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ABSTRACT 
High-throughput screening platforms for the profiling of drug sensitivity of hundreds of cancer 

cell lines (CCLs) have generated large datasets that hold the potential to unlock targeted, 

anti-tumor therapies. 

In this study, we leveraged these datasets to create predictive models of cancer cells drug 

sensitivity. To this aim we trained explainable machine learning algorithms by employing cell 

line transcriptomics to predict the growth inhibitory potential of drugs. We used large 

language models (LLMs) to expand descriptions of the mechanisms of action (MOA) for 

each drug starting from available annotations, which were matched to the semantically 

closest pathways from reference knowledge bases. By leveraging this AI-curated resource, 

and the interpretability of our model, we demonstrated that pathways enriched for genes 

crucial for prediction often matched known drug-MOAs and essential genes, suggesting that 

our models learned the molecular determinants of drug response. Furthermore, we 
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demonstrated that by incorporating only LLM-curated genes associated with MOAs, we 

enhanced the predictive accuracy of our drug models.  

To enhance translatability to a clinical setting, we employed a pipeline to align bulk RNAseq 

from CCLs, used for training the models, to those from patient samples, used for inference. 

We proved the effectiveness of our approach on TCGA samples, where patients’ best 

scoring drugs matched those prescribed for their cancer type. We further showed its 

usefulness by predicting and experimentally validating effective drugs for the patients of two 

highly lethal solid tumors, i.e. pancreatic cancer and glioblastoma. 

In summary, our method facilitates the inference and interpretation of cancer cell line drug 

sensitivity and holds potential to effectively translate them into new cancer therapeutics.  

 

HIGHLIGHTS 

-Interpretable drug-response prediction models were trained on large scale 

pharmacogenomics data sets (i.e. GDSC and PRISM). 

-Large language models were used to enhance the curation of biological pathways 

associated to drugs MOA  

-Unbiased interpretation of the models demonstrated learning of drug MOAs and gene 

essentiality 

-Inference of TCGA cohort samples recovered mono- and combination cancer drug 

prescriptions and indicate potential repurposing candidates.  

- Drug candidates predicted from bulk RNAseq samples of pancreatic cancer and 

glioblastoma were experimentally validated. 

 

INTRODUCTION 

Landmark cancer genomic projects such as The Cancer Genome Atlas (TCGA) have 

provided an unprecedented, multimodal picture of the complex genetic and molecular 

landscape characterizing major tumor types (Chang et al., 2013). The possibility to define 

tumors at a molecular level is changing cancer treatment through the development of single- 

or combinatorial-targeted therapies for patients characterized by specific genetic makeups. 
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Unfortunately, effective treatments are still lacking for many patients and the emergence of 

resistance further limits the clinical benefit of therapies. 

In recent years, the availability of large-scale pharmacogenomics databases, including the 

Cancer Cell Line Encyclopedia (CCLE)(Barretina et al., 2012), the Genomics of Drug 

Sensitivity in Cancer v1 and v2 (GDSC)(Iorio et al., 2016), the Cancer  Therapeutics  

Response  Portal  v2 (CTRPv2)(Rees et al., 2016)  and the Profiling relative inhibition 

simultaneously in mixtures (PRISM)(Corsello et al., 2020), has fostered the development of 

personalized oncology strategies. 

Initial landmark work by Iorio & coworkers highlighted the genomic alterations that sensitize 

to drugs as well as the contribution of different genome sequencing data types for drug 

sensitivity predictions (Iorio et al., 2016). Since then, several computational forecast 

methodologies have been proposed to leverage the information in CCLE and GDSC to 

predict cancer cell lines drug-sensitivity (reviewed in (J. Chen & Zhang, 2021; Firoozbakht et 

al., 2022; Xia et al., 2022) and best practices to develop predictive models have been issued 

(Sharifi-Noghabi et al., 2021). Models “primed” with prior knowledge have also been 

developed, that exploit representations of biological processes instead of individual genes as 

features to increase model performance and interpretability  (Chawla et al., 2022; Ferraro et 

al., 2023; Kuenzi et al., 2020; Wang et al., 2019). However, a systematic investigation of 

whether drug sensitivity models are actually able to learn, in an unbiased fashion, the 

biological processes associated to drugs’ mechanism of action (MOA) are still missing from 

the literature. Moreover, to what extent models trained on expression data in cancer cell 

lines can be exploited to interpret patients' bulk RNAseq data is still a largely unsolved issue, 

although earlier studies tried to tackle this fundamental point (Kuenzi et al., 2020; Ma et al., 

2021). 

  

In this study, to forecast drug sensitivity in cancer cell lines we developed a novel machine 

learning algorithm trained on large drug screening datasets, CellHit. We trained the models 

on GDSC and PRISM, as they represent the largest screening datasets of oncological and 

non-oncological drugs, respectively. We focused on interpretability and deployment of the 

predictive models, which are both critical to generate new testable hypotheses (Figure 1A). 

We employed our pipeline to infer the best-scoring drugs for the entire TCGA cohort based 

on patient transcriptomics profile, as well as on samples from PDAC and GBM patients, 

which were experimentally validated.  
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RESULTS 

An interpretable model for cell line drug response predictions with or without drug 

representations 

We developed an interpretable machine learning framework for the prediction of drug 

sensitivity of cancer cell lines by using the latest version of the Genomics of Drug Sensitivity 

in Cancer (GDSC) dataset, which, after data pre-processing, provided the profiling of 286 

unique drugs in 686 cell lines. We first implemented an integrated model by jointly 

considering representations of both drugs and cell lines to predict IC50 values as target 

variables (Figure 1A). We employed different strategies to numerically represent drugs 

chemical structures and cell line expression profiles to provide inputs to ML algorithms. As 

for cell lines, we first transformed the RNAseq data using Celligner (Warren et al., 2021) 

along with TCGA bulk RNAseq samples. This preprocessing step is required to align 

RNAseq data from cell lines to TCGA to apply our ML model on patient samples (see 

below). We employed drug and cellular representations as features to train a supervised 

regression model to predict IC50 data. We trained different algorithms and repeated the 

training procedure for each model by randomly splitting the training and testing sets 20 times 

(see Methods). We found that XGBoost, in combination with all-gene expression vectors and 

one-hot encodings of the molecules, achieved the best performance (Pearson correlation 

coefficient ρ=0.89, Mean Square Error MSE=1.55; Figure 1B,C), being able to outperform 

other architectures, such as MLP, as well as other competitive methods available from the 

literature (Chen & Zhang, 2021)(i.e. KRR, SRMF; Figure 1B,C; Supplementary Figure 1; 

Supplementary Table S1).  

 

The fact that the simplest representation of the drug, i.e. one-hot encoding, achieved the 

best results, suggested that the model is not actually leveraging information from drugs’ 

structures, but rather using them as mere drug identifiers. Since our main goal was to learn 

the transcriptional programs responsible for drug responses for post-hoc interpretation, we 

generated drug-specific models by employing only gene expression as input features. We 

trained the models by repeating the same procedure used for the joint representation. 

Overall, aggregated IC50 predictions have correlations with experimental values almost as 

good as the joint model (ρ=0.88, MSE=1.73; Figure 1B,C; Supplementary Table 1), further 

confirming that drug representations didn’t significantly contribute to model performance. To 

assess the capability of our models to capture local variations in drug-cell line sensitivities, 

we measured whether the models not only approximated the mean IC50 value of a drug 

across various cell lines, but also reflected the distinct sensitivities exhibited by different cell 
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lines. By evaluating performances on a held-out testing set, we obtained a median ρ of 0.40 

out of 286 drug-specific models (Figure 1D). The best performance was achieved by 

Venetoclax (ρ=0.72), a small molecule regulating apoptosis by inhibiting BCL2 (Kapoor et 

al., 2020). Other top-performing models related to drugs involved in apoptosis regulation (the 

BCL2 inhibitor AZD5991), cell cycle regulation (the p53 pathway activators Nutlin-3a(-) and 

GSK2830371), inhibition of the DYRK3 kinase (GSK626616AC), ERK/MAPK signaling 

(PD0325901), DNA replication (the topoisomerase inhibitor Topotecan), genome integrity 

(the PARP inhibitor Niraparib) (Figure 1E). A total of 73 drug models (25%) had correlation 

performances greater than 0.5 (Supplementary Table S2). In summary, we developed 

reliable models for drug sensitivity based on just cell lines transcriptomics data. 

 

Models’ interpretation reveals convergence between important genes and known drug-

targets 

For each drug-specific model, we inspected the genes most important for prediction and 

checked whether they were either known targets, or components of pathways associated 

with the known MOA of that drug. We evaluated gene importance, defined as the 

contribution of individual genes to model predictiveness, in two ways. First, we inspected 

whether genes gave a positive or negative contribution to the final IC50 prediction via a 

game theory approach (i.e. SHAP). Second, we used an importance permutation method, 

randomly shuffling genes and evaluating the effect of the perturbation on test set metrics. 

We imposed a stringent criterion and considered only those genes found to be important 

with both approaches. 

We found that 39% of the drug-specific models trained on GDSC identified the known target 

among the significant genes in at least one model out of 20 random splits (Supplementary 

Table S2). We used that fraction of model splits recovering the drug target to rank drug 

models. Remarkably, models for BCL2 inhibitors, such as Venetoclax, Navitoclax and 

ABT737, consistently recovered their target in the majority of the models trained on different 

splits (Figure 2A,B). Several other drug models recovered the corresponding targets in more 

than 50% of the splits (e.g. Gefitinib-EGFR, Nutlin-3a(-)-MDM2, or Linsitinib - IGF1R; Figure 

2A). The recovery of the drug targets is significant, considering that 95.8% of the targets are 

found at or above the 90th percentiles of the background distributions of the frequencies of 

recovery of all genes across all splits for each drug (Figure 2A). Analysis of the importance 

scores, for example for the top performing model (Venetoclax), showed that higher values 

are attributed to the corresponding target, i.e. BCL2. This connection is seen both as a 

strong negative contribution (i.e. SHAP importance; Figure 2B teal) and in test metrics (i.e. 

Correlation delta; Figure 2B orange). By plotting for each cell line the target gene 

expression, Venetoclax’s experimental IC50s, as well as Venetoclax’s model SHAP values, 
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it is possible to get a deeper insight into how the Venetoclax model leverages the expression 

levels of its corresponding target (i.e. BLC2) to successfully predict IC50 (Figure 2C). 

Indeed, cell lines having a higher expression of BCL2 are characterized by lower IC50 as 

well as strongly negative SHAP values (i.e. higher efficacy of Venetoclax as a BCL2 

inhibitor) (Figure 2C). 

 

MOA processes and gene dependencies are learnt by the drug sensitivity models  

In addition to targets, we wanted to inspect whether the models learnt about MOA-related 

biological processes and pathways. However, the curated information of biological pathways 

associated to the action of a certain drug is only sporadically annotated in chemical 

bioactivity or biological pathway knowledge bases. We therefore set out to systematically 

curate the association of GDSC drugs to pathways in the reference knowledge-base, 

Reactome (Jassal et al., 2020). We first retrieved a total of 66 GDSC drugs that are 

annotated to Reactome pathways through Guide to Pharmacology/Pubchem (Harding et al., 

2018) mappings. We then considered all the pathways containing the drug targets, finding 

matches for 233/287 (81%) unique GDSC drugs. To further extend the drug-MOAs’ pathway 

coverage, we leveraged open-source Large Language Models (LLMs), i.e. GPT4 and Mixtral 

Instruct, to generate detailed annotations of drug-related processes by inputting the generic 

name of the drug (or available synonyms) and available annotations from the GDSC 

compound information table. The resulting annotations informed a second prompt designed 

to identify semantically closest pathways from Reactome for each drug (Figure 3A; see 

Methods). Through this approach, we were able to retrieve detailed information about MOA 

and associated pathways for 253/287 (88%; Supplementary Table 3) GDSC drugs (Figure 

3B, top). This procedure increased the coverage of annotated drugs, and it enabled the 

association of new pathways with the drug’s MOAs (Figure 3B, bottom). We finally combined 

the three sets of drug-pathway associations, for a total of 5662 instances, 253 unique drugs 

and 138 unique pathways (Supplementary Table 3).  

 

We performed pathway enrichment analysis on important genes to check whether known 

MOAs were identified. We found a total of 114 GDSC drug models with at least one 

significantly enriched pathway (FDR < 0.1). Out of these, 65 (57%) unique drugs have at 

least one MOA-pathway significantly enriched when considering the aggregated list of MOA-

pathways (Figure 3C; Supplementary Table 4). When considering the different MOA-

pathway sources, the LLM-derived one was the single list providing the highest recovery of 

enriched pathways (Figure 3C; Supplementary Table 4). The fraction of unique drugs with at 

least one, significantly enriched MOA-pathway slightly increased when considering models 

with a correlation greater than 0.5 (Figure 3C; Supplementary Table 4).  
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We then clustered pathway enrichment of the best-performing drug models (ρ > 0.5) having 

at least one significant MOA-pathway (Figure 3D). We found that certain processes, such as 

“Apoptosis”, “Cellular responses to stress”, “Biological Oxidations”, “MAPK family signaling 

cascades”, were widely enriched across drugs, often consistently with drugs’ MOAs, and 

clustered apart (Figure 3D). A second, larger cluster of pathways, including among others 

“Death Receptor Signaling” and “Integrin signaling”, was enriched for specific drugs and less 

frequently matched known MOA drugs (Figure 3D). Clustering also highlighted a group of 

drugs that most frequently recovered certain pathways related to cell cycle (Figure 3D, right 

cluster). Some of these had a prevalence of matched MOA among enriched pathways, such 

as LMB_AB1, a drug targeting adrenergic receptors ADRA1A and ADRB1. We also found 

many drugs with enriched pathways that did not match known drugs’ MOA (e.g. RO-3306, 

Figure 3D), indirectly suggesting potentially new MOAs. 

