

EFFECTS OF TWO DIFFERENT COMPOUNDS ON SEIZURE SUPPRESSION USING THE ZEBRAFISH PTZ-SEIZURE MODEL

1 **Jhonathan Angel Araujo Fernández^{1,2}, Thatiane Cristina de Moura^{1,2}, Sabela Fernández Vila³,**
2 **Juan Andrés Rubiolo Gaytán³, Iñaki López-Díaz⁵, Soraya Learte-Aymamí⁴, M. Eugenio**
3 **Vázquez⁴, María D. Mayán⁵, Laura Sánchez³, Claudia Vianna Maurer-Morelli^{1,2*}**

4 ¹Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de
5 Campinas, UNICAMP, Campinas, Brazil

6
7 ²Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
8

9 ³Departamento de Zoología Genética y Antropología Física, Facultad de Veterinaria, Universidad de
10 Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain

11
12 ⁴Centro Singular de Investigación en Química Biológica e Materiais Moleculares (CiQUS),
13 Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de
14 Compostela, Spain

15
16 ⁵CELLCOM Research Group. CINBIO and Galicia Sur Health Research Institute (IIS Galicia Sur).
17 SERGAS. University of Vigo. Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende,
18 36310, Pontevedra, Spain

19 *Corresponding author

20 Cláudia Vianna Maurer-Morelli

21 E-mail: cmorelli@unicamp.br

22

23

24

25 Abstract

26 Epilepsies are a common and severe neurological condition characterized by spontaneous and recurrent
27 seizures. Although anti-seizure medications are effective for most patients, about 30% remain
28 pharmacoresistant. Moreover, uncontrolled seizures are associated with risk factors and shortened life
29 expectancy for individuals with refractory epilepsy. Preclinical studies are an essential step for drug
30 discovery and the zebrafish (*Danio rerio*) has been successfully employed for this purpose. In this
31 study, we applied the zebrafish PTZ-seizure model to investigate the effect of two compounds on
32 seizure suppression, Tripeptide (p-BTX-I) and the Cx43 peptide CX2. Zebrafish larvae at 6 days post-
33 fertilization (dpf) were exposed to both compounds, according to their group, 24h prior to PTZ-seizure
34 induction. We quantified the compounds' effect on seizure latency, number of seizures and transcript
35 levels of genes related to inflammation, oxidative stress, and apoptosis (*illb*, *tnfa*, *cox1*, *cox2a*, *il6*,
36 *casp3a*, *casp9*, *baxa*, *bcl2a*, *nox1*, *sod1* and *cat*).

37 Our results showed that CX2 at a concentration of 0.1 μ M/mL yielded the best outcome for seizure
38 suppression as it reduced the number of seizures and increased the seizure latency. Additionally, CX2
39 treatment before PTZ-induced seizures decreased the transcript of *illb*, *il6*, *tnfa* and *cox1* genes, all
40 related to inflammation. A bio-distribution study showed that the CX2 reached the zebrafish brain at
41 both times investigated, 1h and 6h. Similarly, the tripeptide exhibited anti-inflammatory and anti-
42 apoptotic action, reducing mRNA expression of the *illb* and *casp9* genes. Our findings suggest that
43 both Tripeptide and CX2 hold translational potential for seizure suppression.

44 **Keywords:** zebrafish₁, drug screening₂, seizure₃, compounds₄, pentylenetetrazoles₅.

45

46

47 Introduction

48 Epilepsies are a common neurological disease characterized by recurrent unprovoked seizures,
49 affecting approximately 50 million people worldwide [1,2]. Currently, anti-seizure medications are
50 effective for 66% of people with epilepsy in developed countries [3,4]. However, more than 30% of
51 people with epilepsy do not respond well to conventional therapies, making them pharmacoresistant
52 [5]. Uncontrolled seizures can lead to various risks for people with epilepsy, such as risk of injury,
53 neuropsychological impairment, and shortened lifespan [6]. Therefore, the search for new drugs or
54 substances that could improve the treatment of people with epilepsy is urgent.

55 Pre-clinical trials are crucial in testing the therapeutic or toxicological effects of new substances, using
56 *in vivo*, *in vitro*, or *ex-vivo* strategies. The scalability and rapid access to the results significantly
57 contribute to the value of such studies. In this context, the zebrafish emerges as a pivotal model,
58 offering distinct advantages over other animal models for pre-clinical trials [7]. These include its small
59 size, low maintenance cost, high fecundity, and optical transparency during embryogenesis [8].
60 Furthermore, the zebrafish genome exhibits approximately 70% homology with the human genome,
61 with 84% of known genes associated with human diseases, including epilepsy [9,10]. In recent years,
62 several platforms for automatic data acquisition and analysis in the zebrafish model have been
63 developed, enabling a variety of multiplexed phenotypic assays with minimal human intervention
64 [11,12]. Moreover, the zebrafish aligns with the 3Rs (reduction, refinement, and replacement)
65 philosophy [13]. Beyond its investigation of molecular pathways and behaviors relevant to various
66 diseases, the zebrafish offers a time and cost-effective model due to its small size, among other
67 attributes, which is advantageous for scalable studies involving simultaneous analysis of animals and
68 drugs [14].

69 In the context of epilepsy, the zebrafish is a well-characterized seizure model in adults and larvae, as
70 it is used for modeling epilepsy disorders by genetic manipulation [15–17]. In 2005, Baraban and

71 colleagues used the pro-convulsant agent pentylenetetrazol (PTZ) to induce seizures in zebrafish larvae
72 [16]. They observed a specific seizure behavior, up-regulation of the *c-fos* gene in the brain, and
73 electrographic discharges in the optic tectum after exposing the larvae to 15 mM PTZ at seven days
74 post-fertilization. Moreover, these responses were attenuated by common anti-seizure medications.
75 Overall, these findings suggest that zebrafish exhibit many similarities to traditional models such as
76 rodents.

