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Abstract
Bone and joint formation in the developing skeleton rely on co-ordinated differentiation of
progenitors in the nascent developing limbs and joints. The cell states, epigenetic processes
and key regulatory factors underlying their lineage commitment to osteogenic and other
mesenchymal populations during ossification and joint formation remain poorly understood
and are largely unexplored in human studies. Here, we apply paired single-nuclei
transcriptional and epigenetic profiling of 336,000 droplets, in addition to spatial
transcriptomics, to construct a comprehensive atlas of human bone, cartilage and joint
development in the shoulder, hip, knee and cranium from 5 to 11 post-conception weeks.
Spatial mapping of cell clusters to our highly multiplexed in situ sequencing (ISS) data using
our newly developed tool ISS-Patcher revealed new cellular mechanisms of zonation during
bone and joint formation. Combined modelling of chromatin accessibility and RNA
expression allowed the identification of the transcriptional and epigenetic regulatory
landscapes that drive differentiation of mesenchymal lineages including osteogenic and
chondrogenic lineages, and novel chondrocyte cell states. In particular, we define regionally
distinct limb and cranial osteoprogenitor populations and trajectories across the fetal
skeleton and characterise differential regulatory networks that govern intramembranous and
endochondral ossification. We also introduce SNP2Cell, a tool to link cell-type specific
regulatory networks to numerous polygenic traits such as osteoarthritis. We also conduct in
silico perturbations of genes that cause monogenic craniosynostosis and implicate potential
pathogenic cell states and disease mechanisms involved. This work forms a detailed and
dynamic regulatory atlas of human fetal skeletal maturation and advances our fundamental
understanding of cell fate determination in human skeletal development.

Main
Human bone formation begins between 6-8 post-conception weeks (PCW) in the period
spanning the transition from embryonic to fetal stages. Within the calvaria of the cranial
skeleton, progenitors differentiate into osteoblasts through intramembranous (IM) ossification
and expand from ossification centres that eventually meet to establish the prenatal suture
joints that house osteoprogenitors 1,2. In the appendicular skeleton, the nascent synovial joint
first appears as an interzone condensation in the limb bud at 5-6 PCW 3, which subsequently
forms a cavitated region that articulates adjacent incipient cartilage templates. The latter acts
as a temporary scaffold to facilitate development of the body plane and is gradually replaced
by bone tissue as development proceeds through endochondral (EC) ossification 4,5.

These two distinct and anatomically restricted modes of ossification govern osteogenesis
and joint formation throughout the human skeleton and, to our knowledge, the cellular bases
by which they form and mature remain partially described in human development at
single-cell resolution. To address this, we applied single-nuclei paired RNA and ATAC
sequencing, and multiple spatial methods to decipher the gene regulatory networks that
mediate maturation of the distinct bone and joint-forming niches in the cranium and
appendicular skeleton across space and time from 5-11 PCW. Through this, we discovered
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previously undescribed cellular diversity in the osteogenic and chondrogenic lineages. We
develop ISS-Patcher, a tool to impute cell labels from the droplet data on our high-resolution
155-plex in situ sequencing (ISS) datasets, allowing us to gain detailed insights into spatially
defined niches within the embryonic synovial joint. Applying OrganAxis, a new spatial
transcriptomics annotation tool, we also define the spatial trajectory of the developing frontal
bone of the fetal skull.

In addition, our comprehensive resource and new computational toolset including SNP2Cell
enabled us to gain new insights into the molecular mechanisms of developmental bone
disease, such as craniosynostosis6–8 as well as to implicate region-specific contributions of
bone and cartilage lineages in ageing diseases of the human skeleton, such as
osteoarthritis9,10.

Results
Cellular taxonomy across first trimester skeletal joint development

We applied paired droplet-based snRNA-seq and snATAC-seq (10x Genomics Multiome) to
define the cellular taxonomy of the developing embryonic fetal skeleton between 5-11 post
conception weeks (PCW) across 12 fetal donors. Focusing on three major synovial joints, we
sampled whole-intact nascent and maturing shoulder, hip and knee joints across the
developmental timepoints (Fig. 1a-b). For the developing skull and cranial suture joints,
which had not been profiled in human across embryonic stages, we studied the anterior and
posterior regions of the cranium separately, and sampled the calvaria and skull base
individually to divide intramembranous and endochondral bone-forming niches. (Fig. 1a and
Supplementary Table 1). We captured 336,162 high-quality transcriptome and
chromatin-accessibility droplets and curated the dataset from all regions into eight shared
major cellular compartments based on marker gene expression: mesenchymal, muscle,
immune, endothelial, Schwann, neural, epithelial, and erythroid cells (Fig. 1c-e, Extended
Data Fig. 1c). High concordance was observed between the transcriptome and ATAC peak
compartment structures (Extended Data Fig. 1f), and we observed that mesenchymal cells
were the most abundant across all regions, while myogenic cells were absent in the calvaria
(Fig. 1e). From these we defined 30 broad cell clusters and conducted sub-clustering of
lineages which enabled the identification of 122 fine-grained clusters (Supplementary Table
2).

Previous single-cell (scRNA-seq) atlases of developing human and mouse limbs 11–13 profiled
whole cells and captured low numbers of maturing osteoblast transcriptomes and
COL10A1+ hypertrophic chondrocyte transcriptomes. To facilitate the reconstruction of
developmental trajectories in osteochondral lineages, we profiled nuclei-droplets from a
large number of cells. This captured comparatively more diverse chondrogenic and
osteogenic subcompartments, suggesting that matrix-rich stromal populations are relatively
resistant to enzymatic digestion and less amenable to whole-cell profiling 11–13.
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Our approach enabled the discovery of osteogenic cell state trajectories enriched in the
appendicular joints and skull base (formed through endochondral ossification) and calvarium
(formed through intramembranous ossification), reflecting different osteoblast origins from
anatomically distinct regions (Extended Data Fig. 2). Chondrogenic clusters were relatively
depleted in the calvarium (Fig. 2a), consistent with the mechanisms of intramembranous
bone formation14. In addition, we uncovered novel cell states of the facial and pharyngeal
regions, described COL10A1-expressing fetal hypertrophic chondrocyte development,
discovered a novel PAX7+ chondrocyte population, and described a potential pathway
leading to its formation from common myogenic progenitors15. We delineate the previously
unreported process of human Schwann cell development and the formation of fetal PI16+

fibroblasts, the latter of which shares transcriptional similarities with postnatal pan-tissue
perivascular fibroblasts.

Sequencing-based spatial transcriptomics previously deployed on the embryonic limb has
highlighted challenges in capturing transcripts within the early ossifying bone and
cartilaginous precursors (cartilage anlagen)11. In order to resolve bone lineage cell states in
space and understand organisation of the nascent synovial joint that bridges the adjacent
anlagen, we performed high resolution 155-plex ISS of the whole intact early embryonic
upper (6.7 PCW) and lower (5.7 PCW) limbs, late embryonic (7.3 PCW) knee, and shoulder
regions (Fig. 1f and Extended Data Fig. 2a-c). Additionally, we conduct sequencing-based
spatial transcriptomics (10x Genomics Visium CytAssist) of the developing coronal suture (9
PCW) and frontal bone (Extended Data Fig. 2d) allowing us to capture the trajectory of
osteo-lineage development across space. We leveraged these spatial data to systemically
curate cell lineages within the mesenchymal compartment in a well-defined spatial context.

Spatiotemporal zonation of the incipient synovial joints

Synovial joint-site determination occurs between 5-6 PCW in the limbs, orchestrated by the
emergence of a mesenchymal condensation comprising GDF5-expressing populations
termed the interzone (IZ). Part of them undergo differentiation into joint-articulating
chondrocytes at the ends of the endochondral bone primordia, and chondrocytes that adopt
a hypertrophic phenotype in the cartilage anlagen16. To identify cell-states that constitute
these early joint-specific progenitors, we applied differential abundance testing focusing on
the non-myogenic mesenchyme across developmental time (5-11 PCW) and skeletal regions
(shoulder, hip, knee) (Fig. 2a). We identified four progenitor populations enriched in the early
appendicular joint: Interzone Chondrocytes (InterzoneChon), HIC1+ mesenchyme (HIC1+

Mes), PI16-expressing fibroblast-progenitors (FibroPro) and dermal fibroblasts (DermFibro).
These clusters support the notion that numerous early progenitors exist between 5-7 PCW
and give rise to the chondro-fibro lineages in the joint, instead of a single master GDF5+

progenitor population17.

We first focused on deciphering the composition of progenitors in the early synovial joint,
where fibrous ligaments18, tendon19 and cartilage components are thought to derive from a
progenitor GDF5+ population in mice17,20. To this end, we performed sub-clustering of the
broad InterzoneChon (GDF5+) population and leveraged RNA-velocity to infer their
pseudo-trajectory (Fig. 2b-c). We then applied SCENIC+ to identify predicted gene programs
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and TF accessibility changes across the resulting subclusters (Fig. 2d). Our analysis
revealed multiple subclusters with specific tissue expression signatures, including an early
PRRX1+ mesenchyme population (EarlyIZ) enriched for mesenchyme-associated signatures
(Fig. 2b). Early IZ was predicted to express TFs associated with early limb development (e.g.
TBX18, SHOX, LHX9)11 and demonstrated low RUNX2 expression and accessibility in
downstream target regions but moderate SOX5, SOX6 and SOX9 expression and target
region accessibility, suggesting a poised trajectory favouring chondrogenesis over
osteogenesis (Fig. 2d).

We defined four main trajectories that emerge from this latter population, characterised by
transcriptional signatures of fibroblasts (Fibro IZ), articular (Articular IZ) and hypertrophic
chondrocytes (Hypertrophic IZ-1, Hypertrophic IZ-2), and flanking dermal mesenchyme
(Flanking IZ) (Fig. 2b-c). Three clusters; Articular, Fibro and GDF5high IZ, expressed GDF5.
Articular IZ was more prevalent in the knee joint, whereas Fibro IZ is enriched in the
ball-and-socket joints of the shoulder and hip (Fig. 2c). Articular IZ particularly expressed
chondrogenic markers (COL2A1, ADGRG6, PIEZO2, LGR5, NOG) comparable to mouse IZ
progenitors for articular chondrocytes 17,20 including ENPP1, which negatively regulates
chondrocyte hypertrophy and bone formation, in keeping with a role in articular cartilage
formation. While GDF5-high IZ was predicted to highly express CREB5 and DBX2 and its
target genes, the latter of which is associated with digital IZ formation regulated by HOX
genes17,21, chondrogenesis TFs were not highly expressed, and predicted TF activity and
accessibility for RUNX2 was lowest among the IZ populations. We therefore hypothesise
that GDF5high IZ is maintained as a progenitor pool, potentially to sustain continuous influx
into the forming joint18. In the GDF5 negative hypertrophic clusters, progressive TF
expression and accessibility of RUNX222–24, and concurrent downregulation of articular
chondrocyte TFs (CREB5, EGR1) signifies a hypertrophic phenotype (Fig. 2d).
Hypertrophic2 IZ transitions through Hypertrophic1 in the inferred trajectory and the former
expressed genes that are upregulated during formation of anlagen or pre-hypertrophic
chondrocytes in mice (BMP5, HAPLN1, ACAN and ZFHX3)19,25, suggesting they form the
incipient cartilage template. Overall, our in vivo data are consistent with in vitro observations
of the propensity for human-iPSC and mouse-ESC derived GDF5+ stromal cells to form an
articular, rather than a hypertrophic phenotype 26,27.

