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Abstract

Species diversification is characterized by speciation and extinction, the rates of which can,1

under some assumptions, be estimated from time-calibrated phylogenies. However,2

maximum likelihood estimation methods (MLE) for inferring rates are limited to simpler3

models and can show bias, particularly in small phylogenies. Likelihood-free methods to4

estimate parameters of diversification models using deep learning have started to emerge,5

but how robust neural network methods are at handling the intricate nature of6

phylogenetic data remains an open question. Here we present a new ensemble neural7

network approach to estimate diversification parameters from phylogenetic trees that8

leverages different classes of neural networks (dense neural network, graph neural network,9

and long short-term memory recurrent network) and simultaneously learns from graph10

representations of phylogenies, their branching times and their summary statistics. Our11

best-performing ensemble neural network (which corrects graph neural network result12

using a recurrent neural network) can compute estimates faster than MLE and is less13

affected by tree size. Our analysis suggests that the primary limitation to accurate14

parameter estimation is the amount of information contained within a phylogeny, as15
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indicated by its size and the strength of effects shaping it. In cases where MLE is16

unavailable, our neural network method provides a promising alternative for estimating17

phylogenetic tree parameters. If there are detectable phylogenetic signals present, our18

approach delivers results that are comparable to MLE but without inherent biases.19

Key words: graph neural network, recurrent neural network, machine learning, regression20

Introduction21

Identifying the underlying mechanisms shaping biodiversity is an important goal in22

the fields of evolutionary biology and ecology. Species diversification processes can often be23

characterized by speciation and extinction rates, which can be estimated from24

time-calibrated phylogenies (Nee et al., 1997) as long as the assumed model structure of25

diversification resembles the true underlying data generation process (Louca and Pennell,26

2021). Time-calibrated phylogenies contain branching times and topological relationships27

between species and offer a complementary source of information to the often incomplete28

fossil record (Kidwell and Flessa, 1996). The increasing availability of reconstructed29

phylogenies has empowered many studies seeking explanations for the underlying diversity30

patterns using modelling approaches (Etienne et al., 2016; Morlon, 2014; Wagner, 2000).31

One type of models – birth-death models – are often used to estimate speciation,32

extinction and diversification rates from reconstructed phylogenetic trees (Hey, 1992; Nee,33

2001; Nee et al., 1994, 1997).34

Likelihood-based approaches, such as maximum likelihood estimation (MLE) and35

Bayesian inference, can be used to infer not only speciation and extinction rates, but also36

possibly existing evolutionary and ecological signals, such as diversity-dependence or37

trait-dependence of rates from branching times and other information sources (Alexander38

et al., 2016; Etienne et al., 2014; Foote, 1997; Valente et al., 2015). However, MLE39

approaches are only mathematically tractable for simple diversification models (Janzen40
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et al., 2015; Lambert et al., 2023). In addition, MLE tends to be biased when estimating41

diversification parameters from phylogenetic trees. The degree of bias depends on the size42

of the phylogenetic tree (the number of tips): as tree size increases, the estimates become43

asymptotically more unbiased (Etienne et al., 2016). MLE may also perform worse on44

complex models with a high number of parameters (Ward, 2008).45

An alternative to these likelihood-based approaches for parameter estimation is46

Approximate Bayesian Computation (ABC), which approximates the posterior distribution47

of parameters without requiring explicit calculation of a likelihood function. ABC is often48

seen as a good substitute to MLE when a likelihood function of a model is not available, as49

long as simulations of the model are fast and tractable (Beaumont, 2010; Beaumont et al.,50

2002; Janzen et al., 2015). However, studies using ABC for parameter estimation in51

phylogenetics remain scarce (Bokma, 2010; Kutsukake and Innan, 2013; Rabosky, 2009;52

Xie et al., 2023). This is partly due to the fact that is is often difficult to identify adequate53

summary statistics in ABC, which makes the application and development of this54

potentially powerful approach challenging.55

A promising class of tools that may help overcome the limitations of56

likelihood-based methods and ABC are machine learning approaches, such as neural57

networks. Neural networks are comprised of layers of nodes, or "neurons", which process58

input data and learn to recognize patterns between input and output data from training59

data (Charu C, 2018). Classic feed-forward neural networks have achieved good results in60

tasks such as image recognition and natural language processing (Zhu et al., 2018).61

Another class of neural networks, graph neural networks, are designed specifically for62

graph-structured data, such as social networks, molecular structures, and ecological63

interaction networks. They can capture the dependencies and relationships inherent in64

data types that can be naturally represented as graphs (Kipf and Welling, 2016) and have65

shown strong performance in various tasks involving graph representation learning (Li66

et al., 2020; Rampáek et al., 2022; Ying et al., 2018). Phylogenetic trees can also be viewed67
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as graphs, suggesting that graph neural networks have potential applicability in68

phylogenetics. Recurrent neural networks, another type of neural network, are designed to69

handle sequential data, such as time series, by maintaining a memory of previous inputs70

(Sak et al., 2014; Salehinejad et al., 2017). Recurrent neural networks can process inputs of71

varying lengths and capture time-dependent features, making them particularly well-suited72

for tasks where the order of data points is crucial, such as learning parameters from73

branching times when viewed as time-series data.74

Owing to the rapid development of both hardware capability and deep learning75

algorithms, applications of neural networks in phylogenetic analyses have started to emerge76

(e.g. Moi and Dessimoz (2022), Reiman et al. (2020), Voznica et al. (2022), Lambert et al.77

(2023), and Lajaaiti et al. (2023)). For instance, phylogenetic deep learning approaches78

have been shown to provide reliable estimates of parameters in epidemiological,79

birth-death, and trait-dependent speciation models (Lajaaiti et al., 2023; Lambert et al.,80

2023; Voznica et al., 2022). Despite their potential, employing neural networks for81

estimating parameters based on the whole phylogenetic tree, especially those associated82

with diversification, poses significant challenges and requires further systematic research83

regarding their performance, accuracy and robustness. Specifically, feed-forward linear84

neural networks usually require a large amount of data to be able to generalize well on the85

patterns within the data (Zhu et al., 2018); producing graph representations for86

graph-level learning can be challenging given the need to aggregate information across87

diverse graph sizes and topologies (Ying et al., 2018); the capability of the recurrent neural88

networks to predict parameters from whole sequences is often challenging (Sak et al.,89

2014). Hence, how robust neural network methods are at handling the intricate nature of90

phylogenetic data remains an open question.91

In this study, we explore the capabilities of neural networks in research on species92

diversification using phylogenies. We first develop various neural network architectures and93

protocols for transforming phylogenetic trees and branching times into formats compatible94
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with popular neural network frameworks. We then investigate predictive performance on95

simulated data for ensemble learning strategies, which combine different neural network96

classes to maximize data utilization and enhance performance. We also assess the97

determinants of estimation accuracy and robustness for both neural network and MLE98

methods under various diversification scenarios. Finally, we implement our trained neural99

networks on empirical phylogenetic datasets and compare their estimations to those of100

MLE.101

Our analyses encompass three different diversification scenarios for which102

likelihood-based inference approaches already exist: a constant-rate birth-death (BD)103

scenario, with constant speciation and extinction rates over time (Stadler, 2011); a104

diversity-dependent diversification (DDD) scenario, where the number of species in a clade105

negatively affects the speciation rate (Etienne et al., 2012); and a protracted birth-death106

(PBD) scenario, where speciation takes time and does not always proceed to completion107

(Rosindell et al., 2010). Applying our new methodology to phylogenetic trees simulated108

under a broad range of the parameter space, our findings indicate that neural network109

approaches are as effective, if not more so, than MLE in recovering parameters from110

phylogenetic data simulated under these stochastic processes. Trained neural networks can111

be conveniently applied to empirical trees for parameter estimation. To facilitate this, we112

present a new R package, "EvoNN," capable of performing such analyses based on113

phylogenetic trees (empirical or simulated) supplied by the user (Qin, 2024).114

Materials and Methods115

Software Environment and Computational Budget116

We used a hybrid programming environment with PyTorch 1.12.1 (Imambi et al.,117

2021), PyTorch Geometric 2.3.1 (Fey and Lenssen, 2019), Python 3.7.1 (Python, 2021),118

CUDA 12.2.2 (Luebke, 2008) and R 4.2.1 (R Core Team, 2013). The procedures of119

simulation, data transformation, and maximum likelihood estimation were handled120
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through parallel CPU computations on the Hábrók high-performance computing cluster of121

the University of Groningen. The total computational budget for these processes was122

approximately 3000 hours (used CPU time). Our neural networks were trained, optimized123

and evaluated on the NVIDIA A100 and V100 tensor core GPUs of the Hábrók cluster.124

The estimated computational budget was 1500 hours (used GPU time, excluding CPU125

time for dataset loading and saving). We implemented a user-friendly tool to estimate126

parameters from phylogenetic trees using the neural network approach developed in this127

study in the new R package "evoNN".128

Simulation Approaches129

To train the neural networks, we simulated phylogenetic trees using different130

functions from different R packages. For each simulated dataset we kept trees with only131

extant lineages, mimicking reconstructed phylogenies. The settings for the parameters used132

to simulate the trees were selected to limit the maximum total number of nodes (including133

root, internal and tip nodes, here and after, we always refer to the total number of nodes)134

for the trees in each dataset. After simulation, we further filtered out all trees containing135

more than 3000 nodes to avoid the creation of excessively large matrices that could deplete136

the available memory space allocated to the GPUs during the GNN training process. Such137

trees are uncommon under the settings we used – typically fewer than 5 trees with more138

than 3000 nodes (∼1500 tips) are present within each set of phylogenies we acquired from139

simulation. We also filtered out all trees containing less than 5 nodes (3 tips) to ensure140

successful data transformation and summary statistic computation. Small trees inherently141

carry limited informational content. The exclusion of these trees is unlikely to impact142

performance of the neural networks on the remaining trees (typically fewer than 100 trees143

with less than 5 nodes were present for each parameter setting).144

To consider different diversification processes, we simulated 100,000 random145

birth-death trees (BD phylogenies), 100,000 diversity-dependent trees (DDD phylogenies)146
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and 100,000 protracted birth-death trees (PBD phylogenies). The amount of simulated147

data is bounded by the resource and time limits of the computing cluster. All trees have an148

identical crown age of 10 time units (t = 10) to reduce the dimension of data complexity.149

This age was chosen arbitrarily, as we can always rescale the trees in time. For simulating150

BD trees, we used the "rlineage" function from R package "ape" (Paradis and Schliep, 2019)151

to generate complete trees and then pruned all the extinct lineages; for DDD trees, we152

used the "dd_sim" function from R package "DDD" (Etienne et al., 2012); for PBD trees153

we used the "pbd_sim" function from our R package "eveGNN" (a codebase of phylogeny154

simulation, data transformation, neural network training and MLE computation for our155

study), which is similar to the function with the same name in the original R package156

"PBD" (Etienne and Rosindell, 2012), but only outputs necessary data for our study.157

In our simulation approach we randomly sampled the (log) parameters required for158

each scenario (BD, DDD and PBD) from uniform distributions. The upper bound for the159

extinction rates were proportionally dependent on the drawn speciation rate to avoid cases160

where extinction rates could be larger than speciation rates, because in such cases the161

whole tree likely goes extinct. Furthermore, to prevent a huge number of evolutionary162

events that would deplete available computational time and memory, we also imposed an163

overall cap of 1.5 on the extinction rates. See Table 1 for the detailed parameter164

distribution settings used in the simulations.165

Data Preparation166

We employed three different basic neural network architectures: a dense neural167

network (DNN), a graph neural network (GNN), and a long short-term memory (LSTM)168

recurrent network, as illustrated in Figure 1 (see Appendix C for a detailed description).169

Each of these architectures was refined through validation and required different input170

data. For the DNN, the input data consisted of a total of 54 summary statistics171

(Appendix N) for each simulated tree. In the GNN, the full phylogeny was interpreted as a172
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Table 1. Parameter settings for the simulated tree datasets. The type column specifies which function is used to
generate the trees. The columns specify the crown age (age), the number of trees in the data set (N), the lower (a)
and the upper (b) bounds of the parameters for the tree simulations, all the parameters being sampled from U(a, b),
except for λ1 of the protracted birth-death scenario. λ1 is computed as λ1 = 10i where i is sampled from U(−3, 1).
U denotes uniform distribution. Sub-table A shows the parameter distributions of the constant-rate birth-death
model and the diversity-dependent-diversification model, λ: intrinsic speciation rate/birth rate; µ: intrinsic
extinction rate/death rate; K: carrying capacity. Sub-table B shows the parameter distributions of the protracted
birth-death model, λ1: speciation-initiation rate of good species; λ2: speciation-completion rate; λ3:
speciation-initiation rate of incipient species; µ1: extinction rate of good species; µ2: extinction rate of incipient
species. ∗In diversity-dependent-diversification simulations, the maximum extinction rate is capped at 1.5 if
0.9λ > 1.5.
A: Parameter settings for BD and DDD trees

