bioRxiv preprint doi: https://doi.org/10.1101/2024.03.22.586314; this version posted July 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ChemPrint: An Al-Driven Framework for Enhanced Drug
Discovery

Tyler J. Umansky*”, Virgil A. Woods*, Sean M. Russell*, Davey M. Smith*, and Daniel J. Haders***

*Model Medicines, La Jolla, California, United States

LUniversity of California San Diego, La Jolla, California, United States

ABSTRACT: Traditional High-Throughput Screening (HTS) drug discovery is inefficient. Hit rates for compounds with clinical
therapeutic potential are typically 0.5% and only up to 2% maximally. Deep learning models have enriched screening rates to 28%;
however, these results include hits with non-therapeutic relevant concentrations, insufficient novelty to their training set, and
traverse limited chemical space. This study introduces a novel artificial intelligence (Al)-driven platform, GALILEO, and the
Molecular-Geometric Deep Learning (Mol-GDL) model, ChemPrint. This model deploys both t-distributed Stochastic Neighbor
Embedding (t-SNE) data splitting to maximize chemical dissimilarity during training and adaptive molecular embeddings to enhance
predictive capabilities and navigate uncharted molecular territories. When tested retrospectively, ChemPrint outperformed a panel
of five models for the difficult-to-drug oncology targets, AXL and BRD4, achieving an average AUROC score of 0.897 for AXL and
0.876 for BRD4 using the t-SNE split, compared to benchmark model scores ranging from 0.826 to 0.885 for AXL and 0.801 to 0.852
for BRD4. In a zero-shot prospective study, in vitro testing demonstrated that 19 of 41 compounds nominated by ChemPrint against
AXL and BRD4 demonstrated inhibitory activity at concentrations < 20 pM, a 46% hit rate. The 19 hits reported an average-maximum
Tanimoto similarity score of 0.36 relative to their training set and scores of 0.13 (AXL) and 0.10 (BRD4) relative to clinical stage
compounds for these targets. Our findings demonstrate that increasing test set difficulty through training and testing ChemPrint
on datasets with maximal dissimilarity enhances the predictive capabilities of the model. This results in the discovery of compound
libraries at high hit rates with low therapeutic concentrations and high chemical novelty. Taken together, the proposed platform
sets a new performance standard.

1. INTRODUCTION The inefficiency of these models is evident in published in vitro
hit rates from the platforms of venture-backed and public Al
drug discovery companies. Based on the hypothesis that
commercial platforms can consistently perform well across
multiple protein targets and can discover entire libraries of
novel hits rather than just isolated successes, we compare the
hit rates of Al drug discovery platforms that could be averaged
across at least two different targets and where at least ten
compounds were screened per target. Schrédinger has
reported a pipeline-wide average in vitro hit rate of 26% over
14 targets, but also includes hits at concentrations up to 30
WUM>. Atomwise published an average hit rate of 8.8% across 22
targets; however, this encompasses hits at concentrations up
to 250 uMe. Insilico Medicine has reported an average of 28%
across 2 targets, though this includes hits at concentrations up
to 25 uM and lead optimization-phase hits”2°.

1.1 Traditional Drug Discovery. Conventional drug discovery
and development requires extensive resources and still has
low efficiency. In a typical early drug discovery program, the
process of screening thousands of compounds with High-
Throughput Screening (HTS) yields a mere ~2% hit rate,
maximallyl. This inefficiency is compounded by the lead
optimization process, which requires refining compounds to
achieve the desired potency and to address a full Target
Product Profile (TPP). In total, 10-15 years? and up to ~$6
billion in capital are typically required to discover a compound
and bring it to FDA approval®. This overall inefficiency of
traditional drug discovery practices has necessitated the
development of new methods, including the use of artificial
intelligence (Al).

1.2 Challenges with Al Drug Discovery. To date, no Al-
discovered therapeutic has achieved FDA approval, and few
have progressed beyond preclinical animal model proof of
concept®. Two reasons for this limited success are that Al
platforms often struggle to sufficiently improve prospective
discovery accuracy and to identify potent chemistry
significantly different from that of known active molecules.

These Al approaches not only have limited hit rates but also
report non-standardized concentrations to define “hits”, likely
leading to inflated hit rates that permit concentrations that are
too high to be therapeutically


https://doi.org/10.1101/2024.03.22.586314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.22.586314; this version posted July 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Data Splitting
Train and Validation Test
A) Stratified Random Split —— 51 [ — — 7 \/ = " s
/ / \
O Q| & a LPL
Train and Validation Test
—

B) t-SNE Split

O O [Frodo| [xPap

Modeling Approach

C) Traditional Approach

r=0 c [1]
o]
=t = E LR, RF, KNN,
~ ~OH OH h - 5 "1 SVM, XGB O
H 'l:l‘ r=2 o]
Predicted
Molecule Morgan Fingerprinting Function Fingerprint Model Bioactivity
D) ChemPrint — Adaptive Molecular Embeddings with Backpropagation (1000x) 4—‘
v
iﬁﬁ Feature Vectors >
>
>
_ > g
, Pl - 8 380 m
N oH ﬁ <
H i "1
Molecule Graph Message Passing Sample Output Pooling Function Fingerprint Multilayer Predicted
Graph Convolutions Perceptron Bioactivity