To understand spatial zonation of the nascent synovial joint we next visualised the
pre-cavitating knee joint ISS to identify regions of incipient hypertrophic anlagen (RUNX2),
early progenitors (TBX15, SHOX) and nascent articular cartilage and interzone (SOX9) (Fig.
2e). We then leveraged the snRNA-seq dataset and imputed genes missing in the 155-plex
ISS dataset through our newly developed ISS-Patcher function (see Methods) to infer cell
labels to the 155-plex clustered manifold (Fig. 2f,g). In the embryonic lower limb, Early IZ
was diffusely distributed across regions of the interzone and anlagen, and was surrounded
by Flanking IZ (Fig. 2c,d). Articular IZ (GDF5+), were predominantly enriched in sites of
incipient knee articular cartilage formation which also showed SOX9 staining (Fig. 2e,g). In
contrast, Fibro IZ (GDF5+) was enriched in the shoulder interzone region adjacent to the
articular surface of the humerus (Fig. 2g), and expressed SCX (Fig. 2b) which plays a role in
ligament formation in the IZ in mice28. The differential enrichment and signatures of the
Articular and Fibro IZ populations may be explained by the need for fibro-cartilage labrum
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formation in the ball-and-socket joints of the shoulder and hip which emerge and mature
later in development. We coalesce the trajectories and spatial enrichment of the newly
defined interzone progenitors and describe a model for zonation of the embryonic joint.
Within the model, the future joint region (Articular phenotype) forms in the centre of the
interzone defined by early pro-chondrogenic and anti-osteogenic TF enrichment, the
incipient fetal anlagen (Hypertrophic phenotype) forms at the edges away from the joint,
defined by RUNX2 enrichment (Fig. 2h).

Emergence of fibroblast lineages in synovial joints

Fibroblast lineage cell states have previously been described in the developing mouse limb
to arise from a master HIC1+ precursor population29, which contributes minimally to
osteochondral components. In addition, a “universal” PI16+ population is thought to persist in
postnatal stages and govern adult fibroblast formation across tissues in mice and humans
29,30. Here, we sought to uncover the taxonomy of the fibroblast lineage in first trimester
human joints. We first identified fibroblast progenitors (FibroPro) and HIC1+ mesenchyme
(HIC1+ Mes) enriched in the appendicular joints during the embryonic period (<8 PCW),
surrounding the nascent joint and with diffuse distribution in the limbs, respectively (Fig. 2a,
Extended Data Fig.3a-c,f). TWIST1, a known activator of postnatal fibrosis and TWIST2 a
regulator of postnatal dermal fibroblast proliferation 31,32, were predicted to show high TF
activity in DermFibro (Extended Data Fig. 3e), which was present across sites and time, and
localised to the skin around the developing embryonic limbs (Extended Data Fig.3 f-g).
Interestingly, EN1, a TF required for the fibrotic response and associated scarring during
postnatal wound healing33, was highly expressed in DermFibro (Extended Data Fig. 3e) but
showed low target gene expression, suggesting target repression, consistent with
observations of scarless wound healing in utero. In the cranium, it formed the majority of
early-stage enriched fibro-lineage progenitors (Fig. 2a).

To uncover developmental dynamics in the appendicular joints, we reconstructed
pseudotime trajectory across fibroblasts and predicted HIC1+ Mes as a progenitor to
FibroPro during the embryonic phase at <8 PCW (Extended Data Fig. 3a). HIC1+ Mes
enriched for activity in numerous proliferation associated TFs including WT1, SOX5, and
FOXC1, which is associated with an invasive and activated synovial fibroblast phenotype
(Extended Data Fig. 3e) 34–37. At ~8 PCW, FibroPro forms a “fibroblast hub” and expresses
PI16 and DPT, markers of pan-tissue adventitia-associated fibroblasts in postnatal health
(Extended Data Fig. 3d). Here, it gives rise to tenocytes, synovial, dermal and myo-
fibroblasts (Fig. 2a,b). BNC2, a myofibroblast-associated TF 38, had high activity in FibroPro,
consistent with its postnatal pan-tissue presence in the vascular adventitia 30. Additionally,
YBX1, a TF shown to drive proliferation of mouse embryonic fibroblasts was also enriched.
HIC1+ Mes additionally differentiated to the tenogenic lineage during the embryonic, and
synovial fibroblasts in the fetal phase, highlighting potential parallel routes to synovial
fibroblast formation in the prenatal skeleton (Extended Data Fig. 3a-d).
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Formation of the cranium and suture joints

In the cranium, incipient suture mesenchyme matures beyond 7 PCW at meeting points of
bone fronts emanating from primary ossification centres in the flat bones, forming suture
joints39. We conducted differential abundance testing of the mesenchyme compartment and
revealed the embryonic cranium (<7 PCW) was dominated by dermal and myo- fibroblasts,
and two broad PAX9+RUNX2+ and ALX1+RUNX2+ mesenchymal clusters that had not been
described previously in human craniogenesis (Fig. 2a). The latter expressed markers such
as TWIST1, CTSK, ZIC1, consistent with mouse cranial progenitors40, and RUNX2,
suggesting they form part of the osteogenic lineage (Extended Data Fig. 4a). ALX1 is
required for cranium formation in the mouse41, and neural crest cell (NCC) migration and
differentiation in human derived stem cells, with variants of the gene associated with
frontonasal dysplasia 28,42. Single-cell studies of the human brain have also identified ALX1
expression within mesenchyme-like progenitors43. We therefore used metadata obtained
during tissue sampling to examine differences in anterior-posterior skull gene expression
and found numerous neural crest cell (NCC) TFs and targets linked in our GRN including
ALX1, PAX3, BMP5, COL4A2, COL4A1 and TSHZ2 which are differentially enriched in the
anterior portion of the cranium (Extended Data Fig. 4b). This suggests that ALX1+ Mes may
have a neural crest origin. Due to the transient embryonic nature of NCCs44 we did not
capture early embryonic bona fide SOX10+ NCCs. RUNX2-expressing PAX9+ Mes was
present in the cranium (skull base) and appendicular skeleton (Fig. 2a), and therefore likely
represents a lateral plate and axial mesoderm-derived progenitor for osteoblasts in
endochondral ossification.

Next, we sought to delineate the contribution of the broad ALX1+ and PAX9+ Mes clusters to
the bone-forming suture joint. We first sub clustered these populations in combination with
osteoblasts (SP7, ALP), osteocytes (SOST, DMP1) and perichondrium (RUNX2, THBS2,
POSTN) to form an osteo-lineage subcompartment. This revealed anatomical and age
-segregated clusters (Fig. 2a, Extended Data Fig. 4c-d). Among these were three early
progenitors, including facial (FacialMes) and pharyngeal mesenchyme (PArchMes) which
were located in the skull base and expressed markers of axial mesoderm (PAX3 and LHX8),
and a cranial mesenchyme (CranialMes) population which was abundant in the calvarium
(Fig. 2a, Extended Data Fig. 4d-e).

Cranial sutures form in fetal stages following expansion of the primary ossification centres at
the end of the embryonic period1. Consistent with this, we define two human suture
mesenchyme clusters (SutureMes1/2) enriched in the cranium from 8 PCW (Fig. 2a).
Classical markers of fetal cranial sutures (TWIST1, ZIC1, ZIC4), previously reported in
NCC-derived mesenchyme in mice, were enriched in both populations in addition to high
expression levels of THBS2, akin to the endochondral perichondrium cluster (Extended Data
Fig. 4d)45. Notably, the SutureMes populations expressed CTSK, a marker of periosteal
mesenchymal stem cells in the postnatal mouse cranial osteogenic niche shown to mediate
intramembranous ossification46. Using Cell2location, we revealed the spatial distribution of
SutureMes1 and SutureMes2 within the developing coronal suture joint, spanning outward
toward the periosteum (Fig. 2i). Osteoprogenitors (HHIP+PreOB) emerged at the opposing
frontal and parietal bone boundaries of the suture populations (Fig. 2i). Additionally, the
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sutures were flanked by peri-suture (CTSK-) in contrast to the CTSK+ postnatal mouse
periosteum previously reported46 (Extended Data Fig. 4g).

Analogous to osteogenic repressor genes enriched in spatially-defined clusters of the
articular IZ, SutureMes populations also showed predicted TF and target accessibility
enrichment of negative regulators of osteogenesis in the mouse cranial sutures (TWIST1,
LMX1B, NFATC2)47 (Fig. 2i). Numerous TFs associated with osteogenesis (EGR1, EGR2,
SP7)48,49 and osteoblast formation (FOXO1, ETS1, ETS2)50 were predicted suggesting a
transcriptional network primed for impending osteogenesis. Akin to the molecular gradients
of the joint-interface in the embryonic knee (Fig. 2h), we observed LMX1B and TWIST1
expression within the suture region, dissipating toward the flanking bone edges alongside a
rise in regulators of osteogenesis such as RUNX2 (Fig. 2i), suggesting comparable
mechanisms in sustaining the non-osteogenic interface in both the limb and skull bones.

To dissect this process and uncover the enhancer-driven gene regulatory network (eGRN) of
the loci surrounding key osteogenic transcription factors RUNX2 and calvaria-enriched
HHIP, we visualised coverage of the network predicted by SCENIC+. Both RUNX2 and
HHIP were predicted to be inhibited by a shared set of anti-osteogenic TFs including
LMX1B, TWIST1 and ALX4 via several intermediate repressors targeting various enhancers
around their loci (Fig. 2k), illustrating the relationships maintaining the balance of
osteogenesis initiation. HHIP was most accessible in HHIP+PreOB and was indirectly
repressed by LMX1B via TWIST1 which positively regulated its immediate repressors MAF
and HMGA2 via two differentially accessible enhancers of HHIP enriched in SutureMes1 and
HHIP+PreOB. RUNX2 was most accessible in HHIP+PreOB (IM) as well as Perichondrium
(EC) and was predicted to be indirectly targeted by the same repressors via TCF12 and
PRRX2. Overall, the network illustrates the coherent regulation of bone-adjacent
non-ossifying niches by key osteogenic regulators via multiple redundant paths.