Type Age N λ0 µ0 K

a b a b a b

BD 10 100,000 0.1 0.8 0.0 0.9λ0 - -
DDD 10 100,000 0.1 4.0 0.0 0.9λ0

∗ 10 1000

B: Parameter settings for PBD trees

Type Age N λ1 log10(λ2) λ3 µ1 µ2

a b a b a b a b a b

PBD 10 100,000 0.1 1.0 -3 1 0.1 1.0 0.0 0.8λ1 0.0 0.8λ3

graph and could in that form be used as input data (as illustrated in Figure 2). In the173

LSTM, we treated branching times of the phylogenies as sequential or time-series data174

(Sak et al., 2014). Given its recurrent architecture, LSTM is adept at sequence prediction175

tasks, making it particularly suitable for estimating tree parameters from entire sequences176

of branching times.177

Therefore, our data compound comprises three major components: the phylogenetic178

trees, their corresponding summary statistics, and their branching times, to maximize the179

use of available data. The functions needed for the data transformations are either180

available in PyTorch or implemented in our package eveGNN and described in more detail181

in Appendix A.182
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Ensemble Learning Strategies183

To leverage all available data and improve prediction accuracy, we combined GNN,184

DNN, and LSTM using bagging, stacking, and boosting, which are typical ensemble185

learning strategies (Graczyk et al., 2010). With bagging, we trained GNN, DNN and186

LSTM independently on the same dataset, translated their original outputs to parameter187

predictions (we will use "readout" hereafter to refer to this translation) and then aggregated188

the predictions. We used four aggregation methods: mean, median, max and min.189

With stacking, we use GNN, DNN and LSTM in the same architecture but without190

their own readout layers. Instead, we combined the features learned from DNN, LSTM and191

GNN and fed them to a meta-learner comprising linear neural network layers that learns192

the best readout parameter predictions from these combined features. GNN, DNN, LSTM193

and the meta-learner were trained simultaneously.194

With boosting, the neural networks were trained sequentially. Boosting strategies195

offered various pathways for enhancing model performance. We started with a GNN to196

make initial predictions and explored the effectiveness of both DNN and LSTM for197

correcting residuals, either individually or in sequence. We used "Boost SS" to refer to198

correcting GNN’s residuals by DNN (from summary statistics)"Boost BT" to refer to199

correcting GNN’s residuals by LSTM (from branching times); "Boost SS+BT" to refer to200

correcting GNN’s residuals by DNN and then correcting DNN’s residuals of residuals by201

LSTM; "Boost BT" to refer to correcting GNN’s residuals by LSTM (from branching202

times); "Boost BT+SS" to refer to correcting GNN’s residuals by LSTM and then203

correcting LSTM’s residuals of residuals by DNN.204

See Figure 3 for a simplified illustration of the ensemble learning strategies.205

Training Neural Networks206

Prior to training, each dataset of 100,000 trees was randomly shuffled and207

subsequently divided into two segments. The first segment, consisting of 90% of the208
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dataset, was allocated for training purposes, while the remaining 10% was used as the209

validation dataset for monitoring and fine-tuning the neural network performance. The210

training session is carried out by epochs, each consisting of three major steps: first,211

performing forward pass on the training dataset; second, assessing the prediction accuracy;212

and lastly, performing back-propagation (adjusting the weights of the neuron connections213

to improve the neural network performance). Back-propagation, requires quantifying the214

error between the neural networks predictions and the actual ground truth values. We215

quantified the ’total loss’ as the sum of the residual error and other terms for facilitating216

neural network training. We represented total loss using a loss function which sums up all217

the loss terms (see Appendix B for more detail).218

We use the AdamW (Adaptive Moment Estimation with decoupled weight decay)219

optimizer (Loshchilov and Hutter, 2017) to iteratively update the neural networks’220

parameters to minimize the loss function. We used default AdamW argument settings.221

During training, we adopted mini-batches of size 64 (data of 64 simulated trees per222

mini-batch) to reduce GPU memory usage. The total number of epochs was manually223

optimized to avoid underfitting and overfitting. This was done by comparing the loss224

metrics for the training dataset to those of the validation datasets at every epoch.225

Overfitting is indicated by a training loss that continues to decrease while the validation226

loss starts to increase, whereas underfitting is suggested by both training and validation227

losses being high and decreasing at a similar rate. Analyzing these loss trends over time228

can help to optimize hyper-parameters ("settings" that might alter neural network behavior229

or impact performance).230

Under the BD scenario, the neural networks were trained to predict two231

parameters: birth rate (λ) and death rate (µ). Under the DDD scenario, the neural232

networks were trained to predict three parameters: speciation rate (λ), extinction rate (µ)233

and carrying capacity (K). Under the PBD scenarios, the neural networks were trained to234

predict five parameters: speciation rate of the good species (λ1), speciation completion rate235
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(λ2), speciation rate of the incipient species (λ3), extinction rate of the good species (µ1)236

and extinction rate of the incipient species (µ2).237

Baseline Benchmark238

Maximum likelihood estimation (MLE) approaches have been developed for the239

BD, DDD and PBD scenarios (Etienne et al., 2012, 2014; Etienne and Rosindell, 2012).240

Per scenario, we simulated additional testing datasets each comprising 10,000 phylogenies241

using the same parameter spaces as the training datasets. For these testing datasets, we242

adopted the MLE approaches to estimate the parameters of each phylogeny from their243

branching times under different scenarios. For the BD trees, we estimated their birth and244

death rates. For the DDD trees, we estimated their speciation rate, extinction rate and245

carrying capacity. There is a limitation in the MLE approach for PBD trees because to246

allow for a computation of the likelihood, the speciation initiation rates of good species247

and incipient species need to be equal (Etienne et al., 2014). We therefore only estimated248

four initial parameters: speciation initiation rate (for both good and incipient species,249

assuming they are the same), speciation-completion rate, extinction rate of good species250

and extinction rate of incipient species, although in our simulation we have five251

independently sampled parameters. The MLE results are used as a baseline benchmark to252

evaluate the performance of the neural networks on tree parameter estimation.253

We estimated two types of benchmarks using the MLE approaches: one with ground254

truth parameter values set as the starting point of the MLE searching process, the other255

with a starting point randomly sampled from the parameter space of the simulation. We256

consider the first type of benchmarks as a best-case MLE performance (as in real257

applications ground truth parameters are not known) and the other type as a typical-case258

MLE performance, which mimics the pragmatic approach if true parameter values are not259

known. Note that in practice it is possible to achieve better performance than the260

typical-case, e.g. by optimizing from several starting points.261
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We also explored the effectiveness of different optimization approaches for MLE on262

the DDD phylogenies. We used the "Simplex" (Lagarias et al., 1998) optimizer to compute263

the baseline benchmarks for all the analyses. See Appendix E for reasons and for a detailed264

comparison between the optimizers.265

Performance Analysis266

From the same testing datasets used for baseline benchmark computation, we267

analysed the patterns of residuals (differences between ground truth and predicted values,268

which can be viewed as the goodness of fit) by visually examining their relation to true269

values and the total node counts of the phylogenetic trees, which include root, internal and270

tip nodes. Considering the complex nature of residual patterns, which may vary according271

to specific characteristics of the simulation processes (for instance, carrying capacity effects272

in DDD and protracted speciation in PBD), as well as the performance and robustness of273

the estimation methods, we calculated error metrics locally for three different phylogeny274

size ranges, as a global metric could be misleading.275

The main case study we decided to focus on is based on simulated trees under the276

DDD scenario, because it involves more evolutionary mechanisms than the simple277

birth-death scenario while containing fewer parameters than the protracted birth-death278

scenario. This simplifies our analyses on the neural network performance while maintaining279

enough complexity to challenge the capability of our proposed methods. From this case280

study we identified and selected the most effective MLE optimization algorithm, neural281

network architecture and ensemble strategy, which we then applied to BD and PBD282

scenarios. We therefore only analysed the best-performing neural network methods against283

the typical and best MLE cases on BD and PBD. Additionally, for the PBD scenario, we284

computed a composite parameter called the mean duration of speciation from the285

speciation completion rate, the speciation rate of incipient species and the extinction rate286

of incipient species (Etienne et al., 2014), because MLE can arguably better estimate the287
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NEURAL NETWORKS FOR PARAMETER ESTIMATION 13

mean duration of speciation than the original parameters.288

Robustness Analysis289

We assessed the robustness of the estimation results of both neural networks and290

MLE by measuring the consistency with which these approaches produce similar estimates291

for phylogenies generated under identical parameter settings. In the previous simulations,292

each parameter combination was sampled and used only once, whereas in the robustness293

analysis we repeatedly use identical parameter settings to generate sets of phylogenies294

(bootstrapping) under the DDD scenario. Even when the same parameters are used, the295

resulting phylogenies can vary substantially in size, topology and structure due to296

stochasticity. Such an evaluation helps assess the neural networks’ ability to abstract the297

underlying parameter influences from the phylogenetic data, regardless of heterogeneity.298

For each parameter combination, 1000 trees were generated randomly. We used a total of299

80 sets of parameter combinations, thus 80,000 phylogenies in total. Specifically, we used300

all combinations of speciation rates λ = 1.0, 1.5, 2.0, 2.5, 3.0, extinction rates301

µ = 0.2, 0.4, 0.6, 0.8 and carrying capacities K = 200, 400, 600, 800.302

MLE is computationally more expensive than predicting from already trained303

neural networks, and computational time rapidly increases with the size of the phylogenies.304

We thus performed MLE on only 2000 simulated phylogenies. To ensure fair visual and305

numerical comparisons when plotting the results of these analyses, extreme MLE estimates306

were not shown in the figures (they exceeded the fixed range of the y-axis) and excluded307

from the computation of the mean absolute errors of the MLE estimates. Neural network308

results were randomly sub-sampled to match the MLE data count, maintaining equivalent309

visual density and facilitating a more accurate performance comparison between310

approaches. For the neural networks, the mean absolute errors were computed on the311

complete dataset without sub-sampling and exclusion. In the figure, on average (we312

simulated the testing datasets many times throughout the study), out of 2000 samples,313
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5-150 samples per MLE figure panel, and 1-3 per neural network figure panel fell beyond314

the axis range. For the most underperforming method (Boost BT+SS) 600-1500 samples315

fell beyond the axis range.316

We did not analyze the robustness of BD and PBD scenarios, because BD is a317

special case of DDD (if we set carrying capacity to an infinite value) and PBD related318

parameters can hardly be estimated accurately using MLE methods (Etienne et al., 2014).319

The complete code base for this study, including simulations, data processing,320

neural network training, evaluation, and both data analysis and visualization tools, is321

available in the GitHub repository eveGNN (Qin, 2023).322

Empirical Tree Estimation323

We deployed pre-trained neural networks to estimate phylogenetic parameters from324

a dataset of 199 empirical phylogenetic trees curated by Condamine et al. (2019), with a325

tip count ranging from 20 to 1500. To align with the training conditions of our neural326

networks, which were trained on simulated phylogenies spanning exactly 10 time units327

(Myr), we rescaled the crown ages of all empirical trees to this duration. The parameter328

estimations we present are therefore rescaled. All the selected empirical trees are329

reconstructed phylogenies and fully bifurcated (each root or internal node has exactly two330

descendants). If an empirical tree fails an ultrametric (all tip-ends are aligned at the331

present) test due to branch length precision issue, we forced all its tips to end exactly at332

the present by extending the shorter tips to align with the longest one. See Appendix M333

for meta information of the empirical trees.334

We used two distinct neural networks, each pre-trained on simulated trees from one335

of two evolutionary scenarios (BD or DDD) to estimate parameters from the empirical336

trees. For the BD scenario, we estimated the parameters λ (speciation rate) and µ337

(extinction rate); for the DDD scenario, we estimated λ, µ, and K (carrying capacity). We338

did not estimate parameters for the PBD scenarios because neither neural networks, nor339
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NEURAL NETWORKS FOR PARAMETER ESTIMATION 15