 

We evaluated whether important genes also recovered information about gene 

dependencies of cancer cell lines from different tissues. In this respect, we retained drug-cell 

line instances yielding more significant predictions, ranked the top k most important genes 

based on SHAP values, and pooled them on the basis of the tissue of origin of the cell lines. 

We then evaluated the recall of the top k important genes to identify core essential genes 

from an updated dependency map across 27 cancer tissues (Pacini et al., 2024). Depending 

on how many top k important genes we considered, we were able to recover a variable 

number of gene dependencies for all the tissues. Remarkably, when aggregating the top 100 

genes based on SHAP importance, we were able to identify core essential genes with a 

recall greater than 0.9 in several tissues (Figure 3E, Supplementary Table 5). These 

essential, prediction-important genes are typically found in protein-protein interaction 

networks (e.g. STRING network of important, essential genes in lung Figure 3F). By ranking 

genes based on their average SHAP importance across drug models, we found BCL2L1, 

YAP1 and CHKA as the top 3 most important genes (brighter nodes, Figure 3F; 

Supplementary Table 6). Overall, this analysis suggests that drug sensitivity is also realized 

through the modulation of critical network genes that are essential for cell survival and 

proliferation. 

 

Extending explainable drug sensitivity predictions to the PRISM dataset. 

We employed a similar strategy to train predictive models for 6337 drugs and 887 cell lines 

available in the PRISM database. We found that the majority of trained models were 

characterized by overall low performances (Figure 4A, blue curve and dots; median 

correlation=0.04), likely due to moderate and tissue-specific responses of cancer cell lines to 

the many non-oncological drugs present in PRISM. When considering only drug models 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.586783doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.586783
http://creativecommons.org/licenses/by-nc-nd/4.0/


characterized by dispersed experimental log-fold changes (LFCs) in their dataset, i.e. with 

InterQuartile Range (IQR) greater than 1, the average performance substantially increased 

(median ρ=0.24, red curve), yielding a total of 713 out of 6337 drug models. Based on this 

result, we decided to restrict the downstream analysis only to those models with ρ>0.2, as 

they represent most of those with IQR > 1 (Figure 4A). A cutoff of ρ>0.2 is moreover 

consistent with earlier modeling efforts on a previous release of the PRISM dataset (Corsello 

et al., 2020).  

We obtained a total of 762 drug models with a correlation greater than 0.2 (Supplementary 

Table 7). The aggregated IC50 predictions of these models with experimental values 

achieved a ρ=0.80 and MSE=1.18 (Figure 4B). Drugs targeting kinases are by far the 

category with the highest number of models with a correlation greater than 0.2, being also 

more effective in recovering the corresponding targets among important genes (Figure 4C). 

Other recurrent drug target categories are generic Enzymes, followed by Epigenetic and 

GPCR targets (Figure 4C). Kinases also stand out when normalizing the number of models 

for the total number of drugs considered in PRISM (Supplementary Figure 2A,B), or 

considering the number of drugs achieving a certain LFC threshold (Supplementary Figure 

2C). However, other drug targets such as Epigenetics regulators and Transcription Factors 

ranked higher when considering normalized counts due to the lower total number of drugs in 

these classes (Supplementary Figure 2B). The normalized count metric penalized instead 

popular drug targets, such as GPCRs or Ion Channels (Supplementary Figure 2B,C). 

Notably, they were characterized by a very small number of drugs with IQR greater than 1 

(Supplementary Figure 2A), suggesting very specific effects on fewer cell lines.    

Inspection of the most important genes revealed that 62% (339 out of 547) of the models for 

drugs with target information identified at least one corresponding target among the 

important genes across at least one train/test split (Figure 4D; Supplementary Table 8). Also 

for the PRISM dataset, we successfully identified 73.7% of drug targets at or above the 90th  

percentile threshold of the background recovery distribution (Figure 4D). STF-31 and 

CGM097 were the two drug models that recovered their corresponding targets (the regulator 

of intracellular NAD+ pool Nicotinamide phosphoribosyltransferase, NAMPT; and the p53 

ubiquitin ligase MDM2, respectively) in 100% of the train/test splits (Figure 4D). Among the 

most supported models, we also found a few non-oncological drugs, such as 

PARDOPRUNOX (targeting the Serotonin 5-HT7 receptor HTR7), which is approved as a 

treatment for Parkinson. 

 

Similarly to the GDSC drug datasets, we curated MOA-pathways for 6305 PRISM drugs 

(Supplementary Table 9). We compared the pathways more recurrently associated to those 

drugs with available category annotations, showing that chemotherapeutic agents have 
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distinct pathway signatures with respect to non-oncological as well as targeted drugs 

(Supplementary Figure 3). We also performed pathway analysis on important genes for each 

drug model and similarly displayed enrichments for the best-performing instances (i.e. 

models with ρ>0.5). Certain pathways, e.g. “Cell Cycle, Mitotic”, “Cellular responses to 

stress”, “Apoptosis”, “Cell Cycle Checkpoints”, “Cytokine Signaling in Immune System” and 

“Signaling by Receptor Tyrosine Kinases”, were significantly enriched in a larger set of 

drugs, consistently with their MOAs (Figure 4E, Supplementary Table 10). Notably, these 

pathways are largely overlapping with recurrently enriched pathways in GDSC drug models 

(Figure 3D). These pathways characterize a restricted pool of drugs (Figure 4E, right 

cluster), while a second, larger pool is also characterized by the enrichment of more specific 

pathways (Figure 4E, left cluster). Intriguingly, while several enriched MOA-pathways also 

match processes that are recurrently enriched in GDSC oncology drugs, we found a bigger 

proportion of pathways exclusively enriched only on PRISM drugs, suggesting a broader 

diversity of mechanisms of actions (Figure 4F, Supplementary Figure 3A).   

 

MOA-primed models improve drug-sensitivity predictions. 

We leveraged the rich information of MOA-pathways to select the most informative variables 

(i.e. gene expression) for a given drug to develop knowledge-driven models (hereinafter 

referred to as MOA-primed models).  

For model priming, we considered MOA-pathways generated via GPT-4 as well as through 

the freely available Mixtral Instruct model. Models obtained through the latter approach (i.e. 

Mixtral Instruct) achieved higher performances (Figure 1B,C) and are discussed further 

below.   

On GDSC, MOA-primed models performed overall better than their all-gene counterparts, 

with median ρ=0.5 (Figure 5A). Overall, aggregated IC50 predictions have a high correlation 

with experimental values (ρ=0.89) and the lowest MSE (1.52) (Figure 5B). 

Certain drug models, such as Bicalutamide, showed a remarkable increase in their 

performance, by almost doubling their correlations when considering only MOA-pathway 

genes as dependent variables (Figure 5E). On the other hand, a few drug models, such as 

BX795, Gemcitabine or Savolitinib displayed a reduction in performance of the MOA-primed 

models compared to all-genes models (Supplementary Figure 4).  

Also for PRISM, we employed MOA-pathways to select genes to train MOA-primed models, 

which outperformed all-genes models. Notably, we obtained almost twice the models with 

ρ>0.2 compared to all-genes ones (1254 vs 762; Supplementary Table 7). When considering 

only drugs with IQR > 1, we obtained a median ρ=0.32 (Figure 5C) and a correlation of 

aggregated IC50 predictions with experimental values ρ=0.96 (Figure 5D). Also in this case, 
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several drugs (e.g. Rolapitant) displayed great improvement in the performance of the MOA-

primed model with respect to the all-genes counterpart (Figure 5F). 

 

CellHit inference on aligned bulk RNAseq from TCGA patients data recovers cancer type-

specific mono and combination therapies. 

We deployed our model to forecast effective drug treatments for TCGA tumors based on 

their transcriptomic profiles. We first compiled a list of FDA drugs approved for specific 

cancer types (i.e. https://www.cancer.gov/about-cancer/treatment/drugs/cancer-type) and 

matched them to the corresponding TCGA cancer types (Supplementary Table 11). This 

yielded a total of 41 GDSC drugs approved for 23 cancer types. For each drug, we ranked 

the top 1000 predicted clinical samples according to two criteria: either predicted log IC50 or 

quantile score (Figure 6A; Supplementary Table 12). The latter is a quantitative measure 

that trades-off between efficacy and selectivity of a drug, i.e. how much a given drug is 

predicted to be potent for a particular sample relative to all the other samples inferred (see 

Methods). In general, both metrics work well in prioritizing patients with matching cancer 

types (Figure 6B). For certain drugs, such as Cytarabine, Venetoclax, 5-azacytidine we 

achieved excellent recall statistics for the cancer type for which the drug is prescribed 

(Figure 6B). Overall, we found that 37 out 41 (90%) of GDSC drugs’ models found, among 

the top 1k ranked patient samples, at least one from a cancer type for which the 

corresponding drug is approved (Figure 6C). For several drugs, the majority of predicted 

samples is derived from cancer types for which that drug has been developed. For instance, 

Fulvestrant in Breast Cancer (BRCA), BCL2 inhibitors and Cyclophosphamide in Breast 

Cancer or Acute Myeloid Leukemia (LAML), the mutated BRAF inhibitor Dabrafenib and the 

MEK1/2 inhibitor Trametinib in skin cutaneous melanoma (SKCM) (Figure 6C). The 

Dabrafenib inference for SKCM patients is exemplary of the robustness of the model. 

Indeed, while we don’t find BRAF among the important genes, nor any BRAF-associated 

pathway among the significantly enriched ones, the model predicts the correct drug for these 

patients based on gene expression signature similarity, which acts as a surrogate of the 

mutation status. Indeed, BRAF mutations are the most recurrent among the top 1000 

patients scored by the Dabrafenib model (Supplementary Figure 5A), confirming that the 

model can recognize the mutational status from gene expression signatures. While the 

majority of the best scored samples with BRAF mutations are affected by melanoma, as 

expected, we also ranked several BRAF mutated samples from other tumors, such as 

thyroid carcinoma (THCA) or Diffuse Large B-cell Lymphoma (DLBC) (Supplementary Figure 

5B), confirming the repurposing potential of Dabrafenib in more rarely BRAF-mutated tumors 

(Subbiah et al., 2023). We similarly found for most other drug models that among the top 1k 
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scored samples several from cancer types for which that drug is not currently prescribed 

(Supplementary Figure 6), suggesting additional possible repurposing candidates.  

A total of 10.5k samples across 33 different cancer types were ranked among the top 1k 

scoring ones by multiple drug models, suggesting the potential for combination therapies 

(Figure 6D; Supplementary Table 13). We inspected the predicted drug combinations and 

ranked them according to the number of samples predicted. This analysis showed that many 

of the top-ranking combinations are already approved, such as Trametinib and Dabrafenib in 

SKCM, Venetoclax and Cytarabine or 5-azacytidine in LAML, Fulvestrant and AZD5363, 

Alpesilib, Ribociclib or Palbociclib in BRCA, as well as Oxaliplatin and 5-Fluorouracil in colon 

adenocarcinoma (COAD) (Figure 6D; Supplementary Table 14). We found additional 

predicted combinations characterized by shared indications, highlighting the potential for 

novel combination therapy (Figure 6D; Supplementary Table 14).  

Additionally, we used the models trained on the PRISM dataset to infer drug sensitivities for 

each TCGA sample by considering the top 1000 samples ranked by each drug model. We 

considered only the top 20 best performing models for non-oncological drugs, including 8 for 

Enzymes and 6 for GPCRs (Figure 6E). The analysis revealed specific cancer-type patterns 

for the best scoring samples for each drug. For instance, two Adenosine Receptors 

antagonists, i.e. CGS-15943 and MRS-1220, which have been recently proposed as 

effective therapies against multiple cancers (Arora et al., 2023; Corsello, Spangler, et al., 

2020), are indeed predicted for multiple samples of breast (BRCA), liver (LIHC), prostate 

(PRAD) as well as gastric (STAD) cancers (Figure 6E). 

Therefore, we demonstrated that the CellHit models can reliably predict anti-cancer 

therapies based on patients’ transcriptomics signatures.   

 

CellHit predictions identified drugs selective for distinct PDAC subtypes.   

Next, we determined whether CellHit could infer possible drugs with specific effects against 

selected pancreatic ductal adenocarcinoma (PDAC) subtypes recently identified by a laser 

microdissection-based spatial transcriptomics approach (Di Chiaro et al., n.d.).  

