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Abstract

Selective attention is a cognitive function that helps filter out unwanted information. Theories
such as the biased competition model (Desimone & Duncan, 1995) explain how attentional
templates bias processing towards targets in contexts where multiple stimuli compete for
resources. However, it is unclear how the anticipation of different levels of competition
influences the nature of attentional templates, in a proactive fashion. In this study, we used EEG
to investigate how the anticipated demands of attentional selection (either high or low stimuli
competition contexts) modulate target-specific preparatory brain activity and its relationship
with task performance. To do so, participants performed a sex judgement task in a cue-target
paradigm where, depending on the block, target and distractor stimuli appeared simultaneously
(high competition) or sequentially (low competition). Multivariate Pattern Analysis (MVPA)
showed that, in both competition contexts, there was a preactivation of the target category to
select with a ramping-up profile at the end of the preparatory interval. However, cross-
classification showed no generalization across competition conditions, suggesting different
preparatory formats. Notably, time-frequency analyses showed differences between anticipated
competition demands, reflecting higher theta band power for high than low competition, which
mediated the impact of subsequent stimuli competition on behavioral performance. Overall, our
results show that, whereas preactivation of the internal templates associated with the category to
select are engaged in advance in both competition contexts, their underlying neural patterns
differ. In addition, these codes could not be associated with theta power, suggesting different
preparatory processes. The implications of these findings are crucial to increase our
understanding of the nature of top-down processes across different contexts.

Keywords: biased competition model; selective attention; MVPA, preparation; EEG
1. Introduction

In our everyday life we are surrounded by myriads of stimuli, but only some of them occupy our
mind. The process of selective attention relates to the filtering of unwanted information and the
selection of the pieces that are relevant to us. This intricate cognitive function proceeds through
various biasing routes: one involves bottom-up processes, where the characteristics of stimuli
automatically capture attention, while another is guided by goals, following top-down processes
(Desimone & Duncan, 1995). The latter does not only take place during stimulus processing but
can also happen in anticipatory fashion, by activating goal-related information before target
events. This preparatory selection is related to proactive cognition (Braver, 2012). However,
research about how such preparation unfolds to aid selection in contexts with different
attentional demands is scarce.
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One of the most influential proposals explaining selective attention is the biased competition
model (Desimone & Duncan, 1995). This framework highlights the limited capacity of neural
information processing and the essential role of competition in resolving this problem. As we
move up along the cortical hierarchy, neurons increase their receptive fields to respond to
stimuli. However, given the limits of their response, the more pieces of information (e.g.,
objects) are placed in the same receptive field, the less information there will be about each of
them. Thus, neurons are selective and prioritize certain types of information, and thus the
information that reaches our senses competes to be represented. Such competition is biased by
bottom-up and top-down mechanisms. While bottom-up mechanisms may favor, for example,
the most salient stimulus, top-down processes engage neurons in the prefrontal cortex that
generate internal templates representing relevant information. These templates are used to bias
neural competition favoring goal-relevant information. For example, if we aim to recognize a
friend's face in a crowd, pre-activation of a template of that face would later guide the
attentional selection.

Early studies explored how top-down biases affect spatial selection (Moran & Desimone, 1985;
Richmond et al., 1983) during target processing. To do this, authors compared the neural
responses to stimuli in contexts of differential competition manipulated by the presence or
absence of distractors. The first insights were obtained from electrophysiological cell recordings
in non-human primates. For example, Moran and Desimone (1985) examined neurons of the
visual cortex in a spatial attention task where monkeys had to respond to target stimuli placed at
specific locations. They used stimuli with features that were effective or ineffective for a
particular cell response. When these stimuli were presented simultaneously in the receptive field
of the cell and the monkey attended to the effective stimulus, the neuron’s response was
enhanced, whereas it was attenuated when the animal attended to the ineffective stimulus.
Therefore, the cell’s response was determined by the properties of the attended stimulus. Later
on, these findings were supported by data in humans using functional magnetic resonance
imaging (fMRI). Kastner et al. (1998) studied how competition is resolved in the human brain
when multiple stimuli appear simultaneously (a high competition context) or sequentially (low
competition). They found that in conditions of inattention, a high competition context generated
less activity in the visual cortex compared to a sequential presentation, indicating suppression of
activation due to competition. Crucially, when the competition was biased by top-down spatial
attention, neural suppression was reduced, corroborating the idea that focused attention
maghnifies attended information by mitigating the suppression caused by nearby stimuli. More
recent studies have shown that selection also results in a heightened representation of specific
characteristics of the attended stimuli (Kaiser et al., 2016; Reddy et al., 2009; Sheldon et al.,
2021). These findings have been possible thanks to the use of advanced analytic techniques such
as multivariate pattern analysis (MVPA), which has allowed to detect how brain activity
patterns encode templates of attended features (Jackson et al., 2017) or categories (Kaiser et al.,
2016; Reddy et al., 2009) of stimuli. Moreover, other studies have revealed changes in
oscillatory activity, especially on the theta band. An increase in theta power has been found in
midfrontal regions during target processing when conflictive stimuli compete with the target
(Chevalier et al., 2021; Nigbur et al., 2011, 2012). Overall, this literature shows how stimulus
selection in competition contexts is a complex process in which different neural mechanisms
take part.

The studies discussed so far did not address neural processes that may be engaged during the
preparation when the presence of upcoming competing stimuli can be anticipated. Some other
studies have focused on preparatory activity (Gonzalez-Garcia et al., 2016; Peelen & Kastner,
2011; Pefialver et al., 2023; Rajan et al., 2021) but did not explore how varying levels of
competition might influence specific preparatory processes. A fruitful approach to investigate
preparation uses anticipatory cues to track preparatory templates, aligning with the principles of
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95  biased competition theory. This way, it has been found that both spatial and content-based
96 information is preactivated before the target presentation (Rajan et al., 2021). For example,
97  Peelen and Kastner (2011) used symbolic cues to instruct participants to detect either people or
98  cars on naturalistic images entailing high levels of competition. Using MVVPA, they compared
99 the activity patterns in the visual cortex during the preparatory interval and during visual
100  processing of exemplars from the target categories. Their results showed shared neural codes
101  across both epochs, suggesting that an attentional template similar to the one guiding visual
102  processing was preactivated during the preparation, biasing the competition in favor of stimuli
103  matching this template. More studies have also found preparatory templates associated with
104  relevant target categories (Gonzalez-Garcia et al., 2016; Pefialver et al., 2023; Ruz & Nobre,
105  2008) or stimulus features (Stokes et al., 2009) to attend. In a complementary manner, time-
106  frequency analyses have revealed that theta power during the preparation period is associated
107  with anticipating most challenging tasks (Cooper et al., 2017; Van Driel et al., 2015). Moreover,
108 the behavioral relevance of both MVVPA and time-frequency results has been evidenced by
109  showing how both indices correlate with performance. On one hand, previous studies have
110  shown a behavioral improvement when preparatory activity patterns associated with the target
111 are more segregable (Gonzélez-Garcia et al., 2017; Peelen & Kastner, 2011; Soon et al., 2013;
112 Stokes et al., 2009), when the dimensions to attend are better distinguished (Hall-McMaster et
113 al., 2019) or when the working-memory load of the task is better represented (Manelis & Reder,
114  2015). On the other hand, preparatory theta power in frontocentral electrodes has been related to
115  amore consistent behavior on task-switching paradigms (Cooper et al., 2017) or to a necessary
116  step to accurate fast responses (Formica et al., 2022). However, the relationship between
117  anticipated coding of specific information across contexts, theta power and behavioral
118  performance remains uncertain.

