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Abstract 11 

Selective attention is a cognitive function that helps filter out unwanted information. Theories 12 
such as the biased competition model (Desimone & Duncan, 1995) explain how attentional 13 
templates bias processing towards targets in contexts where multiple stimuli compete for 14 
resources. However, it is unclear how the anticipation of different levels of competition 15 
influences the nature of attentional templates, in a proactive fashion. In this study, we used EEG 16 
to investigate how the anticipated demands of attentional selection (either high or low stimuli 17 
competition contexts) modulate target-specific preparatory brain activity and its relationship 18 
with task performance. To do so, participants performed a sex judgement task in a cue-target 19 
paradigm where, depending on the block, target and distractor stimuli appeared simultaneously 20 
(high competition) or sequentially (low competition). Multivariate Pattern Analysis (MVPA) 21 
showed that, in both competition contexts, there was a preactivation of the target category to 22 
select with a ramping-up profile at the end of the preparatory interval. However, cross-23 
classification showed no generalization across competition conditions, suggesting different 24 
preparatory formats. Notably, time-frequency analyses showed differences between anticipated 25 
competition demands, reflecting higher theta band power for high than low competition, which 26 
mediated the impact of subsequent stimuli competition on behavioral performance. Overall, our 27 
results show that, whereas preactivation of the internal templates associated with the category to 28 
select are engaged in advance in both competition contexts, their underlying neural patterns 29 
differ. In addition, these codes could not be associated with theta power, suggesting different 30 
preparatory processes. The implications of these findings are crucial to increase our 31 
understanding of the nature of top-down processes across different contexts. 32 

Keywords: biased competition model; selective attention; MVPA; preparation; EEG 33 

1. Introduction 34 

In our everyday life we are surrounded by myriads of stimuli, but only some of them occupy our 35 
mind. The process of selective attention relates to the filtering of unwanted information and the 36 
selection of the pieces that are relevant to us. This intricate cognitive function proceeds through 37 
various biasing routes: one involves bottom-up processes, where the characteristics of stimuli 38 
automatically capture attention, while another is guided by goals, following top-down processes 39 
(Desimone & Duncan, 1995). The latter does not only take place during stimulus processing but 40 
can also happen in anticipatory fashion, by activating goal-related information before target 41 
events. This preparatory selection is related to proactive cognition (Braver, 2012). However, 42 
research about how such preparation unfolds to aid selection in contexts with different 43 
attentional demands is scarce. 44 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.02.06.579112doi: bioRxiv preprint 

mailto:mruz@ugr.es
https://doi.org/10.1101/2024.02.06.579112
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

One of the most influential proposals explaining selective attention is the biased competition 45 
model (Desimone & Duncan, 1995). This framework highlights the limited capacity of neural 46 
information processing and the essential role of competition in resolving this problem. As we 47 
move up along the cortical hierarchy, neurons increase their receptive fields to respond to 48 
stimuli. However, given the limits of their response, the more pieces of information (e.g., 49 
objects) are placed in the same receptive field, the less information there will be about each of 50 
them. Thus, neurons are selective and prioritize certain types of information, and thus the 51 
information that reaches our senses competes to be represented. Such competition is biased by 52 
bottom-up and top-down mechanisms. While bottom-up mechanisms may favor, for example, 53 
the most salient stimulus, top-down processes engage neurons in the prefrontal cortex that 54 
generate internal templates representing relevant information. These templates are used to bias 55 
neural competition favoring goal-relevant information. For example, if we aim to recognize a 56 
friend's face in a crowd, pre-activation of a template of that face would later guide the 57 
attentional selection.  58 

Early studies explored how top-down biases affect spatial selection (Moran & Desimone, 1985; 59 
Richmond et al., 1983) during target processing. To do this, authors compared the neural 60 
responses to stimuli in contexts of differential competition manipulated by the presence or 61 
absence of distractors. The first insights were obtained from electrophysiological cell recordings 62 
in non-human primates. For example, Moran and Desimone (1985) examined neurons of the 63 
visual cortex in a spatial attention task where monkeys had to respond to target stimuli placed at 64 
specific locations. They used stimuli with features that were effective or ineffective for a 65 
particular cell response. When these stimuli were presented simultaneously in the receptive field 66 
of the cell and the monkey attended to the effective stimulus, the neuron’s response was 67 
enhanced, whereas it was attenuated when the animal attended to the ineffective stimulus. 68 
Therefore, the cell’s response was determined by the properties of the attended stimulus. Later 69 
on, these findings were supported by data in humans using functional magnetic resonance 70 
imaging (fMRI). Kastner et al. (1998) studied how competition is resolved in the human brain 71 
when multiple stimuli appear simultaneously (a high competition context) or sequentially (low 72 
competition). They found that in conditions of inattention, a high competition context generated 73 
less activity in the visual cortex compared to a sequential presentation, indicating suppression of 74 
activation due to competition. Crucially, when the competition was biased by top-down spatial 75 
attention, neural suppression was reduced, corroborating the idea that focused attention 76 
magnifies attended information by mitigating the suppression caused by nearby stimuli. More 77 
recent studies have shown that selection also results in a heightened representation of specific 78 
characteristics of the attended stimuli (Kaiser et al., 2016; Reddy et al., 2009; Sheldon et al., 79 
2021). These findings have been possible thanks to the use of advanced analytic techniques such 80 
as multivariate pattern analysis (MVPA), which has allowed to detect how brain activity 81 
patterns encode templates of attended features (Jackson et al., 2017) or categories (Kaiser et al., 82 
2016; Reddy et al., 2009) of stimuli. Moreover, other studies have revealed changes in 83 
oscillatory activity, especially on the theta band. An increase in theta power has been found in 84 
midfrontal regions during target processing when conflictive stimuli compete with the target 85 
(Chevalier et al., 2021; Nigbur et al., 2011, 2012). Overall, this literature shows how stimulus 86 
selection in competition contexts is a complex process in which different neural mechanisms 87 
take part.  88 

The studies discussed so far did not address neural processes that may be engaged during the 89 
preparation when the presence of upcoming competing stimuli can be anticipated. Some other 90 
studies have focused on preparatory activity (González-García et al., 2016; Peelen & Kastner, 91 
2011; Peñalver et al., 2023; Rajan et al., 2021) but did not explore how varying levels of 92 
competition might influence specific preparatory processes. A fruitful approach to investigate 93 
preparation uses anticipatory cues to track preparatory templates, aligning with the principles of 94 
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biased competition theory. This way, it has been found that both spatial and content-based 95 
information is preactivated before the target presentation (Rajan et al., 2021). For example, 96 
Peelen and Kastner (2011) used symbolic cues to instruct participants to detect either people or 97 
cars on naturalistic images entailing high levels of competition. Using MVPA, they compared 98 
the activity patterns in the visual cortex during the preparatory interval and during visual 99 
processing of exemplars from the target categories. Their results showed shared neural codes 100 
across both epochs, suggesting that an attentional template similar to the one guiding visual 101 
processing was preactivated during the preparation, biasing the competition in favor of stimuli 102 
matching this template. More studies have also found preparatory templates associated with 103 
relevant target categories (González-García et al., 2016; Peñalver et al., 2023; Ruz & Nobre, 104 
2008) or stimulus features (Stokes et al., 2009) to attend. In a complementary manner, time-105 
frequency analyses have revealed that theta power during the preparation period is associated 106 
with anticipating most challenging tasks (Cooper et al., 2017; Van Driel et al., 2015). Moreover, 107 
the behavioral relevance of both MVPA and time-frequency results has been evidenced by 108 
showing how both indices correlate with performance. On one hand, previous studies have 109 
shown a behavioral improvement when preparatory activity patterns associated with the target 110 
are more segregable (González-García et al., 2017; Peelen & Kastner, 2011; Soon et al., 2013; 111 
Stokes et al., 2009), when the dimensions to attend are better distinguished (Hall-McMaster et 112 
al., 2019) or when the working-memory load of the task is better represented (Manelis & Reder, 113 
2015). On the other hand, preparatory theta power in frontocentral electrodes has been related to 114 
a more consistent behavior on task-switching paradigms (Cooper et al., 2017) or to a necessary 115 
step to accurate fast responses (Formica et al., 2022). However, the relationship between 116 
anticipated coding of specific information across contexts, theta power and behavioral 117 
performance remains uncertain. 118 