We first verified the projection of the PDAC samples with the cancer cell lines from CCLE 

database. As expected, PDAC samples were mapped to the tissue of origin at the 

transcriptome level (Supplementary Figure 7) while they showed different profiles in terms of 

cancer cell lines responsiveness to drugs (Figure 7A). The Glandular (GL) subtype was 

mainly associated with the esophagogastric adenocarcinoma cell lines and only in a minor 

fraction to the pancreatic adenocarcinoma ones. Contrarily, the Transitional (TR) subtype, 

which is characterized by gene expression programs suggestive of epithelial-mesenchymal 

transition, was mainly associated with invasive breast carcinoma and head and neck 

squamous carcinoma. This result suggests that PDAC cancer cell lines may have such 
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heterogenous responses to drugs (Collisson et al., 2011) that the closest cancer cell lines 

are rarely associated with the pancreatic lineage. The Undifferentiated (UN) subtype(Di 

Chiaro et al., n.d.), which lacks endodermal gene expression, was excluded for this aim due 

to the lack of an experimental model useful to recapitulate this PDAC subtype (data not 

shown). 

We next applied the GDSC-trained version of CellHit to the PDAC samples for the prediction 

of drugs to which PDAC subtypes showed different sensitivities. Hierarchical clustering 

based on the predicted IC50 of the available drugs showed that PDAC samples segregated 

into two main groups according to their subtype of origin (Figure 7B; Supplementary Table 

15). Moreover, it also revealed two main clusters of drugs to which PDAC samples showed 

different sensitivities. In cluster 1, TR samples were associated with resistance to the 

treatments compared to the GL ones. This finding is in line with the behavior and the poor 

prognosis of PDACs in which the Transitional subtype is the most abundant tumor 

component (Di Chiaro et al., n.d.). Cluster 2 was instead enriched in drugs with different 

effects on both subtypes likely due to the co-existence of endodermal gene programs in 

these two PDAC variants(Di Chiaro et al., n.d.). 

Well-known chemotherapeutic drugs, such as Gemcitabine (cluster 1), were previously 

described to act mainly on classical epithelial (glandular) cells (Collisson et al., 2011). As 

expected, CellHit predicted that the GL subtype was more sensitive to Gemcitabine, since 

these cells have epithelial gene expression programs, compared with the TR subtype which 

displays quasi-mesenchymal phenotype (Figure 7C). This analysis confirms the subtype-

specific responses to this drug (Collisson et al., 2011). 

To test these drugs for their repurposing potential, we sought the PDAC cell lines that most 

closely resembled the cancer cell lines shown by CellHit to have similar drug response 

profiles to those inferred from patients’ samples (Figure 7A). Celligner revealed that CFPAC-

1 was transcriptionally closest to both the pancreatic and the esophagogastric 

adenocarcinomas while PANC-1 was associated to the invasive breast and the head and 

neck squamous carcinomas (Figure 7D), lineages that were previously associated by CellHit 

to GL and TR subtypes, respectively. Among the drugs enriched in cluster 1 and predicted to 

be more effective in the GL subtype compared to the TR one (Figure 7C,E), we also found 

two topoisomerases inhibitors, such as Irinotecan and Teposide (or its analogous 

Etoposide), that are approved and used in clinics for cancer therapy (Fujita et al., 2015; 

Zhang et al., 2021)(Fujita et al., 2015; Zhang et al., 2021). To validate our predictions, we 

treated CFPAC-1 and PANC-1 cells with these drugs at different drug concentrations to test 

the cell viability over three days (Figure 7F). Both treatments were preferentially active in the 

CFPAC-1 cell line with respect to PANC-1 at the dose corresponding to its Cmax, the 

maximal concentration that can be reached in patients’ blood. Overall, the experimental 
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validation was in concordance with CellHit predictions confirming the robustness of the 

model to infer drug responses in different tumor subtypes and underlining the capacity to 

repurpose FDA-approved drugs for one of the most lethal solid tumors for which there are no 

efficient drugs available. 

 

Validation on primary cells from GBM patient’s samples the specific response profiles 

predicted by CellHit 

To further assess CellHit‘s capabilities in a real case scenario, we employed the model 

trained on the GDSC dataset to infer the drug sensitivity profiles for 64 samples obtained 

from patients with Glioblastoma Multiforme (GBM). We employed the inferred drug sensitivity 

profiles to cluster patients, which identified two main groups displaying different sensitivity 

profiles to drugs (Supplementary Figure 8). We chose for experimental validation primary 

cell lines obtained from the samples Gb130 and Gb107, considered as representatives of 

the two groups (Supplementary Figure 8). We tested two compounds, the Mcl-1-specific 

inhibitor AZD5991 and the E3 ubiquitin-protein ligase XIAP inhibitor, AZD5582, as we found 

them to be respectively more and less sensitive relative to the median values across 

samples. When considering only the predicted lnIC50, we predicted for both samples Gb130 

and Gb107 higher sensitivities for AZD5582 than AZD5991 (Figure 8A), which we 

experimentally confirmed (Figure 8C,D). Indeed, experimental lnIC50 are in line with the 

predicted ones, particularly for the Gb130 sample. Predictions of the Gb107 sample differ 

more compared to experimental results, which anyway confirmed that AZD5582 is more 

effective in inhibiting the growth of the cancer cell line. Such discrepancy might likely be due 

to highly specific transcriptional program characterizing this sample and its derived primary 

cell line, which is closest to a Leiomyosarcoma cell line based on its response patterns 

(Supplementary Table S16). 

By considering the deviation of the predicted lnIC50 values from the median of the 

distribution of experimental lnIC50 across cell lines, it is possible to observe that AZD5991 

had a predicted lnIC50 lower than the median lnIC50 (i.e., 4.591) for Gb130 and higher for 

Gb107, while AZD5582 had a predicted lnIC50 higher than the median lnIC50 (i.e., 2.014) 

for both Gb130 and Gb107 samples (Figure 8B). Such different extents of deviation from the 

median are also associated to differences in quantile scores for these drugs for the inferred 

samples. Indeed, while AZD5991 has a bigger difference of quantile scores among cell lines, 

with higher values for Gb130, AZD5582 is characterized by more comparable values. We 

therefore proceeded to test the difference in response of the same drug on the two primary 

cultures simultaneously (see Methods). We observed a greater reduction in viability in 

Gb130 compared to Gb107 in response to the treatment with AZD5991 (Figure 8E). This 

result was consistent with the model, which predicted a lower lnIC50 for GB130 (3.05) than 
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for GB107 (5.57). For AZD5582, we did not observe a clear difference in cell viability 

reduction following treatment (Figure 8F).  

DISCUSSION 

In this study, we have developed a novel ML framework to predict and interpret the 

sensitivity of cancer cell lines to drug treatments and proposed a strategy to perform robust 

inference with this model on bulk RNAseq obtained from patients’ samples. Our analysis 

showed that the critical information to predict cell line drug sensitivity chiefly resides in the 

features obtained from the cell line and that integration of the drug representation into the 

model doesn’t significantly improve the predictive performance. This is also expected since 

the GDSC dataset contains too few chemicals to allow the model to learn any molecular 

principle associated with their bioactivity. Therefore, we developed individual models for 

each drug by considering as features only the cell line expression data and showed that their 

aggregated performance approximates the one of the joint model which also uses drug 

representations. We found out that XGBoost achieved the best performance compared to 

other SOTA approaches, such as KRR and SRMF (Chen & Zhang, 2021), or a fully 

connected MLP neural network.  

Importantly, our XGBoost-based model for individual drugs provides much easier means to 

interpret the predictions and explain which genetic expression features are leveraged by the 

model. As highlighted by (Corsello et al., 2020), numerous drugs display selective activity 

profiles. Consequently, a detailed assessment of model performance must include the 

evaluation of their predictive power in identifying those specific deviations from a drug’s 

usual cytotoxic or inhibitory effects (i.e., deviations from a drug’s specific mean/median 

activity). This approach enabled us to move past the biases inherent in the data, providing a 

more specific depiction of the models' predictive capabilities. Moreover, the ability to predict 

drug activity specificities across cell lines has significant biological implications, beyond the 

statistical advantages already mentioned. Variations in the efficacy of drugs, particularly 

concerning specific types of cancer, reveal key molecular mechanisms that underpin and 

distinguish different pathologies. Insights gained from the interpretability of our models shed 

light on these nuances, enabling a deeper understanding of drug interactions with genetic 

expression profiles. This knowledge can be pivotal in the development of targeted therapies 

within a personalized medicine framework, where understanding the particularities of drug 

responses is essential for tailoring treatments to individual patient profiles. The dual criterion 

that we have employed for determining feature importance, i.e. SHAP and permutation 

importance, sets a very stringent requirement for the identification of important expression 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.586783doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.586783
http://creativecommons.org/licenses/by-nc-nd/4.0/


signatures. Despite this, we found that many drug models are indeed learning the 

mechanisms responsible for cell-line drug sensitivity solely based on cell-line basal 

transcriptomics data.  

We employed a strategy based on a freely available LLM, i.e. Mixtral Instruct, to improve the 

MOA description for each drug and use it to associate semantically closest pathways from a 

reference knowledge base. Through this resource, we assessed that many of the models are 

characterized by significantly enriched pathways matching the MOA for the corresponding 

drug, in addition to frequently identifying the nominal targets. We also tracked many 

significantly enriched pathways that do not match the known MOA for a specific drug, 

suggesting that additional, new MOAs might support the effect of certain drugs against 

cancer cells. Overall, 135 GDSC drug models out of 253 can recover either the target or 

MOA-related pathways among important genes, suggesting that drug-specific models 

leverage known biological mechanisms to carry out their prediction task. We also 

demonstrated that the important genes of the model successfully recapitulated cancer tissue 

essential genes from a recently published compendium (Pacini et al., 2024). Our models’ 

interpretation clearly suggests that drug sensitivity emerges from the interplay of drug MOAs 

and genes essential for cell survival. We speculate that the more efficient the cross-talk 

between MOAs and essential genes, the more effective a drug is in inhibiting cancer cell 

growth. Our purely data-driven approach to explain drug sensitivity mechanisms can be 

considered as a complementation of previous approaches either based on simple correlation 

of sensitivity and basal gene expression (Rees et al., 2016) or integrated with PPI network 

and pathway analysis (Fernández-Torras et al., 2019). 

The proposed LLM pipeline extracts features in a human-readable and interpretable manner, 

which is crucial in omics problems where the number of features (genes), greatly exceeds 

the number of available training points (cell lines or samples). The proposed pipeline 

represents an example of how to use powerful LLMs by leveraging relevant domain 

knowledge. With the very fast advancements in the field regarding model efficiency and the 

lowering cost of computing resources, it will probably be possible in the future to obtain 

deeper and more granular insights. Moreover, the growing 'reasoning' capabilities of future 

models could further improve the capabilities of the proposed pipeline                          

by leveraging multi-modal contents, such as images and knowledge graphs and similar 

applications of LLMs are already appearing in the literature (e.g. https://biochatter.org/). The 

proposed interpretability pipeline represents both a novel framework and a toolkit applicable 

beyond our current datasets to address the complexities of high-dimensional datasets 

commonly encountered in the "omics" realm. This pipeline bridges the gap between state-of-

the-art Explainable AI (XAI) techniques, such as feature permutation and SHAP values, with 

traditional gene enrichment and over-representation analysis. This integration serves a dual 
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purpose: firstly, it provides a mechanism to delve into the model's mechanistic 

underpinnings, offering opportunities for debugging and enhancing our understanding of its 

internal processes. Secondly, by providing interpretability insights on a multi-scale level—

from local to aggregated explanations—it facilitates the formulation of new, experimentally 

testable biological hypotheses. 

In our study, we first tailored the training and interpretability strategies to model the GDSCv2 

dataset, which has also been extensively tackled by a multitude of previous methods   (J. 

Chen & Zhang, 2021; Firoozbakht et al., 2022; Xia et al., 2022). We then applied the same 

strategy to the PRISM dataset, which consists of a much larger panel of drugs screened 

against cancer cell lines. Although the PRISM dataset poses specific challenges, such as 

many drugs showing little or no effect at all on cancer cells, we showed that several models 

achieved good performances and recovered the information of targets and associated 

MOAs, which encompass a broader range of biological processes compared to GDSC 

drugs. To the best of our knowledge, this is the first competitive ML model tackling drug 

sensitivity predictions on both GDSC and PRISM through an explainable framework. 

However, it is possible that the kind of regression model that we are employing here might 

not be best suited for many of the drug candidates that we have observed in PRISM, 

characterized by highly specific activity profiles (in other words, showing activity on a limited 

number of cells). Considering the high anti-cancer potential of many non-oncological drugs 

against certain targets (e.g. GPCR drugs) (Arora et al., 2023; Wu et al., 2023), it will be 

interesting to explore in the future alternative ML frameworks to model the sensitivity of 

those drugs for which we obtained low performances due to high specificity and low 

variability of the response.   

