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Abstract

Carcinogenesis often involves significant alterations in the cancer genome architecture,
marked by large structural and copy number variations (SVs and CNVs) that are difficult to
capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect
such aberrations, but they are limited in resolution and do not cover features smaller than
several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive
technologies that bridge this resolution gap and offer enhanced performance for cytogenetic
applications. These methods profile native, individual DNA molecules, thus capturing
epigenetic information. We applied both techniques to characterize a clear cell renal cell
carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative
strengths of each method in the context of variant size and average read length. Additionally,
we assessed their utility for methylome and hydroxymethylome profiling, emphasizing

differences in epigenetic analysis applicability.
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Introduction

One of the most prominent signs of carcinogenesis is the structural deviation of the cancer
genome from that of the parent cell, which often involves large structural and copy number
variations (SVs and CNVs, respectively). Such variations are annotated as structural features
(deletions, insertions, duplications, inversions, and translocations) differing from the human
genome reference or a matched sample for comparison . Traditionally, cytogenetic
techniques such as karyotyping are used to detect large structural variations ranging from
whole chromosome duplications, chromosome arm deletions, and down to SVs of ~ 5-10
mega basepairs (Mb) 22. Applying fluorescence in-situ hybridization (FISH) techniques may
bring the resolution down to several hundred kilo basepairs (kbp) 4, but a critical resolution
gap remains between cytogenetics and short-read sequencing. The lack of access to genomic
variation on the scales of 1-500 kbp has nourished the development of long-read technologies
that can address this need. Various long-read methods have been introduced in recent years,
including SMRT sequencing commercialized by PacBio, which routinely provides high-quality
reads on the 10 kbp scale °. Another concept involves a library preparation technique that
allows linking proximal DNA fragments computationally by sequence barcode ligation (linked
reads-10x genomics ¢ TELseq 7). Here, we utilized two techniques, Optical genome mapping
and ONT sequencing, that stand out in their ability to cover the full gap in mapping ability
between short-read sequencing and karyotyping, offering an enhanced alternative to

traditional cytogenetic analysis.

Optical genome mapping (OGM), commercialized by Bionano Genomics Inc. (BNG), has
already gained clinical utility and is emerging as an alternative to cytogenetics by mapping the
coarse grain structure of unamplified genomic fragments hundreds of kbp in length 8°. The
molecules are labeled at a specific sequence motif (CTTAAG) by a methyltransferase enzyme
that transfers a fluorescent molecule to the labeling site from a synthetic cofactor analog.
Every molecule acquires a sequence-specific fluorescent pattern along the DNA backbone
during this process. The labeled DNA sample is applied to a silicon chip, where the molecules
are electrophoretically extended in an array of parallel nanochannels. Millions of long,
extended DNA molecules with their overlaying fluorescent barcode are imaged in the channels
at high throughput. Once the images are digitized, DNA molecules may be mapped to their
genomic location according to the pattern of fluorescent spots along the DNA and its matching
to the expected pattern on the genome reference. Alternatively, the patterns may be stitched

and assembled to build the whole genome structure de-novo .
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Oxford Nanopore Technologies (ONT) is another prominent player in the long-read mapping
and sequencing space. In recent years, ONT sequencing reads have gotten longer, error rates
have diminished, throughput has increased, and prices per genome have dropped to levels
that may justify clinical utility 312, For sequencing, DNA molecules are translocated through
protein pores while measuring the electric ionic current flowing through the pore. Different
sequence compositions generate various degrees of current attenuation, which is then
computationally interpreted to generate the base sequence of the translocated DNA
molecules. While offering single-base resolution, ONT provides shorter median read lengths
compared to OGM. Both methods may be applied to native DNA that still carries chemical
DNA modifications such as DNA methylation or DNA damage adducts. This gives rise to
another beneficial feature: the acquisition of epigenetic information during genetic analysis. In
OGM, an additional color may be used to chemically tag modifications of interest and create
a hybrid genetic/epigenetic physical map of the molecules °%3-16, ONT, on the other hand,
does not require any additional preparative steps for calling epigenetic modifications as it relies
solely on the electrical contrast generated by the native chemical structure of the modified
base . Nevertheless, accurate modification calling requires a complete training set, which is

not trivial for most base modifications.

Herein, we used both methods in order to characterize the structural and copy number
landscape of a matched clear cell renal cell carcinoma (ccRCC) tumor-normal sample pair,
pinpointing the specific strengths of each technique. Additionally, we characterized the
methylome and hydroxymethylome of the pair and highlighted differences in practical utility for

epigenetic analysis.

Methods
Patient clinically relevant information

Tumor and normal adjacent tissue were obtained in the course of radical nephrectomy
performed in an 82-year-old male. Tumor was diagnosed histologically as ccRCC with
morphological features of eosinophilic variant at pT3a stage. Tissues were stored from the

time of surgery to analysis at -80°C (fresh-frozen sample).

Sample collection and handling was approved by institutional review boards in accordance

with the declaration of Helsinki.
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Extraction of high molecular weight DNA

Ultra-high molecular weight (UHMW) DNA for 5-hmC OGM and ONT analyses was extracted
using SP Tissue and Tumor DNA Isolation kit (Bionano Genomics), according to the
manufacturer’s protocol. High molecular weight (HMW) DNA for OGM unmodified CpG
analysis was extracted using Animal Tissue Isolation kit (Bionano Genomics) according to
Bionano Prep Animal Tissue DNA Isolation Soft Tissue/ Fibrous Tissue Protocol for normal

tissue/ tumor, respectively.