Figure 1. (A) Stratified Random Split: In this approach, the dataset is randomly divided into training, validation and test sets. The illustration shows how
different groups of molecular structures (green, orange, purple) are distributed across the training set, validation set and test set. This distribution process
leads to neighboring pairs of compounds appearing in the training and test set or the validation and test set, for example. This data leakage between data
sets maximizes retrospective analysis scores, but limits the models ability to extrapolate to novel chemical space in prospective drug discovery studies. (B)
t-SNE Split: This approach uses t-Distributed Stochastic Neighbor Embedding (t-SNE) to partition the dataset. Molecules are clustered based on their
structural similarity in a reduced-dimensional space. The illustration shows molecules of the same chemical class (green, orange, purple) grouped together
within the same dataset. Molecules within the training and validation set are different from those in the unobserved test set. This splitting methodology
creates a retrospective training environment where the test set consists of molecules that are structurally different from those in the training and
validation sets, which more closely resembles the prospective drug discovery environment for novel discovery and enhances the models ability to
extrapolate to novel chemical space. (C) Traditional Modeling Approach: This method involves converting the molecule's structure into a fingerprint using
the Morgan fingerprinting function (e.g., ECFP), which encodes structural features into a binary vector. This fingerprint is then used as input for machine
learning models such as SVM (Support Vector Machine), RF (Random Forest), LR (Logistic Regression), XGB (Extreme Gradient Boosting), or KNN (K-
Nearest Neighbors) to predict the bioactivity of the molecule. As shown, the standard fingerprint is a static embedding that is bounded by a
predetermined encoding that is not updated with backpropagation, limiting its competency. (D) ChemPrint Approach: This method represents the
molecule as a graph, where atoms and bonds are treated as nodes and edges, respectively. Each node is initialized with select feature vectors, and
message passing graph convolutions update and refine the feature vectors for each node. These are pooled to form a molecular fingerprint, which serves
as input to a multilayer perceptron model to predict bioactivity. The feedforward prediction results backpropagate to redefine model weights 1000 times,
creating an adaptive molecular embedding cycle that enhances predictive capabilities and aids the navigation of uncharted molecular territories.
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viable>®78° Furthermore, few of the compounds discovered
as hits demonstrate significant chemical novelty, highlighting
the inability of these models to predict properties of
compounds beyond the chemical space they have seen'®l,
One reason for this, is that standard approaches to model
validation inadvertently bias models, limiting their
competency to the same chemical space as their training data.
These challenges arise because Al models are trained and
tuned on datasets lacking chemical diversity and evaluated
using conventional performance indicators. While this method
shows the models' technical ability to identify hits from past
(retrospective) data, it fails to predict and discover drugs that
will have a real clinical impact in future (prospective) studies.
New evaluation strategies must be deployed that prioritize the
extrapolative ability of Al models to infer beyond known
chemical territories.

1.3 Model Training Environments. Data splitting
methodology for training, validation, and testing sets prior to
machine learning (ML) model training and tuning has a
significant impact on prediction accuracy. In most ML
applications, the common method for splitting data, called
'stratified random splitting', is used'® (Figure 1A). However,
this method does not work well for ML drug prediction models
because it fails to properly evaluate their performance!3. Test
sets generated by this method of splitting often present
models with an oversimplified prediction task. Feinberg et al.
have demonstrated that random splitting significantly
overestimates the generalization and extrapolation
capabilities of ML methods in drug discovery!®. Alternative
dataset splitting techniques, like the temporal split method
utilized by Feinberg et al., aim to mitigate this by organizing
data based on the publication order®!4. This method operates
on the principle that the sequential evolution of substructural
chemistries over time can provide a more realistic challenge
when splitting data for model validation. However, assuming
publication dates adhere to medicinal chemistry pedigree can
introduce discrepancies, as these dates may not align with the
actual order of discovery. While the intention behind the
temporal split employed is creative, in vitro results that would
validate its impact on real-world drug discovery remain
unpublished. To this end, we evaluated a novel train-test
splitting methodology to directly maximize dataset
dissimilarity and challenge the model in an effort to find new
chemical novelty (Figure 1B).

1.4 Adaptive Molecular Embeddings. Drug discovery
models powered by Al are limited by molecular embeddings
that do not evolve or adapt as the model gains knowledge. The
reliance on static molecular embeddings, such as Morgan
Fingerprints like Extended Connectivity FingerPrints (ECFP),?
limits the ability to discover new chemical entities active
against the target. Specifically, ECFP encodings use bits that
treat similar molecular characteristics as if they were
unrelated, thus requiring machine learning algorithms to
relearn relationships®? (Figure 1C). To address this, we used an
adaptive molecular embedding technique that evolves with
the model's learning process, enabling the in silico

identification of multiple novel therapeutic candidates (Figure
1D).