In this work we examined if and how preparatory neural signals (i.e., the presence of target-119 
specific activity patterns and theta band power increases) are affected by anticipated 120 
competition levels, as well as the relationship among them and with task performance. To do so, 121 
we collected EEG data during a cue-target paradigm with different levels of competition across 122 
blocks, including a separate localizer task to isolate perceptual templates. We analyzed 123 
anticipatory neural activity with univariate (time-frequency) and MVPA approaches. 124 
Considering previous findings (Hall-McMaster et al., 2019; Manelis & Reder, 2015; Peelen & 125 
Kastner, 2011; Peñalver et al., 2023), we expected that preparatory patterns would dissociate 126 
based on the relevant target category, and that this category-specific pattern would be more 127 
distinguishable in a high competition context. Also, at the oscillatory level we predicted that the 128 
amplitude of preparatory theta power would be enhanced in high competition (Cooper et al., 129 
2017; Van Driel et al., 2015). Finally, we hypothesized that these preparatory brain signals 130 
would be related to behavioral performance (Formica et al., 2022; González-García et al., 2017; 131 
Peelen & Kastner, 2011; Soon et al., 2013; Stokes et al., 2009). 132 

2. Methods 133 

2.1. Participants 134 
Thirty-six students (mean age = 21.36; range = 18-27; 18 women and 18 men) from the 135 
University of Granada, all native Spanish speakers, right-handed and with normal or corrected 136 
vision, were recruited and gave their informed consent to participate. They received 20-25 euros 137 
depending on their task performance. We excluded three additional participants due to either 138 
low accuracy (lower than 80%) or more than 30% discarded EEG trials due to artifacts. Data 139 
were collected during the COVID-19 pandemic; therefore, participants’ temperature was 140 
measured upon arrival, they wore a face mask during the experiment and signed a form 141 
confirming not having illness symptoms. 142 
  143 
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We calculated the sample size using PANGEA (Power ANalysis for GEneral ANOVA designs; 144 
Westfall, 2016). Our task followed a 3-factor within-subjects design (Competition x Stimulus 145 
Category x Congruency) where our main contrast of interest was a two-way interaction 146 
(Competition x Congruency). To achieve an estimated 80% power to detect a small-medium 147 
behavioral effect size of Cohen’s d = 0.3, we required a minimum of 30 participants. 148 
Nonetheless, to match counterbalancing needs we collected data from 36 participants, with an 149 
estimated power of 87%. 150 
 151 

2.2. Apparatus, stimuli and procedure 152 
The task was run on Matlab 2020a using The Psychophysics Toolbox 3 (Brainard, 1997). 153 
Stimuli were presented on an LCD screen (1920 × 1080 resolution, 60 Hz refresh rate) over a 154 
grey background. We used four types of stimuli as cues: circle, square, drop and diamond with 155 
thin black outlines, unfilled. As targets and distractor stimuli we employed 24 Caucasic faces 156 
with neutral expressions from the Chicago Face Dataset (Ma et al., 2015) and 24 Spanish person 157 
names (50% male-female in both categories).  158 
 159 
When participants arrived to the lab they signed an informed consent, and then the EEG 160 
preparation started. They read the instructions of the task and performed a practice session (192 161 
trials identical to the main task), where they had to achieve 80% of accuracy on both High and 162 
Low competition blocks to continue with the experimental session. 163 
 164 
The experiment consisted of two tasks presented on different blocks: a main competition task 165 
and a stimulus category localizer. The main task was a cue-target paradigm where participants 166 
judged the sex of target faces and words. Cues presented at the beginning of each trial indicated 167 
the category of the target (faces/names) to respond to. Target and distractors were displayed 168 
either simultaneously (in High competition blocks, 50%) or sequentially, with a temporal delay 169 
(Low competition, 50%; adapted from Kastner and colleagues, 1998). Target and distractor 170 
stimuli could be either congruent (i.e., same sex, associated with the same response, 50%) or 171 
incongruent (different sex, with different responses, 50%). At the beginning of each block, an 172 
instruction screen stated the level of competition (High vs. Low) and indicated the cue-target 173 
associations for the block. To prevent perceptual confounds in the multivariate analyses, each 174 
category (faces and words) was cued with two different stimuli for each participant. That is, two 175 
cues always indicated faces, and the other two names. One of each pair was used in each block 176 
(one for faces and another one for names). Within participants, we counterbalanced the 177 
combination of cues across blocks, sequentially iterating across all possible pairs of face and 178 
name cues. The association between cues and target categories was further counterbalanced 179 
across participants. 180 
 181 

The sequence of events in a trial was as follows (see Figure 1): The cue (∼2°x 2° degrees of 182 
visual angle) was presented for 50 ms and was followed by a Cue-Target-Interval (CTI) of 1500 183 
ms. In High competition blocks, an overlapping face (∼9.7º x 12.17º visual angle) and a name 184 

(∼9.7º x 2.6º visual angle) used as target and distractor stimuli were displayed for 750 ms, 185 
followed by an Inter-Trial-Interval (ITI) of 1500 ms. In Low competition blocks, the target 186 
appeared first on the screen for 500 ms, followed by overlapping target and distractor for 250 187 
ms and then by the distractor on its own for 500 ms, ending with a 1000 ITI ms. This 188 
arrangement follows previous similar paradigms (see Kastner et al., 1998) and allows to present 189 
each stimulus with the same duration and maintain the same trial length across competition 190 
conditions. The response window was the same in both conditions. Participants pressed the keys 191 
“A” or “L” with their left and right index to indicate whether the target stimulus was female or 192 
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male (counterbalanced across participants). In case of wrong answers, after the ITI, a feedback 193 
tone of 450 Hz was played for 300 ms while a fixation cross was displayed for 1000 ms in total. 194 
 195 
In Localizer blocks, included to isolate the perceptual processing of stimuli without motor 196 
activity, the same faces and names were presented for 750 ms followed by an ITI of 500 ms. To 197 
facilitate participants’ engagement with the task, they were instructed to press the "C" key in a 198 
minimal percentage of trials (8%) where the target was rotated 180°. 199 
 200 
There were 72 blocks, 24 of each type (High competition, Low competition and Localizer). The 201 
order of blocks was fully counterbalanced within and across participants, as each block was 202 
preceded and followed by the other types the same number of times. For the main task, we had 203 
576 trials for each (High, Low) competition condition. These trials were unique combinations of 204 
the 24 faces and 24 names. Each block lasted 1.52 minutes (with 24 trials of 3.8 s each). The 205 
localizer blocks had 48 trials lasting 1.25 s, for a total of 1 minute per block (for a total of 1152 206 
localizer trials). The whole session, including practice, lasted approximately 2 hours and 15 207 
minutes. 208 