MLE approaches could recover the parameters accurately from the simulated phylogenies.340

In addition to our neural network estimates, we used MLE methods for parameter341

estimation to provide a comparative assessment of the results. The MLE methods were set342

to use default starting points of likelihood optimization, as we do not know the true343

parameters of the empirical phylogenies.344

We used the same bootstrapping method described before to quantify the345

uncertainties of both MLE and neural network estimates from empirical data. The process346

involves three main steps: first, estimating parameters from empirical phylogenies using347

MLE and pre-trained neural networks; second, simulating a set of phylogenies under a348

specified diversification scenario (such as BD, DDD, or PBD) using the MLE and neural349

network estimates; and third, re-estimating parameters from the simulated phylogenies350

using MLE and neural networks. The estimates derived from the bootstrapped phylogenies351

form a distribution.352

We applied this uncertainty computation to a selected set of empirical phylogenies353

from the Condamine dataset (Condamine et al., 2019) under the DDD scenario (see354

Appendix F for details). The criteria for selection were phylogenies with more than 300355

and less than 1000 nodes, and maximum likelihood estimates (MLE) of K (carrying356

capacity) being less than 1000. The distributions of MLE and neural network estimates357

from the bootstrapped phylogenies was compared to the original MLE and neural network358

estimates from empirical phylogenies. For each set of parameters estimated from empirical359

phylogenies, we bootstrapped 1000 simulated phylogenies.360

Our R package "EvoNN" (Qin, 2024) provides functions to perform the uncertainty361

(bootstrap) analyses.362

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.02.606350doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606350
http://creativecommons.org/licenses/by/4.0/


16 TIANJIAN QIN, KOEN J. VAN BENTHEM, LUIS VALENTE, RAMPAL S. ETIENNE

Results363

Performance Analysis364

We evaluated the performances of various neural networks, both individually and in365

combination through ensemble strategies, in predicting parameters from simulated DDD366

phylogenies. These predictions were benchmarked against best-case and typical-case MLE367

results using the Simplex optimizer.368

Among all the methods, we consider boosting GNN with LSTM as the most robust369

method based on the goodness of fit (see Figure 4, Figure 5, Figure 6 and Figure 7), the370

mean absolute errors (see Appendix G, Figure 14) and robustness (see rows named Boost371

BT in Figure 8 and Figure 15). Both neural networks and MLE approaches generally372

struggle with small phylogenies (see Figure 4, Figure 5 and Figure 6 for larger errors373

represented by the yellow data points, see also Appendix G, Figure 14). Performance374

improves significantly on medium and large phylogenies for both neural network and MLE375

approaches.376

The MLE implementation sometimes fails to find an optimal solution. In our377

visualizations, failed MLE estimations are indicated by small squares spreading along the378

x-axis to avoid misinterpretation. MLE tended to give small or near-zero estimates,379

particularly on the extinction rate and the carrying capacity. This phenomenon is more380

prominent when starting optimization from a random point. For all figures showing the381

MLE error, the ideal situation is that all the data points lie near the horizontal black382

two-dash reference lines (at which the error is 0) and do not spread along or near the383

purple dotted reference lines (which suggests near-zero MLE estimations). See the last two384

panels of Figure 4, Figure 5 and Figure 6 for details.385

Neural networks often return values closer to the parameter space’s mid-points386

(indicated by red dashed lines), a result of making "safer" predictions that minimize loss387

compared to random guesses. Consequently, neural networks usually overestimate at low388

true values and underestimate at high true values (see Figure 4, Figure 5 and Figure 6).389
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These errors are mitigated or partially corrected when the neural networks are trained in390

tandem through boosting strategies, e.g. boosting GNN results with DNN or LSTM or391

both (see the panels of Boost SS, Boost BT and Boost SS+BT in Figure 4, Figure 5 and392

Figure 6). This happens particularly for large phylogenies (the blue data points in393

Appendix G, Figure 14) when the underlying true carrying capacity (K) is large, or for394

small phylogenies (the yellow data points) when the underlying true speciation rate (λ) is395

small.396

However, boosting strategies can introduce their own challenges. When boosting397

GNN results first with LSTM and then with DNN, the DNN failed to identify a general398

pattern of errors from LSTM results. This led to overfitting on the training dataset at the399

second epoch of the training session (the total loss in the validation dataset started to400

increase and became much larger than the total loss in the training dataset), which, in401

turn, resulted in poor performance on the testing dataset (see the panels named Boost402

BT+SS in Figure 4, Figure 5, Figure 6 and Appendix G, Figure 14).403

Upon further analysis of the residuals, we observed that inaccuracies in the404

predictions were largely influenced by the size of the phylogeny (Figure 4, Figure 5 and405

Figure 6). For neural network approaches, the prediction errors for speciation rate,406

extinction rate, and carrying capacity tended to increase as the size of the phylogeny407

decreased, especially in phylogenies with fewer than 200 nodes. Systematic error was also408

identified in the estimation of carrying capacity: neural networks generally overestimated409

this parameter in smaller phylogenies and underestimated it in larger ones. Boosting410

strategies were effective in mitigating or partially correcting systematic errors, and411

enhancing prediction accuracy, particularly for carrying capacity (see the rows of Boost SS,412

Boost BT and Boost SS+BT in Appendix G, Figure 14).413

We calculated the strength of the carrying capacity effect using the formula414

1/K ′ = (λ − µ)/K, where λ represents the true speciation rate, µ the true extinction rate,415

K the true carrying capacity, and K ′ the diversity at which speciation becomes zero for416
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linear negative diversity-dependence (Etienne et al., 2012). A larger (λ − µ)/K value417

corresponds to smaller K ′ and therefore a stronger carrying capacity effect. Phylogenies418

exhibiting a stronger carrying capacity effect typically have more accurate estimates.419

However, in the case of smaller phylogenies, neural networks tended to underestimate420

speciation and extinction rates while overestimating carrying capacity when the carrying421

capacity effect is weak, and the reverse is observed when the effect is strong. In contrast,422

MLE tends to overestimate speciation and extinction rates while underestimating carrying423

capacity under conditions of weak carrying capacity effect, with the reverse occurring424

under strong effects, except for the carrying capacity which is always underestimated (see425

Appendix G, Figure 14). Neural network methods tend to underestimate the carrying426

capacity effect. This phenomenon can be mitigated by the boosting strategies, especially427

the Boost BT method, which achieved similar performance to the best case MLE estimates428

(see Figure 7).429

Unlike GNN and LSTM, DNN cannot by itself reliably recover speciation and430

extinction rates from the summary statistics of the phylogenies, with its predictions mostly431

clustering around the mid-points of the parameter space (around the red dashed lines in432

the DNN panels in Figure 4, Figure 5 and Figure 6). The overall accuracy of the carrying433

capacities recovered by the DNN is also inferior compared to the other approaches (see the434

row named DNN in Appendix G, Figure 14).435

Among all ensemble learning strategies, boosting consistently outperformed both436

bagging and stacking in enhancing prediction accuracy compared to using neural networks437

independently, as can be seen, for instance, by the lower mean absolute prediction errors in438

Appendix G, Figure 14. Boosting strategies also exhibited better performance in recovering439

the true values of the carrying capacity effect (see Figure 7). The most effective neural440

network approaches overall matched or even surpassed the results of MLE while exhibiting441

no bias, even on smaller phylogenies. Overall, sequential boosting of GNN results first with442

DNN and then with LSTM (Boost SS+BT) led to best performance in terms of prediction443
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accuracy, except for estimating carrying capacity on large phylogenies with around 2000444

nodes (see the row named Boost SS+BT in Appendix G, Figure 14 this strategy led to445

overestimation on very large phylogenies). However, Boost SS+BT led to more446

overestimation on the true values of the carrying capacity effect, as compared to the447

strategy boosting the GNN results with only LSTM (Boost BT, see Figure 7).448

Robustness Analysis449

As a proxy for robustness of each method, we used the mean absolute errors of the450

parameters estimated from sets of phylogenies simulated under identical true parameters.451

Our analysis indicates that the robustness of the methods against phylogenetic452

heterogeneity (e.g., phylogenies of very different sizes, topologies and other characteristics)453

depends on the values of the underlying true parameters. We observed that the strength of454

the carrying capacity effect critically influences robustness. Generally, a weaker carrying455

capacity effect (associated to a smaller value of (λ − µ)/K) tends to diminish the456

robustness of both MLE and neural network methods across all parameters: speciation457

rate, extinction rate, and carrying capacity (as can be seen in Figure 8 and Appendix G,458

Figure 16 and Figure 15, by observing the increase of error along with the darkening459

background colors from light pink to dark blue).460

When the carrying capacity effect is weak, neural network methods typically exhibit461

greater robustness in estimating speciation and extinction rates compared to the best-case462

MLE results (see Figure 8 and Appendix G, Figure 16). When the carrying capacity effect463

is exceptionally strong, the best-case MLE results can outperform neural networks464

particularly when estimating carrying capacity. Typical-case MLE results consistently465

show less robustness compared to all neural network methods.466

A higher extinction rate generally decreases the robustness of all methods in467

estimating any parameter. A higher speciation rate enhances the robustness of carrying468

capacity estimates across all methods, although its impact on the robustness of speciation469
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and extinction rate estimates is not consistent. A higher carrying capacity generally470

decreases the robustness of all methods in estimating carrying capacity.471

Note that MLE typical-case results often contained more extreme estimations than472

best-case results, consequently, the exclusion of extreme values could lead to a wrong473

impression in the figures that when the carrying capacity effect is weak, the typical-case474

MLE is more robust than the best-case MLE. This is particularly prominent for the475

speciation rate. The exclusion of these extreme values is crucial, however, as they are rare476

and their magnitude can obstruct meaningful interpretation and comparison.477

We find that DNN alone (estimating parameters from summary statistics) shows478

the worst robustness among all the methods and LSTM alone (estimating parameters from479

branching times) shows the greatest robustness overall. Among all the estimation methods,480

the MLE best-case achieved the greatest possible robustness in estimating the extinction481

rate and the carrying capacity while GNN alone (estimating parameters from phylogenies)482

achieved the greatest possible robustness in estimating the speciation rate. Among the483

neural network methods, GNN alone achieved the greatest possible robustness in484

estimating the speciation rate and the carrying capacity while Boost BT (boosting GNN485

estimates with LSTM) achieved the the greatest possible robustness in estimating the486

extinction rate. See Figure 8 and Appendix G, Figure 15 and Figure 16 for details.487

Empirical Data488

MLE estimates of carrying capacity are typically lower than those of the neural489

networks, especially in smaller phylogenies (Figure 9). However, as the size of the490

phylogenies increases, MLE estimates tend to converge towards those produced by neural491

networks. Similarly, MLE estimates of net diversification rate (computed as λ − µ) also492

align more closely with neural network estimates in larger phylogenies Figure 9.493

MLE generally provides a broader range of estimates on all the parameters except494

for carrying capacity on small phylogenies. Neural networks provide a broader range of495
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carrying capacity estimates on small phylogenies and less frequently produce zero or496

near-zero estimates for extinction rates which we often observe for MLE. We also observed497

that MLE sometimes produces extreme values (ranging from 10,000 to infinity) for498

carrying capacity on empirical trees, see Figure 9 for the comparison between MLE and499

neural networks on empirical tree parameter estimation.500

Generally, neural network estimates of all the parameters under the DDD scenario501

are close to the center (mean) of the distribution generated by the bootstrapping method.502