1.5 Case Study. In this study, we evaluate our Al drug
discovery platform (GALILEO) and its zero-shot capable
Molecular-Geometric Deep Learning (Mol-GDL)*® model
(ChemPrint) to target the oncogenic AXL (Gas6/AXL pathway?®)
and BRD4 (BET family?’) proteins. These two targets were
chosen because they affect multiple cancer types, such as
breast cancer, pancreatic cancer, and glioblastoma!®!’ and
have demonstrated particularly low hit rates in the post HTS
steps of drug discovery, rendering them the classification of
‘undruggable’'®1°. Supported by in vitro experiments, our data
indicate significant progress in developing Al that can discover
drugs for challenging targets. Importantly, GALILEO was
designed to be versatile and can be applied to a wide range of
therapeutic areas beyond AXL and BRDA4.

2. RESULTS

2.1 Data Preparation. 2.1.1 AXL and BRD4 Data Curation and
Binarization. To discover potent, novel compounds that have
high drug discovery potential, it is critical that training datasets
are built-to-purpose, meaning they are specifically optimized
for a particular target. Using our GALILEO data acquisition and
curation pipeline, we procured large, high-quality datasets
(see methods) from primary source literature for AXL and
BRD4. To identify the most highly potent compounds, we
defined compounds with a bioactivity measurement below 1
UM as active and above as inactive (Table 1).

Table 1. Active and Inactive Counts for AXL and BRD4 datasets using a
1 uM threshold.

Target Actives Inactives Total
AXL 1823 982 2805
BRD4 3668 1987 5655

2.1.2 AXL and BRD4 Train-Test Splits. We split the AXL and
BRD4 data into training and testing sets based on an 80%-20%
stratified random split as well as our proposed splitting
methodology that utilized t-distributed Stochastic Neighbor
Embedding (t-SNE)?° (see methods). This t-SNE splitting
protocol aimed to increase the structural and pharmacophoric
dissimilarity between training and testing sets, allowing an
evaluation of the model’s ability to generalize to new, unseen
chemical compounds. Visualization of the t-SNE split revealed
clustering of molecules with similar structural and
pharmacophoric properties (Figure 2). To imitate a data-
limited scenario, the cutoff boundary was drawn to create a
50-50% proportion of data within the split train-test sets.
Similarly typed compounds were retained in either the train or
test set, resulting in two chemically distinct data sets. To
demonstrate the chemical dissimilarities between the two
datasets, we calculated their average-maximum test-train
Tanimoto coefficients?¥22,
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For the stratified random splits, the average-maximum
Tanimoto similarity scores were 0.75 for AXL and 0.80 for
BRD4, while for the t-SNE splits, the scores were 0.59 and 0.53,
respectively (Table 2). Thus, comparing the splitting methods
there was a 27% increase in chemical dissimilarity for AXL and
51% for BRD4 when using the t-SNE method versus the
stratified random method. In other words, we observed that
the t-SNE method provided better chemical separation
between train and test data for both AXL and BRD4. In
principle, this t-SNE split added the chemical diversity
challenge needed to evaluate a model capable of accurate
extrapolation outside of compounds similar to those in the
training set.

Test

-80 6 -40 -20 20 a0 60 80

t-SNE D|men5|on 1

Figure 2. t-SNE visualization of train-test splits for (A) AXL and (B)
BRD4. Points represent compounds: inactive train (magenta
diamonds), active train (cyan diamonds), inactive test (magenta
circles), and active test (cyan circles). The red line at y = 0 separates
the training set (above) from the testing set (below). Clustering
patterns indicate distinct chemical environments in each set,
demonstrating effective separation.

Table 2. Stratified Random and t-SNE Data Split Comparison for AXL
and BRD4 datasets.®

Split  Train Train Test Test Tan

Target Method Actives Inactives Actives Inactives Similarity

AXL SR 1456 785 367 197 0.75
t-SNE 931 454 892 528 0.59

BRD4 SR 2932 1589 736 398 0.80
t-SNE 1639 1164 2029 823 0.53

%SR: Stratified Random Split, Tan: Tanimoto

ROC Curves with t-SNE Split (AXL)

A)o ]
0.8 -
)
2 0.6
%]
f
3
> 041 —— ChemPrint (AUC=0.900)
a —— RF (AUC=0.885)
—— KNN (AUC=0.826)
0.2 1 —— SVM (AUC=0.885)
—— XGB (AUC=0.872)
0.0 —— LR (AUC=0.871)
0.0 0.2 0.4 0.6 0.8 1.0
FPR (1-Specificity)
ROC Curves with t-SNE Split (BRD4)
B)1o/
0.8 1
)
2 0.6
‘@
c
A
E 0.4 —— ChemPrint (AUC=0.880)
e —— RF (AUC=0.851)
—— KNN (AUC=0.801)
0.2 1 —— SVM (AUC=0.852)
—— XGB (AUC=0.806)
0.0 4 —— LR (AUC=0.814)

0.0 0.2 0.4 0.6 0.8 1.0
FPR (1-Specificity)

Figure 3. Reported ROC curves and associated AUROC values for the
best performing model across all replicates for (A) AXL and (B) BRDA4.
Metrics are generated from our t-SNE test split.

