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ABSTRACT: Traditional High-Throughput Screening (HTS) drug discovery is inefficient. Hit rates for compounds with clinical 
therapeutic potential are typically 0.5% and only up to 2% maximally. Deep learning models have enriched screening rates to 28%; 
however, these results include hits with non-therapeutic relevant concentrations, insufficient novelty to their training set, and 
traverse limited chemical space. This study introduces a novel artificial intelligence (AI)-driven platform, GALILEO, and the 
Molecular-Geometric Deep Learning (Mol-GDL) model, ChemPrint. This model deploys both t-distributed Stochastic Neighbor 
Embedding (t-SNE) data splitting to maximize chemical dissimilarity during training and adaptive molecular embeddings to enhance 
predictive capabilities and navigate uncharted molecular territories. When tested retrospectively, ChemPrint outperformed a panel 
of five models for the difficult-to-drug oncology targets, AXL and BRD4, achieving an average AUROC score of 0.897 for AXL and 
0.876 for BRD4 using the t-SNE split, compared to benchmark model scores ranging from 0.826 to 0.885 for AXL and 0.801 to 0.852 
for BRD4. In a zero-shot prospective study, in vitro testing demonstrated that 19 of 41 compounds nominated by ChemPrint against 
AXL and BRD4 demonstrated inhibitory activity at concentrations ≤ 20 µM, a 46% hit rate. The 19 hits reported an average-maximum 
Tanimoto similarity score of 0.36 relative to their training set and scores of 0.13 (AXL) and 0.10 (BRD4) relative to clinical stage 
compounds for these targets. Our findings demonstrate that increasing test set difficulty through training and testing ChemPrint 
on datasets with maximal dissimilarity enhances the predictive capabilities of the model. This results in the discovery of compound 
libraries at high hit rates with low therapeutic concentrations and high chemical novelty. Taken together, the proposed platform 
sets a new performance standard.

1. INTRODUCTION 
1.1 Traditional Drug Discovery. Conventional drug discovery 

and development requires extensive resources and still has 
low efficiency. In a typical early drug discovery program, the 
process of screening thousands of compounds with High-
Throughput Screening (HTS) yields a mere ~2% hit rate, 
maximally1. This inefficiency is compounded by the lead 
optimization process, which requires refining compounds to 
achieve the desired potency and to address a full Target 
Product Profile (TPP). In total, 10-15 years2 and up to ~$6 
billion in capital are typically required to discover a compound 
and bring it to FDA approval3. This overall inefficiency of 
traditional drug discovery practices has necessitated the 
development of new methods, including the use of artificial 
intelligence (AI). 

1.2 Challenges with AI Drug Discovery. To date, no AI-
discovered therapeutic has achieved FDA approval, and few 
have progressed beyond preclinical animal model proof of 
concept4. Two reasons for this limited success are that AI 
platforms often struggle to sufficiently improve prospective 
discovery accuracy and to identify potent chemistry 
significantly different from that of known active molecules. 

The inefficiency of these models is evident in published in vitro 
hit rates from the platforms of venture-backed and public AI 
drug discovery companies. Based on the hypothesis that 
commercial platforms can consistently perform well across 
multiple protein targets and can discover entire libraries of 
novel hits rather than just isolated successes, we compare the 
hit rates of AI drug discovery platforms that could be averaged 
across at least two different targets and where at least ten 
compounds were screened per target. Schrödinger has 
reported a pipeline-wide average in vitro hit rate of 26% over 
14 targets, but also includes hits at concentrations up to 30 
μM5. Atomwise published an average hit rate of 8.8% across 22 
targets; however, this encompasses hits at concentrations up 
to 250 μM6. Insilico Medicine has reported an average of 28% 
across 2 targets, though this includes hits at concentrations up 
to 25 μM and lead optimization-phase hits7,8,9.  

