

Huntingtin polyglutamine expansions misdirect axonal transport by perturbing motor and adaptor recruitment

5 Emily N. P. Prowse¹, Brooke A. Turkalj¹, Muriel Sébastien², Daniel Beaudet¹, Heidi M. McBride³,
Gary J. Brouhard², Mahmoud A. Pouladi⁴, Adam G. Hendricks^{1*}

10 1. Department of Bioengineering, McGill University, Montréal, QC, Canada
2. Department of Biology, McGill University, Montréal, QC, Canada
3. Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
4. Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada

*Correspondence: adam.hendricks@mcgill.ca

15 **Summary:** Huntington's disease (HD) is caused by polyglutamine (polyQ) expansions in huntingtin (HTT). Polyglutamine repeat lengths >35Q lead to neurodegeneration and longer repeats correspond to earlier symptom onset. HTT scaffolds kinesin-1 and dynein to a variety of vesicles and organelles directly and through adaptors. To characterize the effects of HTT polyQ expansions on axonal transport, we tracked BDNF vesicles, mitochondria, and lysosomes in neurons induced from an isogenic set of human stem cell lines with repeat lengths of 30, 45, 65, and 81Q. Mild and intermediate pathogenic polyQ expansions caused increased BDNF motility, while HTT-81Q misdirected BDNF towards the distal tip. In comparison, mitochondria and lysosome transport showed mild defects with polyQHTT. We next examined the effect of polyQHTT in combination with neuroinflammatory stress. Under stress, BDNF cargoes in HTT-30Q neurons were more processive. Stress in HTT-81Q resulted in a stark decrease in the number of BDNF cargoes. However, the few remaining BDNF cargoes displayed more frequent long-range motility in both directions. Under neuroinflammatory stress, lysosomes were more abundant in HTT-81Q neurons, and motile lysosomes moved less processively and had an anterograde bias while lysosomes in HTT-30Q were not strongly affected. To examine how HTT-polyQ expansions altered the motors and adaptors on vesicular cargoes, we isolated BDNF cargoes from neurons and quantified the proteins associated with them. BDNF-endosomes isolated from HTT-81Q neurons associated with 2.5 kinesin-1 and 3.9 HAP1 molecules on average, compared to 1.0 kinesin-1 and 1.0 HAP1 molecule for HTT-30Q neurons. Together, these results show that polyQ expansions in HTT cause aberrant motor and adaptor recruitment to cargoes, resulting in dysregulated transport and responses to neuroinflammatory stress.

Introduction

40 Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by polyglutamine expansion mutations at the N-terminal domain of the huntingtin protein (HTT-polyQ)¹. PolyQ lengths >35Q lead to neurodegeneration, with longer repeats associated with earlier disease onset and increased disease severity¹. HTT is a scaffolding protein that links cargoes to motor proteins and adaptors. Polyglutamine expansions in HTT result in impaired transport of brain derived neurotrophic factor (BDNF), amyloid precursor protein (APP)-positive vesicles, and autophagosomes²⁻⁴. Given HTT's roles in directing the transport of multiple types of intracellular

45 cargoes, we sought to delineate and compare defects in the transport of signalling and degradative organelles.

HTT directs transport by recruiting specific sets of adaptors and interacting proteins to different cargoes. HTT/HTT-associated protein 1 (HAP1) recruit kinesin-1 and dynein to late endosomes, 50 lysosomes, autophagosomes and signalling molecules⁵⁻⁷ to drive long-range bidirectional motility. HAP1 interacts with kinesin-1's C-terminal domain, kinesin-1 adaptor kinesin-light chain (KLC), and dynein adaptor dynactin's p150^{Glued} subunit^{6,8,9}. HTT/HTT-associated protein 40 (HAP40) associates with Ras-related protein 5 (RAB5) to recruit kinesin-1 and -3 and is implicated in switching endocytic and secretory cargoes from microtubule to actin-based transport^{10,11}. 55 HTT/optineurin (OPTN) recruits myosin-VI to secretory and golgi-derived cargoes via Ras-related protein 8 (RAB8) to facilitate short-range transport along actin filaments^{12,13}. Therefore, polyQ expansions in HTT potentially alter its interactions with multiple adaptors and cargoes.

60 HTT associates with both signalling and degradative organelles^{14,15}. However, each cargo type associates with different motors and exhibits distinct motility characteristics. BDNF vesicles show saltatory, bidirectional movements, driven by kinesin-1, kinesin-3, and dynein^{16,17}. HTT/HAP1 mediates dynein activity on retrograde autophagosomes specifically in the mid-axon and is required for their maturation to autolysosomes¹⁵. The differences in their motility and associated 65 motors suggests that signaling and degradative cargoes are differentially regulated by HTT.

65 While defects in intracellular transport are widely associated with polyQ mutations in HTT, the direct effects of polyQ expansion length on the recruitment of motors and adaptors is not well characterized. BDNF vesicles, which promote neuronal growth, have decreased velocities, increased pausing, and increased stationary cargoes in neurons with HTT-polyQ¹⁴. Interestingly, 70 HTT-polyQ has a higher affinity for both HAP1 and the p150^{Glued} subunit of dynactin¹⁴, suggesting it may sequester or act to inhibit transport through these adaptors. Autophagosomes similarly exhibit decreased velocities, a decreased fraction of cargoes undergoing minus-end transport, and an increase in stationary motility in HD models⁴. Additionally, mitochondria have defective 75 transport or localization in HD¹⁸⁻²¹. Huntington knockdown alters the localization of acidified lysosomes²², however the effect of HTT-polyQ has not been fully characterized. Here, we combined live cell imaging with experiments on isolated organelles in gene-edited neurons to understand how polyQ length, organelle identity, and adaptor/motor recruitment are altered by polyQ expansions in HTT.

80 To directly examine the defects in intracellular transport related to HD, we characterized organelle motility and quantified the motors, adaptors, and markers associated with them in neurons differentiated from isogenic H9 human embryonic stem cell (hESC) lines engineered to express endogenous HTT with 30, 45, 65, or 81Q expansions²³. First, we used immunofluorescence to characterize the localization of HTT and measured the amount of HTT in each cell line. HTT 85 localizes to the cytoplasm at 45Q and 65Q lengths, while its localization in 30Q and 81Q neurons was more punctate. We then tracked the transport of BDNF vesicles, lysosomes, and mitochondria in 30Q, 45Q, 65Q, and 81Q neurons. BDNF cargo transport was affected most strongly, with a shift towards anterograde motility in HTT-81Q neurons. To mimic neuroinflammatory stress, we treated neurons with interferon γ (IFN γ). Upon IFN γ addition, defects in BDNF and lysosome 90 transport with HTT-polyQ were amplified: BDNF cargoes were less abundant, misdirected, and

more motile, while lysosomes were more abundant, misdirected, and more frequently stationary. We then characterized BDNF cargoes in vitro and showed that 81Q neurons recruited more kinesin-1 and HAP1 to BDNF vesicles than control 30Q, suggesting differences in their transport complex composition. These experiments further reveal HTT's regulatory role in axonal transport and delineate how it becomes disrupted in disease.

95

Results

Huntingtin levels and density increase with HTT-polyQ

To examine the effect of polyQ length on neuronal morphology and HTT localization, we characterized neurons by immunofluorescence. We imaged cortical neurons derived from 30, 45, 65, and 81Q HTT isogenic embryonic stem cells 7 days post terminal differentiation (~DIV7). At this stage, neurons exhibited a defined axon compared to shorter neurites and had limited synaptic formation. These isogenic lines were previously characterized by the Pouladi lab, where markers for pluripotency (OCT4, LIN28, NANOG, SSEA4 markers), neural progenitor identity (FOXG1, NESTIN, PAX6 markers) and neuronal differentiation (MAP2) indicated no significant differences in pluripotency nor differentiation²³. However, the 81Q cells had fewer medium spiny neuron marker DARPP32 transcripts by quantitative PCR and by immunofluorescence after differentiation to cortical neurons, indicating that the other cell types contained some striatal neurons²³. After optimizing cell culture conditions for differentiation including cell media and laminin concentrations, we performed immunofluorescence and morphological characterization of each cell line and noted no differences in differentiation or pluripotency between cell types. We imaged neurons at low magnification for HTT, a neuron-specific isotype of tubulin (β 3-tubulin), and DAPI to identify nuclei, and calculated their arborization lengths, HTT levels and localization as a function of polyQ length (**Figure 1A, S1**). The HTT intensity normalized to the tubulin signal increases by 19.6% and 2.36% for 65Q or 81Q HTT, respectively (**Figure 1B**). 45Q-HTT neurons have longer neurites than other neurons (279% above control, **Figure 1C**), consistent with HTT's roles in development and neurogenesis²⁴⁻²⁶. Next, we compared the amounts of HTT in the mid-axon localized to the cytosol or in punctae, where punctae may indicate vesicle association or HTT aggregation. To quantify HTT localization, we used linescan analysis of higher magnification images (**Figure 1D, E**). We then measured the variance of intensities along the axon, where the variance is driven by the difference in intensities between bright punctae and diffuse cytosolic localization. High intensity variance indicates more punctate localization. Interestingly, the variance and HTT intensity values decrease in the 45Q and 65Q neurons by -51.4% and -49.5% respectively, which suggests HTT's association with vesicles is weakened and its localization shifts to the cytoplasm (**Figure 1F, G**). In 81Q neurons, the high variance (38.7% above control) and high intensity values likely indicate elevated HTT self-association into aggregates which may be cytosolic or clustered with vesicular cargoes (**Figure 1 F, G**). Overall, immunofluorescence characterization demonstrates that HTT levels increase with extended polyQ lengths²³, while its localization shifts to the cytoplasm at intermediate lengths and we propose it aggregates more readily in HTT-81Q neurons.

Huntingtin polyglutamine expansions alter BDNF vesicle motility and direction

135 BDNF vesicles are transported bidirectionally along the axon. Striatal neurons are most susceptible in HD. Striatal neurons do not produce BDNF, and instead rely on its efficient transport from cortical neurons as their sole source of this pro-survival factor²⁷⁻³¹. Cortical neurons synthesize the signaling molecule BDNF in the soma and transport it via a secretory path to axon terminals and synapses with striatal neurons^{32,33}. Striatal neuron death in HD is attributed to impaired BDNF
140 transport in cortical neurons²⁷. We labelled BDNF cargoes using BDNF-coated quantum dots and observed their motility along the mid-axon of neurons 7 days post terminal differentiation (**Figure 2A**). BDNF cargoes exhibited frequent directional switches in all conditions, however the net displacement slightly increased in 45Q and 65Q-HTT neurons (**Figure 2A, S2B**). We used multiple tools to characterize motility over short and long length scales. TrackMate³⁴ (**Figure S2**)
145 provides sub-pixel localization (resolution ~34 nm for BDNF and lysosomes, ~84 nm for mitochondria) to assess motility over short length scales. However, TrackMate often failed to accurately link the long trajectories observed in neurons. Thus, in parallel, we analyzed kymographs using KymoButler³⁵, which is better able to link long trajectories but is limited to nearest-pixel resolution (160 nm).

150 We performed a flux analysis on the KymoButler data by drawing five boxes at different locations along the axon. Trajectories that exited at the somal side were characterized as retrograde, those that exited on the distal side as anterograde, and those that never reached either edge of the box as no net flux (**Figure 2A, bottom panel**). Additionally, cargoes that entered from the soma side but did not exit were counted as anterograde, while cargoes that entered from the distal side and did not exit were counted as retrograde. After comparing box widths from 1-15 μ m, we focused our analysis on a box width of 5 μ m as the density of cargoes inside the box remained constant above this size and larger boxes resulted in few trajectories traversing the box (**Figure S2D-G**). We observed an increase in the mean number of BDNF vesicles in the 45Q condition, suggesting the longer repeats may have distinct changes to in motor or adaptor composition (**Figure 2B**). All pathogenic polyQ conditions showed increased motility with fewer cargoes exhibiting no net flux (-9.7%, -36.7%, and -15.1% fold changes for 45Q, 65Q, and 81Q, respectively) and less diffusive cargoes (**Figure 2C, S2C**). The fluxes for 45Q and 65Q neurons demonstrated similar trends, with higher directional fluxes compared to controls: 45Q had 10.1% higher anterograde and 30.3% higher retrograde fluxes, while 65Q showed increases by 71.2% for anterograde and 74.4% for retrograde flux (**Figure 2C, Figure S2D-F**). The anterograde flux increased in 81Q (49.9%) neurons as well, however their retrograde flux was lower (only 5.6% above control), creating a 20.7% higher anterograde bias than controls (**Figure 2C, 2F**). The effects of increased uptake in 45Q and elevated motility in both 45Q and 65Q neurons may be a mechanism the neurons use to compensate for the presence of pathogenic HTT. We observed increased long-range transport of BDNF cargoes in both directions for HTT-45Q and HTT-65Q neurons (**Figure 2G**). To generate the observed change in directional bias (**Figure 2C, 2F**), 81Q-HTT may be recruiting or activating more kinesins specifically, perhaps through its association with HAP1 (**Figure 2G**). The exogenous BDNF-endosomes may also be sorted into different endosomal pathway in 30Q-HTT compared to 81Q-HTT neurons. The misdirection of BDNF transport by polyQ-HTT we observe here would be expected to impact neuron survival in HD by perturbing BDNF signalling from cortical to striatal neurons.

Pathogenic HTT-polyQ causes mild defects in lysosome motility

180

To examine HTT-polyQ's impact on degradative cargoes, we tracked lysosomes in the mid-axon of the isogenic HTT-polyQ neurons. Maintaining lysosome transport is essential in neurodegenerative diseases to ensure efficient degradation of cellular waste and protein aggregates, particularly when neurons are under stress. HTT phosphorylation enhances lysosome processivity³⁶, and HTT-polyQ has been shown to slow transport of immature lysosomes and autophagosomes^{4,37}. We labelled acidified lysosomes with Lysotracker™ and tracked their motility using TrackMate (**Figure S3H-K**). Lysosomes had longer segments of processive motility compared to BDNF vesicles, and were typically biased towards the retrograde direction in control neurons, while we observed more stationary cargoes with longer HTT-polyQ, and an increase in the subpopulation of small lysosomes with fast, processive anterograde runs (**Figure 3A**). We did not observe significant differences in processivity, however displacement increased in the 81Q condition (**Figure S3A, B**). Diffusive lysosome fractions decreased, leading to an increase in stationary fraction for the 45Q condition, while the same trend was observed to a lesser degree as HTT-polyQ length increased (**Figure S3C**). When characterizing long range motility using KymoButler, retrograde velocities in 81Q increased (8.3% from control), while no significant differences in abundance or directionality between cell lines (**Figure 3, S2D-G**). However, the ratio of anterograde to retrograde flux increased in response to HTT-polyQ (72.4%, 140%, and 64.0% above control for 45Q, 65Q, and 81Q, respectively), suggesting HTT-polyQ increases the subpopulation of anterograde-directed lysosomes (**Figure 3F**). In all, the effect of HTT-polyQ on lysosome transport was relatively subtle compared to BDNF endosomes, where lysosomes exhibit a higher fraction of anterograde to retrograde motility in HTT-polyQ neurons (**Figure 3G**).

