

1 **Title: The genome sequence of the Violet Carpenter Bee, *Xylocopa*
2 *violacea* (Linnaeus, 1785): a hymenopteran species undergoing range
3 expansion.**

4

5 **Working title:** Xylocopa reference genome

6

7 **Authors:** Will J Nash^{1*}, Angela Man¹, Seanna McTaggart¹, Kendall Baker¹,
8 Tom Barker¹, Leah Catchpole¹, Alex Durrant¹, Karim Gharbi¹, Naomi Irish¹,
9 Gemy Kaithakottil¹, Debby Ku¹, Aaliyah Providence¹, Felix Shaw¹, David
10 Swarbreck¹, Chris Watkins¹, Ann M. McCartney², Giulio Formenti^{3,4}, Alice
11 Mouton^{4,5,6}, Noel Vella⁷, Björn M von Reumont^{8,9}, Adriana Vella⁷, Wilfried
12 Haerty^{1,10*}

13 * Joint Corresponding Authors, these authors contributed equally to this
14 work

15

16 **Author Affiliations**

1. The Earlham Institute, Norwich Research Park, Colney Lane,
2. Norwich, NR4 7UZ, UK
3. Genomics Institute, University of California, Santa Cruz, CA 95060,
4. USA
5. The Vertebrate Genome Laboratory, The Rockefeller University,
6. 1240 York Ave, 10065 New York, USA
7. Department of Biology, University of Florence, Sesto
8. Fiorentino, Italy
9. InBios - Conservation Genetics Laboratory, University of Liege,
10. Chemin de la Vallee 4, 4000 Liege, Belgium
11. SEED - Departement des sciences et gestion de l'environnement,
12. University of Liege, Chemin de la Vallee 4, 4000 Liege, Belgium
13. Conservation Biology Research Group, Biology Department,
14. University of Malta, Msida, MSD 2080, Malta
15. LOEWE Center for Translational Biodiversity Genomics (LOEWE-
16. TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
17. Applied Bioinformatics Group, Faculty of Biological Sciences,
18. Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438
19. Frankfurt, Germany
20. School of Biological Sciences, The University of East Anglia,
21. Norwich, NR4 7TJ, UK

22

23 **Authors for Correspondence:**

1. Will Nash, The Earlham Institute, Norwich Research Park, Colney
2. Lane, Norwich, NR4 7UZ, +44 (0) 1603 450 974,
3. will.nash@earlham.ac.uk
4. Wilfried Haerty, The Earlham Institute, Norwich Research Park,
5. Colney Lane, Norwich, NR4 7UZ, +44 (0) 1603 450 974,
6. wilfried.haerty@earlham.ac.uk
7. Adriana Vella, Conservation Biology Research Group, Biology
8. Department, University of Malta, Msida, MSD 2080, Malta, +356
9. 2340 2790, adriana.vella@um.edu.mt

49 **Key Words:**

50 Hymenoptera, Genome, Long-read, Assembly, Hi-C, Repetitive DNA

51

52 **Data Availability Statement:**

53 The data underlying this article are available in the European Nucleotide

54 Archive and can be accessed with the BioProject identifier [PRJEB72102](#).

55 The assembly is available through GenBank under the accession

56 [GCA_963969225.1](#).

57 **Abstract**

58

59 We present a reference genome assembly from an individual male Violet
60 Carpenter Bee (*Xylocopa violacea*, Linnaeus, 1758). The assembly is 1.02
61 gigabases in span. 48% of the assembly is scaffolded into 17 pseudo-
62 chromosomal units. The mitochondrial genome has also been assembled
63 and is 21.8 kilobases in length. The genome is highly repetitive, likely
64 representing a highly heterochromatic architecture expected of bees from
65 the genus *Xylocopa*. We also use an evidence-based methodology to
66 annotate 10,152 high confidence coding genes. This genome was
67 sequenced as part of the pilot project of the European Reference Genome
68 Atlas (ERGA) and represents an important addition to the genomic
69 resources available for Hymenoptera.

70

71 **Introduction**

72

73 We live in a time of unprecedented biodiversity loss (Ceballos and Ehrlich,
74 2023) exemplified by the global decline of insect fauna undeniably
75 associated with anthropogenic stressors (Outhwaite *et al.*, 2022). Insect
76 biodiversity loss puts key ecosystem services, such as pollination (Ollerton,
77 2021) and decomposition (Yang and Gratton, 2014), at risk. Although there
78 is strong evidence of insect declines in the recent history (Hallmann *et al.*,
79 2017; Powney *et al.*, 2019), changes in global climate have also seen
80 patterns of range shift in many taxa (e.g. Kerr *et al.*, 2015; Lehmann *et al.*,

81 2020; Rollin *et al.*, 2020; Halsch *et al.*, 2021; Skendžić *et al.*, 2021). The
82 European Reference Genome Atlas (ERGA, Mc Cartney *et al.*, 2023) aims
83 to empower research communities to expand the taxonomic coverage of
84 genomic resources, enabling cross taxa analyses to address continent-
85 scale questions, such as those surrounding range shifts, at the genomic
86 level.

87

88 There are currently no annotated, reference quality, genomic resources for
89 the Carpenter bees (Hymenoptera: Apidae). They are classified as a single
90 genus, *Xylocopa* (Latreille, 1802), which contains around 400 species
91 (Gerling *et al.*, 1989; Leys *et al.*, 2000, 2002; Michener, 2007), and are
92 considered as essential pollinators (e.g. Vargas *et al.*, 2017; Malabusini *et*
93 *al.*, 2019). In Europe, the most widespread *Xylocopa* species is the Violet
94 Carpenter Bee, *Xylocopa violacea* (Linnaeus, 1758) (Vicidomini, 1996).
95 This species has a pan-European distribution (Figure 1,
96 <https://www.gbif.org/species/1342108>) that also extends to Algeria and
97 Turkey (Gerling *et al.*, 1989; Aouar-Sadli *et al.*, 2008; Tezcan and Skyrpan,
98 2022), Iraq and India (Dar *et al.*, 2016; Bamarni and Elsaiegh, 2022).

99

100 In recent years, *Xylocopa violacea* has exhibited a marked range
101 expansion, with records in Germany (Praz *et al.*, 2022), Czech Republic
102 (Kleprlíková and Vrabec, 2020), Poland (Banaszak *et al.*, 2019), and as far
103 north as Sweden (Cederberg and Others, 2018) (Figure 1). The northward
104 expansion of the Violet Carpenter Bee's range may be attributed to various

105 factors, including climatic changes in Europe (Banaszak *et al.*, 2019).

106 *Xylocopa violacea* is a solitary bee (Vidicomini, 1996), although within the
107 genus there is evidence for several independent transitions to sociality
108 (Gerling *et al.*, 1989; Sless and Rehan, 2023). *X. violacea* also exhibits a
109 lineage specific microbiome (Alberoni *et al.*, 2019; Holley *et al.*, 2022;
110 Handy *et al.*, 2023) and a distinctive venom profile with novel melittin
111 variants that show potential for anticancer applications (von Reumont *et al.*,
112 2022; Erkoc *et al.*, 2022). There is only a contig-level assembly of the *X.*
113 *violacea* genome currently available (Koludarov *et al.*, 2023).

114

115 Here, we present a pseudo-chromosomal assembly of the genome of
116 *Xylocopa violacea*. The genome was sequenced as part of the pilot project
117 of the ERGA (Mc Cartney *et al.*, 2023). The ERGA consortium is pioneering a
118 democratised approach to biodiversity sequencing, and paired a sample
119 ambassador from Malta, where *X. violacea* is an important and understudied
120 species, with a sequencing centre in the UK order to generate the assembly
121 presented here. The *X. violacea* genome assembly is characterised by its
122 highly heterochromatic karyotype, a trait also shared by other *Xylocopa*
123 species (Hoshiba and Imai, 1993). This genomic resource fills an important
124 gap in the taxonomy of the Apidae, and also releases the potential to study
125 the expanding population of this important pollinating species at the
126 genomic level (e.g. Formenti *et al.*, 2022; Webster *et al.*, 2022).