These AI approaches not only have limited hit rates but also 
report non-standardized concentrations to define “hits”, likely 
leading to inflated hit rates that permit concentrations that are 
too high to be therapeutically  
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Figure 1.  (A) Stratified Random Split: In this approach, the dataset is randomly divided into training, validation and test sets. The illustration shows how 
different groups of molecular structures (green, orange, purple) are distributed across the training set, validation set and test set. This distribution process 
leads to neighboring pairs of compounds appearing in the training and test set or the validation and test set, for example. This data leakage between data 
sets maximizes retrospective analysis scores, but limits the models ability to extrapolate to novel chemical space in prospective drug discovery studies. (B) 
t-SNE Split: This approach uses t-Distributed Stochastic Neighbor Embedding (t-SNE) to partition the dataset. Molecules are clustered based on their 
structural similarity in a reduced-dimensional space. The illustration shows molecules of the same chemical class (green, orange, purple) grouped together 
within the same dataset. Molecules within the training and validation set are different from those in the unobserved test set. This splitting methodology 
creates a retrospective training environment where the test set consists of molecules that are structurally different from those in the training and 
validation sets, which more closely resembles the prospective drug discovery environment for novel discovery and enhances the models ability to 
extrapolate to novel chemical space. (C) Traditional Modeling Approach: This method involves converting the molecule's structure into a fingerprint using 
the Morgan fingerprinting function (e.g., ECFP), which encodes structural features into a binary vector. This fingerprint is then used as input for machine 
learning models such as SVM (Support Vector Machine), RF (Random Forest), LR (Logistic Regression), XGB (Extreme Gradient Boosting), or KNN (K-
Nearest Neighbors) to predict the bioactivity of the molecule. As shown, the standard fingerprint is a static embedding that is bounded by a 
predetermined encoding that is not updated with backpropagation, limiting its competency. (D) ChemPrint Approach: This method represents the 
molecule as a graph, where atoms and bonds are treated as nodes and edges, respectively. Each node is initialized with select feature vectors, and 
message passing graph convolutions update and refine the feature vectors for each node. These are pooled to form a molecular fingerprint, which serves 
as input to a multilayer perceptron model to predict bioactivity. The feedforward prediction results backpropagate to redefine model weights 1000 times, 
creating an adaptive molecular embedding cycle that enhances predictive capabilities and aids the navigation of uncharted molecular territories. 
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viable5,6,7,8,9. Furthermore, few of the compounds discovered 
as hits demonstrate significant chemical novelty, highlighting 
the inability of these models to predict properties of 
compounds beyond the chemical space they have seen10,11. 
One reason for this, is that standard approaches to model 
validation inadvertently bias models, limiting their 
competency to the same chemical space as their training data. 
These challenges arise because AI models are trained and 
tuned on datasets lacking chemical diversity and evaluated 
using conventional performance indicators. While this method 
shows the models' technical ability to identify hits from past 
(retrospective) data, it fails to predict and discover drugs that 
will have a real clinical impact in future (prospective) studies. 
New evaluation strategies must be deployed that prioritize the 
extrapolative ability of AI models to infer beyond known 
chemical territories. 

1.3 Model Training Environments. Data splitting 
methodology for training, validation, and testing sets prior to 
machine learning (ML) model training and tuning has a 
significant impact on prediction accuracy. In most ML 
applications, the common method for splitting data, called 
'stratified random splitting', is used13 (Figure 1A). However, 
this method does not work well for ML drug prediction models 
because it fails to properly evaluate their performance13. Test 
sets generated by this method of splitting often present 
models with an oversimplified prediction task. Feinberg et al. 
have demonstrated that random splitting significantly 
overestimates the generalization and extrapolation 
capabilities of ML methods in drug discovery13. Alternative 
dataset splitting techniques, like the temporal split method 
utilized by Feinberg et al., aim to mitigate this by organizing 
data based on the publication order13,14. This method operates 
on the principle that the sequential evolution of substructural 
chemistries over time can provide a more realistic challenge 
when splitting data for model validation. However, assuming 
publication dates adhere to medicinal chemistry pedigree can 
introduce discrepancies, as these dates may not align with the 
actual order of discovery. While the intention behind the 
temporal split employed is creative, in vitro results that would 
validate its impact on real-world drug discovery remain 
unpublished. To this end, we evaluated a novel train-test 
splitting methodology to directly maximize dataset 
dissimilarity and challenge the model in an effort to find new 
chemical novelty (Figure 1B).  

1.4 Adaptive Molecular Embeddings. Drug discovery 
models powered by AI are limited by molecular embeddings 
that do not evolve or adapt as the model gains knowledge. The 
reliance on static molecular embeddings, such as Morgan 
Fingerprints like Extended Connectivity FingerPrints (ECFP),12 
limits the ability to discover new chemical entities active 
against the target. Specifically, ECFP encodings use bits that 
treat similar molecular characteristics as if they were 
unrelated, thus requiring machine learning algorithms to 
relearn relationships13 (Figure 1C). To address this, we used an 
adaptive molecular embedding technique that evolves with 
the model's learning process, enabling the in silico 

identification of multiple novel therapeutic candidates (Figure 
1D). 

1.5 Case Study. In this study, we evaluate our AI drug 
discovery platform (GALILEO) and its zero-shot capable 
Molecular-Geometric Deep Learning (Mol-GDL)15 model 
(ChemPrint) to target the oncogenic AXL (Gas6/AXL pathway16) 
and BRD4 (BET family17) proteins. These two targets were 
chosen because they affect multiple cancer types, such as 
breast cancer, pancreatic cancer, and glioblastoma16,17 and 
have demonstrated particularly low hit rates in the post HTS 
steps of drug discovery, rendering them the classification of 
‘undruggable’18,19. Supported by in vitro experiments, our data 
indicate significant progress in developing AI that can discover 
drugs for challenging targets. Importantly, GALILEO was 
designed to be versatile and can be applied to a wide range of 
therapeutic areas beyond AXL and BRD4. 