Mitochondria motility is largely unaffected by polyQ expansions

205

We next examined the effect of HTT-polyQ on mitochondrial motility. Changes to mitochondrial morphology and dynamics have been noted in models of HD, although it is unclear whether full-length, non-pathogenic HTT associates directly with mitochondria²⁰⁻²³. We expected the effect on mitochondrial transport to be mild due to the lack of response to S421 phosphorylation which otherwise impacts the directional bias of neuronal HTT cargoes²⁴. In addition, Miro/TRAK have been demonstrated as the primary regulators of mitochondrial transport³⁸⁻⁴⁰. Mitochondria positive for MitoTracker™ were less dynamic than BDNF vesicles or lysosomes, with shorter runs and more stationary cargoes (**Figure 4A**). They were not strongly affected by HTT polyQ expansions (**Figure 4A**). Short-range transport analysis showed slightly decreased processivity and displacement (**Figure S4A-B, H-K**). The processive fraction slightly decreased in all pathogenic HTT-polyQ neurons, suggesting a mild defect in short-range mitochondrial transport (**Figure S4C**). We observed no significant effect compared to 30Q controls on mitochondria number, velocity, run length, flux at 5 μm box width, or directionality from the long-range transport analysis (**Figure 4B-F, S3D-G**). Interestingly, we note the 45Q had various differences in short-range motility compared to the other HTT-polyQ conditions, suggesting HTT-45Q may associate more frequently with mitochondria than the longer HTT-polyQ, which is more subject to self-association/aggregation. The mild defect in processivity observed in response to pathogenic HTT-polyQ expansions (**Figure 4G**) is in close agreement with previous studies¹⁸⁻²¹. From these data, we hypothesize the defects previously observed in mitochondria transport may be indirect effects

225 due to the health of the neuron, while other scaffolds and adaptors including TRAK/Milton act as the primary regulators of mitochondrial transport^{38,39,41}.

Stress in HTT-polyQ neurons alters BDNF and lysosome abundance and direction

230 A puzzling aspect of many neurodegenerative diseases is that while mutations are often present from birth, symptoms don't appear until later in life, suggesting a role in accumulated stresses in the development of disease. We used interferon- γ (IFN γ), an inflammatory cytokine, to mimic the neuroinflammation observed in neurodegenerative diseases including HD⁴²⁻⁴⁵. We exposed the 30Q control or 81Q neurons to 100 ng/mL IFN γ for 24 hours and measured the response in BDNF-quantum dot transport (**Figure 5A**). BDNF vesicles under stress maintained their bidirectional processive motility regardless of polyQ length, however the number of BDNF cargoes increased in 30Q neurons (27.2% higher than control), while it decreased by 58.8% in 81Q neurons (**Figure 5A-B, S5**). This endocytic defect is consistent with previous results showing endocytosis is impaired in HD due to HTT's interaction with endocytic proteins dynamin 1, HIP1, and HIP1R⁴⁶. Under stress, we expected reduced motility for 81Q neurons and perhaps increased motility in the control neurons, given that BDNF is an anti-apoptotic signal²⁷. Interestingly, we observed increased retrograde flux (67.6% above control) upon IFN γ exposure in 81Q neurons and fewer cargoes without net flux compared to the control condition (-27.3%), suggesting BDNF cargoes are more frequently undergoing long range retrograde transport under stress (**Figure 5C**). In characterizing their motility further, we observed mildly increased anterograde velocities (11.25% above control) with shorter run lengths (-13.3%) in 81Q neurons under stress (**Figure 5D, E**). All conditions apart from the control had decreased retrograde velocities (by -18.8%, -12.88%, -13.3% for 30Q+IFN γ , 81Q, 81Q+IFN γ , respectively) and run lengths were reduced by -5.82%, -16.8%, and -13.4% for 30Q+IFN γ , 81Q, and 81Q+IFN γ (**Figure 5D, E**). HTT-polyQ neurons with IFN γ showed increased anterograde compared to retrograde flux (2.83%), suggesting stress maintains the misdirection seen in the 81Q condition despite increasing the fraction of motile cargoes (**Figure 5C, F**). In summary, we observed fewer BDNF vesicles in 81Q neurons under stress, with decreased short range processive transport, but more long-range transport in both directions (**Figure 5G**). Control neurons in the presence of stress showed similar motility characteristics to the 81Q neurons in the absence of stress, suggesting that neurons respond similarly to polyQ expansions and inflammatory stress (**Figure 5B-E**). Taken together, BDNF transport shows opposite responses to neuroinflammation in control and polyQ-HTT neurons, where the number of BDNF cargoes in HTT-30Q neurons increases while the number decreases in HTT-81Q neurons.

260 As with BDNF vesicles, we observed the effects of neuroinflammatory stress on lysosome transport (**Figure 6A**). We expected that cellular stress might upregulate degradative pathways and lysosome transport⁴⁷. In control neurons, we observed no substantive change in transport under stress (**Figure 6A**). HTT-81Q neurons had an increased number of lysosomes (by 27.3% for 81Q, 53.8% for 81Q+IFN γ compared to controls) and a subpopulation of small lysosomes with persistent anterograde motion regardless of stress (**Figure 6A, B**). Short-range displacements were decreased in 81Q neurons and with IFN γ (**Figure S6A-C**). Long-range lysosome velocities and run lengths were unaffected by stress (**Figure 6D, E**). Lysosome flux is not largely affected by

stress in 30Q neurons (**Figure 6C**). However, stress results in reduced retrograde lysosomes in 81Q neurons compared to all other conditions (-22.7% from control), which causes increased anterograde motility (**Figure 6C, F**). Overall, we find lysosome transport is unaffected by stress in control 30Q neurons. In contrast, 81Q neurons responded by increasing lysosome biogenesis and decreasing the fraction of lysosomes being transported towards the soma (**Figure 6G**). Decreased short range transport upon stress appeared universal for both BDNF cargoes and lysosomes, however they differ in the number of these cargoes and their directionality (**Figure 6C, F, S6**). Decreased uptake of the pro-survival BDNF and misregulated lysosome biogenesis and transport in 81Q neurons under stress could together contribute to the lower survival of neurons in HD. The anterograde misdirection we observed in both BDNF cargoes and lysosomes expressing HTT-polyQ may be due to increased interactions between HAP1 and HTT²⁸ recruiting additional kinesin-1s to cargoes or HTT-polyQ may have a lower affinity for dynein.

280 **HTT polyglutamine expansions recruit more kinesin-1 and HAP1 to BDNF-endosomes**

To examine the effect of polyQ expansions in recruiting adaptors and motors to organelles, we quantified the numbers and types of proteins associated with individual BDNF-endosomes isolated 285 from 30Q and 81Q neurons (Figure 7A). HTT and HAP1 recruit kinesin-1 and dynein to BDNF cargoes^{28,48,49}. We employed stepwise photobleaching to determine the number of HTT, HAP1, kinesin-1, and dynein molecules associated with BDNF-endosomes⁵⁰⁻⁵². We immunostained BDNF-endosomes for each protein of interest and imaged in epifluorescence until the intensity was indistinguishable from the background. The fluorescence signal from the Alexa 647 labelled 290 secondary antibodies decays over time in a characteristic stepwise manner due to the photobleaching of individual fluorophores. We divided the total number of photobleaching steps by the number of steps for a single molecule, using kinesin-1 (rkin430-GFP) as a standard to estimate the number of proteins associated with isolated vesicles. Our single molecule control from the expression of recombinant kinesin-1 control (sm-kin-1) showed an average of 6.9 distinct 295 steps⁵². The number of HTT molecules bound to BDNF-endosomes isolated from HTT versus HTT-polyQ neurons was similar. However, the number of kinesin-1 motors and HAP1 adaptors associated with 81Q-endosomes was significantly greater than the number associated with 30Q control endosomes, while the number of dynein motors did not change (**Figure 7B**). (**Figure 7B**). The increased number of kinesin-1 motors is consistent with the increased anterograde motility of 300 BDNF-endosomes we observed in HTT-polyQ neurons (**Figure 2C**). As HAP1 interacts directly with both kinesin-1 and dynein, the observed increase in only kinesin-1 warrants deeper investigation into the mechanism through which polyQ expansions inhibit dynein binding. We then measured the fraction of BDNF-endosomes bound to dynein, kinesin-1, HAP1, and HTT by immunofluorescence colocalization for control and HTT-polyQ endosomes (**Figure 7C**). The 305 fractions of BDNF-endosome association with dynein, kinesin-1, HAP1 and HTT were normalized to the estimated number of total isolated endosomes for 30Q and 81Q conditions (**Figure S7, see methods: Endosome immunofluorescence and imaging**). A higher fraction of 30Q endosomes associated with dynein, HAP1, and HTT than 81Q endosomes, while 81Q endosomes associated with kinesin-1 more frequently than controls (**Figure 7D**).

310

To account for both the fraction of endosomes associated with a given protein, measured by three-color immunofluorescence, and the average number of proteins on cargoes when the protein is found on the cargo, measured by stepwise photobleaching (see *methods*: **Endosome immunofluorescence and imaging**), we used a computational model built from the data in (Figure 315 **7B-E**) to estimate the ratio of BDNF-endosomes associating with HAP1 (dark grey), kinesin-1 (purple) and dynein (green) in 30Q and 81Q neurons (**Figure 7E, F, S7E**). An estimated 68% of endosomes in the 30Q population associate with HTT while 37% in the 81Q population associate with polyQ-HTT (**Figure 7E, F**). The data suggests HTT-polyQ associated endosomes in 81Q neurons preferentially associate with HAP1 and/or kinesin-1, while HTT-associated endosomes in 320 30Q neurons also associate with HAP1 and/or dynein (**Figure 7E, F**). The shift in the predominant motor population on endosomes indicates that polyQ expansions in HTT impair the association of HTT to endosomes, and that HTT-polyQ enhances recruitment of kinesins but impairs dynein recruitment to BDNF cargoes (**Figure 7I**).

325 **BDNF-endosomes associate with early and late endosome markers**

Given the changes in transport between 30Q and 81Q BDNF cargoes, we sought to understand if the cargoes were being sorted into different endocytic pathways. Thus, we characterized the markers associated with the endocytosed BDNF-coated beads 90 minutes post-internalization to 330 determine if they were targeted for signaling, recycling, or degradation, and if the endosome maturation pathway differed in 30Q compared to 81Q neurons. We immunostained 30Q- and 81Q-derived BDNF-endosomes with EEA1, RAB5, RAB7, LAMP1 and RAB11 (**Figure 7G**).^{52,53} Our results show BDNF-endosome populations primarily associated with late endosome marker RAB7, consistent with previous work in macrophages^{51,52} (**Figure 7H**). Neither 30Q- nor 81Q-endosome populations exhibited strong association with LAMP1, indicating that most isolated BDNF-endosomes were not associated with degradative lysosomes at this timepoint. The intensity distribution means and fraction of association for EEA1, RAB5, RAB7, RAB11, and LAMP1 335 BDNF-endosomes were not statistically different between 30Q and 81Q populations (**Figure 7H**), indicating BDNF-endosomes are sorted along a similar pathway in both 30Q and 81Q neurons.

340

Discussion

Our results provide a direct link between polyQ expansions in HTT and the defects in intracellular 345 transport associated with HD, and highlight HTT's diverse roles as a scaffolding molecule that links motor proteins and adaptors to multiple organelles. We observe that the effect of polyQ expansions on BDNF transport is dependent on the length of the expansion. Shorter HTT-polyQ may alter motor recruitment or activation on BDNF cargoes, while long 81Q-HTT may be more prone to aggregation which could sequester dynein to misdirect cargo transport. Lysosomes and mitochondria are not strongly affected by HTT-polyQ in normal culture conditions, suggesting 350 other scaffolding complexes may drive their transport. However, under neuroinflammatory stress, HTT-81Q results in defective transport for both BDNF-endosomes and lysosomes. In HTT-81Q neurons under stress, the motility of BDNF cargoes and lysosomes became more anterograde,

355 BDNF cargoes were less frequently endocytosed, and the lysosomes were more abundant. Using HTT-polyQ, consistent with a shift of BDNF cargoes towards the anterograde direction in neurons expressing HTT-polyQ.

360 While HTT associates with both BDNF and lysosomes, BDNF cargoes exhibited the strongest transport defects associated with HTT-polyQ. Accordingly, we hypothesize that BDNF transport might depend on a more limited set of scaffolding proteins and adaptors compared to lysosomes. In addition, the saltatory and bidirectional motility of BDNF cargoes (Figure 2A) might render them more susceptible to changes in motor association or activity compared to the more processive motion of lysosomes or mitochondria in neurons (Figure 3A, 4A). Different sets of kinesin motors 365 associate with BDNF cargoes and lysosomes. BDNF cargoes and mitochondria rely on kinesin-1, kinesin-3, and dynein, while lysosomes additionally recruit kinesin-2^{16,17,54,55}. Increased anterograde motility of BDNF cargoes in HTT-polyQ neurons (Figure 2C, F) is consistent with the more kinesin-1 motors being recruited BDNF-endosomes (Figure 7B, D). BDNF-endosome motility is biased towards the retrograde direction, driven by dynein-dynactin^{27,28,32,48}. Thus, increasing the fraction of kinesin-1 motors bound to BDNF-endosomes leads to more bidirectional 370 motility. Though HTT associates with lysosomes, lysosomes also associate with other scaffolds and adaptors including RILP/HOOK for dynein-mediated transport and BORC/SKIP/Arl8 for kinesin-mediated transport⁵⁶. The subtle effects we observe on lysosome transport according to HTT polyQ length may be due to a subpopulation that associate and are regulated by HTT, perhaps derived from autophagosomes associated with HAP1. While defects in mitochondria transport 375 have been observed in HD models¹⁸⁻²¹, HTT has not been shown to directly associate with mitochondria. Coupled with the subtle effects of HTT-polyQ on mitochondria transport we observe, these results suggest their transport defects in HD may be indirect. In summary, our results support the model that defective BDNF transport is a primary driver of HD²⁸, while the more subtle effects on lysosome transport likely also contribute by impairing degradative pathways.

380 Previous studies observed defects in BDNF transport upon expression of polyQ-expanded HTT with more frequent pausing, slower velocities, and more stationary cargoes²⁷⁻³¹. Here, using isogenic stem cell lines edited to express endogenous HTT with varying polyQ expansions, we 385 find that long polyQ expansions in HTT misdirect cargoes anterogradely while shorter polyQ expansions result in enhanced motility compared to controls. These differences may be due to differences in the model systems and/or analysis methods. Multiple previous works used murine cortical neurons with 97-150 polyQ repeats, which correspond with juvenile onset HD and cause severe disease^{3,33,57,58}. As we observed, endogenous 81Q-HTT induced changes in transport similar to neuroinflammatory stress while shorter repeat lengths did not, suggesting longer polyQ repeats 390 may cause both direct effects by disrupting normal HTT function and induce cellular stress. Previous studies overexpressed BDNF-mCherry to visualize its transport, which could have altered the number of associated HTTs and motors on each cargo compared to available in the cytoplasm^{3,33,57,58}. One study using BDNF conjugated quantum dots in 73Q or 111Q-HTT cell 395 lines showed lower BDNF velocities and lower BDNF abundance in the axon compared to controls via kymograph analysis⁵⁹. Though we observe similar lower abundance of BDNF with HTT-polyQ⁵⁹, particularly under stress, we do not see decreased cargo velocities in either direction. This discrepancy may be due to differences in the analysis, where we performed automated tracking

400 and kymograph analysis on large datasets to examine effects on long-range and short-range motility. Our results show BDNF transport is misdirected with HTT-polyQ compared to previously reported defects resulting in slower or more stationary cargoes.

