

1 **Upregulated expression of ubiquitin ligase TRIM21 promotes PKM2 nuclear**
2 **translocation and astrocyte activation in experimental autoimmune**
3 **encephalomyelitis**

4

5

6

7

8 Luting Yang^{1,2}, Chunqing Hu^{1,2}, Xiaowen Chen^{1,2}, Jie Zhang^{1,2}, Zhe Feng¹, Yanxin
9 Xiao¹, Weitai He¹, Tingting Cui¹, Xin Zhang¹, Yang Yang¹, Yaling Zhang¹, Yaping
10 Yan^{1,*}

11

12 Short running title: TRIM21 promotes PKM2 nuclear translocation in astrocytes of
13 EAE

14 1: Key Laboratory of the Ministry of Education for Medicinal Resources and Natural
15 Pharmaceutical Chemistry, National Engineering Laboratory for

16 Resource Development of Endangered Crude Drugs in Northwest of China, College
17 of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China

18 #: These authors contributed equally to this work.

19

20 *Corresponding author: Yaping Yan, E-mail: yaping.yan@snnu.edu.cn

21

22

23

24

25

26

27 **Abstract**

28 Reactive astrocytes play critical roles in the occurrence of various neurological
29 diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a
30 glycolysis-dominant metabolic switch. However, the role and molecular mechanism
31 of metabolic reprogramming in activation of astrocytes have not been clarified. Here,
32 we found that PKM2, a notoriously known rate-limiting enzyme of glycolysis,
33 displayed nuclear translocation in astrocytes of EAE (experimental autoimmune
34 encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2
35 nuclear import by DASA-58 significantly reduced the activation of primary astrocytes,
36 which was observed by decreased proliferation, glycolysis and secretion of
37 inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated
38 regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted
39 with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to
40 phosphorylate STAT3, NF- κ B and interact with c-myc. Further single-cell RNA
41 sequencing and immunofluorescence staining demonstrated that TRIM21 expression
42 was upregulated in astrocytes of EAE. TRIM21 overexpressing in primary astrocytes
43 enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by
44 DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to
45 knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which
46 inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS
47 inflammation and demyelination in EAE. Collectively, our study provides novel
48 insights into the pathological function of nuclear glycolytic enzyme PKM2 and
49 ubiquitination-mediated regulatory mechanism that are involved in astrocyte
50 activation. Targeting this axis may be a potential therapeutic strategy for the treatment
51 of astrocyte-involved neurological disease.

52

53

54

55

56

57 **Keyword:**

58 Pyruvate kinase M2, astrocyte, TRIM21, experimental autoimmune encephalomyelitis,
59 ubiquitination

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87 **Introduction**

88 Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous
89 system (CNS), which accounts for the leading cause of neurological disability in
90 young adults. The hallmarks of this disease is varied and complex, ranging from
91 astrocyte proliferation, microglia activation, neuroinflammation and damage to
92 myelin sheaths (Kuhlmann et al., 2023). Accumulating evidence suggests the critical
93 roles of neurons in MS pathology. However, with the deepening of research, local glia
94 cells have been shown to potentiate inflammation and lead to neurodegeneration,
95 among which astrocytes have attracted much attention with their diverse functions
96 (Lee et al., 2023).

97 Astrocytes are the most abundant type of glia cells and provide physical, structural
98 and metabolic support for neurons. Astrocytes respond to CNS diseases through a
99 process of activation that encompasses cell proliferation, morphological, molecular
100 and functional modifications. This phenomenon, also termed reactive astrocyte or
101 astrogliosis, results in loss of brain homeostatic functions and leads to the occurrence
102 of neurological and neuropsychiatric disorders (Verkhratsky et al., 2023). The
103 presence of activated astrocytes which is evidenced by increased GFAP staining, was
104 found before immune cell infiltration in MS and its animal model, EAE (Correale and
105 Farez, 2015). Several lines of evidence bolster the conception that activated astrocytes
106 are considered to be early events and contributors to lesion development in MS and
107 EAE etiopathology (das Neves et al., 2021). With the accepted notion of astrocyte
108 contributions to MS or EAE, mounting interest has been focused on dissecting how
109 astrocytes are reactive.

110 Activated immune cells, like cancer cells, require higher biosynthetic and energy
111 needs for immune response, proliferation and survival. This involves reprogramming
112 of their metabolic pathways. Proinflammatory immune cells, including reactive
113 astrocytes, usually undergo a metabolic switch from oxidative phosphorylation to
114 Warburg-type glucose metabolism (Vaupel and Multhoff, 2021, Xiong et al., 2022).
115 Moreover, elevated level of aerobic glycolysis have been characterized in astrocyte of
116 MS patients (Afzal et al., 2020, Nijland et al., 2015). Elevated glycolysis is crucial for

117 sustaining astrocyte proliferation, the secretion of proinflammatory cytokines and
118 neurotrophic factors and subsequent neuronal loss in the CNS. As such, deciphering
119 glycolysis-dominant metabolic switch in astrocytes is the basis for understanding
120 astrogliosis and the development of neurological diseases such as multiple sclerosis.

121 Pyruvate kinase M2 (PKM2), a rate-limiting enzyme of glycolysis, is a key
122 molecule that governs aerobic glycolysis. Low glycolytic enzyme activity of PKM2
123 promotes the conversion of pyruvate to lactate, which leads to aerobic glycolysis (Lee
124 et al., 2022). In the cytoplasm, PKM2 exists in tetrameric form and possesses high
125 pyruvate kinase activity. Specifically, PKM2 can translocate to the nucleus in its
126 dimeric form. With a low-glycolytic function, nuclear PKM2 can act as a protein
127 kinase or transcriptional coactivator to regulate proliferation, inflammation and
128 metabolic reprogramming of cells (Liu et al., 2022). The overexpression and nuclear
129 translocation of PKM2 have been well documented in CNS disease. Moreover,
130 nuclear PKM2 was upregulated in neutrophils and macrophages in patients with
131 ischemic stroke (Dhanesha and Patel, 2022, Li et al., 2022). Nuclear PKM2 in
132 neurons was shown to promote neuronal loss in Alzheimer's disease (Traxler et al.,
133 2022), suggesting that PKM2 is a key player in the development of neurological
134 disease. Although previous studies have suggested that PKM2 could regulate
135 astrocyte proliferation (Zhang et al., 2015), its potential function in astrocyte
136 metabolic reprogramming and the upstream mechanisms underlying PKM2
137 nucleocytoplasmic shuttling are still elusive.

138 In this report, we identified TRIM21 as the interacting protein of PKM2 and found
139 that TRIM21 promoted the nuclear translocation of PKM2, thus contributing to
140 astrocyte glycolysis and proliferation in EAE. Most importantly, we used the EAE
141 model to demonstrate that targeting TRIM21-PKM2 axis alleviated the disease
142 process.

143 Our finding might help to understand the mechanism underlying astrocyte activation
144 in neurological diseases and provide therapeutic target for the treatment of multiple
145 sclerosis.

147

148

149

150 **Results**

151 **Identification of PKM2 nuclear translocation in astrocytes during EAE**

152 To investigate whether PKM2 repositioning or aberrant expression drives astrocyte
153 dysfunction in EAE mice, we obtained tissue samples from the spinal cords of
154 different phases of EAE and control mice. Nuclear translocation of PKM2 was
155 initially observed at the onset phase, which sustained to the peak and chronic phases
156 of the disease. Compared to the cytoplasmic localization of PKM2 in control mice,
157 the expression level of PKM2 was elevated in different phases of EAE (Fig. 1A).
158 MOG₃₅₋₅₅-stimulated splenocytes from EAE mice were previously shown to mimic
159 MS pathology and are frequently used as an *in vitro* autoimmune model to investigate
160 MS and EAE pathophysiology (Chen et al., 2009, Kozela et al., 2015). To validate the
161 expression pattern of PKM2 in astrocytes *in vitro*, primary astrocytes were isolated
162 and cultured with supernatants from MOG₃₅₋₅₅-stimulated splenocytes (MOG_{sup}) of
163 EAE. Activated astrocytes were observed following co-culture with the
164 above-mentioned supernatant, showing obviously increased expression of GFAP, a
165 marker of reactive astrocytes (Fig. 1B). Consistently, compared with those in control
166 astrocytes, nuclear ratio and expression of PKM2 were significantly greater in
167 MOG_{sup}-stimulated astrocytes (Fig. 1C and D). Together, these data demonstrated the
168 nuclear translocation of PKM2 in astrocytes from EAE mice.

169 **Prevention of PKM2 nuclear transport suppresses aerobic glycolysis and
170 proliferation in astrocytes**

171 Metabolic switch of astrocytes to aerobic glycolysis and proliferation of astrocytes
172 are early events in MS and EAE. To explore the contribution of PKM2 nuclear
173 translocation to the alternation of astrocyte metabolism and function, DASA-58, the
174 inhibitor of PKM2 nuclear transport that favors its tetramerization was used.
175 Pretreatment with DASA-58 effectively reduced the nuclear ratio of PKM2 in
176 MOG_{sup} stimulated astrocytes (Fig. 2A and B). As expected, MOG_{sup} stimulation,

177 which mimics the autoimmune response in MS patients, induced an increase in the
178 glycolytic activity of astrocytes, as evidenced by glucose consumption and lactate
179 production. However, these effects were significantly counteracted by DASA-58
180 treatment (Fig. 2C). To further confirm these result, glycolysis-related enzymes and
181 transcription factors including LDHA, PKM2 and c-myc were examined. Among
182 these proteins, DASA-58 pretreatment severely impaired the upregulation of
183 phosphorylated c-myc induced by MOG_{sup} stimulation (Fig. 2D).

184 To determine whether DASA-58 could alter astrocyte proliferation, CCK-8 and
185 EdU assays were performed. Figure 2E showed that treatment with 25 μ M and 50 μ M
186 DASA-58 impaired the proliferation of astrocytes, and 50 μ M owned better effect.
187 Additionally, EdU incorporation assays showed that 50 μ M DASA-58 mostly
188 abrogated the MOG_{sup}-induced astrocyte proliferation (Fig. 2F and G). In addition,
189 DASA-58 pretreatment reduced the expression of inflammatory cytokines including
190 IL-6, TNF- α and iNOS in MOG_{sup}-stimulated astrocytes (Fig. S1). From the above
191 results we can conclude that abrogation of PKM2 nuclear transport can markedly
192 decrease the proliferation and glycolysis of astrocytes.