2. RESULTS 
2.1 Data Preparation. 2.1.1 AXL and BRD4 Data Curation and 

Binarization. To discover potent, novel compounds that have 
high drug discovery potential, it is critical that training datasets 
are built-to-purpose, meaning they are specifically optimized 
for a particular target. Using our GALILEO data acquisition and 
curation pipeline, we procured large, high-quality datasets 
(see methods) from primary source literature for AXL and 
BRD4. To identify the most highly potent compounds, we 
defined compounds with a bioactivity measurement below 1 
µM as active and above as inactive (Table 1).  

 
Table 1. Active and Inactive Counts for AXL and BRD4 datasets using a 
1 µM threshold. 

Target Actives Inactives Total 
AXL 1823 982 2805 

BRD4 3668 1987 5655 

 
2.1.2 AXL and BRD4 Train-Test Splits. We split the AXL and 

BRD4 data into training and testing sets based on an 80%-20% 
stratified random split as well as our proposed splitting 
methodology that utilized t-distributed Stochastic Neighbor 
Embedding (t-SNE)20 (see methods). This t-SNE splitting 
protocol aimed to increase the structural and pharmacophoric 
dissimilarity between training and testing sets, allowing an 
evaluation of the model’s ability to generalize to new, unseen 
chemical compounds. Visualization of the t-SNE split revealed 
clustering of molecules with similar structural and 
pharmacophoric properties (Figure 2). To imitate a data-
limited scenario, the cutoff boundary was drawn to create a 
50-50% proportion of data within the split train-test sets. 
Similarly typed compounds were retained in either the train or 
test set, resulting in two chemically distinct data sets. To 
demonstrate the chemical dissimilarities between the two 
datasets, we calculated their average-maximum test-train 
Tanimoto coefficients21,22. 
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Figure 2. t-SNE visualization of train-test splits for (A) AXL and (B) 
BRD4. Points represent compounds: inactive train (magenta 
diamonds), active train (cyan diamonds), inactive test (magenta 
circles), and active test (cyan circles). The red line at y = 0 separates 
the training set (above) from the testing set (below). Clustering 
patterns indicate distinct chemical environments in each set, 
demonstrating effective separation. 

 
Table 2. Stratified Random and t-SNE Data Split Comparison for AXL 
and BRD4 datasets.𝜶 

Target Split 
Method 

Train 
Actives 

Train 
Inactives 

Test 
Actives 

Test 
Inactives 

Tan 
Similarity 

AXL 
SR 1456 785 367 197 0.75 
t-SNE 931 454 892 528 0.59 

BRD4 
SR 2932 1589 736 398 0.80 
t-SNE 1639 1164 2029 823 0.53 

𝜶SR: Stratified Random Split, Tan: Tanimoto 

 

For the stratified random splits, the average-maximum 
Tanimoto similarity scores were 0.75 for AXL and 0.80 for 
BRD4, while for the t-SNE splits, the scores were 0.59 and 0.53, 
respectively (Table 2). Thus, comparing the splitting methods 
there was a 27% increase in chemical dissimilarity for AXL and 
51% for BRD4 when using the t-SNE method versus the 
stratified random method. In other words, we observed that 
the t-SNE method provided better chemical separation 
between train and test data for both AXL and BRD4.  In 
principle, this t-SNE split added the chemical diversity 
challenge needed to evaluate a model capable of accurate 
extrapolation outside of compounds similar to those in the 
training set. 

 

 

Figure 3. Reported ROC curves and associated AUROC values for the 
best performing model across all replicates for (A) AXL and (B) BRD4. 
Metrics are generated from our t-SNE test split.  

 
2.2 Performance Evaluation: ChemPrint vs. Benchmark 

Models. We performed a comparative case study analyzing the 
performance of our zero-shot, Mol-GDL model, ChemPrint and 
five benchmark models: logistic regression (LR), random forest 
(RF), k-nearest neighbors (KNN), support vector machine 
(SVM), and extreme gradient boosting (XGB)23,24. To further 
validate our t-SNE data splitting method on AXL and BRD4 
datasets, we assessed the performance of the models with 
both our t-SNE split and the stratified random split. 
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Table 3. Benchmarking Test Set Performances (Average AUROC ± 95% Confidence Interval)𝜶 

 AXL BRD4 
 t-SNE Stratified Random t-SNE Stratified Random 
ChemPrint 0.897 ± 0.002 0.934 ± 0.001 0.876 ± 0.003 0.948 ± 0.001 
SVM 0.885 ± 0.000 0.949 ± 0.000 0.852 ± 0.000 0.945 ± 0.000 
RF 0.879 ± 0.003 0.961 ± 0.001 0.842 ± 0.004 0.951 ± 0.001 
LR 0.871 ± 0.000 0.957 ± 0.000 0.814 ± 0.000 0.941 ± 0.000 
XGB 0.872 ± 0.000 0.938 ± 0.000 0.806 ± 0.000 0.929 ± 0.000 
KNN 0.826 ± 0.000 0.930 ± 0.000 0.801 ± 0.000 0.936 ± 0.000 
Average of Each Split 0.872 0.945 0.832 0.942 

𝜶Metric scores for all evaluated models using both the stratified random split and t-SNE split on AXL and BRD4 data. Statistics are averaged over 
ten distinct model trainings. SVM: Support Vector Machine, RF: Random Forest, LR: Logistic Regression, XGB: Extreme Gradient Boosting, KNN: 
K-Nearest Neighbors. 
 
