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Abstract

Epilepsies are a common and severe neurological condition characterized by spontaneous and recurrent
seizures. Although anti-seizure medications are effective for most patients, about 30% remain
pharmacoresistant. Moreover, uncontrolled seizures are associated with risk factors and shortened life
expectancy for individuals with refractory epilepsy. Preclinical studies are an essential step for drug
discovery and the zebrafish (Danio rerio) has been successfully employed for this purpose. In this
study, we applied the zebrafish PTZ-seizure model to investigate the effect of two compounds on
seizure suppression, Tripeptide (p-BTX-I) and the Cx43 peptide CX2. Zebrafish larvae at 6 days post-
fertilization (dpf) were exposed to both compounds, according to their group, 24h prior to PTZ-seizure
induction. We quantified the compounds’ effect on seizure latency, number of seizures and transcript
levels of genes related to inflammation, oxidative stress, and apoptosis (i/1b, tnfa, coxl, cox2a, il6,

casp3a, casp9, baxa, bcl2a, nox1, sodl and cat).

Our results showed that CX2 at a concentration of 0.1 uM/mL yielded the best outcome for seizure
suppression as it reduced the number of seizures and increased the seizure latency. Additionally, CX2
treatment before PTZ-induced seizures decreased the transcript of i/1b, il6, tnfa and coxI genes, all
related to inflammation. A bio-distribution study showed that the CX2 reached the zebrafish brain at
both times investigated, 1h and 6h. Similarly, the tripeptide exhibited anti-inflammatory and anti-
apoptotic action, reducing mRNA expression of the i//b and casp9 genes. Our findings suggest that

both Tripeptide and CX2 hold translational potential for seizure suppression.

Keywords: zebrafish;, drug screening., seizures, compoundss, pentylenetetrazoles.
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Introduction

Epilepsies are a common neurological disease characterized by recurrent unprovoked seizures,
affecting approximately 50 million people worldwide [1,2]. Currently, anti-seizure medications are
effective for 66% of people with epilepsy in developed countries [3,4]. However, more than 30% of
people with epilepsy do not respond well to conventional therapies, making them pharmacoresistant
[5]. Uncontrolled seizures can lead to various risks for people with epilepsy, such as risk of injury,
neuropsychological impairment, and shortened lifespan [6]. Therefore, the search for new drugs or

substances that could improve the treatment of people with epilepsy is urgent.

Pre-clinical trials are crucial in testing the therapeutic or toxicological effects of new substances, using
in vivo, in vitro, or ex-vivo strategies. The scalability and rapid access to the results significantly
contribute to the value of such studies. In this context, the zebrafish emerges as a pivotal model,
offering distinct advantages over other animal models for pre-clinical trials [7]. These include its small
size, low maintenance cost, high fecundity, and optical transparency during embryogenesis [8].
Furthermore, the zebrafish genome exhibits approximately 70% homology with the human genome,
with 84% of known genes associated with human diseases, including epilepsy [9,10]. In recent years,
several platforms for automatic data acquisition and analysis in the zebrafish model have been
developed, enabling a variety of multiplexed phenotypic assays with minimal human intervention
[11,12]. Moreover, the zebrafish aligns with the 3Rs (reduction, refinement, and replacement)
philosophy [13]. Beyond its investigation of molecular pathways and behaviors relevant to various
diseases, the zebrafish offers a time and cost-effective model due to its small size, among other
attributes, which is advantageous for scalable studies involving simultaneous analysis of animals and

drugs [14].

In the context of epilepsy, the zebrafish is a well-characterized seizure model in adults and larvae, as

it is used for modeling epilepsy disorders by genetic manipulation [15-17]. In 2005, Baraban and
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colleagues used the pro-convulsant agent pentylenetetrazol (PTZ) to induce seizures in zebrafish larvae
[16]. They observed a specific seizure behavior, up-regulation of the c-fos gene in the brain, and
electrographic discharges in the optic tectum after exposing the larvae to 15 mM PTZ at seven days
post-fertilization. Moreover, these responses were attenuated by common anti-seizure medications.
Overall, these findings suggest that zebrafish exhibit many similarities to traditional models such as

rodents.