119 In this work we examined if and how preparatory neural signals (i.e., the presence of target-
120  specific activity patterns and theta band power increases) are affected by anticipated

121 competition levels, as well as the relationship among them and with task performance. To do so,
122 we collected EEG data during a cue-target paradigm with different levels of competition across
123 blocks, including a separate localizer task to isolate perceptual templates. We analyzed

124  anticipatory neural activity with univariate (time-frequency) and MVVPA approaches.

125  Considering previous findings (Hall-McMaster et al., 2019; Manelis & Reder, 2015; Peelen &
126 Kastner, 2011; Pefalver et al., 2023), we expected that preparatory patterns would dissociate
127  based on the relevant target category, and that this category-specific pattern would be more

128  distinguishable in a high competition context. Also, at the oscillatory level we predicted that the
129  amplitude of preparatory theta power would be enhanced in high competition (Cooper et al.,
130  2017; Van Driel et al., 2015). Finally, we hypothesized that these preparatory brain signals

131 would be related to behavioral performance (Formica et al., 2022; Gonzalez-Garcia et al., 2017;
132 Peelen & Kastner, 2011; Soon et al., 2013; Stokes et al., 2009).

133 2. Methods

134 2.1. Participants

135  Thirty-six students (mean age = 21.36; range = 18-27; 18 women and 18 men) from the

136 University of Granada, all native Spanish speakers, right-handed and with normal or corrected
137  vision, were recruited and gave their informed consent to participate. They received 20-25 euros
138  depending on their task performance. We excluded three additional participants due to either
139  low accuracy (lower than 80%) or more than 30% discarded EEG trials due to artifacts. Data
140  were collected during the COVID-19 pandemic; therefore, participants’ temperature was

141  measured upon arrival, they wore a face mask during the experiment and signed a form

142  confirming not having illness symptoms.

143
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144  We calculated the sample size using PANGEA (Power ANalysis for GEneral ANOVA designs;
145  Westfall, 2016). Our task followed a 3-factor within-subjects design (Competition x Stimulus
146  Category x Congruency) where our main contrast of interest was a two-way interaction

147  (Competition x Congruency). To achieve an estimated 80% power to detect a small-medium
148  behavioral effect size of Cohen’s d = 0.3, we required a minimum of 30 participants.

149  Nonetheless, to match counterbalancing needs we collected data from 36 participants, with an
150  estimated power of 87%.

151

152 2.2. Apparatus, stimuli and procedure

153  The task was run on Matlab 2020a using The Psychophysics Toolbox 3 (Brainard, 1997).

154  Stimuli were presented on an LCD screen (1920 x 1080 resolution, 60 Hz refresh rate) over a
155  grey background. We used four types of stimuli as cues: circle, square, drop and diamond with
156  thin black outlines, unfilled. As targets and distractor stimuli we employed 24 Caucasic faces
157  with neutral expressions from the Chicago Face Dataset (Ma et al., 2015) and 24 Spanish person
158  names (50% male-female in both categories).

159

160  When participants arrived to the lab they signed an informed consent, and then the EEG

161  preparation started. They read the instructions of the task and performed a practice session (192
162 trials identical to the main task), where they had to achieve 80% of accuracy on both High and
163  Low competition blocks to continue with the experimental session.

164

165  The experiment consisted of two tasks presented on different blocks: a main competition task
166  and a stimulus category localizer. The main task was a cue-target paradigm where participants
167  judged the sex of target faces and words. Cues presented at the beginning of each trial indicated
168  the category of the target (faces/names) to respond to. Target and distractors were displayed
169  either simultaneously (in High competition blocks, 50%) or sequentially, with a temporal delay
170  (Low competition, 50%; adapted from Kastner and colleagues, 1998). Target and distractor

171 stimuli could be either congruent (i.e., same sex, associated with the same response, 50%) or
172 incongruent (different sex, with different responses, 50%). At the beginning of each block, an
173  instruction screen stated the level of competition (High vs. Low) and indicated the cue-target
174  associations for the block. To prevent perceptual confounds in the multivariate analyses, each
175  category (faces and words) was cued with two different stimuli for each participant. That is, two
176  cues always indicated faces, and the other two names. One of each pair was used in each block
177  (one for faces and another one for names). Within participants, we counterbalanced the

178  combination of cues across blocks, sequentially iterating across all possible pairs of face and
179  name cues. The association between cues and target categories was further counterbalanced

180  across participants.

181

182  The sequence of events in a trial was as follows (see Figure 1): The cue (~2°x 2° degrees of
183  visual angle) was presented for 50 ms and was followed by a Cue-Target-Interval (CTI) of 1500
184  ms. In High competition blocks, an overlapping face (~9.7° x 12.17° visual angle) and a name
185  (~9.7°x 2.6° visual angle) used as target and distractor stimuli were displayed for 750 ms,

186  followed by an Inter-Trial-Interval (ITI) of 1500 ms. In Low competition blocks, the target

187  appeared first on the screen for 500 ms, followed by overlapping target and distractor for 250
188 ms and then by the distractor on its own for 500 ms, ending with a 1000 ITI ms. This

189  arrangement follows previous similar paradigms (see Kastner et al., 1998) and allows to present
190  each stimulus with the same duration and maintain the same trial length across competition

191  conditions. The response window was the same in both conditions. Participants pressed the keys
192 “A” or “L” with their left and right index to indicate whether the target stimulus was female or
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male (counterbalanced across participants). In case of wrong answers, after the ITI, a feedback
tone of 450 Hz was played for 300 ms while a fixation cross was displayed for 1000 ms in total.

In Localizer blocks, included to isolate the perceptual processing of stimuli without motor
activity, the same faces and names were presented for 750 ms followed by an ITI of 500 ms. To
facilitate participants’ engagement with the task, they were instructed to press the "C" key in a
minimal percentage of trials (8%) where the target was rotated 180°.

