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Abstract

Alternative splicing is a key mechanism that shapes neuronal transcriptomes, helping to define neuronal
identity and modulate function. Here, we present an atlas of alternative splicing across the nervous
system of Caenorhabditis elegans. Our analysis identifies novel alternative splicing in key neuronal genes
such as unc-40/DCC and sax-3/ROBO. Globally, we delineate patterns of differential alternative splicing in
almost 2,000 genes, and estimate that a quarter of neuronal genes undergo differential splicing. We
introduce a web interface for examination of splicing patterns across neuron types. We explore the
relationship between neuron type and splicing patterns, and between splicing patterns and differential
gene expression. We identify RNA features that correlate with differential alternative splicing, and
describe the enrichment of microexons. Finally, we compute a splicing regulatory network that can be

used to generate hypotheses on the regulation and targets of alternative splicing in neurons.
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Introduction

Differential alternative splicing is a fundamental mechanism that elevates molecular diversity. Splicing
involves processing of pre-mRNAs by the spliceosome, resulting in removal of intronic sequences. Most
metazoan genes undergo splicing, and splicing is critical not only for producing mature mRNAs but also
for nuclear export and therefore translation. Alternative splicing (AS) occurs when a pre-mRNA is
processed in more than one way, resulting in removal of different introns and the consequent production
of mature mRNAs with different sequences. AS can alter the mRNA coding potential, resulting in
expression of different protein isoforms. AS can also affect the stability and other features of the mRNA
itself. The vast majority of human genes undergo AS, and defects in AS have been linked to various

diseases .

Differential AS occurs when AS is regulated spatially or temporally, so that different cells express
separate isoforms (differential AS is often referred to simply as ‘AS’; here, the terms are distinct.) In the
nervous system, where it is most prevalent %3, differential AS controls multiple aspects of neuron
identity %, including global AS switches during development >, isoform differences in neuron type
specification &7, axon specification, guidance, and synaptogenesis ®°, and has been linked to several
brain disorders ¥ %11, Differential AS has also been studied in cancer; indeed, some forms of cancer are
dependent on differential AS 2. AS, because it is not cell-specific, can be identified by methods such as
sequencing bulk cDNA. By contrast, identification of differential AS requires comparison of splicing
between different samples, and thus has been less well characterized. One theme that has emerged is
that differential AS is often not all-or-none, but rather is characterized by different ratios of splice

isoforms across time or space.

How is splicing regulated? For AS, cis-acting factors—sequences or structures within the pre-mRNA—can

regulate splicing diversity. The logic of cis regulation has been analyzed to identify features that give rise
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to AS 1314151617 Byt for differential AS, features within the nascent transcript are not sufficient, since
the transcript is the same in all cell types. There must also exist trans-acting factors that regulate ASin a
cell type-specific manner, for example by interacting with the spliceosome to promote or inhibit
particular splicing events . Several approaches have been developed to establish splicing regulatory
networks ¥ 1819.20,21, 22,23 4r tq integrate trans features within a framework developed on sequence
motifs 24 2526:27 Nevertheless, our understanding of the ‘splicing code’—the regulatory framework

involving cis and trans elements that determines differential AS across all transcripts—is incomplete.

The nematode Caenorhabditis elegans is a powerful model organism for studies of the nervous system
including AS 8. Although gene expression atlases of developing and aging C. elegans cells are now

available 2%30.31,32,33,34,35,36 '|ass has been done to systematically establish AS patterns 373839,

Here, we analyze data generated by the CeNGEN project to produce an atlas of AS for 55 single neuron
types in C. elegans. We develop analytical tools to make the data available to the research community.
We study differential AS between neuron types and show that key neuronal genes display broad patterns
of differential AS. Focusing on canonical AS events, we establish overall patterns of differential splicing.
Finally, we develop a principled computational approach to extract a regulatory network for differential

AS, and use the network to identify candidate factors that regulate differential alternative splicing.
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Results

Visualization and analysis of alternative exon usage

The CeNGEN project generated a data set covering 55 individual neuron types suitable for splicing
analysis. As described previously %%, a series of C. elegans strains were used, each with specific
promoters that uniquely label individual neuron types. For each neuron type, neurons were recovered by
Fluorescence Activated Cell Sorting (FACS) from L4 hermaphrodites, with multiple independent biological
replicates (average 3.8 replicate per neuron type). Libraries were prepared using an optimized
ribodepletion protocol ** and sequenced on the Illumina platform, an approach that yielded robust
coverage across the gene body (Fig. 1A). The C. elegans nervous system contains 118 canonical neuronal
types *2. Our recent analysis described 128 neuron types defined by their transcriptome 2. Our sorting
approach here focused on canonical types, with the exception of the subclasses ASEL and ASER, which
were sorted separately. Of the potential 119 types using this approach, 55 types, or 46%, are described
in this work. To analyze alternative splicing (AS) in this data set we used three parallel approaches: raw
data visualization, local quantification, and transcript-level quantification. We illustrate our approaches
on the gene ric-4, the homolog of SNAP25, which displays an alternative first exon expressed

differentially between neuron types >4,
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Figure 1: Overview of data collection and splicing analysis.

A: Schematic of the experimental procedure. B-D: Three methods to analyze alternative splicing, applied to the gene ric-
4/SNAP25 in the neurons NSM and PVM. B: Raw data visualization. Top track: gene model of ric-4 (along with non-coding RNAs
21ur-13262 and Y22F5A.10). Bottom tracks: Read coverage and junction counts. Numbers denote junction-spanning reads for
the splice junctions of interest. Red and blue boxes indicate alternative first exons. C: Local Splicing Variation (LSV) visualization.
Top: Gene model of ric-4, highlighting the alternative first exons corresponding to ric-4a (red) and ric-4b (blue). Bottom: Posterior
PSI estimates from MAJIQ displayed as violin plots. Numbers indicate the posterior expected PSI (summing to one in each
neuron, as the red and blue junctions are mutually exclusive). D: Transcript-level quantification. Top: Average transcript TPM
across all sequenced neurons. Middle: Relative transcript usage (in proportion to the total TPM for the gene, in each neuron), in
NSM and PVM. Bottom: Absolute transcript quantification, indicating the mean +/- standard deviation of TPM across samples
for each transcript in each neuron.

Raw data visualization is a direct approach for splicing analysis that depends on displaying raw read

counts in a genome browser. Direct visualization allows inspection of exon and splice usage in the full
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context of all the data for that gene. Raw data visualization does not use a statistical model and can be
applied to individual biological replicates, to pooled data for each individual neuron type, or to all
samples grouped together. Our browser is based on JBrowse2 #. For each individual biological replicate,

we generated a pair of browser tracks. The tracks underwent minimal filtering for clarity (see Methods).

First, a density plot indicates the number of reads aligned at a particular genomic position (normalized
by the total number of reads in that sample and multiplied by one million, yielding Counts Per Million).
Second, a splice junction track indicates the number of junction-spanning reads supporting that junction,
without any normalization. We computed similar tracks for each neuron type, using all biological
replicates for that type. Here, the density histogram represents the mean coverage across replicates at
each genomic position (for each base pair). In addition, the junction-spanning reads (see Methods) are
summed for each junction, to give a total junction usage track for that neuron. Finally, to allow rapid
examination of a genomic locus across many neurons, we generated an additional set of six “global”
tracks: the mean coverage (for each genomic position) across all neuron types, the minimum and
maximum coverage at each genomic position across all neuron types, and the sum, minimum, and
maximum of junction-spanning reads for each splice junction across neuron types. The mean exonic
coverage and sum of splice junction tracks enable convenient visualization of an “average” transcript
across neuron types. The minimum and maximum tracks facilitate the identification of rare transcripts: if
a single neuron type expresses a given exon, it will be apparent in the maximum coverage track; if a

single neuron does not express a given exon, it will not appear in the minimum track (and similarly for

splice junctions).