Huntingtin recruits and regulates motor proteins through adaptors including HAP1, HAP40, optineurin, and HIP1. Our results suggest that HAP1 is required for processive, HTT-mediated BDNF trafficking along microtubules^{28,48}. The polyQ repeat region at HTT's N-terminus is a part 405 of the binding domain for HAP1⁴⁹. PolyQ expansion at the N-terminus as seen in HD may provide additional binding sites for multiple HAP1 adaptors. Previous reports have shown polyQ expansion in HTT leads to an increased interaction between HTT-polyQ with HAP1, and with the dynein-dynactin p150^{Glued} subunit, while association with microtubules was disrupted²⁸. In 410 agreement, in 81Q neurons, we observed increased association of BDNF-endosomes with HAP1 and kinesin-1 (**Figure 7B, D**). Additionally, BDNF-endosomes were less frequently bound by 81Q-HTT when compared to BDNF-endosomes in neurons expressing 30Q-HTT (**Figure 7D**), indicating HAP1 binding in excess with HTT-polyQ may hinder additional interactions. The 415 observed increase in kinesin-1 motors over dynein-dynactin may be a result of steric hindrance of HAP1 in the HTT-polyQ condition by the larger 2.4 MDa dynein-dynactin complex versus the smaller 185 kDa kinesin-1^{8,51,60}.

In addition to altering the numbers of motors and adaptors recruited by HTT (**Figure 7B**), polyQ 420 expansions also impair the ability of HTT to associate with vesicular cargoes (**Figure 7C,D**). Misfolding of HTT caused by polyQ expansions may result in sequestering of HAP1 and motor 425 proteins and impair interactions with vesicular membranes⁶¹. Numerous studies of HAP1 overexpression *in vitro* have reported increased generation of cytoplasmic inclusions, and a tendency for HAP1 to form aggregates and inclusion bodies in physiological contexts⁶²⁻⁶⁴.

430 Based on our results, we propose HTT-polyQ misregulates the recruitment of motors and adaptors to organelles and the response to cellular stresses, leading to broad defects in transport of both BDNF and lysosomes (**Figure 5, 6**). Further, HTT-polyQ may induce cellular stress; control neurons under stress have similar BDNF and lysosome transport to 81Q neurons in the absence of stress. When the HTT-polyQ neurons experience inflammatory stress, we observe further defects 435 in both BDNF transport and lysosome transport. With 81Q, stress decreases BDNF endocytosis however increases their anterograde bias and overall motility, while lysosomes are more anterograde and increase in number. The defects in endocytosis and BDNF transport have been previously reported⁴⁶, however we show that BDNF's increased anterograde motility is driven by association of HAP1 and kinesin-1 with HTT-polyQ and it becomes more pronounced under stress. Given that few BDNF cargoes enter the axon, the increased motility of these cargoes compared to 440 controls under stress could be an attempt to increase BDNF transport efficiency. However, the maintenance of their anterograde directional bias demonstrates that stress cannot rectify the changes to the transport complex induced by HTT-polyQ. We also observe an anterograde bias in lysosome transport with HTT-polyQ under stress and contrary to BDNF, increased lysosome biogenesis. Increasing lysosome biogenesis in response to stress may be a neuroprotective mechanism to prevent infection and reduce misfolded protein populations. In addition, previous works show an increased number of empty autophagosomes in HD³⁷, which could increase lysosome demand and supports our claim that HTT-polyQ itself induces a stress response.

445 Frequent anterograde transport of lysosomes in the axon suggests the degradative response is being upregulated and indicates the lysosome-rich population in the soma mobilizes to mitigate the increased degradative demand. HTT-polyQ may activate the stress response and additional stresses cause significant defects in transport of both BDNF and lysosomes.

450 Given that HTT-polyQ leads to subtle defective responses to inflammatory stress, we suggest that accumulation of minor defects over time lead to significant impairment of neuronal function in HD. If we consider the width of the boxes in our flux measurements, we have a 25 μm segment (5 boxes x 5 μm) that we observe over the course of 3 minutes (**Figures S5D-G & S6D-G**). If we extrapolate the values from **Figure S6E-G** out to one year of a cortical axon of approximately 1 mm in length, this corresponds to a change of 8.4 million more anterograde lysosomes, 12.6 million more without a net flux, and no change in retrograde flux when comparing control (HTT-30Q) to HTT-81Q neurons under stress. For BDNF cargoes, we would have 1.9 million fewer retrograde, 4.2 million fewer without a net flux, and no change to anterograde flux. With these rough estimations, it becomes clearer that the effect of impaired transport can cause surpluses or deficits on the order of millions in the number of cargoes that become misdirected and reach the distal tip or soma over the course of a year, which is tightly controlled in neurons to maintain cell health.

455

460

Materials and Methods

Cell Culture

465 The endogenous huntingtin (HTT) gene (27Q) was previously edited to heterozygously express HTT with 30, 45, 65, and 81 polyQ repeats in H9 human embryonic stem cells²³. We cultured hESCs in mTeSR Plus media (STEMCELL Technologies, Vancouver, BC) on Matrigel (Corning, Corning, NY) coated cell culture dishes using Gentle Cell Dissociation Reagent (STEMCELL Technologies) for passaging. Once confluent, we dissociated with Accutase (Millipore Sigma) induced the stem cells into neural progenitor cells using Stemdiff SMADi induction media (STEMCELL Technologies) within a monolayer over the course of 21-30 days on 10 $\mu\text{g}/\text{mL}$ poly-L-ornithine (P3655 Millipore Sigma) in phosphate buffered saline (PBS, Wisent, Saint-Jean Baptiste, QC) and 5 $\mu\text{g}/\text{mL}$ laminin (L2020 Millipore Sigma) laminin in Dulbecco's modified Eagle Medium/ Nutrient Mixture F-12 (Thermo Fisher Scientific) coated-dishes. We cultured neural progenitors in Stemdiff Neural Progenitor Maintenance media (STEMCELL Technologies) or NPC maintenance: 1X N2 (100X, Thermo Fisher Scientific, Waltham, MA), 1X B27 (50X, Thermo Fisher Scientific), 1% MEM non-essential amino acids (Millipore Sigma), 10 ng/mL epidermal growth factor (ab9697, Abcam, Cambridge, MA) 10 ng/mL fibroblast growth factor (10018B Preprotech, Cranbury, NJ), 1 % Antibiotic-antimycotic (Thermo Fisher Scientific) in 470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

5455

5460

5465

5470

5475

5480

5485

5490

5495

5500

5505

5510

5515

5520

5525

5530

5535

5540

5545

5550

5555

5560

5565

5570

5575

5580

5585

5590

5595

5600

5605

5610

5615

5620

5625

5630

5635

5640

5645

5650

5655

5660

5665

5670

5675

5680

5685

5690

5695

5700

5705

5710

5715

5720

5725

5730

5735

5740

5745

5750

5755

5760

5765

5770

5775

5780

5785

5790

5795

5800

5805

5810

5815

5820

5825

5830

5835

5840

5845

5850

5855

5860

5865

5870

5875

5880

5885

5890

5895

5900

5905

5910

5915

5920

5925

5930

5935

5940

5945

5950

5955

5960

5965

5970

5975

5980

5985

5990

5995

6000

6005

6010

6015

6020

6025

6030

6035

6040

6045

6050

6055

6060

6065

6070

6075

6080

6085

6090

6095

6100

6105

6110

6115

6120

6125

6130

6135

6140

6145

6150

6155

6160

6165

6170

6175

6180

6185

6190

6195

<

490 round bottom dish, 1 million per 100 mm tissue culture dish containing multiple sterile 25 mm round coverslips. Within the following 0-4 days, we changed the media to BrainPhys (#number STEMCELL Technologies) terminal differentiation media and followed the suppliers' protocol for further culture. We used neurons for imaging experiments after 6-9 days in terminal differentiation media to obtain clear axonal specification. For stress treatments, we added 100 ng/mL IF γ (ab9659, Abcam) to cell culture for 24 hrs prior to imaging and during imaging. To 495 image lysosomes, we incubated neurons with 70 nM Lysotracker (Thermo Fisher Scientific, Waltham, MA) for 10 minutes prior to replacing the media with BrainPhys with 15 mM HEPES (H3375, Millipore Sigma) as a carbon dioxide buffer for imaging, we then began imaging. We imaged MitoTracker (Thermo Fisher Scientific) by performing the same protocol as with 500 Lysotracker, however with a 20-minute incubation and a concentration of 50 nM during the incubation. For BDNF labelling, we used BDNF-coated quantum dots. We incubated 1 μ L of streptavidin-Qdot 565 quantum dots (Q10133MP, Thermo Fisher Scientific) with 10 μ L of 10 μ g/mL Biotin-BDNF (Alamone Labs, Jerusalem, Israel) and 39 μ L of the quantum dot incubation 505 buffer (Q20001, Thermo Fisher Scientific) for a minimum of 30 minutes in the dark on ice. We added 5 μ L of the coated quantum dot solution to the pre-existing media on the coverslip and 510 incubated for 30 minutes at 37 C, 5% CO₂. Next, we removed excess quantum dots in solution by replacing the media with BrainPhys Complete with 15 mM HEPES and began imaging. We imaged the mid-axon inside the Chamlide chamber (Live Cell Instrument, Namyangju-si, Gyeonggi-do, South Korea), defined as >20 μ m from the soma or distal tip of the axon, in near-TIRF with a Nikon Ti-E microscope, 100x 1.49 numerical aperture oil immersion objective using 1 mW laser power with 120 ms exposure time on the EMCCD camera for a total of 3 minutes. All 515 samples were imaged within 90 minutes of media replacement with the HEPES buffer.

Immunofluorescence

515 We seeded and differentiated neurons on coverslips as described in live cell imaging. After rinsing coverslips with 37°C PBS, we fixed mature neurons using 37°C 4% paraformaldehyde (w/v, Millipore Sigma) diluted in PBS for 8-10 minutes. We next briefly rinsed the coverslips with room temperature PBS and subsequently began incubating with blocking buffer, 2% BSA, 0.2% saponin (Millipore Sigma) in PBS for 30 mins on an orbital shaker at 40-60 rpm. We then incubated the 520 coverslips with the HTT primary antibody (**Table 1**), diluted in blocking buffer at 4°C overnight in a humid chamber. The following day, we washed the coverslips thrice with 2% BSA in PBS for 5 minutes on an orbital shaker at 40-60 rpm. We next incubated the coverslips in the dark with 525 secondary antibody goat anti-mouse 647 in blocking buffer for 45 minutes (dilutions and identifiers in **Table 1**). Next, we washed the coverslips 3 times with PBS protected from light on an orbital shaker at 40-60 rpm for each wash. Finally, for linescan images, we mounted the 530 coverslips on the slide with PBS and began imaging. We imaged the linescan images using the 100X TIRF objective on the DeltaVision OMX in TIRF, with 1.516 refractive index oil, 600 ms exposure time and 2% 647 laser power. For morphological characterization from lower magnification images, we added Tubb3-A647 antibody (**Table 1**) to the secondary antibody mixture, and we used goat-anti-mouse 488 for HTT staining (**Table 1**). Following secondary antibody incubation, we stained for DAPI (concentrations in **Table 1**) for 20 minutes using a 1 μ g/ml solution in PBS and rinsed once again with PBS prior to imaging. For the images of the entire axon and multiple neurons for morphological and expression analysis, we mounted the coverslips with ProLong Diamond Antifade Mountant and stored them at 4°C prior to imaging. We imaged these samples using a confocal Zeiss LSM710, with a 10x EC plan neofluorar,

535 NA=0.30, 405 nm blue diode laser 30 mQ, argon ion laser 458/488/514 nm 25 mW, and HeNe red 633 nm 5mW. We also imaged using a 63x 1.4 NA objective.

NeutrAvidin Coating of Fluorescent Beads and Validation

540 We sonicated 250 μ L of 0.2 μ m, 365/415nm FluorospheresTM Carboxylate-Modified Microspheres (F8805, Thermo Fisher Scientific) for 5 minutes. Next, we centrifuged the beads for 10 minutes at 14 000 rpm at room temperature and resuspended them in 60 μ L of 1.57M EDAC (Bio Basic, Markham, ON), 2.61 M NHS (Bio Basic) in 20 mM 2-ethanesulfonic acid (MES, Bio Basic) with 100 mM NaCl (BioShop, Burlington, ON). We then mixed the resuspended solution using an orbital shaker at 200 rpm, for 3 minutes at room temperature. To wash the beads, we centrifuged 545 them at 14 000 rpm for 2 minutes and resuspended them in 60 μ L 200 mM MES with 100 mM NaCl 3 times. After the final wash, we resuspended the beads in 300 μ L of 17 μ M neutravidin (31000, Thermo Fisher Scientific), 0.001 mg/mL bovine serum albumin (BSA, BioShop), in 0.1 M sodium phosphate buffer at pH=7.0 (Millipore Sigma). We subsequently mixed the solution on an orbital shaker at 200 rpm for 2 hrs at room temperature. We then centrifuged the solution as 550 previously described and washed 3 times by resuspending in 300 μ L of 0.001 mg/mL BSA in 0.1 M sodium phosphate buffer, pH 7.0 after each centrifugation. Finally, we centrifuged the bead solution as described previously and resuspended the beads in 200 μ L of a filter sterilized solution of cold 0.001 mg/mL BSA in 0.1 M sodium phosphate buffer, pH 7.0. We stored Neutravidin-beads at 4°C for 1-2 months.

555 BDNF Conjugation to NeutrAvidin-coated Fluorescent Beads

On the intended day of use, we mixed 20 μ L neutravidin-beads with 500 μ L BrainPhys terminal 560 differentiation media (STEMCELL Technologies) and sonicated for 5 minutes. 10 μ L of 10 μ g/mL Biotin-BDNF (B-250-B, Alomone Labs, Jerusalem, Israel), and 3 μ L of 10 μ g/mL biotin-4-fluorescein (Biotium, Fremont, CA) were added to the solution at a molar ratio ~1:2-2.5 M and incubated for 30 minutes on ice.

Endosome Isolation

We plated neurons in coated-cell culture dishes and grew them to ~80% confluence at 37°C with 5% CO₂. We performed the endosome isolation as described previously^{52,65,66}. We prepared 565 BDNF-beads as described above with BrainPhys terminal differentiation media (STEMCELL Technologies) and incubated it with neurons for 15 minutes. After 15 minutes, we replaced the media to remove beads that have not been internalized, and we incubated the neurons for an additional 75 minutes to isolate endosomes at a late timepoint in transport.

570 Following bead incubation, we collected neurons using 1 mg/mL Accutase, and spun at 1200 rpm at 4°C for 5 minutes. We resuspended neurons in motility assay buffer (MAB; 10 mM PIPES, 50 mM K-Acetate, 4 mM MgCl₂, and 1 mM EGTA, pH 7.0.) supplemented with protease inhibitor cocktail (PIC; BioShop), 10mM DTT, 1mM MgATP and 8.5% sucrose. The cell suspension was transferred to a tight-fitting dounce cell homogenizer and homogenized on ice with 50 vertical 575 strokes to ensure adequate disruption of neuronal membranes. Following, we centrifuged the cell

homogenate at 2 000 rpm and mixed ~1 mL of supernatant with 62% sucrose in MAB at a 1:1.2 ratio. All sucrose solutions were supplemented with PIC, 10mM DTT, and 1mM MgATP. We loaded 2 mL of the homogenate mixture on top of a 3.92 ml 62% sucrose in MAB cushion in an Ultra-Clear 5/8" X 4" Beckman Coulter tube (344061, Beckman Coulter). We added the remaining sucrose in MAB solutions: 2.52mL 30% for 200nm beads, 2.61mL 25%, and 2.61mL 10%, on top of the homogenate mixture. Next, we centrifuged the sucrose gradient in a swinging bucket centrifuge with a SWTi32 rotor (369650, Beckman Coulter) at 24,000g for 72 mins at 4°C. The bead-containing endosomes appeared as a thin band at the 25%–30% sucrose interface and we extracted them using a 21-gauge, BD 305165 PrecisionGlide needle and syringe (14-826C, Fisher Scientific). We kept isolated endosomes on ice at 4°C for up to 24 hours and subsequently stored them at -80°C.