Nanopore sequencing (Oxford Nanopore Technologies)

Samples were prepared for sequencing using Ligation Sequencing Kit V14 (SQK-LSK114,
Oxford Nanopore Technologies, UK) according to protocol with a starting DNA amount of 1
Hg. Whole genome sequencing was performed on a “P2-Solo” device using R10.4.1 Flow cells
(FLO-PRO11, Oxford Nanopore Technologies).

Basecalling of raw PODS5 files was performed using the ONT proprietary software Dorado (v
0.3.2, Oxford Nanopore Technologies; https://github.com/nanoporetech/dorado) with the
model: “dna_r10.4.1_e8.2 400bps_hac_@v4.0.0 5mCG_5hmCG@v2.cfg”. Reads were
then aligned to the hg38 human reference genome using minimap2 8 (v.2.24). Bam output
files were then merged, sorted and indexed using samtools *° (v1.16.1). SVs, CNVs and
methylation and hydroxymethylation locations were called by the “wf-human-variation”

pipeline (https://github.com/epi2me-labs/wf-human-variation) via EPI2ME software 2° (Oxford

Nanopore Technologies) with minimum bam coverage set to 5. The default behavior of the
pipeline is to report methylation and hydroxymethylation per CpG positions and with combined
strands. Analyses were performed on a Linux operating system (Ubuntu 22.04.3) with Nvidia’s
RTX 6000 GPU.

Optical Genome Mapping (OGM)
a. Labeling DNA for genetic and 5hmC analysis

To create the genetic barcode, 750 ng of UHMW DNA in two reaction tubes were each
mixed with 5X DLE-buffer (to a final concentration of 1X), 1.5 uL of 20X DL-Green and
1.5 L of DLE-1 enzyme (Bionano Genomics) in a total reaction volume of 30 pL. The

reaction was incubated for 4 hours at 37°C. Then, 5hmC sites were labeled by the
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enzyme B-glucosyltransferase from T4 phage (T4-BGT) °. Magnesium chloride was
added to 30 pL of DLE-labeled DNA to a final concentration of 9 mM. Then, the DNA
was added to 4.5 pL of 10X NEBuffer 4 (New England Biolabs), uridine diphosphate-
6-azideglucose (UDP-6-N3-Glu; (21)) in a final concentration of 50 uM, 30 units of T4
B-glucosyltransferase (New England Biolabs) and ultra-pure water in a final volume of
45 pL. The reaction mixture was incubated overnight at 37°C. The following day,
dibenzocyclooctyl (DBCO)-ATTO643 2! was added to a final concentration of 150 uM
and the reaction was incubated again at 37°C overnight. The next day, the reaction
tubes were added 5 pL of PureGene Proteinase K (Qiagen) and incubated for
additional 30 minutes at 50°C. After the Proteinase K treatment, the two identical
reaction tubes were merged and drop-dialyzed as one against 20 mL of 1X TE buffer
(pH 8) with 0.1 um dialysis membrane for a total of 2 hours. Finally, 300 ng recovered
dual-color DNA was stained to visualize DNA backbone, by mixing it with 4X Flow
Buffer (Bionano Genomics) to a final concentration of 1X, 1M DTT (Bionano Genomics)
to a final concentration of 0.1 M, Tris (pH 8) to a concentration of 25 mM, NaCl, to a
concentration of 25 mM, EDTA to a final concentration of 0.008-0.01 M, DNA Stain
(Bionano Genomics) to a final vol/vol ratio of 8%, and ultrapure water. The reaction
mixture was shaken horizontally on a HulaMixer for an hour and then incubated

overnight at 4°C.

b. Labeling DNA for unmethylation analysis (reduced representation of unmodified
cytosines in CpG context)

To create the genetic barcode, 1 pg of U/HMW DNA was mixed with 5X DLE-buffer (to
a final concentration of 1X), 2 pL of 20X DL-Green and 2 pL of DLE-1 enzyme (Bionano
Genomics) in a total reaction volume of 30 UL for 4 hours at 37°C, immediately followed
by heat inactivation at 80°C for 20 minutes. Heat inactivation at these conditions
degrades over 97% of the DL-Green cofactor, therefore preventing it from being
incorporated by M.Taqgl in the following reaction, and making the two reactions
orthogonal. Then, unmodified cytosines in the recognition sequence TCGA were
fluorescently labeled to perform reduced representation optical methylation mapping
(ROM) #22, Two 500 ng reaction tubes of DLE1-labeled DNA were each mixed with 4
pL of 10X CutSmart buffer (New England Biolabs), 60 uM of lab-made synthetic
AdoYnATTO643 %, 1 uL of M.Taql (10 units/uL; New England Biolabs) and ultrapure
water in a total volume of 40 pL, and incubated for 5 hours at 65°C. Then, 5 pL of

Puregene Proteinase K (Qiagen) were added and the reaction tube was incubated for
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additional 2 hours at 45°C. After the Proteinase K treatment, the two 500 ng reaction
tubes were merged and drop-dialyzed as one against 20 mL of 1X TE buffer (pH 8)
with 0.1 um dialysis membrane for a total of 2 hours. Finally, 300 ng recovered dual-
color DNA were stained to visualize DNA backbone by mixing it with 15 uL of 4X Flow
Buffer (Bionano Genomics), 6 pL of 1M DTT (Bionano Genomics), 3 uL of 0.5M Tris
(pH 8), 3 pL of 0.5M NacCl, 4.8 pL of DNA Stain (Bionano Genomics) and ultrapure
water to a total volume of 60 pL, and incubated overnight at 4°C.