For example, for the gene ric-4 (Fig. 1B), we apply raw data visualization to the neuron types NSM and
PVM. Read coverage shows that the distal first exon (red box), corresponding to transcript ric-4a, is
preferentially expressed in NSM. PVM displays weaker preferential usage of the proximal first exon (blue

box), corresponding to transcript ric-4b. In addition, NSM displays 292 junction-spanning reads
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connecting the distal first exon, and only 18 junction-spanning reads connecting the proximal first exon.
By contrast, in PVM there are 124 junction-spanning reads connecting the distal first exon, and 283
junction-spanning reads connecting the proximal first exon. This analysis indicates that ric-4 undergoes

differential alternative splicing.

Although inspecting raw data on the genome browser is useful for visualizing differential AS at the single-
gene level, additional methods are needed for genome-wide analysis. For this purpose, we quantified
splice junction usage with the software package MAJIQ *. MAJIQ defines Local Splicing Variation (LSV) as
splice junctions (SJ) starting from the same source exon or ending in the same target exon. For each LSV,
the relative usage of each possible SJ is quantified, and a Percent Selected Index (PSl) is estimated from a
Bayesian model. For example, an exon skipping/inclusion event (known as a ‘cassette exon’) is
represented by MAJIQ as two LSVs: one upstream LSV, containing two splice junctions (one SJ that links
the upstream exon to the cassette exon, and one SJ that skips the cassette to link to the downstream
exon), and a second LSV, also with two SJs (one SJ from the upstream exon into the downstream exon,
the other SJ from the cassette exon into the downstream exon). Similarly, an alternative first exon is
represented in MAJIQ by a single LSV, immediately downstream of the alternative exons. Quantitative
data generated using MAGIQ can be represented using VOILA, “6, which represents the PSI of junctions

belonging to an LSV using violin plots.

In the case of ric-4, the alternative first exon is quantified as a single LSV containing two splice junctions,
and quantification demonstrates the preferential use of the ric-4a exon in NSM and the ric-4b exon in
PVM (Fig. 1C). We use the quantitative data generated by MAJIQ to analyze global splicing patterns

across genes and neuron types in the following sections.

Besides quantifying individual splicing events, it is also useful to visualize DAS in the context of complete

transcripts. To address this question, we used the software package StringTie in quantification mode to
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analyze transcript levels in individual neuron types #’. Given a set of annotated transcripts (we used all
transcripts annotated in WormBase), StringTie uses a maximum flow computational approach to
estimate the expression level of each transcript. Thus, StringTie output represents not only the relative
abundance of each transcript in each neuron type, but also their absolute levels (in Transcript Per Million

or TPM units).

For example, in the case of ric-4 (Fig. 1D), StringTie analysis compares the levels of the transcripts ric-4a
and ric-4b in NSM and PVM. First, the transcript ric-4a is more common than ric-4b when averaging
across all neurons. Second, examining the relative transcript usage, 90% of the ric-4 expression in NSM is
attributed to ric-4a, whereas 80% of the ric-4 expression in PVM is attributed to ric-4b. Finally, comparing
the absolute transcript expression values, ric-4a is expressed at 40 TPM in NSM and 60 TPM in PVM,

whereas ric-4b is expressed at 4 TPM in NSM and 212 TPM in PVM.

Next, we asked if our analysis aligns with previously described alternative exon usage in C. elegans
neurons. A two-color splicing reporter revealed that elp-1/EMAP undergoes differential alternative
splicing, with exon 5 skipped in touch neurons *, Similarly, we observe exon 5 skipping in the AVM touch
neurons (Fig. 2A). In another case, a cassette exon (11.5) in daf-2/IGFR was reported to undergo
differential alternative splicing in many neuron classes *° (Fig. 2B). Using local quantification (Fig. 2C), we
also find differential alternative splicing at exon 11.5, with the splicing patterns we observe in good
agreement with previous results. A similar pattern is seen by visual exploration of the raw data (Fig. 2D,
red box). It is interesting to observe that despite relatively clear data for exon 11.5, our transcript-level
analysis shows that the transcript known to contain this exon (daf-2c) is only modestly enriched in
individual neuron types, likely owing to the relatively large number of alternative transcripts of the daf-2
gene *® (Fig. 2E). Together, these results indicate that our data are consistent with existing in vivo

observations at single-neuron type resolution.
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Figure 2: Comparison to previous splicing data.

A: Exon 5 skipping in elp-1 in AVM neuron. Left: Raw data visualization in the neuron AVM. Right: Local quantification of the two
LSVs corresponding to the cassette exon. B-D: Cassette exon 11.5 in daf-2 in individual neuron types. B: daf-2 gene structure. The
cassette exon (red box) is unique to the gene model for daf-2c. C: Local quantification of the upstream (top) and downstream
(middle) events flanking the cassette exon 11.5. Left: Schematic representation of splice junctions constituting the local event.
Right: Splice junction quantifications in 16 neuron types. Bottom: Inclusion pattern of exon 11.5 from Tomioka et al. (2016), and
agreement with our data. D: Raw data visualization of exon 11.5 alternative splicing in 5 neuron types. Top: Gene model.
Bottom: Exonic and junction-spanning counts. Right: Exon 11.5 inclusion pattern from Tomioka et al. (2016) in the same neurons.
E: Transcript quantification of daf-2 in the same neurons as C. The transcripts daf-2a, d, e, and f, (other) which do not include
exon 11.5, were grouped together. Right: Exon 11.5 inclusion pattern from Tomioka et al. (2016).

To facilitate use by the scientific community, these data and analysis methods are available via a web
portal at www.splicing.cengen.org. For raw data visualization, the user can select a gene or genomic
region, and also choose the data to display: All individual samples are available, as well as the averaged
data for each neuron type and the global data showing mean, maximum and minimum. For each data
set displayed, the user can select whether to display the read counts, the exon-spanning reads, or both.
In addition, due to our use of interoperable formats, our tracks can be imported to other genome
browsers (such as WormBase or UCSC), and tracks generated by other projects can be displayed in our
genome browser, allowing simultaneous examination of data from separate sources. For local
guantification using MAJIQ, we display the results using VOILA. Finally, for transcript-level quantification,
we developed a custom web application to display the results. For a single gene, the application displays
both relative transcript usage and absolute transcript expression for all annotated transcripts. Multiple
genes can be represented as a heatmap of transcript expression. These three tools offer users
complementary levels of interpretation: quantification of transcript usage reflects the underlying biology
of RNA processing. However, expression levels of complete transcripts are difficult to infer from short-
read data and may be inaccurate (see Discussion). By contrast, local LSV-level quantification more
directly reflects our measurements and is thus likely more accurate. However, for complex alternative
transcripts, interpretation can be complicated by the need to consider multiple splice junctions
simultaneously. Finally, the browser view does not offer rigorous quantification but can be used to

examine the full context of a genomic region, including constitutive exons and non-coding RNAs.
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Axon guidance receptor gene unc-40/DCC is differentially spliced in specific neurons

Most gene models of splicing in C. elegans were obtained from sequencing bulk samples. However, if
differential alternative splicing occurs in only a small number of cells, these rare splicing patterns might
not be detected. To test this idea, we used manual inspection of raw data visualizations to examine well-

studied neuronal genes.