Endosome immunofluorescence and imaging

We made flow chambers by mounting silanized coverslips to microscope slides using vacuum grease and double-sided tape. Isolated endosomes were added to the flow chambers and incubated for 1 hour at room temperature to allow endosomes to adhere to the surface⁶⁷. Following the incubation, we washed chambers 2X with MAB before and after treatment with Pluronic F-127 (P2443, Sigma-Adlrich) to prevent non-specific binding before incubation with primary antibodies. We incubated endosomes with the combination of primary antibodies for 1) mouse kinesin-1 and rabbit polyclonal dynein, 2) rabbit EEA1 and mouse LAMP1, 3) Rabbit RAB5 and MouseRAB7, 4) Rabbit RAB11A and mouse RAB7, or 5) mouse and 6) mouse huntingtin as identified in **Table 1**, for 1 hour at room temperature in a dark humidity chamber. Following treatment with primary antibodies, we washed endosomes 3X with MAB and incubated with secondary antibodies anti-rabbit Atto 488 and anti-mouse secondary antibody goat anti-mouse Alexa 647 for 1 hour at RT in a dark humidity chamber (Dilutions in **Table 1**). We washed samples 3X with MAB before imaging. To acquire multichannel images, we used brightfield or TIRF with 300 ms exposures using the 405 nm set at 3 mW, and 488 nm and 640 nm lasers set at 1 mW. We selected ROIs based on the centroid values of beads from the parent images captured with 405 nm laser excitation, thresholded according to maximum intensity profiles and scaled to produce circular ROIs with uniform diameters. To choose diameter values, we used the average area in which intensity signal (a.u.) was observed for a sample population of beads. We transferred the ROIs from the parent-bead image to the corresponding images acquired with 565 nm laser excitation. We measured the area and integrated density and saved them in a .csv file. We measured the local background intensity for each ROI by translating ROIs 10-pixel units in both x and y. We then subtracted from the first set of intensity measurements to get net intensity values. After repeated measurements, we imported the net data into MATLAB (The MathWorks) and parsed data values according to thresholds set based on positive and negative controls to determine the intensity distributions and fractions of colocalization.

A caveat of the bead density-based isolation approach is that there is potential for beads that were not internalized or contained within vesicles to have been mixed in with the cell lysate and collected along with the bead-containing vesicles on the sucrose gradient. To gain a more accurate estimate of the average fraction of beads in the 30Q and 81Q isolated populations that were internalized and contained in vesicles, we implemented negative and positive controls. The first of

620 the negative controls consisted of immunofluorescence excluding the primary antibody incubation to assess the validity of the Atto-488 and Alexa-647 secondary fluorescent probes. The fraction of association of the Atto-488 and Alexa-647 probe with 30Q/81Q BDNF-endosomes was 5.00%. The second of the negative controls was a high-salt, 0.25 M MgCl₂ buffer incubation of the isolated BDNF-endosomes to lower membrane binding-affinity, followed by the immunofluorescence 625 using RAB5/RAB7 primary antibodies. RAB5/RAB7 labels are known to tightly bind membranes and were present in both 30Q and 81Q BDNF-endosome populations⁶⁸. The fraction of association was 8.00% for 30Q endosomes and 4.00% for 81Q endosomes in the MgCl₂ condition (**Figure S7A, B**). We used intensity distributions and gaussian mixture models to examine trends in the negative control populations to determine a minimum threshold of 300 a.u. for intensity signal to 630 be considered positive. To determine the maximum threshold for association with a single BDNF-endosome, we used a positive control. We employed two-channel immunofluorescence with kinesin-1 and dynein motors, EEA1 and LAMP1, RAB5 and RAB7, RAB11 and RAB7 antibodies for 30Q and 81Q endosome populations. BDNF-beads that associated with either label of interest or a combination of the two at >300 a.u. intensities were considered positive. Based on the average 635 fraction of association taken from the most abundant protein combination, RAB11/RAB7, we estimated that ~68% of total measurements were from endosomes in the 30Q population, and ~80% in the 81Q population. We confirmed these estimates with CellTracker Orange (Millipore Sigma) fluorescence colocalization with 560 nm excitation and a minimum threshold of >100 a.u., near the first peak's mean value using gaussian fits to the intensity distributions. With CellTracker 640 Orange, 68% of total measurements were from endosomes in the 30Q population and 73% in the 81Q population. Intensity distributions and gaussian mixture models for the positive control populations determined a maximum threshold of 5000 a.u. for intensity signal to be considered positive and associated with individual endosomes (**Figure S7A-B**).

645 Immunofluorescence Staining Reagent Dilutions

Table 1. Immunofluorescence antibody and stain dilutions with suppliers, identifiers, and concentrations diluted from stocks. When two dilutions are listed, the dilution with the asterisk was used for isolated endosomes and the other dilution was used on fixed cells.

Reagent	Source	Species	Type	Identifier	Dilution
Anti-Huntingtin	Abcam	Mouse	Monoclonal	MAB2166	1/400, 1/500*
Anti-Mouse 647	Millipore-Sigma	Goat	Polyclonal	A21236	1/400, 1/1000*
Anti-Tubulin	Millipore-Sigma	Mouse	Monoclonal	T9026	1/400
Anti-Tubulin β-3 647	Biolegend	Mouse	Monoclonal	657406	1/400
Anti-Mouse 488	Millipore-Sigma	Goat	Polyclonal	A11001	1/400, 1/1000*
DAPI	ThermoFisher Scientific	N/A		D1306	1 µg/ml
Anti-Kinesin-1	EMD Millipore	Mouse	Monoclonal	MAB1614	1/500
Anti-Dynein	Santa Cruz	Rabbit	Polyclonal	sc-9115	1/500
Anti-EEA1	Abcam	Rabbit	Polyclonal	ab109110	1/500
Anti-LAMP1	Invitrogen	Mouse	Monoclonal	MA1-164	1/500
Anti-RAB5	Abcam	Rabbit	Polyclonal	ab18211	1/500
Anti-RAB7	Abcam	Mouse	Monoclonal	ab50533	1/500

Anti-RAB11A	Abclonal	Rabbit	Monoclonal	A3251	1/500
Anti-HAP1	Invitrogen	Mouse	Monoclonal	MA1-46412	1/500
Anti-Rabbit 488	Millipore-Sigma	Goat	Polyclonal	18772	1/1000
Anti-Dynein	EMD Millipore	Mouse	Monoclonal	MAB1618	1/500

650

Analysis Methods

TrackMate Analysis Parameters

655 We chose tracking parameters by comparing the results from TrackMate with the maximum intensity projection of the data to ensure that the parameters were optimized to capture the true motility of each cargo. Additionally, we chose parameters that were realistic given the exposure time of the image stack and maximum speed of a motor protein. Given these constraints, we ended up with the parameters presented in **Table 2**.

660 To account for the irregular shape of mitochondria, we used Weka Segmentation with a custom model to identify and track neuronal mitochondria. To account for photobleaching, we trained the model using the first and last frames of 10 different time-series recordings of neuronal mitochondria. Each mitochondrion was classified as class 1 in the model, while the rest of the axon and the background were identified as class 2. Using this model file, we could use TrackMate with 665 a probability threshold of 0.5-0.9 and the same linking, gap closing, and gap parameters as the other cargoes (**Table 2**) to reliably measure mitochondrial trajectories.

Table 2. TrackMate parameters according to cargo label.

Cargo	Estimated Diameter (μm)	Blob Intensity Threshold range	Linking Distance	Max	Gap-Closing Max Distance	Gap-Closing Max Frame Gap
BDNF-qdot	0.8	30-200	0.5	0.5	2	
Lysotracker	1	50-300	0.5	0.5	2	
MitoTracker	n/a	0.5-0.9*	0.5	0.5	2	

670 * MitoTracker's threshold is a probability threshold rather than an intensity threshold.

675 We calculated the processivity parameter α from the slope of the log-log plot of mean squared displacement and averaged the value from all trajectories for each cell. An $\alpha=1$ indicates purely diffusive behaviour, while active transport is $\alpha > 1$ and confinement or stationary tracks have $\alpha < 1$. To determine radius of gyration (R_g), we used the equation below, where N is the number of points in the trajectory, r_k is the current position being evaluated, and r_{mean} is the average position in the trajectory.

$$R_g^2 = \frac{1}{N} \sum_{k=1}^N (r_k - r_{mean})^2$$

680

We calculated the tracking uncertainty from TrackMate for each cargo by isolating trajectories from all cargoes that had displacements <0.5 μm and $0 < \alpha > 0.5$ and plotting the resultant distribution. We fit a Gaussian mixture model to the distribution and identified the component

685 containing the highest proportion of the data. The mean of the highest proportion component gave the tracking uncertainty for each cargo type.

Kymograph Generation

690 For each kymograph, we manually traced a segmented line along the axon in ImageJ using the segmented line tool with a linewidth of 5. We used this segmented line region of interest to calculate axon segment length. We then used the Multi-Kymograph function on ImageJ to generate the kymograph for the entire image stack (1479 frames). We generated colour-coded kymographs using KymographClear⁶⁹.

KymoButler Analysis

695 We submitted all kymographs to the KymoButler³⁵ website with the settings defined in **Table 3** below according to the cargo. We then used the coordinates from each track on each kymograph to generate the trajectories for analysis.

Table 3. KymoButler analysis settings.

Cargo	Sensitivity	Minimum # of frames	μm per pixel	Time int. per frame (s)
BDNF	0.1	5	0.16	0.12
Mitochondria	0.1-0.2	5	0.16	0.12
Lysosome	0.2	10	0.16	0.12

Flux Analysis

700 In MATLAB using the axon segment length determined from the kymograph generation, we divided the segment into fifths for each cell. From each 1/5th position, we identified trajectories from the KymoButler analysis that were located within or passed through the position +/- 2.5 μm. We then investigated whether the trajectory started inside the theoretical 5 μm box or outside it. If the trajectory started within the box, we identified it as anterograde flux if it exited from the distal side, retrograde flux if it exited from the somal side, and stationary if it stayed inside the box. If a trajectory entered the box from outside during the imaging time, we identified flux based on its exit location such that those exiting on the distal side were considered anterograde and those exiting on the somal side were considered retrograde. In the case that a trajectory entered from outside of the box and then stayed within it, the flux was identified based on its entry location with anterograde flux for those that entered from the somal side and retrograde flux for those that entered from the distal side. This code generates a binary answer for each condition tested. We 710 added together all anterograde, retrograde, and stationary fluxes from each of the 1/5th position boxes from a given cell and generated an average of these values for each cell. For the multiple box size analysis, we repeated this process varying the box width.

715

Immunofluorescence image analysis

720 We drew linescans across the 100x images of axons with a linewidth of 10 pixels. We gathered intensity values for tubulin, HTT and DAPI using the measure function in ImageJ. We then calculated the mean intensities for each line profile and the variance in MATLAB.

725 To quantify neurite arborization length from the 10x images, we first performed a flat-field correction to the image. We then identified neurons by applying an automatic threshold (Otsu) using the Tubb-3 staining. Next, we skeletonized the Tubb-3 channel and measured the percentage

of the image area covered by the skeleton. Using the analyze particles function in ImageJ, we determined the number of nuclei from the thresholded DAPI channel. We finally calculated the arborization by dividing the skeleton area by the number of nuclei. To calculate the normalized HTT intensity throughout the neurons, we created a mask of the Tubb-3 channel using gaussian blur and Li automatic threshold functions in ImageJ. We avoided background signal by measuring the HTT and Tubb-3 intensity only within the masked neuron area. Finally, we normalized the HTT fluorescence intensity by dividing the HTT by Tubb-3 values.

735 **Stepwise photobleaching analysis**

SWPB is an imaging technique that uses the rate of fluorescence signal decay over time to quantify protein complex stoichiometry. We employed immunofluorescence, using a primary target and secondary fluorescent probe to identify proteins of interest. We incubated endosomes in flow chambers for 1 hour and treated them with Pluronic F-127 as described in *Methods*:
740 *Immunofluorescence imaging*. We used separate chambers for each protein counted. The antibodies we incubated endosomes with included kinesin-1, dynein (monoclonal), HAP1, HTT for 1 hour at RT in the dark. We washed chambers 3X with MAB and incubated with anti-mouse Alexa647 secondary antibody for 1 hour. Following, we washed chambers 3X with MAB. To image the endosomes, we used epifluorescence with 500 ms exposures using a 640 nm laser at 3
745 mW. We applied a constant laser power applied to each sample for approximately 8 minutes in epifluorescence to induce photobleaching over time. Our single-molecule kinesin-1 control experiment was derived from recent literature in this laboratory⁵². We diluted purified recombinant rat kinesin-1 (rkin430-GFP) to 10 nM and incubated with primary and secondary antibodies and it bound to unlabeled microtubules using 1mM AMPNP to detect single statically bound molecules.
750 Images were acquired using TIRF microscopy.

In FIJI, we selected ROIs with the elliptical selection tool and tightly fitted them to not include any background signal. We compared fluorescent ROIs to brightfield images of beads to verify colocalization and recorded the mean intensity of the fluorescent signal over time. We translated
755 ROIs to an area of local background with no fluorescent signal and measured the mean intensity over time. Next, we subtracted background intensities from their corresponding ROI origin fluorescent signal values and produced net fluorescent signal decay traces. To determine the number and size of discrete bleaching event “steps”, we applied a step-finding algorithm to each trace^{27,28}. We divided the difference between the initial and final fluorescence intensity by the
760 mean step size to get the number of steps. To generate the number of proteins associated with an endosome in the population, we divided the mean step size for a protein of interest by the mean step size for single kinesin-1 (**Figure S7H-I**). We generated the range of average number steps and proteins per endosome for 30Q and 81Q BDNF-endosome populations using a 95% confidence interval.

765 **Estimation of scaffold protein combinations on endosomes**

To model the ratio of each protein of interest: dynein, kinesin-1, HAP1 and HTT on BDNF-endosomes, we generated a population of simulated endosomes from our experimental data. From
770 the data in **Figure 7B-D**, stochastic combinations of protein type and number were generated for individual endosomes using random sampling along the cumulative distribution functions of each protein. Bootstrapping was used to determine the mean and 95% confidence intervals of the total number of proteins on each endosome⁷⁰.

775 **Statistical Analysis**

We performed statistical testing for live cell organelle imaging analysis in MATLAB using the one-way ANOVA function and Tukey's post-hoc test at 95% confidence. We reported p values from the post-hoc tests.

