows the
birds’ ideal free distribution p(z). The fourth row shows the density of birds n(z) foraging at distance z.
The pattern shown in the fourth row can be understood based on the fifth (showing g(R(z),z)) and sixth
(showing B(R(z),z)) row. Curves for B(R(z),z) of the same color are identical across the three columns
but are cut off at different distances, as for R(z). Parameter values as in fig. [I| but for m = 0 and ¢, as
indicated by the color code.

Conclusion. Our exploration of the effect of three different functions for the growth rate ¢(R(z))
on the density of birds n(z) foraging at distance z, shows that 7(z) is highly sensitive to details of
the prey growth rate. The monotonic and initially steep decline of bird density with increasing
distance from the island found by Weber et al.| (2021 their fig.1A) is predicted by our model only
under sufficiently strong productivity gradients (fig. B3[). In the absence of a productivity gra-
dient, a monotonic decline is only expected when the prey depletion halo is sufficiently shallow
so that the equilibrium prey density at the island is higher than the value where the prey growth
rate is maximal. For the growth functions analyzed here, this constellation is more likely under
the maturation model than under the logistic model and in the presence of high search costs
(fig. [Appendix Bf,d). Note that, maybe somewhat surprisingly, the shape of the distribution of
bird densities also depends on the birds trait values as it is these that determine the depth of the
prey depletion halo.

It is important to point out that Weber et al|(2021), when modeling whether the birds breed-
ing on Ascension Island can cause the observed prey depletion halo, assume that the fish popula-
tion has a uniform distribution at the beginning of the season and becomes increasingly depleted
as the breeding season proceeds (the halo expands), with no regrowth of the fish stock during the
season. Our model does not allow for such seasonality, and all our results are derived under the
assumption that the system is at equilibrium. To conclude, we show that the distribution of the

density of foraging birds can take a variety of forms, including dome-shaped and monotonically
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declining, and accurate predictions would require detailed knowledge of empirical details of the

prey renewal dynamics.

Appendix C Multi-species equilibrium and coexistence

In this appendix, we generalize the single species equilibrium conditions given by egs. (1I)—(13)

to a community of interacting species.

Appendix C.1 Equilibrium conditions for prey, bird behavior and demography for n

coexisting bird species

According to our assumptions, the equilibrium prey density R(z), the ideal free distribution
p(x,z) of a species with trait value x, and the equilibrium abundance N(x) of birds with that
trait value in a community X = {x1, x2, ..., x,,} are determined by the following coupled system
of equations, which generalizes the equilibrium of the single species model of the main text
(section [2.2) to n species.

First, the prey at distance z at equilibrium balances renewal and consumption,

G(R(z),2) ~ X flx,R(z),z) PE2NE)

xeX

=0. (C1)

Here, the renewal function G(R(z),z) is given by eq. while prey consumption is obtained
from the assumption that the N(x) birds of the species with trait value x are distributed ac-
cording to the ideal free distribution p(x,z), and that at distance z the p(x,z)N(x) birds are
homogeneously distributed over the circumference of the circle centered at the island with ra-
dius z.

Second, the ideal free distribution p(x,z) for each x € X is characterized by the fact that the
payoff obtained by individuals with trait value x € & is identical at all distances where these
individuals forage. Furthermore, the payoff at distances where individuals forage is at least as

high as the payoff that would be obtained at distances where individuals do not forage. Thus,
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for each x € X we have

I1(x,z) =B(x) for all z € Ry with p(x,z) >0 (C2a)
IT(x,z) <B(x) for all z € Ry with p(x,z) = 0. (C2b)

Here, B(x) is the constant payoff obtained at visited foraging distances to an individual with
trait value x (the set of foraging distances satisfying eq. is the support of the ideal free
distribution). While the payoffs given by eq. do not depend explicitly on p(x,z) (just as in
the single species case), the dependence enters through eq. as the payoff depends on the
equilibrium prey density R(z), which depends on the ideal free distribution. At the ideal free
distribution of the multispecies community characterized by eq. (C2), for each individual with

trait value x and each x € X, we have

IT(x,y) <TI(x,z) forall ze€ Ry with p(x,z) >0and all y € R;. (C3)

This implies that no individual of any species has an incentive to unilaterally change behavior
given all other individuals behave according to the ideal free distribution of their species. Thus,
the multi-species ideal free distribution is a multi-species Nash equilibrium.