c. Running OGM

Labeled samples were loaded on Saphyr chips (G1.2) and run on a Saphyr instrument
(Bionano Genomics) to generate single molecule maps. Optical mapping data from
several runs were merged to a single dataset using Bionano Access (v1.6.1) and
Bionano Solve (v3.6.1) (Bionano Genomics). The assigned channels for genetic and
epigenetic labels in the molecules (.BNX) files were swapped with Bionano Solve
(v3.6.1) according to manufacturer's advice. De novo assemblies and “variant
annotation pipeline” (single sample mode) for SV annotation were generated from
5hmC-labeled data with default parameters for human genomes using Bionano Access
v1.7.1 and Bionano Solve v3.7.1. The in-silico digested human genome GRCh38

(hg38_DLE1 Okb_Olabels.cmap) was used as the reference.

d. Epigenetic data processing

Molecules spanning over 150 kbp were aligned to the in silico human genome
reference GRCh3s8, based on DLE-1 recognition sites
(hg38_DLE1_0Okb_Olabels.cmap) using Bionano Access (v1.6.1) and Bionano Solve
(v3.6.1), with default parameters according to the following combination of arguments:
haplotype, human, DLE-1, Saphyr. Only molecules with an alignment confidence equal
to or higher than 15 (P <= 10-15) that at least 60% of their length was aligned to the
reference were used for downstream analysis. Alignment outputs were converted to
global epigenetic profiles (bedgraph files) according to the pipeline described by
Gabrieli et al. ** and Sharim et al. * and in ebensteinLab/Irys-data-analysis on Github.

Only regions covered by at least 20 molecules were considered.
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CNV analysis

In Order to generate CNV plots of OGM data, the coverage of DLE-1 labeling sites was
extracted from raw output of CNV analysis (cnv_rcmap_exp.txt). Genomic regions with very
high variance in coverage across Bionano Genomics’ control datasets compared to typical loci
(hg38_cnv_masks.bed) were subtracted from analysis. Then, the mean coverage of such sites
in 500,000 bp bins was calculated using Bedtools 2*> map (v2.26.0). Then, for each bin, the
log: of the copy ratio (in a diploid organism, copy number/2) was calculated and plotted along
the chromosomes. log: of the copy ratio in 500,000 bp bins along ONT data was inferred by
employing the EPI12ME workflow "wf-human-variation" to each sample. A running median over
10 bins was calculated to plot a smooth red line across the log of the copy ratio dots of both
methods.

SV analysis

Genomic coordinates, SV type and size of high-confidence (confidence score = 0.5) annotated
OGM SVs from “variant annotation Pipeline”, were extracted from output smap file and
converted to bed format for downstream analysis. In case no end coordinate was supplied, it
was taken as start+1. Both translocation breakpoints were considered for overlap with ONT
SVs, but were counted as one event of a large SV (>10 kb). Only unique SVs were kept. SVs
overlapping BNG’s list of N-base gaps in the reference or putative false positive translocation
breakpoints (for “de novo assembly”, Solve 3.6.1) were masked from analysis (Bedtools
intersect -v (v2.26.0)). Coordinates of OGM-detected SVs were extended by 500 bp up and
downstream (Bedtools slop (v2.26.0) to account for possible differences in SV resolution

between OGM and ONT. This extension was not considered to determine SV size.

Genomic coordinates, SV type and size of “passed” ONT SVs called by the EPI2ME workflow
"wf-human-variation”, with minimum 5 reads supporting them, residing on canonical
chromosomes, were extracted from the Sniffles2 VCF output file and converted to bed format
for downstream analysis. End coordinate was taken as end+1 to avoid cases of O difference.
Only unique SVs were kept. SVs overlapping BNG’s list of N-base gaps in the reference or
putative false positive translocation breakpoints (for “de novo assembly”, Solve 3.6.1) were
masked from analysis (Bedtools intersect -v (v2.26.0)). Only SVs of at least 500 bp were

considered.
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Overlap between SVs detected by OGM and ONT was calculated with Bedtools intersect
(v2.26.0). The number of overlapping SVs is reported based on the ONT calls. Overlapping

and non-overlapping SVs were then divided based on their size (absolute value).

Clinical significance analysis of ONT SVs was performed with SnpSift 24 against the Clinvar 2

database and had no findings.

Alternative ONT SV callers

SV calling with SVIM 28 (https://github.com/eldariont/svim) was conducted with parameter: --
min_sv_size 50. The output VCF file was processed as described for the EPI2ME (Sniffles2)
VCF. Only SVs of at least 500 bp were considered.

SV calling with CuteSV %" (https://github.com/tjiangHIT/cuteSV) was conducted with
parameters recommended for ONT data: --max_cluster_bias INS 100; --
max_cluster_bias_DEL 100; --diff_ratio_merging_INS 0.3; --diff_ratio_merging_DEL 0.3; and
additional parameters: -1 50; --min_support 5. The output VCF file was processed as
described for the EPI2ME (Sniffles2) VCF. Only SVs of at least 500 bp were considered.

