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57  Abstract

58

59  We present a reference genome assembly from an individual male Violet
60 Carpenter Bee (Xylocopa violacea, Linnaeus, 1758). The assembly is 1.02
61 gigabases in span. 48% of the assembly is scaffolded into 17 pseudo-
62 chromosomal units. The mitochondrial genome has also been assembled
63 and is 21.8 kilobases in length. The genome is highly repetitive, likely
64  representing a highly heterochromatic architecture expected of bees from
65 the genus Xylocopa. We also use an evidence-based methodology to
66 annotate 10,152 high confidence coding genes. This genome was
67 sequenced as part of the pilot project of the European Reference Genome
68 Atlas (ERGA) and represents an important addition to the genomic
69 resources available for Hymenoptera.

70

71 Introduction

72

73  We live in a time of unprecedented biodiversity loss (Ceballos and Ehrlich,
74  2023) exemplified by the global decline of insect fauna undeniably
75 associated with anthropogenic stressors (Outhwaite et al., 2022). Insect
76  biodiversity loss puts key ecosystem services, such as pollination (Ollerton,
77  2021) and decomposition (Yang and Gratton, 2014), at risk. Although there
78 is strong evidence of insect declines in the recent history (Hallmann et al.,
79 2017; Powney et al., 2019), changes in global climate have also seen

80 patterns of range shift in many taxa (e.g. Kerr et al., 2015; Lehmann et al.,
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81 2020; Rollin et al., 2020; Halsch et al., 2021; Skendzi¢ et al., 2021). The
82  European Reference Genome Atlas (ERGA, Mc Cartney et al., 2023) aims
83 to empower research communities to expand the taxonomic coverage of
84  genomic resources, enabling cross taxa analyses to address continent-
85 scale questions, such as those surrounding range shifts, at the genomic
86 level.
87
88  There are currently no annotated, reference quality, genomic resources for
89 the Carpenter bees (Hymenoptera: Apidae). They are classified as a single
90 genus, Xylocopa (Latreille, 1802), which contains around 400 species
91 (Gerling et al., 1989; Leys et al., 2000, 2002; Michener, 2007), and are
92 considered as essential pollinators (e.g. Vargas et al., 2017; Malabusini et
93 al., 2019). In Europe, the most widespread Xylocopa species is the Violet
94  Carpenter Bee, Xylocopa violacea (Linnaeus, 1758) (Vicidomini, 1996).
95 This species has a pan-European distribution (Figure 1,
96 https://www.gbif.org/species/1342108) that also extends to Algeria and
97  Turkey (Gerling et al., 1989; Aouar-Sadli et al., 2008; Tezcan and Skyrpan,
98 2022), Iraq and India (Dar et al., 2016; Bamarni and Elsaiegh, 2022).
99
100 In recent years, Xylocopa violacea has exhibited a marked range
101  expansion, with records in Germany (Praz et al., 2022), Czech Republic
102  (Kleprlikova and Vrabec, 2020), Poland (Banaszak et al., 2019), and as far
103  north as Sweden (Cederberg and Others, 2018) (Figure 1). The northward

104  expansion of the Violet Carpenter Bee's range may be attributed to various
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105 factors, including climatic changes in Europe (Banaszak et al., 2019).
106  Xylocopa violacea is a solitary bee (Vicidomini, 1996), although within the
107 genus there is evidence for several independent transitions to sociality
108 (Gerling et al., 1989; Sless and Rehan, 2023). X. violacea also exhibits a
109 lineage specific microbiome (Alberoni et al., 2019; Holley et al., 2022;
110 Handy et al., 2023) and a distinctive venom profile with novel melittin
111  variants that show potential for anticancer applications (von Reumont et al.,
112  2022; Erkoc et al., 2022). There is only a contig-level assembly of the X.
113  violacea genome currently available (Koludarov et al., 2023).

114

115 Here, we present a pseudo-chromosomal assembly of the genome of
116  Xylocopa violacea. The genome was sequenced as part of the pilot project
117  of the ERGA (Mc Cartney et al., 2023). The ERGA consortium is pioneering a
118 democratised approach to biodiversity sequencing, and paired a sample
119 ambassador from Malta, where X. violacea is an important and understudied
120 species, with a sequencing centre in the UK order to generate the assembly
121  presented here. The X. violacea genome assembly is characterised by its
122  highly heterochromatic karyotype, a trait also shared by other Xylocopa
123  species (Hoshiba and Imai, 1993). This genomic resource fills an important
124  gap in the taxonomy of the Apidae, and also releases the potential to study
125 the expanding population of this important pollinating species at the
126  genomic level (e.g. Formenti et al., 2022; Webster et al., 2022).