Each model architecture and splitting technique pair was 
trained and tested ten times, with the Area Under the Receiver 
Operating Characteristic (AUROC) value recorded for each 
replicate. A high AUROC means that the model is very good at 
distinguishing between the different classes (e.g., active vs. 
inactive compounds). The averages of these AUROC values are 
reported in Table 3, and the single best model run is reported 
as an ROC curve in Figure 3. 

For both AXL and BRD4, the ChemPrint models with t-SNE 
splitting demonstrated the highest performance based on 
both average (Table 3) and single best AUROC scores (Figure 
3). With the t-SNE split, ChemPrint had an average AUROC 
score of 0.897 for AXL, whereas other model scores ranged 
from 0.826 to 0.885. ChemPrint also outperformed all other 
models for BRD4 when using the t-SNE split with an average 
AUROC of 0.876 compared to the benchmark models that 
range from 0.801 to 0.852. The best ChemPrint iterations had 
higher AUROC scores than each other model across both 
proteins for the t-SNE split, with score improvements of up to 
~10%, as seen in Figure 3. 

However, on average, across the six models, the AUROC 
scores for t-SNE splits were approximately ~10% lower than 
those for random stratified splits. This was expected because 
the t-SNE split created a more challenging evaluation set by 
increasing the dissimilarity between training and testing sets, 
better assessing the model's generalization capability. For AXL 
models, switching from stratified random splitting to t-SNE 
splitting resulted in a decrease in mean AUROC from 0.945 to 
0.872 (~8% decrease). Similarly, BRD4 models showed a 
decrease from 0.942 to 0.832 (~12% decrease). Examining the 
average-maximum Tanimoto similarity scores (Table 2) in 
relation to AUROC results, we observed that a decrease in test-
train similarity led to a corresponding decrease in AUROC. This 
suggested that higher test-train similarity (as seen with 
stratified random splits) inflated AUROC scores, which can be 
misleading regarding the model's ability to generalize. In 
contrast, the t-SNE split created a more rigorous and 
representative evaluation of the model's extrapolative ability 

by increasing the dissimilarity between molecules in the 
training and test datasets. 

2.3 Quality Assessment of Adaptive Molecular 
Embeddings. To elucidate the underlying adaptive molecular 
embedding process of ChemPrint, we plotted the t-SNE of 
model latent embeddings at each epoch. The t-SNE 
visualizations demonstrate that at training initiation (epoch 0), 
activity classes were largely intersecting embeddings, with no 
obvious pattern evident (Figure 4A), suggesting that no 
chemical or structural information has yet been learned by 
ChemPrint (i.e., there was no separation between active and 
inactive compounds and clear relationships between 
compounds were not present). As training epochs progressed, 
the latent representations generated by ChemPrint 
demonstrated an evolution in embedded learning on 
molecular structure and activity (Figure 4B). Specifically, there 
was prominent clustering of active and inactive compounds. 
With few errors in assignments, the active and inactive clusters 
also served as powerful predictors of activity for unseen 
compounds in the respective ligand spaces by assigning the 
label of the nearest cluster to the point in consideration (Figure 
4C-E).  

2.4 ChemPrint Inference Predictions. Ensembles of 100 
independently trained ChemPrint models for each target were 
trained on complete curated AXL and BRD4 datasets and 
deployed to predict activity against compounds in our known 
chemical entity (KCE) inference library. This library contained 
approximately 17,000 compounds selected based on having in-
human safety and tolerability data, typically from Phase 1 and 
2 clinical trials. All compounds from our KCE library with 
predicted activity against AXL and BRD4 were priority-ranked 
and then screened by our Freedom To Operate (FTO) pipeline 
for novelty to target, novelty to indication, and purchasability 
(see methods). The FTO pipeline identified 41 compounds that 
met the criteria for novelty to target, novelty to indication, and 
purchasability. These 41 compounds were subsequently 
evaluated in vitro against their respective targets. 