Global epigenetic levels

Due to resolution differences between OGM and ONT, the mean epigenetic levels in non-
overlapping 1000 bp genomic windows (generated using Bedtools makewindow (v2.26.0) was
calculated. Only windows on canonical chromosomes that contain at least one relevant
recognition site were considered (CpG for 5hmC and ONT mC, TCGA for OGM unmethylation;
sites loci were extracted using the R package BSgenome
(https://bioconductor.org/packages/release/bioc/html/BSgenome.html). To match the reported
measure between OGM and ONT in methylation calling, the unmethylation level (1 —
methylation level) was calculated from ONT methylation level. The weighted mean of all ONT
epigenetic signals and ONT unmethylation signals in TCGA sites only (crossed with Bedtools
intersect (v2.26.0)) in these genomic windows was calculated using Bedops bedmap 2
(v2.4.41). The number of OGM epigenetic labels and molecules covering each genomic
window were counted using Bedtools intersect (v2.30.0). The average labels-to-molecules

ratio across all windows was reported as the global epigenetic level for OGM.
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To create bedgraphs of OGM signals, epigenetic labels and molecules were extended by 500
bp up and down stream to account for optical resolution ((Bedtools slop (v2.26.0)), prior to
calculating the labels to molecules ratio in each genomic location. To reduce the resolution of
OGM and ONT bedgraphs to 1 kbp windows, the weighted mean of signal in these windows
was calculated with Bedops bedmap (v2.4.41).

Gene expression data

Publicly available RNA-seq data of three tumor-matched pairs of ccRCC (stage 3) patients
(PRJINA396588, GEO accessions: pair 1: GSM2723919, GSM2723920; pair 2: GSM2723927,
GSM2723928; pair 3: GSM2723929, GSM2723930; ?°) were aligned to the human genome
(hg38) using TopHat % (v2.1.0) with default parameters and library-type and fr-firststrand flags,
after retrieving the raw files with NCBI SRA toolkit 3*. Only uniquely mapped reads were
analyzed (minimal mapping guality of 30). Gene counts were obtained using HTSeq * (htseg-
count, v0.11.3) against the GENCODE % (v34) reference gene models. Transcripts per million

(TPM) scores were calculated.
Epigenetic modifications signal along aggregated genes

Transcription start and end sites (TSS and TES) of protein-coding genes were defined
according to GENCODE annotation (v34). Protein-coding genes were divided into four groups
based on their average normalized TPM score in the RNA-seq of three matched ccRCC pairs.
Unexpressed genes were defined as genes with TPM value <= 0.01 (~3000 genes). The other
expression groups are three equal quantiles of the expressed protein-coding genes (~6000
genes per group). Mean 5-hmC and unmethylation signals along aggregated genes were
calculated using DeepTools ** computeMatrix (v3.5.4) in scale-regions mode, where each
gene (from TSS to TES) was scaled to 15 kbp and divided into 300 bp bins. Compressed
matrix output was summarized by DeepTools plotProfile. The average signal intensities for

both markers were then plotted as a function of the scaled distance relative to the TSS.

Results
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We began by analyzing the genetic makeup of a stage 3 ccRCC tumor, a common type of
kidney cancer known for characteristic structural abnormalities®*®®, and a normal adjacent
tissue. Our workflow consisted of extracting high molecular weight DNA, followed by per-
protocol OGM and ONT analyses (Fig. 1).

Optical Genome Mapping—
Bionano Genomics (OGM)

Copy number analysis

%mod

Nanopore sequencing — Oxford ) - )
Nanopore Technologies (ONT)

Epigenetic analysis

Figure 1. Experimental workflow. High molecular weight DNA was extracted from a ccRCC tumor and
a normal adjacent kidney tissue. Samples were analyzed by OGM and ONT to detect structural and

copy humber variations, and epigenetic modifications. Results from both methods were compared.

By generating long reads, both methods unlock access to intricate areas of the genome,
enabling the study of diverse structural variations, copy number variations and repetitive
elements. Additionally, as both methods read native, unamplified DNA, they are able to detect
epigenetic modifications. The different attributes of each technique affect their performance in
the aforementioned analyses. Table 1 is based on public company material and summarizes
some of the performance specifications, pointing to advantages and limitations of the two

methods and indicating their compatibility of use, depending on research goals and budget.
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Bionano Genomics Saphyr Oxford Nanopore Technologies
PromethION

Resolution Optical resolution: 500-1500 bp | Single bp
10

SV detection resolution: starting
from 500 bp for diploid
genomes’ insertions and
deletions.

inversions/ duplications: >30
kbp.

translocations: >50 kbp *'.
Molecules N50* 250 - 400 kbp, when including | 10-50 kbp %
only molecules exceeding 150
kbp 38

Average human | 80-300x (effective coverage of | 16-66x (raw coverage) *°

genome coverage | filtered (2150 kbp) and aligned
per cell molecules) %

Price per sample | 550% (450%), when buying a| 1010$ (720%), when buying
(including cell, | package for 120  (240) | “project pack” for 96 experiments

reagents and | experiments “° with PromethlON 2 Integrated
device rental) (“project pack”  for 1024

experiments with PromethlON 24)
39

Price per 1x human | 1.5%-7$ 11$-65%

genome coverage

Methylation calling | Labeling of unmodified | Integrated

cytosines in CpG #4142 or TCGA | (https://github.com/nanoporetech/
sites can be added | dorado)

(unsupported)

5hmC calling Direct labeling of 5hmC can be | Integrated
added (unsupported) ° (https://github.com/nanoporetech/

dorado)

Table 1. ONT and OGM specifications. * Molecules N50 is a measure of reads length indicating that

half of the genetic data recorded came from reads longer or equal to this value.
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SV and CNV analysis of a ccRCC tumor