Historically, natural substances from plants and animals are a source of numerous medicinal
preparations, widely employed for preventive and therapeutic care [18,19]. This fact is corroborated
by the Food and Drug Administration (FDA), which reports that between 1981 and 2019, 34% of drugs

were based on substances from natural products [20].

Considering the advantages of zebrafish for drug screening based on phenotype and the need to find
new treatments for controlling seizures, we aimed to evaluate the effect of different natural compounds

on seizure suppression using the PTZ-zebrafish model.

Materials and Methods

Zebrafish maintenance and embryo acquisition

Wild-type adult zebrafish were obtained from the Laboratory of Zebrafish and Husbandry at the School
of Medical Sciences, Unicamp. The animals were housed in 30 — 50 liter tanks, accommodating two
animals per liter of water. The tanks were maintained under controlled physicochemical conditions of
temperature (26+2°C), pH (7-7.5), levels of ammonia (< 0.1 ppm), nitrite (< 0.2 ppm) and dissolved
oxygen (4-11 ppm). A photoperiod cycle of 14 h of light and 10 h of darkness was maintained. Adult
fish were fed three times a day with commercial flake food (Tetramin, Tetra, Blacksburg, VA, USA)

and once a day with brine shrimp and paramecium. Embryos were collected following natural
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93  spawning and nurtured in Petri dishes containing water from the aquariums maintaining consistent
94  temperature and photoperiod with the adults. From the 5th day onwards, the larvae were fed with
95  paramecium. Ethical approval for all experimental protocols was obtained from the Ethics Committee
96  for Animal Research of the State University of Campinas (CEUA 4895-1/2019 and CEUA 5757-

97  1/2021).

98  Compounds

99  Tripeptide (p-BTX-I)

100  The compound sequence (Glu-Val-Trp) was obtained from AminoTech — Research and Development
101  (Sao Paulo, Brazil). Subsequently, it was diluted in Milli-Q water (Merck KGaA, Darmstadt, Germany)
102 and then aliquoted. These aliquots were stored at -20°C. The employed concentrations (as listed in

103 Table 1) were determined based on research conducted in cell models [21,22].

104  Table 1. Compounds and their concentrations were analyzed to determine their effect on the

105  suppression of seizures induced by the proconvulsant agent pentylenetetrazole.

106 Compound Concentration
107
Tripeptide (p-BTX-I) 25,10 and 5 pg/mL
108
CX2 0.5, 0.1 and 0.05 uM
109
110 CX2

111  The CX2 (ARG-Cx43p) sequence corresponds to the C-terminal domain of the zebrafish Cx43 gene

112 (PCT/EP2020/071242). CX2 was assembled following standard Fmoc/tBu solid-phase MW-assisted
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113 peptide synthesis protocols [23,24], purified by reverse-phase HPLC, and their identity confirmed by
114  HPLC-MS(ESI). The concentrations used (as listed in Table 1) were determined through studies
115  involving zebrafish models for regeneration and senescence. Like Tripeptide, CX2 was diluted in Milli-

116  Q water, aliquoted, and stored at -20°C.

117 Compounds pretreatment

118  For all compounds, zebrafish larvae at 6 days post-fertilization (dpf) were randomly placed into Petri
119  dishes, each one containing 25 larvae. The larvae were incubated in the respective solutions and
120 concentrations for 24h (as specified in Table 1) prior to seizure induction. The temperature and
121  photoperiod conditions were consistent with those described for the adult zebrafish. The study groups
122 consisted of the Control Group (CG), PTZ Group (PTZ), Treatment 1, Treatment 2, and Treatment 3.

123 Treatments 1 to 3 employed the previously determined concentrations mentioned above.

124  Seizure induction by pentylenetetrazol

125  Seizure induction followed the pretreatment of the compounds. Larvae with 7 dpf were carefully
126  transferred to a 96-well plate filled with 100 pL of aquarium water, with one larva per well.
127  Subsequently, 100 pL of 30 mM of the proconvulsant agent pentylenetetrazol (PTZ) (Sigma-Aldrich,
128  St. Louis, MO, USA) was added to each well, resulting in a final concentration of 15 mM of PTZ. The
129  larvae were exposed to PTZ for 20 minutes. The control group underwent the same procedure but in

130  PTZ-free water.

131  Latency and number of seizures

132 The latency and number of seizures were monitored through visual observation, following the method
133 described by Barbalho et al., 2016a [25]. Specifically, latency was defined as the period between the
134 initiation of PTZ exposure and the larva reaching stage 3 of seizure-like activity, according to the

6
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135  criteria established by Baraban et al., 2005 [16]. Larvae were evaluated for 10 minutes of PTZ

136  exposure, and a complete seizure was considered when they reached stage 3.