77 Historically, natural substances from plants and animals are a source of numerous medicinal
78 preparations, widely employed for preventive and therapeutic care [18,19]. This fact is corroborated
79 by the Food and Drug Administration (FDA), which reports that between 1981 and 2019, 34% of drugs
80 were based on substances from natural products [20].

81 Considering the advantages of zebrafish for drug screening based on phenotype and the need to find
82 new treatments for controlling seizures, we aimed to evaluate the effect of different natural compounds
83 on seizure suppression using the PTZ-zebrafish model.

84 **Materials and Methods**

85 **Zebrafish maintenance and embryo acquisition**

86 Wild-type adult zebrafish were obtained from the Laboratory of Zebrafish and Husbandry at the School
87 of Medical Sciences, Unicamp. The animals were housed in 30 – 50 liter tanks, accommodating two
88 animals per liter of water. The tanks were maintained under controlled physicochemical conditions of
89 temperature (26±2°C), pH (7-7.5), levels of ammonia (< 0.1 ppm), nitrite (< 0.2 ppm) and dissolved
90 oxygen (4-11 ppm). A photoperiod cycle of 14 h of light and 10 h of darkness was maintained. Adult
91 fish were fed three times a day with commercial flake food (Tetramin, Tetra, Blacksburg, VA, USA)
92 and once a day with brine shrimp and paramecium. Embryos were collected following natural

93 spawning and nurtured in Petri dishes containing water from the aquariums maintaining consistent
94 temperature and photoperiod with the adults. From the 5th day onwards, the larvae were fed with
95 paramecium. Ethical approval for all experimental protocols was obtained from the Ethics Committee
96 for Animal Research of the State University of Campinas (CEUA 4895-1/2019 and CEUA 5757-
97 1/2021).

98 **Compounds**

99 **Tripeptide (p-BTX-I)**

100 The compound sequence (Glu-Val-Trp) was obtained from AminoTech – Research and Development
101 (São Paulo, Brazil). Subsequently, it was diluted in Milli-Q water (Merck KGaA, Darmstadt, Germany)
102 and then aliquoted. These aliquots were stored at -20°C. The employed concentrations (as listed in
103 Table 1) were determined based on research conducted in cell models [21,22].

104 **Table 1.** Compounds and their concentrations were analyzed to determine their effect on the
105 suppression of seizures induced by the proconvulsant agent pentylenetetrazole.

106	Compound	Concentration
107	Tripeptide (p-BTX-I)	25, 10 and 5 µg/mL
108	CX2	0.5, 0.1 and 0.05 µM

110 **CX2**

111 The CX2 (ARG-Cx43p) sequence corresponds to the C-terminal domain of the zebrafish Cx43 gene
112 (PCT/EP2020/071242). CX2 was assembled following standard Fmoc/tBu solid-phase MW-assisted

113 peptide synthesis protocols [23,24], purified by reverse-phase HPLC, and their identity confirmed by
114 HPLC-MS(ESI). The concentrations used (as listed in Table 1) were determined through studies
115 involving zebrafish models for regeneration and senescence. Like Tripeptide, CX2 was diluted in Milli-
116 Q water, aliquoted, and stored at -20°C.

117 **Compounds pretreatment**

118 For all compounds, zebrafish larvae at 6 days post-fertilization (dpf) were randomly placed into Petri
119 dishes, each one containing 25 larvae. The larvae were incubated in the respective solutions and
120 concentrations for 24h (as specified in Table 1) prior to seizure induction. The temperature and
121 photoperiod conditions were consistent with those described for the adult zebrafish. The study groups
122 consisted of the Control Group (CG), PTZ Group (PTZ), Treatment 1, Treatment 2, and Treatment 3.
123 Treatments 1 to 3 employed the previously determined concentrations mentioned above.

124 **Seizure induction by pentylenetetrazol**

125 Seizure induction followed the pretreatment of the compounds. Larvae with 7 dpf were carefully
126 transferred to a 96-well plate filled with 100 µL of aquarium water, with one larva per well.
127 Subsequently, 100 µL of 30 mM of the proconvulsant agent pentylenetetrazol (PTZ) (Sigma-Aldrich,
128 St. Louis, MO, USA) was added to each well, resulting in a final concentration of 15 mM of PTZ. The
129 larvae were exposed to PTZ for 20 minutes. The control group underwent the same procedure but in
130 PTZ-free water.

131 **Latency and number of seizures**

132 The latency and number of seizures were monitored through visual observation, following the method
133 described by Barbalho et al., 2016a [25]. Specifically, latency was defined as the period between the
134 initiation of PTZ exposure and the larva reaching stage 3 of seizure-like activity, according to the

135 criteria established by Baraban et al., 2005 [16]. Larvae were evaluated for 10 minutes of PTZ
136 exposure, and a complete seizure was considered when they reached stage 3.

137 **RNA extraction**

138 Immediately after PTZ exposure, fish were cryo-anesthetized and their heads were cut, collected, and
139 then incubated in TRIzol® (Invitrogen, Carlsbad, CA, USA). The biological material was lysed using
140 the TissueLyzer equipment (QIAGEN, GmbH, Germany) at 25 beats per second (BPS) for 2 minutes.
141 Subsequently, the heads were stored at -80 °C until further processing. Each group consisted of five
142 samples (n = 5); however, each sample was composed by pooling five larval heads, to obtain sufficient
143 biological material for RNA extraction. Total RNA extraction was performed using TRIzol® according
144 to the manufacturer's protocol. The concentration and quality were determined using the Epoch™
145 spectrophotometer (BioTek, Winooski, VT, USA) and gel electrophoresis.

