

1 Stand Age and Climate Change Effects on Carbon 2 Increments and Stock Dynamics

3 **Authors:** Elia Vangi^{1,2,*}, Daniela Dalmonech^{1,3}, Mauro Morichetti¹, Elisa Grieco¹,
4 Francesca Giannetti², Giovanni D'Amico², Gherardo Chirici^{2,3,4}, Alessio Collalti^{1,3}

5 **Affiliations:**

6 ¹ Forest Modelling Laboratory, Institute for Agriculture and Forestry Systems in the
7 Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta
8 128, 06128, Perugia, Italy

9 ² geoLAB - Laboratory of Forest Geomatics, Dept. of Agriculture, Food, Environment and
10 Forestry, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze.

11 ³ National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy

12 ⁴ Fondazione per il Futuro delle Città, Firenze

13 *** Correspondence:** elia.vangi@isafom.cnr.it

14 **Abstract:** Carbon assimilation and wood production are influenced by environmental
15 conditions and endogenous factors, such as species auto-ecology, age, and hierarchical
16 position within the forest structure. Disentangling the intricate relationships between those
17 factors is more pressing than ever before due to the pressure of climate change. Yet, our
18 understanding of how future climate will interact with forests of different ages is
19 particularly limited, and only a few studies have explored this relationship under changing
20 climate conditions.

22 We employed a validated process-based forest model for simulating undisturbed forests of
23 different ages under four climate change scenarios (plus one no climate change) coming
24 from five Earth System Models. In this context, carbon stocks and increment were
25 simulated via total carbon woody stocks ($MgC\ ha^{-1}$) and the mean annual increment ($m^3\ ha^{-1}year^{-1}$), which depend mainly on age and long-term processes, such as climate trends.
26 We find greater differences among different age cohorts under the same scenario than in
27 different climate scenarios under the same age class. We found different C-accumulation
28 patterns under climate change between coniferous stands and broadleaves. Increasing
29 temperature and changes in precipitation patterns led to a decline in above-ground biomass
30 in spruce stands, especially in the older age classes. On the contrary, the results show that
31 beech forests at DK-Sor will maintain and even increase C-storage rates under most RCP
32 scenarios. Scots pine forests show an intermediate behavior with a stable stock capacity

34 over time and in different scenarios but with decreasing mean volume annual increment.
35 These results confirm current observations worldwide that indicate a stronger climate-
36 related decline in conifers forests than in broadleaves. We, therefore, advocate for a better
37 understanding of the interaction between forests and climate to better inform forest
38 management strategies, ultimately dampening the impacts of climate change on forest
39 ecosystems.

40

41 **Keywords:** carbon cycle, climate change, forest age, forest management, carbon stocks

42

43 **Introduction**

44 Assessing the quantity of CO₂ equivalent stored in forest ecosystems is one of the main
45 goals for implementing the new European Forest Strategy for 2030, a key component of the
46 European Green Deal, to achieve greenhouse gas emission neutrality by 2050. Within this
47 framework, European forest strategies have been geared towards forest-based mitigation
48 plans [1, 2, 3], which makes it essential to estimate the carbon sequestration capacity and
49 potential under future climate conditions.

50 In the near future, Europe and Mediterranean areas will emerge as focal points ('hot spots')
51 of climate change, characterized by heightened temperatures and environmental impacts [4,
52 5]. Carbon assimilation and wood production are influenced by environmental conditions
53 (e.g., precipitation, temperature, atmospheric CO₂, etc.) and endogenous factors, such as
54 species auto-ecology, age, and hierarchical position within the forest structure. In the past
55 decades, forest ecosystems proved to be crucial net carbon sinks [6, 7], likely due to the
56 positive fertilization effects of rising atmospheric CO₂ and temperature [8]. However,
57 whether this effect will remain positive or be compensated by other limiting factors is still
58 a matter of debate [9, 10, 11]. Some studies suggest that the fertilization effect on carbon
59 storage and biomass production fades with forest aging in temperate forests [12, 13] since
60 these positive effects cannot continue indefinitely, complicating the picture of the forest
61 response to climate changes even further. This is already the case in Europe, where forest
62 aging and increased disturbances are causing the saturation and decline of the forest carbon
63 sink [10]. Unfortunately, there is not yet a clear strategy to increase the mitigation
64 potentials of forests, and the factors involved are manifold and entangled together [12, 14,
65 15].

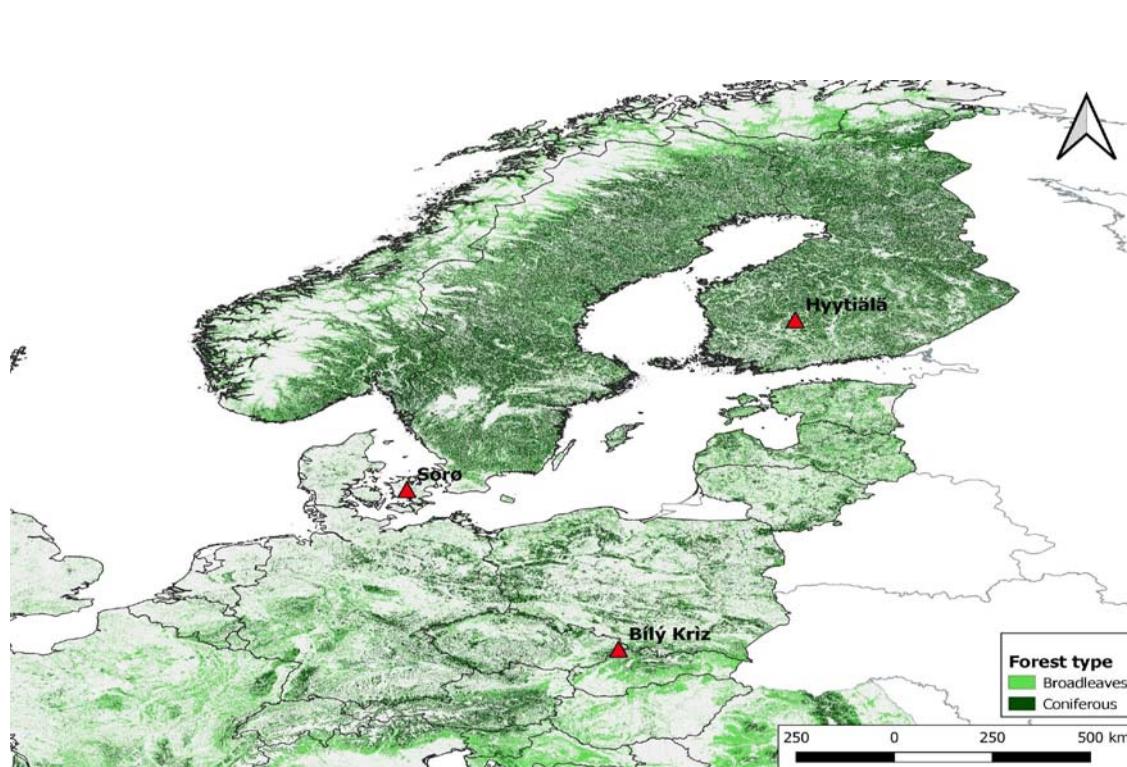
66 The need to disentangle the intricate relationships between those factors is even more
67 pressing under climate change. Our current understanding of how future climate will

68 interact with forests of different age classes is particularly limited, especially since only a
69 few studies have explored the relationship between age and the ecosystem's carbon balance
70 under changing climate conditions [16].

71 The climate sensitivity of age cohorts is driven, among all, by different access to
72 environmental resources, such as root depth and, therefore, access to water, as well as
73 height, which affects leaf-level water potential and, thus, stomatal conductance [17].
74 Rooting depth and height jointly affect the tree's sensitivity to water scarcity, a key
75 environmental driver of change. Future changes in environmental conditions are expected
76 to impact the age spectrum differently [18, 19, 20].

77 Since forest age is determined by management practices and 75% of European forests are
78 even-aged [21, 22], it is crucial to grasp and pin down the role of age in the sensitivity of
79 forest carbon stocks to climate change to guide and inform adaptative forest management.
80 Process-based forest models enable the exploration of climate change impacts on various
81 age cohorts within the same area, a task difficult to achieve through direct field
82 measurements, which would require decades or more. In this regard, this study examines
83 the ability of different forest age classes under the same future climate conditions to sustain
84 high productivity and carbon stock capacity. To achieve this goal, we employed the 'Three
85 Dimensional - Coupled Model Carbon Cycle - Forest Ecosystem Module' (3D-CMCC-
86 FEM) [23, 24], simulating undisturbed forests of different cohorts under four climate
87 change scenarios (and including one 'no climate change' scenario), from the moderate one
88 (RCP 2.6) up to the most severe one (RCP 8.5) coming from five Earth System Models. In
89 this context, carbon stocks and increment were simulated via total carbon woody stocks
90 (TCWS, i.e., the standing woody biomass in $MgC\ ha^{-1}$) and the mean annual increment
91 (MAI, in $m^3\ ha^{-1}\ year^{-1}$), which depend mainly on age and long-term processes, such as
92 climate trends.

93 The primary aim of this research is to explore (i) the direct effects of climate change on the
94 overall carbon storage capacity across various stands, species, and age classes situated in
95 diverse regions of Europe; (ii) elucidate the potential influence of forest age on stand
96 dynamics in adapting to forthcoming climate shifts.


