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Abstract 

Carcinogenesis often involves significant alterations in the cancer genome architecture, 

marked by large structural and copy number variations (SVs and CNVs) that are difficult to 

capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect 

such aberrations, but they are limited in resolution and do not cover features smaller than 

several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive 

technologies that bridge this resolution gap and offer enhanced performance for cytogenetic 

applications. These methods profile native, individual DNA molecules, thus capturing 

epigenetic information. We applied both techniques to characterize a clear cell renal cell 

carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative 

strengths of each method in the context of variant size and average read length. Additionally, 

we assessed their utility for methylome and hydroxymethylome profiling, emphasizing 

differences in epigenetic analysis applicability. 
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Introduction 

One of the most prominent signs of carcinogenesis is the structural deviation of the cancer 

genome from that of the parent cell, which often involves large structural and copy number 

variations (SVs and CNVs, respectively). Such variations are annotated as structural features 

(deletions, insertions, duplications, inversions, and translocations) differing from the human 

genome reference or a matched sample for comparison 1. Traditionally, cytogenetic 

techniques such as karyotyping are used to detect large structural variations ranging from 

whole chromosome duplications, chromosome arm deletions, and down to SVs of ~ 5-10 

mega basepairs (Mb)  2,3. Applying fluorescence in-situ hybridization (FISH) techniques may 

bring the resolution down to several hundred kilo basepairs (kbp) 4, but a critical resolution 

gap remains between cytogenetics and short-read sequencing. The lack of access to genomic 

variation on the scales of 1-500 kbp has nourished the development of long-read technologies 

that can address this need. Various long-read methods have been introduced in recent years, 

including SMRT sequencing commercialized by PacBio, which routinely provides high-quality 

reads on the 10 kbp scale 5. Another concept involves a library preparation technique that 

allows linking proximal DNA fragments computationally by sequence barcode ligation (linked 

reads-10x genomics 6/ TELseq 7). Here, we utilized two techniques, Optical genome mapping 

and ONT sequencing,  that stand out in their ability to cover the full gap in mapping ability 

between short-read sequencing and karyotyping, offering an enhanced alternative to 

traditional cytogenetic analysis. 

Optical genome mapping (OGM), commercialized by Bionano Genomics Inc. (BNG), has 

already gained clinical utility and is emerging as an alternative to cytogenetics by mapping the 

coarse grain structure of unamplified genomic fragments hundreds of kbp in length 8,9. The 

molecules are labeled at a specific sequence motif (CTTAAG) by a methyltransferase enzyme 

that transfers a fluorescent molecule to the labeling site from a synthetic cofactor analog. 

Every molecule acquires a sequence-specific fluorescent pattern along the DNA backbone 

during this process. The labeled DNA sample is applied to a silicon chip, where the molecules 

are electrophoretically extended in an array of parallel nanochannels. Millions of long, 

extended DNA molecules with their overlaying fluorescent barcode are imaged in the channels 

at high throughput. Once the images are digitized, DNA molecules may be mapped to their 

genomic location according to the pattern of fluorescent spots along the DNA and its matching 

to the expected pattern on the genome reference. Alternatively, the patterns may be stitched 

and assembled to build the whole genome structure de-novo 10. 
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Oxford Nanopore Technologies (ONT) is another prominent player in the long-read mapping 

and sequencing space. In recent years, ONT sequencing reads have gotten longer, error rates 

have diminished, throughput has increased, and prices per genome have dropped to levels 

that may justify clinical utility 11,12. For sequencing, DNA molecules are translocated through 

protein pores while measuring the electric ionic current flowing through the pore. Different 

sequence compositions generate various degrees of current attenuation, which is then 

computationally interpreted to generate the base sequence of the translocated DNA 

molecules. While offering single-base resolution, ONT provides shorter median read lengths 

compared to OGM. Both methods may be applied to native DNA that still carries chemical 

DNA modifications such as DNA methylation or DNA damage adducts. This gives rise to 

another beneficial feature: the acquisition of epigenetic information during genetic analysis. In 

OGM, an additional color may be used to chemically tag modifications of interest and create 

a hybrid genetic/epigenetic physical map of the molecules 10,13–16. ONT, on the other hand, 

does not require any additional preparative steps for calling epigenetic modifications as it relies 

solely on the electrical contrast generated by the native chemical structure of the modified 

base 17. Nevertheless, accurate modification calling requires a complete training set, which is 

not trivial for most base modifications. 

Herein, we used both methods in order to characterize the structural and copy number 

landscape of a matched clear cell renal cell carcinoma (ccRCC) tumor-normal sample pair, 

pinpointing the specific strengths of each technique. Additionally, we characterized the 

methylome and hydroxymethylome of the pair and highlighted differences in practical utility for 

epigenetic analysis. 

 

Methods 

Patient clinically relevant information 

Tumor and normal adjacent tissue were obtained in the course of radical nephrectomy 

performed in an 82-year-old male. Tumor was diagnosed histologically as ccRCC with 

morphological features of eosinophilic variant at pT3a stage. Tissues were stored from the 

time of surgery to analysis at -80°C (fresh-frozen sample). 

Sample collection and handling was approved by institutional review boards in accordance 

with the declaration of Helsinki. 
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Extraction of high molecular weight DNA 

Ultra-high molecular weight (UHMW) DNA for 5-hmC OGM and ONT analyses was extracted 

using SP Tissue and Tumor DNA Isolation kit (Bionano Genomics), according to the 

manufacturer’s protocol. High molecular weight (HMW) DNA for OGM unmodified CpG 

analysis was extracted using Animal Tissue Isolation kit (Bionano Genomics) according to 

Bionano Prep Animal Tissue DNA Isolation Soft Tissue/ Fibrous Tissue Protocol for normal 

tissue/ tumor, respectively. 