2.2 Performance Evaluation: ChemPrint vs. Benchmark
Models. We performed a comparative case study analyzing the
performance of our zero-shot, Mol-GDL model, ChemPrint and
five benchmark models: logistic regression (LR), random forest
(RF), k-nearest neighbors (KNN), support vector machine
(SVM), and extreme gradient boosting (XGB)?>?4. To further
validate our t-SNE data splitting method on AXL and BRD4
datasets, we assessed the performance of the models with
both our t-SNE split and the stratified random split.

4
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Table 3. Benchmarking Test Set Performances (Average AUROC + 95% Confidence Interval)®

AXL BRD4
t-SNE Stratified Random t-SNE Stratified Random

ChemPerint 0.897 £ 0.002 0.934 £ 0.001 0.876 £ 0.003 0.948 + 0.001
SVM 0.885 £ 0.000 0.949 £ 0.000 0.852 + 0.000 0.945 £ 0.000
RF 0.879 £ 0.003 0.961 £ 0.001 0.842 £ 0.004 0.951 £ 0.001
LR 0.871 £ 0.000 0.957 £ 0.000 0.814 £ 0.000 0.941 £ 0.000
XGB 0.872 £ 0.000 0.938 £ 0.000 0.806 + 0.000 0.929 £ 0.000
KNN 0.826 + 0.000 0.930 £ 0.000 0.801 £ 0.000 0.936 £+ 0.000
Average of Each Split 0.872 0.945 0.832 0.942

“Metric scores for all evaluated models using both the stratified random split and t-SNE split on AXL and BRD4 data. Statistics are averaged over
ten distinct model trainings. SVM: Support Vector Machine, RF: Random Forest, LR: Logistic Regression, XGB: Extreme Gradient Boosting, KNN:

K-Nearest Neighbors.

Each model architecture and splitting technique pair was
trained and tested ten times, with the Area Under the Receiver
Operating Characteristic (AUROC) value recorded for each
replicate. A high AUROC means that the model is very good at
distinguishing between the different classes (e.g., active vs.
inactive compounds). The averages of these AUROC values are
reported in Table 3, and the single best model run is reported
as an ROC curve in Figure 3.

For both AXL and BRD4, the ChemPrint models with t-SNE
splitting demonstrated the highest performance based on
both average (Table 3) and single best AUROC scores (Figure
3). With the t-SNE split, ChemPrint had an average AUROC
score of 0.897 for AXL, whereas other model scores ranged
from 0.826 to 0.885. ChemPrint also outperformed all other
models for BRD4 when using the t-SNE split with an average
AUROC of 0.876 compared to the benchmark models that
range from 0.801 to 0.852. The best ChemPrint iterations had
higher AUROC scores than each other model across both
proteins for the t-SNE split, with score improvements of up to
~10%, as seen in Figure 3.

However, on average, across the six models, the AUROC
scores for t-SNE splits were approximately ~10% lower than
those for random stratified splits. This was expected because
the t-SNE split created a more challenging evaluation set by
increasing the dissimilarity between training and testing sets,
better assessing the model's generalization capability. For AXL
models, switching from stratified random splitting to t-SNE
splitting resulted in a decrease in mean AUROC from 0.945 to
0.872 (~8% decrease). Similarly, BRD4 models showed a
decrease from 0.942 to 0.832 (~12% decrease). Examining the
average-maximum Tanimoto similarity scores (Table 2) in
relation to AUROC results, we observed that a decrease in test-
train similarity led to a corresponding decrease in AUROC. This
suggested that higher test-train similarity (as seen with
stratified random splits) inflated AUROC scores, which can be
misleading regarding the model's ability to generalize. In
contrast, the t-SNE split created a more rigorous and
representative evaluation of the model's extrapolative ability

by increasing the dissimilarity between molecules in the
training and test datasets.

2.3 Quality Assessment of Adaptive Molecular
Embeddings. To elucidate the underlying adaptive molecular
embedding process of ChemPrint, we plotted the t-SNE of
model latent embeddings at each epoch. The t-SNE
visualizations demonstrate that at training initiation (epoch 0),
activity classes were largely intersecting embeddings, with no
obvious pattern evident (Figure 4A), suggesting that no
chemical or structural information has yet been learned by
ChemPrint (i.e., there was no separation between active and
inactive compounds and clear relationships between
compounds were not present). As training epochs progressed,
the latent representations generated by ChemPrint
demonstrated an evolution in embedded learning on
molecular structure and activity (Figure 4B). Specifically, there
was prominent clustering of active and inactive compounds.
With few errors in assignments, the active and inactive clusters
also served as powerful predictors of activity for unseen
compounds in the respective ligand spaces by assigning the
label of the nearest cluster to the point in consideration (Figure
4C-E).