We found that while a single transcript is annotated for the gene unc-40/DCC *3, our analysis detected
two novel exons, exon 8.5 and exon 14.5 (Fig. 3A). In particular, exon 14.5 is preferentially included in
AVM, whereas other neuron types (e.g. AVL, AWA) exclusively express the canonical splice variant,
skipping exon 14.5 (Fig. 3B). Using RT-PCR, we validated the presence of the inclusion transcripts in cDNA
extracted from whole animals, though at a lower level than the skipped transcript (Fig. 3C). Interestingly,
the additional exons do not disrupt the open reading frame, and lead to insertions between known
domains of the UNC-40 protein (Fig. 3D). To determine whether the inclusion of exon 14.5 represents a
transcript unique to C. elegans, we examined the locus of the orthologs of unc-40 in the closely related
nematodes Caenorhabditis briggsae and Caenorhabditis brenneri (Fig. 3E), and examined bulk RNA-Seq
data for those species available from Wormbase **. We found that C. briggsae displays four annotated
transcripts, with cassette exons corresponding to exons 8.5 and 14.5 of C. elegans. On the other hand, C.
brenneri presents evidence of unannotated exons corresponding to exons 8.5 and 14.5. This finding
suggests that other nematode species express a similar exon. The additional exons in Cbr-UNC-40 and
Cbn-UNC-40 encode a protein sequences with high identity with exons 8.5 and 14.5 of Cel-UNC-40 (Fig.
3F). Thus, C. elegans unc-40 has previously unannotated alternative transcripts, with conserved
sequence and potential functional impact. In general, our analysis of splicing in individual neuron types

can identify novel mRNA sequences.
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Figure 3: Detection of novel cassette exon in unc-40

A: Alternative expression of a novel cassette exon in unc-40. Top: Schematic of the gene structure, showing novel alternative
exons (green) and the annotated constitutive exons (grey). Bottom: Genome browser representation near exon 14.5, in the
maximum track, the AVM track, and in pan neuronal samples. B: Local quantification of exon 14.5 inclusion. C: Validation by RT-
PCR of the novel exons in cDNA from whole animals. Exon-specific primers were used to amplify the indicated segments. Each
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pair represents independent amplifications. D: Protein structure of UNC-40, indicating the cassette exons vs known protein
domains. SP: signal peptide, Ig: immunoglobulin domain, Fn: fibronectin domain, P: conserved intracellular motifs. E: Structure
of the unc-40 orthologous genes in Caenorhabditis briggsae (Cbr-unc-40) and C. brenneri (Cbn-unc-40); red arrowheads denote
orthologs of exon 8.5 and 14.5. Top: Annotated gene models (unannotated features in green). Bottom: RNA-Seq data. F:
Alignment of the protein sequences of C. elegans UNC-40,C. briggsae UNC-40, and C. brenneri UNC-40 around exon 14.5
orthologs (top) and around exon 8.5 orthologs (bottom).

sax-3/Robo and the homeobox factor ceh-8 have novel alternative first exons

We also identified novel splice variants in the Slit receptor gene sax-3/ROBO. The sax-3 annotation
shows two transcripts, differing by 13 bp in exon 11 length (Fig. 4A) and 29 bp in the length of the
annotated 5’ UTR (not shown in figure for clarity). We found a novel alternative splice site that shortens
exon 9 by 15 bp. In addition, we detected a novel alternative first exon 5.5 (positioned between
annotated exons 5 and 6). LSV quantification shows that the annotated alternative splice site in exon 11
is not used in the neurons sequenced here. By contrast, the novel alternative splice site in exon 9 and the
alternative first exon 5.5 are both differentially expressed in broad subsets of neuron types in our data
set (Fig. 4B, see AVL and AVM as examples). We confirmed the in vivo expression of both exon 9 splice
sites and both alternative first exons by RT-PCR (Fig. 4C). Both of these novel events affect coding
potential: The alternative splice site in exon 9 alters the amino acid sequence of the intracellular domain
of SAX-3, whereas the alternative first exon 5.5 generates a short isoform (SAX-3S) lacking four of the five
Ig domains, but encoding its own signal peptide in frame with the remainder of the protein (Fig. 4D). We
examined the locus of the C. briggsae and C. brenneri orthologs, and find a remarkable conservation of
the gene structure, including the novel exon 5.5 (Fig. 4E). These orthologous exons 5.5 encode an

identical amino acid sequence (Fig. 4F).
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Figure 4: Detection of novel alternative first exons in sax-3 and ceh-8.

A: Structure of the gene sax-3/ROBO. The novel exon 5.5 and the novel alternative splice site at the end of exon 9 are
represented in green, the annotated alternative splice site at the start of exon 11 is represented in orange. Bottom: Enlarged 3’
end of the locus. B: Local quantification of LSVs for the novel alternative first exon 5.5 (left), the novel alternative 5’ splice site at
the end of exon 9 (middle), and the annotated alternative 3’ splice site at the start of exon 11 (right). Quantifications are
displayed for the representative neurons AVL and AVM. C: Validation by RT-PCR of the novel exons in cDNA from whole animals.
Exon-specific primers were used to amplify the indicated segments. Each pair represents independent amplifications. D: Protein
structure of SAX-3, indicating the impact of the novel splice variants. SP: signal peptide, Ig: immunoglobulin domain, Fn:
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fibronectin domain. Top: Overall structure of annotated isoform SAX-3A, showing position of novel splice site in exon 9. Bottom:
Overall structure of the novel short isoform starting at novel exon 5.5 (SAX-3S), showing position of novel splice site in exon 9. E:
Structure of the orthologs of sax-3 inc C. briggsae (Cbr-sax-3) and C. brenneri (Cbn-sax-3). Top: Gene models. Bottom: RNA-Seq
data. Red arrowheads denote the orthologs of exon 5.5. F: Protein sequence alignment of the short isoforms of SAX-3 orthologs
from C. elegans, C. briggsae, and C. brenneri. G: Alternative expression of the novel first exon 3.5 in ceh-8. Raw data visualization
in neuron RIA, with novel alternative first exon 3.5 (green) vs annotated transcript (grey). H: Validation by RT-PCR of the novel
exons in cDNA from whole animals. Exon-specific primers were used to amplify the indicated segments. Each pair represents
independent amplifications. I: Structure of the annotated protein isoform CEH-8A and the novel isoform starting at N-terminal
alternative exon 3.5 CEH-8S.

Finally, we identified a novel alternative first exon in the homeobox transcription factor ceh-8 (Fig. 4G,
H). Interestingly, this transcript would lead to translation of a protein with a truncated homeobox
domain (Fig. 4l). The ceh-8 locus is not well conserved in C. briggsae and C. brenneri, precluding direct
comparison of alternative transcripts. Together, these examples demonstrate that our approach can
detect novel alternative first exons. Such events also contribute to transcript diversity, but are generated
by different biological mechanisms than other forms of alternative splicing. While most alternative
splicing is performed by the spliceosome, alternative first exons are the result of alternative promoter

usage.

Global detection of novel splicing events across neuron types

Given these examples of novel isoform detection, we sought to identify candidate novel splice junctions
across our data set. We used STAR to generate a preliminary list of 1,026,619 unannotated splice
junctions 0. We filtered these junctions using multiple criteria to focus on well-supported novel
junctions, for example by requiring high expression relative to neighbor genes (see Methods). We also
leveraged the biological replicates in our data set, requiring novel splice junctions to be present in at
least half the samples from a single neuron type, minimum of two. This analysis yielded 1,722 novel
junctions (Table S2). Attaching novel junctions to annotated genes is a transcript discovery task which is
challenging using short reads, and current tools do not reach high accuracy #’. However, each novel
junction must belong to a gene in its immediate neighborhood; we provide a list of all neighbor genes
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(Table S2). We also sought to estimate the number of genes containing novel splicing events, without
precise knowledge of which gene each junction belongs to. As multiple events may belong to the same
novel transcript, we expect the number of affected genes to be less than the number of novel splice
junctions. For each junction, we focused on the set of neighbor genes and randomly selected one gene
per junction neighborhood. We repeated the procedure 1,000 times and found an average of 1,361
genes containing at least one novel junction. Overall, this analysis indicates that many novel splice sites

and mRNA isoforms remain to be described, and provides a candidate list for future study.

Detection of differential AS between neuron types identifies genes associated with neuronal
excitability

Our analysis of known differential alternative splicing events (ric-4, elp-1, daf-2; Figs. 1,2) and
identification of novel events (unc-40, sax-3, ceh-8; Figs. 3,4) demonstrate that our data set can be used
to identify instances of differential alternative splicing (DAS) in the C. elegans nervous system. To identify
candidate DAS events across all genes and neuron types, we quantified differential event usage using
MAJIQ %, Specifically, within its Local Splicing Variation framework, MAJIQ models the relative usage of
splice junctions that share a common source or target exon. Across the 55 neuron types in our data set,
we detected 1,940 genes displaying DAS. To validate these findings, we compared the genes detected
here to a list of 542 genes compiled from the literature (Table S3, see Methods) and found a large
overlap of 461 genes (85%; Fig. 5A). This comparison indicates that the novel instances of DAS we detect

are indeed strong candidates.
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A: Euler plot of the number of genes presenting differential alternative splicing (DAS) in this analysis, and from a literature
review (Table S2). B: Proportion of genes DAS within families of neuronally significant genes 52. The number of genes in the
family is indicated inside each bar. Hypergeometric test: * Significantly enriched, # significantly depleted. C: Proportion of DAS
genes per neuron pair, among genes co-expressed in the neurons of this pair. D: Number of DAS genes plotted against number of
differentially expressed genes for each neuron pair. E: Estimate of the number of genes in which DAS can be detected relative to
the number of neuron types sequenced.