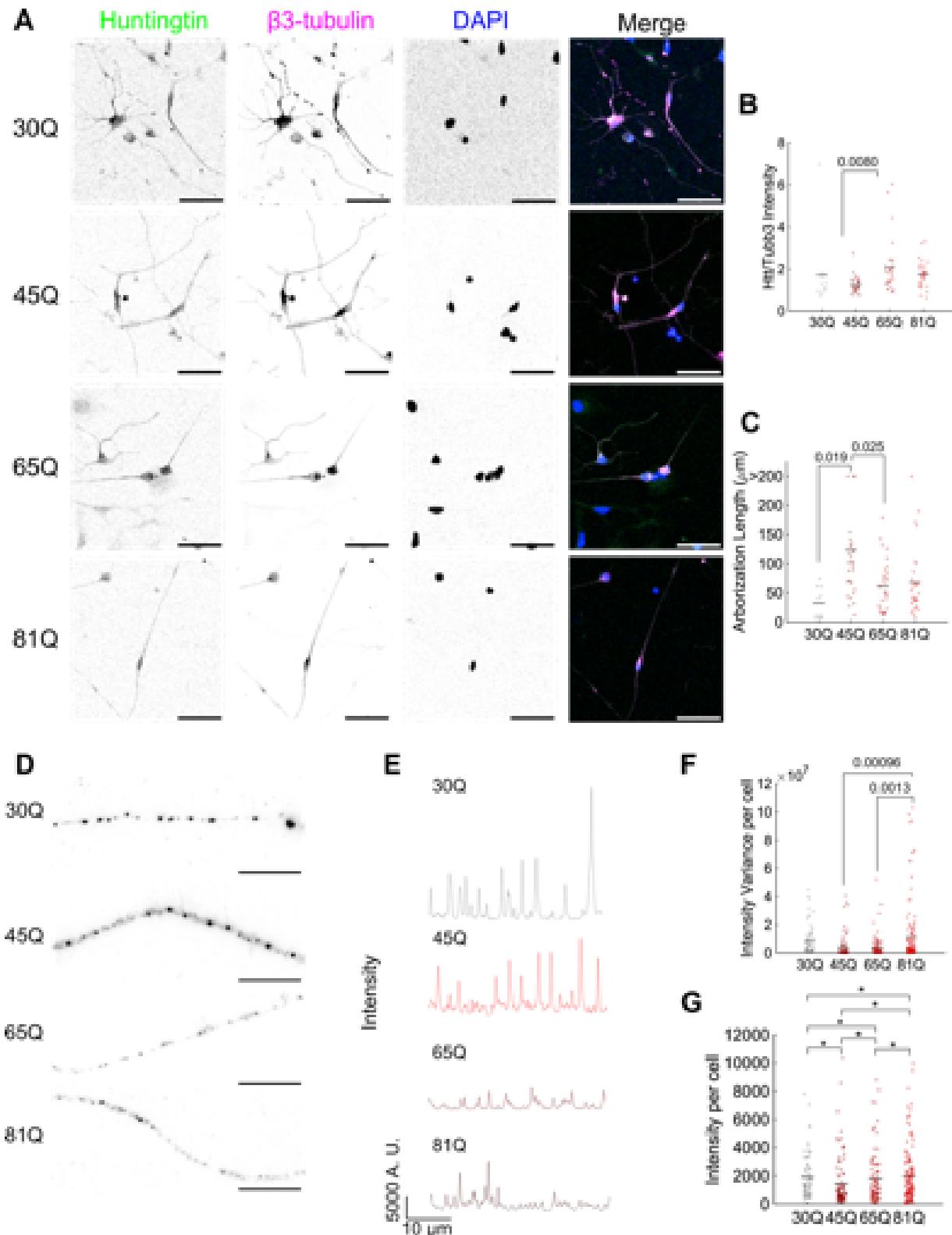
780 We presented all stepwise photobleaching and fluorescence colocalization data with error bars indicating standard error of the mean (SEM) or 95% confidence intervals as specified in the figure legends. We used bootstrapping analysis in MATLAB to test for statistical significance and determine confidence intervals.

785 **Author Contributions**

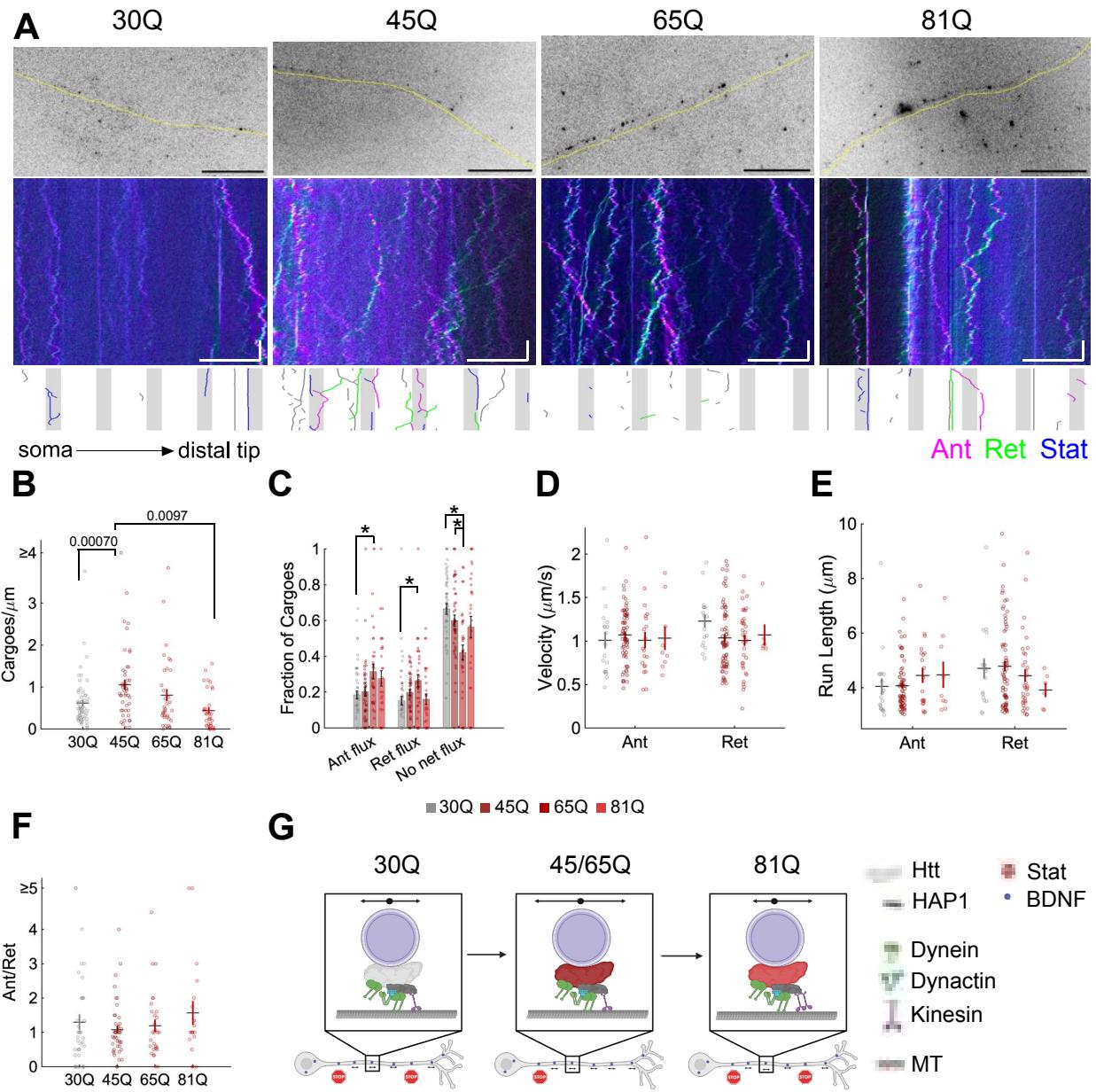
E. N. P. P., B. A. T., and A. G. H. designed the study with input from H. M. and G. J. B.. M. A. P. donated cell lines and provided comments on the manuscript. E. N. P. P. and B. A. T. generated neurons through cell inductions. E. N. P. P. performed live cell experiments and analysis. B. A. T. performed BDNF-endosome isolation, experiments, and analysis. M. S. imaged and analyzed fixed neurons at low magnification and provided comments on the manuscript. G. J. B. provided comments on experimental design and the manuscript. D. B. authored in vitro analysis codes and 790 provided input into in vitro experiment design. E. N. P. P., B. A. T., and A. G. H. wrote the manuscript.

795 **Declaration of Interests**

The authors declare no competing interests.


795

Acknowledgements


B. A. T. is supported by a CGS-M fellowship from the National Sciences and Engineering Council of Canada. A. G. H. is supported by the Canadian Institutes of Health Research (PJT-159490 and PJT-185997).

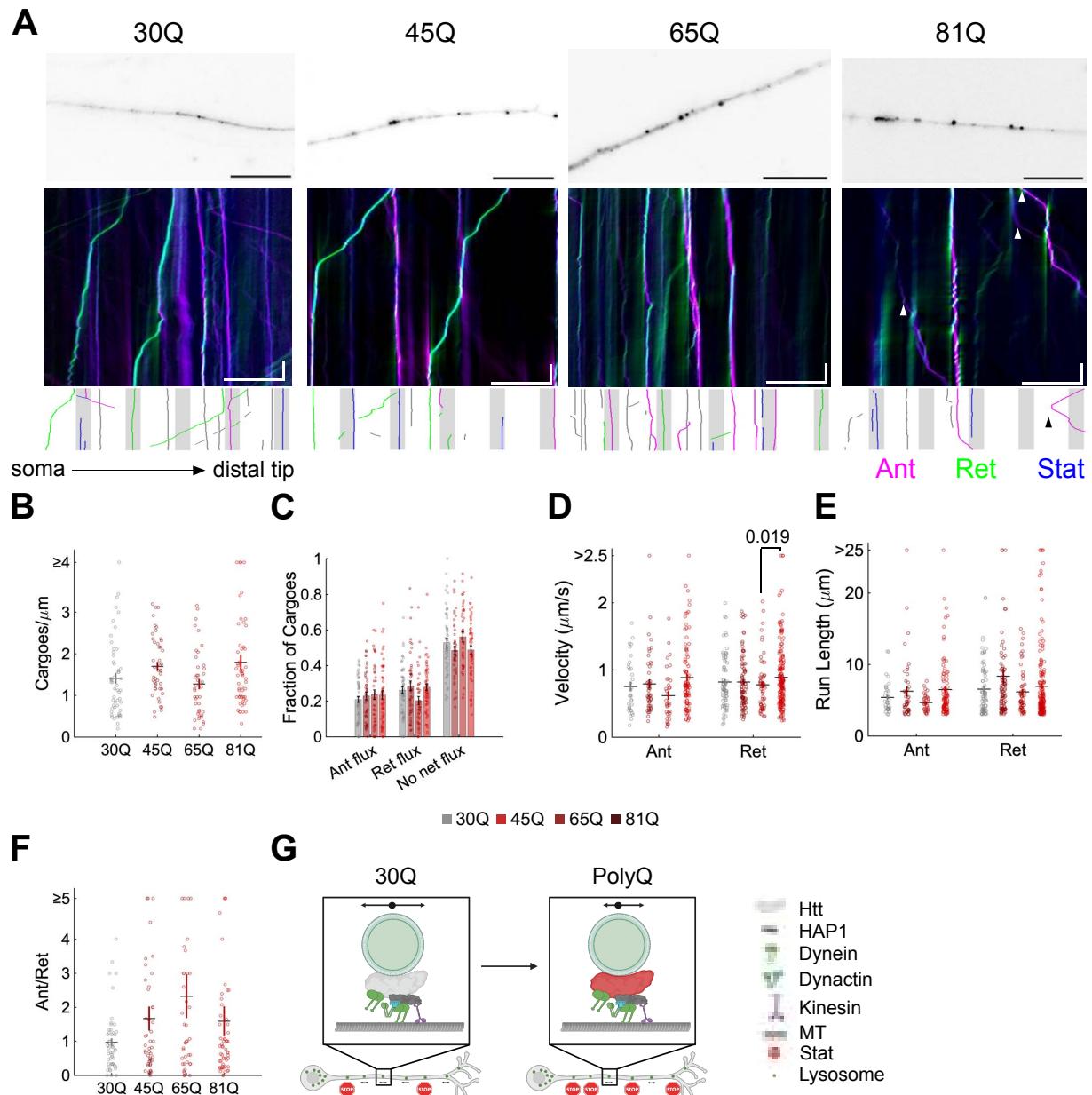
800

Figures and Figure Legends

805 **Figure 1. Polyglutamine expansions increase the intensity of HTT punctae.** **A** Immunofluorescence images showing HTT (green), β 3-tubulin (magenta), DAPI (blue), and merged images for neurons of 45Q (top), 65Q (middle), and 81Q (bottom) cell lines. Scale bar 50 μ m. **B** Relative HTT intensity to β 3-tubulin quantified from images as in **A** (30Q, n=12 images, 2 terminal differentiations, 45Q n=32 images, 3 terminal differentiations, 65Q n=31 images, 3 terminal differentiations, 81Q n=30 images, 3 terminal differentiations), mean values: 30Q 1.72, 45Q 1.26, 65Q 2.05, and 81Q 1.76. Means are indicated by black horizontal line. **C** Quantification of axon arborization lengths for each cell line above from the same images as in **A** and **B**, mean values: 30Q 32.6, 45Q 124, 65Q 61.4, and 81Q 68.5 μ m. **D** Immunofluorescence images of HTT in 30Q, 45Q, 65Q, and 81Q HTT neurons at higher magnification, scale bar 10 μ m. **E** Linescan intensity profiles with a linewidth of 10 pixels for each respective image in **D**. **F** Mean variance in intensity per cell in linescan analysis from 30Q (n=72 neurons, 2 terminal differentiations), 45Q (n=90 neurons, 3 terminal differentiations), 65Q (n=90 neurons, 3 terminal differentiations), and 81Q (n=138 axon segments from ~100 neurons, 2 terminal differentiations). Mean values for intensity variance: 30Q 8.11×10^6 , 45Q 3.94×10^6 , 65Q 4.09×10^6 , and 81Q 11.2×10^6 . **G** Mean intensity per cell for all linescan images, mean values: 30Q 1.91×10^3 , 45Q 1.46×10^3 , 1.80×10^3 , and 1.98×10^3 . Statistical significance was determined by analysis of variance (ANOVA) followed by Tukey's multiple comparison post-hoc test, p values at 95% confidence are listed where possible and otherwise are indicated by an asterisk (*). Values for the asterisks in **G** are all < 0.001.

Figure 2. BDNF cargo transport is differentially regulated by intermediate and long pathogenic polyglutamine lengths. A Inverted image of the first frame of BDNF-quantum dots in the axon with the shape of the axon traced in yellow below for 30Q, 45Q, 65Q, 81Q neurons (top). Colour coded kymograph generated using KymographClear⁶⁹ demonstrates anterograde (magenta), retrograde (green) and stationary (blue) cargoes for each sample axon image.