Distinct trajectories of osteogenesis across the skeleton

Osteoblastogenesis, signifying the onset of ossification, commences from ~7-8 PCW onward
(Fig. 2a). To reconstruct this process, we utilised force-directed embedding on non-cycling
cells and uncovered two major trajectories from distinct progenitors converging toward
osteoblast and osteocyte formation (Fig. 3a). Endochondral ossification (EC) consisted of
two routes, stemming from limb mesenchyme (LimbMes), FacialMes and PArchMes.
LimbMes, a cluster which encompasses upper and lower limb joints, demonstrated
transcriptional similarity (ISL1, TBX5, WT1) to lateral plate mesoderm previously reported in
the fetal human limb bud (Fig. 3a, Extended Data Fig. 4a-e) 11,30. CranialMes and FacialMes
were differentially abundant in the anterior portion of the calvarium and skull base (Fig. 2a),
respectively. FacialMes expressed NCC-derived mesenchyme regulators PAX3 and PAX7
(Extended Data Fig. 4e)51. Likewise, ALX1 was enriched in CranialMes, leading us to
hypothesise that the clusters represent, to our knowledge, previously undescribed human
NCC-derived osteogenic populations. LEPR+Mes was enriched in the calvarium, LEPR has
been reported as a marker of second trimester and post-natal osteogenic stromal population
12,52. PArchMes emerged between 6-8 PCW and expressed marker genes of the first
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pharyngeal arch (PAX9, LHX, DLK1) 53, and is likely to comprise mixed origins from axial
mesoderm and NCC. We discovered a two-stage process in the intramembranous pathway
(IM), defined by the transition between embryonic and fetal stages. Suturogenesis occurs in
stage 1, as CranialMes differentiates into SutureMes1/2 (Fig. 3a). In stage 2, an osteogenic
trajectory emerges from SutureMes1 toward SutureMes2, followed by HHIP+PreOB. HHIP
was previously reported in the mouse as a marker of osteogenic coronal suture
mesenchyme 54. We demonstrate here that they are a distinct population progeny to
TWIST1-enriched SutureMes and are distributed at the boundaries of bone formation in
human fetal development (Fig. 2i).

Within the two newly defined trajectories for EC and IM osteogenesis, we determined
dynamic expression and modules associated with pseudotime as they converge (Fig. 3a-b).
Common TFs (RUNX2, DLX5, SP7, SATB2) mediating osteogenesis were upregulated
toward terminal states across both pathways. The newly described SutureMes1/2 was
enriched for osteogenic genes (SPARC, COL1A1, GAS1) early in the trajectory and
signatures associated with suture formation and regulation in the fetal and postnatal mouse
suture (PRDM6, MSX1) were most regulated upon transition to SutureMes2 55. Inhibitory
control of osteogenesis differed across the pathways, LMX1B a common repressor, was
enriched late in progenitors across both pathways whereas TWIST1 was only enriched late
in IM progenitors, signifying additional inhibitory regulation in the IM pathway. NFATC2, a
chondro- and osteo- genesis repressor 56,57, was observed early in the IM pathway, but
upregulated late in the EC pathway, potentially reflecting context and timing dependent roles
in maintenance of the suture niche (IM), and cartilage primordia replacement (EC),
respectively. In IM progenitors, accessibility across activators (RUNX2) and repressors
(TWIST1, LMX1B) was simultaneously high at early parts of the trajectory, suggesting they
are poised for osteogenesis but remain repressed in the early stages (Fig. 3c). In contrast, at
the transcriptome level, there was a reciprocal relationship between repressor and RUNX2
target expression across pseudotime, suggesting additional, redundant layers of regulation
limiting RUNX2 target expression. In the EC pseudo-trajectory, repressor (TWIST1,
NFATC2) accessibility peaked toward Perichondrium and then decreased, whereas RUNX2
target accessibility increased as Perichondrium formed, suggesting the latter was critical in
driving progression. This contrasts with the gradual reduction in IM repressor accessibility
marking the transition into HHIP+PreOB alongside a persistently accessible activator
(RUNX2) (Fig. 3c). In concert, the multi-omic dynamic changes in the IM pathway, in contrast
to EC osteogenesis, suggest additional layers of non-transcriptional regulation.

Following suture formation, progressive waves of oriented differentiation emanate from the
cranial sutures toward the developing bone front 45. In order to identify the newly defined cell
states in this progression (stage 2), we utilise OrganAxis (see Methods) to define a
maturation axis spanning the coronal suture into regions of the maturing frontal bone.
Subsequently, we create zonal bins within this continuous axis based on histological
features, and evaluate cell-state mapping along the anterior-posterior (AP) axis (Fig. 3d).
Enrichment of TWIST1+ SutureMes1/2 were substantial in the suture zones (1-3) which
constitute the centre of the coronal suture (Fig. 3e). Their enrichment peaked within the
osteogenic front where histological features of osteoprogenitors began to emerge along with
HHIP+ PreOB. Establishment of the osteogenic zones coincided with downregulation of
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anti-osteogenic (LMX1B, TWIST1), and upregulation of pro-osteogenic (RUNX2, DLX5,
SP7) TFs (Fig. 2i-j, 3d-e), signifying a spatially restricted molecular switch that defines
territories of the suture. Osteoblast-specific genes including IRX5, SOST, SPP1, MMP9 and
DMP1 gradually peaked toward the most distant osteogenic zone58. Clustering of the spatial
voxels aligned osteogenic TFs with axis values away from the coronal suture (Extended
Data Fig. 5c).

In EC ossification, bone formation initiates in the interfaces of the synovial joint, with
perichondrium formation surrounding the hypertrophic chondrocyte template, giving rise to
osteoblast in fetal stages and in postnatal injury repair 11,52,59. At the border of the sphenoid in
the anterior skull base, we identified the anterior boundary between EC and IM osteogenesis
at the frontal-sphenoid interface, with co-localisation of SutureMes1 and SutureMes2, which
precede HHIP+PreOB and Osteoblast (Fig. 3e), forming a previously undescribed
boundary-defining niche. In the limb, we applied ISS-patcher to the ISS data, and inferred
spatial trajectories for differentiation of the LimbMes towards perichondrium and osteoblasts
in a centripetal pattern in the incipient bone at ~7 PCW (Fig. 3f). In the older 9 PCW skull
base, a comparable pattern was detected in the sphenoid where hypertrophic chondrocytes
were surrounded by perichondrium (Fig. 3g).

To further resolve the endothelial-bone relationship within the IM niche, which remains poorly
understood compared to the canonical vascularisation models described in the EC niches60,
we leveraged both the spatial locations and inferred osteo-endothelial interactions to
elucidate a plausible cellular basis for endothelial sprouting. As expected within the IM niche,
MSR1+ Tip cells, Mural cells and Capillary Endothelial cells (ECs) progressively co-enriched
along the osteogenic zones with Osteoblast and Osteocytes (Fig. 3e, Extended Data Fig.
5a-b), suggesting a spatial-temporal association between vascularisation and osteogenesis.
Concurrent to this trend, ATF4, a regulatory gene that promotes bone angiogenesis in
development 61, was also enriched along the axis.

Pro-angiogenic factors VEGFA and VEGFB, the concentration of which modulates vessel
sprouting, were highly enriched at the osteogenic front, which co-localised with
SutureMes1/2 and HHIP+PreOB, which highly expressed VEGFA and VEGFB, suggesting
they are the likely source. Endothelial populations highly express the VEGF receptor genes
(FLT1, KDR, NPR1) (Fig. 3h), which therefore suggests the former plays a pivotal role in
promoting vascular invasion into the bone in IM akin to the well-described function of
hypertrophic chondrocytes in EC niches62,63.

To determine distinct cell-cell interactions across the EC and IM niches, we utilised NicheNet
to compare differences in signalling during sprouting angiogenesis, focusing on recipient tip
cells that lead the vascular sprouts. SutureMes1/2 distinctly enriched for EPHB2 and
EPHB3, which promotes sprouting behaviour, motility, and vessel formation (Fig. 3i) 64.
RACK1, an intracellular scaffold protein that promotes VEGF-FLT1-dependent cell
migration65, was exclusively expressed in tip cells in the calvaria, signifying a highly motile
state. CXCR4, which promotes sprout anastomosis, was upregulated in tip cells66. In EC
ossification, tip cells distinctly express CDON, the receptor for IHH which promotes
endothelial proliferation, migration, and angiogenesis. Together, these data support the
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essential role of SutureMes1/2 and HHIP+PreOB in coordinating blood vessel invasion and
migration in the IM osteogenic niche.

Next, we sought to unravel inferred signalling interactions from the invading endothelial cells
toward osteogenic populations. We first defined a spatial gradient of angiogenesis along the
defined bone-maturation axis by scoring for enrichment in sprouting angiogenesis pathways
(Fig. 3e), which corroborated the coupling of angiogenesis and osteogenesis, orchestrated in
the direction of bone growth. We then used CellphoneDB to predict significant signalling
interactions from ligands in the endothelial populations toward the recipient osteogenic cell
states (Fig. 3j)67. Endothelial cells, including capillary ECs, mural cells and tip cells were
predicted to signal to osteoblastic cells via DLL1/DLL4–NOTCH2 and JAG1/JAG2-NOTCH2
interacting pairs, which have been reported to promote the differentiation of postnatal
perivascular osteoprogenitors68. Of note, no NOG expression was observed in endothelial
cells, unlike the previously described postnatal bone-associated type H vessels68, which
suggests a novel and unique pattern of crosstalk between endothelial and osteoblastic cells
via NOTCH signalling in the embryo. Additionally, mural and capillary ECs promoted
osteoblast differentiation through previously described interactions including FGF2-FGFR269

and THBS1-CD3670. Mural cells are also likely to be promoting bone mineralization via
activation of canonical WNT signalling through the observed RSPO3-LGR5 pairs71. In
addition to pro-osteogenic roles, the endothelial cells all support osteoclast recruitment and
differentiation via CCL14-CCR172 and CXCL12-DDP4 interactions73. Through these spatially
defined interactions, we discern a model of the interplay between angiogenesis and
osteogenesis in the intramembranous niche of the frontal bone whereby tip cells are first
recruited by VEGF and EPHB2 from suture mesenchyme and pre-osteoblastic cells, toward
the pre-osteogenic condensation that form the bone-front. Vascularising endothelial cells
then promote osteoblastic differentiation, osteocyte mineralization and osteoclast recruitment
in the maturing bone (Extended Data Fig. 5e).

Other lineages, including neurons have also been reported to play a role in modulating
osteogenesis74,75. Neuronal development and axon guidance modules were enriched in early
stages of both osteogenic pathways (Supplementary Table 4), suggesting involvement of
chemical cues from axons in niche formation. Specific IM modules were associated with
epithelial mesenchymal transition (EMT), hypoxia response, and TGF signalling, whereas
EC-enriched modules were related to neuroactive ligand-receptor interactions, axon
guidance and development (GSEA, MSigDB Hallmark 2020 gene sets). To understand the
potential role of axon guidance in skull formation, we compute gene-scores for axon
guidance modules along the spatial trajectories of osteoblastogenesis in the cranium and
revealed enrichment in the suture mesenchyme (Extended Data Fig. 5f), consistent with
previous description of axonogenesis regulating suture formation in the mouse76. Future
studies capturing transcriptional profiles of neuronal cell bodies of the innervating axons may
shed light on the cell-cell interactions at play.