See Figure 13 in Appendix F for details.503
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Fig. 1. Illustration of the neural network architectures. From left to right, for each neural network, the inputs are
filtered through the layers, and the network ultimately outputs the final predictions of the parameters through the
readout layers. A: dense neural network (DNN), whose input data are summary statistics. The major component of
the DNN is a stack comprising five linear layers ("DNN stack"), each followed by a Batch Normalization for 1D
Inputs operator (BatchNorm1D, not shown in figure) and Gaussian Error Linear Units (GELU, the orange band
within the boxes). Learned features from all the linear layers within the stacks are collected and concatenated
("concat"). A single linear readout layer ("readout") outputs n predicted parameters ("pred"). B: long short-term
memory recurrent neural network (LSTM), whose input data are the branching times. The major component of the
LSTM is a stack of five LSTM recurrent neural network layers ("LSTM stack"). Learned features are processed by a
linear layer accompanied by a GELU ("linear"), then passed to a single linear readout layer ("readout") that
outputs n predicted parameters ("pred"). C: graph neural network (GNN), whose input data is a graph
representation of the phylogeny. GNN is assembled from five modules. Each module comprises the same number of
GraphSAGE (sample-and-aggregate graph convolutional neural network) operators. Each operator is accompanied
by a BatchNorm1d (not shown in the figure) operator and then a GELU activation function (illustrated by the
orange bands within the yellow boxes). Learned features from all the GraphSAGE operators within a module are
collected and concatenated. The differentiable pooling (DiffPool) technique is adopted to perform graph coarsening.
In the first coarsening operation, the graph data inputs are passed to two GNN modules ("GNN pool1" and "GNN
embed1"). The pooling group reduces the graph size, while the embedding group captures the node features. The
filtered data from each GraphSAGE operator are concatenated ("concat1") and then passed to a DiffPool layer
("diff-pool1"), which finalizes the first coarsening operation. The second coarsening operation is applied in the same
way as the first (as represented by "GNN pool1", "GNN embed2", "concat2"), and the outputs from the second
DiffPool layer ("diff-pool2") are passed to the final (fifth) GNN module ("GNN embed3"). After the final GNN
module, the outputs are concatenated ("concat3") and transformed by a global mean pooling operation (red ball
"M") to create a final graph representation. This graph representation is passed to a readout layer group ("readout"
as represented by light blue boxes) consisting of two linear layers to perform graph-level regression which ultimately
outputs a vector of n predicted parameters ("pred" as represented by a purple box). Only the first linear layer is
followed by GELU (see the orange band of the first linear layer). See Appendix C for the detailed description and
technical details.
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Fig. 2. Illustration of data transformation between a "phylo" object and its graph representation. The left panel
shows a visualization of a "phylo" object. The blue circle represents the root node, orange circles represent the
internal nodes and green circles represent the tip nodes. Arrows represent directed edges between each pair of the
nodes. The right panel shows the transformed graph data structure. The adjacency list is denoted as E . Each row of
the adjacency list represents one edge, the first column represents the starting node and the second column
represents the end node. Note that the adjacency list is transposed (in the example into E2×8) after converting to a
tensor. The node feature matrix is denoted as X . Each row of the node feature matrix represents the features
contained in one node, the first column represents the distance from the node to its direct ancestor node, the
second and the third columns represent the distances from the node to its two descendants. In the node feature
matrix, the distances from a node to non-existing nodes (e.g. the tip nodes have no descendants, and the root node
has no ancestor) are represented by zeros. The node and edge labels before the colons (including the colons) are
placed here for visual assistance. After transformation, we use graph-level attributes Y to store the parameters used
to generate the "phylo" object. The node labels are given by n1, n2, n3, . . . , n9, the edge labels are given by
e1, e2, e3, . . . , e8, the edge lengths are given by |e1|, |e2|, |e3|, . . . , |e8|. The generating parameters are given by a
vector [y1, y2, . . . , yn] where n is the number of parameters
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Fig. 3. (Figure on previous page.) Illustration of the ensemble learning strategies to combine the graph neural
network (GNN), the dense neural network (DNN) and the long short-term memory recurrent neural network
(LSTM). The neural networks are largely simplified. With boosting, GNN, DNN and LSTM were trained
sequentially to iteratively correct residuals. For example, DNN is trained to predict the residuals of GNN
predictions. Subsequently, LSTM is trained to predict the residuals of the residuals after DNN corrected the GNN
predictions. The final prediction comes from the initial prediction by GNN minus two learned residual terms by
DNN and LSTM. With bagging, we trained GNN, DNN and LSTM independently, translated their original outputs
to parameter predictions and then aggregated the predictions. With stacking, we trained GNN, DNN and LSTM
simultaneously but without readout. We directly concatenated the outputs from GNN, DNN and LSTM and then
used a meta-learner to make predictions from the outputs. With bagging, we trained GNN, DNN and LSTM
independently ("GNN", "DNN" and "LSTM" blocks of boxes), translated their outputs to parameter predictions
through their own readout layers (three "readout" boxes next to the neural networks and three "pred" boxes next to
the readout layers) and then aggregated the predictions (red ball "A"). With stacking, we trained GNN, DNN and
LSTM simultaneously ("GNN", "DNN" and "LSTM" blocks of boxes) but without their own readout layers. We
combined the features from DNN, LSTM and GNN and fed to a meta-learner ("meta-learner") comprising linear
neural network layers to output parameter predictions. With boosting, there can be different pathways. In our
illustration, GNN, DNN and LSTM were trained sequentially to iteratively correct residuals. First, the GNN is
trained from the graphs to make the initial predictions (see "GNN", "readout" and then "pred0") and from predicted
and ground truth values of the parameters we computed the residuals ("res1")second, the DNN is trained to predict
these residuals from the summary statistics (see "DNN", "readout" and then "pred-res1"), learning to correct the
GNN’s errorslastly, the LSTM is trained to predict the residuals of the residuals (see "LSTM", "readout" and then
"pred-res2"), which is the initial predictions minus the predicted residuals by the DNN, from branching times, to
further improve the predictive accuracy. Finally, we subtracted the two residual terms from the initial predictions
(red ball "S") to make the corrected predictions. See Appendix D for a detailed explanation.
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Fig. 4. Prediction error of various methods applied to phylogenies simulated under a diversity-dependent
diversification scenario, against true values of the speciation rate. The errors shown (y-axis) are the differences
between the true parameters (x-axis) used to simulate the phylogenies and the values predicted or estimated by
each method. Each panel represents an estimation method. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes, refer to Appendix G,
Figure 17 for how the tree sizes are distributed. GNN: Predictions obtained by the graph neural network using the
phylogenies. DNN: Predictions by the dense neural network using summary statistics. LSTM: Predictions by the
long short-term memory recurrent neural network using branching times. Median: Bagging strategy that takes the
median value of the predictions from GNN, DNN, and LSTM. Stack: Stacking strategy that utilizes a meta-learner
to integrate results from GNN, DNN, and LSTM. Boost SS: Boosting strategy that corrects GNN results using
DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of
GNN errors first using DNN, followed by LSTM. Boost BT+SS: Sequential correction of GNN errors first using
LSTM, followed by DNN. MLE Typ: Maximum Likelihood Estimation results using a random starting point within
the parameter space of the training dataset for each parameter’s optimization. MLE Best: MLE results using the
true parameter values as the starting points for optimization. Red dashed lines in panels representing neural
network results indicate the mid-points of the parameter spaces (ŷ = ȳ where ŷ denotes a estimated parameter and
ȳ denotes the mid-point of the parameter space). Data points close to purple dotted lines (ŷ = 0) in MLE result
panels indicate near-zero estimates. Black two-dash lines indicate accurate estimates (ŷ = y where y denotes the
true parameter value). In the MLE result panels, small squares spreading along the x-axis signify optimization
failures. Due to significantly lower accuracy, other aggregation methods from the bagging strategy are not displayed
on the plot. λ: Speciation rate.
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Fig. 5. Prediction error of various methods applied to phylogenies simulated under a diversity-dependent
diversification scenario, against true values of the extinction rate. The errors shown (y-axis) are the differences
between the true parameters (x-axis) used to simulate the phylogenies and the values predicted or estimated by
each method. Each panel represents an estimation method. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. GNN: Predictions
obtained by the graph neural network using the phylogenies. DNN: Predictions by the dense neural network using
summary statistics. LSTM: Predictions by the long short-term memory recurrent neural network using branching
times. Median: Bagging strategy that takes the median value of the predictions from GNN, DNN, and LSTM.
Stack: Stacking strategy that utilizes a meta-learner to integrate results from GNN, DNN, and LSTM. Boost SS:
Boosting strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results
using LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed by LSTM. Boost
BT+SS: Sequential correction of GNN errors first using LSTM, followed by DNN. MLE Typ: Maximum Likelihood
Estimation results using a random starting point within the parameter space of the training dataset for each
parameter’s optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. Red dashed lines in panels representing neural network results indicate the mid-points of the
parameter spaces (ŷ = ȳ where ŷ denotes a estimated parameter and ȳ denotes the mid-point of the parameter
space). Data points close to purple dotted lines (ŷ = 0) in MLE result panels indicate near-zero estimates. Black
two-dash lines indicate accurate estimates (ŷ = y where y denotes the true parameter value). In the MLE result
panels, small squares spreading along the x-axis signify optimization failures. Due to significantly lower accuracy,
other aggregation methods from the bagging strategy are not displayed on the plot. µ: extinction rate.
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Fig. 6. Prediction error of various methods applied to phylogenies simulated under a diversity-dependent
diversification scenario, against true values of the carrying capacity. The errors shown (y-axis) are the differences
between the true parameters (x-axis) used to simulate the phylogenies and the values predicted or estimated by
each method. Each panel represents an estimation method. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. GNN: Predictions
obtained by the graph neural network using the phylogenies. DNN: Predictions by the dense neural network using
summary statistics. LSTM: Predictions by the long short-term memory recurrent neural network using branching
times. Median: Bagging strategy that takes the median value of the predictions from GNN, DNN, and LSTM.
Stack: Stacking strategy that utilizes a meta-learner to integrate results from GNN, DNN, and LSTM. Boost SS:
Boosting strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results
using LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed by LSTM. Boost
BT+SS: Sequential correction of GNN errors first using LSTM, followed by DNN. MLE Typ: Maximum Likelihood
Estimation results using a random starting point within the parameter space of the training dataset for each
parameter’s optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. Red dashed lines in panels representing neural network results indicate the mid-points of the
parameter spaces (ŷ = ȳ where ŷ denotes a estimated parameter and ȳ denotes the mid-point of the parameter
space). Data points close to purple dotted lines (ŷ = 0) in MLE result panels indicate near-zero estimates. Black
two-dash lines indicate accurate estimates (ŷ = y where y denotes the true parameter value). In the MLE result
panels, small squares spreading along the x-axis signify optimization failures. Due to significantly lower accuracy,
other aggregation methods from the bagging strategy are not displayed on the plot. K: carrying capacity.
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Fig. 7. Prediction error of estimated carrying capacity effect computed from estimated values of speciation rate,
extinction rate and carrying capacity using various methods applied to phylogenies simulated under a
diversity-dependent diversification scenario, plotted against the true carrying capacity effect computed from true
parameters. The errors shown (y-axis) are the differences between the values of true carrying capacity effect (x-axis)
used to simulate the phylogenies and the values predicted or estimated by each method. Each panel represents an
estimation method. Phylogenies are categorized based on their size: yellow for small phylogenies with fewer than
200 nodes (including root, internal, and tip nodes), green for medium-sized phylogenies with 200 to 500 nodes, and
blue for large phylogenies with more than 500 nodes. GNN: Predictions obtained by the graph neural network using
the phylogenies. DNN: Predictions by the dense neural network using summary statistics. LSTM: Predictions by
the long short-term memory recurrent neural network using branching times. Stack: Stacking strategy that utilizes
a meta-learner to integrate results from GNN, DNN, and LSTM. Boost SS: Boosting strategy that corrects GNN
results using DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential
correction of GNN errors first using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results
using random starting points for parameter optimization. MLE Best: MLE results using the true parameter values
as the starting points for optimization. Red dashed lines in panels representing neural network results indicate the
mid-points of the parameter spaces (ŷ = ȳ where ŷ denotes an estimated parameter and ȳ denotes the mid-point of
the parameter space). Data points close to purple dotted lines (ŷ = 0) in MLE result panels indicate near-zero
estimates. Black two-dash lines indicate accurate estimates (ŷ = y where y denotes the true parameter value). In
the MLE result panels, small squares spreading along the x-axis signify optimization failures. The title of the figure
shows how the carrying capacity effect is computed, λ: Speciation rate. µ: extinction rate. K: carrying capacity.
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(Caption on next page.)
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Fig. 8. (Figure on previous page.) The robustness (mean absolute error) of neural network and maximum likelihood
estimation was assessed for 80 sets of phylogenies, each containing 1000 trees randomly simulated under a
diversity-dependent diversification scenario, employing identical parameter settings but varying in size, topology,
and structure. The robustness results of the speciation rate, the extinction rate and the carrying capacity are
shown from top to bottom. For each panel group associated to a parameter, each panel contains the robustness of
different estimation methods (the MLE and neural networks) under a combination of parameters indicated by the
facet strip labels. Each facet column represents the robustness under a specific carrying capacity (K) setting used
in the simulation of the phylogenies. Each facet row represents a specific speciation rate (λ). Each group of the bars
represents a specific extinction rate (µ) as shown by the x-axis. The background color of a panel represents the
carrying capacity effect strength (calculated as (λ − µ)/K and visualized in "log10" scale), from bottom-left to
top-right, the carrying capacity effect strength decreases. The color of a bar represents the associated estimation
method. Boosting BT: Graph neural network with long short-term memory recurrent neural network correcting its
residuals using branching times. Boosting SS + BT: Graph neural network with dense neural network and long
short-term memory recurrent neural network correcting residuals sequentially using summary statistics and
branching times. GNN: Graph neural network. MLE Best: Maximum likelihood estimation using true parameters as
the starting points. MLE Typ: Maximum likelihood estimation using a random value as the starting point of
optimization for each parameter. X-axis: Represents extinction rate (µ) settings. Y-axis: Represents the mean
absolute error in a square-root transformed scale. Some bars are marked; for each parameter, the blue triangle
represents the greatest possible robustness achieved among all the estimation methods, the red triangle represents
the greatest possible robustness achieved among the neural network methods.
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Fig. 9. Comparison of the estimations of Maximum Likelihood Estimation (MLE) and neural network methods
(specifically, Boosting BT, which refers to using graph neural network to make first predictions and then using a
long short-term memory recurrent neural network to correct for residuals) on empirical trees under a
diversity-dependent diversification scenario. Each panel, arranged from left to right, focuses on a specific parameter
being estimated. X-axis: Represents the estimated values of the neural network. Y-axis: Represents estimated the
values from MLE. A gray dashed line is included in each panel to indicate where the estimations from the neural
network and MLE are exactly the same. The color of the points varies from purple to blue, with the gradient
representing the size of the phylogenies measured by the total number of nodes (including root, internal, and tip
nodes).