97

98 2. Materials and Methods

99 2.1. Study sites and virtual stands

100 The study was conducted in three even-aged, previously managed European forest stands i)
101 the Boreal Scots pine (*Pinus sylvestris* L.) forest of Hyytiälä, Finland (FI-Hyy); ii) the wet

102 temperate continental Norway spruce (*Picea abies* (L.) H. Karst) forest of Bílý Kríz in the
103 Czech Republic (CZ-BK1); and iii) the temperate oceanic European beech (*Fagus sylvatica*
104 L.) forest of Sorø, Denmark (DK-Sor) where the 3D-CMCC-FEM (in different versions)
105 has been already validated in the past [15, 25, 26]. For each site, daily bias-adjusted
106 downscaled climate data from five Earth System Models (i.e., HadGEM2-ES, IPSL-
107 CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M) driven by four
108 Representative Concentration Pathways, namely RCP 2.6, 4.5, 6.0, and 8.5 were available
109 [27, 28] (Fig. S1). For more detailed information on the study site characteristics and
110 climate data, see [15, 25, 26, 29]. The chosen sites have been selected due to their long
111 monitoring history and the availability of a wide range of data sources for both carbon
112 fluxes and biometric data for model evaluation, as well as bias-corrected climate scenarios
113 for simulations under climate change scenarios from the ISIMIP-PROFOUND initiatives
114 (<https://www.isimip.org/>)[26, 29]. In addition, these stands: i) represent the most common
115 European tree species; ii) their current state is the result of the legacy of past forest
116 management; iii) they are mainly mono-specific and therefore represent interesting «living
117 labs» to study the effects of climate change on single-species and their productivity,
118 reducing confounding effects which otherwise make models struggle to predict forest
119 growth and carbon dynamics (e.g., [30, 31]), iv), and they have already been investigated
120 in the context of climate-smart-forestry silvicultural scenarios [15].

123 **Figure 1.** Test site locations in Europe.

124

125 **2.2. The model**

126 The ‘*Three Dimensional - Coupled Model Carbon Cycle - Forest Ecosystem Module*’ (3D-
127 CMCC-FEM v 5.6 [13, 15, 23, 24, 25, 32, 33] is a biogeochemical, biophysical, process-
128 based, stand-level forest model. The model is built to simulate carbon, nitrogen, and water
129 cycles in forest ecosystems, even including forest dynamics, under scenarios of climate
130 change and disturbances (e.g., forest management) and parameterized at the species level.
131 Photosynthesis is modeled through the biogeochemical model of Farquhar von Caemmerer
132 and Berry [34] implemented for sun and shaded leaves [35] (de Pury and Farquhar, 1997)
133 and parameterized as in Bernacchi et al. [36, 37]. Temperature acclimation of leaf
134 photosynthesis to increasing temperature is accounted for following Kattge and Knorr [38].
135 Autotrophic respiration (R_A) is modeled mechanistically by distinguishing the costs of
136 maintaining already existing tissues (R_M) and the cost of synthesizing new ones (R_G).
137 Maintenance respiration is controlled by the amount of nitrogen (stoichiometrically fixed
138 fraction of live tissues) and temperature. Temperature effects on enzyme kinetics are
139 modeled through a standard Arrhenius relationship but acclimated for temperature as
140 described in Collalti et al. [25]. The net primary productivity (NPP) is the gross primary
141 productivity (GPP) less R_A . Not all the annual NPP goes for biomass production since the
142 model considers the Non-structural carbon (NSC) pool, an additional seventh C-pool which
143 includes starch and sugars (undistinguished) used to buffer periods of negative carbon
144 balance (when respiration exceeds assimilation; i.e., $R_A > GPP$). Ultimately, the more trees
145 respire, the more NSC is used to sustain metabolism and NSC pool replenishment, and the
146 less NPP and BP there are (and less carbon is stocked). In the extreme case, when and if all
147 NSCs are depleted because of metabolism without being replenished through current
148 photosynthates, the model predicts stand mortality based on the carbon starvation
149 hypothesis [39, 40].

150 The phenological and allocation schemes are all described extensively in Collalti et al. [23,
151 24, 41] and Merganičová et al. [42]. The 3D-CMCC-FEM accounts for the ‘age-effect’ in
152 several ways. ’60s ecological theories describe [43, 44], and past and growing pieces of
153 evidence suggest that stabilization and a further slight decline follow an initial step-wise
154 increase in forest productivity. The causes of such a decline are debated and include a
155 decline in the GPP because of hydraulic limitation [17, 45] or an increase in R_A because of
156 increased respiring biomass [19, 20, 46]. The 3D-CMCC-FEM accounts for both by
157 including an age modifier [47], which reduces maximum stomatal conductance (and then

158 also GPP) in the Jarvis model and increases R_A because of biomass accumulation during
159 forest development.

160

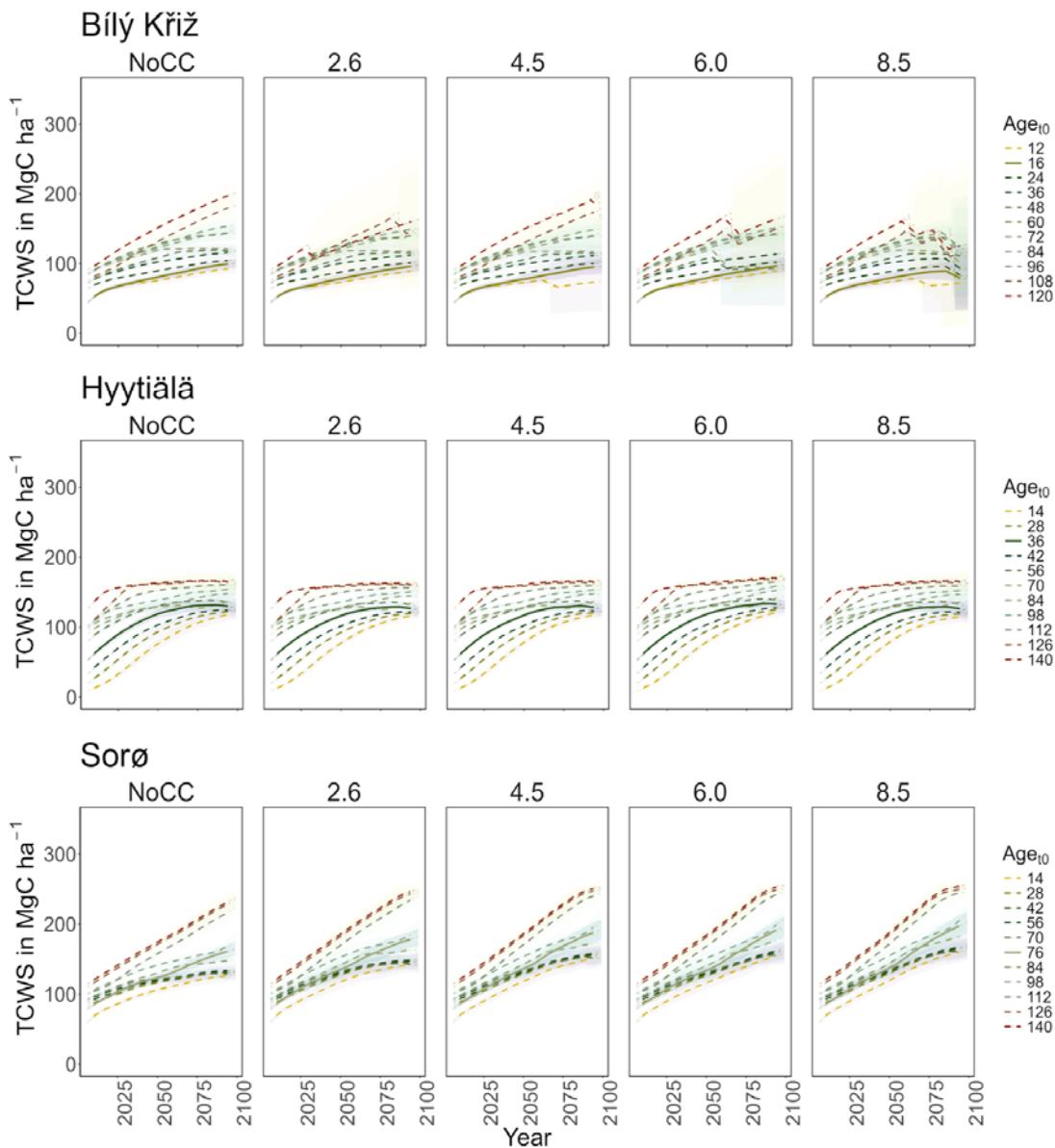
161 *2.3. The model runs and results evaluation.*

162 The 3D-CMCC-FEM was first evaluated under observed climate and field data for GPP
163 and NPP_{woody} (i.e., the NPP for woody compound; $gC\ m^{-2}\ year^{-1}$) and the diameter at breast
164 height (DBH)(see ‘Model validation’ paragraph in Supplementary Material; [13, 15]). The
165 model was forced with the modeled climate under different emission scenarios,
166 corresponding to the RCP atmospheric CO_2 concentration values for the period 1997 to
167 2100, ranging from $421.4\ \mu mol\ mol^{-1}$ in the ‘best-case scenario’ (RCP2.6) to $926.6\ \mu mol\ mol^{-1}$
168 of the ‘worst-case scenario’ (RCP 8.5) coming from the ISIMIP-PROFOUND
169 initiative. For comparison purposes, we forced the forest model with a detrended and
170 repeated meteorology and atmospheric CO_2 concentration from 1996-2006. The current
171 climate (i.e., no climate change ‘NoCC’) is considered the climate change scenario
172 comparison baseline. At the start of the simulations, we created a Composite Forest Matrix
173 (CFM), following the approach described in Dalmonech et al. [15], to simulate the
174 potential effect of climate stressors on stands of different ages. The 3D-CMCC-FEM has
175 been run at each site to cover the rotation period of each species (from 1997 to 2099) amid
176 the current climate scenario (fixed atmospheric CO_2 concentration at the year 2000 of
177 $368.8\ \mu mol\ mol^{-1}$) consisting of detrended and repeated cycles of the present-day observed
178 meteorology from 1996 to 2006 and the Business-as-Usual (BAU) management practices
179 observed at each site (see Reyer et al., 2020 for the description of BAU applied at each
180 site). Data required to re-initialize the model at every tenth of the rotation length were
181 retrieved from each simulation. Hence, ten additional stands were chosen for each age in
182 the composite matrix and added to the CFM. This collection of virtual forest stands was
183 used to set different starting stand ages at the present day (age_{t0}) due, ideally, to the past
184 silvicultural practice and climate. Under this framework, a landscape of eleven different
185 stands (in age and their relative C-pools and forest structure) for each site is created. These
186 new stands were used, each running from 2006 to 2099, to assess the impact of climate
187 forcing, as the model has already been shown to be sensitive to forest stand development
188 and the relative standing biomass.