 

To deploy the models in real world scenarios, i.e. on bulk RNAseq data obtained from 

patients, we employed Cellligner(Warren et al., 2021) to align bulk RNAseq from patients to 

those from                          

cell lines upon which the model has been trained. We used Celligner’s transformed RNAseq 

data both to train the model (i.e. CCLE) as well as to perform inference on more than 10k 

patients’ samples from TCGA to predict an IC50 for each drug. Best predicted drugs for each 

patient often matched mono- and combination-therapies approved for the corresponding 

cancer type, such as Venetoclax AML, Fulvestrant in BRCA and Dabrafenib in SKCM, along 

with multiple combination drugs whose usage has been already approved. These results 

support the high potential for translation of our model predictions, as we find many more 

predicted mono- or combination-therapies for many TCGA cancer types, with some evidence 

of indications for combined usage, which might represent new repositioning opportunities. 
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To further validate our strategy, we transformed RNAseq data from different morpho-

biotypes recently identified for PDAC(Di Chiaro et al., 2024) and inferred the most likely 

drugs for the samples of distinct subtypes. We showed that Irinotecan and Etoposide, 

predicted to be more effective against the “GL” than “TR” biotypes, indeed displayed 

differential sensitivity on cell lines more closely resembling the different tumor types reacting 

most similarly to the two PDAC subtypes, corroborating our predictions.  The high intratumor 

heterogeneity, namely the coexistence in the same patient of heterogeneous groups of 

tumor cells with distinct morphological and transcriptional profiles, may lead to the 

adaptation/selection of these cells to therapy. Thus, this approach could be important to 

design ad hoc combinatorial therapies based on the tumor's subtype composition. We also 

demonstrated on GBM patients’ tumor samples the capability of our model to exploit 

predicted drug sensitivity profiles to cluster samples based on their similarities in drug 

sensitivity profiles. Through this approach we have identified representative samples with 

specific sensitivities, which we experimentally validated using match patient-derived tumor 

primary cell lines. These additional validations not only strengthen the reliability of our model 

but also highlights its potential translatability in clinical practice providing the therapeutic field 

of glioblastoma, which has remained stagnant for years, with a broad spectrum of potential 

new therapeutic possibilities. 

 

These results pave the way for future exploitation of the CellHit model for inference using 

larger sets of drugs (i.e. PRISM) on alternative patient cohorts. In this respect, it will be 

critical to develop faster algorithms to align bulk RNAseq for inference with the model. The 

current strategy, based on Celligner, requires an initial alignment between CCLE, TCGA and 

any additional input RNAseq dataset, and subsequent retraining of the model on the 

transformed CCLE data. We plan to employ deep learning architectures, such as Variational 

Auto Encoders (e.g. Mober(Dimitrieva et al., 2022)), to improve this preliminary alignment 

step which is of critical importance to effectively deploy cell line-based models on patient 

samples. We plan to provide our models via a webapp for fast drug-sensitivity inference of 

bulk RNAseq data from patient samples provided as input. This will allow to analyze and 

compare inputted samples based on the similarity of their responsiveness profile, in addition 

to the one based on transcriptomic profile, which will speed up the hypothesis generation 

process to find new personalized treatments against cancer. 
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FIGURES 

 

Figure 1: A) Schematic workflow of the pipeline from dataset acquisition and model training 
through to benchmarking and external validation. Leveraging large-scale transcriptomics 
datasets, several machine learning models are trained. A Large Language Model (LLM) 
assists the curation of drug Mechanisms of Action (MOA) enhancing model interpretability 
and facilitating feature selection. Three model types are trained: one using cell 
transcriptomics and drug features, another using only transcriptomics, and a third using a 
selected subset of transcriptomic data informed by pathways identified by the LLM. These 
models undergo benchmarking across 20 distinct train/validation/test splits. The best-
performing model is then applied in inference on The Cancer Genome Atlas (TCGA) bulk 
RNA-seq data and on external patient datasets for pancreatic ductal adenocarcinoma 
(PDAC) and glioblastoma multiforme (GBM). Predictions are externally validated on TCGA 
data using National Cancer Institute (NCI) cancer drug indications to assess the recovery of 
known information, as well as experimentally on primary (GBM dataset) and commercial 
(PDAC dataset) cancer cell lines; B) Bar plot comparing the performance of different model 
architectures (MLP, XGBoost and literature baselines) and input feature representations (cell 
features and drug features) in terms of Pearson correlation with observed drug sensitivities. 
Different colors denote different learning algorithms (e.g light blue XGBoost and purple 
MLP). Etched bars highlight models using only transcriptomic data (no drug featurizations); 
C) Bar plot depicting Mean Squared Error (MSE) for the same models and features as in (B); 
D) Histogram of the distribution of Pearson correlation coefficients for drug-specific models 
using all genes, indicating the median, mean, and standard deviation; E) Box plots 
illustrating the variability in the distribution of Pearson correlation coefficients across 20 
different random training/testing splits. Each box plot represents a specific model and 
displays the median correlation (central line), interquartile range (box edges), and variability 
outside the upper and lower quartiles (whiskers) 
 
 
 
Figure 2: GDSC model interpretability. A) Target recovery for the top 25 ligand-target pairs. 
The length of the bars on the left indicates the fraction of recovery (# of times the drug-
specific model identifies the putative gene as important out of 20 train/test splits). Red lines 
represent the 95th percentile of the Hit Fraction distribution across all genes for a given drug. 
The length of the bars on the right shows the median pearson correlation for each drug-
specific model; B) SHAP (teal) and correlation delta (orange) importances for the Venetoclax 
drug. Permutation importance reflects the decrease in the model's prediction accuracy when 
a feature's values are shuffled, indicating its importance (greater drops signify higher 
importance). SHAP importance represents a feature's contribution to the model's prediction, 
with larger absolute values indicating greater importance; C) An integrated assessment of 
the Venetoclax model across various cell lines (X axis). The top plot (in black) shows the 
experimental IC50 z-scores, while the second plot (in gray) depicts the predicted IC50 
values, providing a comparison of model performance against experimental data. The third 
and fourth plots (in teal and red) respectively represent the SHAP values and expression 
levels of BCL2. Overall, the figure shows how lower IC50 values (higher drug efficacy) are 
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associated with higher BCL2 expression levels and correctly identified impact (negative 
SHAP value) of the gene on predicted IC50. 
 
 
Figure 3: Analysis of Drug MOAs and Gene Essentiality via GDSC Models. A) Workflow 
depicting the use of a large language model (LLM) for generating drug MOAs and identifying 
semantically relevant pathways. Starting from the drug's available metadata, an LLM is 
repeatedly tasked with specialized prompts to generate a drug textual description. In parallel, 
PubMed is queried programmatically with the drug name to retrieve abstracts related to the 
drug. The information is integrated in a final textual description. The obtained drug 
description is used by a "Guided" LLM to choose which are the Reactome pathways which 
are most likely to modulate drug efficacy. This last procedure is repeated 5 different times 
and only pathways selected at least two times are retained; B) Venn diagram showing the 
different drugs(top) and pathways (bottom) recovered using the LLM procedure as compared 
to pathway match based on drugs’ and target’s names; C) number of significantly enriched 
MOA-pathways obtained from different annotation criteria; D) Heatmap of significant MOA-
pathways for various drug models, filtered by a correlation threshold >0.5. Drug names and 
involved pathways are labeled along the x-axis and y-axis, respectively. Starred squares 
highlight pathways linked to drugs via at least one annotation criterion. Adjacent bar plots 
show the count of significantly enriched elements per row/column in light gray, with those 
annotated by the pipeline in dark gray. A vertical dashed line highlights the presence of a 
group of drugs that most frequently recover pathways and known MOAs; E) tissue-wise 
statistics of number of cell lines (top), number of core essential genes (middle), recall of 
essential genes at different important genes (SHAP) stringencies (top k 10, 20, 50, 100); F) 
STRING PPI network of lung core essential genes recovered by SHAP importances. Nodes’ 
have diameters proportional to node degree and are colored according to SHAP values (the 
brighter the more important) 
 
 
 
 
Figure 4: PRISM model performance and interpretation. A) scatter plot of PRISM drug-
specific model correlations and MSEs. Dots are colored according to IQR values, ranging 
from blue to red for increasing values of IQR. The density plots located at the top and left of 
figure display the distribution of correlation and MSE values for all models in blue and for 
those models with an IQR greater than 1 in red ; B) scatter plot of predicted vs experimental 
IC50 values from models with correlation > 0.2; C) barplot statistics of PRISM models with 
corr > 0.2 (salmon) and corr > 0.2 and target recovered, stratified by putative target protein 
families (red); D) fraction of target recovery for the top 25 ligand-target pairs (same plot as 
2A but for PRISM). Red lines represent the 95th percentile of the Hit Fraction distribution 
across all genes for a given drug. The length of the bars on the right shows the median 
pearson correlation for each drug-specific model; E) heatmap showing significant MOA-
pathways (rows) for drug models (columns) with corr > 0.5 (same plot as 3E but for PRISM); 
F) Venn diagram comparing MOA-pathway significantly enriched on PRISM’s and GDSC’s 
drug model important genes. 
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Figure 5: MOA-driven models. A) comparison of the correlation distribution of all-genes (red) 
vs MOA-primed (blue) GDSC models; B) scatter plot of predicted vs experimental IC50 
values from GDSC MOA-primed models. The coloring of the dots on the scatterplot indicates 
the density of points around a particular area; C) comparison of the correlation distributions 
of all-genes (red) vs MOA-primed (blue) PRISM models (considering only models with IQR 
>1); D) scatter plot of predicted vs experimental IC50 values from PRISM MOA-primed 
models with correlation > 0.2.The coloring of the dots on the scatterplot indicates the density 
of points around a particular area; E) boxplot of correlation distributions for GDSC models 
showing the greatest correlation improvement of the MOA-primed vs all-genes models; F) 
boxplot of correlation distributions for PRISM models showing the greatest correlation 
improvement of the MOA-primed vs all-genes models 
 
 
 
Figure 6: A) Schema of a drug response prediction workflow leveraging Bulk RNA 
sequencing data from TCGA patients, as well from new PDAC and GBM cohorts. The 
process begins with data harmonization using Celligner, followed by drug inhibitory 
concentration (IC50) predictions through CellHit. Patients are then ranked by their predicted 
predIC50 values and quantile score to assess drug efficacy. Validation involves comparing 
TCGA predictions with NCI cancer drug metadata and refining tumor-specific predictions by 
clustering patient responses within cancer subtypes for experimental validation.; B) recall of 
the recovered drug indications, from NCI cancer drugs, for the TCGA best ranked samples 
(top 1000), according to either predicted IC50 (predIC50) or quantile score metrics; C) 
stacked barplot of the GDSC drugs scoring among the top 1000 samples patients with 
cancer types matching the prescription according to NCI drugs. The height of the barplot’s 
stacks corresponds to the number of unique samples and the color of the specific cancer 
type; D) circle plot showing drugs predicted for the same pool of patients, i.e. suggesting 
combination therapies. Circle diameter is proportional to the number of unique samples, 
among the top 1k, best scoring for both drug models. Colors indicate the level of support for 
that combination, i.e., approved (red) or sharing indication for the same cancer type (dark 
green); E) Inference on TCGA data for the 20 best performing non-oncological drug models 
in the PRISM dataset. The height of the barplot’s stacks corresponds to the number of 
unique samples and the color of the specific cancer type (highlighting potential drug 
repurposing opportunities). Colors are shared with panel C. 
 
 
 
Figure 7: CellHit predictions on distinct PDAC subtypes and experimental validation. A) 
Enrichment of predicted cancer cell lines that react most similarly to the available drugs for 
the Glandular (GL) and Transitional (TR) subtypes. Classification of the tissue types of cell 
lines (oncotree system) is shown; B) Heatmap of predicted IC50 (predIC50) of GDSC drugs 
derived by CellHit prediction in PDAC samples. K-means clustering (n_clusters=2, 
method=Euclidean distance) was performed. Subtype annotations are shown for each 
sample; C) Violin plot showing the predicted IC50 (predIC50) of Gemcitabine for the 
Glandular (GL) and Transitional (TR) subtypes; D) Euclidean distance derived from Celligner 
between each PDAC cell line (CFPAC-1, PANC-1) and each selected tumor type 
(Pancreatic, Esophagogastric, Invasive Breast, Head and Neck); E) Violin plot showing the 
predicted IC50 (predIC50) of Irinotecan and Etoposide for the Glandular (GL) and 
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Transitional (TR) subtypes; F) percentage of cell viability of CFPAC-1 and PANC-1 cells 
treated with increasing concentrations of Irinotecan or Etoposide at 24, 48 and 72 hours. 
Individual values represent the average of three independent experiments ± SD. 
 
 
Figure 8: GBM patient samples inference and experimental validation. A) predicted lnIC50 
of drugs AZD5991 (blue) and AZD5582 (red) for samples Gb130 and Gb107. Horizontal 
dashed lines indicate the median of the experimental lnIC50 of each drug on GDSC cell 
lines; B) predicted quantile scores of drugs AZD5991 (blue) and AZD5582 (red) for samples 
Gb130 and Gb107; Dose-response curves for the two patient-derived primary cultures of 
GBM, C) Gb130 and D) Gb107 using the Crystal Violet assay. The curves illustrate the 
response to treatment in terms of reduction of cell viability with AZD5991 and AZD5582, 
measured 72 hours post-treatment for Gb107 (C) and Gb130 (D). The IC50 values for both 
drugs are provided. The dose-response curves are also compared across the two cell lines 
for AZD5991 (D) and AZD5582 (E). The AZD5991 curve is represented by blue lines, while 
red lines are used for AZD5582. The profiles for Gb107 are depicted with dashed lines and 
triangles marking the points, while those for Gb130 are represented with solid lines and 
circles marking the points. The threshold for a 50% reduction in cell viability is indicated by a 
dark dashed line. 
 