Third, the species with trait value x € X’ is at its demographic equilibrium N(x) when birth

balances deaths,

[1(x) = p. (C4)
Here,
_ Zmax (¥)
II(x) = /Z:O p(x,z)I1(z) dz (C5)

is the mean payoff, which we equate to mean fecundity of an individual with trait value x.
Furthermore, Zmax(x) is the maximum traveling distance of such an individual, as given by
eq. (I0). Here too, the dependence of the birth rate, given by average payoff, depends on N(x)
indirectly through the dependence of the equilibrium prey density on N(x) (eq.[C1).

The coupled system of equations (CI)-(C4) characterizes the prey equilibrium R(z), the be-

havioral equilibrium p(x,z) and the equilibrium bird abundance N(x).
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Figure C1: Equilibrium prey density R(z) (hatched lines, left y-axis) and ideal free distribution p(z)
(proportion of birds feeding at distance z, solid lines, right y-axes) as function of distance z from the
island for five different movement rates m and a fixed bird population size of 200000 individuals under
logistic prey dynamics. In contrast to the results of bird populations at demographic equilibrium, as
shown in fig. [I(a), the maximum flying distance decreases with increasing m and prey halos become less
pronounced. Parameter values as in fig.

Appendix C.2 Properties of equilibrium prey densities

To determine the prey equilibrium and the behavioral and demographic equilibrium for multiple
bird species, we start by presenting two properties of the equilibrium prey density distribution

p#+cs(x)
2z

a(x) <b - (el +u>)

R(x,z) = , (Co6)

which denotes the equilibrium prey density under the assumption that the bird population is
monomorphic for trait value x (i.e., eq. [1T).
First, for two species with trait values x; # x, the graphs of the equilibrium prey densities

R(x1,z) and R(xy,z) intersect at most once. To see this, set
R(x1,z) = R(x2,2), (C7)
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which, owing to eq. (C6), is given by
ptcs(x1) _ B cs(x2)

o) (0= 2l +0) ale) (- S (e +4) )

0(x1 @

(C8)

This equality defines a linear equation in z, which can have at most one solution. The value of z
satisfying the equality is the intersection point of the two equilibrium prey density distributions,
which may lie beyond zmax(x1) Or Zmax(x2).

Second, R(x,z) is convex in z in the interval [0, zmax(x)). This can be seen from the second

derivative of eq. with respect to z, which is given by

0’R(x, z) B 20(x) (p + ce(x))? (1 + cs(x))
922 a(x)(bo(x) —z(u+ & (x) )

The right-hand side is positive for z < bv(x)/(p + c¢(x)). This is true for z < zmax as long as

Zmax (¥) < bo(x)/(u + c¢(x)) holds, which is indeed the case as the following shows. By writing

eq. as

o(x) (a(x)bR* — p — cs(x))
) =R G )
_ bo(x) ~ R(x,0)
T R (10
where
R(x,0) = B &) (C11)
’ a(x)b

It follows that zmax(x) < bv(x)/(p + c¢(x)), because the term in parentheses on the right-hand
side of eq. (C10) is less than 1. Thus, 9>R(x,z)/9z> > 0 and the function R(x, z) is convex in z for

Z < Zmax(X).