 

Nanopore sequencing (Oxford Nanopore Technologies) 

Samples were prepared for sequencing using Ligation Sequencing Kit V14 (SQK-LSK114, 

Oxford Nanopore Technologies, UK) according to protocol with a starting DNA amount of 1 

µg. Whole genome sequencing was performed on a “P2-Solo” device using R10.4.1 Flow cells 

(FLO-PRO11, Oxford Nanopore Technologies). 

Basecalling of raw POD5 files was performed using the ONT proprietary software Dorado (v 

0.3.2, Oxford Nanopore Technologies; https://github.com/nanoporetech/dorado) with the 

model: “dna_r10.4.1_e8.2_400bps_hac_@v4.0.0_5mCG_5hmCG@v2.cfg”. Reads were 

then aligned to the hg38 human reference genome using minimap2 18 (v.2.24). Bam output 

files were then merged, sorted and indexed using samtools 19 (v1.16.1). SVs, CNVs and 

methylation and hydroxymethylation locations were called by the “wf-human-variation” 

pipeline (https://github.com/epi2me-labs/wf-human-variation) via EPI2ME software 20 (Oxford 

Nanopore Technologies) with minimum bam coverage set to 5. The default behavior of the 

pipeline is to report methylation and hydroxymethylation per CpG positions and with combined 

strands. Analyses were performed on a Linux operating system (Ubuntu 22.04.3) with Nvidia’s 

RTX 6000 GPU.            

   

Optical Genome Mapping (OGM) 

a. Labeling DNA for genetic and 5hmC analysis 

To create the genetic barcode, 750 ng of UHMW DNA in two reaction tubes were each 

mixed with 5X DLE-buffer (to a final concentration of 1X), 1.5 µL of 20X DL-Green and 

1.5 µL of DLE-1 enzyme (Bionano Genomics) in a total reaction volume of 30 µL. The 

reaction was incubated for 4 hours at 37°C. Then, 5hmC sites were labeled by the 
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enzyme β-glucosyltransferase from T4 phage (T4-BGT) 15. Magnesium chloride was 

added to 30 µL of DLE-labeled DNA to a final concentration of 9 mM. Then, the DNA 

was added to 4.5 µL of 10X NEBuffer 4 (New England Biolabs), uridine diphosphate-

6-azideglucose (UDP-6-N3-Glu; (21)) in a final concentration of 50 µM, 30 units of T4 

β-glucosyltransferase (New England Biolabs) and ultra-pure water in a final volume of 

45 µL. The reaction mixture was incubated overnight at 37°C. The following day, 

dibenzocyclooctyl (DBCO)-ATTO643 21 was added to a final concentration of 150 µM 

and the reaction was incubated again at 37°C overnight. The next day, the reaction 

tubes were added 5 µL of PureGene Proteinase K (Qiagen) and incubated for 

additional 30 minutes at 50°C. After the Proteinase K treatment, the two identical 

reaction tubes were merged and drop-dialyzed as one against 20 mL of 1X TE buffer 

(pH 8) with 0.1 µm dialysis membrane for a total of 2 hours. Finally, 300 ng recovered 

dual-color DNA was stained to visualize DNA backbone, by mixing it with 4X Flow 

Buffer (Bionano Genomics) to a final concentration of 1X, 1M DTT (Bionano Genomics) 

to a final concentration of 0.1 M, Tris (pH 8) to a concentration of 25 mM, NaCl, to a 

concentration of 25 mM, EDTA to a final concentration of 0.008-0.01 M, DNA Stain 

(Bionano Genomics) to a final vol/vol ratio of 8%, and ultrapure water. The reaction 

mixture was shaken horizontally on a HulaMixer for an hour and then incubated 

overnight at 4°C. 

 

b. Labeling DNA for unmethylation analysis (reduced representation of unmodified 

cytosines in CpG context)  

To create the genetic barcode, 1 µg of U/HMW DNA was mixed with 5X DLE-buffer (to 

a final concentration of 1X), 2 µL of 20X DL-Green and 2 µL of DLE-1 enzyme (Bionano 

Genomics) in a total reaction volume of 30 µL for 4 hours at 37°C, immediately followed 

by heat inactivation at 80°C for 20 minutes. Heat inactivation at these conditions 

degrades over 97% of the DL-Green cofactor, therefore preventing it from being 

incorporated by M.TaqI in the following reaction, and making the two reactions 

orthogonal. Then, unmodified cytosines in the recognition sequence TCGA were 

fluorescently labeled to perform reduced representation optical methylation mapping 

(ROM) 14,22. Two 500 ng reaction tubes of DLE1-labeled DNA were each mixed with 4 

µL of 10X CutSmart buffer (New England Biolabs), 60 µM of lab-made synthetic 

AdoYnATTO643 21, 1 µL of M.TaqI (10 units/µL; New England Biolabs) and ultrapure 

water in a total volume of 40 µL, and incubated for 5 hours at 65°C. Then, 5 µL of 

Puregene Proteinase K (Qiagen) were added and the reaction tube was incubated for 
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additional 2 hours at 45°C. After the Proteinase K treatment, the two 500 ng reaction 

tubes were merged and drop-dialyzed as one against 20 mL of 1X TE buffer (pH 8) 

with 0.1 µm dialysis membrane for a total of 2 hours. Finally, 300 ng recovered dual-

color DNA were stained to visualize DNA backbone by mixing it with 15 µL of 4X Flow 

Buffer (Bionano Genomics), 6 µL of 1M DTT (Bionano Genomics), 3 µL of 0.5M Tris 

(pH 8), 3 µL of 0.5M NaCl, 4.8 µL of DNA Stain (Bionano Genomics) and ultrapure 

water to a total volume of 60 µL, and incubated overnight at 4°C.  