127

128 Materials and Methods

129
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130 Sample Acquisition

131 A male (iyXylViol4, ERS10526494) and female (iyXylViol2, ERS10526492)
132  Xylocopa violacea individual were collected at Chadwick Lakes, Rabat,
133 Malta (Latitude: 35.894639, Longitude: 14.392165). Samples were chilled
134  to 4°C, preserved in dry ice, and maintained at -80°C until shipment to the
135 Earlham Institute, Norwich, UK following Nagoya Protocol, permit ABSCH-
136 IRCC-MT-255778-1. Sample metadata conformed to ERGA sample
137  manifest standards (Béhne et al., 2024) and were submitted to ENA using
138 COPO (Shaw et al., 2020).

139

140 DNA Library Preparation and Sequencing

141  High molecular weight (HMW) DNA was extracted from thorax tissue of an
142  individual male bee (iyXylViol4) using the Qiagen MagAttract HMW DNA
143  Kit, with modifications as described in Mullin et al. (2022). HiFi library
144  preparation and Pacific Biosciences (PacBio) sequencing were carried out
145  following the low-input protocol described in Mullin et al. (2022),
146  (Supplementary Methods) and sequenced on four Sequel Il SMRT® Cell 8M
147  (diffusion loading, 30-hour movie, 2-hour immobilisation time, 2-hour pre-
148  extension time, 60-77 pM on plate loading concentration).

149

150 RNA Extraction, RNA-seq Library Preparation and Sequencing

151 RNA extractions were conducted on flash frozen head, thorax, abdomen,
152  and leg tissues from an individual female bee (iyXylViol2) using the Omega

153 EZNA Total RNA Kit | (R6834-01). RNA-seq libraries were then constructed
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154  using the NEBNext Ultra Il RNA Library prep for lllumina kit (NEB#E7760L)
155 NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB#7490) and
156  NEBNext Multiplex Oligos for lllumina® (96 Unique Dual Index Primer Pairs)
157 (E6440S) at a concentration of 10uM. Libraries were sequenced on an SP
158 flow cell on a NovaSeq 6000 instrument set up to sequence 150bp paired
159 end reads.

160

161 Iso-Seq Library Preparation and Sequencing

162 PacBio Iso-Seq libraries were constructed starting from 234-300 ng of total
163 RNA from the 4 tissue specific extractions described above. Reverse
164  transcription cDNA synthesis was performed using NEBNext® Single
165 Cell/lLow Input cDNA Synthesis & Amplification Module (NEB, E6421).
166  Samples were barcoded and the library pool was prepared according to the
167 guidelines laid out in the Iso-Seq protocol version 02 (PacBio, 101-763-
168 800), using SMRTbell express template prep kit 2.0 (PacBio, 102-088-900).
169 The Iso-Seq pool was sequenced on the PacBio Sequel Il instrument with
170  one Sequel Il SMRT® Cell 8M.

171

172  Hi-C Library Preparation and Sequencing

173  High-throughput/resolution chromosome conformation capture-based (Hi-
174 C) sequencing data was generated from head tissue of male individual
175 iyXylViol4 using the Arima Genome Wide Hi-C kit, the NEBNext Ultra |l

176 DNA Library preparation kit, and Kappa HiFi HotStart ReadyMix. The
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177  resulting libraries were sequenced on an SP flow cell, on the Novaseq 6000
178 instrument, sequencing 150bp paired end reads.