127

128 **Materials and Methods**

129

130 *Sample Acquisition*

131 A male (iyXylViol4, ERS10526494) and female (iyXylViol2, ERS10526492)
132 *Xylocopa violacea* individual were collected at Chadwick Lakes, Rabat,
133 Malta (Latitude: 35.894639, Longitude: 14.392165). Samples were chilled
134 to 4°C, preserved in dry ice, and maintained at -80°C until shipment to the
135 Earlham Institute, Norwich, UK following Nagoya Protocol, permit ABSCH-
136 IRCC-MT-255778-1. Sample metadata conformed to ERGA sample
137 manifest standards (Böhne *et al.*, 2024) and were submitted to ENA using
138 COPO (Shaw *et al.*, 2020).

139

140 *DNA Library Preparation and Sequencing*

141 High molecular weight (HMW) DNA was extracted from thorax tissue of an
142 individual male bee (iyXylViol4) using the Qiagen MagAttract HMW DNA
143 Kit, with modifications as described in Mullin *et al.* (2022). HiFi library
144 preparation and Pacific Biosciences (PacBio) sequencing were carried out
145 following the low-input protocol described in Mullin *et al.* (2022),
146 (Supplementary Methods) and sequenced on four Sequel II SMRT® Cell 8M
147 (diffusion loading, 30-hour movie, 2-hour immobilisation time, 2-hour pre-
148 extension time, 60-77 pM on plate loading concentration).

149

150 *RNA Extraction, RNA-seq Library Preparation and Sequencing*

151 RNA extractions were conducted on flash frozen head, thorax, abdomen,
152 and leg tissues from an individual female bee (iyXylViol2) using the Omega
153 EZNA Total RNA Kit I (R6834-01). RNA-seq libraries were then constructed

154 using the NEBNext Ultra II RNA Library prep for Illumina kit (NEB#E7760L)
155 NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB#7490) and
156 NEBNext Multiplex Oligos for Illumina® (96 Unique Dual Index Primer Pairs)
157 (E6440S) at a concentration of 10uM. Libraries were sequenced on an SP
158 flow cell on a NovaSeq 6000 instrument set up to sequence 150bp paired
159 end reads.

160

161 *Iso-Seq Library Preparation and Sequencing*

162 PacBio Iso-Seq libraries were constructed starting from 234-300 ng of total
163 RNA from the 4 tissue specific extractions described above. Reverse
164 transcription cDNA synthesis was performed using NEBNext® Single
165 Cell/Low Input cDNA Synthesis & Amplification Module (NEB, E6421).
166 Samples were barcoded and the library pool was prepared according to the
167 guidelines laid out in the Iso-Seq protocol version 02 (PacBio, 101-763-
168 800), using SMRTbell express template prep kit 2.0 (PacBio, 102-088-900).
169 The Iso-Seq pool was sequenced on the PacBio Sequel II instrument with
170 one Sequel II SMRT® Cell 8M.

171

172 *Hi-C Library Preparation and Sequencing*

173 High-throughput/resolution chromosome conformation capture-based (Hi-
174 C) sequencing data was generated from head tissue of male individual
175 iyXylViol4 using the Arima Genome Wide Hi-C kit, the NEBNext Ultra II
176 DNA Library preparation kit, and Kappa HiFi HotStart ReadyMix. The

177 resulting libraries were sequenced on an SP flow cell, on the Novaseq 6000
178 instrument, sequencing 150bp paired end reads.

179

180 *Contig level genome assembly*

181 HiFi reads were extracted from the raw Pacific Biosciences output by the
182 Earlham Institute core bioinformatics group using the Pacific Biosciences
183 SMRTlink pipeline (v10.1.0.119588). Prior to assembly, HiFi reads were
184 trimmed for adapter sequences with Cutadapt (v3.2, Martin, 2011). The
185 genome was assembled with hifiasm (v0.18.5, Cheng *et al.*, 2021).
186 Mitochondrial contigs were identified with MitoHifi (v3.0.0, Uliano-Silva *et*
187 *al.*, 2023), using the *Apis mellifera* mitochondrial genome ([OK075087.1](#)) as
188 a closely related guide. All putative mitochondrial contigs were removed
189 prior to scaffolding, and the MitoHifi best fit mitochondrial sequence was
190 added back into the assembly following scaffolding. Contaminant contigs
191 were identified and removed as the intersect of the outputs of Kraken2
192 (v2.0.7, Wood *et al.*, 2019), BlobTools (v1.1.1, Laetsch and Blaxter, 2017),
193 barnapp (v0.9, Table S1), CAT (v5.2.3, von Meijenfeldt *et al.*, 2019), and
194 FCS-GX (v0.3.0, Astashyn *et al.*, 2023). Assembly completeness was
195 assessed with BUSCO (v5.0.0, Manni *et al.*, 2021) using
196 hymenoptera_odb10. Assembly quality and kmer completeness were
197 assessed with Merqury (v1.3, Rhee *et al.*, 2020). Genome size of the final
198 assembly was estimated using FastK (Table S1) and GeneScopeFK (Table
199 S1).

200

201 *Hi-C Read QC & Scaffolding*

202 Raw Hi-C reads were trimmed for adapters using trimmomatic (v0.39,
203 Bolger *et al.*, 2014) with the adapters.fa file from bbmap (v35.85, Bushnell,
204 2014) as input (see Supp. Methods). Hi-C reads were mapped to the draft
205 assembly with Juicer (v1.6, Durand *et al.*, 2016). Following the removal of
206 contigs assigned as contaminant or mitochondrial, Hi-C reads were
207 mapped to the resulting assembly using the Arima Mapping Pipeline (Table
208 S1). The resulting mappings were used to scaffold the decontaminated
209 assembly using YaHS (v1.2a.2, Zhou *et al.*, 2023).

210

211 *Manual Curation of Scaffolded Assembly*

212 Following scaffolding, trimmed, unfiltered Hi-C reads were mapped to the
213 scaffolded assembly using Juicer (v1.6, Durand *et al.*, 2016). Using these
214 mappings, the scaffolded assembly was manually curated to pseudo-
215 chromosomal level using Pretext-Map (v0.1.9, Table S1) contact maps
216 visualised in PretextView (v0.2.5, Table S1). Inputs for PretextView
217 (Coverage track, Gap track, Telomere track) were created using the eihic
218 pipeline (Table S1) in curation mode (-c). Following curation, the Rapid
219 Curation Pipeline (Table S1), developed by the GRI team at the Wellcome
220 Sanger Institute, was used to extract the manually curated assembly in
221 fasta format.

222

223 *Annotation*

224 Annotation of repetitive DNA content was performed using the El-Repeat
225 pipeline (v1.3.4, Table S1) which uses third party tools for repeat calling.
226 The repeat content of the iyXylViol4 assembly was further classified using
227 srf (Zhang *et al.*, 2023) and TRASH (Włodzimierz *et al.*, 2023), and
228 visualised using StainedGlass (Vollger *et al.*, 2022). The telomeric repeat
229 landscape was explored using the explore and search functions of tidk
230 (Table S1). Gene models were generated from the iyXylViol4 assembly
231 using REAT - Robust and Extendable eukaryotic Annotation Toolkit (Table
232 S1) and Minos (Table S1) which mayke use of Mikado (Table S1),
233 Portcullis (Table S1) and many third-party tools (listed in the above
234 repositories).