2.5 In Vitro Compound Validation. The 41 molecules 
predicted by ChemPrint were tested in vitro for 
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Figure 4.  t-SNE visualizations of model latent embeddings of AXL t-SNE split data during ChemPrint’s training cycles. (A) t-SNE plot at ChemPrint 
epoch 1 (initialization). At this stage, active (teal) and inactive (magenta) training compounds are largely overlapping, indicating no learned 
chemical or structural information. (B) t-SNE plots at intermediate training epochs (200, 400, 600, and 800). As training progresses, clustering of 
active (teal) and inactive (magenta) training compounds begins to emerge, demonstrating the model's ability to differentiate between active and 
inactive compounds based on learned molecular features. (C) t-SNE plot at ChemPrint epoch 1000 (training). Clear and distinct clusters of active 
(teal) and inactive (magenta) training compounds are visible, indicating successful embedding of molecular activity information. (D) t-SNE plot at 
ChemPrint epoch 1000 (inference). Here, active (blue) and inactive (red) test compounds are plotted, showing that the model can generalize its 
learned embeddings to unseen compounds, with test compounds correctly clustering near their respective training clusters. (E) Combined t-SNE 
plot at ChemPrint epoch 1000 (training and inference). This plot includes both training (teal and magenta) and test (blue and red) compounds, 
demonstrating the overall effectiveness of the embeddings in predicting the activity of unseen compounds based on their proximity to the 
nearest training clusters. 

 
 
enzymatic inhibition via an AXL kinase activity assay and a 
BRD4 (BD1 + BD2) bromodomain activity assay (see methods). 
We observed that 19 of the 41 predicted molecules displayed 
inhibition at ≤ 20 µM, resulting in a 46% hit rate (Table 4). The 
structure of Compound 9 is drawn in Figure 5A. 

 
Table 4. Contains IC50 values of compound inhibitory effects on AXL 
and BRD4 activities. 

Target Drug Name IC50 (µM) 
AXL Compound 1 0.21 

AXL Compound 2 0.26 

AXL Compound 3 1.9 

AXL Compound 4 4.6 

AXL Compound 5 4.8 

AXL Compound 6 5.3 

AXL Compound 7 5.6 

AXL Compound 8 6.1 

AXL Compound 9 ~20.0 

AXL Compound 10 17% @ 10 µM 

AXL Compound 11 27% @ 20 µM 

AXL Compound 12 41% @ 20 µM 

BRD4 Compound 13 16.8 

BRD4 Compound 14 ~20.0 

BRD4 Compound 15 36% @ 20 µM 

BRD4 Compound 16 24% @ 20 µM 

BRD4 Compound 17 22% @ 20 µM 

BRD4 Compound 18 30% @ 20 µM 

BRD4 Compound 19 28% @ 20 µM 
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Figure 5. Chemical structures of (A) Compound 9, (B) AZD-
5153, and (C) Bemcentinib. ChemPrint discovered Compound 9 
as an inhibitor of AXL with an IC50 = 20 µM.  AZD-5153 is a 
potent BRD4 inhibitor actively recruiting for phase 1b/2 clinical 
trials25. Bemcentinib is a potent and selective inhibitor of AXL and 
has completed phase 2 clinical trials26. 

 
2.6 Chemical Dissimilarity. To quantify the chemical novelty 

of our findings, we conducted four types of Tanimoto similarity 
analyses on our 19 validated hits using ECFP4 fingerprints. The 
analyses were performed against the training data used for 
their discovery, post-Phase 1a AXL and BRD4 clinical trial 
compounds (AZD-5153 and Bemcentinib) (Figure 5B-C), all 
available ChEMBL data for each target, and a pairwise 
comparison among the hits themselves. First, we recorded the 
maximum Tanimoto similarity between each in vitro hit and 
both active and inactive compounds from the training set. The 
similarity means were 0.40 for AXL and 0.30 for BRD4, with an 
average of 0.36 across both targets (Figure 6A). Second, we 
recorded the maximum Tanimoto similarity between each in 
vitro hit and all ChEMBL compounds for each target. The mean 
similarity across both targets was 0.37 (Figure S1). Third, we 
recorded the Tanimoto similarity between each in vitro hit and 
Bemcentinib for AXL and AZD-5153 for BRD4. The similarity 
means were 0.13 for AXL and 0.10 for BRD4 (Figure 6B). 
Fourth, we calculated the mean pairwise Tanimoto similarity 
among the hits themselves. The mean pairwise similarity was 
0.17 for AXL and 0.11 for BRD4, with an average of 0.14 across 
both targets. These scores indicate that our hits are chemically 
novel, possessing distinct properties compared to known 

inhibitors of AXL and BRD4, and the pairwise similarity analysis 
further demonstrates the diversity within our set of hits.  

 

Figure 6. Box and scatter plots of our in vitro validated hits for both 
AXL and BRD4, displaying their (A) maximum Tanimoto similarity 
scores to the training datasets used for their discovery and (B) 
Tanimoto similarity scores to Bemcentinib and AZD-5153, 
respectively. 

 

3. DISCUSSION 
3.1 Advancements in AI-Driven Drug Discovery. This study 

had four main findings. First, we found significant 
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improvement in chemical dissimilarity between training and 
testing datasets when using t-SNE compared to stratified 
random splitting. Such diversity of chemical entities in datasets 
improves the ability of AI-driven models to find chemically and 
mathematically novel active chemical compounds against the 
target. Second, we found that the AI-driven ChemPrint model 
outperformed benchmark models in correctly predicting the 
confusion matrix on the most difficult test sets in retrospective 
studies. Third, we found that of the 41 compounds ChemPrint 
nominated as active against AXL and BRD4, 19 had activity at 
low concentrations (≤ 20 µM). This 46% hit rate (Table 4) for 
AXL and BRD4 inhibitors is a 64% increase over average rates 
reported by industry leaders5,6,7,8,9. Fourth, by evaluating 
ChemPrint during its learning process, we could observe the 
progressive formation of active and inactive clusters that 
accurately predicted the activity of unknown compounds in 
their respective ligand spaces.  