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma, and its
incidence has been increasing in recent years. Over 90% of ccRCC cases demonstrate
distinctive changes to the short arm of chromosome 3 (3p), from translocations and deletions
to the loss of the entire chromosomal arm. Most cases involve the genetic or epigenetic
inactivation of the von Hippel-Lindau (VHL) gene, located on this arm 34344 Other frequently
observed copy number variations and cytogenetic abnormalities in ccRCC include a gain of
chromosome 5q, loss of 14q, trisomy of chromosome 7, loss of 8p, loss of 6q, loss of 9p, loss
of 4p and loss of chromosome Y in men. Some CNVs were correlated with prognosis 35364°,

To compare the efficacy of the structural profiling and data analysis processes offered by each
method, we applied CNV and SV analyses on data generated by both methods, adhering to
the manufacturer’'s recommended pipelines unless specified otherwise (see methods section).
Herein, DNA from a ccRCC tumor and a normal adjacent tissue was analyzed using both ONT

and BNG platforms. Table 2 summarizes the resulting N50 and average coverage.

Effective genome | N50 of aligned
coverage of aligned | molecules
molecules

OGM Tumor sample: 133X Tumor sample: 291 kbp
Normal adjacent sample: | Normal adjacent
123X sample: 233 kbp

ONT Tumor sample: 36X Tumor sample: 18 kbp
Normal adjacent sample: | Normal adjacent
19X sample: 15 kbp

Table 2. Coverage and N50 of OGM and ONT genetic experiments.

First, genome-wide copy number, calculated in 500 kbp bins, was compared. Tumor plots are
shown in Figure 2.A and normal adjacent tissue plots are shown in Figure S1. A running
median over 10 bins was calculated to plot a smooth red line across the copy number dots.
As expected, both methods produced highly similar CNV plots, identifying the loss of one copy
of the entire 3p chromosomal arm, as well as a large DNA gain in 5q, and a smaller DNA loss
in the same arm. Aneuploidies were found by both methods in chromosomes 7 and 12. OGM
spotted a small DNA loss in chromosome 9 not reported by ONT. The normal adjacent sample
did not exhibit any large copy number variation in both methods, suggesting somatic

aberrations. The loss of 3p, gain in 5q and trisomy in chromosome 7 are well-documented
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genetic characteristics of ccRCC 3¢5, The CNV plot generated with ONT data is smoother
than with OGM due to resolution differences between the methods, influencing the number of

data points sampled in each bin.

Clearly, both methods are adequate for basic Karyotyping; however, SV detection exhibited
less congruence between the two methods. To facilitate a comprehensive comparison, we
categorized detected SVs larger than 500 bp based on their size (Figure 2.B). As anticipated,
for short SVs (500 bp - 1 kbp), ONT detected more SVs, leveraging its superior resolution at
the base-pair level. In the intermediate SV length range (1 to 5 kbp), both methods
demonstrated a comparable number of detections, with substantial overlap. Notably, OGM
exhibited an advantage in the detection of larger SVs (more than 5 kb) owing to the larger N50
it generates, while ONT was able to characterize SVs smaller than 500 bp and detected
26,4130f them.
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B. Overlap of structural variants found by OGM and ONT, by SV size

500 bp £SV <1 kbp 1 kbp < SV <5 kbp 5 kbp < SV < 10 kbp 10 kbp £ SV
OGM OGM OGM OGM

502 1116 459 302 1519 292 33 255 110 7 a4 164
ONT ONT ONT ONT

Figure 2. Comparative analysis of structural variations (SVs) and copy number variations (CNVs) in a
ccRCC tumor, as detected by ONT and OGM. A. CNV plots (logz of the copy ratio) generated from ONT
(top) and OGM (bottom) data. Data illustrate highly similar findings, pinpointing a significant DNA loss
on chromosome 3 and various losses and gains on chromosomes 5, 7 and 12. B. Venn diagrams
displaying common and unique SVs to OGM and ONT, in four size ranges: 500 bp -1 kbp, 1-5 kbp, 5-
10 kbp and above 10 kbp.

Our analysis revealed differences in the types of structural variants (SVs) detected by the ONT
pipeline and the OGM method (Figure 3.A). While the ONT pipeline, using Sniffles2 %, only
identified deletions (1,364) and insertions (2,501), OGM detected additional SV types,
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translocations (4) and inversions (49), alongside deletions (1,220) and insertions (2,924).
OGM duplications don’t have defined confidence score, so they were excluded from the
analysis. This observation suggests potential limitations of Sniffles2 for certain SV types,
particularly translocations and inversions. A recent study by Bolognini and Magi #’ evaluating
various SV callers within the ONT framework, suggests that alternative SV callers like SVIM
26 or CuteSV 2" might outperform Sniffles2 in detecting such SV types, when used after the
same aligner (minimap2). Based on these findings, we employed SVIM and CuteSV for SV
detection in the tumor sample and compared the results of all three ONT callers to the OGM
results (Figure 3.A). Notably, none of the tested ONT tools identified translocation breakpoints

or inversions that met our quality filtering criteria (See methods).