193 **Nuclear PKM2 promotes the activation of NF- κ B and STAT3 pathways**

194 Upon nuclear translocation, PKM2 acquires protein kinase and transcriptional
195 coactivator activities. As nuclear PKM2 has been reported to interact with STAT3 and
196 NF- κ B, which are dominant signaling pathways involved in orchestrating cell
197 proliferation, inflammation and glycolysis, we were curious to investigate whether
198 nuclear PKM2 regulates the activation of these two pathways. The activation of
199 STAT3 and NF- κ B requires two critical steps: phosphorylation of key components,
200 nuclear translocation and retention of STAT3 or p65/p50 subunits. As expected,
201 DASA-58 pretreatment partially attenuated the phosphorylation of STAT3 and NF- κ B
202 pathways following MOG_{sup} stimulation (Fig. 3A-C). Phosphorylation only
203 contributes to the transient activation of STAT3 and NF- κ B, and constant activation
204 also requires the nuclear retention of STAT3 and p50/p65. To test our hypothesis that
205 nuclear PKM2 might promote the retention of p50/p65 and STAT3, we purified
206 nuclear and cytoplasmic proteins. Western blotting assays showed that inhibiting

207 PKM2 nuclear localization with DASA-58 suppressed the nuclear retention of
208 p50/p65 and STAT3 (Fig. 3D).

209 To further clarify the mechanism by which PKM2 regulated the nuclear retention of
210 STAT3 and NF- κ B, immunoprecipitation was performed. The results verified that
211 endogenous PKM2 could directly bind to NF- κ B subunits p50/p65 and STAT3 in
212 astrocytes (Fig. 3E). Therefore, nuclear PKM2 interacts with p50/p65 and STAT3,
213 favoring their nuclear retention and constant activation of NF- κ B and STAT3
214 pathways.

215 **E3 ligase TRIM21 interacts with PKM2 in astrocytes**

216 With deepening of the research, amounting evidences support that
217 post-translational modifications (PTMs), representing by ubiquitination, acetylation,
218 sumoylation and phosphorylation are major mechanisms to regulate the process of
219 PKM2 nuclear translocation. To illustrate underlying mechanism accounting for
220 nuclear translocation of PKM2 in astrocytes, mass spectrometry combined with
221 immunoprecipitation of PKM2 were performed. Several enzymes involved in
222 glycolysis and gluconeogenesis including ENO1, ALDOA, MDH2, LDHA and LDHC
223 were identified to be interacted with PKM2 (Fig. 4A). Analysis of biological
224 processes according to Gene Ontology (GO) terms confirmed that the binding
225 proteins of PKM2 are enriched in metabolic processes (Fig. 4B). Moreover, the results
226 of KEGG and Wikipathway enrichment analysis indicate that PKM2-interacting
227 proteins were enriched in glycolysis, glucogenesis and NF- κ B pathway (Fig. 4C
228 and 4D). Amongst these potential interacting proteins, the most attracting one is
229 TRIM21, an E3 ligase involved in the process of ubiquitination (Fig. 4A).
230 Coincidentally, we previously reported the proinflammatory role of TRIM21 in
231 keratinocytes by ubiquitylating the p50/p65 subunits of NF- κ B(Yang et al., 2021). We
232 were curious to verify whether TRIM21 interacted with and regulated the subcellular
233 localization of PKM2 in astrocytes. Molecular docking revealed a strong binding
234 affinity between PKM2 and TRIM21 (Fig. 4E, left). TRIM21 is bound to PKM2 via
235 hydrogen bonds between the amino acids of the two molecules (Fig. 4E, right). By
236 immunoprecipitation assays, we demonstrated the endogenous binding of PKM2 with

237 TRIM21 in primary astrocytes (Fig. 4F). To further confirm the results of
238 PKM2-TRIM21 interaction, plasmids of Myc-tagged TRIM21 and Flag-tagged
239 PKM2 were constructed. Reciprocal immunoprecipitation with either Myc or Flag
240 antibodies verified exogenous binding between PKM2 and TRIM21 (Fig. 4G and 4H).
241 To map the binding domains between PKM2 and TRIM21, a series of truncation with
242 deletion (Δ) of various domains of TRIM21 and PKM2 were constructed. The
243 deletion of C-terminal PRY-SPRY domain abolished the binding between TRIM21 to
244 PKM2, which indicated that PRY-SPRY domain of TRIM21 was responsible for the
245 interaction with PKM2 (Fig. 4I). However, the deletion of either N- or C-terminal of
246 PKM2 did not affect the binding between TRIM21 to PKM2, indicating that AB
247 domain (44 to 388 amino acids) of PKM2 might interact with TRIM21 (Fig. 4J).

248 **Upregulated TRIM21 expression in astrocytes of EAE mice and in activated
249 primary astrocytes**

250 Previous studies have documented upregulated expression of TRIM21 in various
251 types of cancers. Moreover, our previous study is the first to uncover the upregulation
252 of TRIM21 in the epidermis of psoriatic patients, an autoimmune skin disease
253 characterized by hyperproliferation of epidermal keratinocytes (Yang et al., 2018,
254 Yang et al., 2021). To determine the relative expression of TRIM21 in astrocytes of
255 EAE mice, we firstly performed single-cell RNA sequencing (scRNA-seq) on brain
256 samples from the control, EAE peak and chronic stages. ScRNA-seq analysis revealed
257 differential expression of TRIM21 in multiple cell populations. Compared to that in
258 other cell types, TRIM21 expression in astrocytes was relatively high (Fig. 5A). We
259 identified 12 astrocyte subpopulations, whereas TRIM21 expression was divergent in
260 different astrocyte clusters (Fig. 5B-5C). Most importantly, TRIM21 expression was
261 augmented in astrocytes in both peak and chronic phases of EAE compared to that in
262 control mice (Fig. 5D). Consistently, bioinformatic analysis of the GEO database
263 (GSE136358) revealed significant elevation of TRIM21 expression in astrocytes at
264 the onset, peak and chronic phases of EAE disease (Fig. 5E).

265 To further confirm the results of TRIM21 expression from scRNA-seq and GEO
266 datasets, activated astrocytes were mimicked by stimulating primary astrocytes with

267 MOG_{sup}. Compared to those in non-stimulated astrocytes, qPCR and western blotting
268 analysis revealed dramatic increases in TRIM21 mRNA and protein expression in
269 activated astrocytes (Fig. 5F and 5G). Moreover, immunofluorescence staining further
270 demonstrated that TRIM21 expression was greater in astrocytes from EAE mice when
271 compared with control mice (Fig. 5H). Taken together, our results uncover the
272 upregulated expression of TRIM21 in astrocytes of EAE mice, which imply that the
273 ectopic expression of this ubiquitin ligase TRIM21 might be a potent regulator of
274 PKM2 repositioning in the nucleus.

275 **TRIM21 ubiquitylates and promotes the nuclear translocation of PKM2**

276 Ubiquitination is endowed with multifaceted function to regulate degradation,
277 localization and activation of substrate proteins. As PKM2 has been demonstrated to
278 be the interacting protein and substrate of TRIM21, we next examined the impact of
279 TRIM21 on PKM2 localization. Overexpression of TRIM21 induced a robust increase
280 in the nuclear ratio of PKM2 (Fig. 6A, Fig. S2A). In contrast, knockdown of TRIM21
281 led to a reduction in the nuclear ratio of PKM2 (Fig. 6B, Fig. S2B). To a greater
282 extent, TRIM21 was found to be a potent driver of PKM2 translocation in astrocytes
283 of EAE. To deeply unveil the mechanism of TRIM21-mediated binding with PKM2,
284 the ubiquitination linkage type was investigated. In addition to K48-linked
285 ubiquitination, which directs proteins for degradation, K63-linked ubiquitination is
286 implicated in the regulation of protein localization and activation.
287 Immunoprecipitation implied that K63-linked ubiquitination of PKM2 was enhanced
288 upon overexpression of TRIM21 (Fig. 6C). Collectively, the data showed that
289 TRIM21 promoted K63-linked ubiquitination of PKM2 and facilitated its nuclear
290 translocation in astrocytes.

291 **TRIM21 promotes aerobic glycolysis and proliferation by enhancing PKM2
292 nuclear function in astrocytes**

293 As TRIM21 promoted the nuclear translocation of PKM2, we explored the impact
294 of TRIM21 on the nuclear function of PKM2. Our results showed that the levels of
295 phosphorylated STAT3 and p65 were significantly increased upon TRIM21
296 overexpression (Fig. 6D). We next examined whether TRIM21 could affect the

297 binding of PKM2 to c-myc, STAT3 and NF- κ B subunits. As shown in Figure 6E,
298 overexpression of TRIM21 promoted the binding of PKM2 to c-myc, STAT3 and p50
299 subunit of NF- κ B. Nuclear PKM2 contributed to nuclear retention of STAT3 and
300 NF- κ B, which retained the constant activation of these two signaling pathways. We
301 were curious to investigate whether TRIM21 is involved in this process. Notably,
302 fractionation analysis revealed that overexpression of TRIM21 increased the nuclear
303 accumulation of c-myc, STAT3 and p50/p65 subunits. Conversely, pretreatment with
304 DASA-58, which abrogated the nuclear translocation of PKM2, diminished the
305 nuclear retention of the aforementioned transcription factors (Fig. 6F). These findings
306 revealed that the TRIM21-mediated nuclear translocation of PKM2 promoted its
307 nuclear function.

308 To further assess the functional consequences of TRIM21-mediated nuclear
309 translocation of PKM2, the glycolytic activity and proliferation of astrocytes were
310 measured. As shown in Figure 6G, TRIM21 overexpression increased the ratio of
311 EdU positive cells. However, the increase in astrocyte proliferation caused by
312 TRIM21 upregulation was significantly antagonized by the DASA-58 treatment (Fig.
313 6G). Similarly, upregulated TRIM21 promoted lactate production and glucose
314 consumption, which were reversed by DASA-58 (Fig. 6H). In summary, our results
315 indicate that nuclear PKM2-mediated metabolic reprogramming is crucial for
316 TRIM21-stimulated proliferation of astrocytes.

317 **TRIM21 knockdown in astrocyte or TEPP-46 treatment inhibits the
318 development of EAE**

319 To determine the therapeutic effect of TRIM21 knockdown in astrocytes on EAE,
320 shTRIM21 and control lentivirus were given to mice by intracerebroventricular
321 administration at disease onset (15 days post immunization). As expected, shTRIM21
322 treatment suppressed disease severity of EAE. At the end time point at day 22 p.i.,
323 shTRIM21-treated group showed reduced disease scores, although no statistical
324 difference was observed compared to control group (Fig. 7A). To further measure the
325 effect of TRIM21 knockdown in astrocytes on pathological changes in EAE mice, HE
326 and LFB staining were performed. As expected, inflammation and demyelination

327 were less pronounced in shTRIM21-treated group (Fig. 7B and 7C). Staining for
328 TRIM21 showed that TRIM21 expression was reduced in astrocytes after
329 intracerebroventricular injection of shTRIM21 lentivirus (Fig. 7D). Demyelination
330 lesions were also evaluated by myelin basic protein (MBP) staining. Knockdown of
331 TRIM21 in astrocytes significantly increased MBP positive areas, which indicated the
332 inhibited demyelination in shTRIM21-treated group compared with control group
333 (Fig. 7E). In EAE, microglia and astrocyte activation are linked with demyelination,
334 we next stained GFAP and IBA1 to measure the activation of astrocytes and microglia.
335 Knocking down TRIM21 in astrocytes decreased GFAP expression on spinal cord
336 sections. The decrease of GFAP⁺ cell numbers was observed in both gray and white
337 matter from shTRIM21-treated mice (Fig. 7F). For activated microglia expressing
338 IBA1, similar results were observed. Control group showed a widespread activation,
339 while shTRIM21-treated group showed a significant decrease in IBA1 positive cells
340 in both white matter and gray matter of spinal cord (Fig. 7G).