 209 

Fig. 1. Experimental paradigm. Example trials from High and Low competition blocks. In a sex 210 
classification task, participants were cued about which stimulus category (faces or names) to 211 
respond to. In High competition blocks, targets and distractors appeared at the same time, 212 
whereas in Low competition they appeared sequentially. 213 
 214 

2.3. EEG acquisition and preprocessing 215 
EEG data was recorded with a high-density 64 active channels cap (actiCap Slim, BrainVision) 216 
at the Mind, Brain and Behavior Research Center (CIMCYC) of the University of Granada. The 217 
impedances of the amplifier were kept below 10 k Ω. EEG activity was recorded at a sampling 218 
rate of 1000 Hz, with FCz as the reference electrode. 219 
 220 
Preprocessing was done using EEGLAB (Delorme & Makeig, 2004) and in-house MATLAB 221 
scripts following the pipeline available on Github (see Open practices section). First, data were 222 
downsampled to 256 Hz and filtered using a low-pass and high-pass FIR at 120 and 0.1 Hz, 223 
respectively. A notch filter was applied at 50 and 100 Hz to remove line noise and its 224 
harmonics. Noisy channels were identified by visual inspection and removed (1 channel on 225 
average, range 0-4). Next, the data was epoched in intervals of 3 s (-1 to 2 s after the onset of 226 
cues and of targets). Independent Component Analysis (ICA) was computed afterwards with the 227 
runica algorithm from EEGLAB to remove blinks and lateral eye movements. Components 228 
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were selected with ICLabel and visual inspection (scalp maps, raw activity and power 229 
spectrum). An average of 1.58 components per participant (range 1-3) were removed. Then, 230 
automatic trial rejection was used to prune the data from other artifacts, using 3 criteria (see 231 
López-García et al. (2020, 2022) and Peñalver et al. (2023) for similar parameters). First, we 232 
identified trials with abnormal spectra, removing those deviating from baseline by ± 50 dB in 233 
the 0–2 Hz frequency window (sensitive to remaining eye artifacts) or by -100 dB or + 25 dB in 234 
20–40 Hz (sensitive to muscle activity). Second, trials with improbable data were eliminated: 235 
the probability of occurrence of each trial was computed by determining the probability 236 
distribution of voltage values across trials, with a rejection threshold established at ± 6 SD. The 237 
third criteria were extreme values: all trials with amplitudes in any electrode out of a ± 150 𝜇V 238 

range were rejected. Next, the dismissed channels were recomputed by spherical interpolation 239 
and a common average was used to re-reference the data. Finally, we applied a baseline 240 
correction in the -200 to 0 ms prior to stimulus onset. The analyses focused solely on correct 241 
trials. On average, 1476 trials per participant (range 1292-1591) were included. 242 
 243 

2.4. Analyses 244 

2.4.1. Behavioral 245 
We employed 2-way repeated measures ANOVAs with the factors Competition (High vs. Low) 246 
and Congruency (Congruent vs. Incongruent). Separate tests were performed on accuracy and 247 
reaction times (RT) using the JASP software (Love et al., 2019). To filter the RT data, we 248 
excluded incorrect trials and those with RT deviating 2SD from the participant mean. 249 
 250 

2.4.2. EEG  251 

2.4.2.1. Multivariate pattern analysis (MVPA) 252 
We used Linear Discriminant Analyses (LDA) as classifiers to investigate if the preparatory 253 
activity patterns contained information about the upcoming competition level (High or Low) 254 
and the specific target categories (Faces or Names) anticipated across competition contexts. To 255 
do so, we focused on the cue-locked interval activity from -100 to 1550 ms. The analyses were 256 
run on MATLAB using the toolbox MVPAlab (López-García et al., 2022). Classifiers were 257 
trained and tested using raw voltage of each trial and time point across all the channels, with the 258 
configuration for the classification being equal for all the analyses. 259 
 260 
To increase the signal-to-noise ratio, we created ‘supertrials’ (Grootswagers et al., 2017) by 261 
averaging three random trials within each condition (see López-García et al. (2020, 2022); 262 
Peñalver et al. (2023) for similar procedures) and smoothed the data by applying a moving 263 
average window every three time points, so that data from every timebin (tn) was averaged with 264 
the previous and the following time-points tn = (tn-1 + tn + tn+1)/3. We used a 5-fold cross-265 
validation strategy that ensures unbiased results while reducing the computational cost 266 
(Grootswagers et al., 2017). With this approach, we split our data into five subsets and used four 267 
to train the classifier and the remaining one as a test set. This protocol was repeated 5 times, 268 
changing the test set. The number of trials within each class was subsampled considering two 269 
criteria: that each class had the same number of trials and that there was the same number of 270 
trials per class in each fold for the cross-validation procedure (Grootswagers et al., 2017; King 271 
& Dehaene, 2014). A normalization procedure was applied to enhance the classifier 272 
performance and generalizability of the results. Normalization was done during the cross-273 
validation, by calculating the mean and standard deviation of each electrode within each fold 274 
across the training trials, and then applying these two values to normalize the data of both the 275 
train and the test set as: 276 
  X train = (X train – μ train)/ 𝜎 train      X test = (X test – μ train)/ 𝜎 train 277 
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 278 

Where μ train is the mean and 𝜎 train is the standard deviation of the training set. Finally, to reduce 279 
the computational cost, the analysis was done every three time points. The results are reported 280 
as the area under the curve (AUC), a non-parametric criterion-free method with no assumptions 281 
about the true distribution of the data (King & Dehaene, 2014). Also, AUC is sensitive to binary 282 
(two-class) differences, less vulnerable to biases (including those triggered by potential 283 
differences between the classes) and can be interpreted as classification accuracy (King et al., 284 
2013). 285 
 286 
To detect the significant decoding performance at the group level, we used a non-parametric 287 
cluster-based permutation method against empirical chance. For this, the trial labels were 288 
randomly permuted 100 times per participant, resulting in chance-level outcomes under the null 289 
effect. After that, one random AUC per participant was selected and averaged to create a group-290 
level null effect decoding curve. This was done 105 times to generate 105 permuted group AUC 291 
values. These values were used to build empirical chance-level AUC distributions for each time 292 
point. The AUC values in the 95 percentiles were used as threshold to identify significant 293 
decoding peaks in the real decoding results. Moreover, to estimate the minimum cluster size to 294 
be significant (𝛼 = 0.05), we used the permuted results to generate a null distribution of cluster 295 
sizes and corrected for multiple comparisons using a False Discovery Rate (FDR) approach 296 
(López-García et al., 2022). 297 
 298 
Additionally, we studied the extent to which the activity patterns were stable along the 299 
preparation interval. For that purpose, we used a temporal generalization approach that applied 300 
the decoding analysis explained above but training in a given time point and testing in all the 301 
remaining ones. This procedure iterated using all time points as training and testing datasets. 302 
This resulted in a Temporal Generalization Matrix with a diagonal reflecting the same result as 303 
the MVPA curve and non-diagonal values corresponding to the temporal generalization of the 304 
underlying neural code. The statistical significance from these matrices was extracted with the 305 
same cluster-based analysis as before, now considering two-dimensional clusters that spread 306 
over training and testing time points. 307 
 308 