Figure 3.B depicts chromosomes 3 and 5, two chromosomes that are frequently disrupted in
ccRCC, with marks indicating the relative positions of SVs and CNVs larger than 5 kbp
identified by ONT and OGM. SVs overlapping BNG’s list of N-base gaps in the reference or
putative false positive translocation breakpoints (for de novo assembly, Solve 3.6.1) were
masked for both methods. Out of the OGM-detected SVs, uncommon SVs not present in
BNG’s database of healthy controls are separately plotted on the bottom. As seen also in
Figure 2, the two methods detected DNA gain/loss events in these chromosomes and
exhibited a high degree of concordance for insertions and deletions. OGM detected 3 possible
inversions (similar locus), 3 intrachromosomal and 1 interchromosomal (Figure 3.C)
translocation events. Notably, only 12 SVs identified by OGM in these chromosomes did not
appear in BNG’s database of mapped healthy controls, indicating possible pathogenic SVs.
Two of them were also found by ONT, and 10 of them are potential somatic variants not found
in the normal sample adjacent to the tumor (of these, none were found by ONT). ONT SVs
found in all chromosomes in the ccRCC tumor and the normal adjacent tissue are shown in
figures S2 (raw, unfiltered karyogram) and S3 (processed circos plots). OGM SVs found in all
chromosomes in the ccRCC tumor and the normal adjacent tissue are shown in figures S4
(processed circos plots of all SVs), S5 (processed circos plots of SVs not present in BNG’s
database of healthy controls), and S6 (BNG default display summarizing all results. SVs

plotted are not present in BNG’s database of healthy controls).
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Figure 3. SVs detected by ONT and OGM. A. Comparison of number of SVs (=500 bp) by type detected
by OGM and three SV callers for ONT — Sniffles2, SVIM, CuteSV. B. lllustration SVs larger than 5 kbp
on chromosomes 3 and 5, as detected by ONT (top panel) and OGM (middle panel). Bottom panel
shows OGM SVs that do not appear in BNG’s dataset of healthy controls, hence potentially pathogenic.
C. Interchromosomal translocation detected only by OGM. The light blue strips at the top and bottom
represent the reference chromosomes 3 (top) and 5 (bottom), and the middle strip is a de novo
assembled contig, composed of fragments mapped to chromosome 3 and inverted chromosome 5. Pink
lines indicate CTTAAG barcode labels in the contig and reference. Black lines indicate translocation

breakpoints.

Epigenetic Analyses
Methylation profiling

Modification calling is an attractive feature of ONT, that sequences native, unamplified DNA.
Accordingly, modifications can be called directly from nanopore signal data, without needing
chemical conversions (like in bisulfite sequencing, for example) “8. The current recommended
basecaller for ONT, Dorado (https://github.com/nanoporetech/dorado), can call modified
bases, and has ready-to-use models to call 5-methyl cytosine (5mC) and 5-hydroxymethyl

cytosine (5hmC), on top of the four canonical bases.

Commercially-supported OGM only provides tools for analyzing genomic structure for

cytogenetic applications. However, more layers of information may be multiplexed with the
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use of colors. Some of the BNG Saphyr systems contain three laser colors, two of them are
for generating the genetic barcode and DNA backbone, and the third can be used with

orthogonal chemistries to tag genomic features of choice, including epigenetic marks.

Unmethylated CpG sites, complementary to methylated (5mC) sites, can be specifically
labeled by methyltransferase enzymes. We have recently applied an engineered CpG
methyltransferase to address all unmethylated CpGs “*42. However, the method was not yet
validated for human methylome profiling and thus we used the previously validated reduced
representation optical methylation mapping (ROM) #1621 This method uses the
methyltransferase M.Tagl, which directly transfers a fluorescent tag from a synthetic cofactor
to an adenine base in the enzyme’s recognition sequence TCGA. However, if the CpG nested
in this sequence motif is methylated or modified, the labeling reaction is blocked (Figure 4.A).
Consequently, the DNA is labeled in all unmodified CpGs that are within TCGA sites. This
reduced representation of the human methylome encompasses only ~ 6% of the total CpGs
but coincidently captures the majority of regulatory sites in the genome and has been shown

to present a cell-type specific pattern 1416,

To facilitate a direct comparison of methylation signals between the two methods, we
transformed the ONT methylation values into unmethylation signals by presenting the
complement to 1 of the calculated methylation level. We applied a minimum coverage
threshold, requiring at least 5 reads for ONT and 20 reads for OGM. In order to account for
the lower resolution of OGM, we calculated the average unmethylation signals in non-
overlapping 1 kbp genomic windows. We compared the entire ONT methylome (all CpG sites)
as well as a reduced ONT methylome (TCGA motif) to the reduced representation OGM
signals (Figure. 4.B). Our analysis revealed a higher unmethylation signal in ONT compared
to OGM. Interestingly, the difference persisted, and even slightly increased when we
specifically analyzed TCGA-embedded CpG sites in ONT data. This suggests a potential
underestimation of unmethylation by OGM, likely attributable to its lower optical resolution,
rather than to the reduced representation approach. Consequently, multiple closely spaced
TCGA sites might be erroneously merged into a single unit by OGM, leading to an
underestimation of the overall unmethylation signal. Plots showing distances between
adjacent TCGA sites, the number of TCGA sites in 1 kbp windows, and this number vs. the
number of CpG sites in the same bins, are presented in Figure S7. Figure 4.C shows that
despite absolute intensity differences, similar trends are seen in the normalized unmethylation
profile generated along genes when grouped by their gene expression score in ccRCC tumors
29 Both methods display the higher unmethylation signal around the transcription start site