Next, we sought to explore the function of candidate DAS genes. Gene Ontology analysis ! showed
enrichment of terms related to neuronal function (Fig. S1A). To investigate the specific role of DAS, we
examined major neuronal functional gene classes *2. We found that the prevalence of DAS is highly
variable by gene class. For example, the majority of potassium channels and voltage-gated calcium
channels undergo differential alternative splicing, whereas ribosome subunits and neuropeptide-
encoding genes tend to be similarly spliced across neuron types (Fig. 5B). This analysis suggests that DAS
is preferentially used to fine tune neuronal excitability, enhancing functional diversity among different

neuronal types.

Global patterns and prevalence of DAS

With a list of DAS events in hand (Fig. 5A), we examined global patterns of DAS across neuron types. We
performed pairwise comparisons of all neuron types in our data set, and assessed the proportion of DAS
genes among the genes co-expressed in both neurons of the pair (Fig. 5C). Clustering this data revealed
that that a group of 10 ciliated sensory neurons (ASK, ADF, ASG, ASEL, ASER, AFD, BAG, AWA, AlY, AWB)
have similar global patterns of AS. In addition, some pairs of neurons with similar functions have similar
splicing profiles (DA-VB, DD-VD, AVM-PVM, AVH-AVK) (Fig. S1B). Interestingly, another group of 6
neurons comprising 15, LUA, OLQ, OLL, PHA, and PVC also display similar AS profiles (Fig. 5C), even
though they do not share known functional or morphological characteristics. These data suggest that at
least in some cases, neurons with similar characteristics adopt similar patterns of DAS, presumably to

support specific functional specialization.
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Besides DAS, gene expression patterns are highly correlated with neuron type. In fact, gene expression
patterns alone can be used to group single cells into clusters corresponding to individual neuron types 32.
Given the very strong association between gene expression and neuron type, we wondered if DAS
patterns and gene expression patterns are related. In this case, both gene expression and alternative
splicing might encode the same information reflecting the underlying structure of neuronal cell types. To
test this model, we compared (for each neuron pair) the most strongly differentially expressed (DE)
genes to the most strongly DAS genes, and found limited overlap (Fig. S1C). In addition, for each pair of
neurons, we compared the number of DE genes to the number of DAS genes and found only a weak
correlation (Fig. 5D). Together, this analysis indicates that DAS and gene expression are two largely
independent dimensions of neuron type identity >3.

We then aimed to determine the number of DAS genes in the entire nervous system. As our dataset
covers 55 neuron types out of 119 classes (118 canonical classes, plus ASEL/ASER), we used a
downsampling approach to estimate the number of detected DAS genes depending on the number of
neuron types sequenced (Fig. 5E). By projection, we estimate that 3,192 genes are differentially
alternatively spliced within the nervous system (see Methods), corresponding to about one quarter of all

genes expressed in neurons.

RNA features of alternative splicing

Alternative splicing can take many forms, with implications for both regulatory mechanisms and
biological effects. To assess the representation of different alternative splice types in the C. elegans
nervous system, we grouped events into canonical event types (Fig. 6A). We found that alternative splice
sites, cassette exons, and alternative first exons are well represented in the genome. By contrast,
alternative last exons, intron retention, and coordinated multiple exon skipping are relatively rare. We

assessed the prevalence of differential alternative splicing within each event type and found that DAS is
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well-represented among all forms of alternative splicing. This analysis indicates that neurons use all

available mechanisms to increase their molecular diversity.
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Figure 6: Landscape of alternative splicing event types.
A: Number of events by types. Bar length indicates the number of canonical events of each type predicted from genome
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events with DAS in at least one pair of neurons; light grey indicates events in genes that could not be measured in our neuronal
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dataset. B: Distribution (density plot) of GC content, conservation score, and length in splicing events. DAS events (red) vs and
non-DAS events (grey). Features with a statistically significant difference between DAS and non-DAS events are represented here.
The vertical dashed lines represent the median of each group. C: Histogram of cassette exon lengths, separating DAS exons (red)
and non-DAS exons (grey). The vertical dashed bar delimits microexons. D: Each dot represents one exon. The vertical axis shows
the proportion of neuron pairs where the exon is differentially AS between the two neuron types (proportion calculated among
the neuron pairs in which the exon-containing gene is expressed in both neurons of the pair). ** p < 0.01 (Wilcoxon test).

Previous work has found a role of sequence features in distinguishing AS events from constitutive
splicing 1> 1%1>16.17 Do sequence features also affect differential AS? To address this question, we
examined the association of broad sequence features with differential AS. For each event type, we
delineated the genomic regions composing the event locus. For example, for cassette exons, we
considered the alternative exon as well as the two flanking introns. For each of these genomic regions,
we measured its length, GC content, and conservation score. We compared the resulting values between
differentially spliced events vs. events where we did not detect differential AS. In total, this resulted in 72
comparisons (Table S4), of which 5 were statistically significant (Fig. 6B, Table 1). Strikingly, four of the
significant differences were for alternative first exons. Alternative first exons that display differential AS
between neuron types have longer introns, a less conserved distal intron, and a longer distal exon.
Alternative first exons are features of transcriptional regulation rather than post-transcriptional splicing.
These data indicate that sequence features surrounding first exons may be highly variable to support

fine-tuning expression of alternative isoforms at the level of transcription.

Table 1: Sequence features presenting a statistically significant difference between dAS events and non-dAS events.

Event type Feature Median when dAS  Median when not dAS  p-value

Alt. first exon Distal exon length 124 bp 100 bp 1.20E-05  ***
Alt. first exon Distal intron length 4,468 bp 3,340 bp 4.80E-12  ***
Alt. first exon Distal intron conservation 0.407 0.456 0.035 *
Alt. first exon Proximal intron length 166 bp 112 bp 8.30E-13  ***
Cassette exon Exon length 80 bp 114 bp 7.00E-05  ***
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By contrast, cassette exons presenting differential AS in the nervous system appeared shorter on
average. This observation is reminiscent of recent findings that microexons, with a length of 27 bp or
less, are differentially spliced between C. elegans tissues *” and frequently display neuron-specific
inclusion >4, We thus focused more closely on the differential splicing of microexons and found that, of
the 73 microexons measurable in our dataset, 47 (64%) displayed differential splicing in the nervous
system, as opposed to 51% of the larger alternative exons (Fig. 6C) (p = 0.032). Furthermore, we asked if
microexons showed more differential AS than other exons (Fig. 6D). Indeed, microexons were on average

DAS in 6.6% of the neuron pairs tested, as opposed to 4.7% for longer exons (p = 0.0047).

Overall, our analysis indicates that differential alternative splicing is associated with specific features of
the pre-mRNA. For alternative first exons, which are associated with an increase in intron and exon
length, these features likely include transcriptional start sites. Cassette exons and microexons displaying
DAS, by contrast, tend to be shorter than constitutive exons. In this case, shortness may be a result of

selection for protein integrity, with only minor insertions or deletions well-tolerated.