146 **RT-qPCR**

147 The synthesis of cDNA was carried out using the High-Capacity cDNA Reverse Transcription kit
148 (Applied Biosystems™, California, USA) following the manufacturer's instructions. Quantitative PCR
149 (qPCR) was performed using the SYBR ® Green Master Mix reagent (Bio-Rad) using the ABI 7500
150 system (Applied Biosystems, Foster City, CA, USA). Target genes (as listed in Table 2) were designed
151 using the Primer-BLAST online tool (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/>) from NCBI
152 (National Center for Biotechnology Information) zebrafish database. Runs were carried out in triplicate
153 using *eef1a1l1* as a housekeeping gene [26] to normalize the genes from the inflammation pathway
154 (*il1b*, *tnfa*, *cox1*, *cox2a* and *il6*), the apoptosis pathway (*casp3a*, *casp9*, *baxa* and *bcl2a*), and the
155 oxidative stress pathway (*nox1*, *sod* and *cat*) were analyzed. Data were evaluated using 7500 software
156 v2.03 (Applied Biosystems). Relative gene expression analysis was calculated using the Livak and
157 Schmittgen equation RQ = 2- $\Delta\Delta CT$ [27].

158 The three pathways (inflammation, apoptosis, and oxidative stress) are all closely linked to the
159 underlying mechanisms of seizure generation and progression, which is why we selected representative
160 genes from these pathways for analysis.

161 **Table 2:** Primer sequences designed using the Primer-Blast online tool.

Gene	Seq.Ref.NCBI	Forward	Reverse	Size (pb)
<i>eef1a1l1</i>	NM_131263.1	AGCAGCAGCTGAGGAGTGAT	CCGCATTGTAGATCAGATGG	140
<i>il1b</i>	NM_212844.2	GCTGGAGATCCAAACGGATA	ATTGACGGACTCGAAGGTG	85
<i>tnfa</i>	NM_212859.2	TCGGGTGTATGGAGGGTGTT	TTGATTGCCCTGGGTCTTATGG	96
<i>cox1</i>	NM_153656.2	CTGGGAGGCTTATTCCAACA	CCAGAAGTTAGGGCTGGAAG	119
<i>cox2a</i>	NM_153657.1	ACCAGGGCGTGTGTTATCC	GTGAGAAGCTCAGGGTAGTG	100
<i>il6</i>	NM_001261449.1	GGCATTGAAGGGTCAGGA	GCGTTAGACATCTTCCGTGC	92
<i>casp3a</i>	NM_131877.3	CAGCTTGAACCTACCCCAACA	AAGCTTCGAAACACGTTCA	133
<i>casp9</i>	NM_001007404.2	GCGACAAGCTGGAGAAAAGA	GATGACCACACAGCAGTCGA	140
<i>baxa</i>	NM_131562.2	GAGCTGCACTTCTCAACAACTTT	GAAGATCTCACGGGCCACTC	245
<i>bcl2a</i>	NM_001030253.2	ACTACCTGAACGGGCCACT	AAAACGGGTGGAACACAGAG	105

<i>nox1</i>	XM_009291119.3	TCGTCAAGAAAACCCATCGTCT	TGTTGATCTGCAGCACAGTCT	213
<i>sod1</i>	NM_131294.1	GGCCTTACTCCAGGAAAACA	TCTCCGACGTGTCTCACACT	140
<i>cat</i>	NM_130912.2	CAACGCTGAAGGGAAAAAGAACCA	GCATTGCTAAGATCACTGTGTTG	250

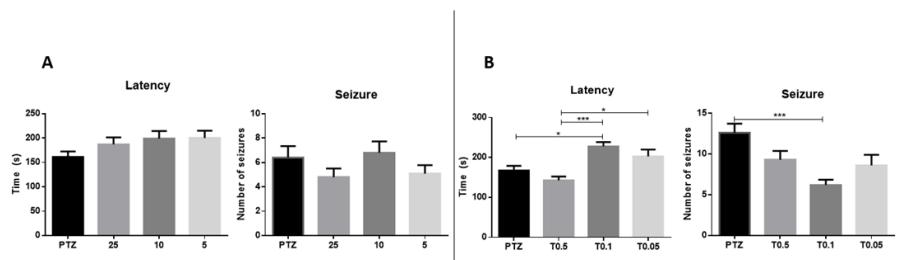
162

163 **Statistical analysis**

164 Statistical analysis was performed using GraphPad Prism version 5.0 (GraphPad Software, San Diego,
165 CA, USA). One-way ANOVA was performed, followed by the Bonferroni method for multiple
166 comparisons. Differences were considered significant if $p < 0.05$. Results are presented as mean \pm SEM.

167 **Bio-distribution**

168 Bio-distribution analysis was conducted on Tripeptide and CX2, labeled with tetramethylrhodamine-
169 TMR and carboxytetramethylrhodamine – TAMRA, respectively.