Other Scenarios504

Birth-Death Scenario Neural network methods outperformed MLE in accuracy,505

particularly on smaller phylogenies, under the BD scenario in the simulated dataset (see506

Appendix H, Figure 19 and Figure 18). Both MLE and neural network methods give less507

accurate estimates on small phylogenies; this is more prominent for the MLE estimates.508

On empirical phylogenies, similar to the DDD scenario, neural network methods509

seldom produce zero-estimation of extinction rate, unlike MLE, which often gives zero or510

near-zero estimation on extinction rate. Neural networks tend to give estimates within the511

parameter space of the training dataset. They predict conservative speciation and512

extinction rates yet are highly consistent with MLE estimation on the net diversification513

rate, defined as the difference between speciation and extinction rates (λ − µ). The514

consistency of prediction increases on larger empirical phylogenies. See Figure 10 for515

details.516
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Fig. 10. Comparing the estimations of Maximum Likelihood Estimation (MLE) and neural network methods
(specifically, Boosting BT, which refers to using graph neural network to make first predictions and then using long
short-term memory recurrent neural network to correct for residuals) on empirical trees under a birth-death
scenario. Each panel, arranged from left to right, focuses on a specific parameter being estimated. X-axis:
Represents the estimated values of the neural network. Y-axis: Represents estimated the values from MLE. A gray
dashed line is included in each panel to indicate where the estimations from the neural network and MLE are
exactly the same. The color of the points varies from purple to blue, with the gradient representing the size of the
phylogenies measured by the total number of nodes (including root, internal, and tip nodes).

Protracted Birth-Death Scenario Both maximum likelihood estimation (MLE) and517

neural network methods did not perform well on estimating parameters under the PBD518

scenario; MLE estimates were generally less accurate, but neural networks also failed to519

predict the parameters as all the parameter estimates are close to the mid-points of520

corresponding parameter spaces (Appendix I, Figure 20,). However, there are exceptions:521

neural networks seem to perform better on the speciation rate of the incipient species (λ3)522

and on the mean duration of speciation (τ) when the true value is between 0 and 2.523

MLE estimates become significantly inaccurate as phylogenies become increasingly524

small (Appendix I, Figure 21); it is also noticeable that MLE estimates of the speciation525

completion rate (λ2) are very inaccurate, especially when the phylogenies are large. A526

general pattern is that both MLE and neural network methods achieve more accurate527

estimates on phylogenies with higher true values of the mean duration of speciation528

(Appendix I, Figure 22).529
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Discussion530

We have developed an ensemble learning based neural network approach that531

matches and sometimes outperforms the accuracy and robustness of maximum likelihood532

estimation (MLE) for estimating phylogenetic tree parameters. Our approach leverages533

different classes of neural networks by learning from the phylogenies, their branching times534

and their summary statistics simultaneously.535

When trained, our neural networks can compute estimates faster than MLE on536

larger phylogenies as computation time is less affected by increases in phylogeny size. We537

considered boosting strategies most effective in eliminating systematic prediction errors in538

neural network estimates. Among them, Boost BT (which corrects GNN results using539

LSTM) achieved overall best performance which is comparable to, or even surpassing, the540

best case MLE, in terms of accuracy and robustness. We observed that generally the541

performance of the typical MLE was second-worst (Boost BT+SS was worst).542

Interestingly, some phylogenies, such as small trees and those shaped by relatively weak543

effects, pose significant challenges to both MLE and neural network methods.544

Previous neural network methods applied to phylogenies have experimented with545

various architectures such as convolutional neural networks (CNN), GNN, and LSTM546

(Lajaaiti et al., 2023; Lambert et al., 2023; Voznica et al., 2022). The deep learning547

architectures we employed differ from those used in prior studies, making direct548

comparisons challenging. Additionally, while previous research focused on birth-death549

(Lambert et al., 2023) and trait-state-dependent models (Lajaaiti et al., 2023), our550

approach is novel in its application to models such as diversity-dependent diversification551

(DDD) and protracted birth-death (PBD) from a neural network perspective. Despite552

these differences, our findings align with recent studies in underscoring the potential of553

neural networks to infer diversification processes, offering a viable alternative to554

mathematically complex methods.555
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Rethinking Neural Networks556

Although performance was equal or better than MLE, the neural network approach557

is not without its shortcomings. The neural networks often defaulted to predicting values558

close to the mid-point of the true parameter space of the training dataset, indicating that559

they struggle to extract meaningful features from the dataset. This conservative prediction560

strategy minimizes overall error compared to random guessing. Examples can be found in561

the GNN predictions of carrying capacity from simulated DDD trees, the DNN estimates562

of the speciation and extinction rates (Figure 4, Figure 5 and Figure 6, but see563

Appendix L for a detailed investigation of possible under-performance of DNN on the564

summary statistics) and most neural network predictions of PBD related parameters565

(Appendix I, Figure 20), especially for smaller phylogenies.566

This behavior, while effective in reducing apparent error metrics, can skew our567

understanding of a neural networks performance particularly when the focal parameter568

space is relatively narrow. Neural networks may consistently show smaller overall error569

compared to MLE, because the latter has no prior knowledge of the limits of the570

parameter space, which would lead to a false impression of better accuracy of the neural571

networks. We therefore recommend performing case-specific residual analyses on the neural572

network predictions and the MLE estimates, which are often overlooked or over-simplified.573

We propose two strategies to minimize the influence of possible under-representing574

training dataset. The first strategy is to estimate parameters using MLE (if possible) and575

then training neural networks with a dataset generated by true parameter values that576

cover the MLE estimates, if the estimates seem reasonable. When MLE does not exist, or577

the estimates seem unrealistic, we can use the second strategy, that is, to train the neural578

networks and predict parameters on a relatively narrow training dataset, then retrain on a579

broader dataset generated from a parameter space with different means. We can examine if580

our predictions are subject to the range of the training dataset by observing whether the581

prediction changes. Generally, we recommend to train the neural networks with as large a582
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dataset (sample size) and as broad a parameter space as possible.583

Improving neural network predictions that are close to the mean is unlikely to be584

achieved by increasing the amount of training data: we did not observe major performance585

improvement when changing the size of the datasets (from 1,000 to 100,000 phylogenies586

per dataset). Instead, one might consider increasing the complexity of the network587

architecture, such as increasing their depth or adapting the scale of the hidden nodes588

(Zhang et al., 2021), but note that this may require larger data.589

Although potentially beneficial, increasing the depth can also harm predictive590

power. In particular for GNNs, increasing their depth may lead to "over-smoothing" and591

"over-squashing". Over-smoothing causes node features to become increasingly similar as592

more layers are added (Li et al., 2018), leading to a loss of distinct node embeddings across593

different clusters. Over-squashing involves the compression of expansive node information594

through bottleneck edges into a fixed-size vector, which is problematic in graphs with large595

diameters and long-range dependencies (Alon and Yahav, 2021), e.g.phylogenies. Both596

issues degrade node representations and distort information flow, making deeper GNNs597

potentially less effective than shallower ones (Dwivedi et al., 2022). Moreover,598

over-smoothing and over-squashing are intrinsically linked, creating a trade-off that cannot599

be easily resolved (Giraldo et al., 2023).600

In our analyses, we observed that increasing the number of GraphSAGE layers601

beyond three in the differentiable pooling architecture destabilized the training process602

and reduced the accuracy of estimates on validation datasets, introducing more outliers.603

We therefore opted to maintain two layers throughout our study. We explored newer604

algorithms designed to mitigate deep GNN issues (Chen et al., 2020; Gravina et al., 2022;605

Li et al., 2018), but found that these deeper architectures performed worse than our606

differentiable pooling approach with fewer layers. For DNN and LSTM, we also607

experimented with more complex architectures, different activation functions and various608

hyper-parameter optimizations but failed to achieve better performance.609
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Fundamental Problems with Phylogenies610

The lack of improvement when changing the amount of training data or the611

network architecture suggests that the real challenges of estimating parameters might not612

lie in the architecture of the networks, but might instead be attributed to underlying weak613

or absent phylogenetic signals. Whenever this is the case, we expect similarities in614

inaccuracies of both MLE and neural network approaches. This occurs, for example, for615

the carrying capacity when it is high and thus has a weak effect (measured by (λ − µ)/K).616

Here, the phylogeny is typically not near the carrying capacity, allowing the number of617

species to grow (almost) unbounded. This may result in carrying capacity estimates that618

are arbitrarily high, especially in the MLE methods. The PBD scenario is known to619

present difficulties in recovering parameters reliably with MLE (Etienne et al., 2014) and620

we find similar poor performance with neural networks. A second case where accurate621

parameter estimation is complicated occurs when extinction processes erase critical622

information (Louca and Pennell, 2021), as observed in the decline of estimation robustness623

associated with increasing extinction rate.624

More generally, small phylogenies tend to contain less information than large ones.625

In our results we see that estimation accuracy and robustness decline with decreasing size626

of the phylogenies. This trend is observed across both MLE and neural network methods.627

In the BD and PBD scenarios, where datasets have greater variability in phylogeny sizes,628

poor estimations for small trees could be explained by both low information content, or629

under-representation of such trees. To account for the potential effects of under- and630

over-representation of phylogenies of different sizes in our datasets, we conducted a631

supplementary study to explore whether the patterns we observed persist in a dataset with632

a re-balanced distribution of phylogeny sizes (see Appendix J, Figure 24). This shows the633

same patterns and they are therefore unlikely to be a result of under- or634

over-representation of different phylogeny sizes, and instead reflect low information content635

of small trees (compare Figure 18 and Figure 24).636
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Low information content for specific parameters is expected to be more likely as the637

complexity of the underlying diversification models increases (see the results of BD in638

Appendix H, the results of DDD and the results of PBD in Appendix I, from BD to DDD639

to PBD, the complexity increases). This difficulty may stem from the increasingly complex640

and substantial signals that the phylogenies are required to convey, which may not be fully641

captured in the stochastically generated data. When applying these methods to empirical642

phylogenies, there is a noticeable decline in the agreement between MLE and neural643

network estimates from the BD scenario to the DDD scenario.644

Confronting the Empirical Phylogenies645

The processes of evolution within natural systems are often unknown. Determining646

the "true parameters" of an empirical phylogeny is challenging, even when they meet647

theoretical assumptions, making it difficult to evaluate which tool provides more accurate648

estimates. Therefore, choosing the right tool is crucial.649

With neural networks, it is possible that the true parameter value is not part of the650

assumed parameter range for simulating the training data. In such cases, neural network651

accuracy decreases notably, as shown in a supplementary study (explained in652

Appendix K). We also noticed that when comparing the estimates of MLE and neural653

network methods on the empirical phylogenies (see Figure 9, Figure 10), MLE estimates654

spread wider than the neural networks (e.g. our BD training dataset comprises phylogenies655

simulated using speciation rate between 0 and 0.8 and extinction rate between 0 and 0.72,656

our neural networks never predict speciation rate larger than 0.8 or extinction rate larger657

than 0.72, see Figure 10, similar results can be found under the DDD scenario in Figure 9).658