Splicing Regulatory Network

Differential alternative splicing between neuron types is likely regulated in part by differential expression
of splice factor (SF) genes. Our data enables the concurrent measurement of DAS and of gene expression
in the same samples across 55 neuron types. We reasoned that these measurements might enable
elucidation of a splicing regulatory network that links splice factor expression to DAS. To perform this
analysis, we first sought a single measurement that could quantify DAS across genes and neuron types.
For this purpose, we restricted our analysis to cassette exons—exons which are either included or
excluded from the final transcript (e.g., unc-40 cassette exon in Fig. 3). For each cassette exon, we

computed a Percent Spliced-In measure (PSI) which captures the extent to which the exon is included in
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each individual neuron type (see Methods). We also compiled a list of putative SF genes (Table S5) and
quantified their expression. Our list includes well-studied splice factors, as well as genes with only a
speculative role in splicing regulation. Since SF genes themselves are heavily AS, we separately quantified
expression of each SF transcript. These two measurements—PSI and SF expression—constitute the input

data for our model.

We constructed a covariance matrix which assesses, for each cassette exon PSI and each SF transcript,
how they covary over all 55 neuronal types in our data. In principle, the inverse of this covariance matrix
is a precision matrix corresponding to the splicing regulatory network. However, the covariance matrix
cannot be directly inverted due to the underdetermined system of equations that comprises many more
covariates (SFs and PSls) than observations (neuron samples). Thus, we sought to estimate the precision

matrix (Fig. 7A).
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Figure 7: Splicing Regulatory Network.

A: Schematic representation of the approach. B: Comparison of metrics for selected parameters. The four metrics are
represented across all methods. The Frobenius loss was inverted such that for all metrics, higher is better. The arrow represents
the selected “best” method. C: The four metrics plotted against sparsity for a range of penalties. The grey line highlights the
selected penalty of 0.25, corresponding to a sparsity of 97%. The red triangles correspond to values significantly different from
the permuted data. D, E: Subnetworks centered on exon 5 of C07A12.7 (D) and exon 11.5 of daf-2 (E). Blue diamond: cassette
exon, red ellipse: putative splice factor displaying a non-zero weight in the network, green ellipse: splice factor identified from
the literature to regulate this exon.

To select our method of precision matrix estimation, and optimize the hyperparameters, we used 5-fold
cross-validation and computed four metrics (Fig. S2A, see Methods). First, the Frobenius norm loss
reflects the ability of the method to capture correlations. Second, the Fraction Explained Variance (FEV)
of the PSI reconstruction using regression coefficients °° reflects the ability to capture relationships
between SF expression and PSI. Third, we compiled a ground truth dataset of splicing regulatory
interactions for comparison to the network structure. Finally, we used a scale-free criterion on the
structure of the network 6. Using these metrics, we compared the following combinations of
approaches. For precision matrix estimation, we considered the glasso 7, QUIC *8, CLIME >, and SCIO
algorithms. For input to these algorithms, we considered either the measured PSI or reconstructed
counts. For normalizing the range of these inputs, we considered applying a Z-score or nonparanormal
transformation ®%. Lastly, to handle missing values we considered k-nearest neighbors interpolation or
median interpolation. Based on our evaluation metrics in a cross-validation, we chose to use the
following methods: glasso as the precision matrix estimator algorithm, PSI as input, nonparanormal
truncated transformation, and k-nearest neighbors imputation (Fig. 7B, arrow), selecting 4-nearest

neighbors (Fig. S2B).

We then used all the training and validation data, together with the selected methods, to train a final
model. We selected an optimal penalty for the glasso algorithm and assessed the model’s performance
on the as yet unseen test data using a permutation test approach. First, we permuted the model by

randomizing the input cassette exon quantifications between samples in the training and validation data.
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For each permutated dataset, we tested a range of glasso penalty values. We then recalculated the
model based on these unstructured data. We compared the performance metrics of these randomized
models to that of the model trained on the unaltered data, at each glasso penalty value. For most
metrics, the model fails to appropriately reconstruct the validation set when the input data is
unstructured, indicating that the model captures relevant relationships (Fig. S2C). We also calculated a
permutation test p-value that reflects the relevance of the model for each metric and selected a glasso
penalty value that optimized performance (Fig. 7C). Our final model establishes a virtual network relating

putative splice factors to splicing of cassette exons.

One application of our splicing network is discovery of potential splice factors. To this end, we examined
the putative splice factors with the most central position in the network, ordered by number of
connections to cassette exons. We found that many of the most central genes are indeed splice factors
known to act in C. elegans neurons (Table 2). For example, mbl-1/Muscleblind (Norris et al. 2017), the
hnRNP hrpa-1 (Tomioka et al. 2016), and the CELF family gene unc-75 (Kuroyanagi et al. 2013a) are all
known splice factors in C. elegans neurons. Our analysis indicates that these key factors likely regulate
differential alternative splicing across genes and neuron types, at least of cassette exons. Other central
nodes are genes not previously known to function in neuronal splicing. For example, we identified the
CELF family gene etr-1 as a key splice factor. etr-1 has known roles as a splice factor in muscle (Milne and
Hodgkin 1999; Ochs et al. 2022), and our recent data from single-cell RNA-Seq suggests expression in a
restricted set of neurons (Taylor et al. 2021). Together, these data suggest that etr-1 might play a novel
role in regulating neuronal DAS, similar to its known role in muscle. Our analysis also placed the
transcription factor sma-9 and melo-1/periphilin 1 in a central position. Neither sma-9 nor melo-1 has an
established role in splicing regulation. Thus, central nodes in our network, besides known splice factors,

may indicate novel regulators of alternative splicing in neurons.
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Table 2: Top 20 putative splice factors with highest network degree.

WBGene00019347 mbl-1 150 Norris et al., 2017; Thompson et al., 2019

WBGene00001340 etr-1 141

WBGene00004862 sma-9 76

WBGene00001999  hrpa-1 75 Tomioka et al., 2016

WBGene00013307 melo-1 74

WBGene00001484 fox-1 68 Kuroyanagi et al., 2006; Kuroyanagi et al., 2013; Tan and Fraser 2017

WBGene00006807 unc-75 67 Norris et al., 2014; Tomioka et al., 2016; Kuroyanagi et al., 2013

WBGene00011279 asd-1 60 Kuroyanagi et al., 2006; Kuroyanagi et al., 2013; Tan and Fraser 2017; Tomioka et
al., 2016

WBGene00006423 asd-2 57

WBGene00012769 hrpu-1 53

WBGene00004207 ptb-1 52 Tomioka et al., 2016

WBGene00017816  hrpk-1 51

WBGene00008362 cfim-2 46

WBGene00004698 rsp-1 44

WBGene00006321 sup-12 44

WBGene00003903 pab-2 44

WBGene00004702 rsp-5 43

WBGene00001368 exc-7 42 Norris et al., 2014; Tomioka et al., 2016; Tan and Fraser, 2017; Norris et al., 2017;
Choudhary et al., 2022

WBGene00010908 imph-1 40

WBGene00007135 cdk-12 39
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A second application of our network is to analyze the regulation of specific cassette exons. We examined
the subnetwork of putative SFs connected to C07A12.7 exon 5 (Fig. 7D) and daf-2 exon 11.5 (Fig. 7E). For
C07A12.7, the known regulation by unc-75 (Kuroyanagi et al. 2013b) was correctly detected. In addition,
12 other putative interactors appeared in the network: acin-1, aly-2, C16C10.4, etr-1, exos-4.1, F59A7.8,
fubl-3, plrg-1, ruvb-2, sftb-2, sma-9, and uaf-2. Similarly, for daf-2 exon 11.5, we detected the known
regulation by ptb-1, rsp-2, and unc-75 (we did not detect regulation by asd-1, exc-7, hrpa-1, hrpf-1, and
rsp-8) %82, We obtained an additional 17 predicted interactors: C16C10.4, cpsf-1, etr-1, hrpk-1, Ism-7,
mbl-1, melo-1, moa-2, pab-1, pes-4, prpf-4, rnp-6, sma-9, snrp-40.1, sqd-1, srrt-1, and uaf-1. In addition,
we examined the subnetwork of putative splice factors connected to unc-16. We quantified 6 separate
events, corresponding to 4 exons (two pairs of events correspond to the same exon with differing
flanking introns) in the gene unc-16, represented as individual nodes in the subnetwork (Fig. S2D). We
identified the known regulation by unc-75 and exc-7, but did not detect regulation by prp-40 %% |n
addition, we found 58 network connections that do not correspond to known regulatory interactions.