341 Therapeutic potential of PKM2 nuclear translocation inhibition with TEPP-46 was
342 also tested in the EAE model. TEPP-46 is an allosteric activator that blocks the
343 nuclear translocation of PKM2 by promoting its tetramerization. Intraperitoneal
344 treatment with TEPP-46 during prevention stage resulted in decreased disease severity
345 (Fig. S3A). TEPP-46-treated mice exhibited reduced inflammation and demyelination
346 (Fig. S3B-S3E). The activation of GFAP positive astrocytes and IBA1 positive
347 microglia were correspondingly reduced in TEPP-46-treated mice (Fig. S3D and S3E).
348 Taken together, these results showed that TRIM21 deficiency in astrocytes or
349 prevention of PKM2 nuclear translocation substantially inhibited inflammation and
350 myelin depletion in EAE mice.

351

352

353

354

355

356

357

358

359

360

361

362

363 **Discussion**

364 Reactive astrocytes, or astrocyte activation are recognized as common features of
365 CNS pathology, including neurodegenerative and demyelinating diseases (Patani et al.,
366 2023). Preferential metabolic switch toward aerobic glycolysis favors astrocyte
367 transfer from “resting” to “reactive” state. Thus, deciphering the mechanism
368 responsible for astrocyte metabolic switch in response to neurological disease will
369 provide new insights and new therapeutic targets for CNS diseases. Previous studies
370 have detected nuclear translocation of PKM2 in astrocytes after spinal cord injury
371 (Zhang et al., 2015) and in a chronic inflammatory pain model (Wei et al., 2020), in
372 which the regulatory effect of PKM2 on aerobic glycolysis and proliferation has been
373 indicated. However, in EAE model of multiple sclerosis, whether PKM2 nuclear
374 translocation can be observed in astrocytes and the causal mechanisms involved are
375 still unclarified. To the best of our knowledge, this study is the first to document the
376 nuclear translocation of PKM2 in astrocytes of EAE. Furthermore, we clarified a
377 ubiquitination-mediated regulation of PKM2 nuclear transport. Our newly identified
378 upregulated expression of E3 ubiquitin ligase TRIM21 in astrocytes from EAE mice
379 promotes the nuclear translocation of PKM2 to further activate astrocytes (Fig. 8).

380 Among the PTMs that regulate expression and localization of PKM2,
381 phosphorylation is the most frequently reported type, it remains less well known
382 whether ubiquitination could be a potential player. Ubiquitin-mediated degradation of
383 PKM2 has been reported. Recently, in ovarian cancer, E3 ligase CHIP was shown to
384 directly interact with PKM2 and mediate its degradation (Shang et al., 2017). TRIM
385 family E3 ligase TRIM35 was previously shown to mediate the degradation of PKM2
386 in cardiomyocytes and breast cancer cells (Lorenzana-Carrillo et al., 2022, Wu et al.,

387 2022). Although laforin/malin E3 ligase-induced ubiquitination of PKM2 did not lead
388 to its degradation, ubiquitination in this case impaired its nuclear transport (Viana et
389 al., 2015). Different from these findings, it should be emphasized that our study adds
390 to the current knowledge that ubiquitination, in addition to SUMOylation (Zhou et al.,
391 2022) and phosphorylation (Yang et al., 2012), could induce the relocalization of
392 PKM2 in the nucleus.

393 TRIM21 is found in our study to interact with and ubiquitylate PKM2. As a
394 traditional E3 ubiquitin ligase, multiple key molecules involved in metabolism,
395 immunity and inflammation have been recognized as substrates of TRIM21 (Chen et
396 al., 2022). In addition to the well-known function of TRIM21 in inflammation, an
397 increasing number of studies have suggested that TRIM21 plays a regulatory role in
398 glucose metabolism. Glycolytic-related enzymes including PFK1 (Tang et al., 2022),
399 GLUT1 (Gu et al., 2022) and glycolysis-related transcription factor HIF-1 α (Chen et
400 al., 2021) were identified to be substrates of TRIM21, and TRIM21 mediated the
401 ubiquitin-dependent degradation of these proteins, thereby inhibiting aerobic
402 glycolysis. Hereby, we recognized PKM2 as a substrate of TRIM21. The fate of the
403 ubiquitinated protein varies greatly, depending on the linkage type present in the
404 ubiquitin chain. Here, we found that TRIM21 promoted K63-linked ubiquitination of
405 PKM2, the second common type of linkage that is typically not associated with
406 protein degradation. These findings imply that enzymes and proteins implicated in
407 glycolysis are potential substrates of TRIM21, further suggesting that TRIM21 as a
408 regulator of glycolysis. The limitation of the current study is the lack of mechanistic
409 insight into the signaling pathways resulting in TRIM21 upregulation in EAE. Future
410 studies are needed to investigate whether TRIM21 is also elevated in other CNS
411 diseases.

412 Although our study shed light on the role of PKM2 in astrocytes, whether PKM2
413 functions in a cell-specific manner or acts as a generalist warrants further studies. For
414 example, microglia activation is a key step that contributes to CNS disorders such as
415 multiple sclerosis and Alzheimer's disease (Long et al., 2024). Activated M1
416 microglial cells exhibit a metabolic switch toward aerobic glycolysis similar to that of

417 astrocytes. Thus, it is highly possible that PKM2 may also be involved in microglia
418 metabolic change and activation. As such, PKM2 might be a novel therapeutic target
419 for the treatment of CNS disease. However, further studies are needed to decipher the
420 role of nuclear localized PKM2 in different cells under pathological conditions to
421 provide a thorough understanding of the biological functions of PKM2.

422 In addition to identifying the contribution of TRIM21 to PKM2 nuclear
423 translocation and TRIM21-PKM2 axis in promoting astrocyte glycolysis and
424 proliferation, the therapeutic effect of TRIM21 in EAE was also tested. By using
425 lentivirus with astrocyte-specific GFAP promoter, the knockdown of TRIM21 in
426 astrocytes has been successfully achieved. This approach by using lentivirus to deliver
427 shRNA into astrocytes has been previously reported by our group, in which shAct1
428 lentivirus showed potency for the treatment of EAE (Yan et al., 2012). In the
429 presented study, we showed that blocking TRIM21 pathway effectively ameliorated
430 disease severity of EAE, which is evidenced by the reduced inflammation,
431 demyelination, activation of astrocytes and microglia. Moreover, we have tested the
432 effect of blocking PKM2 nuclear translocation with TEPP-46. Although TEPP-46 has
433 been shown to inhibit T cell activation in EAE development, its effect on CNS
434 inflammation has not been explored (Angiari et al., 2020). We found that TEPP-46
435 treatment also reduced inflammatory infiltration and demyelination of the white
436 matter. Moreover, a reduced activation of microglia and astrocytes was also observed
437 in TEPP-46-treated group. Our *in vivo* results suggested that targeting
438 TRIM21-PKM2 is a promising approach for clinical treatment of multiple sclerosis.

439 In conclusion, our study revealed that PKM2 nuclear translocation is the key
440 mechanism accounting for glycolysis-dominant metabolic switch and proliferation of
441 astrocytes. We propose a post-translational modification mechanism for the regulation
442 of PKM2 nuclear translocation by the ubiquitin ligase TRIM21. From the perspective
443 of metabolism, our study provides a rationale for targeting glycolysis metabolism to
444 ameliorate astrocyte-mediated CNS diseases.

445

446

447

448

449

450

451

452

453

454 **Materials and Methods**

455 **Animal experiments**

456 Eight-week-old female C57BL/6 mice were obtained and kept in the animal center
457 of Shaanxi Normal university. All experimental procedures complied with Committee
458 for Research and Animal Ethics of Shaanxi Normal university. The induction of EAE
459 model was conducted as previously described (Yan et al., 2012). For TEPP-46
460 treatment, mice were injected intraperitoneally (i.p) with 200 μ l vehicle (5% DMSO,
461 30% PEG300, 5% Tween 80 and 60% ddH₂O) or 50 mg/kg TEPP-46 dissolved in
462 vehicle every other day from day 0 to day 8 p.i. (post-immunization). All mice were
463 divided into experimental groups randomly. All scoring processes were
464 double-blinded. Mice were scored daily as follows: 0, no clinical symptoms; 1,
465 paralyzed tail; 2, paralysis of one hind limb; 3, paralysis of two hind limbs; 4,
466 paralysis of trunk; 5, death. Spinal cord tissue was collected at the onset (score 1; Day
467 7-17 p.i.), peak (score \geq 3; Day 14-24 p.i.) and chronic stages of EAE (score \geq 2; Day
468 21-26 p.i.).

469 **In vivo injection of lentivirus**

470 For in vivo injection of lentivirus, mice were anaesthetized and placed on a
471 stereotaxic frame. 1×10^7 IU/mouse shTRIM21 or control virus was injected with
472 microsyringe at the following coordinates: 2.0-mm lateral, 1.0-mm caudal to bregma,
473 and 2.5 mm below the skull surface. 20 μ l lentivirus was delivered at 1 μ l/min. After
474 each injection, the syringe was left for 10 min and then withdrawn slowly.

475 **Isolation and culture of primary astrocytes**

476 Neonatal mice were killed and neuronal tissues were dissociated using Neural

477 Tissue Dissociation Kit (Miltenyi Biotech, Auburn, CA) according to the
478 manufacturer's instructions. Cell suspension was centrifuged at 800 g for 10 min.
479 Subsequently, astrocytes were separated using anti-GLAST microbead kit (Miltenyi
480 Biotech, Auburn, CA). Cells were seeded in 60 mm dishes and grown in DMEM
481 supplemented with 10% FBS. Purity of astrocytes was >95% as determined by GFAP
482 immunostaining.

483 **Single-cell RNA sequencing**

484 We prepared cells from mouse brain tissues by using adult brain dissociation kit
485 (Miltenyi) according to the manufacturer's instruction. Briefly, cells with more than
486 90% viability were loaded onto the controller to generate single-cell gel bead
487 emulsions. Single-cell RNA-seq libraries were prepared using version 3 Chromium
488 Single Cell 3' Library (10×Genomics,
489 <https://www.10xgenomics.com/support/single-cell-gene-expression>). Sequencing
490 were performed on Illumina NovaSeq6000. We used Cell Ranger version 4.0.0 to
491 process raw sequencing data, barcode processing and single-cell UMI (unique
492 molecular index) counting. Sequencing data have been deposited into the Gene
493 Expression Omnibus (GEO) under the accession number GSE263883.