189 The 3D-CMCC-FEM was initialized with the structural attributes of the newly created
190 stands from 1997, which was the starting year of all simulations and for all stands.
191 Modeled climate change simulations under different RCP-emissions scenarios started to

192 differentiate in 2006 (up to 2100). The simulation runs from the different stand initial
193 conditions, corresponding to different age_{t0} classes, were carried out without forest
194 management as we are interested in the direct climate impact on undisturbed forest stand
195 response, avoiding the confounding effects of forest management on the responses (for
196 forest management effects, see Dalmonech et al., 2022). 825 different simulations were
197 performed as they combined 5 ESMs * 5 climate scenarios (4 RCPs + 1 current no climate
198 change scenario) * 11 age_{t0} classes * 3 sites. Results are reported for MAI (Mean Annual
199 Increment; $m^3 ha^{-1} year^{-1}$) and TCWS (Total Carbon Woody Stocks; $MgC ha^{-1}$),
200 respectively, as they are considered some of the most representative and fundamental
201 variables in the carbon cycle and forestry. Following the methodology reported by
202 Dalmonech et al. [15] (see Table S1 in Supplementary Materials), we evaluated the model
203 forced with the modeled climate. We compared GPP and NPP_{woody} against eddy covariance
204 estimates and ancillary data for the years 1997-2005 for DK-Sor and FI-Hyy and 2000-
205 2005 for CZ-BK1. We also compared the diameter at breast height (DBH) in all sites with
206 field measures (see Supplementary Materials).

208 **3. Results**

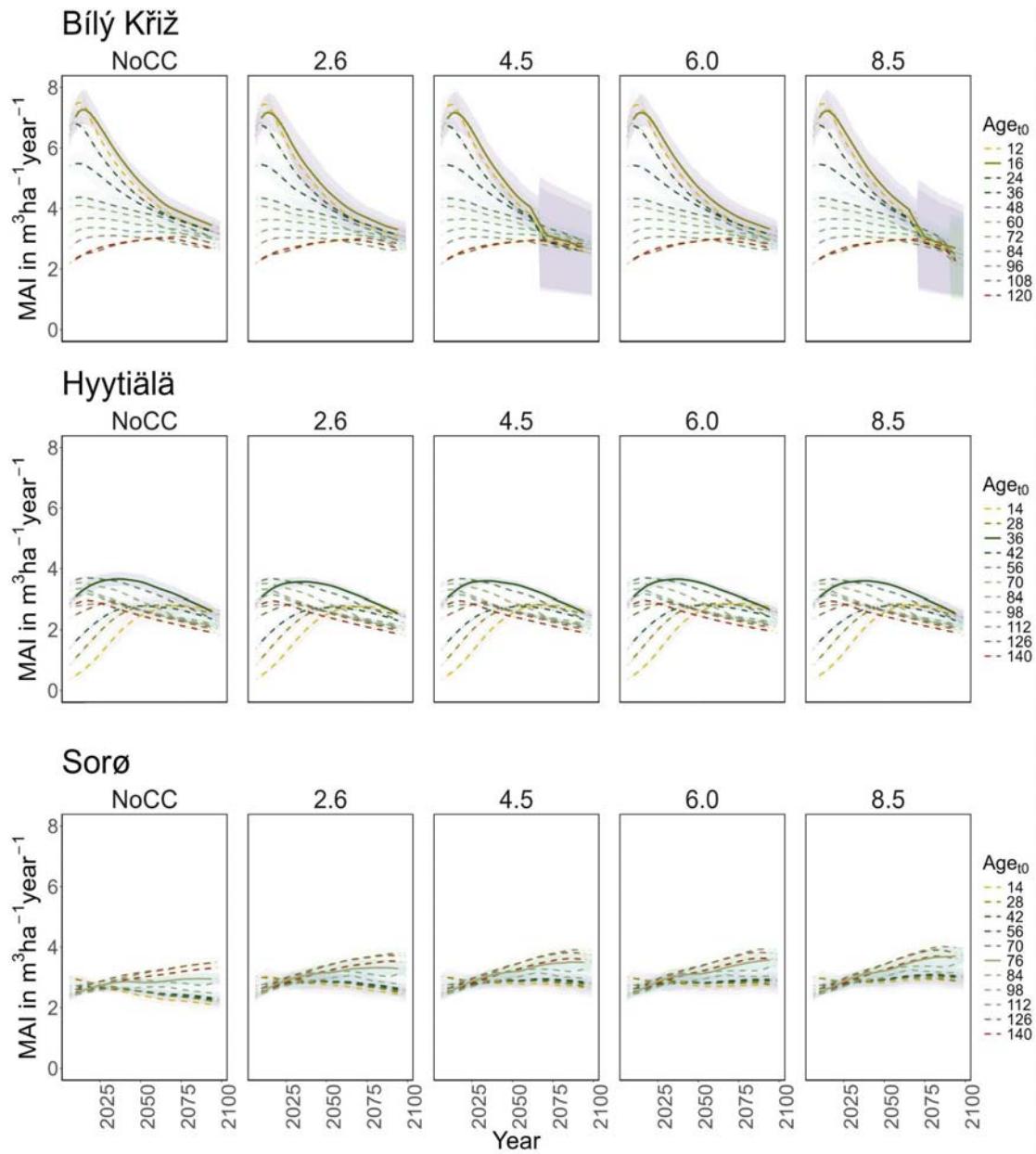

209 *3.1 Effect of age classes and climate change on total carbon woody stock and increments*

210 Norway spruce at CZ-BK1 shows mean TCWS values ranging between ~70 to ~140 MgC
211 ha^{-1} under the NoCC scenario over the century, while from ~70 to ~130 $MgC ha^{-1}$, with a
212 decreasing pattern across all RCPs (Figure 2). In the Norway spruce stands under some
213 ESMs climate forcing (HadGEM2-ES and GFDL-ESM 2M mostly) and under all climate
214 change scenarios, the 3D-CMCC-FEM simulates mortality events for carbon starvation,
215 which increase across stands under gradually warmer climate scenarios and from the oldest
216 stands to the progressively youngest ones.

217 Under RCP 8.5, all classes show signs of decay at the end of the century. In the youngest
218 age_{t0} classes, a sharp decrease in MAI was observed (from 8 to 4 $m^3 ha^{-1} year^{-1}$), while in
219 the older ones, it holds steady to ~3 $m^3 ha^{-1} year^{-1}$ with a peak around 2075 (Figure 3). At
220 FI-Hyy, younger age_{t0} classes (14- to 42-year-old) showed the fastest increase in TCWS
221 (reaching 120-130 $MgC ha^{-1}$ at the end of the century under all scenarios), also reflected in
222 the pattern of MAI. Older age_{t0} classes showed a more stable trend throughout the
223 simulation (Figure 2), culminating at ~150 $MgC ha^{-1}$, with MAI steadily declining from 2.5
224 to 2 $m^3 ha^{-1} year^{-1}$. In all scenarios, the Scots pine peaked in the 126 and 56 age_{t0} in TCWS
225 and MAI, respectively. Minor differences were found in mean TCWS between the NoCC