 

c. Running OGM 

Labeled samples were loaded on Saphyr chips (G1.2) and run on a Saphyr instrument 

(Bionano Genomics) to generate single molecule maps. Optical mapping data from 

several runs were merged to a single dataset using Bionano Access (v1.6.1) and 

Bionano Solve (v3.6.1) (Bionano Genomics). The assigned channels for genetic and 

epigenetic labels in the molecules (.BNX) files were swapped with Bionano Solve 

(v3.6.1) according to manufacturer’s advice. De novo assemblies and “variant 

annotation pipeline” (single sample mode) for SV annotation were generated from 

5hmC-labeled data with default parameters for human genomes using Bionano Access 

v1.7.1 and Bionano Solve v3.7.1. The in-silico digested human genome GRCh38 

(hg38_DLE1_0kb_0labels.cmap) was used as the reference. 

 

d. Epigenetic data processing 

Molecules spanning over 150 kbp were aligned to the in silico human genome 

reference GRCh38, based on DLE-1 recognition sites 

(hg38_DLE1_0kb_0labels.cmap) using Bionano Access (v1.6.1) and Bionano Solve 

(v3.6.1), with default parameters according to the following combination of arguments: 

haplotype, human, DLE-1, Saphyr. Only molecules with an alignment confidence equal 

to or higher than 15 (P <= 10-15) that at least 60% of their length was aligned to the 

reference were used for downstream analysis. Alignment outputs were converted to 

global epigenetic profiles (bedgraph files) according to the pipeline described by 

Gabrieli et al. 15 and Sharim et al. 14 and in ebensteinLab/Irys-data-analysis on Github. 

Only regions covered by at least 20 molecules were considered.  
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CNV analysis 

In Order to generate CNV plots of OGM data, the coverage of DLE-1 labeling sites was 

extracted from raw output of CNV analysis (cnv_rcmap_exp.txt). Genomic regions with very 

high variance in coverage across Bionano Genomics’ control datasets compared to typical loci 

(hg38_cnv_masks.bed) were subtracted from analysis. Then, the mean coverage of such sites 

in 500,000 bp bins was calculated using Bedtools 23 map (v2.26.0). Then, for each bin, the 

log2 of the copy ratio (in a diploid organism, copy number/2) was calculated and plotted along 

the chromosomes. log2 of the copy ratio in 500,000 bp bins along ONT data was inferred by 

employing the EPI2ME workflow "wf-human-variation" to each sample. A running median over 

10 bins was calculated to plot a smooth red line across the log2 of the copy ratio dots of both 

methods.  

 

SV analysis 

Genomic coordinates, SV type and size of high-confidence (confidence score ≥ 0.5) annotated 

OGM SVs from “variant annotation Pipeline”, were extracted from output smap file and 

converted to bed format for downstream analysis. In case no end coordinate was supplied, it 

was taken as start+1. Both translocation breakpoints were considered for overlap with ONT 

SVs, but were counted as one event of a large SV (>10 kb). Only unique SVs were kept. SVs 

overlapping BNG’s list of N-base gaps in the reference or putative false positive translocation 

breakpoints (for “de novo assembly”, Solve 3.6.1) were masked from analysis (Bedtools 

intersect -v (v2.26.0)). Coordinates of OGM-detected SVs were extended by 500 bp up and 

downstream (Bedtools slop (v2.26.0) to account for possible differences in SV resolution 

between OGM and ONT. This extension was not considered to determine SV size. 

Genomic coordinates, SV type and size of “passed” ONT SVs called by the EPI2ME workflow 

"wf-human-variation", with minimum 5 reads supporting them, residing on canonical 

chromosomes, were extracted from the Sniffles2 VCF output file and converted to bed format 

for downstream analysis. End coordinate was taken as end+1 to avoid cases of 0 difference. 

Only unique SVs were kept. SVs overlapping BNG’s list of N-base gaps in the reference or 

putative false positive translocation breakpoints (for “de novo assembly”, Solve 3.6.1) were 

masked from analysis (Bedtools intersect -v (v2.26.0)). Only SVs of at least 500 bp were 

considered. 
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Overlap between SVs detected by OGM and ONT was calculated with Bedtools intersect 

(v2.26.0). The number of overlapping SVs is reported based on the ONT calls. Overlapping 

and non-overlapping SVs were then divided based on their size (absolute value). 

Clinical significance analysis of ONT SVs was performed with SnpSift 24 against the ClinVar 25 

database and had no findings. 

 

Alternative ONT SV callers 

SV calling with SVIM 26 (https://github.com/eldariont/svim) was conducted with parameter: --

min_sv_size 50. The output VCF file was processed as described for the EPI2ME (Sniffles2) 

VCF. Only SVs of at least 500 bp were considered. 

SV calling with CuteSV 27 (https://github.com/tjiangHIT/cuteSV) was conducted with 

parameters recommended for ONT data: --max_cluster_bias_INS 100; --

max_cluster_bias_DEL 100; --diff_ratio_merging_INS 0.3; --diff_ratio_merging_DEL 0.3; and 

additional parameters: -l 50;  --min_support 5. The output VCF file was processed as 

described for the EPI2ME (Sniffles2) VCF. Only SVs of at least 500 bp were considered. 