179

180 Contig level genome assembly

181 HiFi reads were extracted from the raw Pacific Biosciences output by the
182  Earlham Institute core bioinformatics group using the Pacific Biosciences
183 SMRTIink pipeline (v10.1.0.119588). Prior to assembly, HiFi reads were
184  trimmed for adapter sequences with Cutadapt (v3.2, Martin, 2011). The
185 genome was assembled with hifiasm (v0.18.5, Cheng et al., 2021).
186 Mitochondrial contigs were identified with MitoHifi (v3.0.0, Uliano-Silva et
187 al., 2023), using the Apis mellifera mitochondrial genome (OK075087.1) as
188 a closely related guide. All putative mitochondrial contigs were removed
189 prior to scaffolding, and the MitoHifi best fit mitochondrial sequence was
190 added back into the assembly following scaffolding. Contaminant contigs
191  were identified and removed as the intersect of the outputs of Kraken2
192  (v2.0.7, Wood et al., 2019), BlobTools (v1.1.1, Laetsch and Blaxter, 2017),
193  barnapp (v0.9, Table S1), CAT (v5.2.3,von Meijenfeldt et al., 2019), and
194 FCS-GX (v0.3.0, Astashyn et al., 2023). Assembly completeness was
195 assessed with BUSCO (v5.0.0, Manni et al, 2021) using
196 hymenoptera_odb10. Assembly quality and kmer completeness were
197 assessed with Merqury (v1.3, Rhie et al., 2020). Genome size of the final
198 assembly was estimated using FastK (Table S1) and GeneScopeFK (Table
199 S1).

200
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201 Hi-C Read QC & Scaffolding

202 Raw Hi-C reads were trimmed for adapters using trimmomatic (v0.39,
203 Bolger et al., 2014) with the adapters.fa file from bbmap (v35.85, Bushnell,
204  2014) as input (see Supp. Methods). Hi-C reads were mapped to the draft
205 assembly with Juicer (v1.6, Durand et al., 2016). Following the removal of
206 contigs assigned as contaminant or mitochondrial, Hi-C reads were
207 mapped to the resulting assembly using the Arima Mapping Pipeline (Table
208 S1). The resulting mappings were used to scaffold the decontaminated
209  assembly using YaHS (v1.2a.2, Zhou et al., 2023).

210

211 Manual Curation of Scaffolded Assembly

212  Following scaffolding, trimmed, unfiltered Hi-C reads were mapped to the
213  scaffolded assembly using Juicer (v1.6, Durand et al., 2016). Using these
214  mappings, the scaffolded assembly was manually curated to pseudo-
215 chromosomal level using Pretext-Map (v0.1.9, Table S1) contact maps
216 visualised in PretextView (v0.2.5, Table S1). Inputs for PrextextView
217 (Coverage track, Gap track, Telomere track) were created using the eihic
218 pipeline (Table S1) in curation mode (-c). Following curation, the Rapid
219  Curation Pipeline (Table S1), developed by the GRIT team at the Wellcome
220 Sanger Institute, was used to extract the manually curated assembly in
221 fasta format.

222

223  Annotation
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224 Annotation of repetitive DNA content was performed using the El-Repeat
225 pipeline (v1.3.4, Table S1) which uses third party tools for repeat calling.

226  The repeat content of the iyXylViol4 assembly was further classified using

227 srf (Zhang et al.,, 2023) and TRASH (WIlodzimierz et al., 2023), and
228 visualised using StainedGlass (Vollger et al., 2022). The telomeric repeat
229 landscape was explored using the explore and search functions of tidk
230 (Table S1). Gene models were generated from the iyXylViol4 assembly
231 using REAT - Robust and Extendable eukaryotic Annotation Toolkit (Table
232 S1) and Minos (Table S1) which mayke use of Mikado (Table S1),
233  Portcullis (Table S1) and many third-party tools (listed in the above
234  repositories).

235

236  Results & Discussion

237

238 DNA seguencing

239 HMW DNA extractions from two 30 mg sections of thorax tissue from a
240 single male Xylocopa violacea individual (iyXylViol4) yielded 829 ng of
241 HMW DNA, with 74-84% of fragments over 40 kb fragment size (Figure
242  S1). Following library preparation, 2,520,442 PacBio HiFi Reads were
243 obtained (21.8x coverage of the final assembly). The whole head tissue
244 from this individual (98mg) was used to generate 535,271,589 lllumina
245  short reads following proximity ligation and Arima High Coverage Hi-C
246  library preparation (see Supp. Results). Sequencing of this library produced

247 509,760,108 read pairs.