235

236 **Results & Discussion**

237

238 *DNA sequencing*

239 HMW DNA extractions from two 30 mg sections of thorax tissue from a
240 single male *Xylocopa violacea* individual (iyXylViol4) yielded 829 ng of
241 HMW DNA, with 74-84% of fragments over 40 kb fragment size (Figure
242 S1). Following library preparation, 2,520,442 PacBio HiFi Reads were
243 obtained (21.8x coverage of the final assembly). The whole head tissue
244 from this individual (98mg) was used to generate 535,271,589 Illumina
245 short reads following proximity ligation and Arima High Coverage Hi-C
246 library preparation (see Supp. Results). Sequencing of this library produced
247 509,760,108 read pairs.

248

249 *Transcriptome sequencing*

250 Total RNA was extracted from four tissues segments (Head, Thorax,
251 Abdomen, Legs) from a second individual (female, iyXylViol2). These
252 tissues produced 4.3 µg, 3.6 µg, 18.2 µg, 2.6 µg of total RNA respectively.
253 We generated 149,032,417, 107,159,638, 116,609,061, and 148,189,077
254 Illumina RNA-seq short reads respectively for the head, thorax, abdomen,
255 and legs. Additional RNA-seq reads, from *X. violacea* venom gland, were
256 downloaded from SRA (SRR14690757, Koludarov *et al.*, 2023). The same
257 extractions were also used to generate 790,150; 717,956; 977,170, and
258 999,264 PacBio Iso-Seq long reads for the head, thorax, abdomen, and
259 legs respectively. Cumulatively, this represented an average of 81.76x
260 long-read coverage of the transcriptome.

261

262 *Genome Assembly*

263 The initial contig assembly had 1224 contigs and spanned 1.08 Gb with an
264 N50 of 5.91 Mb (Table 1). Prior to scaffolding, 161 contigs (59.8 Mb) were
265 classified as contaminant content and removed from the assembly. A contig
266 was only classified as contaminant and removed if it was identified in the
267 output of 2 of the following tools: Contigs identified as not within the
268 Instecta by Kraken2 (316), contigs classified as "no-hit" by blobtools (389),
269 contigs identified as bacterial or archaeal 16s by barnapp (384), contigs
270 classified as bacterial or viral by CAT (4), or contigs identified as
271 contaminants by FCS-GX (1). For further details see Table S6. 79

272 mitochondrial candidates (1.7 Mb), identified by MitoHifi, were also
273 removed. With this content removed, the assembly had 984 contigs
274 spanning 1.02 Gb, with an N50 of 5.96 Mb (Table 1).

275

276 Scaffolding generated an assembly with 1343 scaffolds spanning 1.02 Gb
277 with an N50 of 6.65 Mb (Table 1). The scaffolded assembly was manually
278 curated to give the final pseudo-chromosomal iyXylViol4 assembly
279 ([GCA_963969225.1](https://www.ncbi.nlm.nih.gov/nuccore/GCA_963969225.1)), containing 1300 scaffolds over 1.02 Gb, and an N50
280 of 11.42 Mb (Figure 2, Table 1). The consensus mitogenome (21.8 Kb) was
281 added to the assembly following manual curation and annotation. The
282 iyXylViol4 assembly contains 17 pseudo-chromosomal units. One of these
283 units has Hi-C telomeric signal at both ends, and the remaining 16 of which
284 have Hi-C telomeric signal at one end. *Xylocopa violacea* has been
285 suggested to have a karyotype of 16 (Granata, 1909), similar to a related
286 species, *X. fenestra*, (Kumbkarni, 1965; Kerr and da Silveira, 1972), thus it
287 is possible that two of the remaining super scaffolds in the iyXylViol4
288 assembly correspond to chromosomal arms with insufficient Hi-C signal to
289 be joined. Alternatively, *X. appendiculata* has a karyotype of 17
290 chromosomes including a majority of pseudo-acrocentric chromosomal
291 morphologies (Hoshiba and Imai, 1993).

292

293 Following Wallberg *et al.* (2019), we identified the centromeric signature of
294 low GC% in 6 super scaffolds (Supplementary Methods, Figure S5). We
295 identified one such region at the centre of the only firmly identified

296 metacentric chromosome (iyXylViol4_SUPER_4). The other 5 candidates
297 all separate putative euchromatic regions bearing many coding
298 annotations, from regions of high repeat content. This pattern of repeat
299 expansion around centromeric sequences has been observed in other
300 bees, such as *Austrolebeia australis* (Travenzoli *et al.*, 2022), and may
301 help to explain the high levels of interaction between unplaced scaffolds
302 and the pseudo-chromosomal units in the iyXylViol4 assembly.

303

304 Highly acrocentric karyotypes are well represented within the Xylocopinae,
305 the genus *Ceratina* exhibits species with karyotypes representing 14-17
306 chromosomes, with ratios of acrocentric to metacentric chromosomes
307 varying between 16:1, 15:2, and 12:5 (Hoshiba and Imai, 1993; Cunha *et*
308 *al.*, 2021). Such patterns are also common in other, more evolutionarily
309 distant bees: *Austrolebeia australis* has been shown to have 14 largely
310 heterochromatic chromosome pairs and four that are fully euchromatic
311 (Travenzoli *et al.*, 2022).

312 Without further investigation, potentially employing ultra-long read
313 technologies, it is not possible to differentiate between N=16 or N=17 from
314 the iyXylViol4 assembly.

315

316 *Assembly QC*

317 BUSCO analysis of the iyXylViol4 assembly showed that it contains 96.5%
318 of the 5991 hymenoptera_odb10 set as complete genes, with only 0.4%
319 complete and duplicated, 0.6% fragmented, and 2.5% missing (Figure 2,

320 Table S2). The genic content was not impacted by the scaffolding process
321 as the same metrics are recovered in the contig, scaffolded, and manually
322 curated assemblies. The iyXylViol4 assembly is QV 63.3 and has a kmer
323 completeness of 98.8% (Table S3).

324 The iyXylViol4 assembly is 1.02Gb in length. Although this is not outside of
325 the upper limits for known genome sizes from the Apidae (e.g. *Melipona*
326 *capixaba* 1.38Gb, (Tavares *et al.*, 2010; Cunha *et al.*, 2021), k-mer based
327 estimation of genome size from iyXylViol4 suggests the genome size to be
328 672 Mb (Table S4, Figure S4). This estimation is in line with the only
329 prediction from the genus *Xylocopa* comes from Ardila-Garcia *et al.* (2010),
330 who report an estimated genome size of 0.69pg (~675 Mb) for *Xylocopa*
331 *virginica krombein*. This species is a member of the North American
332 subgenus *Xylocopoides*, thought to have diverged from the genus *Xylocopa*
333 *s.l.* some 34 mya (Leys *et al.*, 2002), and so using this estimate as a cross
334 validation for the iyXylViol4 assembly may not be relevant. The 17 pseudo-
335 chromosomal iyXylViol4 super scaffolds (including unloc) are 481.4 Mb in
336 length, representing a large majority of the predicted genome size. As
337 complete reconstruction of the iyXylViol4 chromosomes was not feasible in
338 this study, we have included all unplaced scaffolds in the final assembly, as
339 these likely encompass the remaining genomic content.

340 *Repeat Content*

341 The majority of the iyXylViol4 assembly was masked as repetitive
342 sequence (821.28 Mb, 80.47%) (Table S5). The predominant category was
343 unclassified repeats, with 755.96 Mb (74.08%). This pattern is consistent

344 with pseudo-acrocentric chromosomes with extremely elongated
345 heterochromatic arms which are frequently observed in bees and wasps
346 (Hoshiba and Imai, 1993). These have been suggested to be induced by
347 saltatory growth of constitutive heterochromatin after centric fission
348 (Hoshiba and Imai, 1993). Bees from the Apinae genus *Melipona* have
349 recently been shown to exhibit up to 73% heterochromatin content (Pereira
350 *et al.*, 2021). As is seen in iyXylViol4, bees from the genus *Melipona* also
351 have terminal euchromatic regions (Piccoli *et al.*, 2018) which is consistent
352 with the pseudo-acrocentric chromosomal topology derived from *X.*
353 *appendiculata* (Hoshiba and Imai, 1993), with many chromosomes
354 representing large expansions of heterochromatin repeats around the
355 centromere.