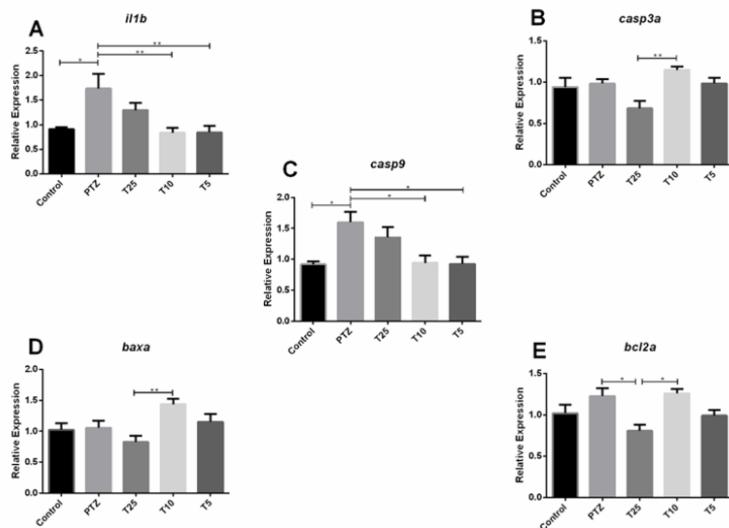

170 Larvae at 6 dpf were transferred to a 96-well plate, with one larva per well, containing 100 μ L of
171 aquarium water. Subsequently, 100 μ L of the Tripeptide compound at 20 μ g/mL or CX2 at 1 μ M was
172 added according to the respective group, totalizing 200 ml of solution at final concentration of 10 μ g/ml
173 for Tripeptide and 0.5 μ M for CX2. Exposure times for both compound groups were 1, 6, 18, and 24
174 hours (n=3 each time). The control group underwent similar manipulation but in water only. The
175 incubation temperature during the experiments was maintained at 26 \pm 2°C. upon completion of
176 exposure, larvae were rapidly and carefully transferred to a Becker containing 0.02% tricaine (Tricaine,
177 Sigma) for approximately 2 minutes. Subsequently, the larvae were transferred to a Petri dish
178 containing 1% agarose as a base, along with a drop of water. Larvae were examined and photographed

179 using the Multizoon AZ100 microscope (Nikon, Tokyo, Japan) at 2X magnification. Two photographs
180 of each larva were taken, one in black and white, and the other capturing only the fluorescence
181 emission. Imaging merging was performed using the NIS-Elements software (Nikon, Tokyo, Japan).
182 The experiments and protocols were approved by the animal care and use committee of the Universidad
183 de Santiago de Compostela and the standard protocols of Spain (CEEA-LU-003 and Directive 2012-
184 63-EU).

185 **Results**

186 **Behavioral assay**

187 We analyzed the effects of tripeptide and CX2 on seizure behavior. We found an increase in latency
188 only for animals pretreated with the CX2 at 0.1 μ M, ($p \leq 0.05$) as well as a significant decrease in the
189 number of seizures ($p \leq 0.001$) when compared to the PTZ group (Fig 1B). No statistical significance
190 was found for the tripeptide (Fig 1A).

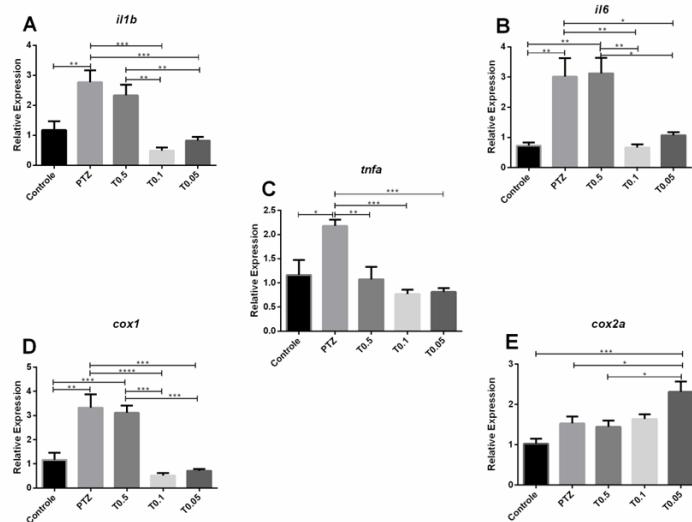

191

192 **Fig 1: The effect of compound treatment prior to pentylenetetrazol (PTZ)-induced seizures on**
193 **the number of seizure-like behaviors and latency was investigated.** The number of seizures and
194 latency were determined through visual inspection during a 10-minute exposure to PTZ (15 mM). (A)
195 Animals exposed to the tripeptide for 24 hours: Pentylenetetrazol (PTZ) group; treatment group 25
196 μ g/mL (T25); 10 μ g/ml treatment group (T10); treatment group 5 μ g/ml (T5). (B) Animals exposed to
197 CX2 for 24 hours: Pentylenetetrazol (PTZ) group; treatment group 0.5 μ M (T0.5); treatment group 0.1

198 μ M (T0.1); treatment group 0.05 μ M (T0.01). Data are presented as mean \pm SEM. Statistical analyses
199 were performed using one-way ANOVA, followed by the Bonferroni method for multiple
200 comparisons. Differences were considered significant if $p < 0.05$. An asterisk (*) indicates that $p \leq 0.05$;
201 three asterisks (***) indicates $p \leq 0.001$.

202 **Molecular assay**

203 Regarding the tripeptide, our results indicated downregulation of the *illb* and *casp9* genes (Fig 2A and
204 2B), with significant effects at low concentrations (10 and 5 μ g/mL). Additionally, we observed that
205 the expression of the *casp3a*, *baxa*, and *bcl2a* genes was most significantly reduced at a concentration
206 of 25 μ g/mL ($p < 0.05$), compared to the other concentrations. Similarly, at a concentration of 10 μ g/mL,
207 the *casp3a*, *baxa*, and *bcl2a* genes exhibited notably high expression levels, roughly equivalent to or
208 slightly higher than those of the PTZ group. However, no statistical difference was detected.