 

METHODS 

Datasets 

 

Transcriptomics, IC50s and LFCs 

We obtained data model’s training from two comprehensive high-throughput studies: the 

Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio et al., 2016) and the Profiling Relative 

Inhibition Simultaneously in Mixtures (PRISM) (Corsello et al., 2020). We downloaded the 

GDSC2 dataset,  release version from 24 July 2022, from its official website 

(https://www.cancerrxgene.org/). This dataset consists of 969 cancer cell lines profiled for 

their responses to a panel of 286 drugs. Our primary focus within this dataset are the half-

maximal inhibitory concentrations (IC50) values, which serve as target values for predictive 

modeling. We also incorporated the PRISM Repurposing Public 23Q2 dataset from the 

Dependency Map (DepMap, Broad Institute) portal, considering log-fold change (LFC) in cell 

viability measurements and consisting of 919 cell lines and 6.415 compounds. We also 

retrieved drugs metadata available both in GDSC and PRISM regarding drug putative 

targets and mechanism of action. We obtained RNA sequencing (RNASeq) data from the 

Cancer Cell Lines Encyclopaedia (CCLE)(Barretina et al., 2012) as available from DepMap. 
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We considered  log2-transformed transcripts per million plus one (TPM+1) data for protein-

coding genes. We mapped CCLE cell lines data to GDSC by using available COSMIC to 

DepMap identifier mappings which allowed us to link cell lines to additional resources 

available on the DepMap portal such as mutations, gene essentiality, and additional 

metadata. We employed DepMap IDs to sort cell lines into different tissues and disease 

categories via the OncoTree classification system(Kundra et al., 2021). 

 

TCGA data 

We integrated into our pipeline RNA bulk transcriptomic data from The Cancer Genome 

Atlas (TCGA) (Chang et al., 2013) which we used for initial validation of the designed models 

on actual patient-derived samples. Specifically, our study employs the Tumor Compendium 

v11 Public PolyA dataset, released in April 2020, which amalgamates data from various 

publicly accessible repositories, including the TCGA and Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) projects. This data, sourced from the 

UCSC Treehouse Public Data platform, is downloaded in the RSEM log2(TPM + 1) 

normalized format. 

 

Gene essentiality data 

We retrieved data from the 23Q4 CRISPR Gene Dependency dataset from the DepMap 

portal. This dataset contains synthetic lethality experimental data across 1,100 unique cell 

lines and 18,444 genes. We refined our analysis to a subset of 17,425 genes, which are also 

represented in both the CCLE and TCGA databases. Matching and integration of this 

dataset with cell lines from GDSC and PRISM is made through DepMapID.  

 

Mutations data 

We obtained somatic mutations data from the 23Q4 release of the DepMap portal. This 

dataset includes mutation data for 1,750 unique cell lines. We considered the mutations of 

693 high-consensus oncogenes and tumor suppressor genes as curated in the OncoKB 

database(Chakravarty et al., 2017). We binarized oncodriver genes as mutated or not 

mutated regardless of the specific mutation type. We cross-referenced this dataset with cell 

lines from GDSC and PRISM via DepMapID.  

 

Reactome 

Pathway data from the Reactome database(Jassal et al., 2020) is incorporated into our 

analysis. Notably, we leveraged the directed acyclic graph representing the hierarchical 

structure of the pathways alongside a comprehensive list of pathways and their associated 

genes. Data extraction from Reactome is executed through two main methods: file dumps 
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from Reactome, which provide us with the list of pathways and their hierarchical 

organization, and the REST API, which is used to obtain information on pathway-associated 

genes and the drugs that have been manually annotated to these pathways. The API is 

queried programmatically using the “get” function from Python’s built-in “requests” library. 

We employed topological sorting to organize the nodes (i.e., pathways) of the Reactome 

hierarchy, considered as a directed acyclic graph (DAG). This sorting technique arranges the 

nodes in a linear order where each node U, having a directed edge towards node V, 

precedes V, ensuring that all directed edges progress from higher to lower layers. Through 

this process, we systematically categorized nodes into hierarchical "layers", designed to only 

have incoming edges from the layer above and outgoing edges to the layer below. We 

focused on pathways within the "1st Layer," selecting a subset of 169 unique pathways from 

Reactome. Processing of this data is carried out by leveraging Python’s networkx library, 

specifically its “topological_sort” function. 

 

NCI Cancer drugs 

We developed a natural language processing pipeline to programmatically identify drugs’ 

clinical indications for the different types of cancer as defined in TCGA. In more depth, this 

pipeline works by extracting information from textual data. Utilizing the Beautiful Soup 

(https://www.crummy.com/software/BeautifulSoup/bs4/doc/) package, we retrieved links to 

drugs listed on the National Cancer Institute's website (https://www.cancer.gov/about-

cancer/treatment/drugs). We then combined Python's requests package with Beautiful Soup 

to extract textual descriptions of each drug. The extracted text is used as input to create a 

custom textual prompt. This prompt is then fed to an LLM with generation constrained by the 

Guidance package (see “Mixtral pipeline” section). The goal was to determine whether the 

text provided any evidence that the drug was prescribed for any of the 37 cancer categories 

from TCGA. Given the potential discrepancies in drug naming conventions between NCI and 

GDSC, we recover PubChem IDs from free-text drug names using PubChemPy, a tool 

developed by the curators of PubChem(Kim et al., 2016) to programmatically retrieve 

information about chemical compounds. This step was vital in aligning these drugs with their 

counterparts in the GDSC, ultimately allowing us to obtain clinical indications for a total of 41 

drugs. All data obtained through this pipeline is reported in Supplementary Table S11. 

 

PRISM drugs’ metadata and IQR analysis 

We obtained PRISM drugs categories, i.e. Chemotherapeutics, Targeted Oncology Drugs, 

and Non-oncology Drugs, from the secondary screening metadata provided by the 2019 

PRISM project data release, available through the DepMap portal 

(https://depmap.org/repurposing/). We transferred the classification to the drugs in the 2023 
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release of PRISM by matching their BROAD IDs. This yielded a final set of 835 drugs, 

including 435 targeted therapies, 346 general oncology treatments, and 54 

chemotherapeutics. We calculated the Interquartile Range (IQR) for the Log Fold Change 

(LFC) data across all 6,337 drugs represented in the PRISM dataset. It is important to note 

that, due to the properties of the logarithm in base 2, an IQR greater than 1 implies that the 

viability counts of the cell line at the 75th percentile after a given drug are at least twice as 

high as those observed for the cell line at the 25th percentile. 

 

 

PDAC subtype data 

For the drug prediction in PDAC subtypes (Glandular, GL; Transitional, TR; Undifferentiated, 

UN), data were obtained from the transcriptional profiles of multiple morphological 

distinguishable tumor areas isolated by laser micro-dissection (LMD) in primary PDACs of 

treatment-naïve patients (Di Chiaro et al., 2022).  

 

Data pre-processing 

Standardization and filtering 

We first selected a subset of common genes among the datasets, using the Human Gene 

Nomenclature Committee (HGNC) (https://www.genenames.org/) system. We removed 

genes exhibiting zero standard deviation in either of the datasets (CCLE or TCGA), yielding 

a final set of 18.174 genes. We standardized transcriptomic data by subtracting the mean 

and dividing by the standard deviation across the whole dataset. This normalization is not 

particularly important for tree-based models but is important for the stability of neural 

networks and other models (used as baselines in this work). For the response values (Ys),  

we conducted a drug-by-drug standardization, by removing for each drug the mean and 

standard deviation computed specifically for that drug. This standardization ensured that the 

model's predictions were not skewed by the inherent differences in the drug response scales 

but were instead sensitive to the nuances in response patterns specific to each drug, 

considering that different drugs can have varying ranges and distributions of response 

values. The standardization was performed only on the training set. The splitting strategy 

used throughout the analysis is described in the “Model testing” section. At the end of the 

preprocessing step, the GDSC dataset comprised 686 unique cell lines, 286 unique drugs 

and a total of 169.208 drug-cell line pairs (IC50 values). The PRISM dataset comprised 887 

unique cell lines, 6337 unique drugs and a total of 3.810.028 drug-cell line pairs (LFC 

values).  
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Alignment of patients' bulk RNAseq with Celligner 

To harmonize representations of bulk RNAseq transcriptomic profiles from cancer cell lines 

and patient-derived samples, we adopted the pipeline proposed by the Celligner 

method(Warren et al., 2021). We employed the data from the Cancer Cell Line Encyclopedia 

(CCLE) and the Tumor Compendium v11 Public PolyA (see “Datasets” section). Unlike the 

Celligner publication, in our study we also integrated, together with TCGA, bulk RNASeq 

data obtained from two additional patient cohorts with pancreatic ductal adenocarcinoma 

(PDAC) and glioblastoma multiforme (GBM)(see below). This integration is achieved by 

subsetting all data based on a common set of available genes, concatenating experimental 

samples with TCGA data, and then executing the cell alignment. We used the Python 

version of Celligner, available through its GitHub repository 

(https://github.com/broadinstitute/celligner/tree/master). 

 

Drugs and cells featurization 

We featurized the drugs using their two-dimensional structures. Since the GDSC dataset 

does not provide the structural identifiers for the tested drugs, we used PubChemPy to 

retrieve the SMILES representations for each tested compound, for a total of 229 unique 

drugs. We employed the Extended-Connectivity Fingerprints (ECFP)(Rogers & Hahn, 2010) 

and ChemBerta fingerprints(Ahmad et al., 2022) for drug featurization. Both ECFP and 

ChemBerta fingerprints were computed using the MolFeat (https://molfeat.datamol.io/) 

library. As a control, we also introduced a OneHot embedding technique. This approach 

produced a 229-dimensional vector for each drug, with the ith position marked as '1' for the 

ith drug and '0' in all other positions. In parallel, we also explored alternative featurization 

strategies for the cell lines. On one hand, we considered the log2+1 normalized expression 

values of a total of 18.174 genes. We also explored a dimensionality reduction technique, 

specifically Principal Component Analysis (PCA), retaining eigenvectors describing 90% of 

the total variance (395 components). PCA analysis is performed through the “PCA” function 

from Scikit-learn library ((Pedregosa et al., 2011) and fitted on the log2+1 normalized 

expression values. 

MOA-pathway annotation 

To identify pathways potentially involved in the mechanism of action (MOA) of a certain drug, 

we implemented a pipeline with three different attribution criteria: an LLM attribution criterion, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.586783doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.586783
http://creativecommons.org/licenses/by-nc-nd/4.0/


a pathway membership criterion and a manual Reactome pathway annotation criterion. 

Below we provide detailed explanations for each of these three criteria. 

 

Extending drug MOA with LLM  

We employed two distinct Large Language Models (LLMs) for the intelligent extraction and 

interpretation of drug-related information: GPT-4, a proprietary model developed by OpenAI 

(https://openai.com/chatgpt), and Mistral Instruct, which is freely available and developed by 

MistralAI (https://mistral.ai/). Information extracted from the LLMs was leveraged to identify 

biological pathways likely influencing drug efficacy, which can then be used to select on 

which genes a model should be trained. The full list of curated pathways for each criterion is 

reported in Supplementary Table S3 and S9 for GDSC and PRISM respectively. 

GPT-4 based pipeline 

The GPT-4 pipeline begins with the extraction of GDSC’s drug metadata. These primarily 

include short textual labels describing the mechanism of action or the putative target of each 

drug (253 drugs out of the 286 available in GDSC). Utilizing a specialized prompt, we 

engaged GPT-4 to expand this basic metadata into a comprehensive textual description, 

which elucidates the drug's mechanism of action and its metabolic pathways in greater 

detail. We then used the expanded drug description as a second specialized prompt to task 

GPT-4 with the identification of the top 15 biological pathways likely to modulate the drug’s 

efficacy as well as to provide a reasoned explanation for the selection of each pathway. The 

model’s ability to elucidate its reasoning offers valuable insights into the complex interplay 

between drugs and biological systems, significantly augmenting our understanding of drug 

responses and offering an entry point to possibly debug the pipeline. Both of these steps are 

implemented using the OpenAI API, with a specific emphasis on the “function calling” feature 

introduced in July 2023. This feature is pivotal as it enables us to receive responses in a 

structured JSON format, adhering to a pre-specified schema and allowing integration in the 

data pipeline. The selection of pathways by GPT-4 is constrained and informed by the 

Reactome knowledge base, specifically it is forced to select pathways only among “Level 1” 

pathways (see “Reactome pre-processing”). This hierarchical approach not only provided a 

comprehensive overview of biological interactions at various levels of complexity but also 

allowed us to effectively control the scope of pathways among which GPT-4 operates, 

balancing the complexity and operative cost of our pipeline. 

 

Mixtral pipeline 

We introduce an AI curation strategy employing Mixtral Instruct(Jiang et al., 2024), a freely 

available instruction-tuned 8x7 billion parameter mixture of experts LLM. Notably, the usage 

of a freely available architecture allowed us to devise a cost-effective and reproducible 
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methodology, addressing computational and accessibility challenges. Our approach 

guarantees predictive accuracy on par with GPT-4 (or even exceeding) by leveraging three 

core strategies: structured Chain-of-Thought prompts(Wei et al., 2022) for detailed 

reasoning, Self-Consistency(Wang et al., 2022) procedures for the minimization false 

positives, and Retrieval Augmented Generation (RAG)(Lewis et al., 2020) for the integration 

of validated scientific literature.  

Operatively the pipeline unfolds across three phases: initial drug description generation 

based on metadata, refinement of these descriptions with RAG leveraging PubMed 

abstracts, and the selection of biological pathways through a self-consistency approach. 

Initially, drug descriptions are generated using detailed prompts that elicit step-by-step 

reasoning from Mixtral Instruct, mirroring the GPT-4 pipeline but with enhanced specificity. 