Appendix C.3 Mutual exclusive foraging and prey depletion halo

We have now all concepts in place to determine the joint equilibrium conditions for prey, bird
behavior and demography in a community of species with trait values X'. Let us first focus
on two species, say species 1 with trait value x; and species 2 with trait value x,. Assume that

R(x1,0) < R(x2,0) and zmax(¥1) < zmax(x2) (as an example, consider x; = 3.5 and x, = 2 with the
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parameters as in fig. . Then, given that the curves R(x3,z) and R(xy,z) are convex, the above
ordering implies that they intersect exactly once, say, at the distance z = z;. Given the assumption
R(x1,0) < R(x2,0), species 1 depletes prey to a lower density in the interval [0,z;] and thereby
competitively excludes species 2. By contrast, species 2 depletes prey to a lower density in the
interval [z1,Zmax(X2)] and thereby competitively excludes species 1. In conclusion, the interval
[0, zmax(x2)] of utilized foraging distances can be partitioned into two mutually exclusive sub-
intervals, such that [0, zmax(%2)] = [0,21] U [21, Zmax(¥2)] and z1 = [0,z1] N [21, Zmax(¥2)] (thus,
with mutually exclusive we mean that two intervals intersect at most at their boundary). If,
however, R(x1,0) < R(x2,0) and zmax(¥1) > Zmax(X2), then species 1 excludes species 2 over the
whole interval [0, zmax(x1)] of utilized foraging distances (as is the case for x; = 0.5 and x, = 0.3
in fig.[C2). In summary, starting with a community X = {x1,x,}, either the two species coexist
by occupying two mutually exclusive distance intervals, or they mutually exclude each other
with one species going extinct.

Suppose now that two species coexist and that we add a third species with trait value x3
(X = {x1,x2,x3}) and that, in addition to the above ordering R(x1,0) < R(x2,0) and zmax(x1) <
Zmax(X2), we have, say, R(x2,0) < R(x3,0) and zZmax(x2) < zZmax(X3) (as an example, consider x; =
3.5, x = 2 and x3 = 1 with the parameters as in fig. . Since “is greater than” (>) is a transitive
relation on the real numbers, we then also have R(x1,0) < R(x3,0) and zmax(¥1) < Zmax(X3). Due
to the convexity of R(x1,z), R(x2,z) and R(x3,z), it follows that (i) the curves R(xz,z) and R(x3, z)
intersect exactly once, say at zp, and (ii) the intersection points z; (of R(x1,z) and R(xp,z)) and z»
have the ordering z; < z». Thus, the interval of utilized foraging distances can now be partitioned
into three mutually exclusive distance intervals [0, zmax(x3)] = [0,21] U [21, 22] U [22, Zmax(x3)]. In
each of these intervals, a different species induces the lowest equilibrium prey density. Hence,
starting with a community X = {x1, x2, x3}, either the three species coexist by occupying three
mutually exclusive bands (fig. for x; = 3.5, x, = 2 and x3 = 1), or two species coexist on
mutually exclusive bands (fig. |C2|for x; = 3.5, x» = 2 and x3 = 0.5), or only one species persists
(fig.[C2 for x; = 1, x = 0.5 and x3 = 0.3).

By induction, this argument generalizes to a community X' = {xi,xp, ..., x,}. Suppose, the
ordering of the maximum flying distances of the n species, say, Zmax(¥1) < Zmax(X2) < ... <

Zmax (¥n) matches the ordering of their equilibrium prey density distributions at distance z = 0,
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Figure C2: Equilibrium prey density R(x,z) as a function of distance z for five different species, assuming
that capture efficiency a and flying speed v are determined by the trait value x. This illustrates that,
for certain parameters, not all equilibrium prey density curves intersect at z-values less than zmax. The
following sequence of community assembly could be envisaged. A community consisting of a species
with x = 0.3 is replaced by an immigrant (or mutant) with x = 0.5, which in turn is replaced by a new
species with x = 1. However, a further species with x = 2 does not replace the species with x = 1 but
coexist with it (where the species with x = 1 is restricted to a small interval at a large distance from the
island. Upon the arrival of a species with x = 3.5, a community of three coexisting species has emerged.
Parameter values as in fig. a) except for « = 0.001. As a result, R* = 100, which makes condition ,
specifying when a trade-off between v and a results in a trade-off between R(x,0) and zmax(x), more
restrictive.