 

Global epigenetic levels 

Due to resolution differences between OGM and ONT, the mean epigenetic levels in non-

overlapping 1000 bp genomic windows (generated using Bedtools makewindow (v2.26.0) was 

calculated. Only windows on canonical chromosomes that contain at least one relevant 

recognition site were considered (CpG for 5hmC and ONT mC, TCGA for OGM unmethylation; 

sites loci were extracted using the R package BSgenome 

(https://bioconductor.org/packages/release/bioc/html/BSgenome.html). To match the reported 

measure between OGM and ONT in methylation calling, the unmethylation level (1 – 

methylation level) was calculated from ONT methylation level. The weighted mean of all ONT 

epigenetic signals and ONT unmethylation signals in TCGA sites only (crossed with Bedtools 

intersect (v2.26.0)) in these genomic windows was calculated using Bedops bedmap 28 

(v2.4.41). The number of OGM epigenetic labels and molecules covering each genomic 

window were counted using Bedtools intersect (v2.30.0). The average labels-to-molecules 

ratio across all windows was reported as the global epigenetic level for OGM.  
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To create bedgraphs of OGM signals, epigenetic labels and molecules were extended by 500 

bp up and down stream to account for optical resolution ((Bedtools slop (v2.26.0)), prior to 

calculating the labels to molecules ratio in each genomic location. To reduce the resolution of 

OGM and ONT bedgraphs to 1 kbp windows, the weighted mean of signal in these windows 

was calculated with Bedops bedmap (v2.4.41).  

 

Gene expression data 

Publicly available RNA-seq data of three tumor-matched pairs of ccRCC (stage 3) patients 

(PRJNA396588, GEO accessions: pair 1: GSM2723919, GSM2723920; pair 2: GSM2723927, 

GSM2723928; pair 3: GSM2723929, GSM2723930; 29) were aligned to the human genome 

(hg38) using TopHat 30 (v2.1.0) with default parameters and library-type and fr-firststrand flags, 

after retrieving the raw files with NCBI SRA toolkit 31. Only uniquely mapped reads were 

analyzed (minimal mapping quality of 30). Gene counts were obtained using HTSeq 32 (htseq-

count, v0.11.3) against the GENCODE 33 (v34)  reference gene models. Transcripts per million 

(TPM) scores were calculated. 

Epigenetic modifications signal along aggregated genes  

Transcription start and end sites (TSS and TES) of protein-coding genes were defined 

according to GENCODE annotation (v34). Protein-coding genes were divided into four groups 

based on their average normalized TPM score in the RNA-seq of three matched ccRCC pairs. 

Unexpressed genes were defined as genes with TPM value <= 0.01 (~3000 genes). The other 

expression groups are three equal quantiles of the expressed protein-coding genes (~6000 

genes per group). Mean 5-hmC and unmethylation signals along aggregated genes were 

calculated using DeepTools 34 computeMatrix (v3.5.4) in scale-regions mode, where each 

gene (from TSS to TES) was scaled to 15 kbp and divided into 300 bp bins. Compressed 

matrix output was summarized by DeepTools plotProfile. The average signal intensities for 

both markers were then plotted as a function of the scaled distance relative to the TSS. 

 

 Results 
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We began by analyzing the genetic makeup of a stage 3 ccRCC tumor, a common type of 

kidney cancer known for characteristic structural abnormalities35,36, and a normal adjacent 

tissue. Our workflow consisted of extracting high molecular weight DNA, followed by per-

protocol OGM and ONT analyses (Fig. 1).  

 

Figure 1. Experimental workflow. High molecular weight DNA was extracted from a ccRCC tumor and 

a normal adjacent kidney tissue. Samples were analyzed by OGM and ONT to detect structural and 

copy number variations, and epigenetic modifications. Results from both methods were compared. 

By generating long reads, both methods unlock access to intricate areas of the genome, 

enabling the study of diverse structural variations, copy number variations and repetitive 

elements. Additionally, as both methods read native, unamplified DNA, they are able to detect 

epigenetic modifications. The different attributes of each technique affect their performance in 

the aforementioned analyses. Table 1 is based on public company material and summarizes 

some of the performance specifications, pointing to advantages and limitations of the two 

methods and indicating their compatibility of use, depending on research goals and budget.  
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Bionano Genomics Saphyr  Oxford Nanopore Technologies 

PromethION  

Resolution Optical resolution: 500-1500 bp 

10 

SV detection resolution: starting 

from 500 bp for diploid 

genomes’ insertions and 

deletions.   

inversions/ duplications: >30 

kbp. 

translocations: >50 kbp 37. 

Single bp 

Molecules N50* 250 - 400 kbp, when including 

only molecules exceeding 150 

kbp 38 

10–50 kbp 39 

Average human 

genome coverage 

per cell 

80-300x (effective coverage of 

filtered (≥150 kbp) and aligned 

molecules) 38 

16-66x (raw coverage) 39 

Price per sample 

(including cell, 

reagents and 

device rental) 

550$ (450$), when buying a 

package for 120 (240) 

experiments 40 

 1010$ (720$), when buying 

“project pack” for 96 experiments 

with PromethION 2 Integrated 

(“project pack” for 1024 

experiments with PromethION 24) 

39 

Price per 1x human 

genome coverage 

1.5$-7$ 11$–65$ 

Methylation calling Labeling of unmodified 

cytosines in CpG 41,42 or TCGA14 

sites  can be added 

(unsupported)  

Integrated 

(https://github.com/nanoporetech/

dorado) 

5hmC calling Direct labeling of 5hmC can be 

added (unsupported) 15 

Integrated 

(https://github.com/nanoporetech/

dorado) 

Table 1. ONT and OGM specifications. * Molecules N50 is a measure of reads length indicating that 

half of the genetic data recorded came from reads longer or equal to this value.  
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 SV and CNV analysis of a ccRCC tumor 

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma, and its 

incidence has been increasing in recent years. Over 90% of ccRCC cases demonstrate 

distinctive changes to the short arm of chromosome 3 (3p), from translocations and deletions 

to the loss of the entire chromosomal arm. Most cases involve the genetic or epigenetic 

inactivation of the von Hippel–Lindau (VHL) gene, located on this arm 35,43,44.  Other frequently 

observed copy number variations and cytogenetic abnormalities in ccRCC include a gain of 

chromosome 5q, loss of 14q, trisomy of chromosome 7, loss of 8p, loss of 6q, loss of 9p, loss 

of 4p and loss of chromosome Y in men. Some CNVs were correlated with prognosis 35,36,45.  