2.4 ChemPrint Inference Predictions. Ensembles of 100
independently trained ChemPrint models for each target were
trained on complete curated AXL and BRD4 datasets and
deployed to predict activity against compounds in our known
chemical entity (KCE) inference library. This library contained
approximately 17,000 compounds selected based on having in-
human safety and tolerability data, typically from Phase 1 and
2 clinical trials. All compounds from our KCE library with
predicted activity against AXL and BRD4 were priority-ranked
and then screened by our Freedom To Operate (FTO) pipeline
for novelty to target, novelty to indication, and purchasability
(see methods). The FTO pipeline identified 41 compounds that
met the criteria for novelty to target, novelty to indication, and
purchasability. These 41 compounds were subsequently
evaluated in vitro against their respective targets.

2.5 In Vitro Compound Validation. The 41 molecules
predicted by ChemPrint were tested in vitro for
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Figure 4. t-SNE visualizations of model latent embeddings of AXL t-SNE split data during ChemPrint’s training cycles. (A) t-SNE plot at ChemPrint
epoch 1 (initialization). At this stage, active (teal) and inactive (magenta) training compounds are largely overlapping, indicating no learned
chemical or structural information. (B) t-SNE plots at intermediate training epochs (200, 400, 600, and 800). As training progresses, clustering of
active (teal) and inactive (magenta) training compounds begins to emerge, demonstrating the model's ability to differentiate between active and
inactive compounds based on learned molecular features. (C) t-SNE plot at ChemPrint epoch 1000 (training). Clear and distinct clusters of active
(teal) and inactive (magenta) training compounds are visible, indicating successful embedding of molecular activity information. (D) t-SNE plot at
ChemPrint epoch 1000 (inference). Here, active (blue) and inactive (red) test compounds are plotted, showing that the model can generalize its
learned embeddings to unseen compounds, with test compounds correctly clustering near their respective training clusters. (E) Combined t-SNE
plot at ChemPrint epoch 1000 (training and inference). This plot includes both training (teal and magenta) and test (blue and red) compounds,
demonstrating the overall effectiveness of the embeddings in predicting the activity of unseen compounds based on their proximity to the

nearest training clusters.

enzymatic inhibition via an AXL kinase activity assay and a AXL Compound 7 5.6
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inhibition at < 20 uM, resulting in a 46% hit rate (Table 4). The AXL Compound 9 ~20.0
structure of Compound 9 is drawn in Figure 5A. AXL Compound 10 17% @ 10 uM
AXL Compound 11 27% @ 20 uM
Table 4. Contains IC50 values of compound inhibitory effects on AXL AXL Compound 12 41% @ 20 pM
and BRD4 activities. BRD4 Compound 13 16.8
Target Drug Name IC50 (uM) BRD4 Compound 14 ~20.0
AXL Compound 1 0.21 BRD4 Compound 15 36% @ 20 uM
AXL Compound 2 0.26 BRD4 Compound 16 24% @ 20 uM
AXL Compound 3 1.9 BRD4 Compound 17 22% @ 20 uM
AXL Compound 4 4.6 BRD4 Compound 18 30% @ 20 uM
AXL Compound 5 4.8 BRD4 Compound 19 28% @ 20 uM
AXL Compound 6 5.3
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inhibitors of AXL and BRD4, and the pairwise similarity analysis
further demonstrates the diversity within our set of hits.
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Figure 5. Chemical structures of (A) Compound 9, (B) AZD-
5153, and (C) Bemcentinib. ChemPrint discovered Compound 9
as an inhibitor of AXL with an IC50 = 20 uM. AZD-5153 is a
potent BRD4 inhibitor actively recruiting for phase 1b/2 clinical
trials?®>. Bemcentinib is a potent and selective inhibitor of AXL and

has completed phase 2 clinical trials?®.

2.6 Chemical Dissimilarity. To quantify the chemical novelty
of our findings, we conducted four types of Tanimoto similarity
analyses on our 19 validated hits using ECFP4 fingerprints. The
analyses were performed against the training data used for
their discovery, post-Phase 1la AXL and BRD4 clinical trial
compounds (AZD-5153 and Bemcentinib) (Figure 5B-C), all
available ChEMBL data for each target, and a pairwise
comparison among the hits themselves. First, we recorded the
maximum Tanimoto similarity between each in vitro hit and
both active and inactive compounds from the training set. The
similarity means were 0.40 for AXL and 0.30 for BRD4, with an
average of 0.36 across both targets (Figure 6A). Second, we
recorded the maximum Tanimoto similarity between each in
vitro hit and all ChREMBL compounds for each target. The mean
similarity across both targets was 0.37 (Figure S1). Third, we
recorded the Tanimoto similarity between each in vitro hit and
Bemcentinib for AXL and AZD-5153 for BRD4. The similarity
means were 0.13 for AXL and 0.10 for BRD4 (Figure 6B).
Fourth, we calculated the mean pairwise Tanimoto similarity
among the hits themselves. The mean pairwise similarity was
0.17 for AXL and 0.11 for BRD4, with an average of 0.14 across
both targets. These scores indicate that our hits are chemically
novel, possessing distinct properties compared to known
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Figure 6. Box and scatter plots of our in vitro validated hits for both
AXL and BRD4, displaying their (A) maximum Tanimoto similarity
scores to the training datasets used for their discovery and (B)
Tanimoto similarity scores to Bemcentinio and AZD-5153,
respectively.