3.2 Data Curation and Splitting. The GALILEO pipeline 
provided high-quality datasets for robust model training. 
Defining compounds by bioactivity thresholds helped ensure 
that the datasets were large and highly specific to the targets 
of interest (AXL and BRD4), which is essential for finding potent 
inhibitors. Next, we wanted to diversify our train and test sets 
since such diversity is needed to find new chemical entities. 
We found that creating chemically diverse training and testing 
sets was greatly improved by the use of our newly developed 
t-SNE splitting method, i.e., lower average-maximum 
Tanimoto similarity scores than the stratified random split. 

3.3 Model Performance and Evaluation. We evaluated 
ChemPrint versus five benchmark models of drug discovery, 
and we found that AUROC scores for each method were 
dependent upon splitting technique. As seen in Table 3, if the 
“best” performing model were selected through metric 
evaluation on the stratified random split, RF would be 
nominated as the best model, but as demonstrated by the t-
SNE split, both ChemPrint and SVM perform better, 
showcasing their ability to generalize beyond their training 
data. The stratified random split confounded model 
performance and failed to provide granular differentiation 
between model abilities, especially for unseen chemical space. 
The t-SNE split allows for a better evaluation of models that 
can prospectively discover active compounds from novel 
chemical space. ChemPrint’s success is likely due to its Mol-
GDL architecture, which uses adaptive molecular embeddings 
instead of the static fingerprints used by conventional models, 
thereby enhancing its extrapolative potential.  

3.4 Adaptive Molecular Embeddings. Adaptive molecular 
embeddings allowed for continuous learning and refinement, 
as shown by the clear separations of active and inactive 
compounds in the visualizations of ChemPrint’s learned 
embeddings across epochs (Figure 3). Such insights should 
allow human drug developers to understand model 
performance that moves beyond AUROC and similar metrics. 
This is a quality that is unique to ChemPrint versus the 
comparative models, as they learn from static embeddings. 
This quality of ChemPrint allows for Human-In-The-Loop (HITL) 
interpretation and Informed Inductive Bias (IIB) and removes 

reliability concerns associated with alternative black-box AI 
drug discovery approaches. 

3.5 Novel Compound Identification and In Vitro Validation. 
ChemPrint screened a KCE inference library of approximately 
17,000 compounds and identified 41 molecules as potential 
hits for AXL and BRD4, which were then tested in vitro. Hits 
were conservatively defined as molecules showing in vitro 
enzymatic inhibition in an AXL kinase activity assay and a BRD4 
(BD1 + BD2) bromodomain activity assay at concentrations 
at/below 20 µM. This resulted in a hit rate of 46% (Table 4), 
which is a 64% increase over the average hit rates reported by 
industry leaders5,6,7,8,9. Importantly, all observed activity 
occurred at low concentrations (≤ 20 µM). In comparison, hit 
rates reported by other AI drug discovery companies are 
generally more permissive. Schrödinger has reported an 
average in vitro hit rate of 26% over 14 targets, but this 
includes hits at concentrations up to 30 μM and lacks detailed 
data for a fine-grain analysis of compound diversity5. 
Atomwise published an average hit rate of 8.8% across 22 
targets, which encompasses hits at concentrations up to 250 
μM and includes compounds that may exhibit binding and not 
activity6. Insilico Medicine reported an average hit rate of 28% 
across two targets, with hits at concentrations up to 25 μM, 
including both lead optimization-phase compounds and 
binders without confirmed activity7,8,9. These comparisons 
highlight the rigorous criteria and effectiveness of our platform 
in identifying active compounds at lower, therapeutically 
relevant concentrations. 

3.6 Chemical Dissimilarity. The similarity analysis of the 19 
validated hits revealed considerable chemical novelty, with an 
average-maximum Tanimoto similarity score of 0.36 to their 
training set and scores of 0.13 (AXL) and 0.10 (BRD4) relative 
to clinical stage compounds. In the industry, a Tanimoto 
similarity score of 0.85 is commonly used as a threshold for 
chemical similarity27,28. Our hits, with scores well below this 
threshold, demonstrate novel and distinct chemistry. In fact, 
we set our bar much higher, requiring our average Tanimoto 
similarity to be less than 0.5. A simple Tanimoto similarity 
search would have failed to identify these hits, highlighting 
ChemPrint's ability to generalize beyond its training data. This 
capability is particularly important as predicting the efficacy of 
molecules that do not closely resemble any previously tested 
compounds remains a significant challenge in computer-aided 
drug design11,29. Additionally, the mean pairwise similarity 
among the hits themselves was 0.14 across both targets, 
demonstrating diversity within our set of hits and highlighting 
the hit-finding capabilities of ChemPrint. ChemPrint's success 
in discovering novel and diverse chemistry, dissimilar to 
previously explored compounds, is likely due to its adaptive 
fingerprints and our evaluations using the t-SNE split. 