356

357 Classification of the repeats within the iyXylViol4 assembly showed the ten
358 most abundant satellite repeat units identified by srf (Zhang *et al.*, 2023) to
359 occupy 105.6Mb of the assembly (Table S6). Further decomposition of the
360 satellite repeats present in the iyXylViol4 assembly, using TRASH
361 (Wlodzimierz *et al.*, 2023), revealed the predominant monomeric repeat unit
362 to be a 109mer (Figure S7, Figure S8, Table S7). This 109mer or a 217mer
363 (approximately double its length) were highly abundant throughout the
364 putative acrocentric chromosomes (Figure S8) and was repeated with high
365 identity (Figure S7).

366

367 We also observe that the putative centromeric sequences are flanked by a
368 distinct repeat signature. In the metacentric iyXylVio4_SUPER_4, the
369 putative centromere has expansions of a 95mer on either side of it.
370 Regions abundant in this 95mer are also seen in 13 of the 16 putative
371 acrocentric pseudo-chromosomal molecules (Figure S8), and these often
372 occur in proximity to the location of the regions of low GC% which are
373 putatively centromeric.

374

375 Recent studies have shown telomeric repeat motifs in Hymenoptera to be
376 diverse, including complex telomeric layering resulting from numerous site
377 specific retrotransposon insertions (Lukhtanov, 2022; Zhou *et al.*, 2022).

378 The iyXylViol4 assembly shows that *X. violacea* has telomeres enriched for
379 the canonical 5bp ancestral arthropod repeat motif (TTAGG) (Figure S5).

380 The iyXylViol4 assembly also shows that *X. violacea* has varying sub-
381 telomeric repeat sequences, consistent with 'Type 2' telomeres suggested
382 by (Lukhtanov and Pazhenkova, 2023) (Figure S6).

383 *Annotation*

384 The iyXylViol4_Elv1.0 annotation of the iyXylViol4 assembly contains
385 10,152 high confidence, protein-coding gene models, coding for 26,577
386 transcripts (Table S8). This number of annotations is well within the range
387 of those generated for contemporary genome assemblies (Table S9). Using
388 the hymenoptera_odb10 database, this annotation represents 99.75%
389 BUSCO completeness at the protein level, with only 34 BUSCO genes
390 duplicated, 3 fragmented and 12 missing (Table S3). The annotation

391 contains an average of 2.49 transcripts per gene, with a mean transcript
392 cDNA size of 3,238.2bp (Table S10). The distribution of coding genes is
393 skewed to the distal end of the 16 pseudo-chromosomal super-scaffolds
394 with putative pseudo-acrocentric structure (Figure S5), supporting the
395 previously suggested topology of highly repetitive pseudo-acrocentric
396 chromosomes expected in *Xylocopa* species (Hoshiba and Imai, 1993;
397 Gokhman, 2023).

398

399 **Conclusion**

400

401 Here, we present a pseudo-chromosomal genome assembly of the Violet
402 Carpenter bee, *Xylocopa violacea*. At 1.02 Gb, the assembly is larger than
403 the predicted genome size (672 Mb), but also represents large regions of
404 highly repetitive, putatively heterochromatic, sequence. Such chromosomal
405 architecture is in line with the small amount of karyotypic resources from
406 the genus and is also supported by the iyXylViol4_Elv1 annotation. The
407 repetitive regions we describe are predominantly made up of 109 and
408 217mers. The annotated assembly we present fills an important taxonomic
409 gap in the genomic resource set representing Hymenoptera and will also
410 provide a genomic basis for future interpretation of the expanding range of
411 this charismatic and economically important species.

412

413 **Acknowledgments**

414

415 The authors acknowledge Fiona Fraser (Earlham Institute, Norwich) and
416 Michael Quail (Wellcome Sanger Institute, Hinxton) for valuable
417 conversations and advice in developing Hi-C library preparation. The
418 authors would also like to acknowledge the GRiT (Wellcome Sanger
419 Institute, Hinxton), particularly Jo Wood, Tom Mathers, Dominic Absolon,
420 Camilla Santos, Michael Paulini for invaluable mentorship in Hi-C
421 scaffolding and curation. The authors also acknowledge Kamil Hepak
422 (Norwich Bioscience Institutes, Scientific Computing) for significant HPC
423 support.

424

425 **Author Contributions**

426

427 Language used to describe roles below uses the CRediT Taxonomy
428 (credit.niso.org).
429 AV acted as ERGA sample ambassador, and with NV and BvRM, initiated
430 the **Conceptualisation** of this study; WJN, SMC, KG, and WH designed
431 the sequencing strategy, assembly of the genome, and all analyses. WJN
432 conducted **Data Curation** throughout the project; GK and DS curated data
433 during genome annotation; DK, AP, and FS curated data for ENA upload
434 through COPO. WJN conducted all **Formal Analysis** outside of genome
435 annotation, which was conducted by GK and DS. **Funding acquisition**
436 was conducted by AV, SMC, and WH. Primary **Investigation** was
437 conducted by WJN; NI Prepared IsoSeq libraries and Illumina RNA-Seq
438 libraries; TB Sequenced Illumina RNA-seq libraries, PacBio IsoSeq

439 libraries, and PacBio low-input HiFi libraries; AMa prepared Hi-C libraries.

440 AD Developed and improved the Omega EZNA Total RNA extraction

441 protocol **Methodology**; NI Developed and improved the low-input HiFi

442 library preparation protocol methodology; WJN and AMa developed and

443 tested the Hi-C library preparation methodology. WJN and SMC conducted

444 overall **Project administration**; CW and KB Coordinated the project from

445 sample submission to data delivery; AMcC, GF, and AMo Conceptualised

446 and administrated the ERGA Pilot Project. AV and NV delivered

447 **Resources** by collecting the individuals sequenced. KG led the

448 development of resource data production capability for reference-grade

449 assembly and annotation. WJN wrote code to deploy **Software** as part of

450 the genome assembly project; DS and GK developed and deployed the

451 software used for genome annotation FS, DK, and AP developed and

452 maintain the COPO data brokering software. WH contributed **Supervision**

453 to the whole project, KG provided leadership responsibility for nucleic acid

454 extraction, short-read sequencing, and long-read sequencing; CW Provided

455 supervision and oversight of all project management activities; LC Provided

456 supervision and oversight for Illumina RNA-seq library preparation. WJN

457 conducted **Validation** on all assemblies generated, and generated the

458 **Visualisations** used in the publication. WJN led the **Writing – Original**

459 **Draft** with contributions from AV, NV, SMC and WH. All authors

460 contributed to **Writing – review & editing** of the final manuscript.

461

462 **Competing Interests**

463

464 The authors have no competing interests.

465

466 **Funding**

467

468 The authors acknowledge support from the Biotechnology and Biological
469 Sciences Research Council (BBSRC), part of UK Research and Innovation,
470 Core Capability Grant BB/CCG2220/1 at the Earlham Institute and its
471 constituent work packages (BBS/E/T/000PR9818 and
472 BBS/E/T/000PR9819), and the Core Capability Grant BB/CCG1720/1 and
473 the National Capability at the Earlham Institute BBS/E/T/000PR9816 (NC1 -
474 Supporting EI's ISPs and the UK Community with Genomics and Single
475 Cell Analysis), BBS/E/T/000PR9811 (NC4 - Enabling and Advancing Life
476 Scientists in data-driven research through Advanced Genomics and
477 Computational Training), and BBS/E/T/000PR9814 (NC 3 - Development
478 and deployment of versatile digital platforms for 'omics-based data sharing
479 and analysis). Authors also acknowledge support from BBSRC Core
480 Capability Grant BB/CCG1720/1 and the work delivered via the Scientific
481 Computing group, as well as support for the physical HPC infrastructure
482 and data centre delivered via the NBI Computing infrastructure for Science
483 (CiS) group. AV and NV acknowledge funding from the BioCon_Innovate
484 Research Excellence Grant (I18LU06-01) from the University of Malta.
485 BMvR acknowledges funding from the DFG (RE3454/6-1).