3. DISCUSSION

3.1 Advancements in Al-Driven Drug Discovery. This study
had four main findings. First, we found significant
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improvement in chemical dissimilarity between training and
testing datasets when using t-SNE compared to stratified
random splitting. Such diversity of chemical entities in datasets
improves the ability of Al-driven models to find chemically and
mathematically novel active chemical compounds against the
target. Second, we found that the Al-driven ChemPrint model
outperformed benchmark models in correctly predicting the
confusion matrix on the most difficult test sets in retrospective
studies. Third, we found that of the 41 compounds ChemPrint
nominated as active against AXL and BRD4, 19 had activity at
low concentrations (< 20 uM). This 46% hit rate (Table 4) for
AXL and BRD4 inhibitors is a 64% increase over average rates
reported by industry leaders®®”#° Fourth, by evaluating
ChemPrint during its learning process, we could observe the
progressive formation of active and inactive clusters that
accurately predicted the activity of unknown compounds in
their respective ligand spaces.

3.2 Data Curation and Splitting. The GALILEO pipeline
provided high-quality datasets for robust model training.
Defining compounds by bioactivity thresholds helped ensure
that the datasets were large and highly specific to the targets
of interest (AXL and BRD4), which is essential for finding potent
inhibitors. Next, we wanted to diversify our train and test sets
since such diversity is needed to find new chemical entities.
We found that creating chemically diverse training and testing
sets was greatly improved by the use of our newly developed
t-SNE splitting method, i.e., lower average-maximum
Tanimoto similarity scores than the stratified random split.

3.3 Model Performance and Evaluation. We evaluated
ChemPrint versus five benchmark models of drug discovery,
and we found that AUROC scores for each method were
dependent upon splitting technique. As seen in Table 3, if the
“best” performing model were selected through metric
evaluation on the stratified random split, RF would be
nominated as the best model, but as demonstrated by the t-
SNE split, both ChemPrint and SVM perform better,
showcasing their ability to generalize beyond their training
data. The stratified random split confounded model
performance and failed to provide granular differentiation
between model abilities, especially for unseen chemical space.
The t-SNE split allows for a better evaluation of models that
can prospectively discover active compounds from novel
chemical space. ChemPrint’s success is likely due to its Mol-
GDL architecture, which uses adaptive molecular embeddings
instead of the static fingerprints used by conventional models,
thereby enhancing its extrapolative potential.

3.4 Adaptive Molecular Embeddings. Adaptive molecular
embeddings allowed for continuous learning and refinement,
as shown by the clear separations of active and inactive
compounds in the visualizations of ChemPrint’s learned
embeddings across epochs (Figure 3). Such insights should
allow human drug developers to understand model
performance that moves beyond AUROC and similar metrics.
This is a quality that is unique to ChemPrint versus the
comparative models, as they learn from static embeddings.
This quality of ChemPrint allows for Human-In-The-Loop (HITL)
interpretation and Informed Inductive Bias (lIB) and removes

reliability concerns associated with alternative black-box Al
drug discovery approaches.

3.5 Novel Compound Identification and In Vitro Validation.
ChemPrint screened a KCE inference library of approximately
17,000 compounds and identified 41 molecules as potential
hits for AXL and BRD4, which were then tested in vitro. Hits
were conservatively defined as molecules showing in vitro
enzymatic inhibition in an AXL kinase activity assay and a BRD4
(BD1 + BD2) bromodomain activity assay at concentrations
at/below 20 puM. This resulted in a hit rate of 46% (Table 4),
which is a 64% increase over the average hit rates reported by
industry leaders>®78°. Importantly, all observed activity
occurred at low concentrations (< 20 uM). In comparison, hit
rates reported by other Al drug discovery companies are
generally more permissive. Schrodinger has reported an
average in vitro hit rate of 26% over 14 targets, but this
includes hits at concentrations up to 30 UM and lacks detailed
data for a fine-grain analysis of compound diversity®.
Atomwise published an average hit rate of 8.8% across 22
targets, which encompasses hits at concentrations up to 250
UM and includes compounds that may exhibit binding and not
activity®. Insilico Medicine reported an average hit rate of 28%
across two targets, with hits at concentrations up to 25 uM,
including both lead optimization-phase compounds and
binders without confirmed activity”®°. These comparisons
highlight the rigorous criteria and effectiveness of our platform
in identifying active compounds at lower, therapeutically
relevant concentrations.