Inferring PAX7+ chondrocyte origins

Chondrogenesis is an essential process for the formation of various types of cartilage,
including hyaline, fibrous, and elastic cartilage. To reveal the transcriptional heterogeneity of
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chondrocytes, the chondrocyte subcompartment was further sub-clustered across
anatomical regions and timepoints and annotated based on canonical marker genes (Fig.
4a, b, Extended Data Fig. 6a and Supplementary Table 2). To dissect cellular heterogeneity
within a spatial context, we applied ISS-Patcher and Cell2location to transfer cell state labels
from our single-cell atlas to ISS and 10x Visium slides from the shoulder at 7.3 PCW and
calvaria at 9 PCW (Extended Data Figs. 6b, c).
Our chondrocyte clusters exhibited strong regional-specificity due to divergent development
origins (Fig. 4c)77. In terms of cell clusters, we identified known populations, such as
hypertrophic chondrocyte (HyperChon, COL10A1, IHH), cycling chondrocyte (CyclingChon,
MKI67, TOP2A), resting chondrocyte (RestingChon, UCMA), interzone chondrocyte
(InterzoneChon, GDF5, PITX1), as well as new populations, including two chondrocyte
progenitors (ChondroPro1, ChondroPro2), anatomical region-specific chondrocytes, DLK1+

chondrocytes (DLK1+ Chon, DLK1, CD63), and PAX7+ chondrocytes (PAX7+ Chon, PAX7,
RBFOX1). Two region-specific ChondroPros, which were enriched in appendicular joints and
skull respectively, transitionally expressed fibroblast differentiation markers (POSTN,
COL1A1, PRRX1, and TWIST1), which was consistent with findings in early chondrocyte
progenitors in mice19. In the skull base, facial chondrocytes highly express PAX3, indicating
an origin from neural crest78. Mandibular chondrocytes highly expressed SEMA3D in
posterior regions79,80. In appendicular regions, we observed two subtypes of articular
chondrocytes, with one population being enriched for TRPV4 and VEGFA, while the other
one was more mature, with relatively low SOX9 expression and high EPYC expression. In
particular, DLK1+ Chon was highly enriched in ribosomal genes and distinctly expressed
CD63 and DLK1. CD63 has been identified in the pre-hypertrophic layer in the limb, while
DLK1 is a novel marker for embryonic chondroprogenitor cells undergoing lineage
progression from proliferation to pre-hypertrophic stages. Spatially, CyclingChon, DLK1+

Chon and HyperChon were also arranged sequentially within the bone, spanning from the
epiphysis toward to diaphysis, the primary ossification centre (Extended Data Fig. 6b), which
corroborates the transitional role of DLK1+ Chon, from proliferative to pre-hypertrophic
phenotypes during chondrogenesis.
With regard to gene regulatory networks, we identified common and region-specific
co-expressed gene modules using Hotspot81 and performed gene ontology enrichment on
each module (Extended Data Figs. 6 d,e). Shared gene modules (M3, M5, etc) across
regions mainly related to chondrocyte cellular structure and functional development,
including biomineralization, collagen-containing extracellular matrix, and cartilage
development. Interestingly, synapse related pathways were enriched both in appendicular
and cranial samples, suggesting axons may contribute to development of cartilage82 which in
pathology may be responsible for joint pain. In addition, chondrocytes from the skull base
enriched for axon guidance gene modules, while chondrocytes from appendicular joints had
specific gene modules, including glucose metabolism and cellular response to hypoxia
(Extended Data Figs. 6f, g). Taken together, our data provides a comprehensive catalogue of
chondrocyte molecular profiles in multiple developing human joints.

Moreover, our work uncovered a previously undescribed developmental chondrocyte cluster
(PAX7+ Chon), which first appeared at 7 PCW and peaked between 9-10 PCW across
multiple donors (Fig. 4c). PAX7+ Chon co-expressed markers and gene modules of
chondrocytes and muscle cells on the transcriptomic and epigenetic level (Fig. 4d), and
showed overlap of genes that enrich in cartilage and muscle development pathways
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(Extended Data Fig. 6h, i). To interrogate the possibility of doublet-capture artefact, we first
applied stringent doublet processing by performing extra statistical tests over the doublet
score (see Methods, Extended Data Fig. 7a, b). Then we verified the presence of PAX7+

Chon through in situ hybridization experiments (Fig. 4e), which was consistent with the
multiplexed ISS data (Extended Data Fig. 6b). Additionally, PAX7+ Chon displayed
transcriptional characteristics not explained by doublet formation (Extended Data Fig. 7b,c).
To reveal GRNs that govern the transcriptional identity of PAX7+ Chon, we applied SCENIC+
and constructed a GRN based on differentially expressed transcription factors (TFs) with
their predicted target genes. Aside from identifying key myogenic and chondrogenic key
regulators (PAX7, MYF5, SOX5, SOX9), we also discovered core posterior axis HOX gene
modules, suggesting that patterning of major synovial joint chondrocytes may be conferred
through their nested HOX expression 83.

Previous mouse studies suggested that chondrocytes may share origins with the muscle
lineage84,85,86. Skeletal muscle mesenchymal cells (SkM.Mesen)15 not only express classical
muscle markers at low levels, but also exhibit gene expression related to mesenchyme.
Myo-skeletal stem-like cells (MSSCs) expressed CADM1, MECOM, and FOXP1, previously
reported as makers of mouse skeletal/stem progenitors87, along with genes related to
muscle, cartilage, and mesenchyme. In addition, MSSCs expressed low levels of lateral
plate mesoderm markers. Conversely, PAX7+ MyoProgenitor cells highly expressed
muscle-related genes, suggesting they are a distinct branch separate from PAX7+ Chon
(Extended Data Fig. 7c). We further interrogated the relationship between these progenitors
and PAX7+ Chon, applying scFate, to reveal a trajectory from MSSCs to PAX7+ Chon, with
upregulation of chondrocyte genes and downregulation of stem cell genes, such as SOX4,
CDH2 and CDH11 on both the RNA and ATAC level (Extended Data Figs. 7d-f). Comparison
of mouse and human cell clusters revealed similarity between PAX7+ Chon and a MYF5+

progenitor-derived mouse cluster from the extraocular muscle (Extended Data Fig. 7g),
which was reported to derive from progenitors that give rise to both myogenic and
connective tissues in mouse15,86. Taken together these results indicate the possibility of a
new source of chondrocytes from muscle progenitors, which suggested the potential
complexity of embryonic cell types prior to reaching terminal differentiation.
Lineage tracing experiments in zebrafish and mice88 have shown that Schwann cells
possess the evolutionarily conserved potential to differentiate into chondrocytes during
embryonic development in both species. Here, we identified SOX9+ endoneurial Schwann
cells (SOX9+ enSC) within the Schwann cell compartment, characterised by the expression
of typical chondrocyte (SOX9, COL9A1, ACAN, COL2A1), and classical Schwann cell
markers (MPZ, SOX10) (Extended Data Figs. 8a-c). Velocity analysis suggested that
multipotent hub Schwann cells (Hub SCP) serve as the foundational cells in the
differentiation hierarchy. SOX9+ enSC represented one of the endpoints on the
mesenchymal trajectory, expressed a mesenchymal gene signature (PRRX1, PRRX2,
PDGFRA, TWIST2) and upregulated HOX TFs (HOXA9, HOXA10, HOXA11, HOXD10)
(Extended Data Figs. 8d, e). We applied RNAscope (SOX9, SOX10, MPZ) to localise SOX9+

EnSC in the acetabulum at 7.3 PCW (Extended Data Figs. 8g, h). In summary, the analyses
suggest that Schwann lineage cells may carry the potential to serve as an alternative source
of chondrocytes in humans. However, further lineage tracing experiments are essential to
validate this. We therefore hypothesise that chondrocytes derive from multiple potential
origins, such as muscle and Schwann lineages during embryonic development (Fig. 4i).
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Developmental links to complex traits of the adult skeleton

Numerous conditions of the postnatal and ageing skeleton have been linked to disrupted
joint and bone changes during the embryonic stages of life. Of note, enhancer-associated
variants linked to adult osteoarthritis (OA) appear to act on anatomical-region-specific
regulatory networks to influence synovial joint morphology during development89. However,
the cell states that mediate this process remain evasive.

To explore potential causal links in foetal skeletal cell states for adult complex traits, we first
conducted fGWAS (Fig. 1c, see Methods), which integrates full GWAS summary statistics
with cell-state specific epigenetic and transcriptomic signatures across clusters, computing
cell-cluster enrichments for phenotypes. Interestingly, we found distinct lineage enrichments
for knee and hip OA in chondrogenic and osteogenic cell populations, respectively (Fig. 5a).
Knee OA and its surrogate phenotype, total knee replacement (TKR) enriched in most
chondrogenic states, except for PAX7+ chondrocytes and InterzoneChon (GDF5+). In
contrast, hip OA enrichment was only significantly observed in two chondrocyte populations
(ChondroPro and Hypertrophic Chondro), but was additionally enriched in Perichondrium,
Osteoblast as well as Tenocyte. We further performed fGWAS on our fine-grained
annotations (Fig. 5b) to explore subcluster enrichment. Consistent with the broad
annotations, various types of chondrocytes show significant enrichments for knee OA (Fig.
5b) whereas the signal for InterzoneChon implicated Early IZ in hip OA. These findings
implicate a greater impact for bone development affecting hip OA risk, potentially through
modulating hip shape and a thereby altered risk of mechanical stress at the hip joint over
time90. In contrast, the knee-specific findings point toward the central role of chondrogenesis
in knee pathology, potentially implicating postnatal regenerative mechanisms.

Complex diseases are often associated with many mutations across non-coding regions. We
therefore sought after a way to integrate the GWAS signals of hip and knee OA described
above across enhancers of our gene regulatory network to identify enriched TFs and
pathways, while accounting for cell cluster specific effects. To this end we developed
SNP2CELL, a tool that uses gene regulatory networks as a basis to aggregate scores of
individual SNPs and cluster marker genes across pathways of connected TFs (Fig. 5c).
Aggregation of scores was achieved through a network propagation approach91. In contrast
to simply linking SNPs with their closest genes, this also allows for the identification of
upstream TFs which might not be mutated, but whose effect on multiple binding sites and
target genes is often disrupted, by integrating a large number of disease associations. By
using eGRNs previously computed with SCENIC+, we can utilise SNP signals mapped to
both gene regions and distal enhancers in ATAC peaks. By overlapping integrated SNP
scores with integrated marker gene scores per cell cluster, and comparing the effects to
random permutations, we obtain cell cluster specific enrichments of sub-networks of our
initial eGRN.