Thus, our splicing network can generate detailed hypotheses about the regulation of specific splicing

events.

Discussion
In this study, we present an atlas of alternative splicing (AS) in the C. elegans nervous system, at single

neuron type resolution, across 55 neuron types. We develop a toolset of analytic approaches and a
website to facilitate their use by the research community. We show that our approach yields results in
agreement with existing data, and identifies multiple new examples of alternative splicing in genes with
key roles in neuronal function. Systematic quantification reveals broad patterns of differential AS,
particularly affecting ion channels, and helping to shape the landscape of neuronal mRNAs separately

from gene expression. We provide a broad description of the C. elegans neuronal alternative
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transcriptome, and observe that microexons are notably differentially alternatively spliced (DAS) in the
nervous system. Finally, we compute a splicing regulatory network to formulate new hypotheses on

splice factor regulation of differential alternative splicing, focused on cassette exons.

With the wider availability of single-cell RNA-Seq methods, large efforts have been made in the recent
years to establish atlases of gene expression in C. elegans 3% 31,3233, 34 35 However, these sequencing
approaches often present a strong 3’ end bias which make them unsuitable for AS analysis. A more
restricted set of studies have focused on AS. In C. elegans, these studies have been performed mostly at
the level of whole animals, or at the level of tissues 33839, Studies in other organisms have examined AS
at the tissue *° or single-cell level in the nervous system 3 6 67.6869.70 A featyre of our dataset is its
genome-wide scope and its high resolution analysis of AS across many individual neuronal types. Thus,

this analysis complements and extends previous studies.

Our analysis is broadly consistent with previous work, while identifying thousands of new features. Two
apparent discrepancies are our global counts of intron retention and alternative first exons. For intron
retention, we found relatively fewer instances than a parallel analysis of the same data (ref. Wolfe et al.
manuscript). In this case, our use of the tool SUPPA only measures intron retention relative to annotated
transcripts, and does not detect unannotated instances. For alternative first exons, we found more
instances than an analysis of a separate data set . In particular, our use of the tool SUPPA considers
multiple alternative first exons in the same gene as distinct events, rather than grouping them as a single
event. Overall, these discrepancies highlight the difficulty of computationally interpret alternative
splicing at genome scale. For this reason, we encourage inspection of the raw data visualization we

provide to guide investigation of splicing at any specific locus.

We used a computational approach to define a Splicing Regulatory network. A challenge in evaluating

the performance of such an approach is the availability of a ground truth. Although we used a compiled
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list of interactions between splice factors and splice events as one metric, some of these data are not
compiled from neurons, and even neuronal data are not at the resolution of individual neuron types,
making it difficult to assess our model using that approach alone. Instead, we adopted an innovative
approach to select the hyperparameters of the model using four separate criteria. In contrast, previous
attempts did not compare alternative approaches, and either did not justify the initial selection of
hyperparameters %22, or used a single criterion >2°, Our principled tuning method may be useful for
other models with limited access to ground truth. Overall, our final network captures many known
interactions between putative splice factors and splice events, and constitutes a powerful hypothesis

generation tool for discovery of novel splicing regulatory mechanisms.

Most previous effort to model the role of splice factors on DAS were performed with RNA-Seq data set
either derived from whole animals ?? or from tissue-specific samples % 20:2427. 71,72 The recent progress
in single-cell RNA-Seq has facilitated higher resolution studies 2. In particular, current progress in
single-cell full length sequencing offers great opportunities to extend this analysis 7> 747>, These single
cell approaches allow for more specificity and potentially allow for whole-transcript analysis, enabling

higher-quality atlases, and deeper analysis of splicing networks, in the near future.

Our approach has cataloged DAS in single neuron types for almost half the canonical neuron types in the
C. elegans nervous system. Our data indicate that alternative splicing affects the function of key neuronal
genes, and reveals substantial novel splicing diversity. These splicing events might control subtle, cell-
specific alterations of neuronal form and function that are not accessible by broader forms of genome
regulation. Thus, we expect studies of gene function to be informed by these data about differential
alternative splicing in specific neuron types. In addition, from the perspective of splicing itself, we use
the diversity we have discovered to model regulatory mechanisms that mediate the control of

differential alternative splicing.
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Methods

FACS isolation and sequencing

For single-cell type bulk RNA-Seq, C. elegans strains expressing a fluorescent protein or combination of
fluorescent proteins in a single neuron type were dissociated and sorted into Trizol as described
previously 324, RNA was extracted and sequencing libraries were prepared using the Ovation® SoLo®
RNA-Seq library preparation kit, yielding even coverage along the gene body, as described previously .
Libraries were sequenced with an lllumina HiSeq 2500 or NovaSeq 6000 (Table S1). The dataset covers
211 samples corresponding to 55 neuron types, and an additional 8 control samples from pan-neuronal
sorts. All neuron types were sequenced in 3-6 replicates, except ADF, M4 (1 replicate each), OLL and PVD

(2 replicates). Four samples failed quality control and were excluded from subsequent analyses.

Following trimming, the RNA-Seq reads were aligned to the C. elegans genome (Wormbase WS289)

using STAR 2.7.7a *° with option i-—outFilterMatchNminOverLread 0.3 (all other settings left to

default). Deduplication was performed using UMI-tools 7. The pipeline code is available at:

https://github.com/cengenproject/bulk align.

RT-PCR

For RT-PCR, mixed stage N2 C. elegans were grown following standard methods 7’. Plates were washed
with M9 buffer, and 100 pL of worm suspension was added to 400 pL of Trizol and immediately frozen in
liquid nitrogen. Samples were stored at -80°C. RNA extraction was performed with chloroform in Phase
Lock Gel Heavy tubes (QuantaBio), treated with DNase | (Thermo Fisher) and purified with the
Macherey-Nagel Nucleospin kit following manufacturer’s instructions. Finally, cDNA was synthetized

using the Affinity Script Multiple Temperature cDNA Synthesis kit (Agilent), following manufacturer’s
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instructions with oligo-dT primers. The resulting cDNA was stored at -20°C. RT-PCR reactions were

performed with Taq polymerase (New England Biolabs) with cDNA diluted to 10 ng/uL, following the

manufacturer’s protocol.

Table 3: Primers used for RT-PCR

target gene

unc-40

unc-40

unc-40

unc-40

unc-40

unc-40

sax-3

sax-3

sax-3

sax-3

sax-3

sax-3

sax-3

ceh-8

ceh-8

ceh-8

target region

exon 14

exon 14.5

exon 15

exon 8.5

exon 8

exon 9

exon 5

exon 6

exon 5.5

exon 9(shorter)-exon 10
exon 11

exon 9

exon 9(longer)-exon 10
exon 3

exon 3.5

exon 4-5

orientation (MRNA)
>>
<<
<<
>>
>>
<<
>>
<<
>>
>>
<<
>>
<<
>>
>>

<<

Discovery of novel splice junctions

primer name
0AW672
0AW673
0AW675
0AW683
0AW670
0AW674
0AWE91
0AW692
0AW690
0AW684
0AW685
0AW688
0AW689
0AW627
0AW629

0AW633

primer sequence
CCCATCTTACTGCTGCTGAC
TGTGCCATCGGTGTAGTTCT
TGATGCCTTCCAGTTCCTGT
CCAACATTTCTGGCGAGTCG
AGGCACGCGTTAATTGGTAC
GAGGCCTAACGGTGCAGA
CCCATCCCTGAGCCATGATA
GCTTATGTGTGCGCTGGAAT
GTCTTCAGCTTGACTTCGGC
TCCACCTCACACAGATCTTCA
CAAAAGCTCCGTCACTGACC
GTCGAACCAACAACCAGCTT
CGGATGAGTGAAGCTGAACATAG
TGCAAGAGAAACATTGGCTGC
TGGTGCAACTAATGGATGGTGT

TCATCCATGACCAAGATGGCA

STAR produces junction files, providing a list of splice junctions detected in the processed sample, along

with the measured count, annotation status, and other information *°. We only considered novel

junctions (not present in the annotation), that were flanked by canonical splice site motifs. In addition,

we only considered splice junctions supported by reads with 12 bp overhang on each side of the junction