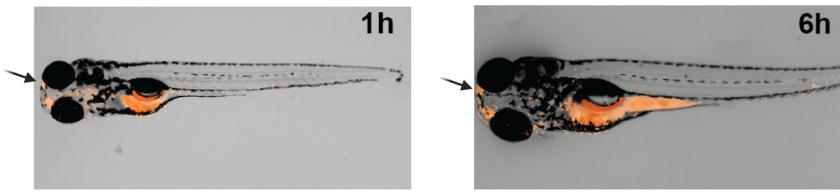


209

210 **Fig 2: Expression of illb, casp3a, casp9, baxa and bcl2a genes in zebrafish brain after**
211 **pentylenetetrazol (PTZ)-induced seizures.** Each treatment group was initially exposed to the
212 tripeptide for 24 h and subsequently to 15 mM PTZ for 20 min, and the control and PTZ groups were
213 handled identically, but with exposure to water (n = 5 per group). Data are presented as mean \pm SEM.

214 Statistical analyses were performed with the one-way ANOVA, followed by the Bonferroni method
215 for multiple comparisons. Differences were considered significant if $p < 0.05$. An asterisk (*) indicates
216 that $p \leq 0.05$; two asterisks (**), $p \leq 0.01$. Control group (Control); pentylenetetrazol (PTZ) group;
217 treatment group 25 μ g/mL (T25); 10 μ g/ml treatment group (T10); treatment group 5 μ g/mL (T5).

218 In the case of the CX2 compounds, we found down-regulating of the *illb*, *cox1*, *ill6*, and *tnfa* genes
219 for most of the analyzed concentrations (Fig 3) compared to the PTZ group. The most significant down-
220 regulation was observed at a concentration of 0.1 μ M. Conversely, the *cox2a* gene displayed increased
221 expression across all the three concentrations tested, with the most significant increase occurring at a
222 concentration of 0.05 μ M ($p \leq 0.001$).


223

224 **Fig 3: Expression of *illb*, *il6*, *tnfa*, *cox1* and *cox2a* genes in zebrafish brain after pentylenetetrazol
225 (PTZ)-induced seizures.** Each treatment group was initially exposed to the CX2 for 24 h and
226 subsequently to 15 mM PTZ for 20 min, and the control and PTZ groups were treated identically but
227 with water exposure ($n = 5$ per group). Data are presented as mean \pm SEM. Statistical analyses were
228 performed with the one-way ANOVA, followed by the Bonferroni method for multiple comparisons.
229 Differences were considered significant if $p < 0.05$. An asterisk (*) indicates that $p \leq 0.05$; two asterisks

230 (**), $p \leq 0.01$; three asterisks (***), $p \leq 0.001$; four asterisks (****), $p \leq 0.0001$. Control group (Control);
231 pentylenetetrazol (PTZ) group; treatment group 0.5 μM (T0.5); treatment group 0.1 μM (T0.1);
232 treatment group 0.05 μM (T0.01).

233 **Bio-distribution**

234 By tagging both the Tripeptide and CX2 with fluorescence, we tracked their biodistribution at four
235 time points, 1h, 6h, 18h and 24h. The CX2 compound exhibited robust detection in the brain after 1h
236 and persisted at 6 hours (Fig 4). Additionally, the compound was detected throughout the body,
237 indicating successful absorption by the zebrafish. In contrast, the tripeptide compound did not reach
238 the brain, and it was predominantly retained in the zebrafish intestine (S1 Fig).

239

240 **Figure 4: Time course of CX2 (8ARG-Cx43p, corresponding to the C-terminal domain sequence**
241 **of Cx43) efficiently crossing the blood-brain barrier (BBB) in a 7-day-old zebrafish larva.** The
242 carboxytetramethylrhodamine-TAMRA labeled peptide exhibited fluorescence microscopy detection
243 in the brain and throughout the body (indicated by red color) at 1 hour and 6 hours post-treatment.

244 **Discussion**

245 Despite the availability of pharmacological treatments, uncontrolled seizures remain a concern,
246 requiring further investigations for new seizure-suppression approaches [28]. Seizures occur due to a
247 complex process involving multiple factors and affecting various cellular pathways [29]. This study
248 focused on targeting inflammation, oxidative stress, and cell death pathways for seizure modulation

249 [30–33]. To achieve our goal, we used tripeptide (p-BTX-I) to address inflammation and cell death,
250 and the CX2 for its anti-inflammatory action[21,22].

251 Zebrafish offer many advantages in drug screening and phenotype assessment. The zebrafish PTZ-
252 seizure model mimics human seizure behavior and electrographic patterns and is responsive to anti-
253 seizure drugs. The scalability and rapid results of the zebrafish make them an advantageous model for
254 discovering new anti-seizure compounds [8,9,16,34,35].

255 The process of inflammation involves the recruitment of many inflammatory mediators such as
256 interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), and growth factors. *IL1B*, *TNF-*
257 α , and *IL6* genes are among the most studied inflammatory cytokines in the CNS [32]. After a seizure,
258 genes such as *IL1B*, *IL2*, *IL6*, *TNF- α* , and *VEGF*, which are normally present in low concentrations,
259 increase rapidly, leading to damaging changes in synapses and heightened neuronal excitability
260 [33,36].

261 Prostaglandins/*COX*-2 are also produced, potentially disrupting the blood-brain barrier and
262 significantly contributing to seizure onset and recurrence [37].