486 **Figure 1. The Violet Carpenter Bee, *Xylocopa violacea*. A)** Records of
487 *X. violacea* occurrence in Europe between 1980 and 2023 (GBIF.org, 04
488 December 2023, <https://doi.org/10.15468/dl.3gr8wv>). Hexes are coloured
489 by earliest year of occurrence; lighter colours are more recent. Records
490 prior to 1980 not plotted. **B)** A female *X. violacea* individual (Bautsch, CC0,
491 via Wikimedia Commons.) **C)** The male *X. violacea* (iyXylViol4) used for
492 DNA sequencing in this study.

493

494 **Figure 2. iyXylViol4 assembly of the *Xylocopa violacea* genome. A)** Hi-
495 C contact map (Supp Methods). Scaffolds are ordered by size with the 17
496 pseudo-chromosomal super scaffolds appearing in the top left half of the
497 map, defined by overlayed lines. Visualisation constructed with
498 multimapping reads (MAPQ=0). **B)** Merqury kmer spectra, $k = 19$, single
499 peak representing the haploid male genome of iyXylViol4. **C)**
500 Completeness of the hymenoptera_odb10 BUSCO set (5991 genes).

501 **Table 1.** Contiguity statistics of the iyXylViol4 assembly at four stages of
502 the assembly pipeline. Statistics generated using abyss-fac (Jackman *et*
503 *al.*, 2017). Contam = Contigs identified as contaminant, see main text, Mito
504 = putative mitochondrial contigs, identified using MitoHifi (Uliano-Silva *et*
505 *al.*, 2023), see main text.

Assembly	Processing	n	n:500	L50	Min Size (Bases)	N75 (Bases)	N50 (Bases)	N25 (Mb)	Max Size (Mb)	Sum Size (Gb)
Contig	None	1224	1224	54	6217	2,713,785	5,907,526	11.39	25.68	1.082
	Contam removed, Mito removed	984	984	50	6530	3,024,594	5,963,704	11.73	25.68	1.02
Scaffold	None	1343	1343	41	1000	2,669,000	6,651,566	15.08	39.23	1.02
	Manual Curation	1300	1300	19	1000	2,735,000	11,420,000	31.82	71.42	1.02

506

507

508 **References**

509

510 Alberoni D, Gaggia F, Baffoni L, Modesto MM, Biavati B, Di Gioia D (2019).
511 *Bifidobacterium xylocopae* sp. nov. and *Bifidobacterium aemilianum*
512 sp. nov., from the carpenter bee (*Xylocopa violacea*) digestive tract.
513 *Syst Appl Microbiol* **42**: 205–216.

514 Aouar-Sadli M, Louadi K, Doumandji S-E (2008). Pollination of the broad
515 bean (*Vicia faba* L. var. *major*) (Fabaceae) by wild bees and honey
516 bees (Hymenoptera: Apoidea) and its impact on the seed
517 production in the Tizi-Ouzou area (Algeria). *Afr J Agric Res* **3**: 266–
518 272.

519 Ardila-Garcia AM, Umphrey GJ, Gregory TR (2010). An expansion of the
520 genome size dataset for the insect order Hymenoptera, with a first
521 test of parasitism and eusociality as possible constraints. *Insect Mol*
522 *Biol* **19**: 337–346.

523 Astashyn A, Tvedte ES, Sweeney D, Sapochnikov V, Bouk N, Joukov V, *et*
524 *al.* (2023). Rapid and sensitive detection of genome contamination
525 at scale with FCS-GX. *bioRxiv*: 2023.06.02.543519.

526 Bamarni RZ, Elsaiegh MA (2022). A survey and phenotypic study of
527 carpenter bee species recorded in Kzo village and its
528 environs/Dohuk Governorate–Iraq. *NTU Journal of Agriculture and*

529 Banaszak J, Cibicka WB, Tward L (2019). Possible expansion of the range
530 of *Xylocopa violacea* L. (Hymenoptera, Apiformes, Apidae) in
531 Europe. *Turk Zool Derg* **43**: 650–656.

532 Böhne A, Fernández R, Leonard JA, McCartney AM, McTaggart S, Melo-
533 Ferreira J, *et al.* (2024). Contextualising samples: Supporting
534 reference genomes of European biodiversity through sample and
535 associated metadata collection. *bioRxiv*: 2023.06.28.546652.

536 Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for
537 Illumina sequence data. *Bioinformatics* **30**: 2114–2120.

538 Bushnell B (2014). *BBMap: A Fast, Accurate, Splice-Aware Aligner*.
539 Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United
540 States).

541 Ceballos G, Ehrlich PR (2023). Mutilation of the tree of life via mass
542 extinction of animal genera. *Proc Natl Acad Sci U S A* **120**:
543 e2306987120.

544 Cederberg B, Others (2018). The carpenter bees *Xylocopa valga* and *X. violacea*-climate refugees or labour migrants in Sweden
545 (Hymenoptera: Apidae). *Entomol Tidskr* **139**: 65–72.

546

547 Cheng H, Concepcion GT, Feng X, Zhang H, Li H (2021). Haplotype-
548 resolved de novo assembly using phased assembly graphs with
549 hifiasm. *Nat Methods* **18**: 170–175.

550 Cunha MS, Cardoso DC, Cristiano MP, de Oliveira Campos LA, Lopes DM
551 (2021). The Bee Chromosome database (Hymenoptera: Apidae).
552 *Apidologie* **52**: 493–502.

553 Dar S, Mir G, Parry M, Sofi MA, Padder SA (2016). Nest distribution and
554 nesting habits of *Xylocopa violacea* (Donovan), *Fabricius*
555 (Hymenoptera: Apidae) in Kashmir valley. *Journal of Experimental*
556 *Zoology, India*.

557 Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et
558 al. (2016). Juicer Provides a One-Click System for Analyzing Loop-
559 Resolution Hi-C Experiments. *Cell Syst* **3**: 95–98.

560 Erkoc P, von Reumont BM, Lüdecke T, Henke M, Ulshöfer T, Vilcinskas
561 A, et al. (2022). The Pharmacological Potential of Novel Melittin
562 Variants from the Honeybee and Solitary Bees against Inflammation
563 and Cancer. *Toxins* **14**.

564 Formenti G, Theissinger K, Fernandes C, Bista I, Bombarely A, Bleidorn C,
565 et al. (2022). The era of reference genomes in conservation
566 genomics. *Trends Ecol Evol* **37**: 197–202.

567 Gerling D, Velthuis HHW, Hefetz A (1989). Bionomics of the Large
568 Carpenter Bees of the Genus *Xylocopa*. *Annu Rev Entomol* **34**:
569 163–190.

570 Gokhman VE (2023). Chromosome Study of the Hymenoptera: History,
571 Current State, Perspectives. *Biology Bulletin Reviews* **13**: 247–257.

572 Granata L (1909). Le divisioni degli spermatociti di 'Xylocopa violacea' L.
573 *Biologica Torino* **2**: 1–12.

574 Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al.
575 (2017). More than 75 percent decline over 27 years in total flying
576 insect biomass in protected areas. *PLoS One* **12**: e0185809.

577 Halsch CA, Shapiro AM, Fordyce JA, Nice CC, Thorne JH, Waetjen DP, et
578 al. (2021). Insects and recent climate change. *Proc Natl Acad Sci U*
579 *SA* **118**.