With this overall approach, we first studied if the competition level affected preparatory 309 
activity. To do so, we trained and tested classifiers on the cue-locked interval of trials from 310 
High and Low competition blocks. Then, to evaluate whether and how the preparatory interval 311 
carried information about the target category anticipated, either faces or names, we performed 312 
classification analyses separately for High and Low competition blocks. To compare the 313 
category-related patterns while avoiding perceptual confounds triggered by the specific shape of 314 
the cues, we adopted a cross-classification approach (Kaplan et al., 2015; Peñalver et al., 2023). 315 
The classifiers decoding the relevant category were trained and tested in trials where 316 
independent sets of cues were employed. This protocol iterated across the two sides of the 317 
classification (exchanging training and testing cues) and all cues’ combinations (e.g.: circle-318 
names, diamonds-faces vs. drops-names, squares-faces). Results were averaged across 319 
directions and classifiers.  320 
 321 
Additionally, we further studied if category-specific coding was affected by the competition 322 
level anticipated in High and Low competition contexts, following two approaches. First, we 323 
tested the hypothesis that preparing for high competition contexts increased the fidelity of 324 
anticipatory category-specific neural codes. To do this, we compared the two competitions 325 
cross-decoding curves and temporal generalization matrices using a tailored cluster-based 326 
permutation approach (Moore et al., 2024). We computed one-tailed t-tests in every time point 327 
to address whether the decoding accuracy or the temporal generalization was higher in High 328 
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than Low competition contexts. Then, we identified cluster sizes in these results, by looking for 329 
sets of temporally adjacent points with p < 0.05. For that purpose, we set a criterion of a 330 
minimum cluster size of 3 time points the cross-decoding curve, and 10 for temporal 331 
generalization (Peñalver, 2024). To each of these clusters, we assigned a t value resulting from 332 
the sum of the t values from all the time points incorporated. Next, the inference was performed 333 
contrasting these results against a permutation-based distribution of null differences. To do so, 334 
we randomly multiplied one of the conditions by -1 in each subject; this was done 5000 times. 335 
We repeated the procedure as in the true data but with the permuted results, obtaining a 336 
distribution of the t values of the clusters, and used the 95th percentile to mark the values that 337 
were considered significant in the true data. Second, to further explore whether the competition 338 
context altered the neural codes underlying the anticipatory category patterns, we performed a 339 
cross-classification training and testing the classifier with data from different competition 340 
blocks (Kaplan et al., 2015). This analysis also implemented the cross-classification across cues, 341 
following a similar approach as above. The AUC curves obtained were averaged among 342 
classifiers and directions.  343 
 344 
To study whether the preparatory activity patterns associated with categorical information of 345 
faces and names were similar to the actual perception of the stimuli, we performed a cross-346 
classification analysis by training with data from the localizer blocks and testing on the cue-347 
locked window of the main task, separately for High and Low competition. As the timing of the 348 
localizer and main task paradigm were different, we focused on the temporal generalization 349 
profile of the cross-classification. Considering that our interest was the reinstatement of 350 
perceptual patterns on preparation activity, this cross-classification was only performed in a 351 
single direction, using the localizer data as training set and the main task data as test set. To test 352 
whether the reinstatement has different robustness in High or Low-competition contexts, we 353 
compared these matrices using two-tailed t-tests with a cluster-based permutations approach. 354 
This analysis was equivalent to the one comparing the category-specific coding across 355 
competition conditions, except for using two-tailed tests. 356 
 357 
Finally, to study the link between anticipatory activity patterns and task performance, decoding 358 
results and behavioral data were correlated using the Pearson coefficient. First, we used the 359 
anticipated competition level, extracting the average AUC value for each participant during the 360 
time window where the decoding was significant at the group level, from 100 ms until the end 361 
of the interval (see Li et al., 2022). This value was correlated with behavioral accuracy and RT 362 
means across High and Low competition. To check for specific relationships between the 363 
congruency behavioral effect and the anticipated competition level, we calculated differences in 364 
task performance (separately for behavioral accuracy and RT) of congruent minus incongruent 365 
trials and correlated this with individual AUC values. Second, we followed a similar strategy 366 
with the fidelity of the category-specific decoding, but in this case, the AUC values of each 367 
participant were calculated separately for High and Low competition blocks. We averaged the 368 
AUC values during the time window that was significant in both High and Low competition 369 
contexts (1150-1550 ms). Then, we correlated the AUC with the behavioral accuracy and RT of 370 
each competition condition. To address the relationship with the congruency effect, we 371 
calculated the difference between the congruent and incongruent trials of each competition 372 
condition separately and correlated them with the mean AUC values of each condition. In all 373 
cases, we applied frequentist and Bayesian statistics to provide complementary evidence 374 
supporting the results. 375 
 376 
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2.4.2.2. Time-frequency analysis 377 
We tested whether preparing for High competition increased anticipatory theta-band activity (3-378 
7 Hz) in comparison with Low competition. Theta power was extracted from a frontocentral 379 
region of interest (ROI) with the electrodes Fz, FC1, Cz, FC2, F1, C1, C2, F2 and FCz. We 380 
computed the time-frequency decomposition for each trial during the preparation epoch (cue 381 
locked -1000 to 1550 ms) using complex Morlet wavelets. The frequencies were logarithmically 382 
spaced in 18 steps from 2 to 20 Hz. The wavelet’s length was calculated separately for each 383 
frequency assigning a number of cycles also logarithmically spaced between 3 and 5 (see 384 
Cohen, 2019). Time–frequency power values were transformed to decibels and normalized to a 385 
baseline of -280 to -100 ms before cue onset, according to the following equation (Cohen & 386 
Van Gaal, 2014): dB= 10* log10 (power/baseline). 387 
 388 
A cluster-based nonparametric statistical test implemented in FieldTrip (Maris & Oostenveld, 389 
2007) was used to evaluate whether the preparatory activity of High competition trials showed 390 
higher theta power than Low competition ones. For this, power values in each condition were 391 
averaged across channels and trials. Then, these averages were compared using within-subjects 392 
paired-samples two-tailed t-test for each time point and frequency (Hz). Those t values larger 393 
than the threshold specified by alpha (0.05) were clustered in connected sets of temporal 394 
adjacency. The t value of the cluster was calculated adding the t values of each timepoint. The 395 
permutations were performed within each subject randomizing the condition labels for each 396 
value, 1000 times with the Monte Carlo method. T values were calculated for all the 397 
permutations using maximum cluster-level mass statistic (Groppe et al., 2011), and the most 398 
extreme cluster-level t score across permutations was used to derive a null hypothesis 399 
distribution. If the t value of the true data cluster was above the 97.5th percentile or below the 400 
2.5th percentile of the null distribution, then it was considered significant. 401 
 402 
Next, to explore whether anticipatory theta power increase and the content-specific activity 403 
patterns found with the decoding were related, we correlated them using Pearson across 404 
participants, separately for High and Low competition conditions. To obtain the theta power 405 
values per participant, we visually inspected the grand average across trials from all conditions 406 
and identified the theta time window from 100 ms to 900 ms (see Fig S1). We extracted the 407 
average theta amplitude per participant from this time window. Then, these values were 408 
correlated with the classification AUC per participant and competition condition averaged 409 
within the 1150 ms to 1550 ms time window.  410 
 411 
Finally, we performed a mediation analysis to investigate if the anticipatory theta power acted 412 
as a mediator between the competition manipulation and the speed of responses (e.g., Formica 413 
et al., 2022). To do so, we used trial-by-trial RT and theta power data, averaging the power 414 
values within 100-900 ms after cue presentation (same time window as above). To filter out 415 
outlier data, trials with ± 2SD from the average RT or theta power were discarded. Afterwards, 416 
we verified that the data fitted the necessary criteria (Baron & Kenny, 1986) for mediation 417 
analysis: in our case (1) the competition manipulation had to influence RTs, (2) this 418 
manipulation also had to predict theta power, and (3) theta power had to predict RTs. These 419 
were tested with linear mixed effects models (LMMs) with the lme4 package in R (Bates et al., 420 
2014). In all models, we included Congruency as a fixed effect to control for it. To select the 421 
model with an adequate random effect structure, a “keep it maximal” approach was adopted 422 
starting with the most complex random structure until the model converges for the 3 LMMs 423 
(Barr et al., 2013). This approach gave a random structure of (competition | subject). P-values 424 
were calculated using Satterthwaite approximations (Luke, 2017). Once we ensured the three 425 
criteria were met, the mediation was tested performing a casual mediation analysis with the 426 
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function mediate from the mediation package in R, using 5000 permutations (Tingley et al., 427 
2014). 428 