3.7 Limitations and Future Work. While this study 
showcases the potential of AI-driven models for drug 
discovery, limitations remain. First, the reliance on t-SNE 
splitting may not capture all aspects of chemical diversity, and 
model performance may vary depending on data quality and 
diversity. Second, the GALILEO and ChemPrint platforms will 
likely perform differently for different targets and when 
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exploring different datasets. Third, AI models will continue to 
improve, which should enhance these and other models. 
Fourth, the hit rate of 46% for two notoriously difficult targets 
to drug leads the industry5,6,7,8,9, but the found chemical 
entities have not been tested in vivo. 

4. CONCLUSION 
Our technology stack (GALILEO with prospective data 

segmentation and ChemPrint with adaptive molecular 
embeddings) nominated 41 new compounds to have a desired 
therapeutic activity for AXL or BRD4, and 19 of them had such 
activity at low concentrations with high chemical novelty. Such 
high hit rates with diverse chemical compounds suggest that 
the proposed platform may overcome traditional drug 
discovery barriers and efficiently discover novel therapeutic 
agents. Furthermore, GALILEO was designed to be versatile 
and indication-agnostic, offering broad applicability across 
disease targets beyond AXL and BRD4. 

5. METHODS 
5.1 Data Sets and Preparation for Prospective Discovery. 

5.1.1 Data Curation. Our GALILEO drug discovery pipeline was 
used to curate protein-ligand interaction data for AXL and 
BRD4. GALILEO identified primary source literature 
(supporting documents), extracted protein-specific structure-
activity relationship data that was checked by our experts and 
filtered for undesired characteristics, such as Pan Assay 
Interference Compounds (PAINS)30, molecular weight extrema, 
and duplicate compounds. Based on the distribution of activity 
values in the training sets, a potency cutoff of 1 µM was 
applied to separate active from inactive compounds in each 
set. This cutoff created a balance between active and inactive 
compounds and minimized data exclusion. 

5.1.2 Train-Test Split. To split our data into training and test 
sets, we utilized t-SNE to project ECFP4 encoded molecule data 
into 2-dimensions. We used the line y = 0 to separate training 
(above) and test (below) data. This decision boundary created 
chemically distinct training data and testing data, while also 
creating our desired ~50-50% (within 2%) train-test split that 
maintains class balance. Code Availability: GitHub repository 
for the t-SNE splitting method is archived at 
https://github.com/Model-Medicines/tSNE-Chemical-Data-
Splitting.  

5.1.3 Split Evaluation. The Tanimoto coefficient37 is a 
common metric to evaluate the chemical similarity between 
molecules (represented as bit-vectors), and is defined as: 

 

where  is the number of common 1’s in the bit-

vectors and  is the number of indices where 
either bit-vector has a 1. This value ranges from 0 to 1, with a 
value of 0 indicating completely distinct representations and 
1 indicating identical representations. Using this metric, we 
can approximate the chemical diversity of the dataset split via 

the average of the maximum Tanimoto coefficient of each 
test molecule when measured against all training points, i.e.: 

 

5.2 ChemPrint Architecture. ChemPrint leverages Mol-GDL 
to learn the adaptive embeddings derived from its training 
data to make predictions when given novel inference sets 
(Figure 1D). The input data takes the form of a geometric 
graph, a molecular representation that encapsulates the 
structural information of each datapoint, to which one-hot 
encoded features are passed in. This graph-based learning 
enabled us to encode and leverage the inherent dependencies 
and relationships among the data. ChemPrint architecture 
encompasses an end-to-end Graph Convolutional Network 
(GCN) with a Multilayer Perceptron (MLP) module to facilitate 
positive and negative classification. Select normalization, 
activation, pooling, and dropout layers are used. 

5.3 Benchmark Models. ChemPrint was benchmarked 
against five widely utilized machine learning algorithms. For a 
molecule to be evaluated by a classifier, it must first be 
processed into a vectorized numerical representation or 
embedding that preserved as much structural and chemical 
information as possible. We utilized the general hashed radial 
fingerprint, ECFP4 (radius of 2) encoded in 2048 bits to 
preprocess the data used to train and test the benchmark 
models. Logistic regression (LR), random forest (RF), k-nearest 
neighbors (KNN), and support vector machine (SVM) were 
implemented using the scikit-learn library23. The extreme 
gradient boosting (XGB) was built using the XGBoost library24. 