Expanding the training dataset’s parameter space can resolve the generalization issue (we659

expanded our training datasets several times in the experiments), but this approach660

requires significantly more computational resources for both simulation and training of the661

neural networks.662
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Our supplementary study (explained in Appendix K) also reveals that neural663

networks tend to provide more accurate estimates of speciation and extinction rates from664

complete phylogenies than from extant ones under the BD scenario. This increase in665

accuracy was not observed in the DDD scenario. While complete phylogenies offer a666

broader picture and more contextual information, obtaining them is challenging because it667

is nearly impossible to account for all extinct species.668

Our analyses indicate that GNN is more robust but more prone to systematic errors669

(GNN achieved the greatest possible robustness in estimating the speciation rate and670

carrying capacity among neural network methods). We show that using GNN as a base671

and other neural networks like LSTM to enhance GNN might effectively combine the672

advantages of different methods and information sources, thus strengthening overall673

generalization ability. Our boosting methods (e.g. Boost BT) perform the best in this674

context.675

In conclusion, when applied with caution, neural network methods can be applied676

to other diversification scenarios where MLE is absent or non-tractable, as our677

best-performing neural network method showed comparable or even better performance to678

the best-case MLE. Our neural networks particularly perform better than MLE in terms of679

accuracy and robustness on small phylogenies and can be significantly faster when680

estimating very large phylogenies. Thus, if properly trained, neural network methods may681

substitute for or at least cross-reference with MLE estimates where they exist.682
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APPENDIX846

A. Data Transformation Protocol847

Protocol Transforming Phylogenies for Graph Neural Network848

Phylogenetic trees are usually stored in the "phylo" data format in R. This data849

format is not directly compatible with GNN implementations. To facilitate graph850

convolutional operations, we transformed phylogeny from a "phylo" object into three major851

components: adjacency list, node feature matrix and graph attributes (see Figure 2). The852

adjacency list contains information on the connectivity between nodes and tips, the node853

feature matrix contains distances between nodes and tips, and the graph-level attributes854

include the true initial values to generate the phylogenies. These components are stored in855

separate tensors. In machine learning, a tensor is a mathematical object that generalizes856

scalars, vectors, and matrices to higher dimensions, allowing complex operations to be857

performed efficiently on multi-dimensional arrays.858

Adjacency List In the context of a phylogenetic tree, tip nodes usually represent859

taxonomic units such as species, while root nodes and internal nodes represent the points860

where two taxonomic units depart from each other. An edge in a phylogenetic tree861

represents the connection between two nodes, and as such describes the evolutionary862

relatedness between taxa. Each root node, internal node and tip node in an R "phylo"863

object is indexed sequentially, each edge is also sequentially indexed independently of node864

indices. The sub-list "edge" of a "phylo" object contains the adjacency list of a phylogenetic865

tree which describes the relationships between nodes. Each row of the adjacency list866

represents an edge, the first column contains the index (or numbering) of the ancestor867

node, and the second column contains the index of the descendant node.868

This data structure effectively captures the tree’s branching pattern, showing how869

each taxon (or node) is connected to others. The adjacency list in "phylo" object uses a870

"1-based" indexing in R, we therefore element-wise deduct 1 from the list to convert it into871
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"0-based" indexing which is compatible with the python environment.872

We output the converted adjacency list within the "phylo" object as the adjacency873

list E of the graph representation, in PyTorch Geometric, which is conventionally named as874

"data.edge_index". We store E as a "torch.long" long integer type tensor and transpose it875

such that it has shape [2, num_edges], where "num_edges" is the number of edges in the876

"phylo" object. This tensor has two dimensions. This way, the connections between nodes877

in the transformed graph are all single-directional, from the ancestor nodes to their878

descendants (if any). Training the GNN with graphs of non-directed edges gives no879

performance advantage, according to our tests in phylogenetic tree parameter estimation880

tasks. Single-directional data structure can save GPU memory and reduce the computation881

complexity.882

Node Feature Matrix In a "phylo" object in R, the "edge.length" sub-list defines the883

lengths of the edges in the phylogenetic tree. In a phylogenetic context, these lengths often884

correspond to evolutionary distances, time, or genetic change. "edge.length" is a numeric885

vector where each element corresponds to the length of the edge as defined in the886

adjacency list. The order of lengths in the "edge.length" vector aligns with the order of887

edges in the adjacency list.888

For each tree, we aggregate information contained in "edge.length" to a node feature889

matrix. Each row of the matrix represents features contained in a node. The first column890

contains the edge length from a node to its direct ancestor node, the second and the third891

columns contain the edge lengths from a node to its two daughter nodes. We pad the row892

of the root node with an 0 in the first column as it has no ancestor. We also pad the rows of893

the tip nodes with two 0s in the second and the third columns as they have no descendants.894

The row order of feature matrix aligns with the order of edges in the adjacency list.895

We output the node feature matrix of each tree as the node feature matrix X of the896

graph representation, in PyTorch Geometric, this is conventionally named as "data.x". We897

store X as a "torch.float" floating point type tensor, it has shape898
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[num_nodes, num_node_features], where "num_nodes" is the number of nodes899

(including tip nodes) in the "phylo" object and "num_node_features" in our case is 3, i.e.900

the phylogenetic distances from a node to its ancestor (if any) and two descendants (if901

any). This tensor has two dimensions. We do not store the phylogenetic distance902

information in edge features because GCN operators will eventually pass and aggregate the903

edge features into each of the node. Our data structure is simpler and so is the GNN904

architecture.905

Graph-Level Attributes as Training Targets We store all the parameters used to906

simulate a tree (ground truth values) in the graph-level attributes Y . These can have907

arbitrary length, which should be consistent with the number of the parameters to be908

estimated (the three diversification scenarios, BD, DDD and PBD, have different number909

of parameters). We store graph-level attributes as a "torch.float" floating point type tensor910

with length of the number of parameters we want to predict for each type of the911

phylogenetic tree. In PyTorch Geometric, graph-level attributes can be named as "data.y".912

The graph-level attributes are used as training targets to compute loss (see Appendix B for913

the definition of loss).914

Protocol Transforming Summary Statistics for Dense Neural Network915

The summary statistics of a phylogeny are represented by a 1D vector, so the916

protocol for DNN is straightforward: we convert the vector into a tensor containing917

floating type data, with the shape [num_stats], where "num_stats" denotes the total918

number of statistics. This tensor has only one dimension. This conversion guarantees that919

each tensor is associated with its respective tree, with all contained statistics maintaining920

their original order. Within the PyTorch Geometric framework, these statistics are921

encapsulated as "data.stats" for each tree. When using DNN alone to estimate parameters922

from the summary statistics, the ground truth values of the parameters of the trees are923
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stored in the same way as the graph-level attributes, as model training targets. When924

using DNN with other neural networks (e.g. in stacking and boosting strategies), they925

share the same ground truth values which are the graph-level attributes.926

Protocol Transforming Branching Times for Recurrent Neural Network927

To address the varying lengths in branching times across different phylogenetic928

trees, we standardize these sequences by padding them to match the length of the longest929

branching time sequence. This is achieved by appending zeros to the shorter sequences930

until they match the predefined maximum length. The padded sequences are stored in931

tensors containing floating type data. As the original branching times do not contain zero932

values, this padding strategy allows us to distinguish between original data and padding.933

Consequently, we can pass masks of the sequences to the LSTM, which indicates the934

positions of the paddings, making LSTM concentrate only on the informative portions of935

the sequences, thereby optimizing its performance. When using LSTM alone to estimate936

parameters from the branching times, the ground truth values of the parameters of the937

trees are stored in the same way as the graph-level attributes, as model training targets.938

When using LSTM with other neural networks (e.g. in stacking and boosting strategies),939

they share the same ground truth values which are the graph-level attributes.940
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B. Total Loss941

Total loss comprises three key components: Huber loss, link prediction loss and942

entropy of regularization. Huber loss was used for optimizing regression accuracy while the943

remaining components focused on alleviating a possible issue where GNN can be hard to944

train, if incorporating the differentiable pooling method (Ying et al., 2018).945

The Huber loss (Huber, 1992) for vectors y and ŷ, each with n elements, computed946

as the average loss across all elements, is given by:947

Lδ(y, ŷ) = 1
n

n∑
i=1


1
2(yi − ŷi)2 for |yi − ŷi| 6 δ,

δ(|yi − ŷi| − 1
2δ) otherwise,

(B.1)

where y is the true value vector comprising the ground truth parameters used for948

simulating a phylogenetic tree, ŷ is the predicted value vector comprising the parameter949

predictions, yi and ŷi are the i-th elements of y and ŷ respectively, n is the number of950

elements in the vectors y and ŷ and δ is the threshold parameter that defines the951

transition from squared to linear loss (here loss refers to the difference between ground952

truth and predicted values). In our research, we set δ = 0.8 for all the training sessions,953

making the neural networks more sensitive to smaller errors and more robust to outliers .954

The total loss L is given by955

L = Lδ(y, ŷ) + LLP + LE, (B.2)

where LLP is the link prediction loss and LE is the entropy of regularization, see956

Ying et al. (2018) for their definitions.957
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C. Neural Network Architecture958

For the graph neural network, we used GraphSAGE (Hamilton et al., 2017), a959

sample-and-aggregate graph convolutional neural network, to capture a graph-level960

representation. GraphSAGE has achieved strong performance of learning from large961

graphs. We use graph neural network (GNN) to refer to the graph neural network962

approach which incorporates GraphSAGE.963

GNN is mainly assembled from five GNN modules (see Figure 1-C for five blocks of964

boxes in yellow and orange colors). Each module comprises the same number of965

GraphSAGE operators (Hamilton et al., 2017), where the number of layers (GraphSAGE966

operators, as illustrated by the number of combined boxes within each GNN modules in967

Figure 1-C) NL = 1, 2, . . . , 6. Each GNN operator is accompanied by a Batch968

Normalization for 1D Inputs (BatchNorm1d, not shown in Figure 1) operator (Ioffe and969

Szegedy, 2015) and then a Gaussian Error Linear Units (GELU, as illustrated by the970

orange bands within the yellow boxes in Figure 1-C) activation function (Hendrycks and971

Gimpel, 2016). The GraphSAGE operators facilitate the convolution operation over972

graphs, capturing both local node features and their neighborhood information. The973

BatchNorm1d operator is commonly employed in neural networks to stabilize and974

accelerate the training process. The GELU activation layer is used for introducing975

non-linearity into the data. Learned features from all the GraphSAGE operators within a976

module are collected and concatenated. Larger NL will result in the GNN modules to977

aggregate information into each node from its more distantly connected neighbors.978

According to our experiments, the optimal case is NL = 2, all figures and results relating979

to GNN were reported on the optimal case.980

The graph-learning process also involves graph coarsening operations. We981

incorporated the differentiable pooling (DiffPool hereafter) technique to better learn982

hierarchical representations of the graphs. DiffPool can aggregate graph nodes into clusters983

after each operation. It facilitates graph coarsening and captures intricate hierarchical984
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structure, which makes it particularly suitable for graph-level tasks (Ying et al., 2018). In985

the first coarsening operation, the graph data inputs are passed to two GNN modules986

(pooling and embedding, see Figure 1-C for the blocks marked as "GNN pool1" and "GNN987

embed1"). The pooling group reduces the graph size, while the embedding group captures988

the node features. The filtered data from each GraphSAGE operator are concatenated (see989

Figure 1-C for the blocks of boxes marked as "concat1") then passed to a DiffPool layer990

(see Figure 1-C for the red box marked as "diff-pool1"), which finalizes the first coarsening991

operation. The second coarsening operation is applied in the same way as the first (as992

represented by "GNN pool1", "GNN embed2", "concat2" in Figure 1-C), and the outputs993

from the second DiffPool layer ("diff-pool2" in Figure 1-C) are passed to the final (fifth)994