Deriving insights from cell states implicated in fGWAS, we next clustered enrichment scores
for knee and hip OA, focusing on osteogenesis for the latter. In knee OA, various
chondrocyte subtypes clustered together by high enrichment score and average gene
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enrichments (Fig. 5d), mirroring its fGWAS enrichment for chondrocytes. Likewise for hip
OA, Perichondrium expectedly had the largest average enrichment across the osteogenic
trajectory (Fig. 5e) consistent with fGWAS results. Utilising SNP2CELL, we identified
sub-networks for knee OA and hip OA, prioritising articular chondrocytes (Fig. 5f) and
perichondrium (Fig. 5g), respectively, and revealing similar regulatory pathways that balance
chondro and osteogenic functions.

In the knee articular chondrocyte knee OA network (Fig. 5f), a number of non-TF genes with
roles in cartilage makeup and chondrocyte differentiation (COL27A1, PRKCA, SNORC,
CRISPLD2) were identified and predicted to be regulated by NFATC1 and FOXA3.
COL27A1, and the proteoglycan SNORC, are involved in chondrocyte ECM makeup and
maturation92. However, PRKCA is a kinase that has been linked to mechano-sensing in
articular chondrocytes93. Notably, NFATC1 itself has been described as a marker of articular
cartilage progenitors affecting differentiation94 and also protects against OA95. For hip
perichondrium in hip OA (Fig. 5g), the osteogenic key regulator RUNX2 showed significant
enrichment, along with multiple NFAT genes (NFATC1, NFATC2, NFATC4, NFAT5), which in
conjunction with additional TFs (ZEB1, MAF, TEAD1) implicated calcineurin and WNT
signalling pathways. Both canonical and non-canonical WNT signalling via
Ca2+/Calcineurin/NFAT have been linked to bone formation and remodelling, affecting the
balance and differentiation of both osteoblasts and osteoclasts 96. Various WNT signalling
inhibitors including DKK1 and FRZB have also been linked to the shaping process of the hip
and osteoarthritis, which may be particularly important during foetal development97. To
provide a summary of the potential functional role of the enriched disease-associated
cell-cluster specific genes, we conducted gene set enrichment analysis (GSEA) on Gene
Ontology (GO) terms. This expectedly featured terms related to extracellular matrix
organisation, cartilage development and chondrocyte differentiation in articular chondrocytes
in knee OA specifically, whereas hip perichondrium scores showed enrichment for
inositol-phosphate, calcineurin and NFAT signalling, and cellular response to lipid (Fig. 5h).
The latter points to the potential interplay of lipids with bone formation and osteoarthritis98.
Overall, through application of fGWAS and our newly developed pipeline SNP2Cell, we were
able to distil differential involvement of the chondrogenic and osteogenic lineages
respectively in hip and knee OA, and provide a cellular basis for the link between
developmental cell states and regionally distinct adult disease.

Deciphering monogenic conditions of the embryonic skeleton

Both syndromic and non-syndromic forms of craniosynostosis are congenital conditions that
involve disturbances in cranial ossification and suture formation during fetal and postnatal
development. Disease-associated clinical features include premature cranial suture fusion,
and depletion of osteoprogenitor pools that facilitate the postnatal expansion of the cranium,
leading to severe global developmental consequences. Disease mechanisms that underlie
these changes are reportedly linked to missense mutations and haploinsufficiency in genes
that govern persistence of IM osteo-progenitor pools within the suture joints throughout the
cranium 99–101.
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To implicate cell states that underlie craniosynostosis disease mechanisms we first
cross-referenced pseudotime-associated DEGs enriched in the IM and EC pathways against
a candidate database of over 2700 genes known to cause congenital conditions in humans11.
We then filtered for enriched DEGs that were associated with musculoskeletal (MSK)
conditions and created a global view of enriched expression and accessibility across the
intersecting genes (Fig. 6a). Within these DEGs, we then filtered for craniosynostosis
associated genes by combining a subset of the database, and reported genes obtained from
Genomics England Limited rare and common craniosynostosis panels (Supplementary Table
5), of which a high proportion of the top DEGs were associated with synostosis (Fig. 6a).
Most of these associations (n=13/22) were within the progenitor populations of the IM
trajectory (SutureMes1/2 and HHIP+PreOB). Broadly, most of the craniosynostosis enriched
genes were highly accessible and expressed in IM progenitors, apart from FN1 and IHH,
suggesting the embryonic period is critically affected in craniosynostosis.

To elucidate potential effects of the synostosis-associated TFs on gene changes during
osteogenesis, we applied CellOracle to predict velocity shifts within the newly defined
trajectory and eGRNs using in silico perturbation simulation of gene knockouts in the IM
osteogenesis sub-compartment (Fig. 6b-c). Of the top-genes predicted to cause greatest
velocity shifts in the trajectory, TWIST1, MSX2, LMX1B were all disease-associated genes
that lead to highest velocity shifts in SutureMes2 when perturbed (Fig. 6c). The former two
were also IM pseudotime-associated DEGs (Fig. 6a), suggesting the velocity shift is highly
likely to reflect the loss-of-function mechanism of disease pathogenesis in these TFs 102,103.
Visualisation of the inferred velocity shifts revealed expected patterns of knockout favouring
lineage progression and bone formation (Fig. 6d), which are likely to penetrate in regions of
the coronal suture that indeed correspond to spatial enrichment of the candidate TFs (Fig.
6e). Numerous other disease-associated TFs demonstrated maximal enrichment in the
Suture Zones (IL11RA, SIX1), whereas others preferentially affected more mature parts of
the trajectory (IHH, ALPL, VLDLR) (Fig. 6f). Overall, these findings constitute novel
explanations for features of TF-mediated craniosynostosis including premature suture fusion
and ossification.

To explore potential cell-extrinsic influences on fetal bone development, we curated a list of
65 clinically approved drugs from the chEMBL database which carried warnings of
teratogenicity (Supplementary Table. 6). We then utilised to score target gene-group
expression per cell state within our osteogenic sub compartment. Interestingly, this revealed
overall greater target enrichment of teratogenic drugs within IM progenitors and downstream
osteoblast/osteocyte cell states compared to EC progenitors (Extended Data Fig. 9a).
Retinoid drugs expectedly enriched for targets in Osteocytes, consistent with observations of
retinoic acid enhancing in vitro osteogenesis in mouse suture cells104. Likewise, the
well-known skeletal development teratogen thalidomide enriched for targets in Osteocytes.
Aside from antihypertensives targeting the renin-angiotensin pathway (ACEi, ARB, Renin
inhibitor) which enriched for targets in SutureMes1 and HHIP+PreOB, we also identified high
enrichment for endothelin receptor antagonists (ERAs) specifically in SutureMes1. Mice
lacking the endothelin A receptor recapitulate wide-spread cranial neural crest-related
defects in utero105. Informed by teratogenic effects of ERA use in animals106, they are not
routinely prescribed for pulmonary arterial hypertension (PAH) during pregnancy. However,
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there remains a lack of evidence for teratogenicity in humans, and women of child-bearing
age continue to utilise them for treatment of PAH. Our analyses support the notion of
potential targets for ERAs within the human suture cells and lend support to a
contraindication for their use during pregnancy.

To further resolve the regulatory relationship between the prioritised TFs (TWIST1, MSX2,
LMX1B) within the osteo-lineage, we utilised our paired snRNA-seq and scATAC-seq dataset
to reconstruct interaction networks across the TFs (Fig. 6g). Our predictions revealed a rich
web of inter-regulation of shared coding and non-coding targets across the three candidate
TFs. Of these connected nodes, numerous TFs are associated with loss-of-function
mutations leading to craniosynostosis (SIX1, TCF12, NFIX, ALX4), suggesting a tightly
regulated network conferring suture patency, inhibiting osteogenesis in this region. Notably,
TCF12 was reported to govern normal coronal suture development through heterodimer
formation with TWIST1, and severe phenotypes are observed in mice with doubly
deleterious mutations102. TCF12 served as a node connecting TWIST1 to RUNX2,
suggesting that disruption of this critical co-regulatory network leads to human disease.
While direct transcriptional regulations of RUNX2 by the three inhibitory TFs were predicted
to be weaker than their stronger inter-regulation and not visualised in Fig. 6g, predicted
regulations of RUNX2 (Extended Data Fig. 9b) therefore likely contribute to known complex
regulatory mechanisms, including protein-level interactions107. In addition, cell-extrinsic
signals and control mechanisms are likely to act on the connecting nodal points such as
NFATC2 96, governing the balance of osteogenesis.

Multi-omic information additionally allows exploration of enhancer-mediated regulation of
transcription. This is of particular importance for monogenic bone-forming conditions such as
Van Buchem disease (VBD) whereby mutation in the non-coding ECR5 enhancer of SOST
leads to sclerosing dysplasia of bone108. We therefore constructed a regulatory network
centred around SOST and identified the ECR5 enhancer to directly regulate SOST (Fig. 6h).
Numerous osteogenesis-associated TFs were predicted to regulate the region containing the
ECR5 enhancer (DLX5, KLF2, KLF4, KLF13, MEF2C). Notably, MEF2C has previously been
shown to regulate ECR5 in mice109, confirming its direct role in controlling SOST
transcription. Overall, these predictions form a basis for constructing cellular models of TF
and enhancer-driven monogenic conditions of the bone lineage.

Discussion
We present the first multiomic cell atlas to capture the spatially-resolved cellular composition
of bone, synovial and suture joint development across the first trimester in humans. First, we
dissected the cellular taxonomy of interzone cells, including GDF5-expressing progenitors in
the synovial joints, and developed ISS-Patcher, a tool to aid inference of IZ subclusters in
our high-resolution 155-plex ISS data. We highlighted Articular, Fibro (GDF5+) and (GDF5-)
Hypertrophic IZ subclusters which zonate the articular chondrocyte and cartilage
template-forming boundaries of the embryonic synovial joints, respectively.
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Within lineages described in mice, GDF5+ cells are posited to give rise to the numerous cell
components within the joint including ligaments and tendons. Here we describe a novel
two-stage process whereby the fibroblasts and tenocytes of the synovial joints arise from
embryonic HIC1+ fibroblasts, a population previously reported in the mouse embryonic
limb29, and a fetal (PI16+) fibroblast progenitor which is transcriptionally similar to human
postnatal universal fibroblasts 30. Together, these shed new light on the cellular architecture
of the developing human embryonic synovial joint in the first trimester.

We have identified numerous previously undescribed human cranial embryonic
osteo-lineage cell states including CranialMes (HAND2)110,111, FacialMes (PAX3)51 and
PArchMes (LHX8)112, by their expression of comparable marker genes in mice counterparts.
We leveraged our spatial analyses of the fetal cranium to define two novel fetal TWIST1+

SutureMes populations, and HHIP-expressing pre-osteoblast which contributes to
osteogenesis, and mirrors populations of the fetal mouse suture 30,54. We also discovered
distinct IM and EC osteogenic cellular trajectories in their respective regional niches. Using
OrganAxis, we illustrate the spatial component of these trajectories as they develop and
show a regulatory shift in the poised osteogenic suture population as it progresses in space
toward maturing pre-osteoblastic cell states where we uncover a region that critically recruits
endothelial cell states to drive ossification. We show that the EC niche in the appendicular
anlagen derives from an undifferentiated progenitor expressing ISL1 and TBX5, which mark
an equivalent population in the human limb 11, and proceeds to form perichondrium and
osteoblasts through developmental time and space in the first trimester. These novel cellular
trajectories form a valuable reference for future studies of bone development. Further
studies of the second trimester, when adipose cell states and mature ligamentous tissues
develop, will facilitate a complete census of the joint.