5.4 Performance Evaluation. 5.4.1 Area Under the Receiver 
Operating Characteristics (AUROC). The Receiver Operating 
Characteristic (ROC) curve plots a classifier’s true positive rate 
(sensitivity) versus its false positive rate (1-specificity) as the 
classification threshold is varied from 0 to 1. The AUROC curve 
established relationships between the model’s predicted 
probabilities of activity and true binding status, reflecting the 
likelihood of the classifier assigning a higher probability of a 
positive example (active molecule) compared to a negative 
example (inactive molecule). AUROC was calculated using the 
scikit-learn library23 for each replicate (n=10) of every model-
splitting method pair. 

 5.4.2 Molecular Embeddings. ChemPrint learns optimal, 
real-valued, differentiable, property-specific, molecular 
embeddings by leveraging its GCN instead of the non adaptive 
ECFP fingerprinting method (used by the LR, RF, KNN, SVM, 
XGB models). GCN latent space molecular embeddings are 
engineered and optimized through end-to-end back 
propagation. In comparison to embeddings such as ECFP, 
ChemPrint's embeddings are adaptive and self optimizing for a 
specific molecular property. Figure 1D depicts the graphical 
representation of the adaptive embedding used as input for 
our model as compared to the stagnant molecular fingerprint 
leveraged by benchmark models. 

For our analysis of ChemPrint’s embedding space, we 
captured the model’s learned embeddings at progressive 
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epochs during the training process (Figure 4). We then 
projected these embeddings down to 2 dimensions using t-
SNE, and plotted all points colored according to activity and 
distinguished them as train or test molecules.  

5.5 ChemPrint Compound Nomination. 5.5.1 Known 
Chemical Entity (KCE) Library. Our known chemical entity (KCE) 
inference set contains ~17,000 curated compounds that have 
been thoroughly characterized and have a documented history 
in clinical trials. For each compound in this inference set, 
pertinent information such as synonyms/identifiers, 
absorption, distribution, metabolism, excretion, toxicity, 
clinical trial details, current approval statuses, and 
purchasability are recorded. 

5.5.2 Freedom to Operate Pipeline (FTO). As part of the 
GALILEO platform of AI drug discovery tools, each predicted 
active compound from our in silico discovery pipeline is 
investigated for FTO using data miners and web search tools. 
Non-obviousness and novelty of the predicted compounds are 
verified using these tools. The data miners make use of our 
exhaustive set of synonyms and identifiers for each compound 
to perform in depth target and indication searches. These 
searches are performed across the six databases ACM, Arxiv, 
Biorxiv, Medrxiv, Pubmed, and Scopus. Primary source 
material is returned when both the synonym/identifier and 
indication or synonym/identifier and target is found in the 
same publication. The identified literature is then subjected to 
our natural language processing (NLP) and large language 
model (LLM) packages to ensure that followup manual review 
relies on proper relevance and filtration of inconsequential co-
mentions of compound and target in the literature. 

5.6 Enzyme Inhibition Assays. All in vitro experiments were 
conducted by BPS Bioscience Inc.  

5.6.1 AXL Kinase Assay. The assay was performed using ADP-
Glo Kinase assay reagents (Promega). It measures kinase 
activity by quantitating the ADP amount produced from the 
enzymatic reaction. The luminescent signal from the assay is 
correlated with the amount of ADP present and is directly 
correlated with the amount of kinase activity. The compounds 
were diluted in 10% DMSO and 2.5 µl of the dilution was added 
to a 25 µl reaction so that the final concentration of DMSO is 
1% in all of reactions. All of the enzymatic reactions were 
conducted at 30 ºC for 45 minutes. The 25 µl reaction mixture 
contains 40 mM Tris, pH 7.4, 10 mM MgCl2, 0.1 mg/ml BSA, 1 
mM DTT, 10 µM ATP, kinase substrate and the enzyme. After 
the enzymatic reaction, 25 µl of ADP-Glo reagent was added 
and incubated for 45 - 60 minutes at room temperature, 
followed by another 45 mins incubation with 50 µl of kinase 
detection mixture. Luminescence signal was measured using a 
BioTek Synergy 2 microplate reader. 

5.6.2 BRD4 (BD1 + BD2) Bromodomain Assay. The assay was 
performed by TR-FRET technology using recombinant 
bromodomains (BD1 and BD2) and the endogenous BET 
Ligand. The TR-FRET signal from the assay is correlated with 
the amount of Ligand binding to the bromodomain. The 
compounds were diluted in 100% DMSO. They were diluted 
20-fold in 5% DMSO in Reaction Buffer and 2 µl of the dilution 

was added to a 20 µl reaction so that the final concentration of 
DMSO is 0.5% in all of reactions. The binding reaction was 
conducted at room temperature. The 20 µl reaction mixture in 
Assay Buffer contains the protein, the indicated amount of the 
inhibitor, acetylated BET ligand (or non-acetylated ligand for 
negative control wells), and the reaction dyes. The reaction 
mixture incubated for 120 min prior to reading the TR-FRET 
signal. Fluorescence signals for both the donor and acceptor 
dyes were measured using a Tecan Infinite at an excitation of 
340 nm and emissions at 620 nm and 665 nm. 
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