3. Results 429 

3.1. Behavioral 430 
Overall accuracy on the main task was 93.5%. The ANOVA of accuracy data showed a main 431 
effect of Competition (F35,1 = 16.022, p < 0.001, 𝜂p

2 = 0.314), indicating that participants 432 
performed better on Low (M = 93.8%, SD = 4.4%) than High competition blocks (M = 92.3%, 433 
SD = 5.2%). The Congruency effect (F35,1 = 71.269, p < 0.001, 𝜂p

2 = 0.671) was also significant, 434 

showing that Congruent trials were more accurate (M = 95.1%, SD = 3.8%) than Incongruent 435 
ones (M = 91.2%, SD = 5.8%). As predicted, there was a significant interaction of Congruency 436 
* Competition (F35,1 = 73.030, p < 0.001, 𝜂p

2 = 0.676). Post-hoc test showed that the 437 

Congruency effect appeared in High (M Congr = 95.9%, M Incongr = 88.6%, t35,1 = 9.319, p < 0.001, 438 
Cohen’s d = 1.553) but not in Low competition (M Congr = 94.1%, M Incongr = 93.6%, t35,1 = 1.555, 439 
p = 0.129, Cohen’s d = 0.259). 440 
 441 
An average of 5.5% trials per participant, corresponding to outliers’ values of RT (± 2SD), were 442 
excluded. The ANOVA results showed a main effect of Competition (F35,1 = 26.664, p < 0.001, 443 
𝜂p

2 = 0.432), as participants were slower on High (M = 535.0 ms, SD = 60.0) compared to Low 444 

competition trials (M = 514.0 ms, SD = 68 ms). There was also an effect of Congruency (F35,1 = 445 

224.819, p < 0.001, 𝜂p
2 = 0.865) with faster Congruent (M = 515.0 ms, SD = 62.0) than 446 

Incongruent (M = 534.0 ms, SD = 63.0) trials, and an interaction of Congruency * Competition 447 
(F35,1 = 203.907, p < 0.001, 𝜂p

2 = 0.853). Again, Congruency was only present in High 448 

competition (M Congr = 517.0 ms, M Incongr = 556.0 ms, t35,1 = -19.021, p < 0.001, Cohen’s d = -449 
3.170) and not in Low competition blocks (M Congr = 514.0 ms, M Incongr = 514.0 ms, t35,1 = 0.065, 450 
p = 0.949, Cohen’s d = 0.011).  451 
 452 

 453 
Fig. 2. Box plots displaying the behavioral results. Boxes have a middle marking the median, 454 
limits representing the first and third quartile, and whiskers indicating the 1.5 inter quartile 455 
range for the upper and lower quartiles. Outliers are shown outside the whiskers. The dots 456 
represent each participant’s value per experimental condition. (A) Behavioral accuracy rate 457 
(ACC) in High and Low competition blocks for Congruent and Incongruent trials. (B) Reaction 458 
times (RT in seconds) in High and Low competition blocks for congruent and incongruent trials. 459 
*** = p < 0.001 460 
 461 
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3.2. Electrophysiology 462 

3.2.1. MVPA results 463 

3.2.1.1. Anticipation of the competition level 464 
Our first aim was to assess the anticipation of the overall competition level. A classifier trained 465 
and tested to discriminate preparatory activity between High and Low competition contexts 466 
showed an effect of competition. The cluster identified in these results covered most of the CTI 467 
(from 100 ms until the end of the interval, see Fig. 3A). The temporal generalization analysis 468 
revealed a large significant cluster starting approximately at 100 ms. Interestingly, the cluster 469 
was asymmetric, generalizing to all the testing time points when the classifier was trained using 470 
data from the end of the preparation window, whereas less generalization was found when the 471 
training was done at the beginning of the interval (see Fig. 3B). 472 

 473 

Fig. 3. (A) Classifier performance distinguishing competition levels in the preparation interval. 474 
The red line shows the mean AUC and the shaded red areas its standard error. The red 475 
horizontal line displays significant time points. The black horizontal line shows the onset and 476 
duration of the cue. (B) Temporal generalization matrix from the same classification showing 477 
significant above-chance clusters outlined in black. The color range in the bar indicates the 478 
AUC values. 479 
 480 
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3.2.1.2. Category-specific anticipation 481 
Classifiers trained and tested to discriminate the target category that the participants were 482 
preparing to attend (faces vs. names) indicated that there was a significant effect of category. 483 
We found decoding clusters in High (from 531-555 ms, 859-906 ms, 976-1000 ms, 1047-1082 484 
ms, 1152-1211 ms, 1234-1527 ms) and Low competition contexts (941-965 ms; 1176-1234 ms; 485 
1281-1328 ms; 1352-1398 ms; 1527-1550 ms). The decoding AUC incremented progressively 486 
with a ramping up profile towards the end of the preparation interval, before target onset (see 487 
Fig 4). Nonetheless, there was no evidence supporting different decoding accuracies across 488 
competition conditions (all ps > 0.05). 489 