3.6 Chemical Dissimilarity. The similarity analysis of the 19
validated hits revealed considerable chemical novelty, with an
average-maximum Tanimoto similarity score of 0.36 to their
training set and scores of 0.13 (AXL) and 0.10 (BRD4) relative
to clinical stage compounds. In the industry, a Tanimoto
similarity score of 0.85 is commonly used as a threshold for
chemical similarity?”?%, Our hits, with scores well below this
threshold, demonstrate novel and distinct chemistry. In fact,
we set our bar much higher, requiring our average Tanimoto
similarity to be less than 0.5. A simple Tanimoto similarity
search would have failed to identify these hits, highlighting
ChemPrint's ability to generalize beyond its training data. This
capability is particularly important as predicting the efficacy of
molecules that do not closely resemble any previously tested
compounds remains a significant challenge in computer-aided
drug design'?°. Additionally, the mean pairwise similarity
among the hits themselves was 0.14 across both targets,
demonstrating diversity within our set of hits and highlighting
the hit-finding capabilities of ChemPrint. ChemPrint's success
in discovering novel and diverse chemistry, dissimilar to
previously explored compounds, is likely due to its adaptive
fingerprints and our evaluations using the t-SNE split.

3.7 Limitations and Future Work. While this study
showcases the potential of Al-driven models for drug
discovery, limitations remain. First, the reliance on t-SNE
splitting may not capture all aspects of chemical diversity, and
model performance may vary depending on data quality and
diversity. Second, the GALILEO and ChemPrint platforms will
likely perform differently for different targets and when

8


https://doi.org/10.1101/2024.03.22.586314
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.22.586314; this version posted July 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exploring different datasets. Third, Al models will continue to
improve, which should enhance these and other models.
Fourth, the hit rate of 46% for two notoriously difficult targets
to drug leads the industry>®”8° but the found chemical
entities have not been tested in vivo.

4. CONCLUSION

Our technology stack (GALILEO with prospective data
segmentation and ChemPrint with adaptive molecular
embeddings) nominated 41 new compounds to have a desired
therapeutic activity for AXL or BRD4, and 19 of them had such
activity at low concentrations with high chemical novelty. Such
high hit rates with diverse chemical compounds suggest that
the proposed platform may overcome traditional drug
discovery barriers and efficiently discover novel therapeutic
agents. Furthermore, GALILEO was designed to be versatile
and indication-agnostic, offering broad applicability across
disease targets beyond AXL and BRDA4.

5. METHODS

5.1 Data Sets and Preparation for Prospective Discovery.
5.1.1 Data Curation. Our GALILEO drug discovery pipeline was
used to curate protein-ligand interaction data for AXL and
BRD4. GALILEO identified primary source literature
(supporting documents), extracted protein-specific structure-
activity relationship data that was checked by our experts and
filtered for undesired characteristics, such as Pan Assay
Interference Compounds (PAINS)3°, molecular weight extrema,
and duplicate compounds. Based on the distribution of activity
values in the training sets, a potency cutoff of 1 uM was
applied to separate active from inactive compounds in each
set. This cutoff created a balance between active and inactive
compounds and minimized data exclusion.

5.1.2 Train-Test Split. To split our data into training and test
sets, we utilized t-SNE to project ECFP4 encoded molecule data
into 2-dimensions. We used the line y = 0 to separate training
(above) and test (below) data. This decision boundary created
chemically distinct training data and testing data, while also
creating our desired ~50-50% (within 2%) train-test split that
maintains class balance. Code Availability: GitHub repository
for the t-SNE splitting method is archived at
https://github.com/Model-Medicines/tSNE-Chemical-Data-
Splitting.

5.1.3 Split Evaluation. The Tanimoto coefficient?” is a
common metric to evaluate the chemical similarity between
molecules (represented as bit-vectors), and is defined as:

N
T(ml,mz) — 7|m1 m2|

|m1 \/m2|

where ‘ml A my ’ is the number of common 1’s in the bit-

vectors and |m1 vV my | is the number of indices where
either bit-vector has a 1. This value ranges from 0 to 1, with a
value of 0 indicating completely distinct representations and
1 indicating identical representations. Using this metric, we
can approximate the chemical diversity of the dataset split via

the average of the maximum Tanimoto coefficient of each
test molecule when measured against all training points, i.e.:

1
|Dtest ‘ Z

Myest € Dtest

maX{T(m'testy mtrain) - Myrain S Dtrain}

5.2 ChemPrint Architecture. ChemPrint leverages Mol-GDL
to learn the adaptive embeddings derived from its training
data to make predictions when given novel inference sets
(Figure 1D). The input data takes the form of a geometric
graph, a molecular representation that encapsulates the
structural information of each datapoint, to which one-hot
encoded features are passed in. This graph-based learning
enabled us to encode and leverage the inherent dependencies
and relationships among the data. ChemPrint architecture
encompasses an end-to-end Graph Convolutional Network
(GCN) with a Multilayer Perceptron (MLP) module to facilitate
positive and negative classification. Select normalization,
activation, pooling, and dropout layers are used.

5.3 Benchmark Models. ChemPrint was benchmarked
against five widely utilized machine learning algorithms. For a
molecule to be evaluated by a classifier, it must first be
processed into a vectorized numerical representation or
embedding that preserved as much structural and chemical
information as possible. We utilized the general hashed radial
fingerprint, ECFP4 (radius of 2) encoded in 2048 bits to
preprocess the data used to train and test the benchmark
models. Logistic regression (LR), random forest (RF), k-nearest
neighbors (KNN), and support vector machine (SVM) were
implemented using the scikit-learn library?®>. The extreme
gradient boosting (XGB) was built using the XGBoost library?.