494 **Immunoprecipitation**

495 Indicated antibodies (anti-PKM2, TRIM21, Flag, Myc and IgG) were incubated
496 separately with Dynabeads M-270 Epoxy (Thermo Scientific) on a roller at 37°C
497 overnight to generate antibody-conjugated beads. Cell samples were lysed with
498 ice-cold extraction buffer (Thermo Scientific) containing protease inhibitors.
499 Supernatants were incubated with appropriate antibody-conjugated magnetic beads on
500 a roller at 4°C for 1 h. Precipitates were washed and subjected to subsequent western
501 blotting analysis.

502 **Lentivirus-mediated short hairpin RNA interference and overexpression**

503 Mir-30 based lentiviral vector with GFAP promoter was constructed as previously
504 described. XhoI and EcoRI sites were used for cloning small hairpin RNAs
505 (shRNAs)(Yan et al., 2012).

506 Target sequences for shPKM2 were as follows: shPKM2-1: 5'-GGAGCCTATG

507 AGTATCGAATG-3', shPKM2-2:5'-GGAAAGAGTTGGCCGAGAAGA-3', shPKM
508 2-3:5'-GCTCCCTCATTACACCTTCT-3', shControl: 5'- CCTAAGGTAAAGTCG
509 CCCTCG-3'.

510 Primary astrocytes were cultured in six-well plates and infected with shTRIM21 or
511 shControl. For overexpression of TRIM21, lentiviral vector with GFAP-promoter was
512 used. TRIM21 cDNA was subcloned into lentivirus vector. Primary cultures were
513 infected with LV-NC or LV-TRIM21.

514 **Glucose consumption and lactate production assays**

515 The indicated cells (1×10^4 per well) were seeded into 96-well plates and cultured
516 for 24 h. Cells were starved for 12 h in serum-free DMEM medium supplemented
517 with low glucose. With corresponding treatments, the supernatant was collected.
518 Glucose consumption was determined using glucose oxidase method (Applygen
519 Technologies, Beijing, China). The levels of lactate production were determined using
520 lactate assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
521 Glucose consumption and lactate production were normalized to cell numbers.

522 **Immunofluorescence**

523 For tissue immunofluorescence staining, cryosections were blocked with buffer
524 containing 1% BSA and 0.3% Triton X-100 at room temperature (RT) for 1 h. Then,
525 sections were incubated with primary antibodies anti-PKM2 (bs-0101R, Bioss),
526 anti-GFAP (EM140707, Huabio), or anti-TRIM21 (12108-1-AP, Proteintech)
527 overnight at 4°C. Then the Alexa Fluor 488 or Cy3-conjugated secondary antibodies
528 (Zhuangzhibio, Xi'an, China) were applied at room temperature for 1 h. Cell nuclei
529 were labeled with DAPI.

530 For cell immunochemistry, cells cultured on glass coverslips were fixed with 4%
531 PFA for 10 min at RT, followed by permeabilization with 0.3% Triton X-100.
532 Non-specific binding was blocked with buffer containing 3% BSA for 30 min at RT.
533 Briefly, samples were then incubated with primary antibodies and secondary
534 antibodies. DAPI was used to stain the nuclei. Tissues and cells were observed and
535 images were acquired using an EVOS FL Auto 2 Cell image system (Invitrogen). The
536 fluorescence intensity was measured by ImageJ.

537 **Cell proliferation assays**

538 Cells were plated at a density of 5×10^4 per well and cultured overnight. After
539 treatment, the proliferation of astrocytes was assessed by an EdU-488 or EdU-594 cell
540 proliferation detection kit (Beyotime, C0071S and C0078S). For Cell Counting Kit-8
541 analysis, cells were seeded separately in each 96-well plate and cultured for 24 h, 48 h
542 and 72 h respectively. 1 h before the endpoint of incubation, 10 μ l CCK-8 reagent was
543 added, OD_{450nm} value was determined by Infinite F50 (Tecan) microplate reader.

544 **Protein extraction and western blotting**

545 Cells were lysed in RIPA buffer supplemented with proteinase inhibitor cocktail
546 (Topscience, Shanghai, China). Whole cell lysates were obtained after centrifugation.
547 Nuclear protein was extracted using Nuclear and cytoplasmic Extraction Kit (Solarbio,
548 Beijing, China) according to the manufacturer's instructions. Protein concentrations
549 were determined by using a BCA kit, and then subjected to western blotting. Protein
550 samples were separated by SDS-PAGE and transferred onto PVDF membranes. After
551 being blocked for 2h in 5% skim-milk buffer, membranes were incubated overnight at
552 4 °C with the following primary antibodies: antibodies against PKM2 (1:5000,
553 60268-1-Ig, Proteintech), phospho-c-myc (1:500, ET1609-64, Huabio), c-myc
554 (1:1000, CPA1778, Cohesion Biosciences), LDHA (1:1000, ET1608-57, Huabio),
555 STAT3 (1:5000, 60199-1-Ig, Proteintech), phospho-STAT3 (1:1000, bs-1658R, Bioss),
556 phospho-p65 (1:1000, GB113882-100, Servicebio), p65 (1:1000, CPA2000, Cohesion
557 Biosciences), phospho-IKK(1:1000, bs-3237R, Bioss), IKK (1:1000, GB11292-1-100,
558 ServiceBio), Lamin (1:1000 CPA1693, Cohesion Biosciences), Tubulin (11224-1-AP,
559 Proteintech), Flag (1:1000, AE004, Abclonal), Myc (1:3000, AE010, Abclonal),
560 TRIM21 (1:1000, 12108-1-AP, Proteintech), and β -actin (1:2000, GB12001-100,
561 ServiceBio). Membranes were then washed and probed with HRP conjugated
562 secondary antibodies. Membranes were visualized with ECL detection system (Tanon
563 4600, Shanghai, China).

564 **RNA extraction and qPCR**

565 Total RNA was extracted with TRIzol and cDNA was synthesized by reverse
566 transcription (DEEYEE, Shanghai, China). qPCR was performed by using 2 \times qPCR

567 SmArt Mix (DEEYEE, Shanghai, China) with StepOnePlus Real-time PCR system
568 (Thermo Fisher). The fold-change data were obtained using the delta-delta Ct method
569 (Livak and Schmittgen, 2001). Primers used in this study were listed in
570 Supplementary Table S1.

571 **Statistics**

572 Data were analyzed with GraphPad Prism software (version 8.0). Differences
573 between two groups were analyzed using two-tailed Student's t-test. Differences
574 between more than two groups were determined by one-way ANOVA with Dunnett's
575 post-hoc test. Mean clinical scores of animals were determined by two-way ANOVA
576 analysis. A *P* value of < 0.05 indicated significant differences between groups.

577

578

579 **Institutional Review Board Statement**

580 The study was conducted in accordance with the Declaration of Helsinki, and
581 approved by the Institutional Review Board of Shaanxi Normal university.

582 **Acknowledgements**

583 We thank Shanghai Bioprofile Biotechnology Co., Ltd for mass spectrometry and
584 bioinformatics analysis.

585 **Funding information**

586 This work was supported by National Natural Science Foundation of China (No.
587 82071348), Natural Science Basic Research Program of Shaanxi (No.
588 2023-JC-JQ-64), Fundamental Research Funds for the Central University (No.
589 GK202304034),

590 **Author contributions**

591 Conceptualization, L.T.Y; Methodology, L.T.Y, T.T.C, X.Z, Y.Y, Y.L.Z and Y.P.Y;

592 Validation, L.T.Y and J. Z; Investigation, J.Z, C.Q.H, X.W.C, Y.X.X and W.T.H;
593 scRNA-seq data analysis: Z.F; Data Curation, L.T.Y and J.Z; Writing – Original Draft
594 Preparation, L.T.Y; Writing – Review & Editing, C.Q.H ; Supervision, Y.P.Y; Funding
595 Acquisition, Y.P.Y and Y.Y.

596 **Conflicts of interest**

597 The authors declare no conflicts of interest.

598 **Data availability**

599 All data generated or analyzed during this study are included in the manuscript and
600 supporting files.

601

602

603 **References:**

604 Afzal R, Dowling JK, McCoy CE. Impact of Exercise on Immunometabolism in
605 Multiple Sclerosis. *Journal of clinical medicine* 2020;9(9):3038.

606 Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, et al.
607 Pharmacological Activation of Pyruvate Kinase M2 Inhibits CD4(+) T Cell
608 Pathogenicity and Suppresses Autoimmunity. *Cell metabolism*
609 2020;31(2):391-405.e8.

610 Chen SJ, Wang YL, Kao JH, Wu SF, Lo WT, Wu CC, et al. Decoy receptor 3
611 ameliorates experimental autoimmune encephalomyelitis by directly
612 counteracting local inflammation and downregulating Th17 cells. *Molecular
613 immunology* 2009;47(2-3):567-74.

614 Chen X, Cao M, Wang P, Chu S, Li M, Hou P, et al. The emerging roles of TRIM21 in
615 coordinating cancer metabolism, immunity and cancer treatment. *Front
616 Immunol* 2022;13:968755.

617 Chen X, Li Z, Yong H, Wang W, Wang D, Chu S, et al. Trim21-mediated HIF-1 α
618 degradation attenuates aerobic glycolysis to inhibit renal cancer tumorigenesis

619 and metastasis. *Cancer letters* 2021;508:115-26.

620 Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression.
621 *Frontiers in neurology* 2015;6:180.

622 das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic
623 function in experimental neuroinflammation and multiple sclerosis. *Glia*
624 2021;69(6):1341-68.

625 Dhanesha N, Patel RB. PKM2 promotes neutrophil activation and cerebral
626 thromboinflammation: therapeutic implications for ischemic stroke. *Blood*
627 2022;139(8):1234-45.

628 Gu M, Tan M, Zhou L, Sun X, Lu Q, Wang M, et al. Protein phosphatase 2A α
629 modulates fatty acid oxidation and glycolysis to determine tubular cell fate
630 and kidney injury. *Kidney international* 2022;102(2):321-36.

631 Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z. Cannabidiol, a
632 non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated
633 encephalitogenic T cells. *Journal of neuroinflammation* 2015;12:52-.

634 Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, et al. Multiple
635 sclerosis progression: time for a new mechanism-driven framework. *The Lancet Neurology* 2023;22(1):78-88.

637 Lee H-G, Lee J-H, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte
638 perspective. *Science translational medicine* 2023;15(721):eadi7828.

639 Lee Y-B, Min JK, Kim J-G, Cap KC, Islam R, Hossain AJ, et al. Multiple functions of
640 pyruvate kinase M2 in various cell types. *Journal of cellular physiology*
641 2022;237(1):128-48.

642 Li M, Lu W, Meng Y, Zhang W, Wang F, Sun L, et al. Tetrahydroxy Stilbene
643 Glucoside Alleviates Ischemic Stroke by Regulating Conformation-Dependent
644 Intracellular Distribution of PKM2 for M2 Macrophage Polarization. *Journal*
645 of agricultural and food chemistry 2022;70(49):15449-63.

646 Liu C, Liu C, Fu R. Research progress on the role of PKM2 in the immune response.
647 *Front Immunol* 2022;13:936967.

648 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time

649 quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods
650 2001;25(4):402-8.