R(x1,0) < R(x2,0) < ... < R(xy,0) (i.e., a larger maximum flying distance implies a higher
equilibrium prey density at distance z = 0). Then, the interval (0, zmax(X»)) of utilized foraging
distances can be partitioned into the n distance intervals [0,z1], [z;_1,z;] fori € {2,...,n —1} and

[Zn—1, Zmax(Xn)], where z; (i € {1,...,n — 1}) is obtained by solving the linear equation
R(xi,z;) = R(xit1, i) (C12)
for z; using eq. (C6). These intervals fulfill
[0, Zmax (xn)] = [0,21] U [21,22] U ... U [2,-1, Zmax (Xn)] (C13)

and any two intervals intersect at most at a common boundary. Thus, they are mutually exclusive.
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Each interval is occupied by the species that depletes prey to the lowest equilibrium density in

that interval, and the equilibrium prey distribution equals

0 forz=20
R(z) = { R(x;,z) forie{l,...,n}andz,_ 1 <z<z (C14)
R* for z > Zmax(xy).

where z;_1 = 0 for i = 1, z; = zmax(x,) for i = n, otherwise z; solves eq. (C12). The behavioral

strategy equals

2z G(R(x;,2),2) ‘
foric{l,...,ntand z;_1 <z <z
p(x2) = 4 NG Fxi R(xp,2), ) tomandzigsz<a o

0 for z > zmax(%n)

where

N(x;) = 2; ; z(b — (%) Te(x4,2) — cs(xi)Ts(xi,z)>G(R(xi,z),z) dz (C16)

Zji—1
denotes the equilibrium population size of species i (compare eq. [13). Egs. and
provide an equilibrium prey distribution and ideal free distribution (satisfying fzziil p(x;,z)dz =
1), since the system of equations (CI)-(C2) is satisfied. Together, egs. (C14)-(C16) provide an
explicit representation of the joint equilibrium for prey, bird behavior and demography for n
coexisting bird species. The salient feature is that a single bird species occupies a given interval,

and no two species can coexist within the same interval.

Appendix D Trade-offs

Each species is characterized by a quantitative trait value x € R that determines the value of
the four foraging components, capture efficiency a(x), flying speed v(x), flight costs c¢(x), and
search costs ¢s(x). In we established that for two species with trait values x; and
x2 to be able to coexist due to behavioral niche partitioning, it is necessary and sufficient that
the graphs of the equilibrium prey densities — induced by each species in isolation — intersect at
some distance z that lies within the maximum flying distance of both species. This is the case

if and only if R(x1,0) < R(x2,0) and zmax(¥1) < Zmax(x2) (or vice versa). In other words, the

45


https://doi.org/10.1101/2024.06.13.598783
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598783; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

species that depletes the prey to a lower equilibrium density close to the island also has a lower
maximum flying distance. This can be interpreted as a trade-off between a species” ability to use
prey efficiently in the absence of travel costs (close to the island) and in the presence of significant
travel costs (resulting in a higher maximum travel distance). In this appendix, we investigate for
which pairs of foraging components such a trade-off emerges, which is what we present in table
in the main text. We do this in two steps. First, in we establish how each foraging
component affects R(x1,0) and zmax(x). Second, in we ask how changing the trait
value x affects R(x1,0) and zmax(x). To answer this second questions, we make use of the results
from the first step. Assuming that more than two foraging components depend on x does not

lead to qualitatively new results.

Appendix D.1 Effects of foraging components on the prey depletion halo

From eqs. (L0)-(L1) we see that two characteristics of the prey depletion halo, R(x,0) and zmax(x),

can be written explicitly in terms of trait values as

ond o v(a(x)bR* — p — cs(x))
T T T RR G ) wy

P cs(x)
a(x)(b(x)

R(x,0) =

The derivatives of these two quantities with respect to capture efficiency a(x) are

dR(x,0) _ c(x)+p _ (D2a)

da(x) ba(x)2
dZmax . U(X)(Cs x) -+ 7/‘)
da(x) ~ R*a(x)%(ci(x) + p) > 0. (D2b)

Thus, increasing a(x) lowers the equilibrium prey density curve R(x, z) at all distances z.