263 Among the compounds analyzed, CX2 at a concentration of 0.1 μ M showed the most significant results
264 in seizure suppression, reducing seizure frequency and increasing latency (Fig 1B). Treatment with
265 CX2 prior to PTZ-induced seizures down-regulated the *illb*, *cox1*, *tnfa*, and *il16* genes, indicating its
266 role in regulating inflammation during seizures [33]. In contrast, the *cox2a* gene showed up-regulation
267 compared to the PTZ group (Fig 3E). *COX2*, which is responsible for prostaglandin production [38],
268 increases during seizures [39]. While *COX2* inhibitors have been explored as therapeutic agents;
269 controversies exist due to types of inhibitors and timing of administration [39,40]

270 Studies in rats and zebrafish suggest that *cox1* may play a more crucial role in inhibiting seizure [41–
271 43]. Barbalho et al. found that inhibiting *cox-1* had a positive impact on seizure in zebrafish larvae,
272 while *cox-2* inhibition did not affect seizures [25].

273 Our results align with these findings. CX2 decreased the levels of *cox1* transcript (Fig 3D) and reduced
274 the occurrence of seizures by increasing latency and decreasing their frequency (Fig 1B). The
275 compound was quickly absorbed and distributed, as it was detected in the brain at the earliest time
276 point examined (Fig 4), and also in the optic tectum, a region associated with significant neuronal
277 activity during seizures [44].

278 As for the Tripeptide compound (Fig 2), we observed various gene responses, particularly the down-
279 regulation of genes related to inflammation. Neuroinflammation, triggered by factors such as tissue
280 damage, infection, stress, and seizures, has been associated with epilepsy [28,45]. Pathways
281 connecting epilepsy to neuroinflammation have been identified, with animal models of seizure
282 induction showing increased mRNA levels of genes involved in inflammatory cascades [46–48]. Thus,
283 efforts have focused on low molecular weight compounds acting on these pathways. Tripeptide (10
284 µg/mL) downregulated *illb* gene and *casp9* gene indicating its positive effect on these pathways.

285 Regarding the bio-distribution of the Tripeptide compound, it was primarily detected in the zebrafish
286 larvae intestine (S1 Fig). This could be attributed to the fluorophore, tetramethylrhodamine-TMR,
287 which along with the compound, may interfere with absorption or crossing the blood-brain barrier for
288 CNS delivery.

289 Conclusion

290 Our study provides evidence that Tripeptide and CX2 – Cx43 peptide have the potential to modulate
291 gene expression and reduce epileptic seizures in zebrafish. Tripeptide increased the expression of genes
292 associated with antioxidant functions while decreasing the expression of inflammatory genes, with no

293 observed behavioral changes. The compound CX2 peptide demonstrated high effectiveness in reducing
294 the expression of inflammatory genes, lowering the number of seizures, and increasing latency time.
295 CX2 was widely distributed in the zebrafish brain and the body. These compounds could represent a
296 promising avenue for further research in the development of novel anti-seizure medications.
297 Nevertheless, further studies are needed to assess their effects in other animal models and determine
298 their efficacy in humans.

299

300 **Reference**

- 301 1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official
302 report: a practical clinical definition of epilepsy. *Epilepsia*. 2014;55: 475–482.
303 doi:10.1111/EPI.12550
- 304 2. Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational
305 classification of seizure types by the International League Against Epilepsy: Position Paper of
306 the ILAE Commission for Classification and Terminology. *Epilepsia*. 2017;58: 522–530.
307 doi:10.1111/EPI.13670
- 308 3. Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. *Lancet*. 2006;367: 1087–
309 1100. doi:10.1016/S0140-6736(06)68477-8
- 310 4. Thijss RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. *Lancet*. 2019;393: 689–701.
311 doi:10.1016/S0140-6736(18)32596-0
- 312 5. Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, et al. The consequences of
313 refractory epilepsy and its treatment. *Epilepsy Behav*. 2014;37: 59–70.
314 doi:10.1016/J.YEBEH.2014.05.031
- 315 6. Sirven JI. Epilepsy: A Spectrum Disorder. *Cold Spring Harb Perspect Med*. 2015;5: a022848.
316 doi:10.1101/CSHPERSPECT.A022848
- 317 7. Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from
318 preclinical modelling to clinical trials. *Nature Reviews Drug Discovery* 2021 20:8. 2021;20:
319 611–628. doi:10.1038/s41573-021-00210-8
- 320 8. Olivares CI, Field JA, Simonich M, Tanguay RL, Sierra-Alvarez R. Arsenic (III, V), indium
321 (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in
322 vivo developmental and behavioral assay. *Chemosphere*. 2016;148: 361–368.
323 doi:10.1016/J.CHEMOSPHERE.2016.01.050

324 9. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish
325 reference genome sequence and its relationship to the human genome. *Nature*. 2013;496: 498–
326 503. doi:10.1038/NATURE12111

327 10. Hortopan GA, Dinday MT, Baraban SC. Zebrafish as a model for studying genetic aspects of
328 epilepsy. *Dis Model Mech*. 2010;3: 144–148. doi:10.1242/DMM.002139

329 11. Lubin A, Otterstrom J, Hoade Y, Bjedov I, Stead E, Whelan M, et al. A versatile, automated
330 and high-throughput drug screening platform for zebrafish embryos. *Biol Open*. 2021;10.
331 doi:10.1242/BIO.058513

332 12. Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from
333 preclinical modelling to clinical trials. *Nat Rev Drug Discov*. 2021;20: 611.
334 doi:10.1038/S41573-021-00210-8

335 13. Vincent F, Loria P, Pregel M, Stanton R, Kitching L, Nocka K, et al. Developing predictive
336 assays: the phenotypic screening “rule of 3.” *Sci Transl Med*. 2015;7.
337 doi:10.1126/SCITRANSLMED.AAB1201

338 14. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. *Nat Rev Drug Discov*.
339 2015;14: 721–731. doi:10.1038/NRD4627

340 15. Baraban SC. A zebrafish-centric approach to antiepileptic drug development. *Dis Model
341 Mech*. 2021;14. doi:10.1242/DMM.049080