137 RNA extraction

138  Immediately after PTZ exposure, fish were cryo-anesthetized and their heads were cut, collected, and
139  then incubated in TRIzol® (Invitrogen, Carlsbad, CA, USA). The biological material was lysed using
140  the TissueLyzer equipment (QIAGEN, GmbH, Germany) at 25 beats per second (BPS) for 2 minutes.
141  Subsequently, the heads were stored at -80 °C until further processing. Each group consisted of five
142 samples (n = 5); however, each sample was composed by pooling five larval heads, to obtain sufficient
143 biological material for RNA extraction. Total RNA extraction was performed using TRIzol® according
144  to the manufacturer’s protocol. The concentration and quality were determined using the Epoch™

145  spectrophotometer (BioTek, Winooski, VT, USA) and gel electrophoresis.

146 RT-qPCR

147  The synthesis of cDNA was carried out using the High-Capacity cDNA Reverse Transcription kit
148  (Applied Biosystems™, California, USA) following the manufacturer’s instructions. Quantitative PCR
149  (gqPCR) was performed using the SYBR ® Green Master Mix reagent (Bio-Rad) using the ABI 7500
150  system (Applied Biosystems, Foster City, CA, USA). Target genes (as listed in Table 2) were designed

151  using the Primer-BLAST online tool (https://www.ncbi.nlm.nih.gov/tools /primer-blast/) from NCBI

152 (National Center for Biotechnology Information) zebrafish database. Runs were carried out in triplicate
153  using eeflalll as a housekeeping gene [26] to normalize the genes from the inflammation pathway
154  (illb, tnfa, coxl, cox2a and il6), the apoptosis pathway (casp3a, casp9, baxa and bcl2a), and the
155  oxidative stress pathway (nox/, sod and cat) were analyzed. Data were evaluated using 7500 software
156  v2.03 (Applied Biosystems). Relative gene expression analysis was calculated using the Livak and

157  Schmittgen equation RQ = 2-AACT [27].
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158  The three pathways (inflammation, apoptosis, and oxidative stress) are all closely linked to the
159  underlying mechanisms of seizure generation and progression, which is why we selected representative
160  genes from these pathways for analysis.
161  Table 2: Primer sequences designed using the Primer-Blast online tool.
Size
Gene Seq.Ref.NCBI Forward Reverse
(pb)
eeflalll  NM 131263.1 AGCAGCAGCTGAGGAGTGAT CCGCATTTGTAGATCAGATGG 140
illb NM _212844.2 GCTGGAGATCCAAACGGATA ATTTGACGGACTCGAAGGTG 85
tnfa NM 212859.2 TCGGGTGTATGGAGGGTGTT TTGATTGCCCTGGGTCTTATGG 96
coxl NM_153656.2 CTGGGAGGCTTATTCCAACA CCAGAAGTTTAGGGTCTGGAAG 119
cox2a NM_153657.1 ACCAGGGCGTGTGTTTATCC GTGAGAAGCTCAGGGGTAGTG 100
il6 NM_001261449.1 GGCATTTGAAGGGGTCAGGA GCGTTAGACATCTTTCCGTGC 92
casp3a NM_131877.3 CAGCTTGAACTACCCCAACA AAGCTTTCGAAACACGTTCA 133
casp9  NM_001007404.2 GCGACAAGCTGGAGAAAAGA GATGACCACACAGCAGTCGTA 140
baxa NM_131562.2 GAGCTGCACTTCTCAACAACTTT GAAGATCTCACGGGCCACTC 245
bcl2a NM_001030253.2 ACTACCTGAACGGGCCACT AAAACGGGTGGAACACAGAG 105
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noxl XM _009291119.3  TCGTCAAGAAAACCCATCGTCT TGTTGATCTTGCAGCACAGTCT 213