580 Handy MY, Sbardellati DL, Yu M, Saleh NW, Ostwald MM, Vannette RL
581 (2023). Incipiently social carpenter bees (*Xylocopa*) host distinctive
582 gut bacterial communities and display geographical structure as
583 revealed by full-length PacBio 16S rRNA sequencing. *Mol Ecol* **32**:
584 1530–1543.

585 Holley J-AC, Jackson MN, Pham AT, Hatcher SC, Moran NA (2022).
586 Carpenter Bees (*Xylocopa*) Harbor a Distinctive Gut Microbiome
587 Related to That of Honey Bees and Bumble Bees. *Appl Environ
588 Microbiol* **88**: e0020322.

589 Hoshiba H, Imai H (1993). Chromosome evolution of bees and wasps
590 (Hymenoptera, apocrita) on the basis of C-banding pattern analyses
591 : *Japanese Journal of Entomology* **61**: 465–492.

592 Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA,
593 *et al.* (2017). ABySS 2.0: resource-efficient assembly of large
594 genomes using a Bloom filter. *Genome Res* **27**: 768–777.

595 Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, *et al.*
596 (2015). Climate change impacts on bumblebees converge across
597 continents. *Science* **349**: 177–180.

598 Kerr WE, da Silveira ZV (1972). Karyotypic Evolution of Bees and
599 Corresponding Taxonomic Implications. *Evolution* **26**: 197–202.

600 Kleprlíková L, Vrabec V (2020). Bee spread continues-new records of
601 *Xylocopinae* (Hymenoptera: Apidae) in the Czech Republic. In:
602 *Conference paper, 11th Workshop on Biodiversity, Jevany*,
603 researchgate.net, p .

604 Koludarov I, Velasque M, Senoner T, Timm T, Greve C, Hamadou AB, *et*
605 *al.* (2023). Prevalent bee venom genes evolved before the aculeate
606 stinger and eusociality. *BMC Biol* **21**: 229.

607 Kumbkarni CG (1965). Cytological Studies in Hymenoptera: Part II:
608 Cytology of parthenogenesis in the carpenter-bee, *Xylocopa*
609 *fenestrata* (Fabre). *Cytologica* **30**: 222–228.

610 Laetsch DR, Blaxter ML (2017). BlobTools: Interrogation of genome
611 assemblies. *F1000Res* **6**: 1287.

612 Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU,
613 *et al.* (2020). Complex responses of global insect pests to climate
614 warming. *Front Ecol Environ* **18**: 141–150.

615 Leys R, Cooper SJ, Schwarz MP (2000). Molecular phylogeny of the large
616 carpenter bees, genus *Xylocopa* (Hymenoptera: apidae), based on
617 mitochondrial DNA sequences. *Mol Phylogenet Evol* **17**: 407–418.

618 Leys R, Cooper SJB, Schwarz MP (2002). Molecular phylogeny and
619 historical biogeography of the large carpenter bees, genus *Xylocopa*
620 (Hymenoptera: Apidae). *Biol J Linn Soc Lond* **77**: 249–266.

621 Lukhtanov VA (2022). Diversity and evolution of telomere and subtelomere
622 DNA sequences in insects. *bioRxiv*: 2022.04.08.487650.

623 Lukhtanov VA, Pazhenkova EA (2023). Diversity and evolution of telomeric
624 motifs and telomere DNA organization in insects. *Biol J Linn Soc*
625 *Lond* **140**: 536–555.

626 Malabusini S, Palamara Mesiano M, Zanovello D, Giuliani C, Fico G,
627 Giovanetti M, et al. (2019). Flower selection of *Xylocopa violacea*:
628 aromatic and ornamental plants as resources in a botanic garden.
629 In: *Landscape management for functional biodiversity*, IOBC-
630 WPRS, pp 41–45.

631 Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM (2021).
632 BUSCO Update: Novel and Streamlined Workflows along with
633 Broader and Deeper Phylogenetic Coverage for Scoring of
634 Eukaryotic, Prokaryotic, and Viral Genomes. *Mol Biol Evol* **38**:
635 4647–4654.

636 Martin M (2011). Cutadapt removes adapter sequences from high-
637 throughput sequencing reads. *EMBnet.journal* **17**: 10–12.

638 Mc Cartney AM, Formenti G, Mouton A, Ciofi C, Waterhouse RM, Mazzoni
639 CJ, et al. (2023). The European Reference Genome Atlas: piloting a
640 decentralised approach to equitable biodiversity genomics. *bioRxiv*:
641 2023.09.25.559365.

642 von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE
643 (2019). Robust taxonomic classification of uncharted microbial
644 sequences and bins with CAT and BAT. *Genome Biol* **20**: 217.

645 Michener CD (2007). *The Bees of the World*. Johns Hopkins University
646 Press.

647 Mullin VE, Stephen W, Arce AN, Nash W, Raine C, Notton DG, et al.
648 (2022). First large-scale quantification study of DNA preservation in
649 insects from natural history collections using genome-wide
650 sequencing. *Methods Ecol Evol*.

651 Ollerton J (2021). *Pollinators and Pollination: Nature and Society*. Pelagic
652 Publishing Ltd.

653 Outhwaite CL, McCann P, Newbold T (2022). Agriculture and climate
654 change are reshaping insect biodiversity worldwide. *Nature* **605**:
655 97–102.

656 Pereira JA, Travenzoli NM, de Oliveira MP, de Azevedo Werneck H,
657 Salomão TMF, Lopes DM (2021). Molecular cytogenetics in the
658 study of repetitive sequences helping to understand the evolution of
659 heterochromatin in *Melipona* (Hymenoptera, Meliponini). *Genetica*
660 **149**: 55–62.

661 Piccoli MCA, Bardella VB, Cabral-de-Mello DC (2018). Repetitive DNAs in
662 *Melipona scutellaris* (Hymenoptera: Apidae: Meliponidae):
663 chromosomal distribution and test of multiple heterochromatin
664 amplification in the genus. *Apidologie* **49**: 497–504.

665 Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, et
666 al. (2019). Widespread losses of pollinating insects in Britain. *Nat
667 Commun* **10**: 1018.

668 Praz C, Müller A, Hermann M, Neumeyer-Funk R, Bénon D, Amiet F, et al.
669 (2022). Swiss National Apoidea Databank. Version 1.5.

670 von Reumont BM, Dutertre S, Koludarov I (2022). Venom profile of the
671 European carpenter bee *Xylocopa violacea*: Evolutionary and
672 applied considerations on its toxin components. *Toxicon X* **14**:
673 100117.

674 Rhee A, Walenz BP, Koren S, Phillippy AM (2020). Merqury: reference-free
675 quality, completeness, and phasing assessment for genome
676 assemblies. *Genome Biol* **21**: 245.

677 Rollin O, Vray S, Dendoncker N, Michez D, Dufrêne M, Rasmont P (2020).
678 Drastic shifts in the Belgian bumblebee community over the last
679 century. *Biodivers Conserv* **29**: 2553–2573.

680 Shaw F, Etuk A, Minotto A, Gonzalez-Beltran A, Johnson D, Rocca-Serra
681 P, et al. (2020). COPO: a metadata platform for brokering FAIR data
682 in the life sciences. *F1000Res* **9**: 495.

683 Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D (2021). The Impact of
684 Climate Change on Agricultural Insect Pests. *Insects* **12**.

685 Sless T, Rehan S (2023). Phylogeny of the carpenter bees (Apidae:
686 Xylocopinae) highlights repeated evolution of sociality. *Biol Lett* **19**:
687 20230252.

688 Tavares MG, Carvalho CR, Soares FAF (2010). Genome size variation in
689 *Melipona* species (Hymenoptera: Apidae) and sub-grouping by their
690 DNA content. *Apidologie* **41**: 636–642.

691 Tezcan S, Skyrpan I (2022). New Locality Records For *Xylocopa*
692 (Hymenoptera: Apidae: Xylocopinae) Fauna of Turkey. *Біологічні
693 смудії / Studia Biologica* **16**: 3–12.