We lend support to a potential myoprogenitor-related origin for the newly reported PAX7+

chondrocyte, and likewise suggest that a novel SOX9+ Schwann cell state may confer
chondrogenic potential. These proposed cross-lineage cell fates uncover potential
similarities to mouse development described above, and crucially, the value of computational
tool development in unravelling comparative human biology. In the future, more focused
investigations that involve isolation of these cell lineages will further inform their biology.

Leveraging our dataset, we were able to identify developmental links to both monogenic and
complex musculoskeletal diseases. We observed marked differences in the enrichment of
hip and knee OA GWAS signals across cell clusters, implicating bone formation in the
former, and chondrogenesis in the latter, which we traced back to the osteogenic
perichondrium, and numerous chondrogenic cell states, respectively. In future, this
framework may be applied to other conditions to gain insights into cell-state specific
pathogenesis. Lastly, by systematically simulating in silico KO of TFs known to be
associated with craniosynostosis, we identified a network of regulators inhibiting
osteogenesis, which provides mechanistic detail of how previously reported monogenic
loss-of-function mutations in, for example, TWIST1, MSX2 and LMX1B, may lead to early
suture fusion. This approach, applied to the newly mapped cross-region osteogenic
trajectory, holds immense value in predicting potential effects of gene changes across other
diseases involving the cellular lineage.
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Our comprehensive multimodal human fetal skeletal atlas is a unique fundamental resource
for the understanding of human cartilage and bone development in the first trimester. It also
has the potential to serve as a cellular roadmap for in vitro endeavours to differentiate
osteoblast and chondrocyte and mesenchymal cell states in the developing musculoskeletal
system.
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Materials and Methods
Sample acquisition and ethics

Developing human limb and cranium tissue samples were obtained from elective
terminations under REC 96/085 (East of England - Cambridge Central Research Ethics
Committee). Briefly, samples were kept suspended in PBS and at -4°C on ice during
dissection. Shoulder, hip and knee joints were dissected en-bloc from the limbs. For the
shoulder joint a proximal incision was made at the distal third of the clavicle, and a distal
incision was created at the neck of the humerus. For embryonic shoulder samples where
distinctive bone features had not formed, approximations were made to capture the entirety
of the glenohumeral and acromioclavicular joints. For the cranium samples (<8 PCW), two
regions were dissected for each of the calvaria and skull base, separated at the posterior
border of the frontal bone in both cases. For older cranial samples (>8 PCW), tissues were
dissected to separate the frontal, parietal, sphenoid, ethmoid, occipital and temporal bones
where feasible. Samples were initially embedded in optimal cutting temperature medium
(OCT) and frozen at -80°C on an isopentane-dry ice slurry. Cryosections were then cut at a
thickness of 10 μm using a Leica CM1950 cryostat and placed onto SuperFrost Plus slides
(VWR) for ISS or Visium CytAssist, or used directly for single-nuclei processing.
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In situ sequencing (ISS) and high-resolution imaging

ISS was performed using the 10X Genomics CARTANA HS Library Preparation Kit (1110-02,
following protocol D025) and In Situ Sequencing Kit (3110-02, following protocol D100),
which comprise a commercialised version of HybRISS113. Probe panel design was based on
fold-change thresholds in cell states of the limbs (Supplementary Table 3). Briefly:
cryosections of developing limbs were fixed in 3.7% formaldehyde (Merck 252549) in PBS
for 30 minutes and washed twice in PBS for 1 minute each prior to permeabilization:
sections were briefly digested with 0.5 mg/ml pepsin (Merck P7012) in 0.1 M HCl (Fisher
10325710) at 37°C for 15 seconds (5 PCW) or 30 seconds (6 PCW and older), then washed
twice again in PBS, all at room temperature. Following dehydration in 70% and 100%
ethanol for 2 minutes each, a 9 mm diameter (50 μl volume) SecureSeal hybridisation
chamber (Grace Bio-Labs GBL621505-20EA) was adhered to each slide and used to hold
subsequent reaction mixtures. Following rehydration in buffer WB3, probe hybridisation in
buffer RM1 was conducted for 16 hours at 37°C. The 158-plex probe panel included 5
padlock probes per gene, the sequences of which are proprietary (10X Genomics
CARTANA). The section was washed with PBS-T (PBS with 0.05% Tween-20) twice, then
with buffer WB4 for 30 minutes at 37°C, and thrice again with PBS-T. Probe ligation in RM2
was conducted for 2 hours at 37°C and the section washed thrice with PBS-T, then rolling
circle amplification in RM3 was conducted for 18 hours at 30°C. Following PBS-T washes, all
rolling circle products (RCPs) were hybridised with LM (Cy5 labelling mix with DAPI) for 30
minutes at room temperature, the section was washed with PBS-T and dehydrated with 70%
and 100% ethanol. The hybridisation chamber was removed and the slide mounted with
SlowFade Gold Antifade Mountant (Thermo S36937). Imaging of Cy5-labelled RCPs at this
stage acted as a QC step to confirm RCP (‘anchor’) generation and served to identify spots
during decoding. Imaging was conducted using a Perkin Elmer Opera Phenix Plus
High-Content Screening System in confocal mode with 1 μm z-step size, using a 63X (NA
1.15, 0.097 μm/pixel) water-immersion objective. Channels: DAPI (excitation 375 nm,
emission 435-480 nm), Atto 425 (ex. 425 nm, em. 463-501 nm), Alexa Fluor 488 (ex. 488
nm, em. 500-550 nm), Cy3 (ex. 561 nm, em. 570-630 nm), Cy5 (ex. 640 nm, em. 650-760
nm).

Following imaging, each slide was de-coverslipped vertically in PBS (gently, with minimal
agitation such that the coverslip ‘fell’ off to prevent damage to the tissue). The section was
dehydrated with 70% and 100% ethanol, and a new hybridisation chamber secured to the
slide. The previous cycle was stripped using 100% formamide (Thermo AM9342), which was
applied fresh each minute for 5 minutes, then washed with PBS-T. Barcode labelling was
conducted using two rounds of hybridisation, first an adapter probe pool (AP mixes
AP1-AP6, in subsequent cycles), then a sequencing pool (SP mix, customised with Atto
425), each for 1 hour at 37°C with PBS-T washes in between and after. The section was
dehydrated, the chamber removed, and the slide mounted and imaged as previously. This
was repeated another five times to generate the full dataset of 7 cycles (anchor and 6
barcode bits).
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Multiplexed smFISH

Cryosections were processed using a Leica BOND RX to automate staining with the
RNAscope Multiplex Fluorescent Reagent Kit v2 Assay (Advanced Cell Diagnostics,
Bio-Techne), according to the manufacturers’ instructions. Probes may be found in
Supplementary Table 7. Prior to staining, fresh frozen sections were post-fixed in 4%
paraformaldehyde in PBS for 45 minutes at 4°C, then dehydrated through a series of 50%,
70%, 100%, and 100% ethanol, for 5 minutes each. Following manual pre-treatment,
automated processing included digestion with Protease III for 15 minutes prior to probe
hybridisation. Tyramide signal amplification with Opal 520, Opal 570, and Opal 650 (Akoya
Biosciences) and TSA-biotin (TSA Plus Biotin Kit, Perkin Elmer) and streptavidin-conjugated
Atto 425 (Sigma Aldrich) was used to develop RNAscope probe channels. Stained sections
were imaged as for ISS above.

Image-based in situ sequencing (ISS) decoding

We employed the ISS decoding pipeline outlined in Li et al 114. This pipeline consists of five
distinct steps. Firstly, we performed image stitching using Acapella scripts provided by Perkin
Elmer, which generated two-dimensional maximum intensity projections of all channels for
each cycle. Next, we employed Microaligner115 to register all cycles based on DAPI signals
using the default parameters. For cell segmentation, we utilised a scalable algorithm that
leverages CellPose116 as the segmentation method. The expected cell size is set to 70 pixels
in diameter and further expanded 10 pixels to mimic the cytoplasm. To decode the RNA
molecules, we employed the PoSTcode algorithm117 with the following parameters:
rna_spot_size=5, prob_threshold=0.6, trackpy_percentile=90, trackpy_separation=2.
Furthermore, we assigned the decoded RNA molecules to segmented cells using STRtree
and subsequently generated AnnData objects following the approach described by Virshup
et al. 118. Finally, only cells with more than 4 RNA molecules were kept for downstream
analysis.

Visium processing and library preparation

Visium CytAssist Spatial Gene Expression for Fresh Frozen (10x Genomics) was performed
following the manufacturer’s protocol. Regions of interest (ROIs) were selected based on the
presence of microenvironments of bone-formation relevant to the droplet data (e.g. coronal
suture) and aligned to the CytAssist machine gasket accordingly. Images were captured
using a Hamamatsu S60 slide scanner at 40x magnification prior to conducting the Visium
CytAssist protocol for subsequent alignment. Libraries were mapped with SpaceRanger (10x
Genomics).

Single-nuclei isolation and library preparation

Single-nuclei were isolated from fresh frozen samples through cryosectioning followed by
mechanical dissociation as described in previous work 119. Briefly, 10 μm sections were
homogenised in homogenization buffer (250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM
Tris-HCl, 1 mM dithiothreitol (DTT), 1× protease inhibitor, 0.4 U μl−1 RNaseIn, 0.2 U μl−1

SUPERaseIn and 0.1% Triton X-100 in nuclease-free water) using a glass Dounce tissue
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grinder set (Merck). Samples were dissociated with 10-20 strokes of a loose pestle ‘A’
followed by 10 strokes of a tight pestle ‘B’ when tissue fragments remained . The resulting
mixture was passed through a 50 μm cell strainer, followed by centrifugation (500 g, 5 mins)
the pellet was then resuspended in 300 μl of storage buffer (1× PBS, 4% BSA and 0.2 U μl−1

Protector RNaseIn) and passed through a 20 μm cell strainer. Nuclei were visualised and
assessed for viability under microscopy following staining with trypan blue solution and were
further processed for 10x Genomics Chromium Single Cell Multiome ATAC + Gene
Expression according to the manufacturer’s protocol. Nuclei suspensions were loaded with a
targeted nuclei recovery of 10,000 droplets per reaction. For some of the nuclei samples,
mixtures of different donors were pooled within one reaction and later demultiplexed by
genotype. Quality control of cDNA and final libraries was done using Bioanalyzer High
Sensitivity DNA Analysis (Agilent). Libraries were sequenced using a NovaSeq 6000
(Illumina) with a minimum sequencing depth of 20,000 read pairs per droplet.