 490 

Fig. 4. Results (AUC values) of the classifiers discriminating the upcoming target category 491 
(faces vs. names) using cross-classification (across cues identities), separately for High and Low 492 
competition conditions. Horizontal lines represent the significant clusters for High (red) and 493 
Low (blue) competition.  494 
 495 
We also analyzed the temporal generalization of category-specific information separately for 496 
High and Low competition contexts. For both, the anticipatory patterns showed temporal 497 
generalization, which was stronger on the right upper corner of the matrix, towards the end of 498 
the interval (Fig. 5). However, the comparison of both matrices did not provide statistical 499 
evidence supporting different generalization patterns (all ps > 0.05). 500 
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 501 
Fig. 5. Time-generalization matrices of the discrimination of the upcoming target category 502 
(faces vs. names) using cross-classification (across cues identities) on High (A) and Low 503 
competition (B). Significant clusters above chance are outlined with black. The color range in 504 
the bar represents AUC values. 505 
 506 
We also tested whether these patterns in High and Low competition are coded similarly. A 507 
cross-classification strategy across conditions and cues showed no evidence for similar patterns 508 
coding the relevant category between competition contexts (Fig. 6A). The temporal 509 
generalization analysis only showed small scattered significant clusters (see Fig. 6B). 510 
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 511 

Fig. 6. (A) Cross-classification across competition conditions and cues differentiating upcoming 512 
target categories, showing no significant clusters. (B) Temporal generalization matrix for the 513 
same cross-classification showing small clusters above chance, outlined with black. The color 514 
range represents AUC values. 515 
 516 

3.2.1.3. Preactivation of perceptual patterns during preparation 517 
Classifiers were trained to discriminate between faces and names in the localizer and tested 518 
during the preparation interval of the main tasks separately for High and Low competition 519 
contexts. The results showed several above-chance significant clusters in the High competition 520 
context (Fig. 7A). In the preparation interval of Low competition trials, there were few above-521 
chance clusters (Fig. 7B). However, when comparing both matrices, there was no statistical 522 
evidence supporting different preactivations of perceptual patterns across competition 523 
conditions (all ps > 0.05). 524 
 525 
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 526 
Fig. 7. Temporal generalization of the cross-classification from the localizer category targets to 527 
the upcoming category targets in the preparation interval of (A) High competition and (B) Low 528 
competition (with cue duration presented as the black horizontal line). The color range in the bar 529 
represents AUC values. 530 
 531 

3.2.1.4. Decoding-behavior relationships 532 
To study whether the observed preparatory patterns of competition were related to behavioral 533 
performance, we correlated the decoding accuracy of the classifier with the average accuracy 534 
and RT across participants. However, Pearson correlations resulted in non-significant results (all 535 
ps > 0.6). A Bayesian approach provided moderate evidence in favor of the null hypothesis, i.e., 536 
the absence of a relationship between the two variables (Mean behavioral accuracy: r = 0.03, p 537 
= 0.87, BF01 = 4.75; Mean RT: r = 0.09, p = 0.60, BF01 = 4.22). We also correlated the 538 
behavioral congruency effect (i.e., the accuracy and RT difference of congruent minus 539 
incongruent trials) and the anticipation of competition level decoding. Pearson correlations were 540 
non-significant (all ps > 0.4) and Bayesian factors showed moderated evidence towards the null 541 
hypothesis (Behavioral accuracy: r = -0.03, p = 0.83, BF01 = 4.71; RT: r = 0.11, p = 0.52, BF01 = 542 
3.94). 543 
 544 
We also correlated behavioral performance with category-specific decoding values separately 545 
for High and Low competition indexes. In this case, for each participant, we averaged the AUC 546 
in the same time window for High and Low competition. Again, the Pearson correlations were 547 
non-significant (all ps > 0.2) and Bayesian factors showed weak to moderate evidence in favor 548 
of the null hypothesis (High competition accuracy: r = 0.16, p = 0.34, BF01 = 3.12; High 549 
competition RT: r = -0.22, p = 0.20, BF01 = 2.15; Low competition accuracy: r = -0.01, p = 550 
0.96, BF01 = 4.81; Low competition RT: r = -0.01, p = 0.97, BF01 = 4.82). A similar approach 551 
was taken to correlate the congruency effect with the category-specific anticipation decoding. 552 
The results indicated that none of the correlations were significant (all ps > 0.2), providing weak 553 
to moderate evidence in favor of the null hypothesis (High competition, accuracy: r = -0.03, p = 554 
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0.88, BF01 = 4.76; High competition, RT: r = 0.19, p = 0.27, BF01 = 2.68; Low competition, 555 
accuracy: r = 0.03, p = 0.86, BF01 = 4.75; Low competition, RT: r < 0.01, p = 0.98, BF01 = 556 
4.82). 557 
 558 

3.2.2. Time-frequency results 559 
The comparison of the two conditions’ time-frequency maps in the cue-locked interval showed 560 
that High competition anticipation generated higher Theta power than Low competition. A large 561 
cluster (p < 0.001, Fig. 8) was found around the Theta band (3-7 Hz) from 0 to 1550 ms.562 

 563 

Fig. 8. Results of the Monte Carlo cluster-based approach comparing the power values of High 564 
and Low competition trials during the preparation interval. The significant cluster is outlined 565 
with black lines. The dark blue patch on the lower-right corner reflects the lack of estimated 566 
power data due to edge effects. 567 

The Pearson correlations between category-specific decoding and theta power in High and Low 568 
anticipation conditions resulted in non-significant results (all ps > 0.6). A Bayesian approach 569 
provided moderate evidence supporting the null hypothesis (High competition: r = 0.08, p = 570 
0.65, BF01 = 4.37; Low competition: r = 0.08, p = 0.65, BF01 = 4.38). 571 
 572 
Finally, we explored whether the neural mechanisms reflected by the frontocentral theta power 573 
could act as mediators between the impact of competition levels and the RTs. The filtering 574 
performed prior to the analysis removed an average of 7.5% (SD= 1%) of trials for each 575 
participant. We confirmed that our data met the necessary criteria for the mediation (Baron & 576 
Kenny, 1986), fitting our data on three LMMs (see Supplementary materials for details). First, 577 
in agreement with previous analysis, there was a Competition and Congruency effect on RTs. 578 
Second, the effect of Competition on theta was also significant, so that High competition 579 
induced higher theta power. Third, in the complete model predicting RTs there was an effect of 580 
Congruency, Competition and also theta on RTs, suggesting that larger theta values were 581 
associated with faster responses. To directly test that theta power partially mediates the effect of 582 
competition on RTs, we performed a causal mediation analysis that showed a significant direct 583 
effect of competition on RTs (β = 0.022, CI 95% = [0.013, 0.03], p < 0.001) and an indirect 584 
effect via theta (β = -0.0001, CI 95% = [-0.0002, 0], p = 0.006), indicating a partial mediation 585 
(see Fig. 9). 586 
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 587 

Fig. 9. Mediation model with beta values. The anticipated competition significantly predicted 588 
frontocentral theta power, which in turn affected the RTs. Frontocentral theta power mediated 589 
the effect of competition on RT, although the direct effect of competition on RT was still 590 
significant after accounting for the mediating effect of theta, suggesting a partial mediation. 591 
***p < 0.001 **p < 0.01 592 