5.4 Performance Evaluation. 5.4.1 Area Under the Receiver
Operating Characteristics (AUROC). The Receiver Operating
Characteristic (ROC) curve plots a classifier’s true positive rate
(sensitivity) versus its false positive rate (1-specificity) as the
classification threshold is varied from 0 to 1. The AUROC curve
established relationships between the model’s predicted
probabilities of activity and true binding status, reflecting the
likelihood of the classifier assigning a higher probability of a
positive example (active molecule) compared to a negative
example (inactive molecule). AUROC was calculated using the
scikit-learn library?® for each replicate (n=10) of every model-
splitting method pair.

5.4.2 Molecular Embeddings. ChemPrint learns optimal,
real-valued, differentiable, property-specific, molecular
embeddings by leveraging its GCN instead of the non adaptive
ECFP fingerprinting method (used by the LR, RF, KNN, SVM,
XGB models). GCN latent space molecular embeddings are
engineered and optimized through end-to-end back
propagation. In comparison to embeddings such as ECFP,
ChemPrint's embeddings are adaptive and self optimizing for a
specific molecular property. Figure 1D depicts the graphical
representation of the adaptive embedding used as input for
our model as compared to the stagnant molecular fingerprint
leveraged by benchmark models.

For our analysis of ChemPrint’s embedding space, we
captured the model’s learned embeddings at progressive
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epochs during the training process (Figure 4). We then
projected these embeddings down to 2 dimensions using t-
SNE, and plotted all points colored according to activity and
distinguished them as train or test molecules.

5.5 ChemPrint Compound Nomination. 5.5.1 Khown
Chemical Entity (KCE) Library. Our known chemical entity (KCE)
inference set contains ~17,000 curated compounds that have
been thoroughly characterized and have a documented history
in clinical trials. For each compound in this inference set,
pertinent information such as synonyms/identifiers,
absorption, distribution, metabolism, excretion, toxicity,
clinical trial details, current approval statuses, and
purchasability are recorded.

5.5.2 Freedom to Operate Pipeline (FTO). As part of the
GALILEO platform of Al drug discovery tools, each predicted
active compound from our in silico discovery pipeline is
investigated for FTO using data miners and web search tools.
Non-obviousness and novelty of the predicted compounds are
verified using these tools. The data miners make use of our
exhaustive set of synonyms and identifiers for each compound
to perform in depth target and indication searches. These
searches are performed across the six databases ACM, Arxiv,
Biorxiv, Medrxiv, Pubmed, and Scopus. Primary source
material is returned when both the synonym/identifier and
indication or synonym/identifier and target is found in the
same publication. The identified literature is then subjected to
our natural language processing (NLP) and large language
model (LLM) packages to ensure that followup manual review
relies on proper relevance and filtration of inconsequential co-
mentions of compound and target in the literature.

5.6 Enzyme Inhibition Assays. All in vitro experiments were
conducted by BPS Bioscience Inc.

5.6.1 AXL Kinase Assay. The assay was performed using ADP-
Glo Kinase assay reagents (Promega). It measures kinase
activity by quantitating the ADP amount produced from the
enzymatic reaction. The luminescent signal from the assay is
correlated with the amount of ADP present and is directly
correlated with the amount of kinase activity. The compounds
were diluted in 10% DMSO and 2.5 pl of the dilution was added
to a 25 pl reaction so that the final concentration of DMSO is
1% in all of reactions. All of the enzymatic reactions were
conducted at 30 oC for 45 minutes. The 25 pl reaction mixture
contains 40 mM Tris, pH 7.4, 10 mM MgCl2, 0.1 mg/ml BSA, 1
mM DTT, 10 uM ATP, kinase substrate and the enzyme. After
the enzymatic reaction, 25 ul of ADP-Glo reagent was added
and incubated for 45 - 60 minutes at room temperature,
followed by another 45 mins incubation with 50 ul of kinase
detection mixture. Luminescence signal was measured using a
BioTek Synergy 2 microplate reader.

5.6.2 BRD4 (BD1 + BD2) Bromodomain Assay. The assay was
performed by TR-FRET technology using recombinant
bromodomains (BD1 and BD2) and the endogenous BET
Ligand. The TR-FRET signal from the assay is correlated with
the amount of Ligand binding to the bromodomain. The
compounds were diluted in 100% DMSO. They were diluted
20-fold in 5% DMSO in Reaction Buffer and 2 pl of the dilution

was added to a 20 pl reaction so that the final concentration of
DMSO is 0.5% in all of reactions. The binding reaction was
conducted at room temperature. The 20 ul reaction mixture in
Assay Buffer contains the protein, the indicated amount of the
inhibitor, acetylated BET ligand (or non-acetylated ligand for
negative control wells), and the reaction dyes. The reaction
mixture incubated for 120 min prior to reading the TR-FRET
signal. Fluorescence signals for both the donor and acceptor
dyes were measured using a Tecan Infinite at an excitation of
340 nm and emissions at 620 nm and 665 nm.
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