694 Travenzoli NM, Cunha MS, Teixeira LV, Brito RM, Oldroyd B, Campos
695 LAO, *et al.* (2022). Cytogenetic characterization of *Austroplebeia*
696 *australis*: evolutionary hints from a stingless bee outside the
697 Neotropical region. *Apidologie (Celle)* **53**: 1–8.

698 Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Darwin Tree of Life
699 Consortium, Formenti G, Abueg L, *et al.* (2023). MitoHiFi: a python
700 pipeline for mitochondrial genome assembly from PacBio high
701 fidelity reads. *BMC Bioinformatics* **24**: 288.

702 Vargas P, Liberal I, Ornosa C, Gómez JM (2017). Flower specialisation: the
703 occluded corolla of snapdragons (*Antirrhinum*) exhibits two
704 pollinator niches of large long-tongued bees. *Plant Biol* **19**: 787–
705 797.

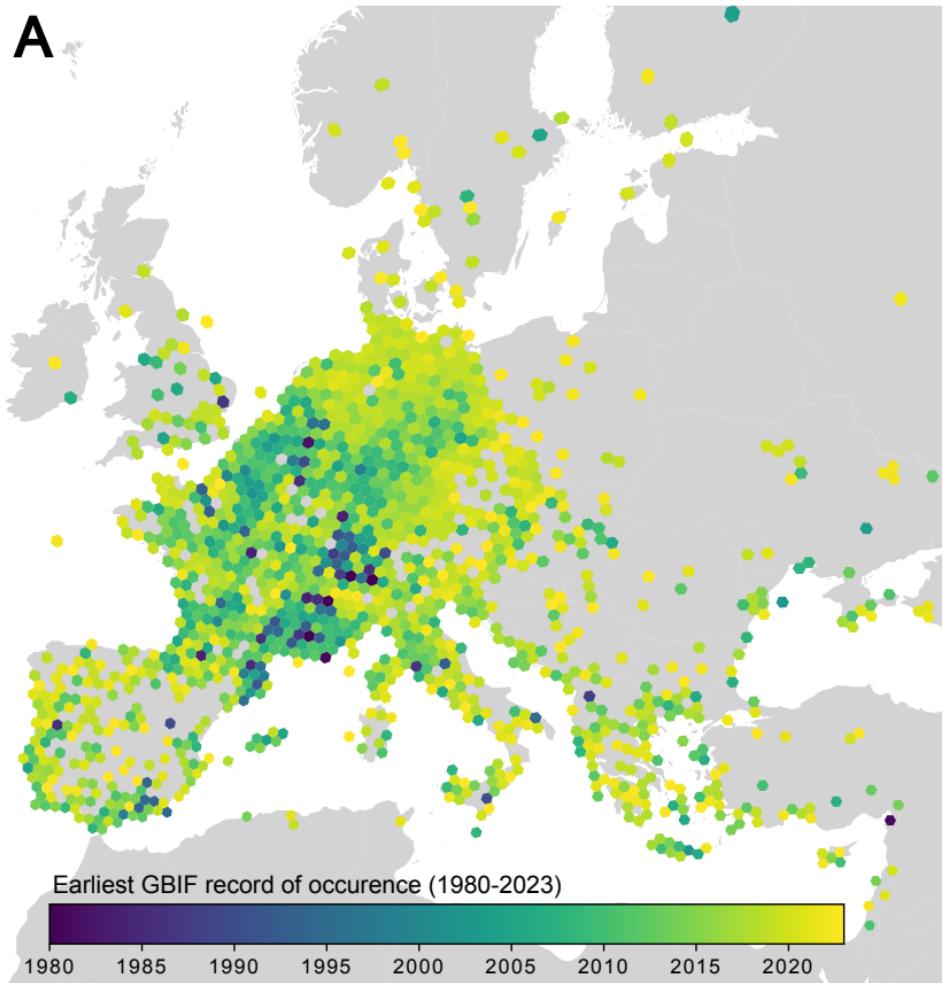
706 Vicedomini S (1996). Biology of *Xylocopa violacea* (Hymenoptera): In-nest
707 ethology. *Ital J Zool* **63**: 237–242.