There were 72 blocks, 24 of each type (High competition, Low competition and Localizer). The
order of blocks was fully counterbalanced within and across participants, as each block was
preceded and followed by the other types the same number of times. For the main task, we had
576 trials for each (High, Low) competition condition. These trials were unique combinations of
the 24 faces and 24 names. Each block lasted 1.52 minutes (with 24 trials of 3.8 s each). The
localizer blocks had 48 trials lasting 1.25 s, for a total of 1 minute per block (for a total of 1152
localizer trials). The whole session, including practice, lasted approximately 2 hours and 15
minutes.

HIGH COMPETITION

Cue CTI Target + Distractor ITI
50 ms 1500 ms 750 ms 1500 ms
+ | ————— A ———————— +
L_| \$
LOW COMPETITION
Cue CTI Target Target + Distractor Distractor ITI
50 ms 1500 ms 500 ms 250 ms 500 ms 1000 ms
+ 'U’" EARLA CARLA +
3 ~
= &

Fig. 1. Experimental paradigm. Example trials from High and Low competition blocks. In a sex
classification task, participants were cued about which stimulus category (faces or names) to
respond to. In High competition blocks, targets and distractors appeared at the same time,
whereas in Low competition they appeared sequentially.

2.3. EEG acquisition and preprocessing
EEG data was recorded with a high-density 64 active channels cap (actiCap Slim, BrainVision)
at the Mind, Brain and Behavior Research Center (CIMCYC) of the University of Granada. The
impedances of the amplifier were kept below 10 k Q. EEG activity was recorded at a sampling
rate of 1000 Hz, with FCz as the reference electrode.

Preprocessing was done using EEGLAB (Delorme & Makeig, 2004) and in-house MATLAB
scripts following the pipeline available on Github (see Open practices section). First, data were
downsampled to 256 Hz and filtered using a low-pass and high-pass FIR at 120 and 0.1 Hz,
respectively. A notch filter was applied at 50 and 100 Hz to remove line noise and its
harmonics. Noisy channels were identified by visual inspection and removed (1 channel on
average, range 0-4). Next, the data was epoched in intervals of 3 s (-1 to 2 s after the onset of
cues and of targets). Independent Component Analysis (ICA) was computed afterwards with the
runica algorithm from EEGLAB to remove blinks and lateral eye movements. Components
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229  were selected with ICLabel and visual inspection (scalp maps, raw activity and power

230  spectrum). An average of 1.58 components per participant (range 1-3) were removed. Then,
231  automatic trial rejection was used to prune the data from other artifacts, using 3 criteria (see
232 Lopez-Garcia et al. (2020, 2022) and Pefalver et al. (2023) for similar parameters). First, we
233 identified trials with abnormal spectra, removing those deviating from baseline by = 50 dB in
234  the 0-2 Hz frequency window (sensitive to remaining eye artifacts) or by -100 dB or + 25 dB in
235  20-40 Hz (sensitive to muscle activity). Second, trials with improbable data were eliminated:
236  the probability of occurrence of each trial was computed by determining the probability

237  distribution of voltage values across trials, with a rejection threshold established at + 6 SD. The
238  third criteria were extreme values: all trials with amplitudes in any electrode out of a + 150 uV
239  range were rejected. Next, the dismissed channels were recomputed by spherical interpolation
240  and a common average was used to re-reference the data. Finally, we applied a baseline

241  correction in the -200 to 0 ms prior to stimulus onset. The analyses focused solely on correct
242 trials. On average, 1476 trials per participant (range 1292-1591) were included.

243

244 2.4. Analyses

245 2.4.1. Behavioral

246 We employed 2-way repeated measures ANOVAs with the factors Competition (High vs. Low)
247  and Congruency (Congruent vs. Incongruent). Separate tests were performed on accuracy and
248  reaction times (RT) using the JASP software (Love et al., 2019). To filter the RT data, we

249  excluded incorrect trials and those with RT deviating 2SD from the participant mean.

250

251 24.2. EEG

252 2.4.2.1. Multivariate pattern analysis (MVPA)

253  We used Linear Discriminant Analyses (LDA) as classifiers to investigate if the preparatory
254  activity patterns contained information about the upcoming competition level (High or Low)
255  and the specific target categories (Faces or Names) anticipated across competition contexts. To
256  do so, we focused on the cue-locked interval activity from -100 to 1550 ms. The analyses were
257  runon MATLAB using the toolbox MVPAlab (Lépez-Garcia et al., 2022). Classifiers were
258  trained and tested using raw voltage of each trial and time point across all the channels, with the
259  configuration for the classification being equal for all the analyses.

260

261  To increase the signal-to-noise ratio, we created ‘supertrials’ (Grootswagers et al., 2017) by
262  averaging three random trials within each condition (see Lopez-Garcia et al. (2020, 2022);

263  Peiialver et al. (2023) for similar procedures) and smoothed the data by applying a moving

264  average window every three time points, so that data from every timebin (t,) was averaged with
265  the previous and the following time-points tn = (tn.1 + tn + ta+1)/3. We used a 5-fold cross-

266  validation strategy that ensures unbiased results while reducing the computational cost

267  (Grootswagers et al., 2017). With this approach, we split our data into five subsets and used four
268  to train the classifier and the remaining one as a test set. This protocol was repeated 5 times,
269  changing the test set. The number of trials within each class was subsampled considering two
270  criteria: that each class had the same number of trials and that there was the same number of
271  trials per class in each fold for the cross-validation procedure (Grootswagers et al., 2017; King
272 & Dehaene, 2014). A normalization procedure was applied to enhance the classifier

273 performance and generalizability of the results. Normalization was done during the cross-

274  validation, by calculating the mean and standard deviation of each electrode within each fold
275  across the training trials, and then applying these two values to normalize the data of both the
276  train and the test set as:

277 X train = (X train — l-ltrain)/ 7 train X test = (x test — W train)/ 7 train
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Where pain iS the mean and o wain IS the standard deviation of the training set. Finally, to reduce
the computational cost, the analysis was done every three time points. The results are reported
as the area under the curve (AUC), a non-parametric criterion-free method with no assumptions
about the true distribution of the data (King & Dehaene, 2014). Also, AUC is sensitive to binary
(two-class) differences, less vulnerable to biases (including those triggered by potential
differences between the classes) and can be interpreted as classification accuracy (King et al.,
2013).

To detect the significant decoding performance at the group level, we used a non-parametric
cluster-based permutation method against empirical chance. For this, the trial labels were
randomly permuted 100 times per participant, resulting in chance-level outcomes under the null
effect. After that, one random AUC per participant was selected and averaged to create a group-
level null effect decoding curve. This was done 10° times to generate 10° permuted group AUC
values. These values were used to build empirical chance-level AUC distributions for each time
point. The AUC values in the 95 percentiles were used as threshold to identify significant
decoding peaks in the real decoding results. Moreover, to estimate the minimum cluster size to
be significant (a = 0.05), we used the permuted results to generate a null distribution of cluster
sizes and corrected for multiple comparisons using a False Discovery Rate (FDR) approach
(Lopez-Garcia et al., 2022).