10
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248

249  Transcriptome sequencing

250 Total RNA was extracted from four tissues segments (Head, Thorax,
251  Abdomen, Legs) from a second individual (female, iyXylViol2). These
252  tissues produced 4.3 pug, 3.6 ug, 18.2 ug, 2.6 pg of total RNA respectively.
253 We generated 149,032,417, 107,159,638, 116,609,061, and 148,189,077
254  lllumina RNA-seq short reads respectively for the head, thorax, abdomen,
255 and legs. Additional RNA-seq reads, from X. violacea venom gland, were
256  downloaded from SRA (SRR14690757, Koludarov et al., 2023). The same
257 extractions were also used to generate 790,150; 717,956; 977,170, and
258 999,264 PacBio Iso-Seq long reads for the head, thorax, abdomen, and
259 legs respectively. Cumulatively, this represented an average of 81.76x
260 long-read coverage of the transcriptome.

261

262  Genome Assembly

263 The initial contig assembly had 1224 contigs and spanned 1.08 Gb with an
264  N50 of 5.91 Mb (Table 1). Prior to scaffolding, 161 contigs (59.8 Mb) were
265 classified as contaminant content and removed from the assembly. A contig
266  was only classified as contaminant and removed if it was identified in the
267 output of 2 of the following tools: Contigs identified as not within the
268 Instecta by Kraken2 (316), contigs classified as “no-hit’ by blobtools (389),
269  contigs identified as bacterial or archaeal 16s by barnapp (384), contigs
270 classified as bacterial or viral by CAT (4), or contigs identified as

271 contaminants by FCS-GX (1). For further details see Table S6. 79

11


https://doi.org/10.1101/2024.04.03.587942
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.587942; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

272  mitochondrial candidates (1.7 Mb), identified by MitoHifi, were also
273 removed. With this content removed, the assembly had 984 contigs
274  spanning 1.02 Gb, with an N50 of 5.96 Mb (Table 1).

275

276  Scaffolding generated an assembly with 1343 scaffolds spanning 1.02 Gb
277  with an N50 of 6.65 Mb (Table 1). The scaffolded assembly was manually
278 curated to give the final pseudo-chromosomal iyXylViol4 assembly

279 (GCA _963969225.1), containing 1300 scaffolds over 1.02 Gb, and an N50

280 of 11.42 Mb (Figure 2, Table 1). The consensus mitogenome (21.8 Kb) was
281 added to the assembly following manual curation and annotation. The
282  iyXylViol4 assembly contains 17 pseudo-chromosomal units. One of these
283  units has Hi-C telomeric signal at both ends, and the remaining 16 of which
284 have Hi-C telomeric signal at one end. Xylocopa violacea has been
285 suggested to have a karyotype of 16 (Granata, 1909), similar to a related
286 species, X. fenestra, (Kumbkarni, 1965; Kerr and da Silveira, 1972), thus it
287 is possible that two of the remaining super scaffolds in the iyXylViol4
288 assembly correspond to chromosomal arms with insufficient Hi-C signal to
289 be joined. Alternatively, X. appendiculata has a karyotype of 17
290 chromosomes including a majority of pseudo-acrocentric chromosomal
291 morphologies (Hoshiba and Imai, 1993).

292

293 Following Wallberg et al. (2019), we identified the centromeric signature of
294 low GC% in 6 super scaffolds (Supplementary Methods, Figure S5). We

295 identified one such region at the centre of the only firmly identified

12
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296  metacentric chromosome (iyXylViol4_SUPER_4). The other 5 candidates
297 all separate putative euchromatic regions bearing many coding
298 annotations, from regions of high repeat content. This pattern of repeat
299 expansion around centromeric sequences has been observed in other
300 bees, such as Austroplebeia australis (Travenzoli et al., 2022), and may
301 help to explain the high levels of interaction between unplaced scaffolds
302  and the pseudo-chromosomal units in the iyXylViol4 assembly.

303

304  Highly acrocentric karyotypes are well represented within the Xylocopinae,
305 the genus Ceratina exhibits species with karyotypes representing 14-17
306 chromosomes, with ratios of acrocentric to metacentric chromosomes
307  varying between 16:1, 15:2, and 12:5 (Hoshiba and Imai, 1993; Cunha et
308 al., 2021). Such patterns are also common in other, more evolutionarily
309 distant bees: Austroplebeia australis has been shown to have 14 largely
310 heterochromatic chromosome pairs and four that are fully euchromatic
311 (Travenzoli et al., 2022).