(TSS), which increases with gene expression. In contrast, the level in gene bodies is much
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lower and more similar among all expression levels. Un-normalized OGM and ONT levels of
the tumor and normal adjacent tissue along genes are presented in Figure S8. The resolution
and methylation representation differences become more apparent when zooming in to
smaller regions of the genome. Fig 4.D shows the unmethylation profile of a ~400 kbp region
in chromosome 22g11.21. Three representative examples for methylation comparison are
marked in red boxes that contain variable TCGA content (shown in blue in the lower panel).
The leftmost box showcases a region lacking any TCGA sites in the reference genome.
Consequently, the ONT plot exhibits a high unmethylation signal (indicating unmethylated
CpGs), while the OGM profile shows no signal. The middle box highlights two adjacent bins
with relatively high TCGA density, resulting in signal peaks by both methods. The rightmost
box depicts a region lacking a reference TCGA site, yet the OGM profile displays a peak.
Intriguingly, investigation of the corresponding ONT sequence revealed an A-to-G single
nucleotide polymorphism (SNP), creating a new TCGA site recognizable by the M.Taq|
enzyme, thus explaining the observed OGM signal.
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Figure 4. Unmethylation analysis. A. Fluorescent labeling scheme for unmodified CpGs embedded in
TCGA motif for OGM. B. Average global unmethylation levels of a ccRCC tumor, as detected by ONT
in all CpG sites, by ONT when restricted to TCGA-embedded CpG sites only, and by OGM (inherently
marking only TCGA sites). C. ONT and OGM unmethylation signal, each normalized between 0 and 1,
of the ccRCC tumor along aggregated genes. Genes were grouped based on their expression in ccRCC

tumors. D. Unmethylation profiles of the ccRCC tumor by ONT and OGM along a region in chromosome
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22, and the corresponding density of TCGA motif in the hg38 reference. Three red boxes mark three
regions that differ in TCGA content (all regions contain CpG sites): 1: no TCGAs, there is a peak in ONT
signal and not in OGM. 2: TCGAs are present, peaks in both methods. 3: no TCGAs in the reference,
peaks in both methods due to a SNP.

hydroxymethylation profiling

5-hydroxymethyl cytosine (5hmC), the first oxidation product of 5-methylcytosine, is another
important modification that was linked to gene regulation, development and disease,
predominantly cancer #°%°, 5hmC calling has recently been integrated to the ONT basecaller
Dorado (https://github.com/nanoporetech/dorado). Identification of modifications in ONT data
relies on machine learning technigues. This process involves training and validating models
using reference data encompassing the modification across diverse sequence contexts. Such
reference data can be obtained by identifying the modification using established methods or
in-situ approaches '’. However, obtaining high-quality, genome-wide reference data
specifically for 5hmC modifications remains a significant challenge due to its cost and
complexity. This, in turn, limits the ability to comprehensively train and assess the performance

of 5hmC callers for ONT data, and it hasn’'t been benchmarked and peer-reviewed to date.

Optical mapping of 5hmC was introduced several years ago based on the fluorescent labeling
of 5hmC residues 2!, 5hmC is directly labeled in a process that involves the enzymatic
attachment of an azide-modified glucose moiety from a synthetic cofactor °1°2 (UDP-6-N3-Glu)
to the hydroxyl group of 5-hmC, followed by a click reaction that connects a fluorophore-bound
alkyne to the azide-labeled 5-hmC %3%* (Fig 5.A). Fig. 5.B shows the average genome-wide
5hmC signal in the ccRCC tumor sample and the normal adjacent tissue, as was detected by
both methods. Consistent with published reports indicating a global reduction of 5hmC in
various cancers %556 hoth methods revealed a ~3-fold decrease in 5hmC levels in the tumor
compared to the adjacent normal tissue. This time, OGM detected higher absolute levels of
5hmC compared to ONT. As the labeling scheme used to tag 5hmC residues in the OGM
experiment has no false positives, and was validated with LC-MS/MS in previous work %, we
hypothesize that there is an underestimation of 5hmC calls by the ONT model due to
incomplete training sets and challenging sequence contexts. Albeit showing different absolute
levels of 5hmC, the modulation of 5hmC level along gene bodies, as well as the increase in
signal as a function of gene expression, can be seen by both methods (Figure 5.C and Figure
S9.). The 5hmC profile generated by both methods and displayed in Figure 5.D reveals a

broadly correlated profile, but with distinct amplitude variations between the different datasets,
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in line with the average global levels. Figure 5.E. shows an example of a large repetitive
element containing a group of genes from the GAGE family, poorly represented in the hg38
reference (the entire array spans ~190 kbp in the reference, with a gap within these
coordinates) °’. Long molecules spanning the entire uncharacterized region in OGM aided in
assembling a contig of the full repetitive element, and the 5hmC tags on these molecules
provided the 5hmC profile along the unknown region. The panel also depicts a 5hmC-
containing single molecule (digitized) and the average 5hmC signal along the contig.
Epigenetic characterization of this region by ONT was not possible due to the shorter
molecules that could only penetrate several thousand bases into the ENCODE blacklist-
masked GAGE12 region 8.
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Figure 5. 5hmC analysis. A. Direct fluorescent labeling of 5hmC for OGM. B. Global 5hmC levels of a
ccRCC tumor and a normal adjacent tissue, as detected in OGM and ONT. C. OGM and ONT 5hmC
signal of a normal kidney tissue adjacent to a ccRCC tumor along aggregated genes. Genes are
grouped based on their expression in kidney tissues adjacent to ccRCC tumors. D. 5hmC profiles of a
ccRCC tumor and a normal adjacent tissue generated by OGM and ONT along a ~25 Mb region in
chromosome 3. E. A repetitive sequence element in chromosome X, poorly characterized in the hg38
reference (green strip; Blue lines on it indicate the genetic barcode labels) above it, a de novo
assembled OGM contig (gray) spanning the entire repeat array, indicating a deletion compared to hg38.
The region spans genes from the GAGE family, and the gapped region contains the gene GAGE12B.
Above it, a digitized single OGM molecule, with genetic barcode labels (blue) and 5hmC labels (red).