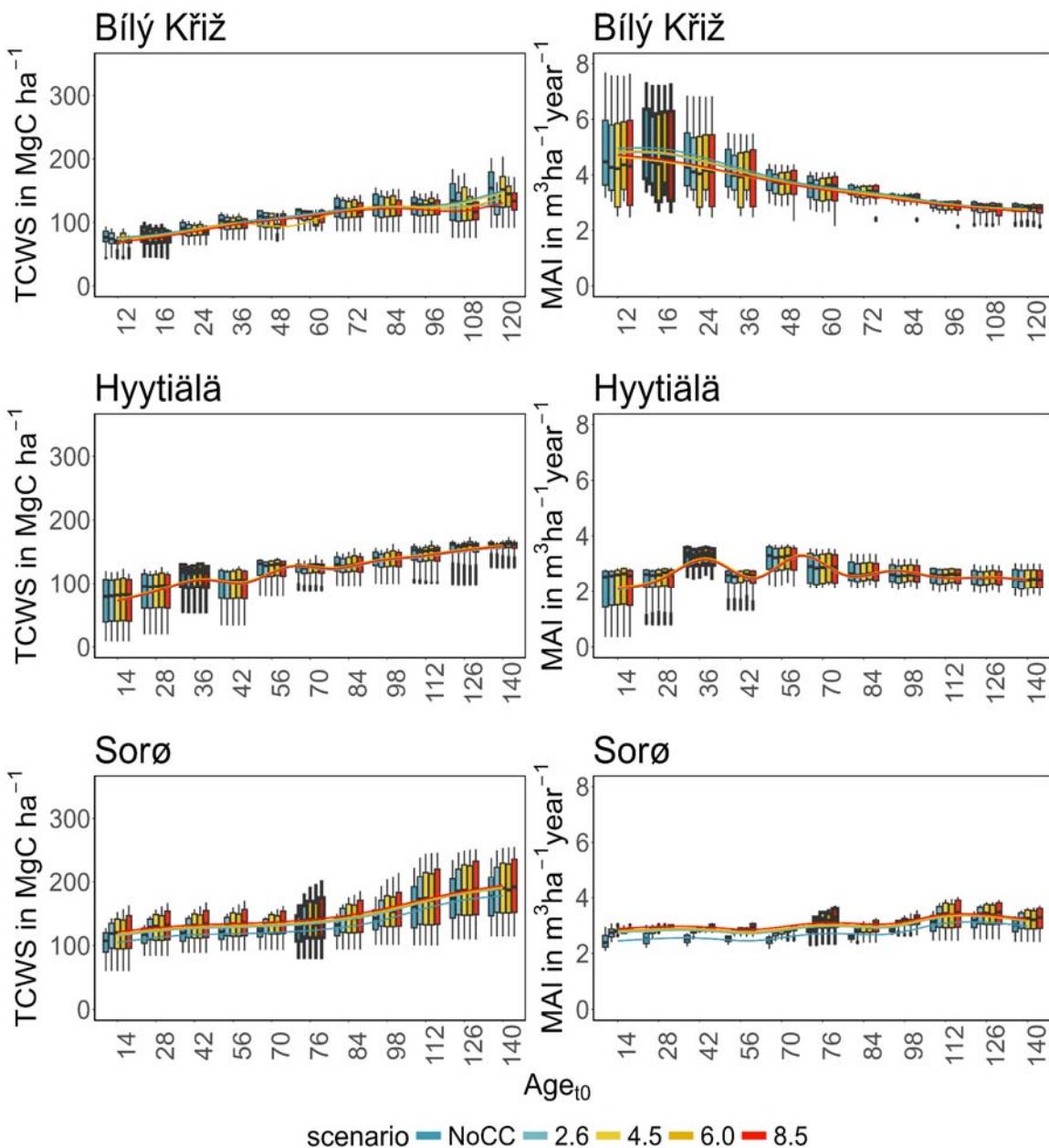
226 and other RCP scenarios, ranging from -1.6% (140-year-old class under RCP 2.6) to
227 $+2.8\%$ (14-year-old class under RCP 6.0). At DK-Sor, results for TCWS show different
228 patterns to other sites, with the highest values ranging between $\sim 240 \text{ MgC ha}^{-1}$ (under
229 NoCC) to $\sim 255 \text{ MgC ha}^{-1}$ (under RCP 8.5) at the end of the century with the least TCWS
230 under NoCC. The younger classes showed a shallow increase in TCWS during the
231 simulation period, stabilizing at the end of the century, while the older ones kept growing
232 (Figure 4). DK-Sor was the only site where the tightening of the climate conditions caused
233 a positive effect on the MAI, particularly in the younger classes, reversing the trend from
234 negative to positive at the end of the century.

235 In summary, a positive growth trend of TCWS over time was found in all sites, with the
236 oldest age_{t0} classes accounting for the most carbon accumulation. Both conifer stands show
237 a plateau with a reduction in growth at the end of the simulation, which is more
238 pronounced and more severe in the warmest climate scenario. Conversely, the beech stands
239 show a positive growth pattern in all scenarios. Similar results were obtained for MAI,
240 where the conifers showed a decreasing trend over the simulation period despite different
241 magnitudes and patterns among age_{t0} classes. The beech stands exhibited smaller variations
242 among age_{t0} than among scenarios concerning other sites.


243

244

245 **Figure 2.** Modeled TCWS (MgC ha^{-1}) for age classes at the three sites in all scenarios along the simulation period (2006-2099). Lines represent the moving average of 10 years. The solid line corresponds to the real stand, while the dotted lines correspond to the virtual ones. The shaded area represents two standard deviations from the mean predictions with the results from the five ESMs' climate change scenarios.


246

247

248

249
250
251
252
Figure 3. Modeled MAI ($\text{m}^3 \text{ ha}^{-1} \text{ year}^{-1}$) for age classes at the three sites in all scenarios along the simulation period (2006-2099). Lines represent the moving average of 10 years. The solid line corresponds to the real stand, while the dotted lines correspond to the virtual ones. The shaded area represents two standard deviations from the mean predictions with the results from the five ESMs climate change scenarios.

253
254 **Figure 4.** Boxplot of modeled TCWS (left, MgC ha^{-1}) and MAI (right, $\text{m}^3 \text{ha}^{-1} \text{year}^{-1}$) for age classes at the
255 three sites in the four RCPs scenarios compared to the NoCC (No Climate Change). Boxplots with thick
256 borders correspond to the real stand. Lines are fitted throughout the median of the values of the variables
257 using a generalized additive model.

258

259

260

261

262

263
264

Table 1. Mean values of TCWS and MAI over the simulation period (2006-2099) for each scenario and age class

		Scenario				Scenario				
		N	R C P	R C P	R C P	N	R C P	R C P	R C P	
		o	2	4	6	8	o	2	4	
		C	C	.	.	
		C	6	5	0	5	C	6	5	
		A								
		Age					TCWS (MgCha ⁻¹)			
		1	7 2 .	6 9 .	6 5 .	7 0 .	6 5 .	4 4 .	4 4 .	4 4 .
		2	2 2 .	9 2 .	0 4 .	4 2 .	9 3 .	8 7 .	7 5 .	8 0 .
		1	7 .	7 3 .	7 3 .	7 4 .	7 1 .	5 .	4 .	4 .
		6	1 .	6 0 .	2 0 .	1 0 .	8 8 .	0 3 .	8 6 .	9 7 .
		1	8 6 .	8 4 .	8 4 .	8 5 .	8 2 .	4 .	4 .	4 .
		2	5 .	4 .	0 .	0 .	7 0 .	7 3 .	6 0 .	4 3 .
		4	3 .	7 .	6 .	2 .	0 .	0 .	1 .	3 5 .
		3	9 7 .	9 5 .	9 5 .	9 6 .	9 3 .	4 .	4 .	4 .
		6	4 .	3 7 .	0 0 .	1 3 .	6 4 .	3 0 .	1 9 .	2 1 .
		C	1 0 .	9 9 .	9 9 .	9 1 .	9 9 .	3 3 .	3 3 .	3 3 .
		Z	1 .	9 .	9 .	1 .	9 .	3 .	3 .	3 .
		B	4 .	7 6 .	3 0 .	0 .	5 8 .	8 1 .	7 1 .	7 4 .
		K	1 8 .	6 9 .	3 0 .	0 .	0 8 .	1 8 .	7 1 .	7 4 .
		1	1 1 .	1 0 .	1 0 .	1 9 .	1 0 .	3 3 .	3 3 .	3 3 .
		6	0 .	8 .	7 .	9 .	7 .	3 .	3 .	3 .
		0	1 .	1 .	8 .	3 .	0 .	5 5 .	5 5 .	5 4 .
		6	9 .	7 .	8 .	4 .	0 .	8 1 .	1 0 .	3 7 .
		0	1 .	1 .	1 .	1 .	1 .	3 .	3 .	3 .
		7	1 .	1 .	1 .	1 .	1 .	3 .	3 .	3 .
		2	9 .	0 .	6 .	0 .	5 .	4 2 .	3 5 .	3 4 .
		7	2 .	1 .	4 .	6 .	5 .	1 2 .	1 5 .	1 7 .
		2	1 .	1 .	1 .	1 .	1 .	3 1 .	3 1 .	3 1 .
		4	1 .	1 .	9 .	9 .	0 .	1 .	1 .	0 .

		8	2	1	4	8
		5	3	0	5	5				
		6	8	4	8	0				
		1	1	1	1	1				
		2	1	1	1	1				
		0	8	7	9	6	2	2	2	2
	
		9	1	1	9	7	9	8	8	8
		6	9	2	8	0	0	8	3	0
		1	1	1	1	1				
		2	2	2	1	1				
		6	1	4	7	2	2	2	2	2
		1
		0	7	2	2	5	3	7	7	6
		8	8	6	8	7	3	4	0	1
		1	1	1	1	1				
		4	2	4	3	2				
		5	4	2	5	7	2	2	2	2
		1
		2	5	4	0	8	7	6	6	6
		0	0	3	1	2	4	2	9	5
		6	6	6	6	6				
		6	6	7	8	6	1	1	1	1
		1
		4	6	3	4	9	9	9	9	9
		2	2	9	9	8	1	3	5	4
		7	7	7	8	7				
		9	9	9	1	9	2	2	2	2
	
		2	8	0	7	0	3	2	1	2
		8	3	0	3	5	7	1	9	1
		3	0	2	3	4	2	3	3	3
		1	0	0	0	0	0	1	1	1
		4	2	3	4	2	3	3	3	3
		3
		6	3	4	1	7	8	2	1	2
		4	2	2	7	5	6	0	4	1
		8	8	8	9	8				
		9	8	9	0	9	2	2	2	2
	
		4	8	5	3	7	0	3	3	3
		2	2	5	9	8	5	1	3	7
		1	1	1	1	1				
		1	1	1	1	1				
		8	6	7	9	7	3	3	3	3
	
		5	7	6	5	2	3	2	1	2
		6	6	2	7	0	6	0	4	7
		1	1	1	1	1				
		1	1	1	2	1				
		9	7	8	0	8	2	2	2	2
	