342 16. Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish
343 behavior, neural activity and c-fos expression. *Neuroscience*. 2005;131: 759–768.
344 doi:10.1016/J.NEUROSCIENCE.2004.11.031

345 17. Mussolini BHM, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP, et al. Seizures induced by
346 pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. *PLoS One*.
347 2013;8. doi:10.1371/JOURNAL.PONE.0054515

348 18. De Figueiredo SG, De Lima ME, Cordeiro MN, Diniz CR, Patten D, Halliwell RF, et al.
349 Purification and amino acid sequence of a highly insecticidal toxin from the venom of the
350 brazilian spider *Phoneutria nigriventer* which inhibits NMDA-evoked currents in rat
351 hippocampal neurones. *Toxicon*. 2001;39: 309–317. doi:10.1016/S0041-0101(00)00129-X

352 19. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug
353 discovery in the genomics era. *Nat Rev Drug Discov*. 2015;14: 111–129.
354 doi:10.1038/NRD4510

355 20. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four
356 Decades from 01/1981 to 09/2019. *J Nat Prod*. 2020;83: 770–803.
357 doi:10.1021/ACS.JNATPROD.9B01285

358 21. Bernardes CP, Santos NAG, Sisti FM, Ferreira RS, Santos-Filho NA, Cintra ACO, et al. A
359 synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MPP +
360 toxicity by activating the NGF-signaling pathway. *Peptides (NY)*. 2018;104: 24–34.
361 doi:10.1016/J.PEPTIDES.2018.04.012

362 22. Martins NM, Santos NAG, Sartim MA, Cintra ACO, Sampaio S V., Santos AC. A tripeptide
363 isolated from *Bothrops atrox* venom has neuroprotective and neurotrophic effects on a cellular
364 model of Parkinson's disease. *Chem Biol Interact.* 2015;235: 10–16.
365 doi:10.1016/J.CBI.2015.04.004

366 23. Coin I, Beyermann M, Bienert M. Solid-phase peptide synthesis: from standard procedures to
367 the synthesis of difficult sequences. *Nat Protoc.* 2007;2: 3247–3256.
368 doi:10.1038/NPROT.2007.454

369 24. Vanier GS. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting
370 group strategy (CEM). *Methods Mol Biol.* 2013;1047: 235–249. doi:10.1007/978-1-62703-
371 544-6_17

372 25. Barbalho PG, Lopes-Cendes I, Maurer-Morelli CV. Indomethacin treatment prior to
373 pentylenetetrazole-induced seizures downregulates the expression of *il1b* and *cox2* and
374 decreases seizure-like behavior in zebrafish larvae. *BMC Neurosci.* 2016;17.
375 doi:10.1186/S12868-016-0246-Y

376 26. Jarque S, Ibarra J, Rubio-Brotóns M, García-Fernández J, Terriente J. Multiplex Analysis
377 Platform for Endocrine Disruption Prediction Using Zebrafish. *Int J Mol Sci.* 2019;20.
378 doi:10.3390/IJMS20071739

379 27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
380 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods.* 2001;25: 402–408.
381 doi:10.1006/METH.2001.1262

382 28. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and
383 biomarkers in epilepsy. *Nat Rev Neurol.* 2019;15: 459–472. doi:10.1038/S41582-019-0217-X

384 29. Becker AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human
385 epileptogenesis. *Neuropathol Appl Neurobiol.* 2018;44: 112–129. doi:10.1111/NAN.12451

386 30. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. *J Cereb Blood Flow Metab.*
387 2005;25: 1557–1572. doi:10.1038/SJ.JCBFM.9600149

388 31. Aguiar CCT, Almeida AB, Arajo PVP, Abreu RNDC De, Chaves EMC, Vale OC Do, et al.
389 Oxidative Stress and Epilepsy: Literature Review. *Oxid Med Cell Longev.* 2012;2012.
390 doi:10.1155/2012/795259

391 32. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. *Nat Rev
392 Neurol.* 2011;7: 31–40. doi:10.1038/nrneurol.2010.178

393 33. Rana A, Musto AE. The role of inflammation in the development of epilepsy. *J
394 Neuroinflammation.* 2018;15. doi:10.1186/S12974-018-1192-7

395 34. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure
396 dynamics. *Brain.* 2014;137: 2210–2230. doi:10.1093/BRAIN/AWU133

397 35. Dinday MT, Baraban SC. Disorders of the Nervous System Large-Scale Phenotype-Based
398 Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome 1,2,3. 2015 [cited 29
399 Jul 2022]. doi:10.1523/ENEURO.0068-15.2015

400 36. Scorza CA, Marques MJG, Gomes da Silva S, Naffah-Mazzacoratti M da G, Scorza FA,
401 Cavalheiro EA. Status epilepticus does not induce acute brain inflammatory response in the
402 Amazon rodent Proechimys, an animal model resistant to epileptogenesis. *Neurosci Lett.*
403 2018;668: 169–173. doi:10.1016/J.NEULET.2017.02.049

404 37. Vezzani A, Dingledine R, Rossetti AO. Immunity and inflammation in status epilepticus and
405 its sequelae: possibilities for therapeutic application.
406 <http://dx.doi.org/101586/1473717520151079130>. 2015;15: 1081–1092.
407 doi:10.1586/14737175.2015.1079130

408 38. Yagami T, Koma H, Yamamoto Y. Pathophysiological Roles of Cyclooxygenases and
409 Prostaglandins in the Central Nervous System. *Mol Neurobiol.* 2016;53: 4754–4771.
410 doi:10.1007/S12035-015-9355-3