To further diminish the likelihood of model hallucinations, descriptions are refined by 

integrating a RAG strategy through the Entrez module of the biopython python library(Cock 

et al., 2009). This involves systematically retrieving and synthesizing information from the 

top 10 PubMed abstracts (sorted by relevance) related to each drug. Subsequently, the LLM 

is tasked with refining these initial descriptions, specifically prioritizing information from the 

abstracts in the event of conflicting statements and seamlessly integrating any relevant, 

missing knowledge. In the pathway selection phase, we introduce a self-consistency 

methodology where Mixtral Instruct is tasked multiple times (with different random seeds) to 

identify the most relevant biological pathways influencing drug efficacy. By considering 

pathways identified at least twice across multiple iterations, we significantly diminished the 

risk of false positives. Due to the absence of function calling capabilities in Mixtral Instruct, 

we interleave “generate” and “choice” functions from the Guidance library 

(https://github.com/guidance-ai/guidance) to impose constraints on the LLM's generative 

process and obtain structured outputs from the LLM. The use of Guidance not only allows for 

a controlled selection among predefined pathways but also ensures that the rationale behind 

each choice is generated before the pathway itself. This enhances the causal coherence of 

the model's output and leverages its autoregressive nature. 

Operationally, we deploy a GPTQ 4-bit quantized version of Mixtral Instruct, sourced from 

the Huggingface model Hub (https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-

GPTQ). This quantized model configuration strikes a balance between model precision and 

inference speed, significantly reducing computational costs. Crucially, its compatibility with 

NVIDIA V100 GPU cards, requiring less than 30 GB of VRAM, enabled us to conduct 

extensive deployment within our High-Performance Computing (HPC) cluster efficiently. 

Furthermore, the use of the vLLM (Kwon et al., 2023) library facilitates continuous batching 

and maximizes GPU utilization during inference for drug description generation and 

refinement. For the task of pathway selection, we integrated the Huggingface transformers 
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library(Wolf et al., 2019) with the Guidance framework to adhere to Guidance requirements. 

All prompts utilized throughout the Mixtral Instruct pipeline, alongside the project's code, will 

be publicly released. 

 

Extending drug MOA with target pathways and drug annotations in Reactome 

We also linked drugs with potential Reactome pathways based on their putative targets. 

Utilizing the Reactome API, specifically the “referenceEntities" endpoint, we extracted 

entities classified under the ReferenceGeneProduct class for each pathway of “Level 1” (see 

Reactome Preprocessing). This process yielded a comprehensive list of gene products 

associated with each identified pathway. A pathway was considered relevant to a drug if its 

putative target was among the pathway's gene products. We extracted known ligand 

associations to Reactome’s pathways, by using the Reactome API's “referenceEntities” 

endpoint. Specifically, we retrieved for each of the "Level 1" pathways the objects assigned 

to the ReferenceTherapeutic class. This step provided a nested list of compounds along with 

their common names and corresponding identifiers from either PubChem or the Guide to 

Pharmacology for each pathway. 

To merge annotations, we re-employed the PubChemPy pipeline introduced in the “Drugs 

and cells featurization” chapter. For those instances where the Guide to Pharmacology was 

the initial source, this pipeline converted identifiers to PubChem format. Since we had 

previously acquired PubChem IDs for molecules within the GDSC dataset, this streamlined 

the integration process. Through this approach, we successfully associated pathway 

information with 66 distinct drugs present in the GDSC.  We compared retrieved pathways 

using the three distinct attribution criteria using the Python matplotlib_venn library 

(https://github.com/konstantint/matplotlib-venn). 

 

LLM pathway recovery probability 

We assessed the specificity of the LLM in identifying distinct pathways for various drug 

categories by utilizing metadata from the PRISM 2019 release (refer to “Metadata on PRISM 

Drug Categorization”). Our examination spanned different drug categories, focusing on the 

pathways highlighted by the LLM. For each drug category, we calculated the probability of 

an L1 pathway (see Data pre-processing) to be selected as relevant by dividing the number 

of times that pathways appear in that drug category by the total number of drugs within that 

category. To consolidate and visually represent our findings, we compiled the 25 most 

commonly identified pathways across all categories, presenting them in an annotated 

heatmap depicted in Supplementary Figure S3. 
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Model training 

We employed a dual-strategy training methodology for our predictive models, each 

addressing unique aspects of the drug-cell line interaction landscape. The first strategy 

involved a joint drug and cell-line featurization approach under the hypothesis that a dual 

representation of both drug molecules and cells would lead to a more nuanced and accurate 

prediction of how various cancer cell lines respond to different drugs. As a second strategy, 

we employed a drug-by-drug modeling approach, where we focused on examining the 

effects of individual drugs on cancer cell lines, with particular attention to the transcriptional 

responses of the cells. This method allowed us to delve into the specific mechanisms 

through which each drug influences cell behavior, thereby offering insights into drug-specific 

interactions and responses. 

  

Validation and hyperparameter optimization 

We describe a rigorous approach for validation and hyperparameter optimization essential 

for extracting maximum performance from deployed models. To obtain a fair comparison 

between methods, this process is uniformly applied across various models in our study. 

 

The proposed model-based hyperparameter search procedure leverages the Optuna 

framework (Akiba et al., 2019). Optuna is a cutting-edge tool for automating hyperparameter 

optimization and, specifically, deploys a Multi-Objective Tree Parzen Estimator (MO 

TPE)(Ozaki et al., 2020). This estimator simultaneously optimizes two key metrics: 

correlation and mean squared error, both evaluated on the validation dataset. By optimizing 

these metrics concurrently, we ensure a balanced approach to model performance, focusing 

on both absolute predictive accuracy and the strength of the relationship between predicted 

and observed values. MO TPE leverages a Bayesian-inspired strategy that is initialized with 

the evaluation of a specified budget of random hyperparameters. These hyperparameters 

are sampled from a prior distribution (defined by the user) over the space of possible 

hyperparameter values. This step is crucial for establishing a baseline understanding of the 

hyperparameter landscape. Upon completion of these random trials, the procedure shifts to 

a more targeted approach. Utilizing the outcomes of the initial phase, Optuna calculates a 

posterior distribution of hyperparameters. This shift marks a transition from exploration to 

exploitation, where the algorithm begins to concentrate on the most promising areas of the 

hyperparameter space. These areas are identified based on their density of successful 

outcomes on the validation set, indicating a higher likelihood of optimal model performance. 

For the models optimized using Optuna in our study, we adhered to a structured budget for 

evaluations. This included 100 initial random evaluations, serving as a broad exploration of 
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the hyperparameter space. We then conducted an additional 200 evaluations, which were 

more focused or "greedy." This approach, totaling 300 trials, is designed to strike a balance 

between exploring a wide range of possibilities and honing in on the most effective 

hyperparameters. We ensure transparency and reproducibility of our methodology by 

providing detailed information about the prior spaces for the tuned hyperparameters of each 

model.  

 

Baselines from the literature 

Our investigation includes a benchmarking of various models that have been recognized as 

state-of-the-art in the literature (J. Chen & Zhang, 2021). 

 

Kernel Ridge Regression (KRR) 

KRR emerges as a pivotal machine learning technique, offering a sophisticated blend of 

ridge regression's regularization capabilities with the kernel trick's ability to operate in higher-

dimensional spaces. Fundamentally, KRR extends linear ridge regression by incorporating a 

kernel function, thus enabling the modeling of non-linear relationships without explicitly 

transforming data into a high-dimensional space. This approach effectively addresses 

overfitting through the introduction of a regularization term, which penalizes the magnitude of 

the coefficients, thereby constraining their values and ensuring model simplicity. KRR stands 

as a benchmark alternative for feature selection, distinct from the approaches proposed via 

Large Language Models (LLMs). This method solely utilizes transcriptomic data, 

constructing a separate model for each drug without incorporating drug featurizations. We 

implemented KRR through the Scikit-Learn library. 

 

Similarity-Regularized Matrix Factorization (SRMF) 

The Similarity-Regularized Matrix Factorization (SRMF) method (J. Chen & Zhang, 2021) is 

an innovative approach for predicting anticancer drug responses in cell lines. It leverages the 

inherent similarities between drugs and cell lines to enhance prediction accuracy. 

Specifically, SRMF incorporates chemical structure similarities of drugs and gene expression 

profile similarities of cell lines as regularization terms in the matrix factorization model. We 

implemented this model by modifying the original Matlab code available at 

(https://github.com/linwang1982/SRMF) 

 

Full joint models 

Following methodologies that are widely recognized in the literature, we developed multiple 

predictive pipelines intended to effectively extrapolate and harness meaningful information 
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from both the drugs and the cell lines. Crucially, models in this chapter make use of the 

featurization described in the “Drugs and cells featurization” chapter. 

 

Multi-layer perceptron 

We implemented a customizable multi-layer perceptron (MLP) model architecture. The 

model dynamically constructs its architecture based on specified hyperparameters, including 

the number of input features, the number of hidden layers, the number of neurons in each 

hidden layer, and the dropout rate to mitigate overfitting. Each hidden layer is normalized 

using batch normalization to enhance stability and employs the ReLU activation function to 

introduce non-linearity, with an optional dropout applied based on the specified rate. The 

MLP is optimized using the AdamW optimizer, leveraging hyperparameters such as learning 

rate and weight decay for regularization. Training involves a customizable loss criterion, 

defaulting to Mean Squared Error Loss for regression tasks, with early stopping implemented 

based on a patience parameter to prevent overfitting by halting training if the validation 

metric does not improve for a specified number of epochs. Optimal hyperparameters for this 

model are fixed following the procedure described in the “Validation and hyperparameter 

optimization” chapter. The full list of hyperparameters and the prior space of the 

hyperparameters is provided in the supplementary material. The MLP is implemented using 

the PyTorch library (Paszke et al., 2019). 

 

XGBoost 

XGBoost (T. Chen & Guestrin, 2016) stands as a premier machine learning algorithm within 

the domain of ensemble methods, distinguished by its exceptional efficiency, flexibility, and 

capacity to deliver high-performance models. Central to XGBoost's methodology is the 

concept of gradient boosting, wherein it sequentially constructs a series of decision trees, 

each designed to correct the errors of its predecessors. This iterative refinement process 

harnesses the power of gradient descent to minimize a specified loss function, effectively 

enhancing predictive accuracy with each step. XGBoost further elevates the gradient 

boosting framework by integrating several key innovations: a regularization component that 

mitigates overfitting by penalizing complex models, an efficient tree pruning strategy that 

determines the optimal tree size during the growth phase rather than after its construction, 

and a scalable handling of missing data. Additionally, it incorporates a novel splitting 

algorithm capable of evaluating the potential of different tree structures rapidly, thereby 

optimizing computational resources and facilitating the handling of large-scale data sets. 

Crucially, given the high dimensionality of our dataset, we leverage the GPU acceleration 

included in XGBoost from version 2.1.0. Optimal hyperparameters for this model are fixed 

following the procedure described in the “Validation and hyperparameter optimization” 
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chapter. XGBoost is implemented through the official library 

(https://xgboost.readthedocs.io/en/stable/) 

 

Drug-by-drug models 

We delineate the methodology employed for developing a model to predict cancer cell line 

responses to drugs, focusing exclusively on transcriptomic data. The following 

methodologies were applied to both the GDSC and the PRISM dataset, resulting in the 

development of 286 models for GDSC and 6,337 models for PRISM. Crucially, we develop 

two different types of drug-by-drug models: all genes models and MOA-primed models. 

All genes models 

Given the consistently superior performance of the XGBoost algorithm, as evidenced by our 

results and a multitude of studies in the literature on tabular data, we have selected it as our 

primary tool for developing drug-specific models. Details about this model type can be seen 

in the dedicated “XGBoost” chapter. 

 

MOA-Primed models 

MOA-primed models differ from regular full-gene models in two key aspects: firstly, they are 

trained exclusively on a subset of genes identified as relevant to the drug’s MOA by the 

three criteria described in the chapter “MOA pathway annotation.” Reducing model training 

to this subset of genes leads to a significant reduction in the number of genes from 18.174 to 

an average of 4.117, achieving a factor of reduction of 4.4. Secondly, this narrower gene 

focus allows for a more comprehensive optimization process within a reasonable 

computation time. In more detail, the MOA-primed model consists of an ensemble of three 

XGBoost models (each comprising five parallel trees) trained on different subsets of the 

training data. This approach, along with the reduced number of genes used, greatly 

decreases the overfitting problem both during hyperparameter optimization and training. As 

for other models, optimal hyperparameters are fixed following the procedure described in the 

“Validation and hyperparameter optimization” chapter. Differently from other models, we 

leverage a 3-fold cross-validation strategy during hyperparameter search. Crucially, each 

XGBoost model belonging to the ensemble is trained on a different train-validation split.  

 

Model testing 

Data splitting procedure 

To guarantee a robust evaluation of the predictive performance of our models downstream, 

we have implemented a strategic approach to partitioning the dataset. This partitioning is 
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guided by the OncoTree classification system, which offers a detailed categorization of cell 

lines across different tissues involved in cancer. We selected two distinct cell lines from each 

tissue type specified in the OncoTree classification. This diverse selection ensures a 

representative cross-section of cancer types, aiding in the generalizability of the model. 