		7	2	4	6	2	6	9	8	9
		0	9	3	1	5	5	1	6	9
		8	1	1	1	1	1	2	2	2

	4	2	2	2	2	2	.	7	7	.	7	.
		5	3	5	6	5	7	6	2	4	7	4
		6	2	.	.	7	4
		9	9	1	8	2	.	.	.	7	7	7
		2	5	9	5	7	.	.	.	7	7	4
	9	1	1	1	1	1	.	2	2	2	2	2
		3	3	3	3	3
		3	1	2	4	2
	8	6	6	6	6	6	6
		3	0	2	1	3	6	6	6	6	6	6
		3	6	9	2	3	6	2	4	7	7	4
	1	1	1	1	1	1	.	2	2	2	2	2
		4	3	4	4	4
		1	8	0	1	0	2	2	2	2	2	2
	1
	1	2	8	0	9	1	5	5	5	5	5	5
	2	9	7	0	2	9	7	3	5	7	7	5
	1	1	1	1	1	1	.	2	2	2	2	2
		4	4	4	4	4
		8	5	6	8	6	2	2	2	2	2	2
	1
	2	2	4	6	6	9	4	4	4	4	4	4
	6	6	3	9	3	1	9	5	7	9	9	7
	1	1	1	1	1	1	.	2	2	2	2	2
		5	5	5	5	5
		5	3	4	6	4	2	2	2	2	2	2
	1
	4	7	1	5	5	7	4	4	4	4	4	4
	0	7	1	0	2	9	7	3	5	7	7	5
	9	9	1	1	1	1	2	2	2	2	2	2
	0	0	1	0	9	3
	8	8	7	0	9	3	2	2	2	2	2	2
	1	4	7	7	7	7	8
	1	5	8	4	9	3	4	7	7	7	7	8
	4	3	9	8	4	2	6	2	9	7	7	6
	1	1	1	1	1	1	.	2	2	2	2	2
		1	2	2	2	2	.	2	2	2	2	2
		0	0	2	2	5	2	2	2	2	2	2
	2
	8	9	0	6	1	5	6	8	9	9	9	9
	4	4	6	8	8	3	0	6	2	0	0	0
	1	1	1	1	1	1	.	2	2	2	2	2
		1	2	2	2	2	.	2	2	2	2	2
		3	2	5	4	8	2	2	2	2	2	2
	4
	2	5	6	3	8	1	5	7	8	8	8	9
	4	6	8	1	2	6	4	8	5	3	3	2
	1	1	1	1	1	1	.	2	2	2	2	2
		1	2	2	2	2	.	2	2	2	2	2
		5	5	7	7	0	2	2	2	2	2	2
	5
	6	9	0	7	2	5	5	7	8	8	8	8
	7	7	7	3	3	8	2	6	2	0	0	9
	0	1	2	2	2	3	3	4	5	3	3	2

		6	5	7	7	0	4	6	7	8
		7	9	5	3
		1	1	7	3	6				
		5	4	9	0	2				
		1	1	1	1	1				
		2	3	3	3	3				
		0	0	3	2	6	2	3	3	3
	
		7	6	4	1	5	0	7	0	0
		6	5	5	6	5	6	0	6	4
		1	1	1	1	1				
		2	3	3	3	3				
		4	3	6	6	9	2	2	2	2
	
		8	6	9	6	1	5	5	7	8
		4	8	9	5	4	3	6	8	4
		1	1	1	1	1				
		3	4	4	4	5				
		5	5	8	7	0	2	3	3	3
	
		9	8	4	0	4	9	8	0	0
		8	7	1	6	9	3	2	7	6
		1	1	1	1	1				
		5	6	6	6	6				
		4	4	6	5	8	3	3	3	3
	
		1	1	3	5	7	0	2	2	2
		1	2	2	8	1	7	0	1	5
		1	1	1	1	1				
		6	7	7	7	8				
		6	6	8	7	0	3	3	3	3
	
		1	2	3	3	6	3	0	2	2
		6	4	3	8	3	2	6	4	8
		1	1	1	1	1				
		7	8	8	8	8				
		0	0	1	1	4	2	3	3	3
	
		1	4	0	8	2	0	9	0	0
		0	9	8	4	6	5	1	8	1

265

266 4. Discussion

267 4.1 Age-dependent impacts of climate change on forests' increment and C-stocks

268 The successional stage, represented by forest age, was the main driver controlling C-
 269 storage capacity and biomass accumulation, as already known by previous studies [48, 49,
 270 50], with differences greater among different age cohorts under the same scenario than in
 271 different climate scenarios under the same age class [13, 15]. The evidence that the carbon
 272 budget is mainly controlled by stand age suggests that the effects of climate change on
 273 forest cohorts are generally less significant than the effect of age, mainly in terms of the

amount of standing biomass. In this sense, age represents multiple and interacting processes, such as tree size [51, 52], forest structural traits (canopy closure and LAI), reduction in stomatal conductance [17], and adaptation to specific environmental conditions which, in turn, make it possible to increases the above-ground biomass (AGB) [53]. The model could reproduce the expected behavior of biomass (and thus carbon) accumulation, simulating rapid growth at a young age and saturation for the oldest age class, but not necessarily at the end of the simulation period. Approaching the physiological optima for the species may benefit the biomass synthesis through an augmented photosynthate supply but may eventually increase the respiratory costs of tissue growth and maintenance despite a strong acclimation capacity [19]. High respiratory costs in warm climates and with low precipitation regimes combined in the older age classes lead to C-starvation and mortality phenomena, as observed for the Norway spruce at the CZ-BK1 site. This indicates that the environment has reached its carrying capacity and that competition for limited resources, such as light and water, is excessively high to sustain more biomass in the oldest age classes.

We found different C-accumulation patterns under climate change between coniferous stands and broadleaves. As expected, increasing temperature and changes in precipitation patterns led to a decline in above-ground biomass in spruce stands, especially in the older age classes. On the contrary, the results show that beech forests at DK-Sor will maintain and even increase C-storage rates under most RCP scenarios. Scots pine forests show an intermediate behavior with a stable stock capacity over time and in different scenarios but with decreasing MAI. These results confirm current observations worldwide that indicate a stronger climate-related decline in conifers forests than in broadleaves [54, 55, 56, 57]. This contrasting response is explained by the different characteristics of the two *phyla*, in particular, due to the temperature adaptation, with generally lower optimum temperature in conifer and less sensitivity to the length of the growing season. Similarly, conifers also show lower efficiency in water management because of the shallower root system, which increases the sensitivity to soil aridity and its vulnerability to drought events [58]. Recent studies confirm that growth decline is more pronounced in conifers than broadleaf, especially beech forests, in the most northern species distribution [59]. Our results confirm the same growth patterns found by recent studies [50, 57, 60], where broadleaves outperform conifers in productivity, and climate warming will probably exacerbate these opposite growth patterns.

307 However, despite some studies suggesting that age modulates different adaptation
308 strategies to some extent, it remains unclear whether younger trees may be more affected
309 by climate change than older ones. Bennett et al. [61], in a global analysis, found that
310 droughts consistently had more severe impacts on larger (older) trees, while Wang et al.
311 [11] observed a more substantial and sharper decline in basal area increment in young
312 Korean pine in China. Hogg et al. [62] found that the percentage decrease in biomass
313 growth was not significantly different for young, productive stands compared to older, less
314 productive ones. Our study suggests that warmer and drier conditions and extended
315 growing seasons will affect younger stands more than older ones, but with different trends
316 among species. In particular, MAI will be positively affected in younger beech forests,
317 while it will remain stable in older stands. On the contrary, climate change will strongly
318 impact the growth rate of young conifers stands more than older ones. Older forests tend to
319 be more stable and resilient than younger ones due to their rugged and stable interaction
320 with climate triggers and better responsiveness to environmental changes. The year-to-year
321 climate variability is buffered by larger carbon pools in sapwood and reservoirs in older
322 trees, leading to higher long-term stability than younger trees [13]. In this sense, ages
323 represent the “memory” of the forest to past climate and disturbance regimes, which align
324 the species-specific traits to the environmental conditions in which they grow, creating the
325 niches in which AGB accumulates [53, 63].

326 Despite numerous efforts to decipher forests' response to climate change, the intricate
327 methods employed by tree species to withstand extreme climates still need to be fully
328 unveiled. Further research exploiting ecophysiological models explicitly accounting for
329 age, tree-ring experiments, and remote sensing will be critical to understanding forest
330 ecosystems' adaptation strategies to climate change, particularly in the face of rapid
331 warming and extreme disturbances. A better understanding of the interaction between
332 forests and climate can inform better forest management strategies, ultimately dampening
333 the impacts of climate change on forest ecosystems.

334 335 **5. Limitations**

336 The presented modeling framework has some limitations that should be considered. Firstly,
337 natural disturbances as consequences of climate change, such as windstorms, forest fires,
338 and insect outbreaks, were not simulated. In contrast, climate extreme events are
339 considered to be already included in the climate scenarios used to force the model and,
340 thus, already accounted for in the model outputs. Additionally, other indirect alterations

341 due to climate change of key drivers, such as nitrogen deposition, phosphorus, or ozone,
342 which can somewhat amplify or reduce our results, were not assessed. Nonetheless, some
343 studies (e.g., [64]) lend credence to the notion that this phenomenon may not be applicable
344 across the board. They highlight the significant responsiveness of various tree species to
345 CO₂ fertilization across a wide range of nutrient availability. Finally, no allowance was
346 made for the possibility of species migration to and from the study areas. However, these
347 dynamics may require longer timescales than those simulated in this study.

348 **5. Conclusions**

349 Forest age is confirmed to be a significant factor in determining the carbon storage capacity
350 and biomass accumulation in forest ecosystems, especially in the context of future climate
351 uncertainty. The effects of species, site location, stand-level characteristics, and
352 development stage vary significantly and are contingent on specific factors. We observed
353 that differences in biomass accumulation were more pronounced among different age
354 cohorts than among different climate scenarios within the same age class, with contrasting
355 carbon accumulation patterns under climate change between coniferous and broadleaf
356 forests. Furthermore, our findings shed light on the differential impacts of climate change
357 on younger versus older forest stands. Warmer and drier conditions are projected to affect
358 younger stands more severely, particularly in coniferous forests. However, older forests
359 will likely exhibit greater stability and resilience due to their accumulated carbon pools and
360 enhanced adaptability to environmental changes. While our study provides valuable
361 insights, it also underscores the need for further research to unravel the complex
362 mechanisms by which forests adapt to climate change. This deeper understanding can
363 inform more effective forest management strategies, helping to mitigate the impacts of
364 climate change on forest ecosystems in the future. The varying responses of different tree
365 species highlight the need for tailored management approaches and conservation efforts to
366 enhance the resilience of our forests.