651 Long Y, Li X-q, Deng J, Ye Q-b, Li D, Ma Y, et al. Modulating the polarization
652 phenotype of microglia – A valuable strategy for central nervous system
653 diseases. Ageing research reviews 2024;93:102160.

654 Lorenzana-Carrillo MA, Gopal K, Byrne NJ, Tejay S, Saleme B, Das SK, et al.
655 TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and
656 induces P53 in cardiomyocytes to promote heart failure. Science translational
657 medicine 2022;14(669):eabm3565.

658 Nijland PG, Molenaar RJ, van der Pol SM, van der Valk P, van Noorden CJ, de Vries
659 HE, et al. Differential expression of glucose-metabolizing enzymes in multiple
660 sclerosis lesions. Acta neuropathologica communications 2015;3:79.

661 Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in
662 neuroinflammation and neurodegeneration. Nature reviews Neurology
663 2023;19(7):395-409.

664 Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, et al. CHIP/Stub1 regulates the
665 Warburg effect by promoting degradation of PKM2 in ovarian carcinoma.
666 Oncogene 2017;36(29):4191-200.

667 Tang Y, Jia Y, Fan L, Liu H, Zhou Y, Wang M, et al. MFN2 Prevents Neointimal
668 Hyperplasia in Vein Grafts via Destabilizing PFK1. Circulation research
669 2022;130(11):e26-e43.

670 Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szücs A, et al.
671 Warburg-like metabolic transformation underlies neuronal degeneration in
672 sporadic Alzheimer's disease. Cell metabolism 2022;34(9):1248-63.e6.

673 Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current
674 understanding. The Journal of physiology 2021;599(6):1745-57.

675 Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, et al. Astrocytes in human
676 central nervous system diseases: a frontier for new therapies. Signal
677 transduction and targeted therapy 2023;8(1):396.

678 Viana R, Lujan P, Sanz P. The laforin/malin E3-ubiquitin ligase complex ubiquitinates

679 pyruvate kinase M1/M2. *BMC Biochem* 2015;16:24.

680 Wei X, Jin XH, Meng XW, Hua J, Ji FH, Wang LN, et al. Platelet-rich plasma
681 improves chronic inflammatory pain by inhibiting PKM2-mediated aerobic
682 glycolysis in astrocytes. *Annals of translational medicine* 2020;8(21):1456.

683 Wu H, Guo X, Jiao Y, Wu Z, Lv Q. TRIM35 ubiquitination regulates the expression of
684 PKM2 tetramer and dimer and affects the malignant behaviour of breast
685 cancer by regulating the Warburg effect. *International journal of oncology*
686 2022;61(6):144.

687 Xiong XY, Tang Y, Yang QW. Metabolic changes favor the activity and heterogeneity
688 of reactive astrocytes. *Trends in endocrinology and metabolism: TEM*
689 2022;33(6):390-400.

690 Yan Y, Ding X, Li K, Ceric B, Wu S, Xu H, et al. CNS-specific therapy for ongoing
691 EAE by silencing IL-17 pathway in astrocytes. *Molecular therapy : the journal*
692 of the American Society of Gene Therapy

693 2012;20(7):1338-48.

694 Yang L, Jin L, Ke Y, Fan X, Zhang T, Zhang C, et al. E3 Ligase Trim21 Ubiquitylates
695 and Stabilizes Keratin 17 to Induce STAT3 Activation in Psoriasis. *Journal of*
696 *Investigative Dermatology* 2018;138(12):2568-77.

697 Yang L, Zhang T, Zhang C, Xiao C, Bai X, Wang G. Upregulated E3 ligase tripartite
698 motif-containing protein 21 in psoriatic epidermis ubiquitylates nuclear factor-
699 κB p65 subunit and promotes inflammation in keratinocytes*. *British Journal*
of Dermatology 2021;184(1):111-22.

700 Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent
701 phosphorylation and nuclear translocation of PKM2 promotes the Warburg
702 effect. *Nature cell biology* 2012;14(12):1295-304.

703 Zhang J, Feng G, Bao G, Xu G, Sun Y, Li W, et al. Nuclear translocation of PKM2
704 modulates astrocyte proliferation via p27 and -catenin pathway after spinal
705 cord injury. *Cell Cycle* 2015;14(16):2609-18.

706 Zhou Q, Yin Y, Yu M, Gao D, Sun J, Yang Z, et al. GTPBP4 promotes hepatocellular
707 carcinoma progression and metastasis via the PKM2 dependent glucose
708 metabolism. *Redox biology* 2022;56:102458.