Subsequently, all drug-cell line pairs related to these selected cell lines were systematically 

assigned to either the training, validation, or test sets. Such an approach ensures that each 

set reflects a broad spectrum of tissue types and their corresponding responses. To ensure 

a reliable estimate of our trained models' performance, we repeated the train-validation-test 

procedure described earlier 20 times, each with a different random seed. We use random 

seeds from 0 to 19.  The median values of the metrics obtained, along with their standard 

deviations, are reported. 

 

Aggregated evaluation 

We conducted a comprehensive comparison of all trained models by calculating the Mean 

Squared Error (MSE) and Pearson correlation coefficient for the predicted values across all 

drug-cell line pairs (encompassing all drugs and cell lines) in both the GDSC and PRISM 

datasets. It is important to note that baselines, full joint models, and drug-by-drug models 

adhere to the same standardization schema outlined in the section "Data Pre-processing." 

As such, before evaluating the metrics on the test set, we adjusted both the experimental 

and predicted values (Ys) to their original scales on a drug-by-drug basis. The cumulative 

predictions of the drug-by-drug models resulted from pooling forecasts made by individual 

models.  

Drug specific evaluation 

We assessed the models' local performances by computing the median and standard 

deviation of both MSE and Pearson correlation coefficient across 20 random splits for each 

drug-specific model. This evaluation is conducted without reverting the standardized data to 

its original scale. Crucially, this approach assessed a model's predictive power around its 

mean activity value (either IC50 or LFC). Additionally, we derived a final summary metric by 

calculating the median and standard deviation of all these single-model performances, 

providing a concise overview of model efficacy in a drug-centric context.  

 

Model Interpretability 

Importance computations 

We have adopted a stringent criterion to identify genes that are pivotal in our models' 

predictions of cancer cell line responses to drugs. To determine the importance of genes, we 
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utilized two distinct but complementary methods(Molnar et al., 2020): SHAP (SHapley 

Additive exPlanations)(Lundberg & Lee, 2017) importance and Permutation 

Importance(Breiman, 2001).  We imposed that a gene is relevant if both methods yielded 

importance values greater than zero. Notably, SHAP values provide insights into how each 

gene contributes to the model's final prediction. This method effectively quantifies the impact 

of each variable (gene) in the context of the model's decision-making process. On the other 

hand, Permutation Importance evaluates the influence of each gene on the overall 

performance of the model. This is achieved by measuring the degradation in model 

performance when the values of a gene are randomly shuffled, thereby disrupting the gene's 

original relationship with the response variable. In the results discussed above we chose as 

reference metric for permutation importance a drop in correlation (we provide in the released 

code also computations for MSE). TreeSHAP, as implemented in the Python SHAP library, 

was employed to ascertain the importance of each gene (https://shap.readthedocs.io/). 

Notably, this method offers a fast and exact computation of otherwise costly SHAP 

importances for tree-based models. Given the high dimensionality of our dataset, 

encompassing almost 19k genes, we designed a computational pipeline to expedite the 

computation of Permutation Importance. Initially, we employed XGBoost built-in feature 

importance methods based on impurity decrease, a standard computation in tree-based 

methods, to significantly narrow down the list of potential genes of interest. This approach 

allowed us to reduce the number of genes to be evaluated for importance by at least a factor 

of ten. To further accelerate the process, we batched multiple variable computations by 

designing a Numba-enhanced routine and then performed joint fast inference leveraging the 

GPU-accelerated implementation of XGBoost. Feature importance computations were 

conducted individually for each of the 20 random seeds. While the SHAP mean importance 

values were computed exactly, the permutation feature importances were derived by 

randomly shuffling a gene's values and observing the resultant drop in model performance. 

A gene's permutation importance, for a given drug and a fixed seed, is obtained by 

averaging importance values obtained across three independent repetitions of the shuffling 

procedure. This methodology allowed us to mitigate aleatoric uncertainties inherent in the 

shuffling process, ensuring a more reliable identification of genes that are genuinely 

influential in predicting drug responses in cancer cell lines. 

 

Putative and pathway gene recovery 

In evaluating the soundness of our models, we investigated their ability to identify known 

putative targets and associated genes (i.e., those within the same pathway as the putative 

targets). For each random seed, we selected genes with non-zero importance value (as 

outlined in the "Importance Computation" section) and then calculated the frequency with 
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which each putative gene appears in this subset of significant genes. Additionally, we 

conducted a parallel analysis involving genes functionally linked to putative targets through 

pathways. For each random seed and corresponding putative target, we aggregated all 

genes from the pathways involving the targets. We then determined the overlap between this 

aggregated set and the significant genes, documenting both the quantity and specific 

identities of the genes identified. Similar to the approach for putative target identification, the 

rigor of the selection criteria can be adjusted by focusing on pathway genes that consistently 

emerged across various random seeds. We refined our evaluation by calculating the 

empirical distribution of recovery rates for each drug, starting with the importation and 

binarization of gene importance scores—SHAP values (converted to 1 if greater than 0) and 

permutation importances (set to 1 if less than 0). By intersecting genes with both metrics 

equal to one, we identified those of dual significance. A baseline distribution of recovery 

frequencies across splits was established by averaging these intersected, binarized 

importances. This drug-specific procedure allowed us to derive critical quantiles (90th, 95th) 

as benchmarks for significant recovery. We then compared the putative targets' recovery 

rates to these percentiles. 

 

Pathway enrichment 

We performed pathway enrichment on the list of important genes (see above section) 

identified by each All-Genes model using the GSEAPY (v 1.0.6) package(Fang et al., 2023). 

We performed an over-representation analysis using the enrichr function, considering as 

categories the “Reactome_2022” pathways from the MsigDB library(Liberzon et al., 2015), 

version 2023.1.Hs. We considered all the pathways with FDR < 0.1. To check if an enriched 

pathway represents a mechanism of action of the corresponding drug, we checked if it is 

connected to the MOA-pathways that we compiled for each drug by traversing the graph of 

Reactome pathway hierarchy using the python-igraph (v 0.9.10) library. If the enriched 

pathway is either a parent or a child of any MOA-pathway for that drug, it is considered to 

match the MOA for that drug. Enrichment analysis was performed for both GDSC and 

PRISM. Pathway enrichments obtained through this analysis are reported in Supplementary 

Tables S4 and S10 for GDSC and PRISM respectively. Enrichment data obtained is also 

used to assess the proportion of MOA pathways that are overrepresented across the three 

criteria (refer to the "MOA Pathway Annotation" section). To generate Figure 3C, we only 

considered the models exhibiting a correlation exceeding 0.5. 

We compared significantly enriched pathways on GDSC and PRISM models using the 

Python matplotlib_venn library (https://github.com/konstantint/matplotlib-venn). 

 

Clustering analysis of drug and MOA-related pathways 
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To elucidate the intricate relationships between drug MOA and their biological pathways, we 

clustered pathway enrichments and applied stringent statistical filters to identify and visualize 

significant drug-pathway associations. We focused on drug models with a correlation greater 

than 0.5 and the pool of MOA pathways found enriched, with a FDR below 0.1, in at least 

one drug model (see “Pathway enrichment”). For the clustering approach, we employed 

hierarchical clustering to organize both the drugs and the MOA pathways based on their 

patterns of association. This method allows for the grouping of drugs with similar pathway 

profiles and, conversely, pathways commonly influenced by a cohort of drugs. The clustering 

was conducted using the Ward method within the clustermap function from the seaborn 

python library (https://seaborn.pydata.org/, v0.12.2). The Ward method minimizes variance 

within clusters, thereby enhancing the interpretability of complex relationships by 

showcasing clusters of drugs and pathways with similar biological effects.  

 

Correlating IC50s, predicted IC50s, Gene Expressions and SHAP values 

We aimed to elucidate the relationship between IC50 values, predicted IC50s, gene 

expressions, and SHAP values to better understand the dynamics of drug response in cell 

lines. For a given drug, we sorted the IC50 values from the lowest to the highest. This 

sorting strategy enabled simultaneous comparison of actual versus predicted IC50 values, 

gene expression levels, and SHAP values corresponding to the gene expression across cell 

lines. The result of this analysis is depicted in Figure 2C, specifically focusing on the 

interaction between the Venetoclax drug and the BCL2 gene. This figure serves to visually 

convey the complex interplay and correlations among the variables of interest, providing 

insights into the predictive model's predictions and the gene's influence on drug sensitivity. 

To improve the graphical representation and clarity of trends within the gene expression and 

SHAP value data, both datasets were subjected to smoothing using a 5-lag moving window. 

 

Gene essentiality analysis 

We assessed the potential of local SHAP values, representing gene impacts on drug-cell line 

pair predictions, to identify genes involved in gene essentiality, as evidenced by CRISPR 

knock-out screenings. Utilizing a dataset from Pacini et al. (Pacini et al., 2024), which lists 

essential genes across tissues and CRISPR Gene dependencies (see “Datasets”), we 

tailored this analysis to include only those cell lines and tissues mentioned therein. This 

required harmonizing tissue nomenclature differences between our dataset and Pacini et al., 

notably merging Esophagus and Stomach categories into a single group and mapping other 

tissues’ names to match our dataset's structure (the mapping will be released together with 

the code to reproduce the analysis). Our analysis was further refined to drug-cell line pairs 

exhibiting the highest sensitivity, based on IC50 values and quantile score (see “Quantile 
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Score”). This results in retaining 266 unique drugs and selecting 43,174 "top pairs." For 

these pairs, we examined the top k most negative SHAP values to identify influential genes, 

with k set at 10, 20, 50, and 100 thresholds. We remark on how negative SHAP values 

indicate genes whose inhibition likely enhances drug efficacy, aligning with the biological 

outcomes expected from CRISPR knockouts that lead to reduced cell viability. By 

aggregating these key genes and comparing them against the catalog of essential genes 

from the reference genes, we aimed to ascertain the extent to which local importance 

estimates could recover genes critical for cell survival and implicated in gene essentiality. 

We constructed protein-protein interaction networks using STRING(Szklarczyk et al., 2019) 

within the Cytoscape platform(Lotia et al., 2013). Nodes within the network were annotated 

with degree information and a cumulative SHAP value pooled from the set SHAP values 

over  'top pairs.'  

 

Responsiveness similarity analysis 

After GDSC model training, we characterize cell lines through a 286-dimensional vector 

representation derived from the aggregated predictions of these models. This defines a 

"response space" which complements transcriptomic similarity analyses and can be used to 

compare samples based on their drug responsiveness similarity. This approach enables two 

key applications: clustering of cell lines to identify groups with similar drug sensitivities and 

the use of the Python library faiss for efficient nearest neighbor searches in the response 

space. 

Model Inference on TCGA 

Quantile score 

IC50 values are a commonly used measure of drug potency. However, raw values may not 

fully capture the nuances of drug efficacy and specificity, particularly for cytotoxic drugs, 

which could feature systematically lower IC50 levels. We propose a new scoring system 

aimed at providing a more comprehensive assessment of a drug's potential.  

Our novel approach integrates two dimensions: drug efficacy and drug specificity. Drug 

efficacy is defined as the likelihood of identifying an alternative drug within the dataset that 

possesses a higher IC50 value than the current drug in question. This measure reflects the 

drug's ability to inhibit or kill cancer cells at lower concentrations, thereby indicating its 

potency. On the other hand, drug specificity evaluates the probability of finding another cell 

line upon which the given drug exhibits a higher IC50 value. This dimension captures the 

drug's targeted action, ensuring that it effectively inhibits the growth of specific cancer cells 

with minimal effects on others, thereby reducing potential side effects. 
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To synthesize these dimensions into a singular, coherent score, we employed the harmonic 

mean of the two probabilities. The harmonic mean, a type of average, is particularly suited 

for our purpose because it tends to skew towards the lower of its inputs, ensuring that both 

high efficacy and high specificity are necessary for a drug to achieve a high score. As such, 

our metric ranges between 0 and 1, where a score closer to 1 indicates a drug that is both 

effective and specific. This property of the harmonic mean serves to penalize drugs that are 

highly effective against a broad range of cell lines (potentially indicating high toxicity) or 

highly specific but with limited overall efficacy. 
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TCGA inference and cancer-specific drug prescription validation 

We aimed to validate our models using the TCGA dataset. This allowed us to assess 

whether the proposed pipeline can accurately identify tumor-specific clinical drug 

prescriptions annotated in the GDSC through the use of processed NCI indications (refer to 

the "Dataset" section). A key step in our approach was aligning TCGA data with CCLE using 

the Celligner method (detailed in "Alignment of patients' bulk RNAseq with Celligner"), which 

enabled model training on CCLE data and subsequent deployment to TCGA. Moreover, an 

important part of this validation was to stratify TCGA patients by cancer type, utilizing the 

extensive metadata available within the TCGA dataset. Our analysis encompassed 9,805 

TCGA samples for 41 clinically relevant drugs, with models' predictions ranked by logIC50 

values and quantile scores. We specifically examined the predictive accuracy for the top 

1000 patients with the lowest IC50 or highest quantile scores to determine if the highest-

scoring predictions correspond to actual clinical prescriptions. This approach effectively 

measured our models' clinical prediction reliability. We remarked how TCGA serves as a 

novel and distinct data source from the training set, representing an unbiased evaluation of 

our model's capabilities.  