4. Discussion 593 

In this study we examined how the anticipated demands of attentional selection, manipulated 594 
through competition between target and distractors, modulated specific markers of preparatory 595 
neural activity. In line with the postulates of the biased competition model, our results reveal the 596 
preactivation of internal templates associated with the category to select. However, these 597 
preactivations did not differ in robustness across competition contexts, and they did not 598 
generalize between competition contexts, suggesting the existence of differential preparation 599 
formats. Moreover, oscillatory activity showed higher theta band activity for high than low 600 
competition context, an effect that mediates behavioral improvements.  601 

Our behavioral results validated the effectiveness of the paradigm. The high accuracy rates 602 
across conditions show that participants paid attention to the cues, and the congruency effect 603 
was present only in the high competition condition, in line with classic studies (Beck & Kastner, 604 
2009; Desimone & Duncan, 1995; Eriksen & Eriksen, 1974; Simon, 1969). The higher selective 605 
attention demands were also reflected in lower accuracy and higher response times in the high 606 
competition blocks, as expected (Desimone & Duncan, 1995; Duncan, 1993). 607 

Multivariate classifiers showed that anticipated competition levels could be distinguished. These 608 
differences between high and low competition contexts are in line with previous studies that 609 
found evidence of preparatory coding of different tasks (González-García et al., 2017; Hall-610 
McMaster et al., 2019; Manelis & Reder, 2015; Palenciano et al., 2019a). Importantly, the 611 
competition level could be differentiated in most of the preparation window. However, it is 612 
worth noting that these results could also be driven by other variables that may be 613 
systematically modulated by competition levels. That is the case for instance of arousal, which 614 
could be increased in high competition blocks. Also, our blocked design makes it highly likely 615 
that the control settings (i.e., the overall task set of high vs. low competition contexts) were 616 
maintained throughout the whole duration of the block (Dosenbach et al., 2008; Palenciano et 617 
al., 2019b). Further studies will be needed to disentangle the differences between control 618 
settings with various competition levels and arousal changes. 619 

Unexpectedly, the temporal generalization profile of the overall competition context was 620 
asymmetric, showing more generalization when the classifier was trained at the end of the 621 
interval than for the reverse direction (Fig. 3B). This could be due to more stable preparatory 622 
patterns at the end than at the beginning of the interval. However, earlier time points still 623 
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resulted in higher accuracy values, which may be caused by having a set of processes occurring 624 
at the same time, which might be different for high and low competition contexts. Some of these 625 
early cognitive processes might include physically perceiving the cue, remembering its 626 
meaning, recalling the competition condition in which the participant is and preparing to 627 
perceive the target and respond to it. As this set of processes might be taking place at the same 628 
time only at the beginning of the interval, generalization to the rest of the time window may not 629 
be possible. However, as the preparatory interval was fixed, participants could predict target 630 
appearance, therefore at the end of the preparation interval neural activity could reflect to a 631 
greater extent preparatory processes, such as category-specific patterns shown at the decoding 632 
associated with the target category. These patterns, observed upon completion of the interval, 633 
may also appear (alongside others) at different points within the preparation interval, thus 634 
exhibiting greater generalizability.  635 

Our results also indicate the presence of specific preparatory patterns linked to the anticipated 636 
category of the target to select, both in high and low competition contexts. This is consistent 637 
with the theory of biased competition, as a reflection of an internal attentional template 638 
associated to the relevant category. Preparation is specific to the content of the incoming target 639 
to select (González-García et al., 2017; Palenciano et al., 2019a; Peelen & Kastner, 2011; 640 
Peñalver et al., 2023; Rajan et al., 2021; Sobrado et al., 2022; Stokes et al., 2009), with a 641 
strength of category anticipation increasing at the end of the interval, in a ramping-up fashion, 642 
replicating Peñalver and colleagues (2023). Although understanding the implications of this 643 
finding requires further research, it could be related to temporal expectations. As mentioned 644 
earlier, the preparatory interval was fixed, consequently the predictable temporal structure of the 645 
task could intensify the preactivation of specific stimulus patterns towards target appearance 646 
(Jin et al., 2020; Rohenkohl et al., 2012). Another possible, non-exclusive mechanism is the 647 
processing of the cue meaning. This may occur silently (Stokes et al., 2009) at the beginning of 648 
the preparation interval as evidenced in reduced decoding accuracy, and it may reactivate when 649 
needed just before the target. The temporal generalization matrices of the categories on both 650 
competition contexts also display a progressively increasing generalization toward the end of 651 
the preparatory interval, suggesting that the activity patterns were not only stronger, but also 652 
more stable over time at later stages (King & Dehaene, 2014). 653 

The comparison of the preparatory category coding in high and low competition did not detect 654 
differences between conditions in either the fidelity of these patterns or their temporal stability. 655 
Hence, these results suggest that the categorical attentional templates were equivalent across 656 
competition contexts. Although unexpected, this result resonates with previous evidence 657 
showing that attentional templates also arise in low competition contexts (González-García et 658 
al., 2016). Given that predictive cues were used in both contexts, it is reasonable that the 659 
representation of target category was found in both situations. While the classifier accuracy 660 
remained undistinguishable across contexts, the anticipated competition introduces other 661 
differentiated process that might not be captured by the classifier alone, implying a multi-662 
faceted approach to information representation. Critically, finding equivalent classification 663 
accuracies does not imply that the underlying neural codes are similar. This was supported by 664 
the null results obtained with the cross-classification of category patterns between high and low 665 
competition. The lack of significant clusters in the diagonal of the matrix, with only small 666 
scattered clusters on the time generalization matrix, suggests that the anticipated category 667 
coding in each of the contexts was not alike. Overall, this indicates that although the fidelity of 668 
the anticipated content may be the same in high and low competition contexts, the underlying 669 
patterns are not shared across conditions, implying a partially different format of preparation 670 
depending on the context. Future studies are needed to further confirm this possible explanation. 671 
On this respect, task demands could influence how the anticipated information is represented to 672 
adapt to the context of the incoming target (Peñalver et al., 2023). 673 
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Analysis of the overlap between activity patterns from the perceptual localizer and preparation 674 
interval of the main task allowed to examine whether the nature of the category-specific 675 
anticipation was similar to perceptually driven patterns (Kaplan et al., 2015; Palenciano et al., 676 
2023). Results showed similarities between perceptual and preparatory category patterns in high 677 
competition. Few small clusters were found in low competition. However, there was no 678 
statistical evidence of differences between both conditions, which could be due to lack of power 679 
to detect small differences in accuracy. Regarding high competition, the overlap between 680 
preparatory and visual templates could be associated with the activation of perceptual regions 681 
during preparation, as a perceptual reinstatement (Kerrén et al., 2018; Muckli et al., 2015; Smith 682 
& Muckli, 2010; Vetter et al., 2014). The partial similarities between preparatory templates and 683 
perceptual ones, in the anticipation of high stimuli competition, constitute a relevant finding that 684 
contributes to a better understanding of the internal preparatory templates. 685 