709

710

711

712

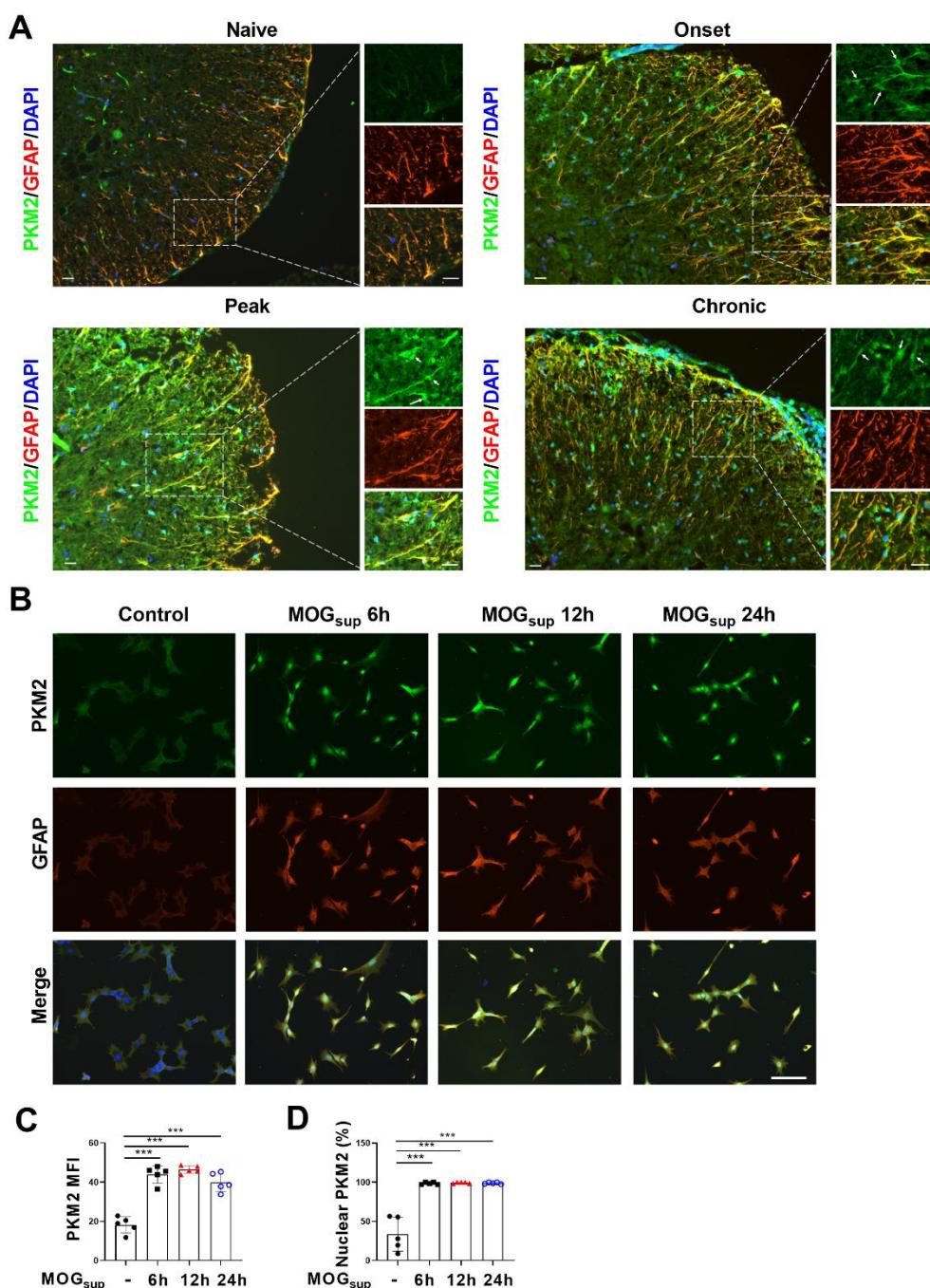
713

714

715

716

717


718

719

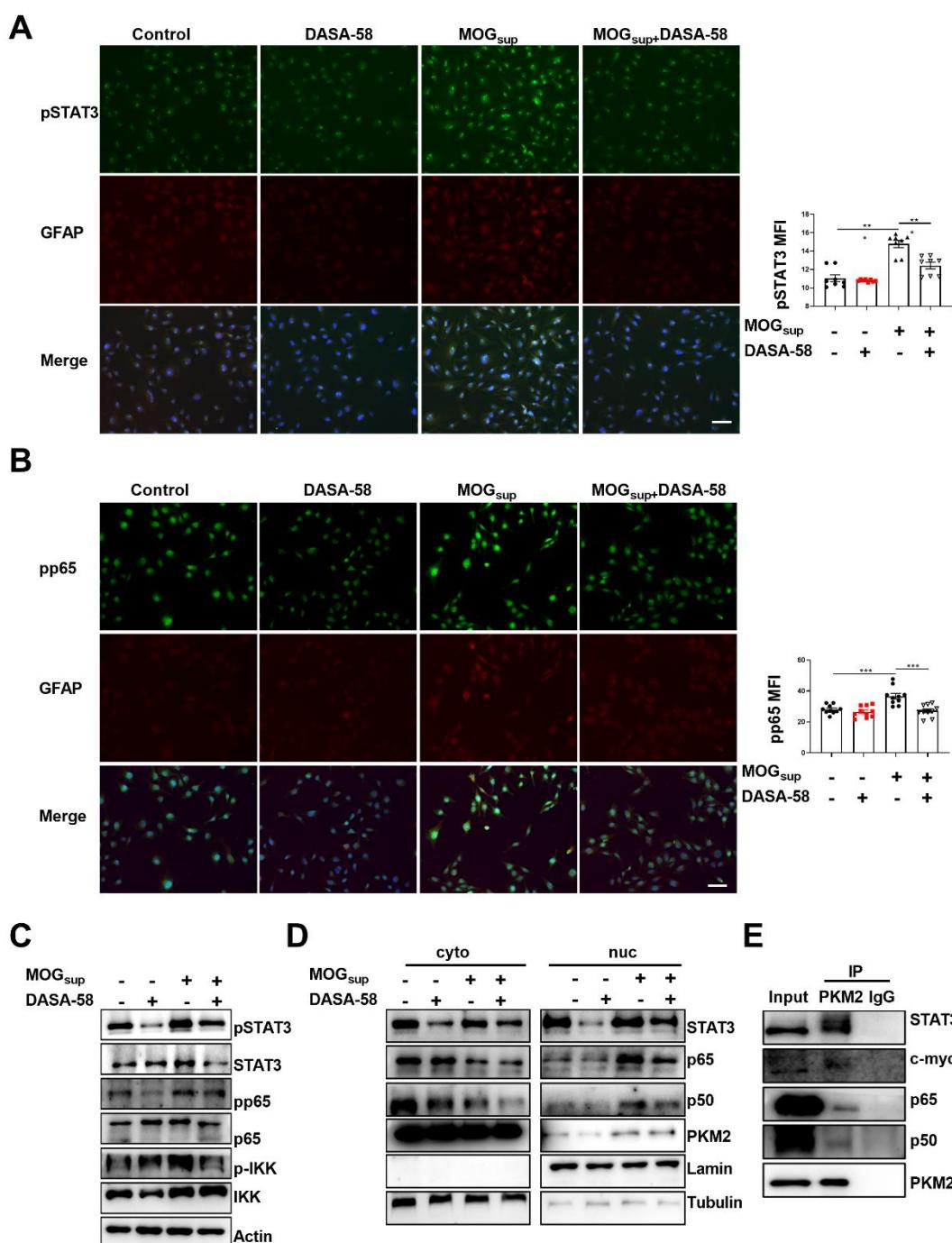
720

721

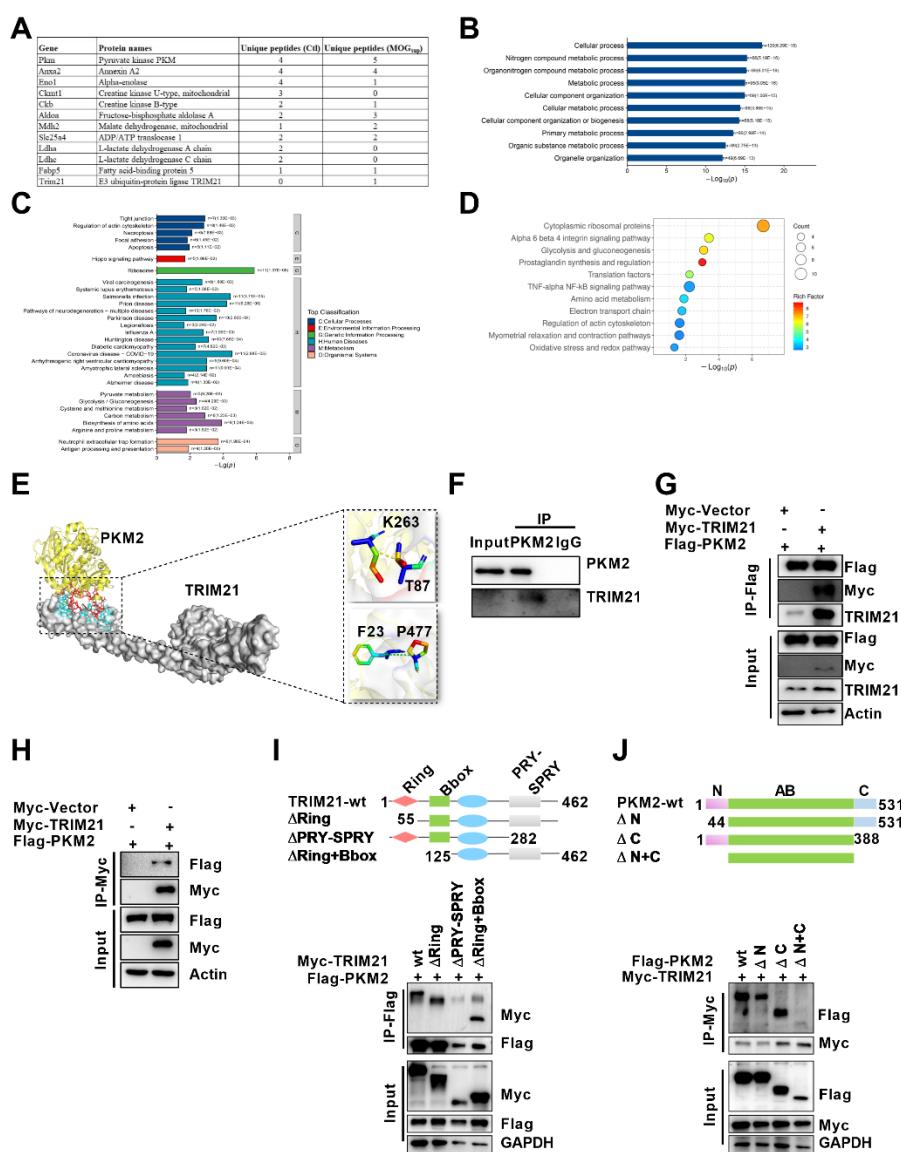

722

723

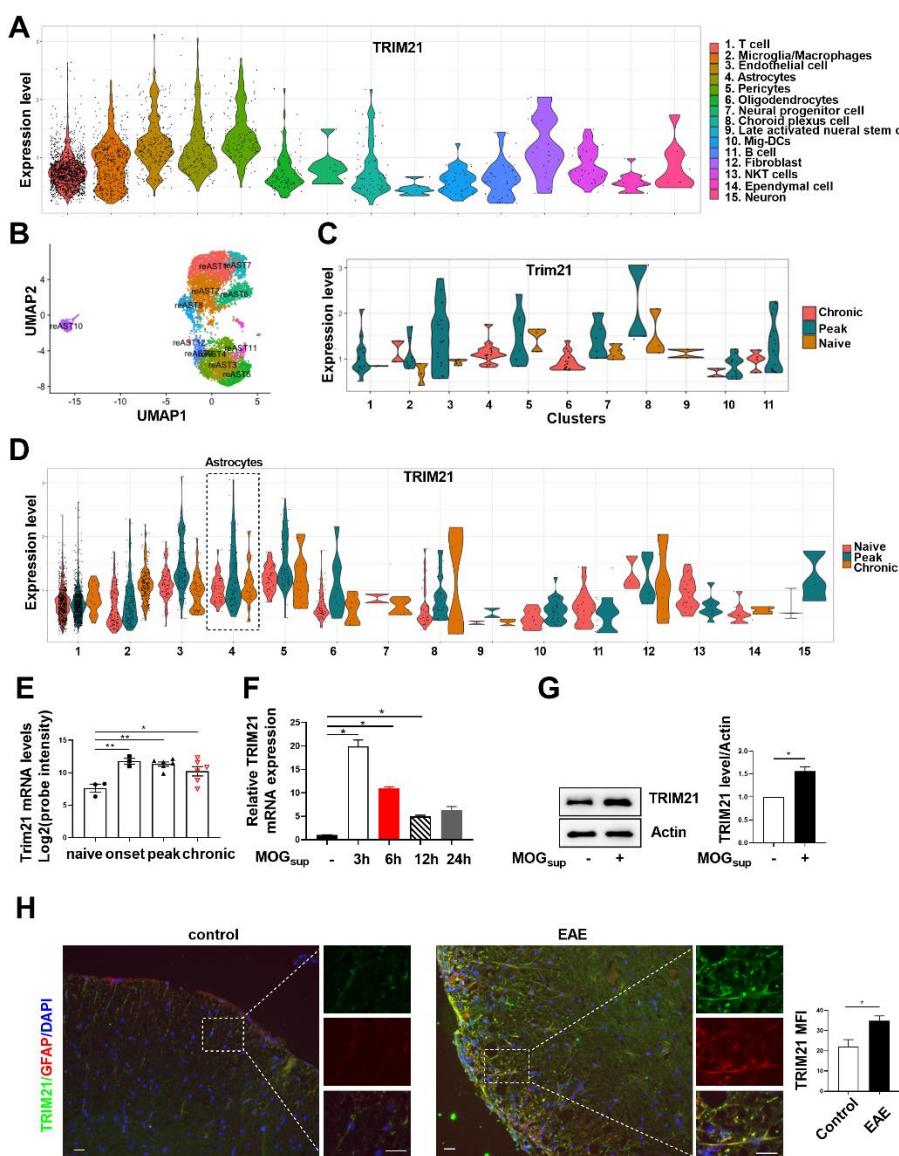
724 **Figure 1. Nuclear translocation of PKM2 in astrocytes of EAE mice.** (A) Immunofluorescence
725 staining of PKM2 with GFAP (astrocyte marker) in spinal cord of control mice and MOG35–
726 55-induced EAE mice. Disease onset (dpi 7–17), peak (dpi 14–24) and chronic (dpi 21–26) were
727 defined dependent on the EAE course. Scale bar: 20 μ m. While arrows indicated nuclear PKM2.
728 (B) Immunofluorescence staining of PKM2 with GFAP in primary astrocytes cultured with
729 splenocytes supernatants of MOG35–55-induced EAE mice (MOG_{sup}) for different time points (6
730 h, 12 h and 24 h). Scale bar: 100 μ m. (C) Mean fluorescence intensity of PKM2 and nuclear
731 PKM2 ratio (D) in different groups of (B) were calculated. Eight fields of views per group were
732 included in the analysis. Data are represented as mean \pm SEM. *** P <0.001. SEM, standard error
733 of the mean.