To account for the non-uniform distribution of tumor types across TCGA patients, we 

augmented our validation with a recall analysis. This additional step aims to determine the 

fraction of samples associated with each drug's indication that the models successfully 

identify, complementing the previous count-based analysis. By stratifying this analysis based 

on whether samples were identified through their IC50 values, quantile scores, or a 

combination of both criteria, we ensure a comprehensive evaluation of our models' ability to 

accurately predict drug responses. Data from this analysis is reported in Figure 6B. A similar 

analysis is carried out also on the PRISM dataset. We first ranked the models by 
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performance, then curated a list of the top 20 non-oncological drug models. For each model, 

predictions were ordered by Log Fold Change (LFC) from lowest to highest, and the initial 

1,000 samples were selected. These samples were stratified by tumor type within the TCGA 

patient dataset to identify potential drug repurposing opportunities. 

In conclusion, utilizing the same pipeline, we identified and quantified patients within the 

TCGA dataset where specific drug pairs are concurrently recommended, indicating potential 

synergies. We corroborated our findings by cross-referencing manually with the approved 

drug combinations in DrugBank(Knox et al., 2011), successfully identifying both known and 

approved combinations.  

Experimental validation on PDAC samples 
 
Ranking PDAC cell lines for selected tumor types with Celligner 
To determine which PDAC cell lines most closely resemble the tumor types (Pancreatic 

adenocarcinoma, Esophagogastric adenocarcinoma, Invasive breast carcinoma and head 

and neck squamous carcinoma) derived from Fig 7A, Celligner 

(https://depmap.org/portal/celligner/) was used. For each of these tumors, we ranked and 

selected PDAC cell lines based on their Euclidean distance from that tumor type. The 

Euclidean distance was calculated as the average distance between a cell line and all TCGA 

tumor samples of that tumor type. 

 

Cell lines, culture and treatments 

The following human PDAC cell lines were used: CFPAC1 (KRAS G12V; ATCC CRL-1918) 

and PANC1 (KRAS G12D; ATCC CRL-1469), were used for the following experiments. 

CFPAC1 cells were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) +10% fetal 

bovine serum (FBS) while PANC1 were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) +10% fetal bovine serum (FBS). Media were all supplemented with 2 mM L-

glutamine. The cell line was authenticated by the IEO Tissue Culture Facility using the 

GenePrint10 System (Promega) and was routinely screened for Mycoplasma contamination. 

Irinotecan (Sigma-Aldrich, I1406) and Etoposide (Sigma-Aldrich, E1383) were diluted in 

DMSO and used at 3 different concentrate ions for the cell viability experiments. 

 

Cell Viability Assays 

5-10,000 cells per well were plated in 96-well plates. One day after, cells were treated with 

the drug (Irinotecan or Etoposide). The cell viability was measured after 72h of treatment 
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using CellTiter-Glo Luminescent Cell Viability Assay (Promega, G9242) and GloMax® 

(Promega). The assay was performed three times in triplicates. 

 

Experimental validation on GBM samples 
 
Human Subjects  

Tumor specimens were obtained from 64 patients who underwent surgical resection of 

histologically confirmed GBM after providing informed consent. Samples were acquired from 

the Unit of Neurosurgery of Livorno Civil Hospital. All patients had a GBM diagnosis without 

a prior history of brain neoplasia and did not exhibit R132 IDH1 or R172 IDH2 mutations. 

Resected tumors were preserved in MACS tissue storage solution (Miltenyi Biotec, Bergisch 

Gladbach, Germany) at 4°C for 2–4 hours. Each tumor specimen was rinsed with Dulbecco's 

phosphate-buffered saline (DPBS) (Gibco, Carlsbad, CA, USA) within a sterile dish and 

divided into ~ 0.5-1 mm2 pieces under a biological hood. Biopsies were cryopreserved in 

90% fetal bovine serum (FBS) and 1% dimethyl sulfoxide (DMSO) at -140°C until further 

preparations. 

 

RNA Isolation 

RNA extraction from GBM tissues was performed using the Maxwell 16 LEV Simply RNA 

Tissue Kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol. The 

concentration of RNA was assessed using the Qubit Fluorometer (Thermo Fisher Scientific, 

Waltham, MA, USA), and quality was evaluated using the Agilent 2200 Tapestation (Agilent 

Technologies, Santa Clara, CA) system. 

 

Whole Transcriptome RNA Analysis Libraries 

RNA-Seq was performed on the NextSeq 500 platform (Illumina, San Diego, CA, USA). 

Libraries were prepared using the Illumina Stranded Total RNA Prep with Ribo-Zero Plus kit 

(Illumina), starting from 200 ng of total RNA, following the manufacturer’s protocol. The 

libraries were quantified using Qubit reagents (Thermo Fisher Scientific, Waltham, MA, USA) 

and analyzed for validation using TapeStation (Agilent Technologies, Santa Clara, CA). Up 

to 10 libraries were loaded onto the NextSeq High Output cartridge (150 cycles). 

 

Human Subjects for GBM Primary Cell Cultures 

Tumor specimens were obtained from 2 patients who underwent surgical resection of 

histologically confirmed GBM after providing informed consent. Samples were acquired from 

the Unit of Neurosurgery of Livorno Civil Hospital. All patients had a GBM diagnosis without 
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a prior history of brain neoplasia and did not exhibit R132 IDH1 or R172 IDH2 mutations. 

The patients included one female and one male, aged 37 and 76 years, respectively. 

Resected tumors were preserved in MACS tissue storage solution (Miltenyi Biotec, Bergisch 

Gladbach, Germany) at 4°C for 2–4 hours. Each tumor specimen was rinsed with Dulbecco's 

phosphate-buffered saline (DPBS) (Gibco, Carlsbad, CA, USA) within a sterile dish and 

divided into ~ 0.5-1 mm2 pieces under a biological hood. Biopsies were cryopreserved in 

90% fetal bovine serum (FBS) and 1% dimethyl sulfoxide (DMSO) at -140°C until further 

preparations. 

 

GBM Primary Cell Cultures 

Patient-derived GB living tissues were dissociated into single-cell suspensions using 

mechanical dissociation combined with enzymatic degradation, utilizing the Brain Tumor 

Dissociation Kit (Myltenyi Biotech, Bergisch Gladbach, Germany), following the 

manufacturer’s instructions. The culture medium consisted of DMEM/F12 medium (Gibco, 

Carlsbad, CA, USA), supplemented with 10% FBS (Gibco, Carlsbad, CA, USA), 100 U/mL 

penicillin, and 0.1 mg/mL streptomycin (Gibco, Carlsbad, CA, USA), 1% Amphotericin B 

(Gibco, Carlsbad, CA, USA), 1% G-5 supplement (Gibco, Carlsbad, CA, USA), and 1% 

Glutamax (Gibco, Carlsbad, CA, USA). Cultures were maintained in a 5% CO2 atmosphere 

at 37°C. The medium was replaced the day after culture. Upon reaching confluency, cells 

were seeded for viability assays, WST-1, and Crystal Violet, as described below. 

 

Treatments of GBM Primary Cell Cultures 

AZD5591 (Aurogene S.r.l, Rome, Italy) and AZD5582 (Sigma, St. Louis, MI, USA) were 

dissolved in DMSO and water, respectively, to create stock concentrations of 200 mM and 

4.8 mM, respectively. Dilutions of these drugs for treatment were prepared with the cell 

medium. We used concentrations of 2, 5, 10, 20, 50, and 100 uM of AZD5991 or AZD5582, 

or an equivalent volume of vehicle (DMSO or water) for control groups. 

 

Viability and Cytotoxicity Assays 

We used the Crystal Violet (CV) assay to evaluate cytotoxicity of the same chemicals on the 

2 different cell types. For this assay, 2500 cells were seeded in 48-well plates (3 wells per 

experimental condition). After 72 hours post-treatment, cells were fixed with 4% PFA and 

stained using a crystal violet solution (0.1% crystal violet, 20% methanol, in water). Following 

staining, the excess crystal violet was washed with tap water, and plates were dried. Cells 

were de-stained using a 10% acetic acid solution, and the absorbance of the solution was 

then measured at 590 nm. IC50 values were computed using python’s SciPy, library 

reimplementing the procedure of Corsello (2020). 
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Software 
We employed customized scripts in python (version 3.8.11), using matplotlib (v3.6.0), 
seaborn (v0.11.1), and biopython (v1.78) libraries.  
 

SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1: A) Bar plot comparing the performance of different model 
architectures (MLP, XGBoost, KRR and SMRF) and input feature representations (cell 
features and drug features) in terms of Pearson correlation with observed drug sensitivities. 
Hatched bars highlight models using only trascriptomics data; 
B) Bar plot depicting Mean Squared Error (MSE) for the same models and features as in (A); 
 
Supplementary Figure 2: Evaluation of PRISM models across target protein families and 
cell line responses. A) Bar chart depicting the number of drugs targeting specific protein 
families. Light blue bars represent the total count of drugs, while dark blue bars indicate the 
count of drugs with an interquartile range (IQR) greater than 1, highlighting the variability in 
response within each protein family; B) Bar chart of models stratified by putative target 
protein families with a correlation coefficient (corr) greater than 0.2. Salmon bars represent 
the models with corr > 0.2, while dark red bars indicate models with corr > 0.2 and at least 
one target identified; C) Boxplot distribution of the number of drugs per protein family 
showing negative fold changes (FC) in cell viability at thresholds of -1.5FC, -2FC, and -3FC, 
in relation to the median FC. This visualizes the sensitivity of cell lines to drugs within each 
target family, with the accompanying bar chart below summarizing the total count of drugs 
per family that induce a FC of at least -1.5. 
 
Supplementary Figure 3: Figure A) Heatmap of LLM Pathway Recovery Probability by 
Drug Category. This heatmap illustrates the likelihood of L1 pathways being identified as 
relevant within various drug categories. Each row represents one of the top 25 most 
frequently detected pathways, while columns correspond to different drug categories. The 
color gradient, ranging from yellow (low probability) to blue (high probability), represents the 
ratio of occurrences of a given pathway within a drug category to the total number of drugs in 
that category. Values are represented numerically within the cells. The plot shows how the 
LLM pathway selection procedure delivers qualitatively different pathways across different 
drug categories. B) Venn diagram representing the number of unique pathways shared by 
chemotherapeutics, targeted drugs and non-cancer drugs. 
 
Supplementary Figure 4: A) boxplot of correlation distributions for GDSC models showing 
the greatest correlation worsening of the MOA-primed vs all-genes models; B) boxplot of 
correlation distributions for PRISM models showing the greatest correlation worsening of the 
MOA-primed vs all-genes models 
 
Supplementary Figure 5: A) mutational burden of oncodrivers in top 1000 patients scored 
by the Dabrafenib model; B) number of samples, among the top 1000 scored by Dabrafenib, 
with BRAF mutations grouped by cancer type. 
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Supplementary Figure 6: stacked barplot of the GDSC drugs scoring among the top 1000 
samples patients with cancer types matching the prescription according to NCI drugs. The 
height of the barplot’s stacks corresponds to relative count of unique samples and the color 
of the specific cancer type. TCGA codes marked with the asterisk “*” highlight tumor types 
for which the drug is prescribed (source NCI). 
 

Supplementary Figure 7: CellHit predictions on distinct PDAC subtypes. A) UMAP plot of 

cancer cell lines and the PDAC subtypes (average of samples annotated according to their 

subtype: GL, Glandular; TR, Transitional; UN, Undifferentiated) after their integration by 

Celligner. Top left: dashed boxes indicate the space of three PDAC subtypes shown at 

higher magnification on the top. Top right: pie chart showing the percentage of predicted 

cancer cell lines that react most similarly to the available drugs for all PDAC samples. 

Classification of the tissue types of cell lines (oncotree system) is shown. 

 

Supplementary Figure 8: clustering of CellHit predictions of GDSC drugs (rows) for each 

GBM sample (columns). Cells contain the predicted lnIC50 values normalized by median 

subtraction. Columns are color annotated via sample metadata, including tumor type, i.e. 

primary (purple) or recurrent (yellow), and response type, i.e.  non-response (red) or 

response (green). Vertical green rectangles indicate tested samples, horizontal green 

rectangles indicate tested drugs. 

SUPPLEMENTARY TABLES 

Supplementary Table S1: comparative performance of drug-response prediction 
models trained on GDSC data 
Supplementary Table S2: GDSC drug individual models performances and important 
genes 
Supplementary Table S3: reactome pathways associated to GDSC's drugs 
mechanisms of actions 
Supplementary Table S4: Reactome pathway enrichment on GDSC's models 
important genes  
Supplementary Table S5: GDSC's models important genes (based on SHAP) recall of 
essential genes across cancer tissues   
Supplementary Table S6: GDSC's models SHAP importances  
Supplementary Table S7: PRISM drug individual models performances  
Supplementary Table S8: PRISM drug individual models performances (corr > 0.2) and 
important genes for models with known target 
Supplementary Table S9: reactome pathways associated to PRISM's drug 
mechanisms of actions 
Supplementary Table S10: Reactome pathway enrichment on PRISM's models 
important genes  
Supplementary Table S11: list of FDA approved drugs for a specific cancer type  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.586783doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.586783
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table S12: TCGA sample inference output and drug prescription 
match information  
Supplementary Table S13: predicted drug combinations and support   
Supplementary Table S14: approved drug combinations from Drugbank   
Supplementary Table S15: CellHit inference on PDAC patient samples 
Supplementary Table S16: CellHit inference on GBM patient samples 
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