To compare the efficacy of the structural profiling and data analysis processes offered by each 

method, we applied CNV and SV analyses on data generated by both methods, adhering to 

the manufacturer’s recommended pipelines unless specified otherwise (see methods section). 

Herein, DNA from a ccRCC tumor and a normal adjacent tissue was analyzed using both ONT 

and BNG platforms. Table 2 summarizes the resulting N50 and average coverage.  

  Effective genome 

coverage of aligned 

molecules 

N50 of aligned 

molecules 

OGM Tumor sample: 133X 

Normal adjacent sample: 

123X 

Tumor sample: 291 kbp 

Normal adjacent 

sample: 233 kbp 

ONT Tumor sample: 36X 

Normal adjacent sample: 

19X 

Tumor sample: 18 kbp 

Normal adjacent 

sample: 15 kbp 

Table 2. Coverage and N50 of OGM and ONT genetic experiments. 

First, genome-wide copy number, calculated in 500 kbp bins, was compared. Tumor plots are 

shown in Figure 2.A and normal adjacent tissue plots are shown in Figure S1. A running 

median over 10 bins was calculated to plot a smooth red line across the copy number dots. 

As expected, both methods produced highly similar CNV plots, identifying the loss of one copy 

of the entire 3p chromosomal arm, as well as a large DNA gain in 5q, and a smaller DNA loss 

in the same arm. Aneuploidies were found by both methods in chromosomes 7 and 12. OGM 

spotted a small DNA loss in chromosome 9 not reported by ONT. The normal adjacent sample 

did not exhibit any large copy number variation in both methods, suggesting somatic 

aberrations. The loss of 3p, gain in 5q and trisomy in chromosome 7 are well-documented 
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genetic characteristics of ccRCC 36,45. The CNV plot generated with ONT data is smoother 

than with OGM due to resolution differences between the methods, influencing the number of 

data points sampled in each bin. 

Clearly, both methods are adequate for basic Karyotyping; however, SV detection exhibited 

less congruence between the two methods. To facilitate a comprehensive comparison, we 

categorized detected SVs larger than 500 bp based on their size (Figure 2.B). As anticipated, 

for short SVs (500 bp - 1 kbp), ONT detected more SVs, leveraging its superior resolution at 

the base-pair level. In the intermediate SV length range (1 to 5 kbp), both methods 

demonstrated a comparable number of detections, with substantial overlap. Notably, OGM 

exhibited an advantage in the detection of larger SVs (more than 5 kb) owing to the larger N50 

it generates, while ONT was able to characterize SVs smaller than 500 bp and detected 

26,413of them.  

 

Figure 2. Comparative analysis of structural variations (SVs) and copy number variations (CNVs) in a 

ccRCC tumor, as detected by ONT and OGM. A. CNV plots (log2 of the copy ratio) generated from ONT 

(top) and OGM (bottom) data. Data illustrate highly similar findings, pinpointing a significant DNA loss 

on chromosome 3 and various losses and gains on chromosomes 5, 7 and 12. B. Venn diagrams 

displaying common and unique SVs to OGM and ONT, in four size ranges:  500 bp -1 kbp, 1-5 kbp, 5-

10 kbp and above 10 kbp. 

Our analysis revealed differences in the types of structural variants (SVs) detected by the ONT 

pipeline and the OGM method (Figure 3.A). While the ONT pipeline, using Sniffles2 46, only 

identified deletions (1,364) and insertions (2,501), OGM detected additional SV types, 
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translocations (4) and inversions (49), alongside deletions (1,220) and insertions (2,924). 

OGM duplications don’t have defined confidence score, so they were excluded from the 

analysis. This observation suggests potential limitations of Sniffles2 for certain SV types, 

particularly translocations and inversions. A recent study by Bolognini and Magi 47 evaluating 

various SV callers within the ONT framework, suggests that alternative SV callers like SVIM 

26 or CuteSV 27 might outperform Sniffles2 in detecting such SV types, when used after the 

same aligner (minimap2). Based on these findings, we employed SVIM and CuteSV for SV 

detection in the tumor sample and compared the results of all three ONT callers to the OGM 

results (Figure 3.A). Notably, none of the tested ONT tools identified translocation breakpoints 

or inversions that met our quality filtering criteria (see methods). 

Figure 3.B depicts chromosomes 3 and 5, two chromosomes that are frequently disrupted in 

ccRCC, with marks indicating the relative positions of SVs and CNVs larger than 5 kbp 

identified by ONT and OGM. SVs overlapping BNG’s list of N-base gaps in the reference or 

putative false positive translocation breakpoints (for de novo assembly, Solve 3.6.1) were 

masked for both methods. Out of the OGM-detected SVs, uncommon SVs not present in 

BNG’s database of healthy controls are separately plotted on the bottom. As seen also in 

Figure 2, the two methods detected DNA gain/loss events in these chromosomes and 

exhibited a high degree of concordance for insertions and deletions. OGM detected 3 possible 

inversions (similar locus), 3 intrachromosomal and 1 interchromosomal (Figure 3.C) 

translocation events. Notably, only 12 SVs identified by OGM in these chromosomes did not 

appear in BNG’s database of mapped healthy controls, indicating possible pathogenic SVs. 