Above it, is the average 5hmC signal along the contig.

Discussion

BNG and ONT now offer tools that aim to unveil the complexity of aberrated genomes and
replace many cytogenetic workflows. Both companies have developed dedicated toolkits for
variant calling. To navigate this evolving landscape, this report offers an objective comparison
of the two methods, delving into the data types accessible with each technology, and the
capabilities of their respective analytical tools, recognizing these tools as crucial for generating
reports with clear clinical relevance. In this respect, BNG is more clinically oriented in the
cytogenetic space, with pipelines and reports that are aligned with clinical needs. BNG
additionally compiled a substantial reference database of healthy controls. This enables the

filtering of non-pathogenic findings.

At the karyotype level, the methods conform, and both are capable of providing reliable copy
number evaluations. Nevertheless, slight differences in copy number can be observed
(Figures 2.A and S1) and are attributed to the higher resolution of ONT. As for detecting
structural variations in variable sizes, a trade-off between resolution and read-length was
observed: both methods called a high percentage of mid-range SVs (1-10 Kbp). ONT, owing
to its single-base resolution, performed better in detecting small SVs. OGM on the other hand,
showed a clear advantage in detecting large SVs (larger than 10 kbp) with over 70% of large
SVs (including translocations) not detected by ONT. Despite the low information content of
OGM, the high coverage and N50 of these measurements increase the chance of detecting
challenging structural aberrations. ONT’s resolution advantage is also significant for reporting
the SVs' breakpoints at a single bp resolution. This gives access to single nucleotide
polymorphisms and short insertions and deletions that OGM is blind to. On the other hand,

large or complex SVs are challenging for ONT under the experimental N50 and coverage. This
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holds true also for rarer variants that are detected by OGM due to the high relative genome
coverage generated. Translocations and inversions, were not reported by neither of the ONT
SV callers Sniffles2, SVIM and CuteSV, while OGM called inversions, three intrachromosomal
translocations on chromosome 5 and one interchromosomal translocation between
chromosomes 3 and 5. Per dollar, the genomic coverage generated by OGM is higher than
that of ONT, opening a window to detect low-frequency variants and more resilience to sample
heterogeneity. However, in this experiment, we did not meet the recommended coverage for
running BNG’s “rare variant pipeline” (300x is recommended for high sensitivity to low
frequency variants *9), therefore we performed the pipelines of “De novo assembly” and
“variant annotation pipeline”, instead. The choice of analytical tools significantly influences the
insights extracted from data generated by both methods. While we employed recommended
tools optimized for our data type and coverage, we note that these tools have inherent
limitations that potentially extend beyond purely technological constraints 47661,

As for epigenetics, ONT can now call methylated CpGs from native DNA, together with
generation of genetic data, an obvious advantage compared to OGM. OGM users that seek
methylation information have to fluorescently tag the epigenetic modifications prior to data
acquisition. These additional labeling steps are not commercialized by BNG and are not
supported by the company. Methylation mapping extent is confined by the ability of the
methyltransferase enzyme selected for this procedure and the density of its recognition sites.
The enzyme M.Tag|l, described here, efficiently labels CpG sites nested within the TCGA motif
14 This provides a reduced representation of the unmethylome. These recognition sites make
up ~6% of the CpG sites in the human reference, with correlating methylation states in many
important regions of the genome #, but inherent reduced representation limitations apply, in
addition to constrains added by the difficulty to resolve adjacent labels due to optical resolution
(diffraction limit). Additionally, the indirect labeling done by methyltransferase enzymes,
pointing unmodified sites, can’t distinguish methylation from other cytosine modifications and
is subjected to labeling efficiency, thus is inferior to direct methylation calling. Our analysis
showed that global trends, such as correlation of signal with gene expression group, persisted,
while locus specific signals depend on TCGA representation. This comparison highlights
OGM’s limitations in methylation calling compared to ONT. However, to date, the picture for
5hmC presents a different scenario. In this case, the fluorescent labeling added to OGM, while
also external and not supported by BNG, directly labels 5hmC residues and not
complementary sites . Similarly to methylation calling, ONT enables 5hmC identification
together with canonical basecalling without additional experimental steps, but some
differences have to be considered. As the process of modification calling relies on machine

learning, model training is a crucial step for accurate identification of 5ShmC. This step requires
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comprehensive reference data covering the modification in all possible sequence contexts and
distinguishing it from other cytosine modifications to assure accurate calls. Unfortunately,
unlike for methylation, obtaining high-quality genome-wide reference data for 5hmcC is still
challenging and expensive, and might limit the comprehensiveness of the training data, thus
affecting the performance of 5hmC calling models. This might explain the lower 5hmC levels
called by ONT compared to OGM, seen in our comparison, and suggest that the ONT model
currently underestimates the density of 5hmC and misses many of the modified bases.

To conclude, selecting the most suitable platform hinges on a clear understanding of the data
requirements dictated by the clinical or research question. To this end, a thorough
understanding of the data generated by each platform, alongside the strengths and limitations
of their respective analytical toolkits is needed.
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