The derivatives with respect to flying speed v(x) are

dR(x,0)
o) 0 (D3a)
dzmax  bR*a(x) —cs(x) — pt

do(x) — Rra(x)(ce(x) + p)

> 0. (D3b)

From egs. (1)-(3) follows that the numerator on the right-hand side of eq. (D3b) can be interpreted

as the per-capita growth rate of a species foraging at z = 0 and in the absence of competition
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such that the prey density is given by R*. For a population to be able to persist, this quantity
has to be positive. Thus, increasing v(x) lowers the equilibrium prey density curve R(x,z) at all
distances z > 0.

The derivatives with respect to flying cost c¢(x) are

dR(x,0)

der(x) =0 (D4a)
dzmax _ _ 0(x)(bR*a(x) — cs(x) — p)
Al = Ral) (@)t ) <0. (D4b)

Thus, increasing c¢(x) raises the equilibrium prey density curve R(x,z) at all distances z > 0.

Finally, the derivatives with respect to search cost cs(x) are

dR(x,0) 1
dex) ~ bax)) (D5a)
dZmax _ o(x) <0. (D5b)

des(x) — Rea(x)(er(x) + )

Thus, increasing c¢(x) raises the equilibrium prey density curve R(x,z) at all distances z.

Appendix D.2 Trade-off pairs

In the following calculations, we omit the argument x from any foraging component that is not
assumed to depend on x. Primes denote derivatives with respect to x.

For the quantitative trait x to have the potential to impose a trade-off between R(0,x) and
Zmax (X), we assume that x maps to the considered foraging components such that the effect of
increasing x decreases R(0, x) and zmax(x) through one foraging component and increases R(0, x)
and zmax(x) through the other foraging component. Changing x indeed induces a trade-off if an
increase in x decreases R(0,x) and zmax(x) (increased competitiveness close to the island at the

cost of decreased competitiveness far way from the island), or vice versa.

Trade-off between capture efficiency a(x) and flight speed v(x). Based on egs. and (D3),

to impose a trade-off we assume

d(x)>0 and ©'(x) <O0. (D6)
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For the derivatives, we find

dR(x,0) a'(x)(cs+ p)

dx b (D7)
dzman (¥) _ @'(x)0(x) (65 + 1) + ()0 (x) (bR*a(x) — ¢, — )
dv Rea(x)(cs + #) | (D7b)

For a trade-off to exist, the right-hand side of eq. (D7b) has to be negative. This is equivalent to

_d'(x)v(x) _bRYa(x) —cs—p
v'(x) a(x) - Cs+ 1 ' (D8)

Due to eq. (D6), the function v(x) and is invertible and differentiable with derivative 1/7'(x).

With this, we can rewrite the last inequality as

da(x) v(x) - bR*a(x) —cs — p
do(x) a(x) Cs+ 1 '

(D9)

The left-hand side of this inequality gives the slope of the parametric curve that plots a(x) and
v(x) as a function of x, to which we refer as trade-off curve, weighted by the inverse ratio of the
two foraging components. Note, that, due to (D6), this trade-off curve has a negative slope. The
left-hand side of inequality(D9) is known as the elasticity of the trade-off curve (the percentage
change in a(x) with percentage change in v(x); e.g., Sydseeter and Hammond, 1995, p. 171-4).

Trade-off between capture efficiency a(x) and flight costs ¢¢(x). Based on egs. (D2) and (D4),

to impose a trade-off we assume

a(x)>0 and cf(x)>0. (D10)

For the derivatives we find

OR(x,0) a’(x)(cs + p)

ox  baxz ¥ (D11a)
dzmax (x) _ (@' (x)(cs + p) (ce(x) + ) — a(x)cp(x) (bR a(x) — cs — 1))
dx Rea(x)2(ci(x) + p) . (D11b)
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(b)

density;,

equilibrium prey

20 40 60 80 100 20 40 60 80 100 120

distance from the island, z

Figure D1: Equilibrium prey density R(x,z) as a function of distance z for four different trait values x,
assuming that (a) flying speed v(x) and flight costs c¢(x) and (b) capture efficiency a(x) and search costs
cs(x) are trait-dependent. In the first case, all equilibrium prey density curves intersect at z = 0 while
they never intersect in the second case. In both cases, coexistence of different species is impossible and
the species with the lowest equilibrium prey density curve excludes all others (x = 0 in (a) and x = 10 in
(b)). The functions a(x) and v(x) are as described in the legend of fig. 2| For flying and search costs, we
use c¢(x) = cgo/ (1 + cpx) and cs(x) = cs0/ (1 + cs1x), respectively, with parameters cgy = 0.2, ¢y = 0.01,
cso = 0.4 and cg; = 0.1. Other parameter values as in fig. a).