Two of them were also found by ONT, and 10 of them are potential somatic variants not found 

in the normal sample adjacent to the tumor (of these, none were found by ONT). ONT SVs 

found in all chromosomes in the ccRCC tumor and the normal adjacent tissue are shown in 

figures S2 (raw, unfiltered karyogram) and S3 (processed circos plots). OGM SVs found in all 

chromosomes in the ccRCC tumor and the normal adjacent tissue are shown in figures S4 

(processed circos plots of all SVs), S5 (processed circos plots of SVs not present in BNG’s 

database of healthy controls), and S6 (BNG default display summarizing all results. SVs 

plotted are not present in BNG’s database of healthy controls). 
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Figure 3. SVs detected by ONT and OGM. A. Comparison of number of SVs (≥500 bp) by type detected 

by OGM and three SV callers for ONT – Sniffles2, SVIM, CuteSV. B. Illustration SVs larger than 5 kbp 

on chromosomes 3 and 5, as detected by ONT (top panel) and OGM (middle panel). Bottom panel 

shows OGM SVs that do not appear in BNG’s dataset of healthy controls, hence potentially pathogenic. 

C. Interchromosomal translocation detected only by OGM. The light blue strips at the top and bottom 

represent the reference chromosomes 3 (top) and 5 (bottom), and the middle strip is a de novo 

assembled contig, composed of fragments mapped to chromosome 3 and inverted chromosome 5. Pink 

lines indicate CTTAAG barcode labels in the contig and reference. Black lines indicate translocation 

breakpoints. 

 

Epigenetic Analyses 

Methylation profiling 

Modification calling is an attractive feature of ONT, that sequences native, unamplified DNA. 

Accordingly, modifications can be called directly from nanopore signal data, without needing 

chemical conversions (like in bisulfite sequencing, for example) 48. The current recommended 

basecaller for ONT, Dorado (https://github.com/nanoporetech/dorado), can call modified 

bases, and has ready-to-use models to call 5-methyl cytosine (5mC) and 5-hydroxymethyl 

cytosine (5hmC), on top of the four canonical bases.  

Commercially-supported OGM only provides tools for analyzing genomic structure for 

cytogenetic applications. However, more layers of information may be multiplexed with the 
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use of colors. Some of the BNG Saphyr systems contain three laser colors, two of them are 

for generating the genetic barcode and DNA backbone, and the third can be used with 

orthogonal chemistries to tag genomic features of choice, including epigenetic marks.  

Unmethylated CpG sites, complementary to methylated (5mC) sites, can be specifically 

labeled by methyltransferase enzymes. We have recently applied an engineered CpG 

methyltransferase to address all unmethylated CpGs 41,42. However, the method was not yet 

validated for human methylome profiling and thus we used the previously validated reduced 

representation optical methylation mapping (ROM) 14,16,21. This method uses the 

methyltransferase M.TaqI, which directly transfers a fluorescent tag from a synthetic cofactor 

to an adenine base in the enzyme’s recognition sequence TCGA. However, if the CpG nested 

in this sequence motif is methylated or modified, the labeling reaction is blocked (Figure 4.A). 

Consequently, the DNA is labeled in all unmodified CpGs that are within TCGA sites. This 

reduced representation of the human methylome encompasses only ~ 6% of the total CpGs 

but coincidently captures the majority of regulatory sites in the genome and has been shown 

to present a cell-type specific pattern 14,16.  

To facilitate a direct comparison of methylation signals between the two methods, we 

transformed the ONT methylation values into unmethylation signals by presenting the 

complement to 1 of the calculated methylation level. We applied a minimum coverage 

threshold, requiring at least 5 reads for ONT and 20 reads for OGM. In order to account for 

the lower resolution of OGM, we calculated the average unmethylation signals in non-

overlapping 1 kbp genomic windows. We compared the entire ONT methylome (all CpG sites) 

as well as a reduced ONT methylome (TCGA motif) to the reduced representation OGM 

signals (Figure. 4.B). Our analysis revealed a higher unmethylation signal in ONT compared 

to OGM. Interestingly, the difference persisted, and even slightly increased when we 

specifically analyzed TCGA-embedded CpG sites in ONT data. This suggests a potential 

underestimation of unmethylation by OGM, likely attributable to its lower optical resolution, 

rather than to the reduced representation approach. Consequently, multiple closely spaced 

TCGA sites might be erroneously merged into a single unit by OGM, leading to an 

underestimation of the overall unmethylation signal. Plots showing distances between 

adjacent TCGA sites, the number of TCGA sites in 1 kbp windows, and this number vs. the 

number of CpG sites in the same bins, are presented in Figure S7. Figure 4.C shows that 

despite absolute intensity differences, similar trends are seen in the normalized unmethylation 

profile generated along genes when grouped by their gene expression score in ccRCC tumors 

29. Both methods display the higher unmethylation signal around the transcription start site 

(TSS), which increases with gene expression. In contrast, the level in gene bodies is much 
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lower and more similar among all expression levels. Un-normalized OGM and ONT levels of 

the tumor and normal adjacent tissue along genes are presented in Figure S8. The resolution 

and methylation representation differences become more apparent when zooming in to 

smaller regions of the genome. Fig 4.D shows the unmethylation profile of a ~400 kbp region 

in chromosome 22q11.21. Three representative examples for methylation comparison are 

marked in red boxes that contain variable TCGA content (shown in blue in the lower panel). 