312 Without further investigation, potentially employing ultra-long read
313 technologies, it is not possible to differentiate between N=16 or N=17 from
314  the iyXylViol4 assembly.

315

316 Assembly QC

317 BUSCO analysis of the iyXylViol4 assembly showed that it contains 96.5%
318 of the 5991 hymenoptra_odbl0 set as complete genes, with only 0.4%

319 complete and duplicated, 0.6% fragmented, and 2.5% missing (Figure 2,

13
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Table S2). The genic content was not impacted by the scaffolding process
as the same metrics are recovered in the contig, scaffolded, and manually
curated assemblies. The iyXylViol4 assembly is QV 63.3 and has a kmer
completeness of 98.8% (Table S3).

The iyXylViol4 assembly is 1.02Gb in length. Although this is not outside of
the upper limits for known genome sizes from the Apidae (e.g. Melipona
capixaba 1.38Gb, (Tavares et al., 2010; Cunha et al., 2021), k-mer based
estimation of genome size from iyXylViol4 suggests the genome size to be
672 Mb (Table S4, Figure S4). This estimation is in line with the only
prediction from the genus Xylocopa comes from Ardila-Garcia et al. (2010),
who report an estimated genome size of 0.69pg (~675 Mb) for Xylocopa
virginica krombein. This species is a member of the North American
subgenus Xylocopoides, thought to have diverged from the genus Xylocopa
s.l. some 34 mya (Leys et al., 2002), and so using this estimate as a cross
validation for the iyXylViol4 assembly may not be relevant. The 17 pseudo-
chromosomal iyXylViol4 super scaffolds (including unloc) are 481.4 Mb in
length, representing a large majority of the predicted genome size. As
complete reconstruction of the iyXylViol4 chromosomes was not feasible in
this study, we have included all unplaced scaffolds in the final assembly, as
these likely encompass the remaining genomic content.

Repeat Content

The majority of the iyXylViol4 assembly was masked as repetitive
sequence (821.28 Mb, 80.47%) (Table S5). The predominant category was

unclassified repeats, with 755.96 Mb (74.08%). This pattern is consistent

14
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344  with pseudo-acrocentric chromosomes with extremely elongated
345  heterochromatic arms which are frequently observed in bees and wasps
346  (Hoshiba and Imai, 1993). These have been suggested to be induced by
347 saltatory growth of constitutive heterochromatin after centric fission
348 (Hoshiba and Imai, 1993). Bees from the Apinae genus Melipona have
349  recently been shown to exhibit up to 73% heterochromatin content (Pereira
350 et al., 2021). As is seen in iyXylViol4, bees from the genus Melipona also
351 have terminal euchromatic regions (Piccoli et al., 2018) which is consistent
352 with the pseudo-acrocentric chromosomal topology derived from X.
353 appendiculata (Hoshiba and Imai, 1993), with many chromosomes
354  representing large expansions of heterochromatin repeats around the
355 centromere.

356

357 Classification of the repeats within the iyXylViol4 assembly showed the ten
358 most abundant satellite repeat units identified by srf (Zhang et al., 2023) to
359  occupy 105.6Mb of the assembly (Table S6). Further decomposition of the
360 satellite repeats present in the iyXylViol4 assembly, using TRASH
361 (Wlodzimierz et al., 2023), revealed the predominant monomeric repeat unit
362 to be a 109mer (Figure S7, Figure S8, Table S7). This 109mer or a 217mer
363 (approximately double its length) were highly abundant throughout the
364  putative acrocentric chromosomes (Figure S8) and was repeated with high
365 identity (Figure S7).

366
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367 We also observe that the putative centromeric sequences are flanked by a
368 distinct repeat signature. In the metacentric iyXylVio4d SUPER_4, the
369 putative centromere has expansions of a 95mer on either side of it.
370 Regions abundant in this 95mer are also seen in 13 of the 16 putative
371  acrocentric pseudo-chromosomal molecules (Figure S8), and these often
372  occur in proximity to the location of the regions of low GC% which are
373  putatively centromeric.