825 Scale bars 20 μ m, 5 s. Below the kymograph is a plot demonstrating flux characterization of each trajectory continuing in the following frames: gray shaded areas represent the boxes used to calculate flux and the trajectories are coloured according to the flux calculated for the entire trajectory, gray trajectories are not counted because they do not enter the boxes, magenta represents anterograde, green represents retrograde, and blue represents no net flux. **B-F** Long-range track analysis using KymoButler³⁵ from 30Q (n=56 neurons, 4 terminal differentiations), 45Q (n=47 neurons, 2 terminal differentiations), 65Q (n=35 neurons, 2 terminal differentiations), and 81Q (n=34 neurons, 4 terminal differentiations). Bar heights and horizontal lines indicate the mean of the data, while error bars and vertical lines represent the SEM. **B** Average total number of cargoes per cell when the box width for flux analysis is set to 5 μ m (means: 0.615, 1.05, 0.806, and 0.439 for 30, 45, 65, and 81Q, respectively). **C** Fraction of trajectories with anterograde (ant), retrograde (ret), and no net flux resulting in flux averaged per cell, with a 5 μ m box. Means for

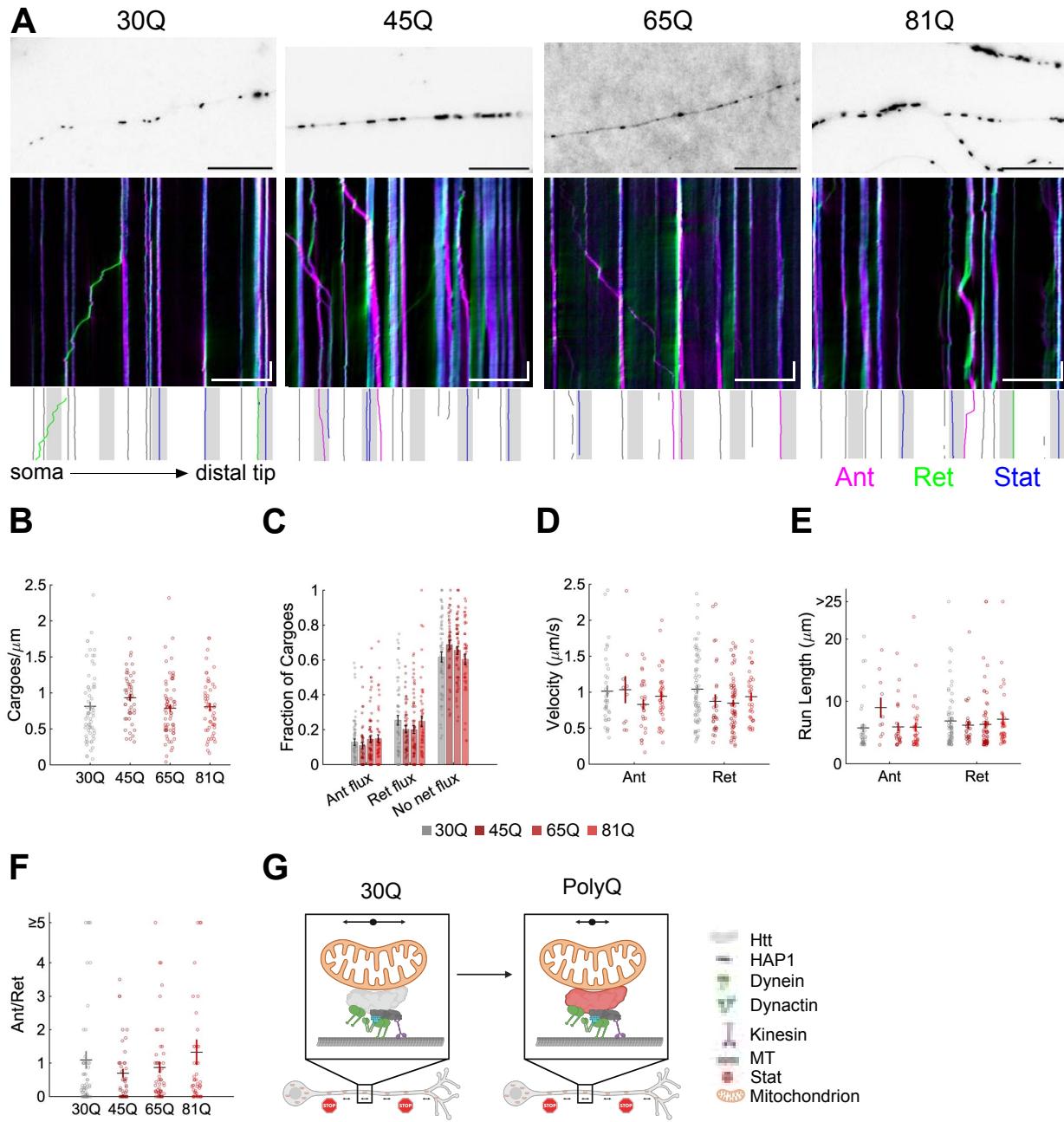

830 835

anterograde flux: 30Q 0.184, 45Q 0.203, 65Q 0.315, 81Q 0.276, retrograde flux: 30Q 0.151, 45Q 0.197, 65Q 0.264, 81Q 0.160, and no net flux: 30Q 0.665, 45Q 0.600, 65Q 0.421, and 81Q 0.564. **(D)** Mean velocity (anterograde: 30Q 1.01, 45Q 1.07, 65Q 1.01, and 81Q 1.03 $\mu\text{m/s}$, retrograde: 30Q 1.23, 45Q 1.03, 65Q 1.01, and 81Q 1.07 $\mu\text{m/s}$) and **(E)** run length (anterograde: 30Q 4.04, 45Q 4.07, 65Q 4.45, 81Q 4.47 μm and retrograde: 30Q 4.71, 45Q 4.79, 65Q 4.44, and 81Q 3.91 μm) for each trajectory above 3 μm in run length, separated into runs with a net anterograde (ant) or net retrograde (ret) directionality. Colour code is indicated in the center of the figure, above **G**. **F** Overall directionality by the fraction of anterograde (ant) to retrograde (ret) flux per cell with a 5 μm box width (means: 30Q 1.30, 45Q 1.08, 65Q 1.19, and 81Q 1.56). **G** Model demonstrating the effects on BDNF cargoes in control, intermediate length, and long polyQ HTT. and their length represents processivity or run length of the cargo, vesicles within the axon represent abundance and the arrows or stop signs indicate whether they are motile. Statistical significance with $p < 0.05$ is indicated by the p value itself or an * and was determined by one-way analysis of variance and a Tukey multiple comparison post-hoc test. The values for those with asterisks in **B** are: anterograde flux 30Q vs 65Q, $p=0.016$, retrograde flux 30Q vs 65Q $p=0.0096$, For no net flux 30Q vs 65Q $p=0.000055$, 45Q vs 65Q $p=0.0083$.

840

845

850


855 **Figure 3. Lysosome transport is mildly misdirected by pathogenic polyglutamine lengths.** **A** Inverted images of the first frame of LysoTracker positive lysosomes in the axon for 30Q, 45Q, 65Q, and 81Q neurons (top). Colour coded kymograph generated using KymographClear⁶⁹ demonstrate anterograde (magenta), retrograde (green) and stationary (blue) cargoes for each sample axon image (top). Arrowheads indicate persistent anterograde motility and scale bars are 20 μ m, 5 s. Below the kymograph is a plot demonstrating flux characterization of each trajectory continuing in the following frames: gray shaded areas represent the boxes used to calculate flux and the trajectories are coloured according to the flux calculated for the entire trajectory, gray trajectories are not counted because they do not enter the boxes, magenta represents anterograde, green represents retrograde, and blue represents no net flux.

860 **B-F** Long-range track analysis using KymoButler from 30Q (n=54, 3 terminal differentiations), 45Q (n=46, 2 terminal differentiations), 65Q (n=41, 4 terminal differentiations), and 81Q (n=55, 5 terminal differentiations). Bar heights and horizontal lines indicate the mean of the data, while error bars and vertical lines represent the SEM. **B** Average number of cargoes per micron in each cell when the box width for flux analysis is set to 5 μ m (means: 30Q 1.41, 45Q 1.70, 65Q 1.27, and 81Q 1.80). **C** Fraction of trajectories with anterograde (ant), retrograde (ret), and no net flux resulting in flux averaged per cell, with a 5 μ m box. Means for anterograde flux: 30Q 0.209, 45Q 0.229, 65Q 0.236, and 81Q 0.235, retrograde flux: 30Q 0.262, 45Q 0.286, 65Q 0.203, and 81Q 0.277, and no net flux: 30Q 0.529, 45Q 0.485, 65Q 0.561, and 81Q 0.488. **D, E** Mean velocity (**D**, anterograde means: 30Q 0.755, 45Q 0.791, 65Q 0.619, and 81Q 0.886 μ m/s, retrograde means: 30Q 0.821, 45Q 0.819, 65Q 0.778, and 81Q 0.888 μ m/s) and run length (**E**, anterograde means: 30Q 5.41, 45Q 6.24, 65Q 4.67, and 81Q 6.48 μ m, retrograde means: 30Q 6.56, 45Q 8.34, 65Q 6.18, and 81Q 6.95 μ m) for each trajectory above 3 μ m in run length, separated into runs with a net anterograde (ant) or net retrograde (ret) directionality. Colour code is indicated in the center of the figure, above **G**. **F** Overall directionality by the fraction of anterograde (ant) to retrograde (ret) flux per cell with a 5 μ m box width (means: 30Q 0.968, 45Q 1.67, 65Q 2.32, and 81Q 1.59). **G** Model demonstrating the effects on lysosomes in control, and long polyQ HTT. and their length represents processivity or run length of the cargo, vesicles within the axon represent abundance and the arrows or stop signs indicate whether they are motile. Bar height or horizontal line indicate the mean of the data, error bars represent the SEM. Statistical significance with $p < 0.05$ is indicated by the p value itself and was determined by one-way analysis of variance and a Tukey multiple comparison post-hoc test.

865

870

875

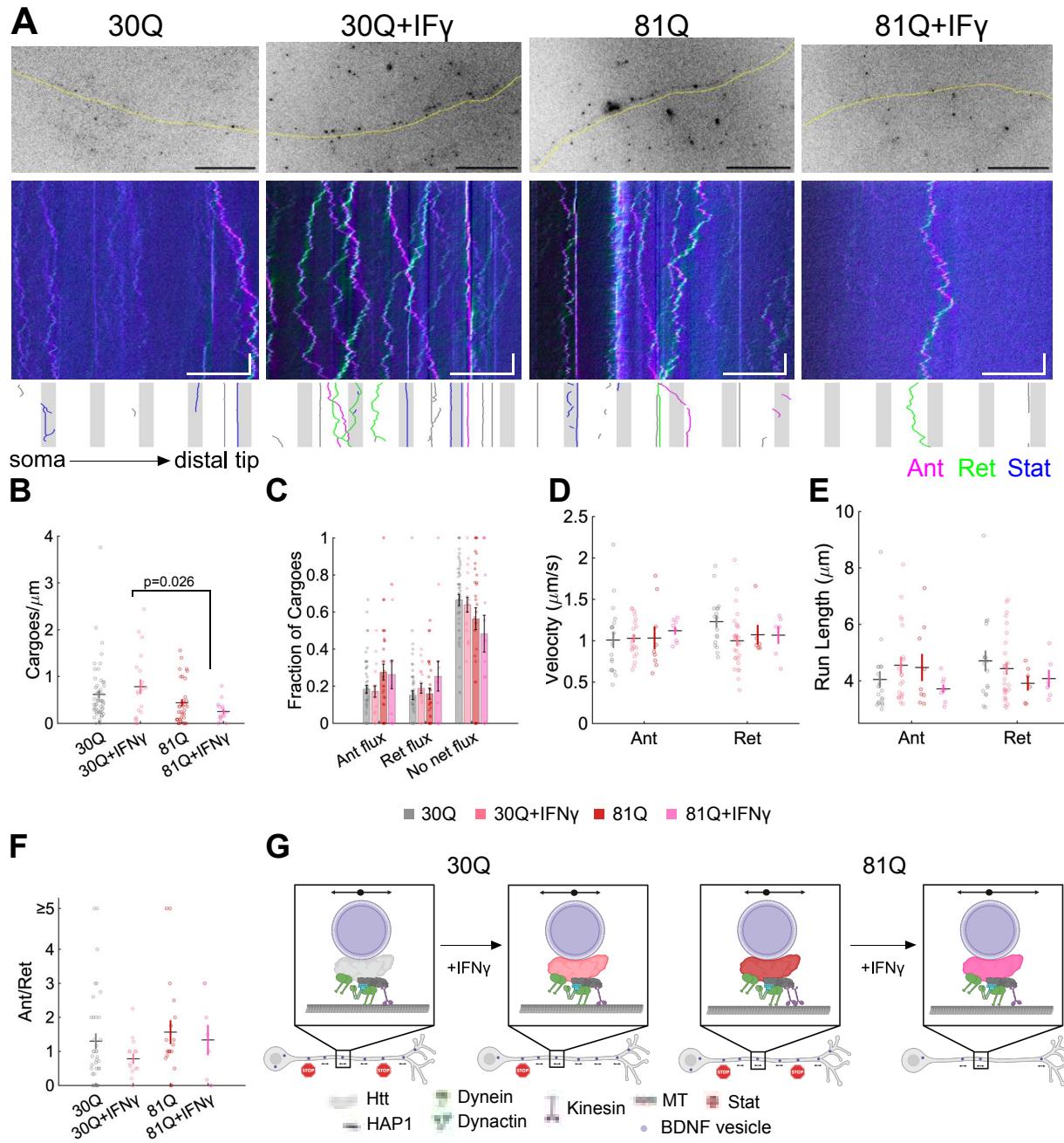
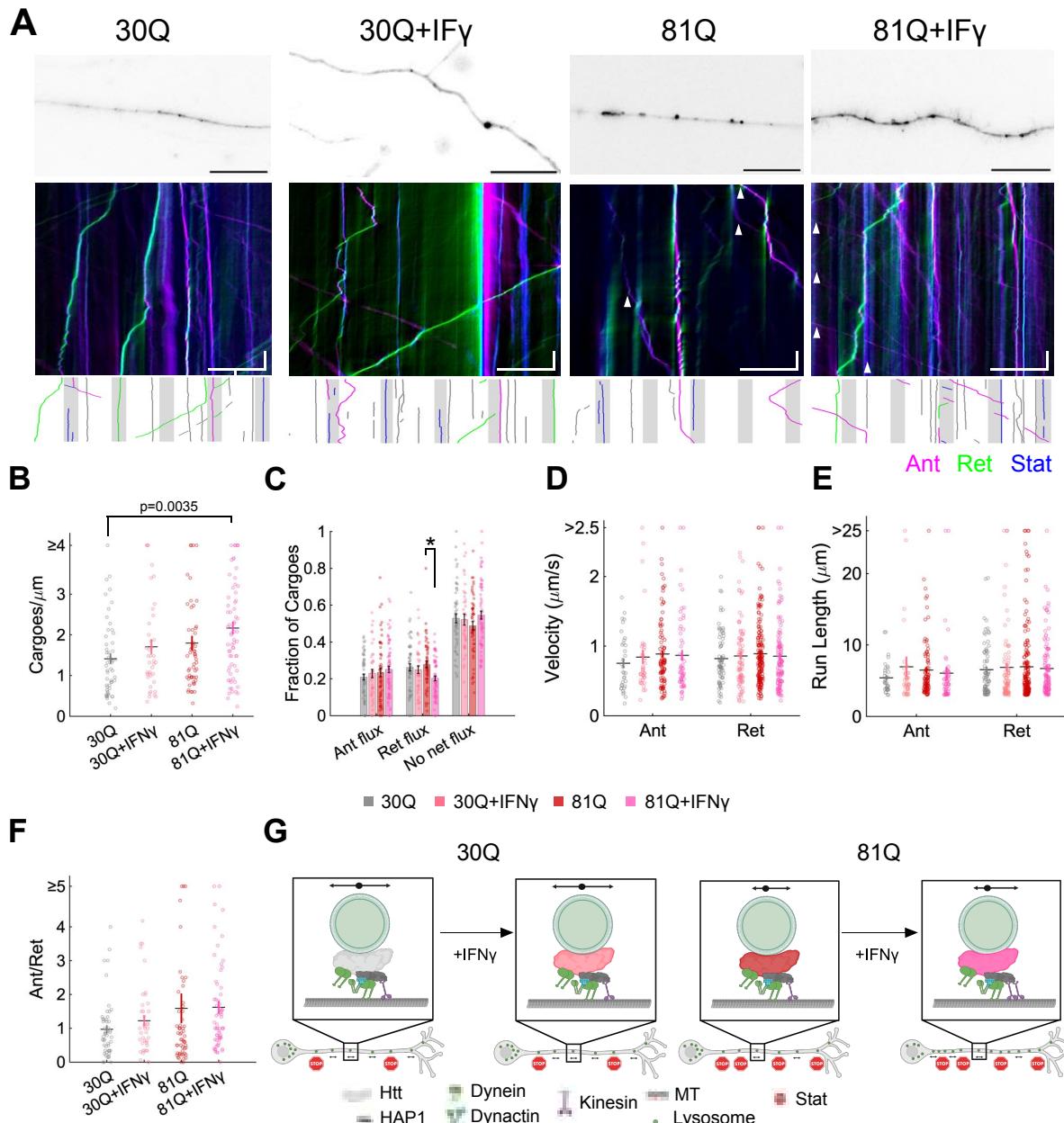