367
368 **Author Contributions:** E.V.: Data curation, Formal analysis, Investigation, Writing –
369 original draft, Writing – review & editing; D.D.: Data curation, Formal analysis,
370 Investigation, Writing – review & editing; M.M.: Writing – review & editing; E.G.:
371 Writing – review & editing; F.G.: Writing – review & editing; G.D.: Writing – review &
372 editing; G.C.: Writing – review & editing; A.C.: Formal analysis, Investigation, Writing –
373 original draft, Writing – review & editing, Conceptualization. All authors have read and
374 agreed to the published version of the manuscript.

376 **Data Availability Statement:** The 3D-CMCC-FEM v.5.6 model code is publicly available
377 and can be found on the GitHub plat-form at: <https://github.com/Forest-Modelling-Lab/3D-CMCC-FEM>). The raw data supporting the conclusions of this article will be made
378 available by the authors on request.
379

380
381 **Conflicts of Interest:** The authors declare no conflicts of interest.
382

383 **Acknowledgments:** E.V. and A.C. acknowledge funding by the project
384 “FORESTNAVIGATOR” Horizon Europe research and innovation program under grant
385 agreement No. 101056875. M.M., E.G., F.G., and A.C. acknowledge funding by the
386 project “OptForEU” Horizon Europe research and innovation program under grant
387 agreement No. 101060554. D.D. and A.C. also acknowledge the project funded under the
388 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 -
389 Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December
390 2021 of Italian Ministry of University and Research funded by the European Union –
391 NextGenerationEU under award Number: Project code CN_00000033, Concession Decree
392 No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP
393 B83C22002930006, Project title “National Biodiversity Future Centre - NBFC”. E.V. and
394 A.C. also acknowledge funding from the MIUR Project (PRIN 2020) “Unraveling
395 interactions between WATER and carbon cycles during drought and their impact on water
396 resources and forest and grassland ecosySTEMs in the Mediterranean climate
397 (WATERSTEM)” (Project num-ber: 2020WF53Z), “WAFER” at CNR (Consiglio
398 Nazionale delle Ricerche), and by PRIN 2020 (cod 2020E52THS) - Research Projects of
399 National Relevance funded by the Italian Ministry of University and Research entitled:
400 “Multi-scale observations to predict Forest response to pollution and climate change”
401 (MULTIFOR, project number 2020E52THS). We also thank the ISIMIP project
402 (<https://www.isimip.org/>) and the COST Action FP1304 “PROFOUND” (Towards Robust
403 Projections of European Forests under Climate Change), supported by COST (European
404 Cooperation in Science and Technology) for providing us the climate historical scenarios
405 and site data used in this work. This work used eddy covariance data acquired and shared
406 by the “FLUXNET” community, including these networks: AmeriFlux, AfriFlux,
407 AsiaFlux, CarboAfrica, CarboEurope-IP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-
408 Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and
409 USCCC. The ERA-Interim reanalysis data are pro-vided by ECMWF and processed by

410 LSCE. The FLUXNET eddy covariance data processing and harmonization was carried
411 out by the European Fluxes Database Cluster, AmeriFlux Management Project, and
412 Fluxdata Project of FLUXNET, with the support of CDIAC and ICOS Ecosystem
413 Thematic Center, and the OzFlux, ChinaFlux, and AsiaFlux offices. We acknowledge the
414 World Climate Research Programme's Working Group on Coupled Modelling, which is
415 responsible for CMIP, and we thank the respective climate modeling groups for producing
416 and making available their model output. The U.S. Department of Energy's Program for
417 Climate Model Diagnosis and Intercomparison at Lawrence Livermore National
418 Laboratory provides coordinating support for CMIP and led the development of software
419 infrastructure in partnership with the Global Organization for Earth System Science
420 Portals.

422 References

- 423 1. Favero A., Mendelsohn R., Sohngen B., Stocker B. (2021). Assessing the long-term
424 interactions of climate change and timber markets on forest land and carbon storage.
425 Environ. Res. Lett. 16 014051 <https://doi.org/10.1088/1748-9326/abd589>
- 426 2. Giannetti F, Chirici G, Vangi E, Corona P, Maselli F, Chiesi M, D'Amico G, Puletti N.
427 Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy. *Forests*.
428 2022; 13(12):1989. <https://doi.org/10.3390/f13121989>
- 429 3. Vangi, E., D'Amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., McRoberts,
430 R.E., Chirici, G., 2021. The effect of forest mask quality in the wall-to-wall estimation of
431 growing stock volume. *Rem. Sens.* 13, 1038. <https://doi.org/10.3390/rs13051038>
- 432 4. Noce, S., Collalti, A., Valentini, R., & Santini, M. (2016). Hot spot maps of forest presence
433 in the Mediterranean basin. *iForest-Biogeosciences and Forestry*, 9(5), 766.
- 434 5. Lionello, P., Scarascia, L., 2018. The relation between climate change in the Mediterranean
435 region and global warming. *Reg. Environ. Chang.* 18, 1481–1493.
436 <https://doi.org/10.1007/s10113-018-1290-1>
- 437 6. Pretzsch, H., Biber, P., Schütze, G. et al. Forest stand growth dynamics in Central Europe
438 have accelerated since 1870. *Nat Commun* 5, 4967 (2014).
439 <https://doi.org/10.1038/ncomms5967>
- 440 7. He Y., Liu Y., Lei L., Terrer C., Huntingford C., Peñuelas J., Xu H., Piao, S. (2023). CO₂
441 fertilization contributed more than half of the observed forest biomass increase in northern
442 extra-tropical land. *Global Change Biology*, 00, 1–14. <https://doi.org/10.1111/gcb.16806>

443 8. Roebroek, Caspar TJ, et al. "Releasing global forests from human management: How much
444 more carbon could be stored?." *Science* 380.6646 (2023): 749-753.

445 9. Duffy KA, Schwalm CR, Arcus VL, Koch GW, Liang LL, Schipper LA. (2021). How close
446 are we to the temperature tipping point of the terrestrial biosphere? *Sci Adv.* 2021 Jan
447 13;7(3):eaay1052.

448 10. Nabuurs GJ., Verkerk P.J., Schelhaas MJ., González Olabarria J.R., Trasobares A.,
449 Cienciala E. (2018). Climate-Smart Forestry: mitigation impacts in three European regions.
450 From Science to Policy 6. European Forest Institute.

451 11. Wang, X., Pederson, N., Chen, Z., Lawton, K., Zhu, C., & Han, S. (2019). Recent rising
452 temperatures drive younger and southern Korean pine growth decline. *Science of the total
453 environment*, 649, 1105-1116.

454 12. Gregor, K., Krause, A., Reyer, C.P.O. et al. Quantifying the impact of key factors on the
455 carbon mitigation potential of managed temperate forests. *Carbon Balance Manage* 19, 10
456 (2024). <https://doi.org/10.1186/s13021-023-00247-9>

457 13. Vangi Elia, Daniela Dalmonech, Elisa Cioccolo, Gina Marano, Leonardo Bianchini,
458 Paulina F. Puchi, Elisa Grieco, Alessandro Cescatti, Andrea Colantoni, Gherardo Chirici,
459 Alessio Collalti. Stand age diversity and climate change affect forests' resilience and
460 stability, although unevenly. bioRxiv 2023.07.12.548709; doi:
461 <https://doi.org/10.1101/2023.07.12.548709>

462 14. Erb K-H, Haberl H, Le Noë J, Tappeiner U, Tasser E, Gingrich S. Changes in perspective
463 needed to forge 'no-regret' forest-based climate change mitigation strategies. *GCB
464 Bioenergy*. 2022;14(3):246–57. <https://doi.org/10.1111/gcbb.12921>.

465 15. Dalmonech D., Marano G. , Amthor J., Cescatti A., Lindner M., Trotta C., Collalti A.
466 (2022). Feasibility of enhancing carbon sequestration and stock capacity in temperate and
467 boreal European forests via changes to forest management, *Agricultural and Forest
468 Meteorology*, 327(109203), <https://doi.org/10.1016/j.agrformet.2022.109203>

469 16. Anderson-Teixeira, K.J., Miller, A.D., Mohan, J.E., Hudiburg, T.W., Duval, B.D., Delucia,
470 E.H., (2013). Altered dynamics of forest recovery under a changing climate. *Global
471 Change Biology* 19, 2001–2021.. <https://doi.org/10.1111/gcb.12194>

472 17. Ryan, M.G., Binkley, D. and Fownes, J.H. (1997). Age-related decline in forest
473 productivity: pattern and process. *Advances in ecological research*, 27, 213-262.
474 [https://doi.org/10.1016/S0065-2504\(08\)60009-4](https://doi.org/10.1016/S0065-2504(08)60009-4)

475 18. Goulden, M.L., McMillan, A.M., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, J.W.,
476 Bond-Lamberty, B.P. (2011). Patterns of NPP, GPP, respiration, and NEP during boreal

477 forest succession. *Global Change Biology*, 17(2), 855–871. <https://doi.org/10.1111/j.1365-2486.2010.02274.x>

478

479 19. Collalti A., Tjoelker M.G., Hoch G., Mäkelä A., Guidolotti G., Heskel M., Petit G., Ryan

480 M.G., Battipaglia G., Prentice I.C., (2020). Plant respiration: Controlled by photosynthesis

481 or biomass?. *Global Change Biology*, 26(3): 1739–1753 <https://doi.org/10.1111/gcb.14857>

482 20. Collalti, A., Ibrom, A., Stockmarr, A., Cescatti, A., Alkama, R., Fernandez-Martínez, M.,

483 Matteucci, G., Sitch, S., Friedlingstein, P., Ciais, P., Goll, D. S., Nabel, J. E. M. S.,

484 Pongratz, J., Arneth, A., Haverd, V., & Prentice, I. C. (2020). Forest production efficiency

485 increases with growth temperature. *Nature Communications*, *Nature Communications*, 11:

486 5322, <https://doi.org/10.1038/s41467-020-19187-w>

487 21. FOREST EUROPE, 2018: State of Europe's Forests 2018.