Additionally, we studied the extent to which the activity patterns were stable along the
preparation interval. For that purpose, we used a temporal generalization approach that applied
the decoding analysis explained above but training in a given time point and testing in all the
remaining ones. This procedure iterated using all time points as training and testing datasets.
This resulted in a Temporal Generalization Matrix with a diagonal reflecting the same result as
the MVPA curve and non-diagonal values corresponding to the temporal generalization of the
underlying neural code. The statistical significance from these matrices was extracted with the
same cluster-based analysis as before, now considering two-dimensional clusters that spread
over training and testing time points.

With this overall approach, we first studied if the competition level affected preparatory
activity. To do so, we trained and tested classifiers on the cue-locked interval of trials from
High and Low competition blocks. Then, to evaluate whether and how the preparatory interval
carried information about the target category anticipated, either faces or names, we performed
classification analyses separately for High and Low competition blocks. To compare the
category-related patterns while avoiding perceptual confounds triggered by the specific shape of
the cues, we adopted a cross-classification approach (Kaplan et al., 2015; Pefialver et al., 2023).
The classifiers decoding the relevant category were trained and tested in trials where
independent sets of cues were employed. This protocol iterated across the two sides of the
classification (exchanging training and testing cues) and all cues’ combinations (e.g.: circle-
names, diamonds-faces vs. drops-names, squares-faces). Results were averaged across
directions and classifiers.

Additionally, we further studied if category-specific coding was affected by the competition
level anticipated in High and Low competition contexts, following two approaches. First, we
tested the hypothesis that preparing for high competition contexts increased the fidelity of
anticipatory category-specific neural codes. To do this, we compared the two competitions
cross-decoding curves and temporal generalization matrices using a tailored cluster-based
permutation approach (Moore et al., 2024). We computed one-tailed t-tests in every time point
to address whether the decoding accuracy or the temporal generalization was higher in High
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than Low competition contexts. Then, we identified cluster sizes in these results, by looking for
sets of temporally adjacent points with p < 0.05. For that purpose, we set a criterion of a
minimum cluster size of 3 time points the cross-decoding curve, and 10 for temporal
generalization (Pefalver, 2024). To each of these clusters, we assigned a t value resulting from
the sum of the t values from all the time points incorporated. Next, the inference was performed
contrasting these results against a permutation-based distribution of null differences. To do so,
we randomly multiplied one of the conditions by -1 in each subject; this was done 5000 times.
We repeated the procedure as in the true data but with the permuted results, obtaining a
distribution of the t values of the clusters, and used the 95™ percentile to mark the values that
were considered significant in the true data. Second, to further explore whether the competition
context altered the neural codes underlying the anticipatory category patterns, we performed a
cross-classification training and testing the classifier with data from different competition
blocks (Kaplan et al., 2015). This analysis also implemented the cross-classification across cues,
following a similar approach as above. The AUC curves obtained were averaged among
classifiers and directions.

To study whether the preparatory activity patterns associated with categorical information of
faces and names were similar to the actual perception of the stimuli, we performed a cross-
classification analysis by training with data from the localizer blocks and testing on the cue-
locked window of the main task, separately for High and Low competition. As the timing of the
localizer and main task paradigm were different, we focused on the temporal generalization
profile of the cross-classification. Considering that our interest was the reinstatement of
perceptual patterns on preparation activity, this cross-classification was only performed in a
single direction, using the localizer data as training set and the main task data as test set. To test
whether the reinstatement has different robustness in High or Low-competition contexts, we
compared these matrices using two-tailed t-tests with a cluster-based permutations approach.
This analysis was equivalent to the one comparing the category-specific coding across
competition conditions, except for using two-tailed tests.

Finally, to study the link between anticipatory activity patterns and task performance, decoding
results and behavioral data were correlated using the Pearson coefficient. First, we used the
anticipated competition level, extracting the average AUC value for each participant during the
time window where the decoding was significant at the group level, from 100 ms until the end
of the interval (see Li et al., 2022). This value was correlated with behavioral accuracy and RT
means across High and Low competition. To check for specific relationships between the
congruency behavioral effect and the anticipated competition level, we calculated differences in
task performance (separately for behavioral accuracy and RT) of congruent minus incongruent
trials and correlated this with individual AUC values. Second, we followed a similar strategy
with the fidelity of the category-specific decoding, but in this case, the AUC values of each
participant were calculated separately for High and Low competition blocks. We averaged the
AUC values during the time window that was significant in both High and Low competition
contexts (1150-1550 ms). Then, we correlated the AUC with the behavioral accuracy and RT of
each competition condition. To address the relationship with the congruency effect, we
calculated the difference between the congruent and incongruent trials of each competition
condition separately and correlated them with the mean AUC values of each condition. In all
cases, we applied frequentist and Bayesian statistics to provide complementary evidence
supporting the results.


https://doi.org/10.1101/2024.02.06.579112
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.06.579112; this version posted April 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

made available under aCC-BY-NC-ND 4.0 International license.

2.4.2.2. Time-frequency analysis
We tested whether preparing for High competition increased anticipatory theta-band activity (3-
7 Hz) in comparison with Low competition. Theta power was extracted from a frontocentral
region of interest (ROI) with the electrodes Fz, FC1, Cz, FC2, F1, C1, C2, F2 and FCz. We
computed the time-frequency decomposition for each trial during the preparation epoch (cue
locked -1000 to 1550 ms) using complex Morlet wavelets. The frequencies were logarithmically
spaced in 18 steps from 2 to 20 Hz. The wavelet’s length was calculated separately for each
frequency assigning a number of cycles also logarithmically spaced between 3 and 5 (see
Cohen, 2019). Time—frequency power values were transformed to decibels and normalized to a
baseline of -280 to -100 ms before cue onset, according to the following equation (Cohen &
Van Gaal, 2014): dB= 10* log10 (power/baseline).

A cluster-based nonparametric statistical test implemented in FieldTrip (Maris & Oostenveld,
2007) was used to evaluate whether the preparatory activity of High competition trials showed
higher theta power than Low competition ones. For this, power values in each condition were
averaged across channels and trials. Then, these averages were compared using within-subjects
paired-samples two-tailed t-test for each time point and frequency (Hz). Those t values larger
than the threshold specified by alpha (0.05) were clustered in connected sets of temporal
adjacency. The t value of the cluster was calculated adding the t values of each timepoint. The
permutations were performed within each subject randomizing the condition labels for each
value, 1000 times with the Monte Carlo method. T values were calculated for all the
permutations using maximum cluster-level mass statistic (Groppe et al., 2011), and the most
extreme cluster-level t score across permutations was used to derive a null hypothesis
distribution. If the t value of the true data cluster was above the 97.5" percentile or below the
2.5" percentile of the null distribution, then it was considered significant.