For a trade-off to exist, the right-hand side of eq. (D11b) has to be negative. Factoring out
a'(x)/ci(x) = da(x)/ dcg(x), this is equivalent to

bR*a(x) — cs(x) — S da(x) ce(x) +u
o) + 1 de(x)  a(x)

(D12)

Trade-off between capture efficiency a(x) and search costs ¢s(x). In this case, solving eq.
for z shows that different equilibrium prey density functions do not intersect with each other
(as in fig. [DIp). Thus, for a given set of species X, the species x corresponding to the lowest

equilibrium prey density curve excludes all other species and coexistence is impossible.

Trade-off between flight speed v(x) and flight costs ¢¢(x). In this case, solving eq. for z
shows that different equilibrium prey density functions always intersect with each other at z = 0

(as in fig. [DIp). Thus, for a given set of species X, the species x corresponding to the lowest
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equilibrium prey density curve excludes all other species and coexistence is impossible.

Trade-off between flight speed v(x) and search costs ¢s(x). Based on egs. (D2) and (D5), to

impose a trade-off we assume

'(x) >0 and c(x) > 0. (D13)

For the derivatives we find

dR(x,0) cL(x)

- >0, (D14a)
dx ba
demenlx) _ 0/(3)(bR"a — c4(x) — 1) — 0(x)c)(x)
dx aR*(ce+ ) ' (D14b)

For a trade-off to exist, the right-hand side of eq. (D14b) has to be positive. Factoring out
v'(x)/c(x) = do(x)/ des(x), this is equivalent to

do(x) bR*a — cs(x) — u
des(x) v(x)

> 1. (D15)

Trade-off between flight costs c¢(x) and search costs ¢s(x). Based on egs. (D4) and (D5), to

impose a trade-off we assume
cf(x) >0 and c(x) <O. (D16)

For the derivatives we find

dR(x,0)  cl(x)

S =S >, (D17a)
dzmax<x> o _U(Cé(x)(bR*ﬂ - Cs(x) - ‘M) + Cé(X)(Cf(X) + Iu))
dx aR*(u + c¢(x))? ' (D17b)

A trade-off exists if eq. is positive. Factoring out c{(x)/cl(x) = dece(x)/ des(x), this is

equivalent to
_deg(x) bR*a — ¢5(x) — p
des(x)  ce(x) +p

> 1. (D18)
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Appendix E Group foraging

We here derive the model of group foraging described in Box 1. Thus, we keep all assumptions
of the foraging process the same as under the model for individual foraging, except that (i) all
individuals express an identical foraging behavior, (ii) population (group) size N is fixed, and (iii)
resources show no movement (m = 0). Since we consider groups consisting of a single species,
we henceforth omit the argument x from all variables.

From the model of individual foraging we know that a maximal foraging distance zmax exists
beyond which payoff is negative and distances beyond this point will never be visited in any
behavioral equilibrium. Accordingly, we can write the expected payoff to an individual with

behavioral strategy p : [0, zmax] = R4 under group foraging as

Mz ) = [ p(2)T1(z) (E1)
subject to the constraint that
/OzmaX p(z)dz =1, (E2)
and where
[1(z) = f(R(2),2)B(R(2),2) (E3)

is the payoff from foraging at distance z. Eq. is the net rate of energy delivery of an individual
under group foraging and can equivalently be interpreted as the foraging group’s average per-
capita energy delivery. Here, B(R(z),z) and f(R(z),z) are defined as in egs. (I) and (2) in main
text. Furthermore, analogous to eq. (5) in the absence of movement (m = 0), the equilibrium prey

density R(z) at distance z satisfies

(E4)

Thus, the mean payoff defined by eq. is equivalent to that defined by eq. {@).