GNN module ("GNN embed3" in Figure 1-C). The nodes in a graph are dynamically995

clustered and reduced after each coarsening operation. The coarsening ratio at each996

operation is determined by a pre-set DiffPool pooling ratio. Let Ncoarsened represent the997

number of nodes in the coarsened graph and Noriginal the number of nodes in the original998

graph. The DiffPool pooling ratio ρpool is given by ρpool = Ncoarsened
Noriginal

. Throughout the study,999

we used a manually optimized value ρpool = 0.25. This is a manually optimized1000

hyper-parameter.1001

After the final GNN module, the outputs are concatenated ("concat3" in1002

Figure 1-C) and transformed by a global mean pooling operation (red ball "M" in1003

Figure 1-C) to create a final graph representation. This graph representation is passed to a1004

readout layer group ("readout" as represented by light blue boxes in Figure 1-C) consisting1005

of two linear layers to perform graph-level regression which ultimately outputs a vector of1006

n predicted parameters ("pred" as represented by a purple box in Figure 1-C). Only the1007

first linear layer is followed by GELU (see the orange band of the first linear layer). All the1008

linear layers incorporate dropout operations with a pre-set dropout ratio to prevent1009

over-fitting and to utilize as many neuron connections as possible. Let ρdropout represent1010

the probability p of disabling a connection between an input node and a hidden node of a1011
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linear layer in each epoch. The dropout ratio ρdropout is simply given by ρdropout = p.1012

Throughout the study, we used a commonly picked value ρdropout = 0.5. This is a manually1013

optimized hyper-parameter.1014

DNN’s major component is a stack comprises 5 linear layers ("DNN stack" in1015

Figure 1-A), each followed by a BatchNorm1D (not shown in figure) and a GELU (the1016

orange band within the boxes). All the linear layers within the stack incorporate dropout1017

operations with ρdropout = 0.5. Learned features from all the linear layers within the stacks1018

are collected and concatenated ("concat" in Figure 1-A). A single linear readout layer1019

("readout" in Figure 1-A) outputs n predicted parameters ("pred" in Figure 1-A).1020

According to our experiments, stacking more linear layers gives no substantial1021

improvement to the performance.1022

LSTM’s major component is a stack of 5 LSTM recurrent neural network layers1023

("LSTM stack" in Figure 1-B). The final hidden state from the last recurrent neural1024

network layer is processed by a linear layer with ρdropout = 0.5 accompanied by a GELU1025

("linear" in Figure 1-B), then passed to a single linear readout layer ("readout" in1026

Figure 1-B) that outputs n predicted parameters ("pred" in Figure 1-B). According to our1027

experiments, stacking more recurrent neural network layers provides no substantial1028

improvement to the performance.1029

The hyper-parameters not mentioned are set by their default values. The1030

dimensions of the boxes do not map to any hyper-parameter settings, they are set for the1031

best visual effect. The values below the boxes indicate their respective number of hidden1032

neurons, their input and output neurons are not shown in the figure, they can be found in1033

the configuration files in our GitHub repository "eveGNN" (Qin, 2023).1034
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D. Ensemble Learning1035

With bagging, we trained GNN, DNN and LSTM independently ("GNN", "DNN"1036

and "LSTM" blocks of boxes in Figure 3-Bagging), translated their outputs to parameter1037

predictions through their own readout layers (three "readout" boxes next to the neural1038

networks and three "pred" boxes next to the readout layers in Figure 3-Bagging) and then1039

aggregated the predictions (red ball "A" in Figure 3-Bagging). We experimented with four1040

aggregation methods: taking the mean, median, max and min values among the three1041

predictions. We also recorded the individual predictions without aggregation.1042

With stacking, we trained GNN, DNN and LSTM simultaneously ("GNN", "DNN"1043

and "LSTM" blocks of boxes in Figure 3-Stacking) but without their own readout layers.1044

We combined the features from DNN, the LSTM’s final hidden state, and GNN’s graph1045

representation and fed to a meta-learner ("meta-learner" in Figure 3-Stacking) comprising1046

linear neural network layers that learns to best readout parameter predictions from these1047

combined outputs.1048

With boosting, there can be different pathways. In our illustration, GNN, DNN and1049

LSTM were trained sequentially to iteratively correct residuals. For example, firstly, the1050

GNN ("GNN" in Figure 3-Boosting) is trained from the graphs to make the initial1051

predictions ("readout" and then "pred0" in Figure 3-Boosting) and from predicted and1052

ground truth values of the parameters we computed the residuals ("res1" in1053

Figure 3-Boosting)secondly, the DNN ("DNN" in Figure 3-Boosting) is trained to predict1054

these residuals from the summary statistics ("readout" and then "pred-res1" in1055

Figure 3-Boosting), learning to correct the GNN’s errorslastly, the LSTM ("LSTM" in1056

Figure 3-Boosting) is trained to predict the residuals of the residuals ("readout" and then1057

"pred-res2" in Figure 3-Boosting), which is the initial predictions minus the predicted1058

residuals by the DNN, from branching times, to further improve the predictive accuracy.1059

Finally, we subtracted the two residual terms from the initial predictions (red ball "S" in1060

Figure 3-Boosting) to make the corrected predictions.1061
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E. Comparison between MLE Optimizers1062

On the phylogenies from the diversity-dependent diversification (DDD) dataset, we1063

compared between three approaches: "Simplex", "Subplex" and "DEoptim". Simplex is a1064

derivative-free optimization method that uses a simplex of solutions to iteratively explore1065

and adjust within the parameter space, suitable for non-smooth objective functions but1066

potentially slow for high-dimensional problems (Morgan and Deming, 1974). Subplex is an1067

enhancement of the Simplex method, Subplex breaks high-dimensional optimization into1068

smaller subproblems, each optimized using Simplex techniques, providing improved1069

efficiency and effectiveness in complex parameter landscapes (Rowan, 1990). DEoptim1070

(Differential Evolution) is a more recent population-based algorithm that applies1071

evolutionary strategies such as mutation, crossover, and selection to efficiently navigate1072

and optimize multimodal and complex objective functions (Ardia et al., 2010).1073

All three MLE methods encountered consistent optimization challenges, likely due1074

to numerical issues related to machine precision limits or unexpected negative values during1075

matrix operations. From a random sample of 2000 DDD phylogenies, the completion rates1076

for each method were as follows: Simplex achieved 1966 completions from true parameter1077

starts and 1910 from random starts; Subplex completed 1681 from true starts and 16121078

from random starts; DEoptim finished 1122 from true starts and 999 from random starts.1079

It is more difficult to estimate parameters from random starts, comparing to true starts.1080

For all the three optimization approaches, -1 will be returned as a parameter1081

estimation if the likelihood becomes too small in the searching process. This means that1082

the algorithm cannot find optima given the initial starting point of the parameters. It is1083

highly possible that the unfinished estimations consisted of inaccurate or even -1 values.1084

The comparison between MLE optimizers can be skewed due to less completion rate of the1085

Subplex and DEoptim results.1086

In instances where optimization starting points were randomly set, a significant1087

number of outcomes were trapped at local optima, failing to achieve global optima and1088
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often leading to inaccurate parameter estimates. This issue was less prevalent when1089

starting points were the true parameters. For visual reference, see Figure 11 and Figure 12.1090

Notably, in DEoptim’s best-case scenarios, estimation accuracy deteriorated significantly1091

on larger phylogenies, as shown in the last row of Figure 12.1092

In the best cases, all the MLE optimizers are more likely to give accurate1093

estimations on larger phylogenies while in the typical cases, larger phylogenies become a1094

burden. Nevertheless, the MLE optimizers generally perform better on larger trees. All the1095

MLE results showed similar trends of bias. We calculated the strength of the carrying1096

capacity effect using the formula (λ − µ)/K, where λ represents the true speciation rate, µ1097

the true extinction rate, and K the true carrying capacity. Phylogenies exhibiting a1098

stronger carrying capacity effect typically link to more accurate estimates.1099

In the best-case scenarios, all MLE methods tended to yield more accurate1100

estimates on larger phylogenies, while in typical cases, larger phylogenies posed challenges.1101

However, all MLE methods generally performed better with larger trees, and all displayed1102

similar trends of bias. We calculated the strength of the carrying capacity effect with the1103

formula (λ − µ)/K, where λ is the true speciation rate, µ is the true extinction rate, and1104

K is the true carrying capacity.1105

Subplex was the fastest among the tested algorithms, Simplex and DEoptim were1106

slower. Simplex, although slower, completed the most computations and did not show a1107

definitive performance disadvantage compared to Subplex or DEoptim. For this reason, in1108

all comparisons between MLE and neural network methods, we consistently used results1109

from the Simplex optimizer due to data coverage and reliability.1110
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Fig. 11. Error of maximum likelihood estimation using Simplex, Subplex and DEoptim optimzers applied to
phylogenies simulated under a diversity-dependent diversification scenario, against true values. For each optimzer
there were two cases. The typical case (Typ) refers to using the true parameter values as the starting points for the
searching process; the best case (Best) refers to using randomly sampled values from the true parameter space as
the starting points. The errors shown (y-axis) are the differences between the true parameters (x-axis) used to
simulate the phylogenies and the values estimated by each method. Each row represents a method, and each
column corresponds to the results for one specific parameter. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. Data points close to
purple dotted lines (ŷ = 0) in MLE result panels indicate near-zero estimates. Black two-dash lines indicate
accurate estimates (ŷ = y where y denotes the true parameter value). Small squares spreading along the x-axis
signify optimization failures. Extremely deviating estimates are not shown in the figure. λ: Speciation rate. µ:
extinction rate. K: carrying capacity.
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Fig. 12. Error of maximum likelihood estimation using Simplex, Subplex and DEoptim optimzers applied to
phylogenies simulated under a diversity-dependent diversification scenario, against the total number of nodes
(including root, internal, and tip nodes) in the phylogenies. For each optimzer there were two cases. The typical
case (Typ) refers to using the true parameter values as the starting points for the searching process; the best case
(Best) refers to using randomly sampled values from the true parameter space as the starting points. The errors
shown (y-axis) are the differences between the true parameters used to simulate the phylogenies and the values
estimated by each method. Each row represents a method, and each column corresponds to the results for one
specific parameter. Phylogenies are categorized based on their size into three sectors within each panel, separated
by four vertical red dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes,
medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than 500 nodes. The values
shown in black within each sector are the mean absolute prediction errors of all data points in the sectors. Color
coding: The color of the data points illustrates the strength of the carrying capacity effect, calculated as (λ − µ)/K.
The color gradient transitions from red to purple, indicating increasing strength of the effect. This scale is
transformed using log10 for clearer visual differentiation. Small squares spreading along the x-axis signify
optimization failures. Extremely deviating estimates are not shown in the figure. X-axis: Size of the phylogenies.
Y-axis: Error. λ: Speciation rate. µ: extinction rate. K: carrying capacity.
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F. Estimation Uncertainty for Empirical Trees1111

Fig. 13. The neural network estimation uncertainty for a bird phylogeny (Furnariidae). The parameters are
estimated using a pre-trained neural network (Boost BT, boosting strategy that corrects GNN results using LSTM)
under a diversity-dependent diversification scenario. For reference, maximum likelihood estimation (MLE) is also
used to estimate the same parameters. Each panel shows one parameter’s estimates using neural network and MLE
methods with their uncertainties. The red dashed lines with red numbers indicate the estimates by the neural
network method. The blue dashed lines with blue numbers indicate the estimates by the MLE method. Each pink
area indicates the density distribution of a neural network estimate from 1000 bootstrap-simulated phylogenies,
showing the uncertainty of neural network. Each blue area indicates the density distribution of an MLE estimate
from the same set of simulated phylogenies, showing the uncertainty of MLE. X-axis: Parameter (Estimate) values.
Y-axis: Density. λ: Speciation rate. µ: Extinction rate. K: Carrying capacity. λ − µ: Net speciation rate.