Next, to explore whether anticipatory theta power increase and the content-specific activity
patterns found with the decoding were related, we correlated them using Pearson across
participants, separately for High and Low competition conditions. To obtain the theta power
values per participant, we visually inspected the grand average across trials from all conditions
and identified the theta time window from 100 ms to 900 ms (see Fig S1). We extracted the
average theta amplitude per participant from this time window. Then, these values were
correlated with the classification AUC per participant and competition condition averaged
within the 1150 ms to 1550 ms time window.

Finally, we performed a mediation analysis to investigate if the anticipatory theta power acted
as a mediator between the competition manipulation and the speed of responses (e.g., Formica
etal., 2022). To do so, we used trial-by-trial RT and theta power data, averaging the power
values within 100-900 ms after cue presentation (same time window as above). To filter out
outlier data, trials with + 2SD from the average RT or theta power were discarded. Afterwards,
we verified that the data fitted the necessary criteria (Baron & Kenny, 1986) for mediation
analysis: in our case (1) the competition manipulation had to influence RTs, (2) this
manipulation also had to predict theta power, and (3) theta power had to predict RTs. These
were tested with linear mixed effects models (LMMs) with the Ime4 package in R (Bates et al.,
2014). In all models, we included Congruency as a fixed effect to control for it. To select the
model with an adequate random effect structure, a “keep it maximal” approach was adopted
starting with the most complex random structure until the model converges for the 3 LMMs
(Barr et al., 2013). This approach gave a random structure of (competition | subject). P-values
were calculated using Satterthwaite approximations (Luke, 2017). Once we ensured the three
criteria were met, the mediation was tested performing a casual mediation analysis with the
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function mediate from the mediation package in R, using 5000 permutations (Tingley et al.,
2014).

3. Results

3.1. Behavioral
Overall accuracy on the main task was 93.5%. The ANOVA of accuracy data showed a main
effect of Competition (Fss1=16.022, p < 0.001, 1,2 = 0.314), indicating that participants
performed better on Low (M = 93.8%, SD = 4.4%) than High competition blocks (M = 92.3%,
SD =5.2%). The Congruency effect (Fss1 = 71.269, p < 0.001, ny>= 0.671) was also significant,
showing that Congruent trials were more accurate (M = 95.1%, SD = 3.8%) than Incongruent
ones (M =91.2%, SD = 5.8%). As predicted, there was a significant interaction of Congruency
* Competition (Fss1 = 73.030, p < 0.001, n,®> = 0.676). Post-hoc test showed that the
Congruency effect appeared in High (M congr = 95.9%, M incongr = 88.6%, t351 = 9.319, p < 0.001,
Cohen’s d = 1.553) but not in Low competition (M congr = 94.1%, M incongr = 93.6%, t35,1 = 1.555,
p=0.129, Cohen’s d = 0.259).

An average of 5.5% trials per participant, corresponding to outliers’ values of RT (+ 2SD), were
excluded. The ANOVA results showed a main effect of Competition (Fzs1 = 26.664, p < 0.001,
np? = 0.432), as participants were slower on High (M = 535.0 ms, SD = 60.0) compared to Low
competition trials (M = 514.0 ms, SD = 68 ms). There was also an effect of Congruency (Fss1 =
224.819, p < 0.001, n,? = 0.865) with faster Congruent (M = 515.0 ms, SD = 62.0) than
Incongruent (M = 534.0 ms, SD = 63.0) trials, and an interaction of Congruency * Competition
(Fss1 = 203.907, p < 0.001, 1,2 = 0.853). Again, Congruency was only present in High
competition (M congr =517.0 MS, M incongr = 556.0 ms, t351 = -19.021, p < 0.001, Cohen’s d = -
3.170) and not in Low competition blocks (M congr =514.0 mS, M incongr = 514.0 ms, tss1 = 0.065,
p =0.949, Cohen’s d = 0.011).

A B
H kK F ok ok
1.00 - 0.70+ Congruency
= T E o ‘ = Congruent
0.954 _:_ { —_— 0.65 ‘ ‘ == Incongruent
4 N | | i
0:80 - | 0.60+ ‘ | 1 [
Q 0.85- _ 5 ;
O i |
< 055
0801 i 0.501 =11 ==
{ ; ‘
0.751 4 ? 1 | :
0.45- | = . i {
0.70 [ |
0.401 i
High Low High Low
Competition Competition

Fig. 2. Box plots displaying the behavioral results. Boxes have a middle marking the median,
limits representing the first and third quartile, and whiskers indicating the 1.5 inter quartile
range for the upper and lower quartiles. Outliers are shown outside the whiskers. The dots
represent each participant’s value per experimental condition. (A) Behavioral accuracy rate
(ACC) in High and Low competition blocks for Congruent and Incongruent trials. (B) Reaction
times (RT in seconds) in High and Low competition blocks for congruent and incongruent trials.

*** =p<0.001
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462 3.2. Electrophysiology
463 3.2.1. MVPA results
464 3.2.1.1. Anticipation of the competition level

465  Our first aim was to assess the anticipation of the overall competition level. A classifier trained
466  and tested to discriminate preparatory activity between High and Low competition contexts
467  showed an effect of competition. The cluster identified in these results covered most of the CTI
468  (from 100 ms until the end of the interval, see Fig. 3A). The temporal generalization analysis
469  revealed a large significant cluster starting approximately at 100 ms. Interestingly, the cluster
470  was asymmetric, generalizing to all the testing time points when the classifier was trained using
471  data from the end of the preparation window, whereas less generalization was found when the
472  training was done at the beginning of the interval (see Fig. 3B).

A Anticipation of competition level
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473

474  Fig. 3. (A) Classifier performance distinguishing competition levels in the preparation interval.
475  The red line shows the mean AUC and the shaded red areas its standard error. The red

476  horizontal line displays significant time points. The black horizontal line shows the onset and
477  duration of the cue. (B) Temporal generalization matrix from the same classification showing
478  significant above-chance clusters outlined in black. The color range in the bar indicates the
479  AUC values.
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3.2.1.2. Category-specific anticipation
Classifiers trained and tested to discriminate the target category that the participants were
preparing to attend (faces vs. names) indicated that there was a significant effect of category.
We found decoding clusters in High (from 531-555 ms, 859-906 ms, 976-1000 ms, 1047-1082
ms, 1152-1211 ms, 1234-1527 ms) and Low competition contexts (941-965 ms; 1176-1234 ms;
1281-1328 ms; 1352-1398 ms; 1527-1550 ms). The decoding AUC incremented progressively
with a ramping up profile towards the end of the preparation interval, before target onset (see
Fig 4). Nonetheless, there was no evidence supporting different decoding accuracies across
competition conditions (all ps > 0.05).