Turning to oscillatory activity, how anticipation of competition affects this activity had not been 686 
explored in detail in the past. Theta power has been repeatedly related with effort or cognitive 687 
control (Cavanagh & Frank, 2014; Cohen & Donner, 2013). Previous studies found that 688 
preparing for a difficult task in which stimuli competition is high (Van Driel et al., 2015) or that 689 
requires goal updating (Cooper et al., 2017) also induces an anticipatory increase in theta power. 690 
Relatedly, and in accordance with our hypothesis, we found that preparing for high competition 691 
generated increased theta power in all the preparation interval. Interestingly, this large cluster 692 
started right at the beginning of the cue presentation. While this could reflect some extent of 693 
smearing of the signal induced by the time-frequency decomposition, this would be unlikely 694 
given the high temporal precision for estimating low frequencies such as theta, as the number of 695 
cycles assigned to these bands is quite low. Instead, it could be driven by the blocked design 696 
employed, which facilitated maintaining the different competition control settings over several 697 
trials (Dosenbach et al., 2008; Palenciano et al., 2019b). This temporal profile contrasts with the 698 
category-specific anticipation patterns, that are decodable only at the end of the window. 699 
Importantly, our results show that these two different preparatory mechanisms are not 700 
correlated. This finding, together with the previously described results, suggest that they reflect 701 
different proactive processes that contribute distinctively based on the task requirements. Theta 702 
power could implement more general control signals, associated with the general level of 703 
competition, whereas category preactivations are specific to the content anticipated (Weber et 704 
al., 2024). 705 

Regarding the relationship between anticipatory neural patterns and behavioral performance, 706 
some studies suggest that the better these indices, the better task performance (González-García 707 
et al., 2017; Manelis & Reder, 2015; Peelen & Kastner, 2011; Soon et al., 2013; Stokes et al., 708 
2009). Our results, however, show inconclusive evidence on this respect. Neither preparatory 709 
patterns coding the competition level nor the selected category correlated with behavioral 710 
measurements. This was also the case for the correlations with the behavioral congruency effect. 711 
This may suggest that the fidelity with which the brain preactivates specific categorical 712 
templates of the target does not have a direct influence on the efficiency of behavior, which is in 713 
contrast with other studies (González-García et al., 2017; Manelis & Reder, 2015; Peelen & 714 
Kastner, 2011). However, the current paradigm was not tailored to entail a wide range of 715 
decoding variability in the results, which could hinder the detection of associations between 716 
subtle neural preactivations and behavioral measures. Further research is necessary to further 717 
explore these associations. 718 

Results show that the neural mechanisms reflected by theta power, in contrast, play an 719 
important role for behavioral performance. The effect of competition on RT is partially caused 720 
by power in the theta band, indicating that high competition is related to higher theta power 721 
which in turn partially explains responses. This finding is in line with previous studies on 722 
cognitive control (Cohen & Donner, 2013; Formica et al., 2022). A significant distinction in 723 
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analyzing the relationship between theta and behavior, compared to the decoding-behavior 724 
relation, lies in the utilization of trial-by-trial data in the theta analysis. Obtaining a single value 725 
per trial, especially when employing cross-classification to study category-specific patterns, is 726 
challenging in the decoding analysis. Other studies have extracted d-values to be more precise 727 
(Kerrén et al., 2018; Linde-Domingo et al., 2019; Ritchie et al., 2015), however as we 728 
performed cross-classification across cue shapes, this was not feasible. Further tailored studies 729 
could address optimal procedures for extracting trial-wise a d-values for the anticipatory neural 730 
patterns without visual confounds. 731 

The present study has limitations that restrict the reach of the findings and may catalyze further 732 
investigations. First, our scope was the temporal domain, therefore we focused our analyses on 733 
the temporal profile of preparatory activity. Further studies may complement our findings with 734 
spatially resolved techniques, increasing the anatomical specificity of the different preparatory 735 
mechanisms according to competition levels. Moreover, additional studies could use more 736 
diverse stimuli over faces and names, and investigate the role of differential difficulty across 737 
stimulus categories, which may interact with the competition effect (e.g. Zhang et al., 2013). 738 
Although the current study is not optimized to address this issue, our AUC metric avoids any 739 
bias towards a particular stimulus type. Related to this, it may be of interest including 740 
multisensory stimuli such as visual and auditory combinations, to replicate and extend the 741 
findings to other sensory domains. Furthermore, naturalistic contexts that include different 742 
levels of competition could be key to transfer the results to the real environment (Graumann et 743 
al., 2022, 2023). Lastly, although our study focuses on preparatory activity, it would be 744 
interesting to explore the relationship between attentional templates and target processing. This 745 
was not possible on the current dataset because the target-distractor display was substantially 746 
different across competition conditions. Future studies could address this issue by reducing the 747 
visual differences between conditions. This kind of experiment would enable the examination of 748 
the roles played by preparatory attentional templates and anticipatory theta power during actual 749 
target processing. 750 

4.1. Conclusion 751 

Overall, our results provide insights into how preparation differs depending on the difficulty of 752 
the competition that is anticipated. The levels of competition exert a proactive influence on 753 
multivariate neural patterns and theta activity. Moreover, the neural mechanisms underlying 754 
theta oscillatory activity impact the efficiency of behavior. Integrating these findings into 755 
theoretical models of selective attention is crucial for a comprehensive understanding of top-756 
down processes across contexts. 757 
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 785 

Fig. S1. Results of the time-frequency analysis averaged across conditions and participants 786 
during the cue-locked window, from -100 ms to 1125 ms. 787 
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 788 
Fig. S2. Results of the time-frequency analysis in the preparation epoch of High (A) and Low 789 
(B) competition trials from -100 ms to 1125 ms, averaged across participants. 790 
 791 
 792 
Supplementary results: LMM equations and results 793 
In our first model we tested if, controlling for congruency, there was an effect of task on RTs, 794 
putting a random slope for competition and a random intercept for each participant (RT ~ 795 
competition + congruency + (competition | subject)). In agreement with previous analysis, Low 796 
competition blocks were responded faster than High competition ones (t35.12 = 4.769, β = 0.021, 797 
CI 95% = [0.012, 0.030], p < 0.001). Congruency was also significant (t30807 = -15.189, β = -798 
0.018, CI 95% = [-0.020, -0.015], p < 0.001). Second, we tested if there was an effect of 799 
competition on theta, by fitting an LMM with the same structure but predicting the trial-wise 800 
theta values (theta ~ competition + congruency + (competition | subject)). The effect of 801 
competition on theta was also significant, so that High competition induced higher theta power 802 
(t34.7 = 3.793, β = 0.19, CI 95% = [0.092, 0.289], p < 0.001). Third, we tested the fixed effects of 803 
theta and competition on RTs, also controlling congruency with the same random structure (RT 804 
~ theta + competition + congruency + (competition | subject)). The effect of theta was 805 
significant (t30824.2 = -2.86, β = -0.001, CI 95% = [-0.001, -0.0002], p < 0.01), suggesting that 806 
larger theta values were associated with faster responses. There was also a main effect of 807 
competition (t35.1 = 4.807, β = 0.021, CI 95% = [0.013, 0.030], p < 0.001) and an effect of 808 
congruency (t30806 = -15.187, β = -0.018, CI 95% = [-0.02, -0.015], p < 0.001). 809 
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