Data preprocessing

Sequencing data were aligned to the human reference genome (GRCh38-2020-A-2.0.0)
using CellRanger-ARC software (v.2.0.0). The called barcodes from 10x Multiome lanes with
pooled genotypes from multiple donors were demultiplexed per Genotype using BAM
outputs through Souporcell (v2.0) 120. Subsequently, the Souporcell outputs were clustered
by genotype for metadata assignment to each barcode. Visium data were mapped to
SpaceRanger (v. 1.1.0) using default input settings, and low-res Cytassist images were
aligned to hi-res microscopy images of the processed slides using 10x Genomics
LoupeBrowser (v 7.0) according to capture frame marker regions. For gene expression data,
SoupX 121 was applied to remove background ambient RNA. For cellranger-arc called
matrices that contained >16,000 droplets (exceeding the number expected from targeted
droplet recovery) we increased the estimated global rho value by 0.1 to account for the
potential of additional ambient RNA. Scrublet 122 was applied to estimate doublet probability
and a score of >0.3 was used as a cutoff value. Droplets were filtered for >200 genes, and
<5% mitochondrial and ribosomal reads.

For scATAC-seq, we applied ArchR123 (v1.0.2) to process the outputs from Cellranger-atac.
Initial per-cell quality control was performed considering the number of unique nuclear
fragments, signal-to-background ratio and the fragment size distribution. Moreover, cells with
TSSenrichment score<7 and nFrags< 1000 were removed. Doublets were discarded using
the default settings. Initial clustering was performed at resolution = 0.2 with top 40
dimensions from Iterative Latent Semantic Indexing (LSI). Then, pseudo-bulk replicates were
made for each broad cell type per region from the initial clustering results. Peak calling (501
bp fixed-width peaks) was performed based on pseudo-bulk coverages by macs2. Then, a
cell-by-peak count matrix was obtained and exported. We applied muon124 (0.1.2) for
normalization, LSI dimension reduction, and clustering analysis with BBKNN125 to correct the
batch effects from anatomical regions and donors for obtaining ATAC embedding. Gene
scores based on chromatin accessibility around gene bodies were calculated. Moreover, we
applied MultiVI126 to get a joint embedding for snRNA-seq and scATAC-seq.
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Doublet detection

To interrogate doublet capture, we conducted an adapted scrublet workflow that was
previously described127. Briefly, per-droplet scrublet scores were first determined for
cellranger-arc count-matrices from each 10x multiome (gene-expression) lane
independently. The droplets were then overclustered through the standard scanpy workflow
using default parameters up to leiden clustering. Each individual cluster was further
clustered. A per-cluster median of scrublet scores were computed. A normal distribution of
doublet score, centred at the score median with a standard deviation estimated from the
median absolute deviation (MAD) was used to compute p-values for each of the clusters.
After false-discovery rate adjustment using benjamini-hochberg correction, a p-value of >0.6
was deemed as a cutoff value of good quality cells as doublets are significant outliers.

Cell cluster annotation

We adopted a hierarchical clustering approach by first conducting Leiden clustering on the
global integrated scVI (hidden layers=256, latent variables=52, dispersion=‘gene-batch’)
RNA embeddings to obtain broad clusters. To validate these we utilised Celltypist to train a
model on cell states in the embryonic limb bud 11,128,129, and transferred labels onto our
embedding for inspection. We utilise this information in addition to canonical marker genes,
to annotate broad clusters and subset sub-lineages. For sub-lineages e.g. (Chondrocytes,
Fibroblasts, Bone-related populations, Schwann Cells, Immune cells, Endothelial cells), we
further embedded these using scVI (hidden layers=256, latent variables=52,
dispersion=‘gene-batch’) and conducted Leiden clustering (resolution = 0.6), followed by
DEG analyses (method=’wilcoxon’) to obtain cluster markers. We additionally utilised the
inferred spatial location of cell states (described below) to inform annotations.

Spatial mapping using Cell2location

We performed Cell2location for deconvolution of visium cytassist using annotated
snRNA-seq data from skull base and calvaira cell states as input. The donor was used as
batch variables, and the libraries were considered as covariates in the regression model. For
spatial mapping, we estimated 30 cells per voxel based on histological data, and
hyperparameter detection_alpha of 20 were applied for per-voxel normalisation.

ISS Patcher

ISS_patcher is a simple package for approximating features not experimentally captured in
low-dimensional data based on related, high-dimensional data. It was developed as an
approach to approximate expression signatures for genes missing in ISS data using
matched snRNA-Seq data as a reference in this study. First, a shared feature space
between both datasets was identified by subsetting the 155-158 genes present in the ISS
pool, followed by separate normalisation to median total cell counts, log-transformation and
z-scoring for both modalities. Then, the 15 nearest neighbours in scRNA-Seq space were
identified for each ISS cell with the Annoy python package, and the genes absent from ISS
were imputed as the average raw counts of the scRNA-Seq neighbours.
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Visium axis annotation using OrganAxis

Our Visium cranium sample was annotated with TissueTag by semi-automatic mode to
generate a one-dimensional maturation axis. Regions of the developing bone were first
manually annotated based on H&E features. Tissue regions that did not include
bone-forming niches were excluded from annotation. The annotation categories that were
stored included multiple regions of the coronal suture (level_0 to level_2 annotation),
stemming from the central-most portion, an osteogenic front (level_3 annotation) harbouring
histological features of osteoprogenitors and osteogenic zones (level_4 to level_7
annotation) from the emergence of histological osteoblasts. All annotations were saved as
TissueTag output format, which logs the annotation resolution, the pixels per μm (ppm) as
well as pixel value interpretation of annotation names (e.g. 0 = “Suture”) and colours (e.g.
“Osteogenic Front”: “red”). To robustly and efficiently migrate TissueTag annotations to the
Visium objects, we first transferred TissueTag annotations from pixel space to a
high-resolution hexagonal grid space (15 µm spot diameter and 15 µm point-to-point centre
distance with no gap between spots) based on the median pixel value of the centre of the
spot (radius/4) in the annotated image. Next, to generate continuous annotations for Visium
data we measured for each spot in the hexagonal high-resolution grid the mean Euclidean
distance to the 10 nearest points from each annotated structure in the level_0 annotation as
well as the distance from the closest point for structures in annotation_level_1. All
annotations were mapped to the Visium spots by proximity of the spot annotation grid to the
nearest corresponding spot in the Visium array.

Gene regulatory network analysis

The SCENIC+ 130 pipeline was used to predict transcription factors and putative target genes
as well as regulatory genomic regions harbouring binding sites. The fragment matrix of
peaks called with macs2 and processed within ArchR 123 together with the corresponding
RNA count matrix were used as inputs. Meta-cells were created by clustering cells into
groups of around 10-15 cells based on their RNA profiles and subsequent aggregation of
counts and fragments. The pipeline was applied to subsets of the dataset corresponding to
individual lineages: First, CisTopic was applied to identify region topics and differentially
accessible regions from the fragment counts as candidate regions for TF binding. CisTarget
was then run to scan the regions for transcription factor binding sites and GRNBoost2 131

was used to link TFs and regions to target genes based on co-expression/accessibility.
Enriched TF motifs in the regions linked to target genes were used to construct TF-region
and TF-gene regulons. Finally, regulon activity scores (AUC) were computed with AUCell
based on target-gene expression and target region accessibility, and regulon specificity
scores (RSS) derived from them. Networks of TFs, regions and target genes (eGRNs) were
constructed by linking individual regulons. TF-enhancer-gene links for all subsets
(osteogenesis, chondrogenesis, fibrogenesis, early joint progenitors, immune, schwann) can
be found in Supplementary Table 9.

Trajectory analysis

For trajectory construction in the osteogenic subcompartment, non-cycling droplets were
subsetted and X_scVI were used as projections for palantir in order to obtain multiuscale
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diffusion space. A neighbourhood graph was generated on the diffusion space using
sc.pp.neighbors, and the first two PCs were used as initial positions to create ForceAtlas2
embeddings using sc.tl.draw_graph. The FA embeddings were exported into R, and
monocle3 132,133 was used to find a principal graph and define pseudotime. Differentially
expressed genes were then computed along pseudotime using a graph-based test (morans’
I) 134,135 and the principal graph in monocle3, which allows identification of genes upregulated
at any point in pseudotime. The results were visualised with heatmaps using the
complexHeatmap 136 and seriation 137 packages, after smoothing gene expression with
smoothing splines in R (smooth.spline, df=12). Velocity analysis138 was performed using
scvelo139 version 0.2.3. Spliced and unspliced read counts were computed with velocyto from
the unprocessed data, before using scvelo.pp.moments, scvelo.tl.velocity and
scvelo.tl.velocity_graph to compute velocities for the preprocessed droplets.

In silico TF perturbations

CellOracle 140 was used with the osteogenesis trajectory created with scFates 141 and the
regulons predicted with SCENIC+ 130 for the same cells were imported into CellOracle as a
base GRN. Cells were aggregated into meta-cells of 10-15 cells and linear models
explaining TF- from target gene expression were fitted with CellOracle per cell cluster.
Regulon-based TF perturbation vectors were inferred using the cell cluster-specific models
to predict effects of TF overexpression and knockout. Diffusion pseudotime 142 was then
computed for IM and EC lineages separately by selecting corresponding starting points. The
pseudotime gradients were used to derive pseudotime-based differentiation vectors, and the
pseudotime-perturbation vector cross-product was computed to obtain perturbation scores
(PS). These PS indicate, whether the in silico perturbation of a TF is consistent with or
opposes differentiation along a lineage (osteogenesis). The simulations were carried out
systematically, overexpressing and knocking out all TFs in the GRN. For each TF and
condition the PS were then averaged per cell cluster and summarised in a table to screen for
TFs promoting or inhibiting osteogenesis.

fGWAS

Functional GWAS analysis (fGWAS) 143 was applied to identify disease relevant cell clusters
as described in detail in 144 (https://github.com/natsuhiko/PHM). The model makes use of full
summary statistics from GWAS studies, linking SNPs to genes and captures a general trend
between gene expression and disease association of linked loci for each cell cluster. At the
same time, it also corrects for linkage disequilibrium (LD) and other relevant factors. We
used full GWAS summary statistics obtained from the EBI GWAS catalog, open targets and
knee and hip osteoarthritis (OA) as well as total knee (TKR) and hip (THR) replacement from
145 (Supplementary Table 8).

SNP2Cell

We used a network propagation 91 approach to integrate GWAS summary statistics and cell
cluster marker gene based scores for prioritising disease relevant and cell cluster specific
subunits of our TF-network. First, scores per SNP were computed from downloaded
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summary statistics and weighted by linkage-disequilibrium. Then the scores were mapped to
a gene regulatory network, here an eGRN computed with SCENIC+ for the corresponding
lineage. Since the used networks contain TFs and target genes, and also regions with
TF-binding sites as nodes, SNP scores were mapped both to genes and regions,
representing distal regulatory elements. The scores were then propagated across the
network using a random walk with restart (or personalised page-rank) process. This
integrates the contribution of individual SNPs, with signals converging around relevant
network nodes. The procedure was repeated with 1000 randomly permuted scores to
compute permutation-test results and z-scores. Next, differential expression based marker
gene scores for each cell cluster were propagated in the same way, resulting in cell-cluster
specificity scores for each network node. The SNP and expression based scores were then
combined per cell cluster as in 146 by using the minimum for each node. The final scores
were thresholded and the resulting connected components obtained as enriched
sub-networks. The method has been compiled into a tool we called SNP2CELL and is
available at (https://github.com/Teichlab/snp2cell).