Stimulus category anticipation

@)
=
<
I
(]
b=
(72}
(2]
©
O Y oy
m High competition
Low competition
L | | | 1 | 1 | | | | 1 1 | 1 |
o o o o o o o o o o o o o o o o o
o o o o (=) o o = o o o o o o o o
Cue Time (ms)

Fig. 4. Results (AUC values) of the classifiers discriminating the upcoming target category
(faces vs. names) using cross-classification (across cues identities), separately for High and Low
competition conditions. Horizontal lines represent the significant clusters for High (red) and
Low (blue) competition.

We also analyzed the temporal generalization of category-specific information separately for
High and Low competition contexts. For both, the anticipatory patterns showed temporal
generalization, which was stronger on the right upper corner of the matrix, towards the end of
the interval (Fig. 5). However, the comparison of both matrices did not provide statistical
evidence supporting different generalization patterns (all ps > 0.05).
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Fig. 5. Time-generalization matrices of the discrimination of the upcoming target category
(faces vs. names) using cross-classification (across cues identities) on High (A) and Low
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We also tested whether these patterns in High and Low competition are coded similarly. A

cross-classification strategy across conditions and cues showed no evidence for similar patterns
coding the relevant category between competition contexts (Fig. 6A). The temporal
generalization analysis only showed small scattered significant clusters (see Fig. 6B).
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A Stimulus category anticipation across competition contexts
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Fig. 6. (A) Cross-classification across competition conditions and cues differentiating upcoming
target categories, showing no significant clusters. (B) Temporal generalization matrix for the
same cross-classification showing small clusters above chance, outlined with black. The color
range represents AUC values.

3.2.1.3. Preactivation of perceptual patterns during preparation
Classifiers were trained to discriminate between faces and names in the localizer and tested
during the preparation interval of the main tasks separately for High and Low competition
contexts. The results showed several above-chance significant clusters in the High competition
context (Fig. 7A). In the preparation interval of Low competition trials, there were few above-
chance clusters (Fig. 7B). However, when comparing both matrices, there was no statistical
evidence supporting different preactivations of perceptual patterns across competition
conditions (all ps > 0.05).
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Fig. 7. Temporal generalization of the cross-classification from the localizer category targets to
the upcoming category targets in the preparation interval of (A) High competition and (B) Low
competition (with cue duration presented as the black horizontal line). The color range in the bar
represents AUC values.

3.2.1.4. Decoding-behavior relationships
To study whether the observed preparatory patterns of competition were related to behavioral
performance, we correlated the decoding accuracy of the classifier with the average accuracy
and RT across participants. However, Pearson correlations resulted in non-significant results (all
ps > 0.6). A Bayesian approach provided moderate evidence in favor of the null hypothesis, i.e.,
the absence of a relationship between the two variables (Mean behavioral accuracy: r =0.03, p
=0.87, BFo1 = 4.75; Mean RT: r = 0.09, p = 0.60, BFo1 = 4.22). We also correlated the
behavioral congruency effect (i.e., the accuracy and RT difference of congruent minus
incongruent trials) and the anticipation of competition level decoding. Pearson correlations were
non-significant (all ps > 0.4) and Bayesian factors showed moderated evidence towards the null
hypothesis (Behavioral accuracy: r =-0.03, p =0.83, BFn = 4.71; RT: r =0.11, p = 0.52, BFp; =
3.94).

We also correlated behavioral performance with category-specific decoding values separately
for High and Low competition indexes. In this case, for each participant, we averaged the AUC
in the same time window for High and Low competition. Again, the Pearson correlations were
non-significant (all ps > 0.2) and Bayesian factors showed weak to moderate evidence in favor
of the null hypothesis (High competition accuracy: r = 0.16, p = 0.34, BFo: = 3.12; High
competition RT: r =-0.22, p = 0.20, BFo1 = 2.15; Low competition accuracy: r =-0.01, p =
0.96, BFo1 = 4.81; Low competition RT: r =-0.01, p = 0.97, BFo: = 4.82). A similar approach
was taken to correlate the congruency effect with the category-specific anticipation decoding.
The results indicated that none of the correlations were significant (all ps > 0.2), providing weak
to moderate evidence in favor of the null hypothesis (High competition, accuracy: r = -0.03, p =
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0.88, BFo1 = 4.76; High competition, RT: r =0.19, p =0.27, BFo1 = 2.68; Low competition,
accuracy: r =0.03, p = 0.86, BFo: = 4.75; Low competition, RT: r <0.01, p =0.98, BFn: =
4.82).

3.2.2. Time-frequency results
The comparison of the two conditions’ time-frequency maps in the cue-locked interval showed
that High competition anticipation generated higher Theta power than Low competition. A large
cluster (p < 0.001, Fig. 8) was found around the Theta band (3-7 Hz) from 0 to 1550 ms.

Preparation effect: cues high vs. cues low competition
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Fig. 8. Results of the Monte Carlo cluster-based approach comparing the power values of High
and Low competition trials during the preparation interval. The significant cluster is outlined
with black lines. The dark blue patch on the lower-right corner reflects the lack of estimated
power data due to edge effects.

The Pearson correlations between category-specific decoding and theta power in High and Low
anticipation conditions resulted in non-significant results (all ps > 0.6). A Bayesian approach
provided moderate evidence supporting the null hypothesis (High competition: r=0.08, p =
0.65, BFo1 = 4.37; Low competition: r = 0.08, p = 0.65, BFp1 = 4.38).