880

Figure 4. Mitochondria motility is not strongly affected by polyglutamine expansions in HTT. **A** Inverted image of the first frame of MitoTracker positive mitochondria in the axon from HTT with 30Q, 45Q, 65Q, and 81Q neurons (top). Colour coded kymograph generated using KymographClear⁶⁹ demonstrate anterograde (magenta), retrograde (green) and stationary (blue) cargoes for each sample axon image (top). Scale bars 20 μm, 5 s. Below the kymograph is a plot demonstrating flux characterization of each trajectory continuing in the following frames: gray shaded areas represent the boxes used to calculate flux and the trajectories are coloured according to the flux calculated for the entire trajectory, gray trajectories are not counted because they do not enter the boxes, magenta represents anterograde, green represents retrograde, and blue represents no net flux. Scale bars 20 μm, 5 s. **B-F** Long-range track analysis using KymoButler for 30Q (n=61, 5 terminal differentiations), 45Q (n=47, 2 terminal differentiations), 65Q (n=64, 3 terminal differentiations), and 81Q (n=50, 5 terminal differentiations) neurons. **B** Average total number of cargoes per micron in each cell when the box width for flux analysis is set to 5 μm (means: 30Q 0.814, 45Q 0.934, 65Q 0.879,

885

890

and 81Q 0.806) . **C** Fraction of trajectories with anterograde (ant), retrograde (ret), and no net flux resulting in flux averaged per cell, with a 5 μm box. Means for anterograde: 30Q 0.128, 45Q 0.109, 65Q 0.145, and 81Q 0.148, retrograde: 30Q 0.254, 45Q 0.203, 65Q 0.200, and 81Q 0.248, and no net flux: 30Q 0.617, 45Q 0.688, 65Q 0.655, and 81Q 0.694. **D, E** Mean velocity (**D**, anterograde means: 30Q 1.01, 45Q 1.03, 65Q 0.831, and 81Q 0.944 $\mu\text{m/s}$ and retrograde: 30Q 1.04, 45Q 0.975, 65Q 0.848, and 81Q 0.939 $\mu\text{m/s}$) and run length (**E**, anterograde means: 30Q 5.75, 45Q 8.99, 65Q 5.91, 81Q 5.88 μm , retrograde: 30Q 6.87, 45Q 6.19, 65Q 6.29, and 81Q 7.14 μm) for each trajectory above 3 μm in run length, separated into runs with a net anterograde (ant) or net retrograde (ret) directionality. Colour code is indicated in the center of the figure, above **G**. **F** Overall directionality by the fraction of anterograde (ant) to retrograde (ret) flux per cell with a 5 μm box width (means: 30Q 1.09, 45Q 0.693, 65Q 0.869, and 81Q 1.32). **G** Model demonstrating the effects on mitochondria in control, intermediate length, and long polyQ HTT. and their length represents processivity or run length of the cargo, vesicles within the axon represent abundance and the arrows or stop signs indicate whether they are motile. Bar height or horizontal line indicate the mean of the data, error bars represent the SEM. Statistical significance with $p < 0.05$ is indicated by the p value itself and was determined by one-way analysis of variance and a Tukey multiple comparison post-hoc test.


Figure 5. Pathogenic HTT alters the response of BDNF transport to neuroinflammatory stress. **A** Inverted image of the first frame of BDNF-quantum dots in the axon with the shape of the axon traced in yellow below for 30Q-81Q neurons. Colour coded kymograph generated using KymographClear⁶⁹ demonstrate anterograde (magenta), retrograde (green) and stationary (blue) cargoes for each sample axon image (top). Scale bars 20 μ m, 5 s. Below the kymograph is a plot demonstrating flux characterization of each trajectory continuing in the following frames: gray shaded areas represent the boxes used to calculate flux and the trajectories are coloured according to the flux calculated for the entire trajectory, gray trajectories are not counted because they do not enter the boxes, magenta represents anterograde, green represents retrograde, and blue represents no net flux. Scale bars 20 μ m, 5 s. **B-F** Long-range track analysis for 30Q (same samples as Figure 2, n=56, 4 terminal differentiations), 30Q with 24 hrs 100 ng/mL IFN γ (n=20, 3 terminal differentiations), 81Q (same samples as Figure 2, n=34, 4 terminal differentiations), and 81Q with 24 hrs 100 ng/mL IFN γ (n=15, 3 terminal differentiations) **B** Average total number of cargoes per micron in each cell when the box width for flux analysis is set to 5 μ m (means: 30Q 0.615, 30Q+IFN γ 0.782, 81Q 0.439, and 81Q+IFN γ 0.253). **C**

910

915

920 Fraction of trajectories with anterograde (ant), retrograde (ret), and no net flux resulting in flux averaged per cell, with a 5 μm box. Bar height or horizontal line indicate the mean of the data, error bars represent the SEM. Mean values for anterograde flux: 30Q 0.184, 30Q+IFN γ 0.171, 81Q 0.276, and 81Q+IFN γ 0.263, retrograde flux: 30Q 0.151, 30Q+IFN γ 0.189, 81Q 0.160, and 81Q+IFN γ 0.254, and no net flux: 30Q 0.664, 30Q+IFN γ 0.640, 81Q 0.564, and 81Q+IFN γ 0.483. **D, E** Mean velocity (**D**, anterograde means: 30Q 1.01, 30Q+IFN 1.03, 81Q 1.03, and 81Q+IFN 1.12 $\mu\text{m}/\text{s}$, retrograde: 30Q 1.23, 30Q+IFN γ 0.999, 81Q 1.07, and 81Q+IFN γ 1.07 $\mu\text{m}/\text{s}$) and run length (**E**, anterograde means: 30Q 4.04, 30Q+IFN γ 4.55, 81Q 4.47, 81Q+IFN γ 3.72 μm , and retrograde means: 30Q 4.71, 30Q+IFN γ 4.43, 81Q 3.91, 81Q+IFN γ 4.08 μm) for each trajectory above 3 μm in run length, separated into runs with a net anterograde (ant) or net retrograde (ret) directionality. Colour code is indicated in the center of the figure, above **G**. **F** Overall directionality by the fraction of anterograde (ant) to retrograde (ret) flux per cell with a 5 μm box width (means: 30Q 1.30, 30Q+IFN γ 0.782, 81Q 1.56, 81Q+IFN γ 1.33). **G** Model demonstrating the effects on BDNF cargoes in control, intermediate length, and long polyQ HTT. and their length represents processivity or run length of the cargo, vesicles within the axon represent abundance and the arrows or stop signs indicate whether they are motile. Statistical significance with $p < 0.05$ is indicated by the p value itself and was determined by one-way analysis of variance and a Tukey multiple comparison post-hoc test.

935

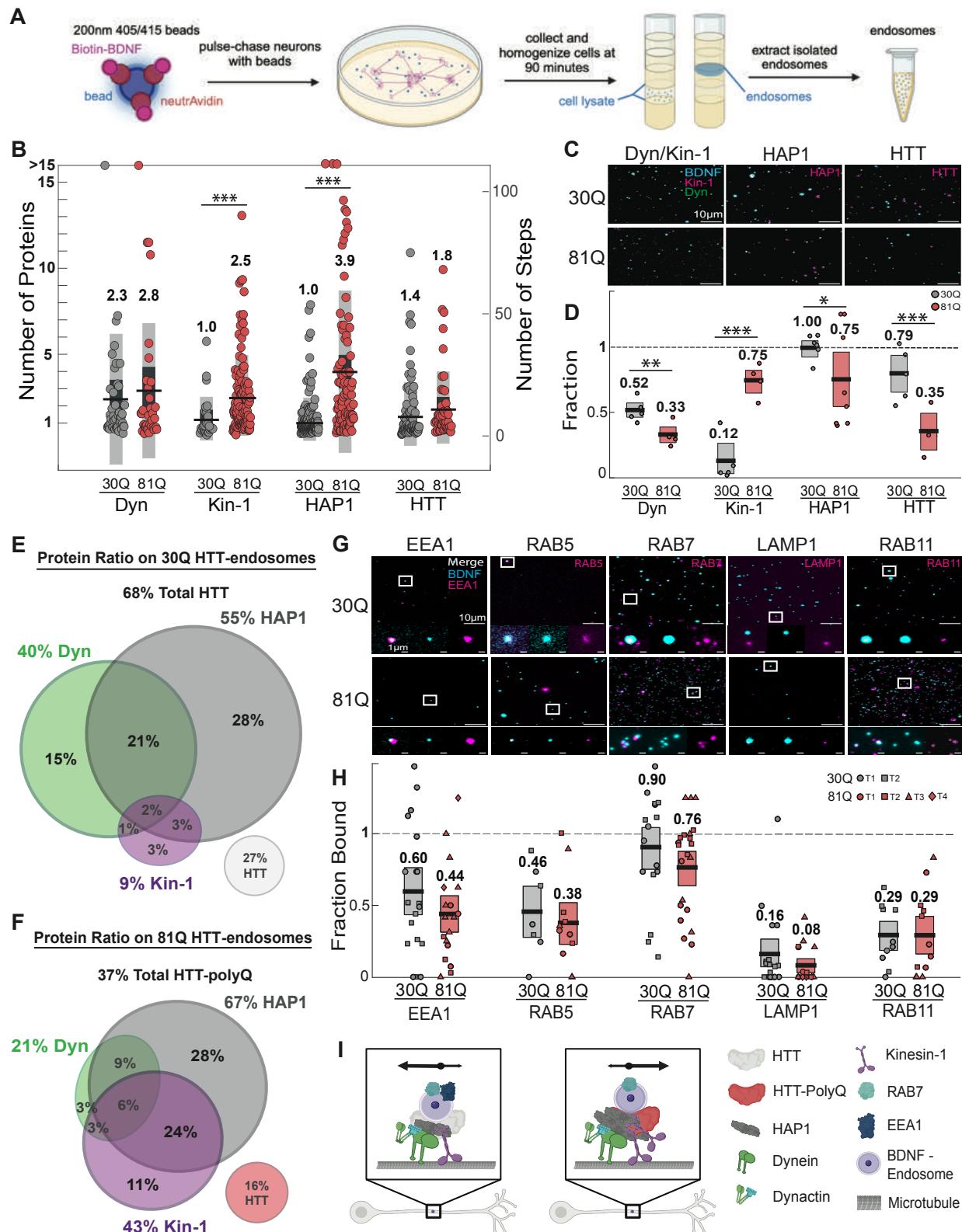


Figure 6. Lysosome biogenesis is upregulated in the presence of both inflammatory stress and pathogenic HTT.

940 A First frame image of lysosomes in the mid-axon oriented with their soma on the left and distal tip on the right for 30Q and 81Q neurons in the absence and with 24 hrs treatment with 100 ng/mL IFN γ . Colour coded kymograph generated using KymographClear⁶⁹ demonstrate anterograde (magenta), retrograde (green) and stationary (blue) cargoes for each sample axon image (top). Arrowheads indicate persistent anterograde motility and scale bars are 20 μ m, 5 s. Below the kymograph is a plot demonstrating flux characterization of each trajectory continuing in the following frames: gray shaded areas represent the boxes used to calculate flux and the trajectories are coloured according to the flux calculated for the entire trajectory, gray trajectories are not counted because they do not enter the boxes, magenta represents anterograde, green represents retrograde, and blue represents no net flux. B-F Long-range track analysis from IFN γ treatment: 30Q samples with IFN γ from n=40 neurons, 2 terminal differentiations, 81Q samples with IFN γ from n=66, 3 terminal differentiations, untreated samples as in Figure 3: 30Q from n=54 neurons, 3 terminal differentiations and 81Q n=55 neurons, 5 terminal differentiations. B Average total number of

945 cargoes per micron in each cell when the box width for flux analysis is set to 5 μ m (means: 30Q 1.41, 30Q+IFN γ 1.71,

950 81Q 1.80, and 81Q+IFN γ 2.17). **C** Fraction of trajectories with anterograde (ant), retrograde (ret), and no net flux resulting in flux averaged per cell, with a 5 μ m box. Means for anterograde flux: 30Q 0.209, 30Q+IFN γ 0.229, 81Q 0.235, and 81Q+IFN γ 0.251, retrograde flux: 30Q 0.262, 30Q+IFN γ 0.250, 81Q 0.277, 81Q+IFN γ 0.202, and no net flux: 30Q 0.522, 30Q+IFN γ 0.522, 81Q 0.488, and 81Q+IFN γ 0.546. **D, E** Mean velocity (**D**, anterograde means: 30Q 0.755, 30Q+IFN γ 0.843, 81Q 0.886, and 81Q+IFN γ 0.868 μ m/s and retrograde means: 30Q 0.821, 30Q+IFN γ 0.859, 81Q 0.888, and 81Q+IFN γ 0.855 μ m/s) and run length (**E**, anterograde means: 30Q 5.41, 30Q+IFN γ 6.94, 81Q 6.48, 81Q+IFN γ 6.04 μ m, and retrograde: 30Q 6.56, 30Q+IFN γ 6.87, 81Q 6.95, 81Q+IFN γ 6.70 μ m) for each trajectory above 3 μ m in run length, separated into runs with a net anterograde (ant) or net retrograde (ret) directionality. Colour code is indicated in the center of the figure, above **G**. **F** Overall directionality by the fraction of anterograde (ant) to retrograde (ret) flux per cell with a 5 μ m box width (means: 30Q 0.968, 30Q+IFN γ 1.22, 81Q 1.59, 81Q+IFN γ 1.62).
955
960 **G** Model demonstrating the effects on lysosomes in control, intermediate length, and long polyQ HTT. and their length represents processivity or run length of the cargo, vesicles within the axon represent abundance and the arrows or stop signs indicate whether they are motile. Bar height or horizontal line indicate the mean of the data, error bars represent the SEM. Statistical significance with $p < 0.05$ is indicated by the p value itself or an * and was determined by one-way analysis of variance and a Tukey multiple comparison post-hoc test. The asterisk represents statistical significance for retrograde flux between 81Q vs 81Q+IFN γ with $p=0.0068$.
965

Figure 7. BDNF cargoes in neurons with polyglutamine expanded HTT recruit more HAP1 and kinesin-1 and less HTT.