The leftmost box showcases a region lacking any TCGA sites in the reference genome. 

Consequently, the ONT plot exhibits a high unmethylation signal (indicating unmethylated 

CpGs), while the OGM profile shows no signal. The middle box highlights two adjacent bins 

with relatively high TCGA density, resulting in signal peaks by both methods. The rightmost 

box depicts a region lacking a reference TCGA site, yet the OGM profile displays a peak.  

Intriguingly, investigation of the corresponding ONT sequence revealed an A-to-G single 

nucleotide polymorphism (SNP), creating a new TCGA site recognizable by the M.TaqI 

enzyme, thus explaining the observed OGM signal.  

Figure 4. Unmethylation analysis. A. Fluorescent labeling scheme for unmodified CpGs embedded in 

TCGA motif for OGM. B. Average global unmethylation levels of a ccRCC tumor, as detected by ONT 

in all CpG sites, by ONT  when restricted to TCGA-embedded CpG sites only, and by OGM (inherently 

marking only TCGA sites). C. ONT and OGM unmethylation signal, each normalized between 0 and 1, 

of the ccRCC tumor along aggregated genes. Genes were grouped based on their expression in ccRCC 

tumors. D. Unmethylation profiles of the ccRCC tumor by ONT and OGM along a region in chromosome 
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22, and the corresponding density of TCGA motif in the hg38 reference. Three red boxes mark three 

regions that differ in TCGA content (all regions contain CpG sites): 1: no TCGAs, there is a peak in ONT 

signal and not in OGM. 2: TCGAs are present, peaks in both methods. 3: no TCGAs in the reference, 

peaks in both methods due to a SNP.  

 

hydroxymethylation profiling 

5-hydroxymethyl cytosine (5hmC), the first oxidation product of 5-methylcytosine, is another 

important modification that was linked to gene regulation, development and disease, 

predominantly cancer 49,50. 5hmC calling has recently been integrated to the ONT basecaller 

Dorado (https://github.com/nanoporetech/dorado). Identification of modifications in ONT data 

relies on machine learning techniques. This process involves training and validating models 

using reference data encompassing the modification across diverse sequence contexts. Such 

reference data can be obtained by identifying the modification using established methods or 

in-situ approaches 17. However, obtaining high-quality, genome-wide reference data 

specifically for 5hmC modifications remains a significant challenge due to its cost and 

complexity. This, in turn, limits the ability to comprehensively train and assess the performance 

of 5hmC callers for ONT data, and it hasn’t been benchmarked and peer-reviewed to date. 

Optical mapping of 5hmC was introduced several years ago based on the fluorescent labeling 

of 5hmC residues 15,21. 5hmC is directly labeled in a process that involves the enzymatic 

attachment of an azide-modified glucose moiety from a synthetic cofactor 51,52 (UDP-6-N3-Glu) 

to the hydroxyl group of 5-hmC, followed by a click reaction that connects a fluorophore-bound 

alkyne to the azide-labeled 5-hmC 53,54 (Fig 5.A). Fig. 5.B shows the average genome-wide 

5hmC signal in the ccRCC tumor sample and the normal adjacent tissue, as was detected by 

both methods. Consistent with published reports indicating a global reduction of 5hmC in 

various cancers 50,55,56, both methods revealed a ~3-fold decrease in 5hmC levels in the tumor 

compared to the adjacent normal tissue. This time, OGM detected higher absolute levels of 

5hmC compared to ONT. As the labeling scheme used to tag 5hmC residues in the OGM 

experiment has no false positives, and was validated with LC-MS/MS in previous work 15, we 

hypothesize that there is an underestimation of 5hmC calls by the ONT model due to 

incomplete training sets and challenging sequence contexts. Albeit showing different absolute 

levels of 5hmC, the modulation of 5hmC level along gene bodies, as well as the increase in 

signal as a function of gene expression, can be seen by both methods (Figure 5.C and Figure 

S9.). The 5hmC profile generated by both methods and displayed in Figure 5.D reveals a 

broadly correlated profile, but with distinct amplitude variations between the different datasets, 
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in line with the average global levels. Figure 5.E. shows an example of a large repetitive 

element containing a group of genes from the GAGE family, poorly represented in the hg38 

reference (the entire array spans ~190 kbp in the reference, with a gap within these 

coordinates) 57. Long molecules spanning the entire uncharacterized region in OGM aided in 

assembling a contig of the full repetitive element, and the 5hmC tags on these molecules 

provided the 5hmC profile along the unknown region. The panel also depicts a 5hmC-

containing single molecule (digitized) and the average 5hmC signal along the contig. 

Epigenetic characterization of this region by ONT was not possible due to the shorter 

molecules that could only penetrate several thousand bases into the ENCODE blacklist-

masked GAGE12 region 58. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.03.31.587463doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.31.587463
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 
 

Figure 5. 5hmC analysis. A. Direct fluorescent labeling of 5hmC for OGM. B. Global 5hmC levels of a 

ccRCC tumor and a normal adjacent tissue, as detected in OGM and ONT. C. OGM and ONT 5hmC 

signal of a normal kidney tissue adjacent to a ccRCC tumor along aggregated genes. Genes are 

grouped based on their expression in kidney tissues adjacent to ccRCC tumors. D. 5hmC profiles of a 

ccRCC tumor and a normal adjacent tissue generated by OGM and ONT along a ~25 Mb region in 

chromosome 3. E. A repetitive sequence element in chromosome X, poorly characterized in the hg38 

reference (green strip; Blue lines on it indicate the genetic barcode labels) above it, a de novo 

assembled OGM contig (gray) spanning the entire repeat array, indicating a deletion compared to hg38. 