Finally, we explored whether the neural mechanisms reflected by the frontocentral theta power
could act as mediators between the impact of competition levels and the RTs. The filtering
performed prior to the analysis removed an average of 7.5% (SD= 1%) of trials for each
participant. We confirmed that our data met the necessary criteria for the mediation (Baron &
Kenny, 1986), fitting our data on three LMMs (see Supplementary materials for details). First,
in agreement with previous analysis, there was a Competition and Congruency effect on RTSs.
Second, the effect of Competition on theta was also significant, so that High competition
induced higher theta power. Third, in the complete model predicting RTs there was an effect of
Congruency, Competition and also theta on RTs, suggesting that larger theta values were
associated with faster responses. To directly test that theta power partially mediates the effect of
competition on RTs, we performed a causal mediation analysis that showed a significant direct
effect of competition on RTs (B = 0.022, CI 95% = [0.013, 0.03], p < 0.001) and an indirect
effect via theta (B =-0.0001, Cl 95% = [-0.0002, 0], p = 0.006), indicating a partial mediation
(see Fig. 9).
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Frontocentral
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Fig. 9. Mediation model with beta values. The anticipated competition significantly predicted
frontocentral theta power, which in turn affected the RTs. Frontocentral theta power mediated
the effect of competition on RT, although the direct effect of competition on RT was still
significant after accounting for the mediating effect of theta, suggesting a partial mediation.
***p < 0.001 **p < 0.01

4. Discussion

In this study we examined how the anticipated demands of attentional selection, manipulated
through competition between target and distractors, modulated specific markers of preparatory
neural activity. In line with the postulates of the biased competition model, our results reveal the
preactivation of internal templates associated with the category to select. However, these
preactivations did not differ in robustness across competition contexts, and they did not
generalize between competition contexts, suggesting the existence of differential preparation
formats. Moreover, oscillatory activity showed higher theta band activity for high than low
competition context, an effect that mediates behavioral improvements.

Our behavioral results validated the effectiveness of the paradigm. The high accuracy rates
across conditions show that participants paid attention to the cues, and the congruency effect
was present only in the high competition condition, in line with classic studies (Beck & Kastner,
2009; Desimone & Duncan, 1995; Eriksen & Eriksen, 1974; Simon, 1969). The higher selective
attention demands were also reflected in lower accuracy and higher response times in the high
competition blocks, as expected (Desimone & Duncan, 1995; Duncan, 1993).

Multivariate classifiers showed that anticipated competition levels could be distinguished. These
differences between high and low competition contexts are in line with previous studies that
found evidence of preparatory coding of different tasks (Gonzalez-Garcia et al., 2017; Hall-
McMaster et al., 2019; Manelis & Reder, 2015; Palenciano et al., 2019a). Importantly, the
competition level could be differentiated in most of the preparation window. However, it is
worth noting that these results could also be driven by other variables that may be
systematically modulated by competition levels. That is the case for instance of arousal, which
could be increased in high competition blocks. Also, our blocked design makes it highly likely
that the control settings (i.e., the overall task set of high vs. low competition contexts) were
maintained throughout the whole duration of the block (Dosenbach et al., 2008; Palenciano et
al., 2019b). Further studies will be needed to disentangle the differences between control
settings with various competition levels and arousal changes.

Unexpectedly, the temporal generalization profile of the overall competition context was
asymmetric, showing more generalization when the classifier was trained at the end of the
interval than for the reverse direction (Fig. 3B). This could be due to more stable preparatory
patterns at the end than at the beginning of the interval. However, earlier time points still
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resulted in higher accuracy values, which may be caused by having a set of processes occurring
at the same time, which might be different for high and low competition contexts. Some of these
early cognitive processes might include physically perceiving the cue, remembering its
meaning, recalling the competition condition in which the participant is and preparing to
perceive the target and respond to it. As this set of processes might be taking place at the same
time only at the beginning of the interval, generalization to the rest of the time window may not
be possible. However, as the preparatory interval was fixed, participants could predict target
appearance, therefore at the end of the preparation interval neural activity could reflect to a
greater extent preparatory processes, such as category-specific patterns shown at the decoding
associated with the target category. These patterns, observed upon completion of the interval,
may also appear (alongside others) at different points within the preparation interval, thus
exhibiting greater generalizability.

Our results also indicate the presence of specific preparatory patterns linked to the anticipated
category of the target to select, both in high and low competition contexts. This is consistent
with the theory of biased competition, as a reflection of an internal attentional template
associated to the relevant category. Preparation is specific to the content of the incoming target
to select (Gonzélez-Garcia et al., 2017; Palenciano et al., 2019a; Peelen & Kastner, 2011;
Pefalver et al., 2023; Rajan et al., 2021; Sobrado et al., 2022; Stokes et al., 2009), with a
strength of category anticipation increasing at the end of the interval, in a ramping-up fashion,
replicating Pefialver and colleagues (2023). Although understanding the implications of this
finding requires further research, it could be related to temporal expectations. As mentioned
earlier, the preparatory interval was fixed, consequently the predictable temporal structure of the
task could intensify the preactivation of specific stimulus patterns towards target appearance
(Jin et al., 2020; Rohenkohl et al., 2012). Another possible, non-exclusive mechanism is the
processing of the cue meaning. This may occur silently (Stokes et al., 2009) at the beginning of
the preparation interval as evidenced in reduced decoding accuracy, and it may reactivate when
needed just before the target. The temporal generalization matrices of the categories on both
competition contexts also display a progressively increasing generalization toward the end of
the preparatory interval, suggesting that the activity patterns were not only stronger, but also
more stable over time at later stages (King & Dehaene, 2014).

The comparison of the preparatory category coding in high and low competition did not detect
differences between conditions in either the fidelity of these patterns or their temporal stability.
Hence, these results suggest that the categorical attentional templates were equivalent across
competition contexts. Although unexpected, this result resonates with previous evidence
showing that attentional templates also arise in low competition contexts (Gonzélez-Garcia et
al., 2016). Given that predictive cues were used in both contexts, it is reasonable that the
representation of target category was found in both situations. While the classifier accuracy
remained undistinguishable across contexts, the anticipated competition introduces other
differentiated process that might not be captured by the classifier alone, implying a multi-
faceted approach to information representation. Critically, finding equivalent classification
accuracies does not imply that the underlying neural codes are similar. This was supported by
the null results obtained with the cross-classification of category patterns between high and low
competition. The lack of significant clusters in the diagonal of the matrix, with only small
scattered clusters on the time generalization matrix, suggests that the anticipated category
coding in each of the contexts was not alike. Overall, this indicates that although the fidelity of
the anticipated content may be the same in high and low competition contexts, the underlying
patterns are not shared across conditions, implying a partially different format of preparation
depending on the context. Future studies are needed to further confirm this possible explanation.
On this respect, task demands could influence how the anticipated information is represented to
adapt to the context of the incoming target (Pefialver et al., 2023).
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Analysis of the overlap between activity patterns from the perceptual localizer and preparation
interval of the main task allowed to examine whether the nature of the category-specific
anticipation was similar to perceptually driven patterns (Kaplan et al., 2015; Palenciano et al.,
2023). Results showed similarities between perceptual and preparatory category patterns in high
competition. Few small clusters were found in low competition. However, there was no
statistical evidence of differences between both conditions, which could be due to lack of power
to detect small differences in accuracy. Regarding high competition, the overlap between
preparatory and visual templates could be associated with the activation of perceptual regions
during preparation, as a perceptual reinstatement (Kerrén et al., 2018; Muckli et al., 2015; Smith
& Muckli, 2010; Vetter et al., 2014). The partial similarities between preparatory templates and
perceptual ones, in the anticipation of high stimuli competition, constitute a relevant finding that
contributes to a better understanding of the internal preparatory templates.