734

735

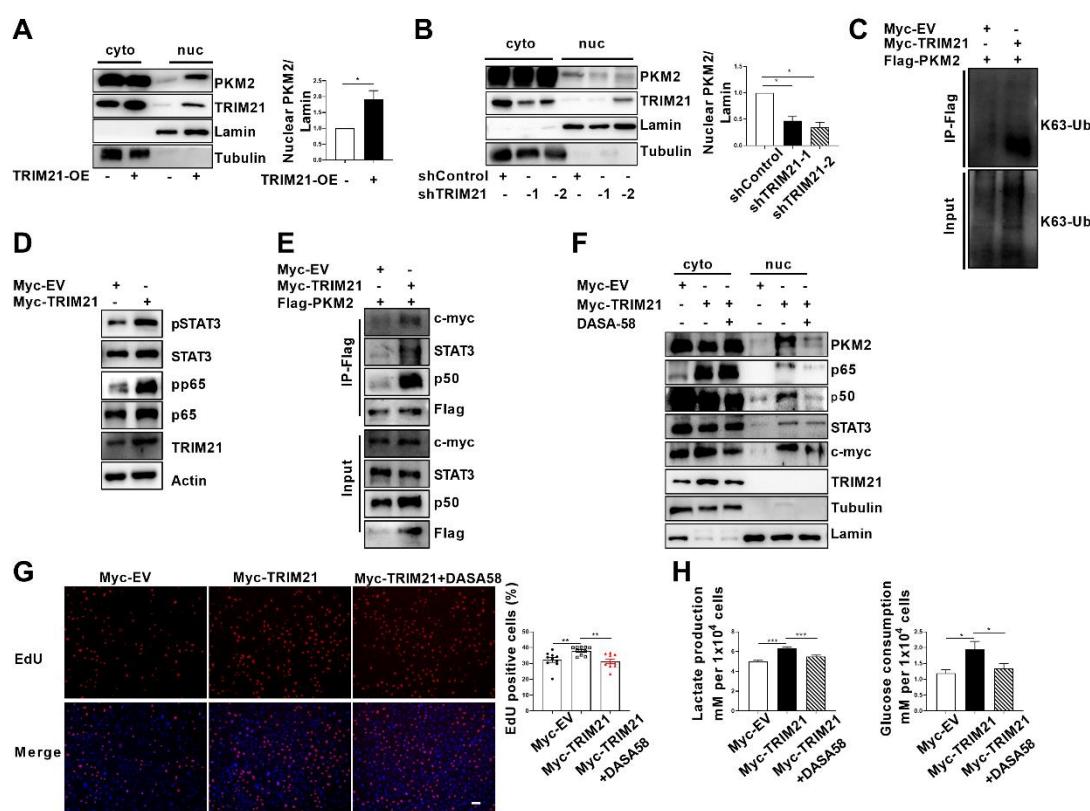

736 **Figure 2. Prevention of PKM2 nuclear transport reduced the glycolysis and proliferation of**
 737 **primary astrocytes. (A) Verification of DASA-58 effect on the inhibition of PKM2 nuclear**
 738 **transport by immunofluorescence. Primary astrocytes were pretreated with 50 μM DASA-58 for**
 739 **30 min and stimulated with MOG_{sup} for 12h. Scale bar: 50 μm. (B) Nuclear ratio of PKM2 in each**
 740 **group was calculated. Five fields of views per group were included in the analysis. (C) Glycolysis**
 741 **level of astrocytes in each group was assessed by lactate production (N=5) and glucose**
 742 **consumption (N=4) assays. (D) Effect of DASA-58 on protein levels of glycolytic enzymes**
 743 **p-c-myc, LDHA and PKM2 were measured by western blotting. (E) Proliferation of astrocytes**
 744 **were measured by CCK8. N=5. (F) Proliferation of astrocytes were measured by EdU assays. (G)**
 745 **EdU positive cells in each group was calculated from ten fields of views per group. Scale bar: 100**
 746 **μm. The blot is representative of three independent experiments. Data are represented as mean ±**
 747 **SEM. *P<0.05; **P<0.01; ***P<0.001. SEM, standard error of the mean.**

748


749

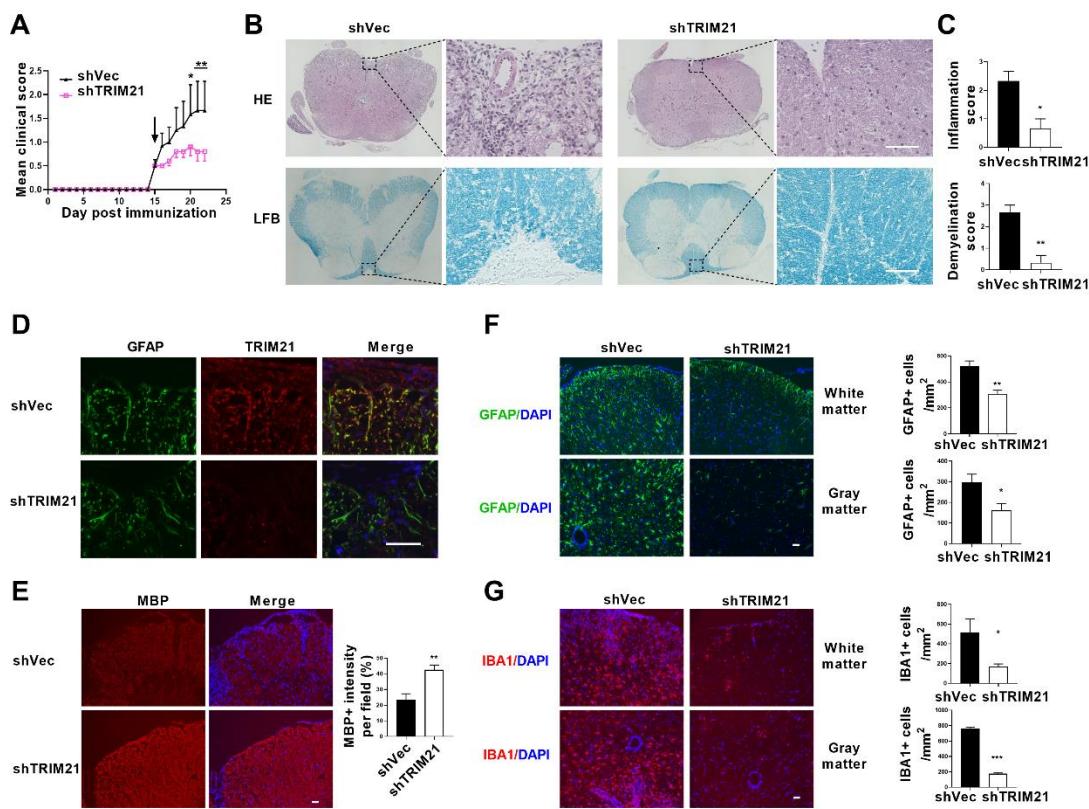
750 **Figure 3. PKM2 interacted with STAT3 and NF-κB and promoted their activation in**
751 **astrocytes.** (A-B) Immunofluorescence staining of phospho-STAT3 (A) or phospho-p65 (B) with
752 GFAP in astrocytes. Primary astrocytes were pretreated with 50 μM DASA-58 for 30 min and
753 stimulated with MOG_{sup} for 12h. Scale bar: 100 μm. (C) Western blotting analysis showed that
754 DASA-58 inhibited the activation of NF-κB and STAT3 induced by MOG_{sup} stimulation. (D)
755 Nuclear-cytoplasmic protein extraction analysis showed the reduced nuclear fraction of STAT3
756 and p50/p65 upon DASA-58 treatment. (E) Immunoprecipitation demonstrated the interaction
757 between PKM2 and STAT3, c-myc and p50/p65 subunits of NF-κB. Data are represented as mean
758 ± SEM. **P<0.01; ***P<0.001. SEM, standard error of the mean.

Figure 4. Identification of interaction between E3 ligase TRIM21 and PKM2 in astrocytes.
(A) Mass spectrometry (MS) showed the list of metabolic-related proteins that potentially interact with PKM2 in primary astrocytes. TRIM21 was identified to interact with PKM2. (B-D) Biological process of GO term (B), KEGG pathway (C) and Wikipathway (D) analysis of proteins identified by MS. (E) Interaction between PKM2 and TRIM21 was predicted with molecular docking and showed by PyMol. The hydrogen bonds were formed between Phe23, Thr87 of TRIM21 and Pro477, Lys 263 of PKM2. (F) Immunoprecipitation showed the interaction between endogenous PKM2 and TRIM21 in primary astrocyte. (G-H) Primary astrocytes were transfected with Myc-tagged TRIM21 and Flag-tagged PKM2, immunoprecipitation with anti-Flag (G) or anti-Myc (H) showed the exogenous binding between PKM2 and TRIM21 in astrocytes. (I) Full-length TRIM21 and a series of TRIM21 mutants with deletion (Δ) of various domains (top panel). 293 T cells were co-transfected with Flag-PKM2 and WT Myc-TRIM21 or their truncation mutants for 48 h. Immunoprecipitation was performed. (J) Full-length PKM2 and a series of PKM2 mutants with deletion (Δ) of various domains (top panel). 293 T cells were co-transfected


775 with Myc-TRIM21 and WT Flag-PKM2 or their truncation mutants for 48 h. Immunoprecipitation
776 was performed.

777

778 **Figure 5. TRIM21 expression is upregulated in astrocytes of EAE mice.** (A-D) Single-cell
779 RNA-seq profiles from naive and EAE mice (peak and chronic phase) CNS tissues. Naive (n=2);
780 peak (n=3); chronic (n=2). (A) Violin plots displaying the expression of TRIM21 across the cell
781 types identified. (B) UMAP representation of 12 clusters generated from sub-clustering of
782 astrocytes. (C) Violin plots displaying the expression of TRIM21 at peak, chronic phases from
783 EAE and naive mice in subclusters of astrocytes. (D) Violin plots displaying the expression of
784 TRIM21 in different phases of EAE and naive mice across the cell types identified. Expression of
785 TRIM21 was shown to be elevated in EAE mice (peak and chronic) compared with naive mice. (E)
786 Analysis of TRIM21 mRNA expression in astrocytes from spinal cord during three stages (onset,
787 peak, and chronic) of EAE and naive mice from GEO dataset (GSE136358). (F) Primary
788 astrocytes were treated with or without MOG_{sup} for different time points. Analysis of TRIM21
789 expression by qPCR. (G) Western blotting analysis of TRIM21 protein expression in non-treated
790 or MOG_{sup}-treated astrocytes. (H) Immunofluorescence staining showed the upregulated


791 expression of TRIM21 in astrocytes (marker: GFAP) of EAE mice. Scale bar: 20 μ m. Data are
792 represented as mean \pm SEM. * P <0.05; ** P <0.01. SEM, standard error of the mean.

793
794 **Figure 6. TRIM21-induced nuclear transport of PKM2 promoted glycolysis and**
795 **proliferation of astrocytes.** (A) Overexpression of TRIM21 promoted nuclear translocation of
796 PKM2. (B) TRIM21 was silenced in primary astrocytes using two independent short hairpin
797 RNAs. Nuclear-cytoplasmic fraction analysis showed that knockdown of TRIM21 decreased
798 nuclear ratio of PKM2. (C) Immunoprecipitation showed that TRIM21 promoted the K63-linked
799 ubiquitination of PKM2. (D) Western blotting analysis of STAT3 and NF- κ B activation in control
800 or TRIM21-overexpressed astrocytes. (E) Immunoprecipitation showed that TRIM21 promoted
801 the interaction between PKM2 and its interacting proteins c-myc, STAT3 and p50. (F) Prevention
802 of PKM2 nuclear import with DASA-58 (50 μ M) reduced the nuclear retention of NF- κ B subunits
803 and STAT3 in TRIM21-overexpressed astrocytes. (G) EdU analysis of cell proliferation in
804 TRIM21-overexpressed, DASA-58 treated TRIM21-overexpressed cells and control astrocytes.
805 Scale bar: 100 μ m. (H) Glycolysis of astrocytes were measured in TRIM21-overexpressed,
806 DASA-58 treated TRIM21-OE cells and control astrocytes. EV: empty vector. Data are
807 represented as mean \pm SEM. * P <0.05; ** P <0.01; *** P <0.001. SEM, standard error of the mean.