sodl NM 131294.1 GGCCTTACTCCAGGAAAACA TCTCCGACGTGTCTCACACT 140

cat NM 130912.2 CAACGCTGAAGGGAAAAAGAACA GCATTTGCTAAGATCACTTGTGTTG 250
162

163  Statistical analysis

164  Statistical analysis was performed using GraphPad Prism version 5.0 (GraphPad Software, San Diego,
165 CA, USA). One-way ANOVA was performed, followed by the Bonferroni method for multiple

166  comparisons. Differences were considered significant if p<0.05. Results are presented as mean = SEM.

167 Bio-distribution

168  Bio-distribution analysis was conducted on Tripeptide and CX2, labeled with tetramethylrhodamine-

169  TMR and carboxytetramethylrhodamine — TAMRA, respectively.

170  Larvae at 6 dpf were transferred to a 96-well plate, with one larva per well, containing 100 pL of
171  aquarium water. Subsequently, 100 pL of the Tripeptide compound at 20 pg/mL or CX2 at 1 uM was
172 added according to the respective group, totalizing 200 ml of solution at final concentration of 10 png/ml
173 for Tripeptide and 0.5 uM for CX2. Exposure times for both compound groups were 1, 6, 18, and 24
174 hours (n=3 each time). The control group underwent similar manipulation but in water only. The
175  incubation temperature during the experiments was maintained at 26+2°C. upon completion of
176  exposure, larvae were rapidly and carefully transferred to a Becker containing 0.02% tricaine (Tricaine,
177  Sigma) for approximately 2 minutes. Subsequently, the larvae were transferred to a Petri dish

178  containing 1% agarose as a base, along with a drop of water. Larvae were examined and photographed
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179  using the Multizoon AZ100 microscope (Nikon, Tokyo, Japan) at 2X magnification. Two photographs
180  of each larva were taken, one in black and white, and the other capturing only the fluorescence
181  emission. Imaging merging was performed using the NIS-Elements software (Nikon, Tokyo, Japan).
182  The experiments and protocols were approved by the animal care and use committee of the Universidad
183  de Santiago de Compostela and the standard protocols of Spain (CEEA-LU-003 and Directive 2012-

184  63-EU).

185  Results

186 Behavioral assay

187  We analyzed the effects of tripeptide and CX2 on seizure behavior. We found an increase in latency
188  only for animals pretreated with the CX2 at 0.1 pM, (p<0.05) as well as a significant decrease in the
189  number of seizures (p<0.001) when compared to the PTZ group (Fig 1B). No statistical significance

190  was found for the tripeptide (Fig 1A).

A B
Latency Seizure Latency s
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H —_—
200 - - £
o 3 'r
£ 150 o 6 T = 200
. s T -
E 100 5
E S F 100
£
50 32
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1 9 1 P1Z 25 10 5 P1Z 25 10 5 PTIZ  TO5  Tod  T0.05

192 Fig 1: The effect of compound treatment prior to pentylenetetrazol (PTZ)-induced seizures on
193  the number of seizure-like behaviors and latency was investigated. The number of seizures and
194  latency were determined through visual inspection during a 10-minute exposure to PTZ (15 mM). (A)
195  Animals exposed to the tripeptide for 24 hours: Pentylenetetrazol (PTZ) group; treatment group 25
196  pg/mL (T25); 10 pg/ml treatment group (T10); treatment group 5 pg/ml (T5). (B) Animals exposed to
197  CX2 for 24 hours: Pentylenetetrazol (PTZ) group; treatment group 0.5 uM (T0.5); treatment group 0.1

10
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198  uM (T0.1); treatment group 0.05 uM (T0.01). Data are presented as mean + SEM. Statistical analyses
199  were performed using one-way ANOVA, followed by the Bonferroni method for multiple
200  comparisons. Differences were considered significant if p <0.05. An asterisk (*) indicates that p<0.05;

201  three asterisks (***), p<0.001.