Turning to oscillatory activity, how anticipation of competition affects this activity had not been
explored in detail in the past. Theta power has been repeatedly related with effort or cognitive
control (Cavanagh & Frank, 2014; Cohen & Donner, 2013). Previous studies found that
preparing for a difficult task in which stimuli competition is high (Van Driel et al., 2015) or that
requires goal updating (Cooper et al., 2017) also induces an anticipatory increase in theta power.
Relatedly, and in accordance with our hypothesis, we found that preparing for high competition
generated increased theta power in all the preparation interval. Interestingly, this large cluster
started right at the beginning of the cue presentation. While this could reflect some extent of
smearing of the signal induced by the time-frequency decomposition, this would be unlikely
given the high temporal precision for estimating low frequencies such as theta, as the number of
cycles assigned to these bands is quite low. Instead, it could be driven by the blocked design
employed, which facilitated maintaining the different competition control settings over several
trials (Dosenbach et al., 2008; Palenciano et al., 2019b). This temporal profile contrasts with the
category-specific anticipation patterns, that are decodable only at the end of the window.
Importantly, our results show that these two different preparatory mechanisms are not
correlated. This finding, together with the previously described results, suggest that they reflect
different proactive processes that contribute distinctively based on the task requirements. Theta
power could implement more general control signals, associated with the general level of
competition, whereas category preactivations are specific to the content anticipated (Weber et
al., 2024).

Regarding the relationship between anticipatory neural patterns and behavioral performance,
some studies suggest that the better these indices, the better task performance (Gonzélez-Garcia
et al., 2017; Manelis & Reder, 2015; Peelen & Kastner, 2011; Soon et al., 2013; Stokes et al.,
2009). Our results, however, show inconclusive evidence on this respect. Neither preparatory
patterns coding the competition level nor the selected category correlated with behavioral
measurements. This was also the case for the correlations with the behavioral congruency effect.
This may suggest that the fidelity with which the brain preactivates specific categorical
templates of the target does not have a direct influence on the efficiency of behavior, which is in
contrast with other studies (Gonzélez-Garcia et al., 2017; Manelis & Reder, 2015; Peelen &
Kastner, 2011). However, the current paradigm was not tailored to entail a wide range of
decoding variability in the results, which could hinder the detection of associations between
subtle neural preactivations and behavioral measures. Further research is necessary to further
explore these associations.

Results show that the neural mechanisms reflected by theta power, in contrast, play an
important role for behavioral performance. The effect of competition on RT is partially caused
by power in the theta band, indicating that high competition is related to higher theta power
which in turn partially explains responses. This finding is in line with previous studies on
cognitive control (Cohen & Donner, 2013; Formica et al., 2022). A significant distinction in
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analyzing the relationship between theta and behavior, compared to the decoding-behavior
relation, lies in the utilization of trial-by-trial data in the theta analysis. Obtaining a single value
per trial, especially when employing cross-classification to study category-specific patterns, is
challenging in the decoding analysis. Other studies have extracted d-values to be more precise
(Kerrén et al., 2018; Linde-Domingo et al., 2019; Ritchie et al., 2015), however as we
performed cross-classification across cue shapes, this was not feasible. Further tailored studies
could address optimal procedures for extracting trial-wise a d-values for the anticipatory neural
patterns without visual confounds.

The present study has limitations that restrict the reach of the findings and may catalyze further
investigations. First, our scope was the temporal domain, therefore we focused our analyses on
the temporal profile of preparatory activity. Further studies may complement our findings with
spatially resolved techniques, increasing the anatomical specificity of the different preparatory
mechanisms according to competition levels. Moreover, additional studies could use more
diverse stimuli over faces and names, and investigate the role of differential difficulty across
stimulus categories, which may interact with the competition effect (e.g. Zhang et al., 2013).
Although the current study is not optimized to address this issue, our AUC metric avoids any
bias towards a particular stimulus type. Related to this, it may be of interest including
multisensory stimuli such as visual and auditory combinations, to replicate and extend the
findings to other sensory domains. Furthermore, naturalistic contexts that include different
levels of competition could be key to transfer the results to the real environment (Graumann et
al., 2022, 2023). Lastly, although our study focuses on preparatory activity, it would be
interesting to explore the relationship between attentional templates and target processing. This
was not possible on the current dataset because the target-distractor display was substantially
different across competition conditions. Future studies could address this issue by reducing the
visual differences between conditions. This kind of experiment would enable the examination of
the roles played by preparatory attentional templates and anticipatory theta power during actual
target processing.

4.1. Conclusion

Overall, our results provide insights into how preparation differs depending on the difficulty of
the competition that is anticipated. The levels of competition exert a proactive influence on
multivariate neural patterns and theta activity. Moreover, the neural mechanisms underlying
theta oscillatory activity impact the efficiency of behavior. Integrating these findings into
theoretical models of selective attention is crucial for a comprehensive understanding of top-
down processes across contexts.
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Fig. S1. Results of the time-frequency analysis averaged across conditions and participants
during the cue-locked window, from -100 ms to 1125 ms.
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Fig. S2. Results of the time-frequency analysis in the preparation epoch of High (A) and Low
(B) competition trials from -100 ms to 1125 ms, averaged across participants.

Supplementary results: LMM equations and results

In our first model we tested if, controlling for congruency, there was an effect of task on RTS,
putting a random slope for competition and a random intercept for each participant (RT ~
competition + congruency + (competition | subject)). In agreement with previous analysis, Low
competition blocks were responded faster than High competition ones (tss.12=4.769, = 0.021,
Cl 95% =[0.012, 0.030], p < 0.001). Congruency was also significant (tzpso7 = -15.189, p = -
0.018, CI 95% = [-0.020, -0.015], p < 0.001). Second, we tested if there was an effect of
competition on theta, by fitting an LMM with the same structure but predicting the trial-wise
theta values (theta ~ competition + congruency + (competition | subject)). The effect of
competition on theta was also significant, so that High competition induced higher theta power
(tsa7=3.793, p =0.19, CI 95% = [0.092, 0.289], p < 0.001). Third, we tested the fixed effects of
theta and competition on RTs, also controlling congruency with the same random structure (RT
~ theta + competition + congruency + (competition | subject)). The effect of theta was
significant (tsps242=-2.86, p =-0.001, CI 95% = [-0.001, -0.0002], p < 0.01), suggesting that
larger theta values were associated with faster responses. There was also a main effect of
competition (tss.1=4.807, B =0.021, CI 95% =[0.013, 0.030], p < 0.001) and an effect of
congruency (tsosos = -15.187, p =-0.018, CI 95% = [-0.02, -0.015], p < 0.001).
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