The behavior p in egs. and (E4), however, does not yet represent an equilibrium. To
find the equilibrium, we have to maximize the payoff I'1(p) with respect to p and the maximum
foraging distance zmax under the integral constraints given by (E2). To solve this optimization

problem, we follow standard optimization techniques using calculus of variations (e.g. Bryson
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and Ho, 1975; Sydseeter et al., 2008). We note that our problem is equivalent to an optimal control
problem with a free boundary point and an integral constraint (e.g., Bryson and Ho, 1975, section

2.8 and 3.1). Accordingly, we construct the Lagrangian function

L(pr ) = [ pME@ 2 ([ playdz 1), (E5)

where A is the Lagrange multiplier associated to the integral constraint. The necessary first-order

conditions for the function p and the distance zmax to maximize payoff are

OL(P, Zmax) _ Al(z) IR(z) .
Topr) O PEGRG apr) ~A 0 forallz € [0 Zma (E6a)
aL(Pzzmax) o .

oz I1(Zmax) —A =0 (E6b)

(a special case of Bryson and Ho, 1975, eqs. 2.8.17 and 2.8.20 with a Lagrangian function given
by their eq. 3.1.4). Note, that for simplicity of presentation, in the second term on the right-hand
side of eq. we omit writing the functions explicitly in terms of the arguments with respect
to which partial derivatives are taken. The first term in this derivative, I1(z), describes the payoff
gain to an individual from increasing its tendency to forage at distance z and is thus a benefit.
The second term describes the change in payoff that results from increased prey depletion at
a distance z that comes with an increased tendency to forage at that distance. The Lagrange
multiplier A can be interpreted as the payoff that is lost at equilibrium if the constraint could be
loosened infinitesimally (e.g., Sydseeter et al.,|2008). Eq. says that the gain from foraging at
distance z must be balanced by the cost of increasing competition from foraging at z and the cost
this entails. Finally, note that by comparing eq. and eq. it follows that p(zmax) = 0.
Egs. (E6a)-(E6b) show that a candidate equilibrium density p(z) at z has to satisfy

p(Z) = F(p(z),A,z) (E7)
with
A—TI
Fp(a),A,2) = S, (E8)
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where
ol(z)  a(b+ (cs—cp)Ti(z)) )
IR(z)  (1+aTi(2)R(z))* (E9a)
IR(z) Nf(z)
p(z) 2z BRED _ Np(z) 2L (E9b)

The last equality is obtained by implicit differentiation of eq. and where df(z)/0R(z) de-
pends on p(z) owing to eq. (E4). The argument p(z) in F(p(z), A, z) emphasizes that the density
p(z) in eq. is defined only implicitly. But this density can be solved by finding the solution
p(z) satisfying eq. if A is known, which in turn can be obtained by solving

/ TRz, Az)dz =0  and  T(zma) = A (E10)
0

for A and zmay.

In conclusion, once the nature of the prey’s growth rate g(R(z)) is specified, the system of
equations given by egs. (E7)-(E10) in combination with eqgs. (E3)-(E4) allows us to compute the
candidate behavioral equilibrium (p, zmax), consisting of a foraging distribution and a maximal
foraging distance, fulfilling eq. (E7). To ascertain that this is indeed a maximum, one would need
to evaluate second-order or sufficiency conditions for a local or global maximum. The literature
on control theory does not provide any simple recipe to check any such conditions in the context
of free boundary point optimal control problems (e.g., Seierstad and Sydseeter, 1987, Theorem
13, p. 145), and our problem is furthermore compounded with an integral constraint. Hence,
we argue somewhat heuristically that the equilibria identified numerically in fig. {3 are indeed
maxima. For this, we note that, because there is no prey at z = 0 and because payoff decrease
with distance z in an environment without competitors, the optimal solution has to be a function
p i [0,zmax] — Ry with zmax > 0 and p(z) > 0 for all z € (0, zmax]. Second, in the numerical
analysis underlying fig. 3| we find a single positive solution p(z) for each z € (0, zmax| satisfying
eq. (E7). This thus has to characterize a maximum.
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