202  Molecular assay

203  Regarding the tripeptide, our results indicated downregulation of the i//b and casp9 genes (Fig 2A and
204  2B), with significant effects at low concentrations (10 and 5 pg/mL). Additionally, we observed that
205  the expression of the casp3a, baxa, and bcl2a genes was most significantly reduced at a concentration
206  of 25 pg/mL (p<0.05), compared to the other concentrations. Similary, at a concentration of 10 pg/mL,
207  the casp3a, baxa, and bcl2a genes exhibited notably high expression levels, roughly equivalent to or

208  slightly higher than those of the PTZ group. However, no statistical difference was detected.

ib B casp3a
A

C casp9

209

210  Fig 2: Expression of illb, casp3a, casp9, baxa and bcl2a genes in zebrafish brain after
211  pentylenetetrazol (PTZ)-induced seizures. Each treatment group was initially exposed to the
212 tripeptide for 24 h and subsequently to 15 mM PTZ for 20 min, and the control and PTZ groups were

213 handled identically, but with exposure to water (n = 5 per group). Data are presented as mean + SEM.

11
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214  Statistical analyses were performed with the one-way ANOVA, followed by the Bonferroni method
215  for multiple comparisons. Differences were considered significant if p<0.05. An asterisk (*) indicates
216  that p<0.05; two asterisks (**), p<0.01. Control group (Control); pentylenetetrazol (PTZ) group;

217  treatment group 25 pg/mL (T25); 10 pg/ml treatment group (T10); treatment group 5 pg/mL (TS).

218  In the case of the CX2 compounds, we found down-regulating of the i/1b, coxl, il16, and tnfa genes
219  for most of the analyzed concentrations (Fig 3) compared to the PTZ group. The most significant down-
220  regulation was observed at a concentration of 0.1 uM. Conversely, the cox2a gene displayed increased
221  expression across all the three concentrations tested, with the most significant increase occurring at a

222 concentration of 0.05 uM (p<0.001).

cox1

Relative Expression

223

224 Fig 3: Expression of il1b, il6, tnfa, cox] and cox2a genes in zebrafish brain after pentylenetetrazol
225  (PTZ)-induced seizures. Each treatment group was initially exposed to the CX2 for 24 h and
226  subsequently to 15 mM PTZ for 20 min, and the control and PTZ groups were treated identically but
227  with water exposure (n = 5 per group). Data are presented as mean = SEM. Statistical analyses were
228  performed with the one-way ANOVA, followed by the Bonferroni method for multiple comparisons.

229  Differences were considered significant if p<0.05. An asterisk (*) indicates that p<0.05; two asterisks

12
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230  (**), p<0.01; three asterisks (***), p<0.001; four asterisks (****), p<0.0001. Control group (Control);
231  pentylenetetrazol (PTZ) group; treatment group 0.5 uM (T0.5); treatment group 0.1 uM (TO.1);

232 treatment group 0.05 uM (T0.01).

233  Bio-distribution

234 By tagging both the Tripeptide and CX2 with fluorescence, we tracked their biodistribution at four
235  time points, 1h, 6h, 18h and 24h. The CX2 compound exhibited robust detection in the brain after 1h
236  and persisted at 6 hours (Fig 4). Additionally, the compound was detected throughout the body,
237  indicating successful absorption by the zebrafish. In contrast, the tripeptide compound did not reach

238  the brain, and it was predominantly retained in the zebrafish intestine (S1 Fig).

239

240  Figure 4: Time course of CX2 (8ARG-Cx43p, corresponding to the C-terminal domain sequence
241  of Cx43) efficiently crossing the blood-brain barrier (BBB) in a 7-day-old zebrafish larva. The
242  carboxytetramethylrhodamine-TAMRA labeled peptide exhibited fluorescence microscopy detection

243 in the brain and throughout the body (indicated by red color) at 1 hour and 6 hours post-treatment.

244 Discussion

245  Despite the availability of pharmacological treatments, uncontrolled seizures remain a concern,
246  requiring further investigations for new seizure-suppression approaches [28]. Seizures occur due to a
247  complex process involving multiple factors and affecting various cellular pathways [29]. This study

248  focused on targeting inflammation, oxidative stress, and cell death pathways for seizure modulation

13
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249 [30-33]. To achieve our goal, we used tripeptide (p-BTX-I) to address inflammation and cell death,

250  and the CX2 for its anti-inflammatory action[21,22].