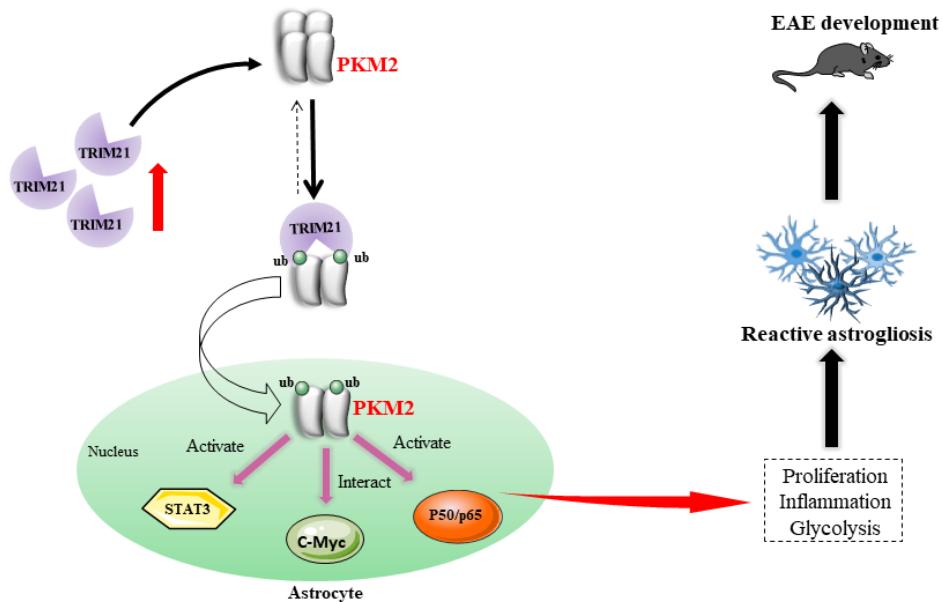
808
809
810
811
812
813

814

815

816 **Figure 7. Intracerebroventricular injection of shTRIM21 ameliorates disease severity of**
817 **Experimental Autoimmune Encephalomyelitis (EAE).** C57BL/6 mice were injected i.c.v with
818 1×10^7 IU shTRIM21 or control lentivirus (shVec) 15 days p.i. (onset). Mice were sacrificed at day
819 22 p.i. and spinal cords were harvested. (A) Disease was scored daily on a 0 to 5 scale. N=5 to 6
820 mice in each group. (B) Spinal cord sections were stained for markers of inflammation by
821 hematoxylin and eosin (H&E) and demyelination by Luxol fast blue (LFB), respectively. (C)
822 Scoring of inflammation (H&E) and demyelination (LFB) on a 0-3 scale. (D) TRIM21 expression
823 in spinal cord of mice from shVec and shTRIM21 group was measured by immunofluorescence.
824 (E) Demyelination in each group was assessed by MBP staining. MBP intensity was measured in
825 the white matter of the spinal cord using Image-Pro. (F-G) Immunostaining of GFAP (F) and
826 IBA1 (G) on spinal cord sections of shVec and shTRIM21-treated EAE mice. White matter and
827 gray matter are shown as representative images. Quantification of GFAP positive cells/mm², IBA1
828 positive cells/mm² in both the white matter and gray matter. The measured areas included 3 to 5
829 fields per group. i.c.v., intracerebroventricular; p.i., postimmunization. Scale bar: 50 μ m. Data are
830 represented as mean \pm SEM. *P<0.05; **P<0.01; ***P<0.001, as determined by two-way
831 ANOVA analysis (A) or unpaired Student's t test (C, F-G).

832


833

834

835

836

837

838

839 **Figure 8. Schematic proposal of nuclear translocation of PKM2 in astrocytes of EAE.** In
840 astrocyte of EAE mice, TRIM21 expression is upregulated. E3 ubiquitin ligase TRIM21
841 ubiquitylates PKM2 and promotes its nuclear translocation, nuclear PKM2 activated STAT3 and
842 NF-κB pathways and interact with c-Myc to enhance glycolysis and proliferation in astrocytes.
843 Thus, TRIM21-PKM2 pathway exerts a potential role in activating astrocytes and inducing EAE
844 development.

845

846

847

848

849

850

851

852

853

854

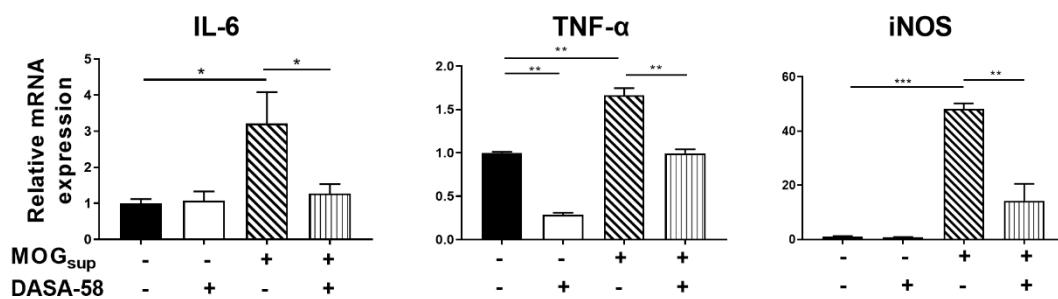
855

856

857

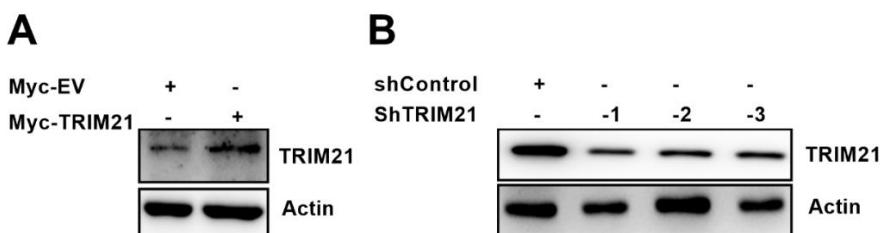
858

859

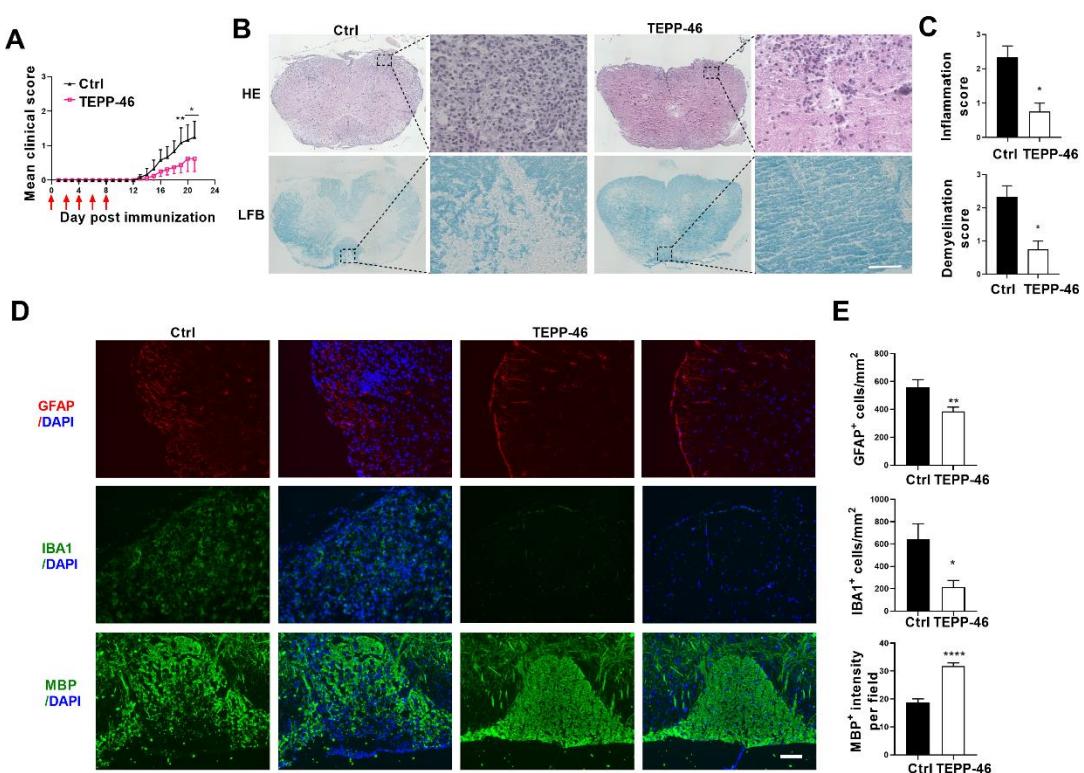

860 **Supplementary Table S1. Primers used in this study.**

Name	Primer sequences (5'-3' orientation)
PKM2	Forward: GCCGCCTGGACATTGACTC Reverse: CCATGAGAGAAATTAGCCGAG
TRIM21	Forward: GGGAGGAGGTCACCTGTTCTA Reverse: GGCACACTCGGGACATGAACCTG
IL-6	Forward: GCTGGAGTCACAGAAGGAGTGGC Reverse: GGCATAACGCACACTAGGTTGCCG
IL-1 β	Forward: CACTACAGGCTCCGAGATGAACAAAC Reverse: TGTCGTTGCTTGGTTCTCCTTGTAC
TNF- α	Forward: CCTGTAGCCCACGTCGTAG Reverse: GGGAGTAGACAAGGTACAACCC
Cyclin D1	Forward: AAGTGCCTGCAGAAGGAGATTGT Reverse: GGATAGAGTTGTCAGTGTAGATGC
GAPDH	Forward: AGGTCGGTGTGAACGGATTG Reverse: TGTAGACCATGTAGTTGAGGTCA

861


862

Supplementary Figures


863

864 **Figure S1. qPCR analysis of mRNA levels of inflammatory cytokines.** Primary astrocytes were
865 pretreated with 50 μ M DASA-58 for 30 min and stimulated with MOG_{sup} for 12h. Data are
866 represented as mean \pm SEM. * $P<0.05$; ** $P<0.01$; *** $P<0.001$. SEM, standard error of the mean.

867

868 **Figure S2. Verification of TRIM21 overexpression and knockdown efficiency.** (A)
869 Overexpression of TRIM21 was verified by western blotting analysis. (B) Western Blotting
870 analysis of TRIM21 knockdown efficiency. Sh: short hairpin; EV: empty vector.

871

872 **Figure S3. i.p. injection of TEPP-46 alleviated the development of Experimental**
873 **Autoimmune Encephalomyelitis (EAE).** C57BL/6 mice were i.p injected with 200 μ l vehicle or
874 50 mg/kg TEPP-46 dissolved in vehicle every other day from day 0 to day 8 p.i.. Mice were
875 sacrificed at day 21 p.i. and spinal cords were harvested. (A) Disease was scored daily on a 0 to 5
876 scale. N=6 to 8 mice in each group. (B) Spinal cord sections were stained for markers of
877 inflammation by hematoxylin and eosin (H&E) and demyelination by Luxol fast blue (LFB),
878 respectively. Scale bar: 50 μ m. (C) Scoring of inflammation (H&E) and demyelination (LFB) on a
879 0-3 scale. (D) Immunostaining of GFAP, IBA1 and MBP on spinal cord sections of TEPP-46- or
880 vehicle-treated EAE mice. (E) Quantification of GFAP positive cells/mm², IBA1 positive
881 cells/mm² in the white matter of the spinal cord. MBP intensity was measured in the white matter
882 of the spinal cord using Image-Pro. The measured areas included 3 to 5 fields per group. i.p.,
883 intraperitoneally; p.i., postimmunization; Scale bar: 100 μ m. Data are represented as mean \pm SEM.
884 *P<0.05; **P<0.01; ***P<0.001, as determined by two-way ANOVA analysis (A) or unpaired
885 Student's t test (C, E).