(STAR’s default value fori--outSJfilterOverhangMini). We defined the neighborhood of a splice
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junction as the set of genes within 60 bp of either splice site, regardless of the strand. We then filtered

the junctions in each sample fulfilling the following criteria:

e Junction no longer than 1,000 bp

e At least 2 supporting reads (uniquely mapped, with at least 12 bp overhang following STAR
default) supporting that junction

e Not in the neighborhood of an rRNA gene

e |nthe neighborhood of a protein-coding gene, long-non-coding RNA, or pseudogene

e Has at least 20 % as many reads as the most highly detected splice junction from the neighbor

genes

After processing each sample with the above filters, we aggregated the junctions across samples and
conducted a second round of filtering. We kept novel splice junctions that were detected in at least half
the samples from a single neuron type (with a minimum of two samples from a single neuron type). This
analysis identified 1,722 novel junctions robustly expressed in our dataset. Reliably attributing each
junction to a novel transcript is challenging with available methods*’. Instead, we only attempted to
estimate the total number of genes containing novel junctions, without determining their precise
identity. To this end, we determined the set of genes neighboring each novel junction, randomly
sampled a single one, and evaluated the number of genes with novel junctions. By repeating this
procedure 1,000 times, we estimated the total number of genes expressing novel junctions. The

corresponding code is available at: https://github.com/cengenproject/novel junctions.

dAS with MAJIQ

Local quantification of AS and the analysis of differential AS were performed with MAJIQ 2.3 6. We built

a configuration file using the reference annotation from Wormbase (WS289), strandness forward, and
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one experiment per neuron type (grouping the biological replicates by experiment). We subsequently

filters in at least two replicates from the same neuron), keeping the other options to their default values.
We performed PSI quantification, and delta PSI quantification between each pair of neuron types with

the default parameters.

For the subsequent analysis, we grouped the resulting delta PSI files from all neuron pairs, obtaining
16,379,082 individual comparisons (for a given LSV in a given pair of neurons). We filtered comparisons
to retain only those where the LSV-containing gene was expressed in both neurons of the pair, using the
threshold “3” we previously defined based on single-cell RNA-Seq 32, resulting in 8,783,582 comparisons
(corresponding to 3,787 measurable genes). We define a comparison as DAS if the “probability of not
changing” (computed by MAJIQ deltapsi) is lower than 0.05, and the “probability of changing” is higher
than 0.5, corresponding to 928,985 comparisons. Finally, we define a gene as DAS if it contains at least

one DAS comparison, yielding 1,940 DAS genes.

To predict genes expected to display DAS in the nervous system, we compiled a list of 11 studies
reporting individual genes 78 7% 80.81. 82,83, 84 o narforming transcriptomic analyses in mutant backgrounds
disrupting AS in neurons 4858687 Thjs resulted in a list of 759 genes (Table S3), of which 542 are
measurable in our dataset (expressed in the neurons sequenced and quantified by MAJIQ). Gene
Ontology analysis was performed using a background list of 10,312 genes expressed in at least two

neurons sequenced here (as per the threshold above).

To compare the differentially AS to differentially expressed (DE) genes, the DE genes were obtained from
integration of single-cell RNA-Seq data with this dataset, as described in *°. For each neuron pair, the DE
genes were ordered by absolute fold change and the genes with the 100 highest values were selected.

The DAS genes were ordered by absolute delta PSI of their highest LSV, and the 100 genes containing the

37


https://doi.org/10.1101/2024.05.16.594567
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.16.594567; this version posted May 17, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

highest values were selected. Out of 595 neuron pairs, we could select a top 100 DAS genes for 432
pairs; 15 had 101 genes (because of a tie in the highest delta PSI), 148 pairs did not have 100 DAS genes.

We only represented pairs where we could select 100 top DAS genes.

To predict the total number of DAS genes in the nervous system, we randomly selected between 2 and
55 neuron types among those sequenced, and estimated the number of DAS genes that could be
detected. We repeated the procedure 10 times for each number of neurons. We then performed a linear
regression of the number of DAS genes detected vs the logarithm-transformed number of neurons
subsampled, yielding the relationship Nyepes = —302 4+ 731 - log (Npeyrons)- The total number of DAS
genes for 119 neuron types is then 3192. We applied the same procedure to estimate the number of
genes expressed in the subsampled neurons (above threshold “3” as above). We obtained the
relationship Nyenes = 4756 + 2127 - log(Npeyrons), and estimate a total number of to 14,920 genes

expressed in the C. elegans nervous system.

Transcript quantification with StringTie
For the transcript-level quantification, we used StringTie 2.2.1 using the annotation from Wormbase
(WsS289), without novel transcript discovery. We applied it to the aligned reads from STAR, following

deduplication. Code available at: https://github.com/cengenproject/stringtie quantif.

Website

The output of STAR was used to generate browser tracks. First, the junction counts generated by STAR
were processed, and the number of uniquely mapped reads was kept as junction count. Junctions longer

than 25,000 bp, and junctions with a count lower than 3 reads were filtered out. Junction counts for
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individual samples were combined into neuron type average, and global sum, minimum, and maximum.
The global tracks underwent a second filtering, requiring 13 and 21 reads for the maximum and sum
tracks respectively. The tracks were exported to bed format using the R package rtracklayer . Second,
the bam files generated by STAR were used to generate the coverage tracks using custom code, and
exported to bigWig format with rtracklayer. The individual tracks can be used in JBrowse2 % or
downloaded from the website. All code is available at:

https://github.com/cengenproject/splicing browser.

For the local splicing quantification, the results of the MAJIQ analysis (see above) were loaded in VOILA

according to instructions (see https://majig.biociphers.org).

For the transcript-level quantification, the quantifications from StringTie (see above) were loaded in a
custom R Shiny application, source code available at:

https://github.com/cengenproject/isoform compare/.

Binary dAS with SUPPA2

We used SUPPA 2.3 # according to the documentation. We generated all local event types (SE, SS, MX,

RI, FL) with ——-boundary S based onthe genome annotation (Wormbase WS289). We then quantified

the event PSI by running p t! using the StringTie quantifications (see above) as expression file.

Finally, we split the resulting TPM and PSI files by neuron type, before computing delta PSI for each pair

of neuron, using the settings-method empirical -combination —-gene-correction.

We filtered using single-cell threshold 2 32 to consider an event detectable in a neuron pair only when
the gene is expressed in both neurons of a pair. We considered an event differentially AS in a neuron pair
if it is detectable in both neurons of the pair, has a p-value lower than 0.1 (from SUPPA with -gc option
for multiple comparison), and displays a delta PSI higher than 0.3.
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We used the R package GenomicFeatures ° to delineate the genomic regions of interest, the package
Biostrings to extract the sequence and calculate its GC content, and the conservation score from %, The
features were compared using a Wilcoxon test followed by Holm correction for multiple comparisons,

and we applied a threshold of 0.05 to consider a comparison significant.

For microexons, we focused on cassette exons. We restricted our analysis to neuron pairs in which both
neurons express the exon-containing gene (with threshold 2 above). We compared the number of exons
with DAS using a two-proportion test with Yates’ continuity correction. To compare the proportion of
neuron pairs with DAS, we only analyzed exons detectable in at least 10 neuron pairs (787 out of 913
cassette exons). We used a Wilcoxon test to compare the proportions. Code available at

https://github.com/cengenproject/suppa events.

Splicing regulatory network

Quantification of PSI

Cassette events were extracted from the genome annotation using lsuppa generateEvents: . With

an approach adapted from %2, we then used bedtoolsiand igrep on the STAR output to count the

number of inclusion reads N; covering the alternative exon, and the number of exclusion reads N,
spanning the alternative splice junction. We then computed Percent Spliced-In (PSI) from normalized

read counts N, and N, based on exon length Ly, and read length l,.cq4:

N;
Lexon + lread -1

N =
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All relevant code is stored in the Github repository

https://github.com/cengenproject/quantif exon skipping.