374

375 Recent studies have shown telomeric repeat maotifs in Hymenoptera to be
376  diverse, including complex telomeric layering resulting from numerous site
377  specific retrotransposon insertions (Lukhtanov, 2022; Zhou et al., 2022).
378 The iyXylViol4 assembly shows that X. violacea has telomeres enriched for
379 the canonical 5bp ancestral arthropod repeat motif (TTAGG) (Figure S5).
380 The iyXylViol4 assembly also shows that X. violacea has varying sub-
381 telomeric repeat sequences, consistent with ‘Type 2’ telomeres suggested

382 by (Lukhtanov and Pazhenkova, 2023) (Figure S6).

383  Annotation

384 The iyXylViol4_Elv1.0 annotation of the iyXylViol4 assembly contains
385 10,152 high confidence, protein-coding gene models, coding for 26,577
386 transcripts (Table S8). This number of annotations is well within the range
387  of those generated for contemporary genome assemblies (Table S9). Using
388 the hymenoptera_odb10 database, this annotation represents 99.75%
389 BUSCO completeness at the protein level, with only 34 BUSCO genes

390 duplicated, 3 fragmented and 12 missing (Table S3). The annotation
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391 contains an average of 2.49 transcripts per gene, with a mean transcript
392 cDNA size of 3,238.2bp (Table S10). The distribution of coding genes is
393 skewed to the distal end of the 16 pseudo-chromosomal super-scaffolds
394  with putative pseudo-acrocentric structure (Figure S5), supporting the
395 previously suggested topology of highly repetitive pseudo-acrocentric
396 chromosomes expected in Xylocopa species (Hoshiba and Imai, 1993;
397  Gokhman, 2023).

398

399 Conclusion

400

401 Here, we present a pseudo-chromosomal genome assembly of the Violet
402  Carpenter bee, Xylocopa violacea. At 1.02 Gb, the assembly is larger than
403 the predicted genome size (672 Mb), but also represents large regions of
404 highly repetitive, putatively heterochromatic, sequence. Such chromosomal
405  architecture is in line with the small amount of karyotypic resources from
406 the genus and is also supported by the iyXylViol4_Elvl annotation. The

407 repetitive regions we describe are predominantly made up of 109 and

408 217mers. The annotated assembly we present fills an important taxonomic
409 gap in the genomic resource set representing Hymenoptera and will also
410 provide a genomic basis for future interpretation of the expanding range of
411  this charismatic and economically important species.
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486 Figure 1. The Violet Carpenter Bee, Xylocopa violacea. A) Records of
487  X. violacea occurrence in Europe between 1980 and 2023 (GBIF.org, 04
488 December 2023, https://doi.org/10.15468/d1.3gr8wv). Hexes are coloured
489 by earliest year of occurrence; lighter colours are more recent. Records
490  prior to 1980 not plotted. B) A female X. violacea individual (Bautsch, CCO,
491 via Wikimedia Commons.) C) The male X. violacea (iyXylViol4) used for
492  DNA sequencing in this study.

493

494  Figure 2. iyXylViol4 assembly of the Xylocopa violacea genome. A) Hi-
495 C contact map (Supp Methods). Scaffolds are ordered by size with the 17
496 pseudo-chromosomal super scaffolds appearing in the top left half of the
497 map, defined by overlayed lines. Visualisation constructed with
498 multimapping reads (MAPQ=0). B) Merqury kmer spectra, k = 19, single
499 peak representing the haploid male genome of iyXylViold. C)

500 Completeness of the hymenoptera_odb10 BUSCO set (5991 genes).
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501 Table 1. Contiguity statistics of the iyXylViol4 assembly at four stages of
502 the assembly pipeline. Statistics generated using abyss-fac (Jackman et
503 al., 2017). Contam = Contigs identified as contaminant, see main text, Mito
504 = putuatuive mitochondrial contigs, identified using MitoHifi (Uliano-Silva et
505 al., 2023), see main text.
Min Max Sum
Size N75 N50 N25 Size Size
Assembly Processing n n:500 L50 (Bases) (Bases) (Bases) (Mb) (Mb) (Ghb)
None 1224 1224 54 6217 2,713,785 5,907,526 11.39 25.68 1.082
Conti Contam
onti
g reTAci’t‘fd' 984 984 50 6530 3,024,594 50963704 11.73 2568 1.02
removed
None 1343 1343 41 1000 2,669,000 6,651,566 15.08 39.23 1.02
Scaffold Manua|
. 1300 1300 19 1000 2,735,000 11,420,000 31.82 7142 1.02
Curation
506
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