488 22. FOREST EUROPE, 2020: State of Europe's Forests 2020.

489 23. Collalti A., Marconi S., Ibrom A., Trotta C., Anav A., D'Andrea E., Matteucci G.,

490 Montagnani L., Gielen B., Mammarella I., Grünwald T., Knohl A., Berninger F., ZhaoY.,

491 Valentini R., Santini M. (2016). Validation of 3D-CMCC Forest Ecosystem Model (v.5.1)

492 against eddy covariance data for ten European forest sites, *Geoscientific Model*

493 *Development*, 9, 1-26, <https://doi.org/10.5194/gmd-9-479-2016>

494 24. Collalti et al. (2024) Monitoring and Predicting Forest Growth and Dynamics, CNR

495 Edizioni DOI: 10.32018/ForModLab-book-2024

496 25. Collalti, A., Trotta, C., Keenan, T.F., Ibrom, A., Bond-Lamberty, B., Grote, R., Vicca, S.,

497 Reyer, C.P.O., Migliavacca, M., Veroustraete, F., Anav, A., Campioli, M., Scoccimarro, E.,

498 Sigut, L., Grieco, E., Cescatti, A., Matteucci, G., (2018). Thinning can reduce losses in

499 carbon use efficiency and carbon stocks in managed forests under warmer climate. *J. Adv.*

500 *Model. Earth Syst.* 10 (10), 2427–2452. <https://doi.org/10.1029/2018MS001275>

501 26. Mahnken, M., Cailleret,M., Collalti A., Trotta C., Biondo C., D'Andrea E., Dalmonech D.,

502 Marano G., Mäkelä A., Minunno F., Peltoniemi M., Trotsiuk V., Nadal-Sala D., Sabate S.,

503 Vallet P., Aussena R., Cameron D.R., Bohn F.J., Grote R., Reyer C.P.O. (2022). Accuracy,

504 realism and general applicability of European forest models. *Glob. Change Biol.* 00, 1–23.

505 <https://doi.org/10.1111/gcb.16384>.

506 27. Moss, R., Edmonds, J., & Hibbard, K. (2010). The next generation of scenarios for climate

507 change research and assessment. *Nature*, 463, 747–756

508 28. van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al.

509 (2011). The representative concentration pathways: An overview. *Climatic Change*, 109(1-2), 5–31. <https://doi.org/10.1007/s10584-011-0148-z>

510

511 29. Reyer C.P.O., Silveyra Gonzalez R., Dolos K., Hartig F., Hauf Y., Noack M., Lasch-Born
512 P., Rötzer T., Pretzsch H., Meesenburg H., Fleck S., Wagner M., Bolte A., Sanders T.G.M.,
513 Kolari P., Mäkelä A., Vesala T., Mammarella I., Pumpanen J., Frieler K. (2020). The
514 PROFOUND Database for evaluating vegetation models and simulating climate impacts on
515 European forests. *Earth Syst. Sci. Data* 12 (2), 1295–1320. <https://doi.org/10.5194/essd-12-1295-2020>

517 30. Vacchiano G., Magnani F., Collalti A. (2012). Modeling Italian forests: state of the art and
518 future challenges. *iForest* 5: 113-120. - doi: 10.3832/ifor0614-005

519 31. Maréchaux I., Langerwisch F., Huth A., Bugmann H., Morin X., Reyer C., Collalti A. De
520 Paula M., Fischer R., Gutsch M., Lexer M., Rammig A., Roedig E., Sakschewski B.,
521 Taubert F., Thonicke, K., Vacchiano G., Bohn F.. (2021). Tackling unresolved questions in
522 forest ecology: The past and future role of simulation models. *Ecology and Evolution*. 1-25
523 10.1002/ece3.7391.

524 32. Collalti A., Perugini L., Santini M., Chiti T., Nolè A., Matteucci G., Valentini R. (2014). A
525 process-based model to simulate growth in forests with complex structure: Evaluation and
526 use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy.
527 *Ecological Modelling*, 272, 362–378, <https://doi.org/10.1016/j.ecolmodel.2013.09.016>

528 33. Dalmonech D., Vangi E., Chiesi M., Chirici G., Fibbi L., Giannetti F., Marano G., Massari
529 C., Nolè A., Xiao J., Collalti A. (2024). Regional estimates of gross primary production
530 applying the Process-Based Model 3D-CMCC-FEM vs. Remote-Sensing multiple datasets.
531 European Journal of Remote Sensing, 57:1, 2301657,
532 <https://doi.org/10.1080/22797254.2023.2301657>

533 34. Farquhar, G., von Caemmerer, S., and Berry, J.: A biogeochemical model of photosynthetic
534 CO₂ assimilation in leaves of C3 species, *Planta*, 149, 78–90, 1980.

535 35. de Pury, D. G. G. and Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves
536 to canopies without the errors of bigleaf models. *Plant, Cell and Environment*, 20(5),
537 537-557. <https://doi.org/10.1111/j.1365-3040.1997.00094.x>

538 36. Bernacchi, C. J., Singsaas, E. L., Pimentel, C. A. R. L. O. S., Portis Jr, A. R. and Long, S. P.
539 (2001). Improved temperature response functions for models of Rubisco-limited
540 photosynthesis. *Plant, Cell and Environment*, 24(2), 253-259.
541 <https://doi.org/10.1111/j.1365-3040.2001.00668.x>

542 37. Bernacchi, C. J., Calfapietra, C. A. R. L., Davey, P. A., Wittig, V. E., Scarascia-Mugnozza,
543 G. E., Raines, C. A. and Long, S. P. (2003). Photosynthesis and stomatal conductance
544 responses of poplars to free-air CO₂ enrichment (PopFACE) during the first growth cycle

545 and immediately following coppice. *New Phytologist*, 159(3), 609-621.
546 <https://doi.org/10.1046/j.1469-8137.2003.00850.x>

547 38. Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of
548 photosynthesis: a reanalysis of data from 36 species. *Plant, cell & environment*, 30(9),
549 1176-1190.

550 39. McDowell, N. (2011). Mechanism linking drought, hydraulics, carbon metabolism, and
551 vegetation mortality. *Plant Physiology*, 155, 1051–1059.

552 40. Rowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A.
553 A. R., et al. (2015). Death from drought in tropical forests is triggered by hydraulics not
554 carbon starvation. *Nature*, 528, 119–122

555 41. Collalti A., Biondo C., Buttafuoco G., Maesano M., Caloiero T., Lucà F., Pellicone G.,
556 Ricca N., Salvati R., Veltri A., Scarascia-Mugnozza G., Matteucci G. (2017). Simulation,
557 calibration and validation protocols for the model 3D-CMCC-CNR-FEM: a case study in
558 the Bonis' watershed (Calabria), Italy, *Forest@*, 14(14): 247-256,
559 <https://doi.org/10.3832/efor2368-014>

560 42. Merganičová, K., Merganič, J., Lehtonen, A., Vacchiano, G., Sever, M. Z. O., Augustynczik
561 A.L.D., Grote R., Kyselová I., Mäkelä A., Yousefpour R., Krejza J., Collalti A., Reyer
562 C.P.O. (2019). Forest carbon allocation modelling under climate change. *Tree Physiology*,
563 39(12), 1937-1960. <https://doi.org/10.1093/treephys/tpz105>

564 43. Kira, T., & Shidei, T. (1967). Primary production and turnover of organic matter in
565 different forest ecosystems of the western Pacific. *Japanese Journal of Ecology*, 17(2), 70-
566 87.

567 44. Odum, E. P. (1969). The Strategy of Ecosystem Development: An understanding of
568 ecological succession provides a basis for resolving man's conflict with nature. *Science*,
569 164(3877), 262-270.

570 45. Tang, J., Luyssaert, S., Richardson, A. D., Kutsch, W., & Janssens, I. A. (2014). Steeper
571 declines in forest photosynthesis than respiration explain age-driven decreases in forest
572 growth. *Proceedings of the National Academy of Sciences*, 111(24), 8856-8860.
573 <https://doi.org/10.1073/pnas.1320761111>

574 46. Mäkelä A, Valentine H (2000) The ratio of NPP to GPP: evidence of change over the
575 course of stand development. *Tree Physiology* 21:1015–1030.
576 <https://doi.org/10.1093/treephys/21.14.1015>

577 47. Landsberg, J. J. and Waring, R. H. (1997). A generalised model of forest productivity using
578 simplified concepts of radiation-use efficiency, carbon balance and partitioning. *Forest
579 ecology and management*, 95(3), 209-228. [https://doi.org/10.1016/S0378-1127\(97\)00026-1](https://doi.org/10.1016/S0378-1127(97)00026-1)

580 48. Anderson K J, Allen A P, Gillooly J F and Brown J H 2006 Temperature-dependence of
581 biomass accumulation rates during secondary succession *Ecol. Lett.* 9 673–82

582 49. Cook-Patton S C et al 2020 Mapping carbon accumulation potential from global natural
583 forest regrowth *Nature* 585 545–50

584 50. Anderson-Teixeira, K.J., Herrmann, V., Banbury Morgan, R. et al. (2021) Carbon cycling
585 in mature and regrowth forests globally. *Environmental Research Letters*, 16 (5). 053009.
586 ISSN 1748-9326 <https://doi.org/10.1088/1748-9326/abed01>

587 51. Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., et al. (2019). Effects of stand
588 age, richness and density on productivity in subtropical forests in China. *J. Ecol.* 107,
589 2266–2277. doi: 10.1111/1365-2745.13194

590 52. Ullah, F., Gilani, H., Sanaei, A., Hussain, K., & Ali, A. (2021). Stand structure determines
591 aboveground biomass across temperate forest types and species mixture along a local-scale
592 elevational gradient. *Forest Ecology and Management*, 486, 118984.