411 39. Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, et al. Cyclooxygenase-2 in
412 epilepsy. *Epilepsia.* 2014;55: 17–25. doi:10.1111/EPI.12461

413 40. Dey A, Kang X, Qiu J, Du Y, Jiang J. Anti-Inflammatory Small Molecules To Treat Seizures
414 and Epilepsy: From Bench to Bedside. *Trends Pharmacol Sci.* 2016;37: 463–484.
415 doi:10.1016/J.TIPS.2016.03.001

416 41. Ma L, Cui XL, Wang Y, Li XW, Yang F, Wei D, et al. Aspirin attenuates spontaneous
417 recurrent seizures and inhibits hippocampal neuronal loss, mossy fiber sprouting and aberrant
418 neurogenesis following pilocarpine-induced status epilepticus in rats. *Brain Res.* 2012;1469:
419 103–113. doi:10.1016/J.BRAINRES.2012.05.058

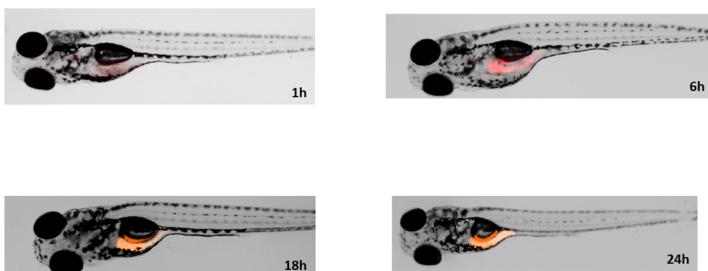
420 42. Tanaka S, Nakamura T, Sumitani K, Takahashi F, Konishi R, Itano T, et al. Stage- and region-
421 specific cyclooxygenase expression and effects of a selective COX-1 inhibitor in the mouse
422 amygdala kindling model. *Neurosci Res.* 2009;65: 79–87.
423 doi:10.1016/J.NEURES.2009.05.013

424 43. Barbalho PG, Lopes-Cendes I, Maurer-Morelli CV. Indomethacin treatment prior to
425 pentylenetetrazole-induced seizures downregulates the expression of il1b and cox2 and
426 decreases seizure-like behavior in zebrafish larvae. *BMC Neurosci.* 2016;17.
427 doi:10.1186/S12868-016-0246-Y

428 44. Turrini L, Fornetto C, Marchetto G, Müllenbroich MC, Tiso N, Vettori A, et al. Optical
429 mapping of neuronal activity during seizures in zebrafish. *Sci Rep.* 2017;7.
430 doi:10.1038/S41598-017-03087-Z

431 45. Pracucci E, Pillai V, Lamers D, Parra R, Landi S. Neuroinflammation: A Signature or a Cause
432 of Epilepsy? *Int J Mol Sci.* 2021;22. doi:10.3390/IJMS22136981

433 46. Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical
434 Impact, Potential Mechanisms, and New Innovative Treatment Options. *Pharmacol Rev.*
435 2020;72: 606–638. doi:10.1124/PR.120.019539


436 47. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity
437 during epileptogenesis and spontaneous seizures: evidence from experimental models and
438 human temporal lobe epilepsy. *Neurobiol Dis.* 2008;29: 142–160.
439 doi:10.1016/J.NBD.2007.08.012

440 48. Kim I, Mlsna LM, Yoon S, Le B, Yu S, Xu D, et al. A postnatal peak in microglial
441 development in the mouse hippocampus is correlated with heightened sensitivity to seizure
442 triggers. *Brain Behav.* 2015;5. doi:10.1002/BRB3.403

443 49. Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy:
444 From pathogenesis to treatment target. *Seizure.* 2020;82: 65–79.
445 doi:10.1016/J.SEIZURE.2020.09.015

446

447 **Supporting information**

448

449 **S1 Fig. Time course of the tripeptide in a 7-days post fertilization zebrafish larva.** The
450 tetramethylrhodamine-TMR labeled peptide was not detected in the brain through fluorescence
451 microscopy.

452 **Financial Support**

453 C.V.M.M. received research financial support from Fundação de Amparo à Pesquisa do Estado de São
454 Paulo (FAPESP) 2014/15640-8 and the Brazilian Institute of Neuroscience and Neurotechnology
455 (BRAINN) CEPID-FAPESP 2013-07559-3.

456 L.S. thanks the GI-1251-ACUIGEN research group of the Santiago de Compostela University (Spain)
457 and the ED431C 2018/28 project of the Xunta de Galicia for funding this project.

458 M.D.M - This work was supported in part through funding from a grant from the Ministry of Science,
459 Innovation and Universities (MICIU/AEI/10.13039/501100011033): PID2022-137027OB-I00
460 ERDF/EU to MDM. M.D.M also was granted from HORIZON-MSCA-2023-SE-01 (101183034) and EU
461 HORIZON-CSA 101079489.

462 M.E.V. thanks PID2021-127702NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A
463 way of making Europe, the Xunta de Galicia (Centro de investigación do Sistema Universitario de
464 Galicia accreditation 2023-2027, ED431G 2023/03) and the European Union (European Regional
465 Development Fund - ERDF), and the GRC grant ED431C 2021/29 funded by the Conselleria de Cultura,
466 Educación e Universidades da Xunta de Galicia.

467 J.A.A.F. and T.C.M. received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível
468 Superior (CAPES), Brazil, grant number 001. J.A.A.F. also received CAPES/PRINT Proc.
469 88887.470075/2019-00. No sponsors or funders were involved in the study design, data collection
470 and analysis, decision to publish, or preparation of the manuscript.

471

472 **Competing interests**

473 The authors declare that the research was conducted in the absence of any commercial or financial
474 relationships that could be construed as a potential conflict of interest.