The region spans genes from the GAGE family, and the gapped region contains the gene GAGE12B. 

Above it, a digitized single OGM molecule, with genetic barcode labels (blue) and 5hmC labels (red). 

Above it, is the average 5hmC signal along the contig.  

 

Discussion 

BNG and ONT now offer tools that aim to unveil the complexity of aberrated genomes and 

replace many cytogenetic workflows. Both companies have developed dedicated toolkits for 

variant calling. To navigate this evolving landscape, this report offers an objective comparison 

of the two methods, delving into the data types accessible with each technology, and the 

capabilities of their respective analytical tools, recognizing these tools as crucial for generating 

reports with clear clinical relevance. In this respect, BNG is more clinically oriented in the 

cytogenetic space, with pipelines and reports that are aligned with clinical needs. BNG 

additionally compiled a substantial reference database of healthy controls. This enables the 

filtering of non-pathogenic findings. 

At the karyotype level, the methods conform, and both are capable of providing reliable copy 

number evaluations. Nevertheless, slight differences in copy number can be observed 

(Figures 2.A and S1) and are attributed to the higher resolution of ONT. As for detecting 

structural variations in variable sizes, a trade-off between resolution and read-length was 

observed: both methods called a high percentage of mid-range SVs (1-10 Kbp). ONT, owing 

to its single-base resolution, performed better in detecting small SVs. OGM on the other hand, 

showed a clear advantage in detecting large SVs (larger than 10 kbp) with over 70% of large 

SVs (including translocations) not detected by ONT. Despite the low information content of 

OGM, the high coverage and N50 of these measurements increase the chance of detecting 

challenging structural aberrations. ONT’s resolution advantage is also significant for reporting 

the SVs’ breakpoints at a single bp resolution. This gives access to single nucleotide 

polymorphisms and short insertions and deletions that OGM is blind to. On the other hand, 

large or complex SVs are challenging for ONT under the experimental N50 and coverage. This 
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holds true also for rarer variants that are detected by OGM due to the high relative genome 

coverage generated. Translocations and inversions, were not reported by neither of the ONT 

SV callers Sniffles2, SVIM and CuteSV, while OGM called inversions, three intrachromosomal 

translocations on chromosome 5 and one interchromosomal translocation between 

chromosomes 3 and 5. Per dollar, the genomic coverage generated by OGM is higher than 

that of ONT, opening a window to detect low-frequency variants and more resilience to sample 

heterogeneity. However, in this experiment, we did not meet the recommended coverage for 

running BNG’s “rare variant pipeline” (300x is recommended for high sensitivity to low 

frequency variants 59), therefore we performed the pipelines of “De novo assembly” and 

“variant annotation pipeline”, instead. The choice of analytical tools significantly influences the 

insights extracted from data generated by both methods. While we employed recommended 

tools optimized for our data type and coverage, we note that these tools have inherent 

limitations that potentially extend beyond purely technological constraints 47,60,61.  

As for epigenetics, ONT can now call methylated CpGs from native DNA, together with 

generation of genetic data, an obvious advantage compared to OGM. OGM users that seek 

methylation information have to fluorescently tag the epigenetic modifications prior to data 

acquisition. These additional labeling steps are not commercialized by BNG and are not 

supported by the company. Methylation mapping extent is confined by the ability of the 

methyltransferase enzyme selected for this procedure and the density of its recognition sites. 

The enzyme M.TaqI, described here, efficiently labels CpG sites nested within the TCGA motif 

14. This provides a reduced representation of the unmethylome. These recognition sites make 

up ~6% of the CpG sites in the human reference, with correlating methylation states in many 

important regions of the genome 14, but inherent reduced representation limitations apply, in 

addition to constrains added by the difficulty to resolve adjacent labels due to optical resolution 

(diffraction limit). Additionally, the indirect labeling done by methyltransferase enzymes, 

pointing unmodified sites, can’t distinguish methylation from other cytosine modifications and 

is subjected to labeling efficiency, thus is inferior to direct methylation calling. Our analysis 

showed that global trends, such as correlation of signal with gene expression group, persisted, 

while locus specific signals depend on TCGA representation. This comparison highlights 

OGM’s limitations in methylation calling compared to ONT. However, to date, the picture for 

5hmC presents a different scenario. In this case, the fluorescent labeling added to OGM, while 

also  external and not supported by BNG, directly labels 5hmC residues and not 

complementary sites 15. Similarly to methylation calling, ONT enables 5hmC identification 

together with canonical basecalling without additional experimental steps, but some 

differences have to be considered. As the process of modification calling relies on machine 

learning, model training is a crucial step for accurate identification of 5hmC. This step requires 
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comprehensive reference data covering the modification in all possible sequence contexts and 

distinguishing it from other cytosine modifications to assure accurate calls. Unfortunately, 

unlike for methylation, obtaining high-quality genome-wide reference data for 5hmC is still 

challenging and expensive, and might limit the comprehensiveness of the training data, thus 

affecting the performance of 5hmC calling models. This might explain the lower 5hmC levels 

called by ONT compared to OGM, seen in our comparison, and suggest that the ONT model 

currently underestimates the density of 5hmC and misses many of the modified bases.  

To conclude, selecting the most suitable platform hinges on a clear understanding of the data 

requirements dictated by the clinical or research question. To this end, a thorough 

understanding of the data generated by each platform, alongside the strengths and limitations 

of their respective analytical toolkits is needed.  
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