970 **A** Procedure for isolation of BDNF cargoes, neurons were incubated with beads for 90 minutes. We collected the neurons and homogenized them after the 90 minutes incubation. To obtain the cell lysate, we used sucrose step gradient separation and ultracentrifugation after which isolated endosomes can be extracted^{17,25,26,28}. **B** Stepwise photobleaching results from estimations of the number of dynein and kinesin-1 motors, HAP1 adaptors and HTT proteins that associate with 30Q (grey) and 81Q (red) isolated BDNF-endosomes. The plot shows the distribution of the number of dynein, kinesin-1, HAP1 and HTT on 30Q and 81Q isolated BDNF-endosomes. Black lines represent the mean number of proteins, dark grey bars represent SEM values and light grey bars represent 90% confidence intervals. Single-molecule kinesin-1 was used to estimate the number of discrete bleaching steps for a single protein (n=59)²⁸. The predictive step count intervals indicate that there were 0-7 dynein on 30Q-endosomes (n=47, 2 isolations) and 0-12 dynein on 81Q-endosomes (n=34, 3 isolations), 0-4 kinesin-1 on 30Q-endosomes (n=27, 2 isolations) and 0-7 kinesin-1 on 81Q-endosomes (n=12, 3 isolations), 0-4 HAP1 on 30Q-endosomes (n=143, 2 isolations) and 0-14 HAP1 on 81Q-endosomes (n=96, 3 isolations), 0-6 HTT on 30Q-endosomes (n=82, 2 isolations) and 0-8 HTT on 81Q-endosomes (n=49, 3 isolations). Bootstrapping of the mean number of steps of each protein associated with 30Q-endosomes compared to 81Q endosomes was performed to test for statistical significance (* p < 0.05, ** p < 0.01, *** p < 0.0001). **C** Immunofluorescence images show representative fields of isolated BDNF-endosomes (blue) from 30Q (top panel) and 81Q (bottom panel) neurons labelled for dynein (green) and kinesin-1 (magenta), HAP1 (magenta), and HTT (magenta). Scale bars 10 μ m. **D** Plot shows fraction of isolated BDNF-endosomes positive for dynein (30Q, n=316 endosomes, 5 fields of view, 2 isolations; 81Q, n=162, 4 fields of view, 2 isolations), kinesin-1 (30Q, n=316, 5 fields of view, 2 isolations; 81Q, n=162, 4 fields of view, 2 isolations), HAP1 (30Q, n=498, 6 fields of view, 2 isolations; 81Q, n=142, 8 fields of view, 2 isolations) and HTT (30Q, n=369, 5 fields of view, 2 isolations; 81Q, n=97, 3 fields of view, 1 isolation) for 30Q (grey) and 81Q (red) neurons. Black lines represent the mean values and boxes show 95% confidence interval for means generated by bootstrapping with replacement. Circles represent the fraction of positive BDNF-endosomes for each field of view. P-values generated from bootstrapped samples were used to test for statistical significance (* p < 0.05, ** p < 0.01, *** p < 0.0001). **E** 30Q and **F** 81Q bootstrapped, computational model of associations with BDNF-endosomes adjusted for the respective fraction of bead containing endosomes (30Q=68%, 81Q=80%). Venn diagrams show the fractions of HTT-associated endosomes in each population that also exhibit association with dynein (green), kinesin-1 (purple) and/or HAP1 (grey) proteins. The bubbles that do not overlap with the Venn diagram, 30Q (light grey) and 81Q (red), represent the fractions of HTT-associated endosomes that do not associate with any other protein of interest. **G** Immunofluorescence images show representative fields of views with isolated BDNF endosomes (cyan) from 30Q (top panel) and 81Q (bottom panel) neurons labelled with various membrane-associated proteins EEA1, RAB5, RAB7, LAMP1 and RAB11. Below, zoomed in ROIs show merge, BDNF-bead (cyan) and label of interest (magenta). Scale bars 10 μ m and 1 μ m for selected ROIs. **H** Plot shows fraction of isolated BDNF-endosomes positive for membrane-associated protein stains EEA1, RAB5, RAB7, LAMP1 and RAB11 for 30Q (grey) and 81Q (red) neurons corresponding to intensity plots. Black lines represent the mean values and boxes show 95% confidence interval for means generated by bootstrapping with replacement. 30Q EEA1 (n=566, 2 terminal differentiations), RAB5 (n=79, 2 terminal differentiations), RAB7 (n=460, 2 terminal differentiations), LAMP1 (n=610, 2 terminal differentiations), RAB11 (n=463, 2 terminal differentiations) in grey. 81Q EEA1 (n=293, 4 terminal differentiations), RAB5 (n=346, 3 terminal differentiations), RAB7 (n=365, 2 terminal differentiations), LAMP1 (n=297, 4 terminal differentiations), RAB11 (n=247, 3 terminal differentiations) Shapes represent fraction of positive BDNF-endosomes for each field of view grouped by neuronal terminal differentiation. P-values generated from bootstrapped samples were used to test for statistical significance. **I** Model depicting patterns in association and motility of BDNF-endosomes in cortical neurons expressing 30Q and 81Q HTT. 81Q endosomes associated with more of HAP1 and kinesin-1 compared to 30Q endosomes, increasing anterograde transport.

References

1015 1. Gil, J. M. & Rego, A. C. Mechanisms of neurodegeneration in Huntington's disease. *European Journal of Neuroscience* (2008) doi:10.1111/j.1460-9568.2008.06310.x.

1020 2. Ehinger, Y. *et al.* Huntington phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. *EMBO Mol. Med.* (2020) doi:10.15252/emmm.201910889.

1025 3. Her, L. S. & Goldstein, L. S. B. Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. *J. Neurosci.* (2008) doi:10.1523/JNEUROSCI.4144-08.2008.

1030 4. Wong, Y. C. & Holzbaur, E. L. F. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. *J. Neurosci.* (2014) doi:10.1523/JNEUROSCI.1870-13.2014.

1035 5. Caviston, J. P., Ross, J. L., Antony, S. M., Tokito, M. & Holzbaur, E. L. F. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 10045–10050 (2007).

1040 6. Engelender, S. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dyactin. *Hum. Mol. Genet.* (1997) doi:10.1093/hmg/6.13.2205.

1045 7. Li, S. H., Gutekunst, C. A., Hersch, S. M. & Li, X. J. Interaction of Huntingtin-associated protein with dyactin P150(Glued). *J. Neurosci.* (1998) doi:10.1523/jneurosci.18-04-01261.1998.

1050 8. Colin, E. *et al.* Huntington phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. *EMBO J.* (2008) doi:10.1038/emboj.2008.133.

1055 9. Twelvetrees, A. E. *et al.* Delivery of GABAARs to Synapses Is Mediated by HAP1-KIF5 and Disrupted by Mutant Huntington. *Neuron* **65**, 53–65 (2010).

10. Pal, A., Severin, F., Lommer, B., Shevchenko, A. & Zerial, M. Huntington-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. *J. Cell Biol.* **172**, 605–618 (2006).

11. Seefelder, M., Klein, F. A. C., Landwehrmeyer, B., Fernández-Busnadio, R. & Kochanek, S. Huntington and Its Partner Huntington-Associated Protein 40: Structural and Functional Considerations in Health and Disease. *J. Huntingtons. Dis.* **11**, 227–242 (2022).

12. Sahlender, D. A. *et al.* Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. *J. Cell Biol.* (2005) doi:10.1083/jcb.200501162.

13. Evans, C. S. & Holzbaur, E. L. F. Lysosomal degradation of depolarized mitochondria is rate-limiting in OPTN-dependent neuronal mitophagy. *Autophagy* **16**, 962–964 (2020).

14. Gauthier, L. R. *et al.* Huntington controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. *Cell* **118**, 127–138 (2004).

15. Cason, S. E. *et al.* Dynein effectors regulate autophagosome motility Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway. *J. Chem. Biol.* (2021).

16. Ayloo, S., Guedes-Dias, P., Ghiretti, A. E. & Holzbaur, E. L. F. Dynein efficiently navigates the dendritic cytoskeleton to drive the retrograde trafficking of BDNF/TrkB signaling endosomes. *Mol. Biol. Cell* (2017) doi:10.1091/mbc.E17-01-0068.

17. Carabalona, A., Hu, D. J. K. & Vallee, R. B. KIF1A inhibition immortalizes brain stem

1060 cells but blocks BDNF-mediated neuronal migration. *Nat. Neurosci.* (2016) doi:10.1038/nn.4213.

18. Chang, D. T. W., Rintoul, G. L., Pandipati, S. & Reynolds, I. J. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. *Neurobiol. Dis.* **22**, 388–400 (2006).

1065 19. Orr, A. L. *et al.* N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. *J. Neurosci.* **28**, 2783–2792 (2008).

20. Song, W. *et al.* Mutant Huntingtin Binds the Mitochondrial Fission. *17*, 377–382 (2011).

21. Trushina, E. *et al.* Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro. *Mol. Cell. Biol.* **24**, 8195–8209 (2004).

1070 22. Caviston, J. P., Zajac, A. L., Tokito, M. & Holzbaur, E. L. F. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. *Mol. Biol. Cell* (2011) doi:10.1091/mbc.E10-03-0233.

23. Ooi, J. *et al.* Unbiased Profiling of Isogenic Huntington Disease hPSC-Derived CNS and Peripheral Cells Reveals Strong Cell-Type Specificity of CAG Length Effects. *Cell Rep.* **26**, 2494-2508.e7 (2019).

1075 24. Barnat, M. *et al.* Huntington’s disease alters human neurodevelopment. *Science (80-).* **369**, 787–793 (2020).

25. Molina-Calavita, M. *et al.* Mutant huntingtin affects cortical progenitor cell division and development of the mouse neocortex. *J. Neurosci.* **34**, 10034–10040 (2014).

1080 26. Godin, J. D. *et al.* Huntington Is Required for Mitotic Spindle Orientation and Mammalian Neurogenesis. *Neuron* **67**, 392–406 (2010).

27. Ferrer, I., Goutan, E., Marín, C., Rey, M. J. & Ribalta, T. Brain-derived neurotrophic factor in Huntington disease. *Brain Res.* **866**, 257–261 (2000).

1085 28. Gauthier, L. R. *et al.* Huntington controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. *Cell* (2004) doi:10.1016/j.cell.2004.06.018.

29. Wu, L. L. Y., Fan, Y., Li, S., Li, X. J. & Zhou, X. F. Huntington-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. *J. Biol. Chem.* **285**, 5614–5623 (2010).

1090 30. Yang, M., Lim, Y., Li, X., Zhong, J. H. & Zhou, X. F. Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing. *J. Biol. Chem.* **286**, 16272–16284 (2011).

31. Yu, C. *et al.* Decreased BDNF Release in Cortical Neurons of a Knock-in Mouse Model of Huntington’s Disease. *Sci. Rep.* **8**, 1–11 (2018).

1095 32. Baydyuk, M. & Xu, B. BDNF signaling and survival of striatal neurons. *Front. Cell. Neurosci.* **8**, 1–10 (2014).

33. Zhao, X. *et al.* TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E5655–E5664 (2016).

1100 34. Tinevez, J. Y. *et al.* TrackMate: An open and extensible platform for single-particle tracking. *Methods* **115**, 80–90 (2017).

35. Jakobs, M. A., Dimitracopoulos, A. & Franze, K. Kymobutler, a deep learning software for automated kymograph analysis. *Elife* **8**, 1–19 (2019).

36. Prowse, E. N. P., Chaudhary, A. R., Sharon, D. & Hendricks, A. G. Huntington S421 phosphorylation increases kinesin and dynein engagement on early endosomes and

1105

lysosomes. *Biophys. J.* **122**, 1168–1184 (2023).

37. Martinez-Vicente, M. *et al.* Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. *Nat. Neurosci.* (2010) doi:10.1038/nn.2528.

38. Carty, J. T., Hensley, A., Aslan, M., Jack, A. & Yildiz, A. TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport. *Nat. Commun.* **14**, 1–15 (2023).

1110 39. Fenton, A. R., Jongens, T. A. & Holzbaur, E. L. F. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. *Nat. Commun.* **12**, 4578 (2021).

1115 40. Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. *J. Cell Biol.* **173**, 545–557 (2006).

41. van Spronsen, M. *et al.* TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. *Neuron* **77**, 485–502 (2013).

1120 42. Díaz-Hernández, M., Martín-Aparicio, E., Avila, J., Hernández, F. & Lucas, J. J. Enhanced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. *Neurotox. Res.* **6**, 463–468 (2004).

43. Nguyen, M. *et al.* Parkinson’s genes orchestrate pyroptosis through selective trafficking of mtDNA to leaky lysosomes. *bioRxiv* (2023).

1125 44. Strickland, M. R. *et al.* Ifngr1 and Stat1 mediated canonical Ifn- γ signaling drives nigrostriatal degeneration. *Neurobiol. Dis.* **110**, 133–141 (2018).

45. Warre-Cornish, K. *et al.* Interferon- γ signaling in human iPSC-derived neurons recapitulates neurodevelopmental disorder phenotypes. *Sci. Adv.* **6**, 1–16 (2020).

46. El-Daher, M. *et al.* Huntington proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. *EMBO J.* **34**, 2255–2271 (2015).

1130 47. Mutvei, A. P., Nagiec, M. J. & Blenis, J. Balancing lysosome abundance in health and disease. *Nat. Cell Biol.* **3**, (2023).

48. Lim, Y. *et al.* HAP1 Is Required for Endocytosis and Signalling of BDNF and Its Receptors in Neurons. *Mol. Neurobiol.* **55**, 1815–1830 (2018).

1135 49. Caviston, J. P. & Holzbaur, E. L. F. Huntington as an essential integrator of intracellular vesicular trafficking. *Trends Cell Biol.* **19**, 147–155 (2009).

50. Chen, Y., Deffenbaugh, N. C., Anderson, C. T. & Hancock, W. O. Molecular counting by photobleaching in protein complexes with many subunits: Best practices and application to the cellulose synthesis complex. *Mol. Biol. Cell* **25**, 3630–3642 (2014).

1140 51. Chaudhary, A. R., Berger, F., Berger, C. L. & Hendricks, A. G. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. *Traffic* **19**, 111–121 (2018).

52. Beaudet, D. & Hendricks, A. G. *Reconstitution of Organelle Transport Along Microtubules In Vitro. Methods in Molecular Biology* vols 2623, Chap (2023).

1145 53. Blocker, A. *et al.* Molecular requirements for bi-directional movement of phagosomes along microtubules. *J. Cell Biol.* **137**, 113–129 (1997).

54. Kruppa, A. J. & Buss, F. Motor proteins at the mitochondria–cytoskeleton interface. *J. Cell Sci.* **134**, (2021).

55. Pu, J., Guardia, C. M., Keren-Kaplan, T. & Bonifacino, J. S. Mechanisms and functions of lysosome positioning. *J. Cell Sci.* **129**, 4329–4339 (2016).

1150 56. Cason, S. E. & Holzbaur, E. L. F. Selective motor activation in organelle transport along

axons. *Nat. Rev. Mol. Cell Biol.* **23**, 699–714 (2022).

57. Virlogeux, A. *et al.* Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. *Sci. Adv.* **7**, (2021).

1155 58. Lenoir, S. *et al.* Pridopidine rescues BDNF/TrkB trafficking dynamics and synapse homeostasis in a Huntington disease brain-on-a-chip model. *Neurobiol. Dis.* **173**, (2022).

59. Liot, G. *et al.* Mutant huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. *J. Neurosci.* **33**, 6298–6309 (2013).

1160 60. Urnavicius, L. *et al.* Cryo-EM shows how dynein recruits two dyneins for faster movement. *Nature* **554**, 202–206 (2018).

61. Diefenbach, R. J., Mackay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. *Biochemistry* **37**, 16663–16670 (1998).

1165 62. Wu, L. L. Y. & Zhou, X. F. Huntington associated protein 1 and its functions. *Cell Adhes. Migr.* **3**, 71–76 (2009).

63. Gunawardena, S. *et al.* Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. *Neuron* (2003) doi:10.1016/S0896-6273(03)00594-4.

1170 64. Prigge, J. R. & Schmidt, E. E. HAP1 can sequester a subset of TBP in cytoplasmic inclusions via specific interaction with the conserved TBPCORE. *BMC Mol. Biol.* **8**, 1–18 (2007).

65. Hendricks, A. G., Goldman, Y. E. & Holzbaur, E. L. F. *Reconstituting the motility of isolated intracellular cargoes*. *Methods in Enzymology* vol. 540 (Elsevier Inc., 2014).

1175 66. Chaudhary, A. R. *et al.* MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules. *J. Biol. Chem.* **294**, 10160–10171 (2019).

67. Dixit, R. & Ross, J. L. *Studying plus-end tracking at single molecule resolution using TIRF microscopy*. *Methods in Cell Biology* vol. 95 (Elsevier, 2010).

1180 68. Borchers, A. C., Langemeyer, L. & Ungermann, C. Who's in control? Principles of rab gtpase activation in endolysosomal membrane trafficking and beyond. *J. Cell Biol.* **220**, 1–15 (2021).

69. Mangeol, P., Prevo, B. & Peterman, E. J. G. KymographClear and KymographDirect: Two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. *Mol. Biol. Cell* **27**, 1948–1957 (2016).

1185 70. Beaudet, D., Berger, C. L. & Hendricks, A. G. The sets of kinesins and dynein transporting endocytic cargoes determine the effect of tau on their motility. *bioRxiv* 2022.06.10.495679 (2023).