593 53. Yong-Ju Lee, Go-Eun Park, Hae-In Lee, Chang-Bae Lee, Stand age-driven tree size
594 variation and stand type regulate aboveground biomass in alpine-subalpine forests, South
595 Korea. *Science of The Total Environment*, Volume 915, 2024, 170063, ISSN 0048-9697,
596 <https://doi.org/10.1016/j.scitotenv.2024.170063>.

597 54. Hlásny T, Barka I, Kulla L, Bucha T, Sedmák R, Trombík J (2015a) Sustainability of forest
598 management in a Central European mountain forest: the role of climate change. *Reg
599 Environ Change*. doi:10.1007/s10113-015-0894-y

600 55. Dymond, C. C., Beukema, S., Nitschke, C. R., Coates, K. D., and Scheller, R. M.: Carbon
601 sequestration in managed temperate coniferous forests under climate change,
602 *Biogeosciences*, 13, 1933–1947, <https://doi.org/10.5194/bg-13-1933-2016>, 2016.

603 56. Noce, S., Collalti, A., & Santini, M. (2017). Likelihood of changes in forest species
604 suitability, distribution, and diversity under future climate: The case of Southern Europe.
605 *Ecology and Evolution*, 7(22), 9358-9375.

606 57. Pretzsch, H., del Río, M., Arcangeli, C. et al. Forest growth in Europe shows diverging
607 large regional trends. *Sci Rep* 13, 15373 (2023). <https://doi.org/10.1038/s41598-023-41077-6>

609 58. Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P., ... & Marek, M. V.
610 (2021). Evidence of climate-induced stress of Norway spruce along elevation gradient
611 preceding the current dieback in Central Europe. *Trees*, 35, 103-119.

612 59. Del Castillo M., E., Zang, C.S., Buras, A. et al. Climate-change-driven growth decline of
613 European beech forests. *Commun Biol* 5, 163 (2022). <https://doi.org/10.1038/s42003-022-03107-3>

615 60. Gong, X., Yuan, D., Zhu, L. et al. Long-term changes in radial growth of seven tree species
616 in the mixed broadleaf-Korean pine forest in Northeast China: Are deciduous trees favored
617 by climate change?. *J. For. Res.* 35, 70 (2024). <https://doi.org/10.1007/s11676-024-01725-7>

618 61. Bennett, A. C., McDowell, N. G., Allen, C. D., & Anderson-Teixeira, K. J. (2015). Larger
619 trees suffer most during drought in forests worldwide. *Nature plants*, 1(10), 1-5.

620 62. Edward H. Hogg, Michael Michaelian, Trisha I. Hook, Michael E. Undershultz. 2017.
621 Recent climatic drying leads to age-independent growth reductions of white spruce stands
622 in western Canada. *Glob Change Biol.* 2017;23:5297–5308.
623 <https://doi.org/10.1111/gcb.13795>

624 63. Reyer C.P.O. (2015). Forest Productivity Under Environmental Change—a Review of
625 Stand-Scale Modeling Studies. *Current Forestry Reports*, 1, 53-68,
626 <https://doi.org/10.1007/s40725-015-0009-5>

627 64. Terrer, C., Vicca, S., Hungate, B., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal
628 association as a primary control of the CO₂ fertilization effect. *Science*, 353(6294), 72–74.
629 <https://doi.org/10.1126/science.aaf4610>

630

631

632

633

634

635

636

637

638

639

640

641

642 Supplementary materials

643

644 Model evaluation

645

Daily model outputs were evaluated against eddy-covariance and measured structural data at the site level, in terms of percentage root mean squared error (RMSE%) and Fractional mean Bias (FMB). The GPP evaluation for simulations forced with observed site-specific daily weather data (1997-2005 for FI-Hyy, and DK-Sor, and 2000-2005 for CZ-BK1) resulted in an RMSE% of 1.05, 1.52, and 1.43, with r values of 0.92, 0.87 and 0.94 for FI-Hyy, CZ-BK1 and DK-Sor, respectively (Table 1). Similar results were obtained for NPP_{woody} in the site of DK-Sor and CZ-BK1 ($351 \pm 61 \text{ gC m}^{-2} \text{ year}^{-1}$ vs. $346 \pm 36 \text{ gC m}^{-2} \text{ year}^{-1}$ measured, and $442 \pm 79 \text{ gC m}^{-2} \text{ year}^{-1}$ vs. $380 \pm 38 \text{ gC m}^{-2} \text{ year}^{-1}$ measured, respectively). At FI-Hyy, modeled NPP_{woody} data was overestimated in respect to the measured values ($317 \pm 21 \text{ gC m}^{-2} \text{ year}^{-1}$ vs. $228 \pm 23 \text{ gC m}^{-2} \text{ year}^{-1}$ measured).

646

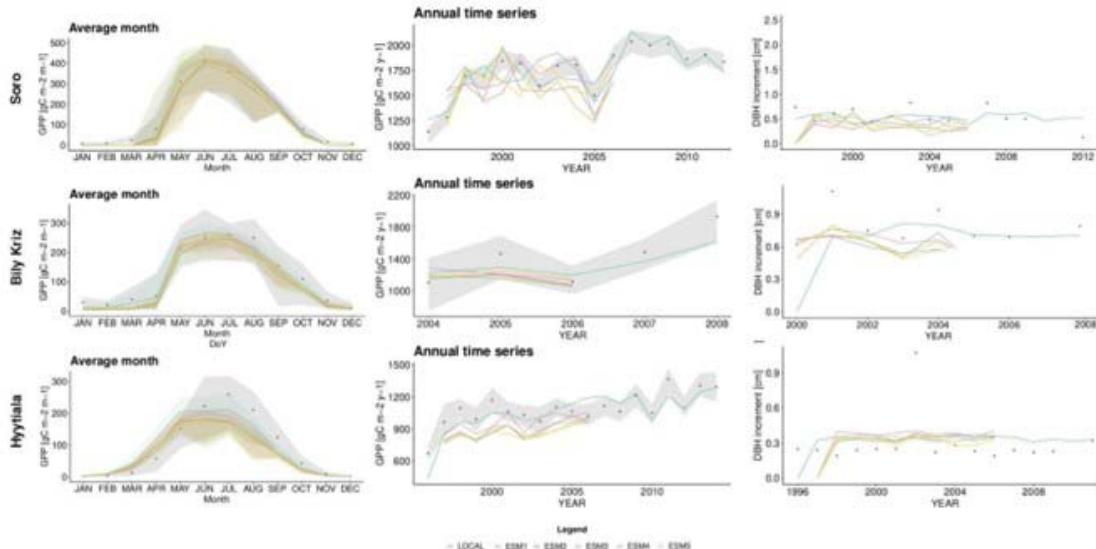
647

Table S1 | Performance statistics (relative root mean square error RMSE ($\text{gC m}^{-2} \text{ day}^{-1}$) and Fractional Mean Bias, FMB) computed from monthly seasonal values and annual series of model gross primary productivity, GPP, against eddy covariance estimated and diametric annual increment data, DBH increment, against measured data. Results are reported for simulations forced with local and modeled climate (i.e., ESM) (ESM1, 2, 3, 4, 5 refer to HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM 2M, and NorESM1-M, respectively).

648

649

		GPP				DBH increment			
		SEASONAL				DBH increment			
		CLI	R		F	R		F	R
			F	M		M	S		M
C Z - B K 1	Loca 1	ES	-		-			-	
			0	1	0			0	
			.	7.	.	18		.	0.
			0	9	0	0.		1	2
			6	2	6	96		7	6
	M1 ES	M1 ES	-		-			-	
			0	2	0			0	
			.	8.	.	16		.	0.
			2	6	0	1.		2	2
			2	8	7	16		9	4


		2 4	6	2		1
		0	2	0	-	
		.	4.	.	0	
	Loca	0	5	0	2.	7
1		1	6	9	61	7
		-	-	-	-	
		0	1	0	-	
		.	9.	.	21	0
	ES	1	0	0	0.	6
	M1	2	1	7	27	2
		-	2	0	-	
D		0	3.	.	17	0.
K	ES	.	6	0	3.	5
-	M2	7	3	2	82	1
S			-	-	-	
o		-	3	0	-	
r		0	3.	.	15	0
	ES	.	4	0	0.	0.
	M3	7	6	2	62	6
		-	-	-	-	
		0	2	0	-	
		.	6.	.	19	0
	ES	1	5	0	5.	6
	M4	2	5	7	54	1
		-	-	-	-	
		0	2	0	0	
		.	7.	.	16	0.
	ES	0	6	0	8.	5
	M5	9	9	5	62	9

664

665

666

667

668

669 **Figure S1** Evaluation of monthly seasonal GPP ($\text{gC m}^{-2} \text{ month}^{-1}$) fluxes (left column) and annual (gC m^{-2}
670 year⁻¹) fluxes (central column) for the sites of Sorø, Bily Kriz, and Hyytiala (rows). Quality-checked and -
671 filtered GPP values evaluated at the sites by the eddy covariance technique are reported as black dots. The
672 shaded area for seasonal values reports the maximum and minimum monthly values recorded in the time
673 series. The shaded area for annual data represents the relative uncertainty bounds. In the third column, a
674 comparison of the predicted annual DBH increment (cm y⁻¹) with site observations at the three sites is
675 reported. Measured data are shown as black dots. Simulated data are reported as continuous lines.

676