251  Zebrafish offer many advantages in drug screening and phenotype assessment. The zebrafish PTZ-
252 seizure model mimics human seizure behavior and electrographic patterns and is responsive to anti-
253 seizure drugs. The scalability and rapid results of the zebrafish make them an advantageous model for

254  discovering new anti-seizure compounds [8,9,16,34,35].

255  The process of inflammation involves the recruitment of many inflammatory mediators such as
256  interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), and growth factors. ILIB, TNF-
257  a, and IL6 genes are among the most studied inflammatory cytokines in the CNS [32]. After a seizure,
258  genes such as ILIB, IL2, IL6, TNF-o0, and VEGF, which are normally present in low concentrations,
259  increase rapidly, leading to damaging changes in synapses and heightened neuronal excitability

260 [33,36].

261  Prostaglandins/COX-2 are also produced, potentially disrupting the blood-brain barrier and

262  significantly contributing to seizure onset and recurrence [37].

263  Among the compounds analyzed, CX2 at a concentration of 0.1 uM showed the most significant results
264 in seizure suppression, reducing seizure frequency and increasing latency (Fig 1B). Treatment with
265  CX2 prior to PTZ-induced seizures down-regulated the i/1b, coxl, tnfa, and ill16 genes, indicating its
266  role in regulating inflammation during seizures [33]. In contrast, the cox2a gene showed up-regulation
267  compared to the PTZ group (Fig 3E). COX2, which is responsible for prostaglandin production [38],
268 increases during seizures [39]. While COX2 inhibitors have been explored as therapeutic agents;

269  controversies exist due to types of inhibitors and timing of administration [39,40]
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270  Studies in rats and zebrafish suggest that cox/ may play a more crucial role in inhibiting seizure [41—
271  43]. Barbalho et al. found that inhibiting cox-/ had a positive impact on seizure in zebrafish larvae,

272 while cox-2 inhibition did not affect seizures [25].

273 Our results align with these findings. CX2 decreased the levels of cox! transcript (Fig 3D) and reduced
274  the occurrence of seizures by increasing latency and decreasing their frequency (Fig 1B). The
275  compound was quickly absorbed and distributed, as it was detected in the brain at the earliest time
276  point examined (Fig 4), and also in the optic tectum, a region associated with significant neuronal

277  activity during seizures [44].

278  As for the Tripeptide compound (Fig 2), we observed various gene responses, particularly the down-
279  regulation of genes related to inflammation. Neuroinflammation, triggered by factors such as tissue
280  damage, infection, stress, and seizures, has been associated with epilepsy [28,45]. Pathways
281  connecting epilepsy to neuroinflammation have been identified, with animal models of seizure
282  induction showing increased mRNA levels of genes involved in inflammatory cascades [46—48]. Thus,
283  efforts have focused on low molecular weight compounds acting on these pathways. Tripeptide (10

284  pg/mL) downregulated il/h gene and casp9 gene indicating its positive effect on these pathways.

285  Regarding the bio-distribution of the Tripeptide compound, it was primarily detected in the zebrafish
286  larvae intestine (S1 Fig). This could be attributed to the fluorophore, tetramethylrhodamine-TMR,
287  which along with the compound, may interfere with absorption or crossing the blood-brain barrier for

288  CNS delivery.

289 Conclusion

290  Our study provides evidence that Tripeptide and CX2 — Cx43 peptide have the potential to modulate
291  gene expression and reduce epileptic seizures in zebrafish. Tripeptide increased the expression of genes
292  associated with antioxidant functions while decreasing the expression of inflammatory genes, with no
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observed behavioral changes. The compound CX2 peptide demonstrated high effectiveness in reducing

the expression of inflammatory genes, lowering the number of seizures, and increasing latency time.

CX2 was widely distributed in the zebrafish brain and the body. These compounds could represent a

promising avenue for further research in the development of novel anti-seizure medications.

Nevertheless, further studies are needed to assess their effects in other animal models and determine

their efficacy in humans.
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