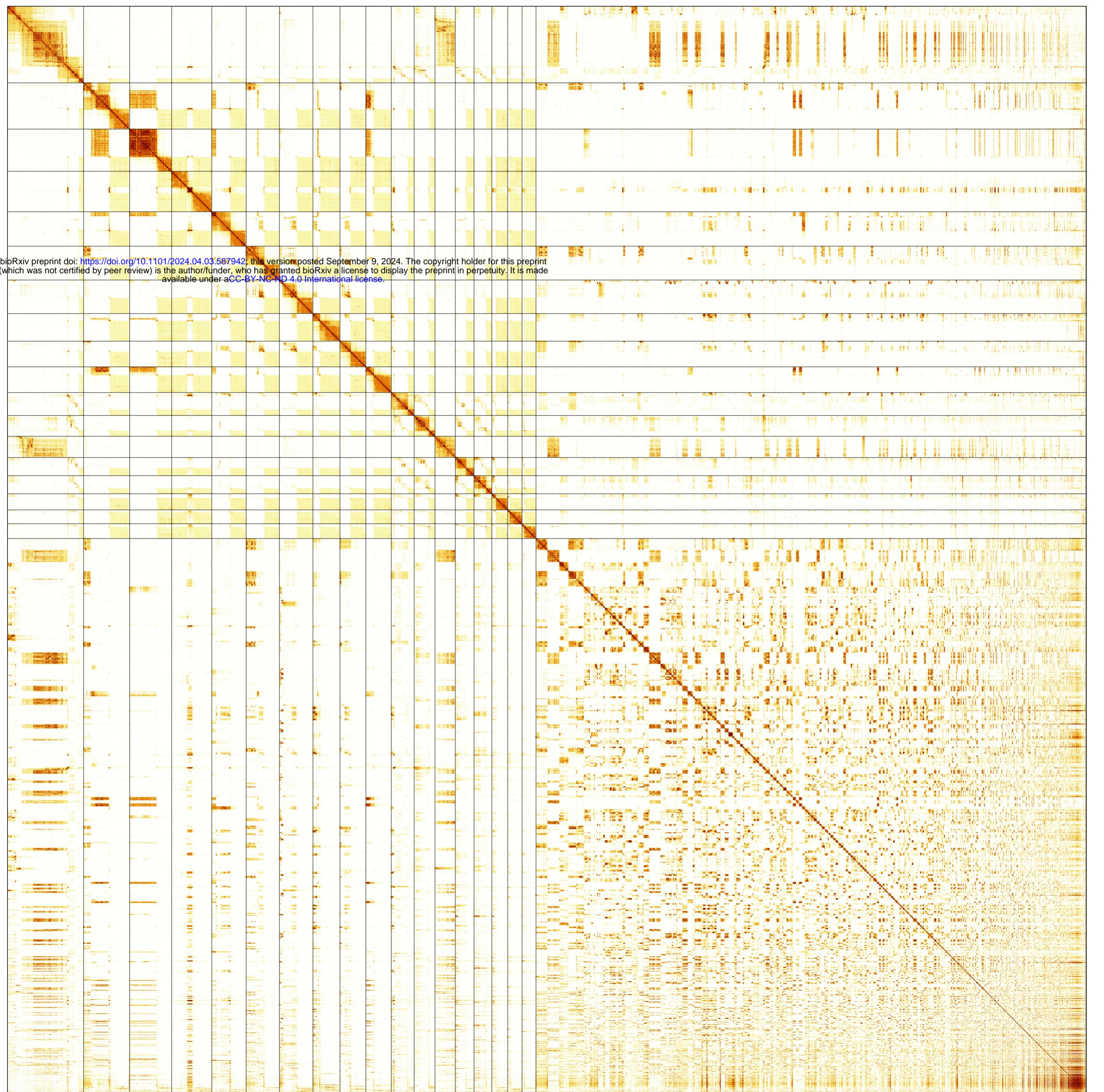
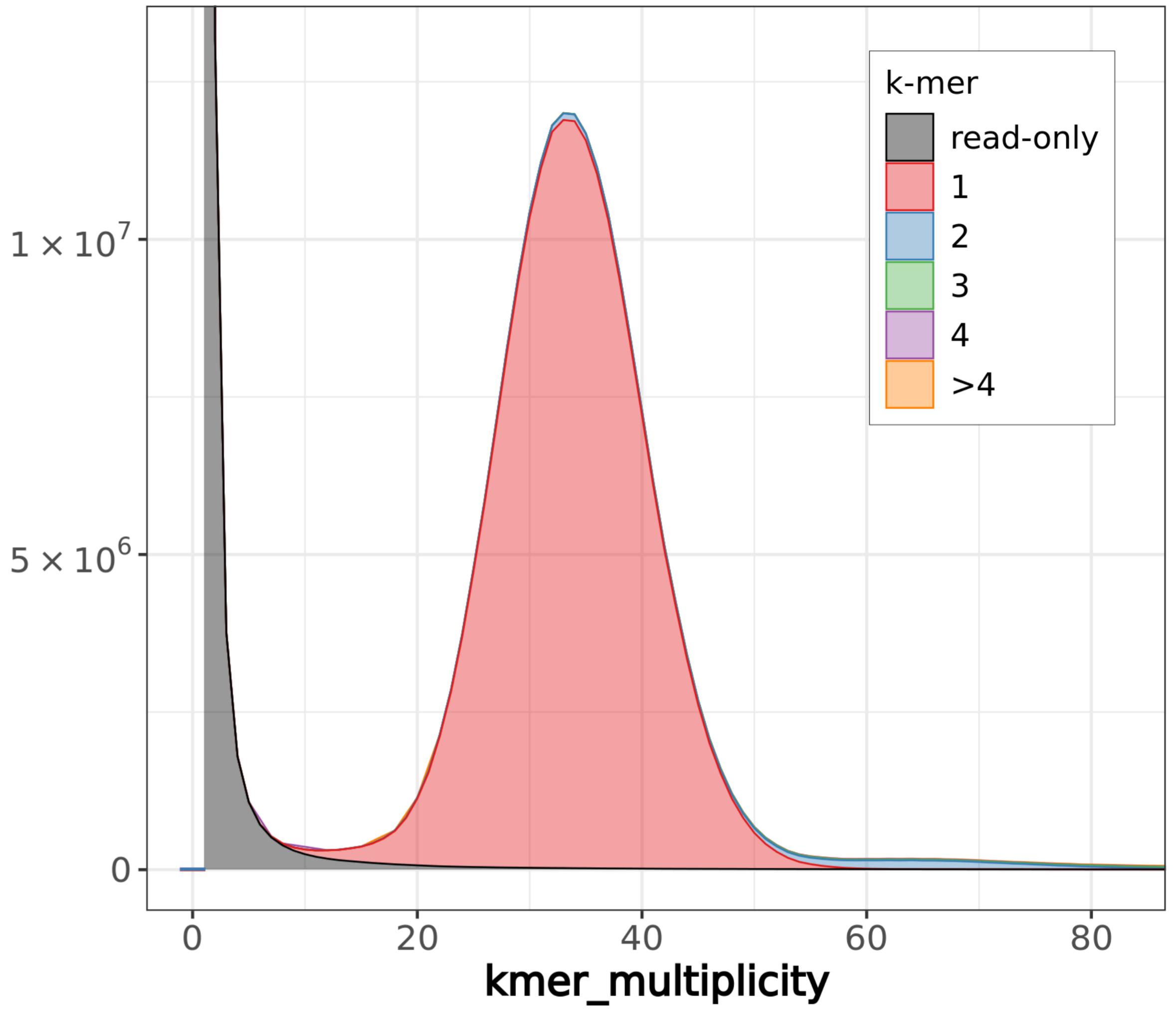
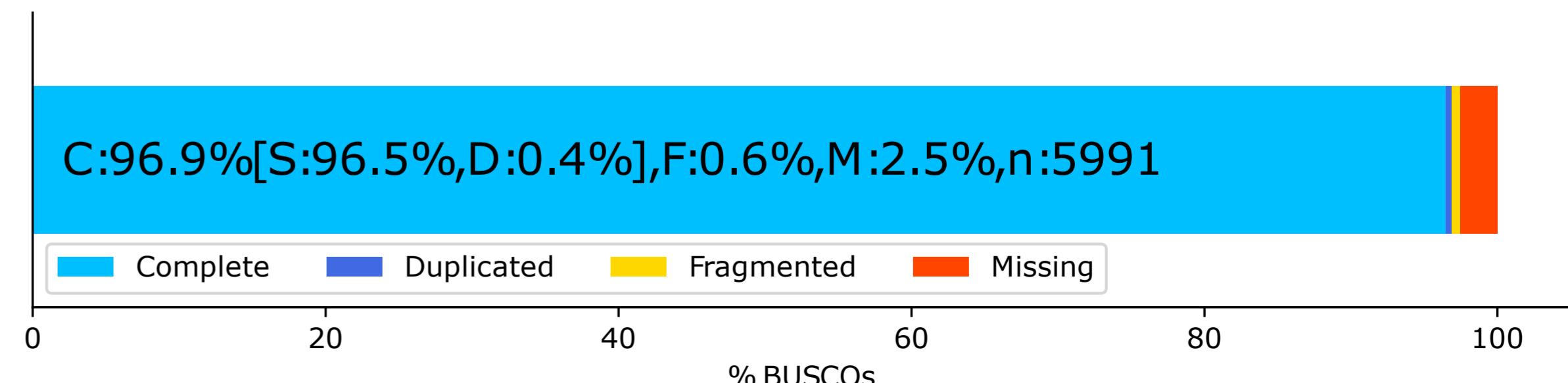
708 Vollger MR, Kerpedjiev P, Phillippy AM, Eichler EE (2022). StainedGlass:
709 interactive visualization of massive tandem repeat structures with
710 identity heatmaps. *Bioinformatics* **38**: 2049–2051.

711 Wallberg A, Bunikis I, Pettersson OV, Mosbech M-B, Childers AK, Evans
712 JD, *et al.* (2019). A hybrid *de novo* genome assembly of the
713 honeybee, *Apis mellifera*, with chromosome-length scaffolds. *BMC*
714 *Genomics* **20**: 275.

715 Webster MT, Beaurepaire A, Neumann P, Stolle E (2022). Population
716 Genomics for Insect Conservation. *Annu Rev Anim Biosci*.

717 Włodzimierz P, Hong M, Henderson IR (2023). TRASH: Tandem Repeat
718 Annotation and Structural Hierarchy. *Bioinformatics* **39**.


719 Wood DE, Lu J, Langmead B (2019). Improved metagenomic analysis with
720 Kraken 2. *Genome Biol* **20**: 257.




721 Yang LH, Gratton C (2014). Insects as drivers of ecosystem processes.
722 *Curr Opin Insect Sci* **2**: 26–32.

723 Zhang Y, Chu J, Cheng H, Li H (2023). *De novo* reconstruction of satellite
724 repeat units from sequence data. *Genome Res* **33**: 1994–2001.

725 Zhou C, McCarthy SA, Durbin R (2023). YaHS: yet another Hi-C scaffolding
726 tool. *Bioinformatics* **39**.

727 Zhou Y, Wang Y, Xiong X, Appel AG, Zhang C, Wang X (2022). Profiles of
728 telomeric repeats in Insecta reveal diverse forms of telomeric motifs
729 in Hymenopterans. *Life Sci Alliance* **5**.

A**B****C**

A**B****C**