Before use in the model, we removed measurements of a cassette exon in a neuron type if the exon-
containing gene is not expressed in that neuron type, based on a thresholding integrating this dataset
with single-cell RNA-Seq %°. Additionally, we only considered neuron types for which we had 3 or more
biological replicates. We also filtered the cassette exons, keeping only events covered by more than 20
reads, measured in more than 70 samples from 23 neuron types, and presenting differential splicing

between neuron types (standard deviation above 0.3).

Quantification of putative splice factor transcripts

We compiled a list of putative splice factors, available in Table S5. The transcripts are quantified using
StringTie #/, without novel transcript discovery (see above). StringTie gives quantifications in Transcripts
Per Million (TPM), which undergo a log10 transformation with a pseudocount of 1 before further

processing.

Precision matrix estimation

Here we describe the procedure to select our network construction method (Fig S5A). We build a data
matrix where the 127 rows correspond to samples, the 730 columns correspond to cassette exon PSI
(172 events) or splice factor log-TPM (558 transcripts). We perform a first split: 30% of the rows (39
samples) are kept as testing set. The other 70% of samples undergo 5-fold cross-validation: each fold
contains 17 or 18 samples, the training is performed on 4 folds, the validation on the held-out fold. As
the splicing of a cassette exon in a neuron type can only be meaningfully measured if the gene
containing that exon is expressed in that neuron, the PSI matrix contains missing values that are first
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imputed (using the column median or k-nearest neighbors). The training matrices SE;,4in (containing
the skipped exons) and SF;,4in (containing the splice factors) are then transformed (using Z-score or
NPN transformation), and a covariance matrix S¢-qin, is computed from the transformed values. We store
the variables used for transformation (e.g. the mean and standard deviation for Z-scoring and
distribution quantiles for the NPN method) for inverting the transformations later to yield predictions in
the original data range. For permutation tests, the SE,.4;,, values randomized within an event (i.e. within
a column) after transformation, but before computing the covariance matrix. The covariance matrix is
then used to estimate the precision matrix Q4 (Using glasso, QUIC, CLIME, or SCIO), which is inverted

to recover the estimated covariance matrix S;pqin-

Separately, the validation fold matrices SE,;;;4 and SF,4;;4 are transformed re-using the same
parameters as the training folds, to compute the covariance matrix S,4;;4- From the estimated precision
matrix, following >°, we extract the quadrants ﬁ21(with the splice factors as rows and the cassette exons
as columns), and {;; (with the cassette exons as rows and columns) and compute W = Q,; O71, the
matrix of regression coefficients. The splicing measurements in the validation set can then be estimated
from the splice factors in the validation set and the precision matrix learned from the training set

following:
§Evalid =wt. SFyatia

Finally, we invert the transformation of SE,;;4 using the stored transformation variables (e.g. the mean
and standard deviation for Z-scoring and distribution quantiles for the NPN method) to get back to the

initial scale.

Model components
We tried several approaches to develop an optimal model. The data matrix SE;,4in can be constructed

from PSls, a ratio of inclusion and exclusion counts. We reasoned that a model may have a better
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performance when directly estimating the inclusion and exclusion counts rather than the ratio. Thus we
reconstructed counts by multiplying the PSI with the total count for that exon, and used either PSls or

reconstructed counts as the columns of SE¢4in-

As our downstream methods are incompatible with the presence of missing values, we need to remove
them from SE,4in. We used median imputation, where the missing value is replaced by the median of
the column (i.e. the median of the cassette exon across samples). Alternatively, we used a k-nearest

neighbors imputation implemented by the R package impute.

PSls (or reconstructed counts) and log-TPMs follow very different distributions, which would distort the
covariance computed by simply concatenating them. In addition, they do not follow a normal
distribution, making them inappropriate for the downstream algorithms. We thus standardized the
training data either with a Z-score transformation, or with nonparanormal transformations ®%. As our
cross-validation procedure requires that we transform the validation set using the parameters from the
training set, and that we invert the transformation to obtain values in the original scale, we implemented
these transformations in the R package projectNPN, available at

https://github.com/cengenproject/projectNPN.

Finally, the estimation of the precision matrix can also be performed with several implementations. We

used the R packages glasso, QUIC, FLARE (implementing CLIME) and SCIO.

Metrics definitions

First, we compare the covariance matrix measured in the validation set S,,,;;4 to the covariance matrix
estimated from the training set S;,4in, Obtained by inverting the estimated precision matrix. we focus on
the quadrant containing the covariance between the skipped exons and the splice factors, as we are
interested in the ability of our model to capture this relationship. We then compute the Frobenius loss as

||Sva”d,12 — §tmin,12||F where || ||z represents the Frobenius norm.
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Further, we compare the skipping values measured in the validation set SE, ;4 to the values SE,gi4
estimated from the precision matrix. To this end, we first compute the residuals: resid = SE,4;;4 —

SE,q1iq- We then estimate, for each event e, the sum of squared residuals: S, = X resid? and the
—\2 . . . .
total sum of squares SSyo¢ 0 = Z(SEva”d,e - SEvalld,e) and define the fraction explained variance as

SS, . . . .
FEV, = 1 — =22 We truncate this value at 0 and average it across events to obtain the mean fraction

tot,e

of explained variance.

To evaluate the biological relevance of the network edges, we extract the quadrant {,; of the precision
matrix (i.e. the adjacency matrix), binarize it (taking an edge for any non-zero entry), and compare it to a
ground truth dataset (table S5). We compiled this dataset by a review of the literature, considering that a
regulatory interaction between a splice factor and a cassette exon is “true” if a change in splicing was
detected upon mutation of the splice factor. Note that this dataset suffers from several limitations,
notably these interactions do not necessarily take place in the neurons we sequenced here, and these
interactions may correspond to different splicing events within the same target gene. Thus, while we
expect a better model to obtain a better match with this data, we do not expect a perfect match. We
compute the True Positive Rate (TPR) as the fraction of interactions present in the ground truth that are
captured by the model, and the False Positive Rate (FPR) as the fraction of interactions that are absent
from the ground truth but reported by the model. As both TPR and FPR decrease with increased sparsity,

we report the ratio TPR/FPR.

Finally, we seek to constrain the structure of the network. A very sparse network, where each splice
factor has at most a single target, or a very dense network, where many splice factors have many targets,
would be hard to interpret and likely not capture biologically meaningful interactions. As proposed by ¢,
we use an approximate scale-free topology criterion. For each splice factor (node in the network), we

compute the degree of the node k, and count the number of nodes with the same degree p(k). We then
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fit a linear regression between log(k) and log( p(k) ), and use the coefficient of determination R? as a
criterion. A high R? suggests that a power law can describe the node degrees, and that the network is

scale-free.

All code related to the network modeling is available at:

https://github.com/cengenproject/regression exon skipping

Data and code availability

Sequencing data is available on GEO (accession GSE229078).

All code is in https://github.com/cengenproject/ (see corresponding repository names in Methods).
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Figure S1: Analysis of DAS genes.

A: Gene Ontology terms enriched among the genes with DAS in neurons. B: Overlap between the top 100 DAS genes and the top
100 differentially expressed genes for each neuron pair. C: Pairs of neurons with similar profiles, clustered by proportion of DAS
genes among co-expressed genes, corresponding to the heatmap in Fig. 3C. The color blocks indicate clusters identified from a
tree cut at a height of 0.2 (horizontal dashed line).
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Figure S 2: Network computation.
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A: Schematic description of the full procedure. SE: skipped exon splicing measurements, SF: splice factor expressions, S:
covariance matrix, Q: precision matrix. The superscript t or u indicates whether the matrix is transformed or untransformed, the
subscript train or valid indicates whether it contains data from the training or validation folds. The green arrows and text
correspond to the metrics being computed. B: Selection of the optimal number of nearest neighbors. The four metrics are
represented at a fixed penalty of 0.2 and plotted against the number of nearest neighbors. The grey line highlights the chosen
value of k=4. C: Metrics plotted against penalty, the red triangles indicate the computed value, the grey dots were computed
after permutation of the input. D: Subnetwork centered on the alternative exons of unc-16. Symbols as defined in Fig. 5D.
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