Cell-cell interactions

Ligand-receptor interactions were inferred using ‘cpdb_analysis_method.call’ in
CellPhoneDB (v4.0.0). We only considered genes with more than 10% of cells
demonstrating expression within each cell cluster considered and interactions with P >0.001
were removed. We used NicheNet (v1.1.1) to identify different interactions between
endochondral ossification and intramembranous niches. We first calculate differentially
expressed genes (DEGs) of osteoblastic cell clusters and tip cells between two niches using
standard Seurat Wilcoxon test and min LFC per cell cluster were used to summarise the
differentially expressed ligands and receptors. Then, top 1000 DEGs were applied for
calculating the ligand activities. We prioritised the ligand-receptor links with default settings.
Top 10 ligands and their top scoring receptors were visualised in heatmaps.
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Figure. 1: Human fetal skeletal atlas overview. a) Anatomical sampling approach to

dissect five main anatomical sites. Cell types of origin within the cranium are determined by

the anterior-posterior axis. b) Donor overview across age and anatomical regions sampled;

atlasing modalities represented in the legend. c) Analysis approaches applied to integrated

RNA-ATAC seq data. d) UMAP embedding of dataset using RNA-seq only, ATAC-seq only

and integrated datasets. e) Cellular compartment composition of the skeletal region across

anatomical regions. f) Relative cell type abundance across anatomical locations.
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Figure. 2: Formation of the embryonic joints across space and time. a) Differential
abundance (MILO) of cell states across lineages against multiple comparators. Top: Broad

clusters of non-myogenic mesenchyme. Bottom: Cranial osteogenic subclusters.

ChondroPro: Chondroprogenitors, EPYC+ Chondro: EPYC+ Chondrocyte, Articular Chondro:

Chondrocyte, Hypertrophic Chondro: Hypertrophic Chondrocyte, Maturing Chondro:

Maturing Chondrocyte, PAX7+ Chondro: PAX7+ Chondrocyte, HIC1+ Mes: HIC1+

Mesenchyme, FibroPro: Fibroblast progenitors, Synovial Fibro: Synovial fibroblast,
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DermFibro: Dermal fibroblast, MyoFibro: Myofibroblast, PAX9+ Mes: PAX9+ Mesenchyme,

ALX1+ Mes, ALX1+ Mesenchyme, CranialMes: Cranial mesenchyme, FacialMes: Facial

mesenchyme, PArchMes: Pharyngeal mesenchyme, LEPR+ Mes: LEPR+ Mesenchyme,

SutureMes1: Suture mesenchyme1, SutureMes2: Suture mesenchyme2, HHIP+ PreOB:

HHIP+ Pre-Osteoblast. Mixed: other related cell types that are not included in each plot

respectively. b) Normalised gene expression of genes in modules associated with skeletal

development within InterzoneChon subclusters. c) RNA-velocity on UMAP of

RNA-sub-clustered cell states of the broad InterzoneChon cluster. d) SCENIC+ predicted TF
expression (box color), dot size shows target gene accessibility (AUCell) and dot shade

(grayscale) shows target gene expression (GEX AUCell). e) Demultiplexed marker gene

expression from ISS of the 5.7 PCW lower limb. f) ISS-Patcher workflow (see methods). g)
Spatial plots of ISS-Patcher cell cluster imputation. h) Schematic of knee joint interzone

formation, gradients demonstrating genes associated with zonated hypertrophic and articular

phenotypes. i) Histological view and annotations of adjacent sections of 10x cytassist visium

data. Cell2location results of coronal suture and schematic demonstrating TF gradient

across regions of the coronal suture. j) SCENIC+ predicted TF expression (box color), dot

size shows target gene accessibility (AUCell) and dot shade (grayscale) shows target gene

expression (GEX AUCell) in suture progenitors. k) Coverage plots showing aggregated

scATAC signals around the HHIP and RUNX2 loci for osteoprogenitor cell states with

increasing osteogenic phenotype in IM (CranialMes to HHIP+ ProOB) and EC (ArticularIZ to

Perichondrium). Below each coverage plot, loops predicted by Scenic+ between TSS and

enhancers are shown (colored by importance score). Selected upstream TFs predicted by

Scenic+ to bind and regulate via some of the enhancers are shown on the left. The network

links inhibitors of osteogenesis (such as TWIST1, LMX1B) to pro-osteogenic genes (RUNX2,

HHIP) via overall inhibitory connections.
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Figure 3: Intramembranous and endochondral osteogenesis. a) Force directed (FA)

embedding showing trajectories per anatomical region that converge on osteoblasts and

osteocytes. In intramembranous (IM) ossification the suture mesenchyme constitutes a

distinct state that maintains progenitor pools. A two-stage IM process forms the sutures then

subsequently bone-lineage. LimbMes: Limb mesenchyme. b) Heatmaps showing the

expression of differentially expressed genes along pseudotime for IM and endochondral

(EC) ossification. Differential expression has been tested using a spatial autocorrelation test

in monocle3. c) TF accessibility (AUCell ATAC) and Target gene accessibility (AUCell GEX)

of selected TFs along pseudotime. Differing patterns are observed for osteogenic (RUNX2)

and inhibitory TFs (TWIST1, LMX1B, NFATC2), pointing to a complex regulatory

mechanism. d) Spatial binning of Visium Cytassist image of frontal bone (sagittal section)

using OrganAxis, axis begins from coronal suture to the ossifying frontal bone
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(posterior-anterior) Left-Right: Histological image of frontal bone; Cell-cluster enrichment

from Cell2location; Axis values (rainbow); manual bins based on histological features e)
Enrichment within spatial bins for IM cell states (left), selected marker gene expression

(middle) and pathway enrichment (right). f) 7.3 PCW humerus (Coronal section) and imputed

cell clusters showing EC ossification as a sequence of mapped cell-states. ACr, Acromion;

Cor, Coracoid; H, Humerus; Sk, Skin. g) Cross-section of Visium Cytassist at the meeting

point between calvaria and skull base (anterior border of the sphenoid), chondrogenic cell

states enrichment from Cell2location h) Predicted ligand-receptor interactions per IM and EC

cell clusters. i) Gene expression along IM and EC cell clusters in a) as well as endothelial

cells. j) Ligand-receptor interactions predicted between endothelial cells and cells of the

osteogenic lineage.
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Figure. 4: Chondrogenesis across different anatomical regions. a) RNA UMAP

embeddings of chondrocytes coloured by subtypes. b) Dot plot showing the mean

expression (dot colour) and fraction of expressing cells (dot size) of selected marker genes.

c) Distribution of different chondrogenic sub types across anatomical regions. a, b, c share

the same legends. d) RNA UMAPs (the upper panel) of representative chondrogenic genes

(ACAN, COL2A1) and myogenic (PAX7, MEGF10) for PAX7+ chondrocytes. Genome

browser tracks (the lower panel) from scATAC-seq analyses displaying the sum signal within
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the indicated gene loci. OtherChon represents the whole chondro-lineages except PAX7+

Chon. e) RNA scope for cells that co-expressed myogenic markers (PAX7, red) and

chondrogenic markers (ACAN, green) in the shoulder at 7.3PCW. The blue marks the cell

nucleus. Scale bar, 20/200 μm. f) Enhancer-GRN showing enriched TFs in PAX7+ Chon,

inferred using SCENIC+. Circles and diamonds represent genes and regions with TF-binding

sites, respectively. Colour indicates whether the TF of PAX7+ Chon is also differentially

expressed in chondro-lineages or PAX7+ myocytes. TF-region links are coloured by TF. g)
Schematic representation of the putative non-classical lineages that contribute to

chondrogenesis.
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Figure 5: Links to complex diseases of the skeleton. a) fGWAS analysis results for

enrichment of GWAS signals for bone-related complex traits in broadly annotated cell states.
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b) Enrichment of selected complex traits in finely annotated osteo- and chondrogenic cell

states (top) and InterzoneChon subclusters (bottom). c) Schematic representation of

SNP2cell: scores derived from GWAS summary statistics and cell cluster marker scores are

mapped and integrated across a gene regulatory network, highlighting enriched modules

predicted to play a cluster-specific role in disease. d) Enrichment scores for knee OA across

all cell clusters (heatmap, top) showing a cluster of similar enriched genes for chondrocytes

and median enrichment scores (boxplot, bottom. center line, median; boxes, first and third

quartiles of the distribution; whiskers, highest and lowest data points within 1.5 × interquartile

ratio (IQR)). e) Enrichment scores for hip OA across the osteogenic trajectory (heatmap, top)

and median enrichment scores (boxplot, bottom . center line, median; boxes, first and third

quartiles of the distribution; whiskers, highest and lowest data points within 1.5 × IQR). f)
Articular chondrocyte and knee OA specific enriched sub-network. Brighter colours

correspond to a larger enrichment score, relative to scores obtained from random

permutations. g) Perichondrium and hip OA specific enriched sub-network. Brighter colours

correspond to larger enrichment scores as in d. h) Gene Set Enrichment Analysis for GO

Biological Process terms across Articular Chondro-knee OA and Perichondrium-hip OA

enrichment scores.
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Figure 6: Links to Monogenic conditions affecting bone development. a) Known genes
mutated in musculoskeletal monogenic conditions with their expression and accessibility

along the intramembranous and endochondral osteogenesis trajectory. b) Force-directed
embedding of the endochondral trajectory showing cell cluster annotations. c) Heatmap of in
silico TF knockout perturbation scores per cell cluster. A higher score indicates

transcriptomic changes induced by the perturbation are promoting osteogenesis. d) TF

perturbation vectors showing the direction of induced transcriptomic changes on the FA

embedding for three selected TFs: TWIST1, MSX2 and LMX1B. KO simulation of all three
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genes promotes osteogenesis, while overexpression inhibits it. e) TF expression on Visium

Cytassist of the frontal region of skull, enrichment of TFs in coronal suture and skull-forming

layers. f) Expression of synostosis-associated genes along spatial zones defined using

OrganAxis. g) Enhancer-GRN showing inter-regulation between TWIST1, MSX2 and

LMX1B, inferred using SCENIC+. Circles and diamonds represent genes and regions with

TF-binding sites, respectively. Region-gene links are coloured and scaled according to

peak2gene importance, while TF-region links are coloured by TF. Blue circles represent

regulated targets, orange circles regulators and white intermediate genes. h) Enhancer-GRN
showing predicted regulation of SOST. Region-gene links are coloured and scaled according

to peak2gene importance. Highlighted in red is a region containing the enhancer known to

be mutated in van Buchem disease.
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