The rest of the figures of neural network estimation uncertainty on the empirical1112

phylogenies under the DDD scenario can be found at1113

https://github.com/EvoLandEco/eveGNN/tree/master/uncertainty1114
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G. Results under the Diversity-Dependent Diversification Scenario1115

1116

1117

(Caption on next page.)1118
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Fig. 14. (Figure on previous page.) The prediction error of various methods applied to phylogenies simulated under
a diversity-dependent diversification scenario, against the total number of nodes (including root, internal, and tip
nodes) in the phylogenies. The errors shown are the differences between the true parameters used to simulate the
phylogenies and the values predicted or estimated by each method. Each row represents a method, and each
column corresponds to the results for one specific parameter. Phylogenies are categorized based on their size into
three sectors within each panel, separated by four vertical red dashed lines. From left to right, the sectors are: small
phylogenies with fewer than 200 nodes, medium-sized phylogenies with 200 to 500 nodes, and large phylogenies
with more than 500 nodes. The values shown in black within each sector are the mean absolute prediction errors of
all data points in the sectors. Color coding: The color of the data points illustrates the strength of the carrying
capacity effect, calculated as (λ − µ)/K. The color gradient transitions from red to purple, indicating increasing
strength of the effect. This scale is transformed using log10 for clearer visual differentiation. GNN: Predictions
obtained by the graph neural network using the phylogenies transformed to graph format. DNN: Predictions by the
dense neural network using summary statistics. LSTM: Predictions by the long short-term memory recurrent neural
network using branching times. Median: Bagging strategy that takes the median value of the predictions from
GNN, DNN, and LSTM. Stack: Stacking strategy that utilizes a meta-learner to integrate results from GNN, DNN,
and LSTM. Boost SS: Boosting strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that
corrects GNN results using LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed
by LSTM. Boost BT+SS: Sequential correction of GNN errors first using LSTM, followed by DNN. MLE Typ:
Maximum Likelihood Estimation results using random starting points for parameter optimization. MLE Best: MLE
results using the true parameter values as the starting points for optimization. In the MLE result panels, small
squares spreading along the x-axis signify optimization failures. Due to significantly lower accuracy, other
aggregation methods from the bagging strategy are not displayed on the plot. X-axis: Size of the phylogenies.
Y-axis: Error. λ: Speciation rate. µ: Extinction rate. K: Carrying capacity.
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Fig. 15. Robustness comparison between graph neural network (GNN), dense neural network (DNN) and long
short-term memory recurrent neural network (LSTM) when operating independently. Same structure as the
previous figure.
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1119
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Fig. 16. (Figure on previous page.) The robustness of neural network and maximum likelihood estimation was
assessed on 80 sets of phylogenies, each containing 1000 trees randomly simulated under a diversity-dependent
diversification scenario, employing identical parameter settings but varied in size, topology, and structure. Each
segment delineated by dashed lines corresponds to distinct methods. Each column within a segment is associated
with a specific carrying capacity (K) used in the simulation of the phylogenies. Each row within a segment details
the mean absolute errors between the true and estimated values of a specific parameter, with parameter names
labeled on the left side of each row. GNN: Graph neural network. Boosting BT: Graph neural network with long
short-term memory recurrent neural network correcting its residuals using branching times. Boosting SS + BT:
Graph neural network with dense neural network and long short-term memory recurrent neural network correcting
residuals sequentially using summary statistics and branching times. Typical Case: Maximum likelihood estimation
using random initial parameter as the starting point. Best Case: Maximum likelihood estimation using true
parameter as the starting point. X-axis: Represents the true speciation rate (λ) used to simulate phylogenies.
Y-axis: Represents the true extinction rate (µ) used to simulate phylogenies. Cell Content: The numbers displayed
within each heatmap cell indicate the mean absolute error for a parameter, given the specific λ, µ and K settings.
Color Coding: The background color of each cell illustrates the strength of the carrying capacity effect, calculated
as (λ − µ)/K. The color gradient transitions from red to purple, indicating increasing strength of the effect. This
scale is transformed using log10 for clearer visual differentiation. Note that the numerical values within the cells are
not mapped to the background colors. For a detailed reference to the effect strength values corresponding to the
background colors, refer to the figure legends.

Fig. 17. The density distribution of phylogeny sizes under the diversity-dependent diversification (DDD) scenario.
The colors of the areas under the density curve indicate the three categories used in our analyses. Yellow area:
Small-sized phylogenies with less than 200 nodes (approx. 100 tips). Greed area: Medium-sized phylogenies with
more than 200 nodes and less than 500 nodes (approx. 250 tips). Blue area: Large-sized phylogenies with more than
500 nodes.
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H. Results under the Birth-Death Scenario1120

Fig. 18. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
birth-death scenario, against true values. The errors shown are the differences between the true parameters used to
simulate the phylogenies and the values predicted or estimated by each method. Each row represents a method, and
each column corresponds to the results for one specific parameter. Phylogenies are categorized based on their size:
yellow for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for
medium-sized phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. GNN:
Predictions obtained by the graph neural network using the phylogenies. Boost SS: Boosting strategy that corrects
GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT:
Sequential correction of GNN errors first using DNN, followed by LSTM. MLE Typ: Maximum Likelihood
Estimation results using random starting points for parameter optimization. MLE Best: MLE results using the true
parameter values as the starting points for optimization. Red dashed lines in panels representing neural network
results indicate the mid-points of the parameter spaces (ŷ = ȳ where ŷ denotes a estimated parameter and ȳ
denotes the mid-point of the parameter space). Data points close to purple dotted lines (ŷ = 0) in MLE result
panels indicate near-zero estimates. Black two-dash lines indicate accurate estimates (ŷ = y where y denotes the
true parameter value). In the MLE result panels, small squares spreading along the x-axis signify optimization
failures. X-axis: True parameter values. Y-axis: Error, or difference between true and predicted values. λ:
Speciation rate. µ: Extinction rate.
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Fig. 19. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
birth-death scenario, against the total number of nodes in the phylogenies. The errors shown are the differences
between the true parameters used to simulate the phylogenies and the values predicted or estimated by each
method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Phylogenies are categorized based on their size into three sectors within each panel, separated by four vertical red
dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes (including root,
internal, and tip nodes), medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than
500 nodes. GNN: Predictions obtained by the graph neural network using the phylogenies. Boost SS: Boosting
strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results using
LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed by LSTM. MLE Typ:
Maximum Likelihood Estimation results using random starting points for parameter optimization. MLE Best: MLE
results using the true parameter values as the starting points for optimization. X-axis: Size of the phylogenies.
Y-axis: Error. λ: Speciation rate. µ: Extinction rate.
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I. Results under the Protracted Birth-Death Scenario1121

Fig. 20. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
protracted birth-death scenario, against true values. The errors shown are the differences between the true
parameters used to simulate the phylogenies and the values predicted or estimated by each method. Each row
represents a method, and each column corresponds to the results for one specific parameter. Phylogenies are
categorized based on their size: yellow for small phylogenies with fewer than 200 nodes (including root, internal,
and tip nodes), green for medium-sized phylogenies with 200 to 500 nodes, and blue for large phylogenies with more
than 500 nodes. GNN: Predictions obtained by the graph neural network using the phylogenies. Boost SS: Boosting
strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results using
LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed by LSTM. MLE Typ:
Maximum Likelihood Estimation results using random starting points for parameter optimization. MLE Best: MLE
results using the true parameter values as the starting points for optimization. Red dashed lines in panels
representing neural network results indicate the mid-points of the parameter spaces. Purple dotted lines in MLE
result panels signify where estimated values are 0. X-axis: True parameter values. Y-axis: Error, or difference
between true and predicted values. λ1: Speciation initiation rate of the good species. λ2: Speciation completion
rate. λ3: Speciation initiation rate of the incipient species. µ1: Extinction rate of the good species. µ2: Extinction
rate of the incipient species. τ : Expected duration of speciation.
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Fig. 21. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
protracted birth-death scenario, against the total number of nodes in the phylogenies. The errors shown are the
differences between the true parameters used to simulate the phylogenies and the values predicted or estimated by
each method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Phylogenies are categorized based on their size into three sectors within each panel, separated by four vertical red
dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes (including root,
internal, and tip nodes), medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than
500 nodes. Color Coding: The color of the data points illustrates the expected duration of speciation. The color
gradient transitions from light purple to dark blue, indicating increasing value of the duration. This scale is
transformed using square root for clearer visual differentiation. GNN: Predictions obtained by the graph neural
network using the phylogenies. Boost SS: Boosting strategy that corrects GNN results using DNN. Boost BT:
Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of GNN errors first
using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results using random starting points
for parameter optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. X-axis: Size of the phylogenies. Y-axis: Error. λ1: Speciation initiation rate of the good species. λ2:
Speciation completion rate. λ3: Speciation initiation rate of the incipient species. µ1: Extinction rate of the good
species. µ2: Extinction rate of the incipient species. τ : Expected duration of speciation.
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Fig. 22. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
protracted birth-death scenario, against the true mean duration of speciation. The errors shown are the differences
between the true parameters used to simulate the phylogenies and the values predicted or estimated by each
method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Color Coding: The color of the data points illustrates the total number of nodes of the phylogenies. The color
gradient transitions from light purple to dark blue, indicating increasing value of the node number. This scale is
transformed using square root for clearer visual differentiation. GNN: Predictions obtained by the graph neural
network using the phylogenies. Boost SS: Boosting strategy that corrects GNN results using DNN. Boost BT:
Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of GNN errors first
using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results using random starting points
for parameter optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. X-axis: Size of the phylogenies. Y-axis: Error. λ1: Speciation initiation rate of the good species. λ2:
Speciation completion rate. λ3: Speciation initiation rate of the incipient species. µ1: Extinction rate of the good
species. µ2: Extinction rate of the incipient species. τ : Expected duration of speciation.
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Fig. 23. The correlation between the mean duration of speciation and the true parameter values under the
protracted birth-death diversification scenario. Phylogenies are categorized based on their size: yellow for small
phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized phylogenies
with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. X-axis: Mean duration of
speciation. Y-axis: Tree size.
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J. Dataset Re-balancing1122

Birth-death processes without carrying capacity effect may have larger variance of1123

tree size than the DDD trees. A skew in the frequency of tree size across datasets may1124

appear that leads to a non-representative sample.1125

To address this issue, we re-balanced the BD dataset by creating 10 bins, each1126

designated to hold phylogenies within specific size ranges, spanning from 10 to 2000 nodes1127

in increments of 200 nodes per bin (the first bin accepts phylogeny of sizes 10 to 200). We1128

randomly simulated phylogenies using parameters sampled from the same space as the BD1129

training dataset and allocated them to these bins according to their sizes, continuing this1130

process until each bin reached its target capacity of 10,000 phylogenies. This method leads1131

to a more equal representation of phylogenies of each size range, reducing size-based1132

sampling bias. The filled bins were subsequently combined to form a re-balanced dataset,1133

which in total has 100,000 phylogenies.1134

To compare with the original BD dataset, we trained neural networks on the1135

re-balanced dataset, and validated neural network performance on an additional testing1136

dataset (10,000 phylogenies simulated using the same parameter space). We computed1137

MLE estimates on 2,000 randomly sampled phylogenies from the testing dataset.1138
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Fig. 24. The prediction error (absolute error) of various methods applied to re-balanced phylogenies simulated
under a birth-death scenario, against the total number of nodes in the phylogenies. The errors shown are the
differences between the true parameters used to simulate the phylogenies and the values predicted or estimated by
each method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Phylogenies are categorized based on their size into three sectors within each panel, separated by four vertical red
dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes (including root,
internal, and tip nodes), medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than
500 nodes. This scale is transformed using square root for clearer visual differentiation. GNN: Predictions obtained
by the graph neural network using the phylogenies. Boost SS: Boosting strategy that corrects GNN results using
DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of
GNN errors first using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results using random
starting points for parameter optimization. MLE Best: MLE results using the true parameter values as the starting
points for optimization. X-axis: Size of the phylogenies. Y-axis: Error. λ: Speciation rate. µ: Extinction rate.
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K. Unseen Data and Complete Phylogeny1139

We simulated additional datasets to explore the generalization ability of the neural1140

networks when facing data with completely unseen true parameters, as well as to compare1141

neural network performances between extant and complete phylogenies. Each simulated1142

dataset was divided into in-sample and out-of-sample datasets. We used the in-sample1143

datasets for training and testing and the out-of-sample datasets for evaluating the1144

generalization ability of the trained neural networks. Validating trained neural networks on1145

the out-of-sample datasets can provide insights into whether their performances are1146

tailored to the peculiarities of the already seen data and whether they are robust to new,1147

unseen phylogenies. For each tree we kept two versions: tree of all species (TAS) and tree1148

of extant species (TES). See Table 2 for the parameter settings of the additional datasets,1149

see Table 3 for the criteria of in-sample and out-of-sample dataset separation. To conserve1150

GPU memory, the parameter space for additional datasets was deliberately kept smaller,1151

given that the TAS dataset inherently contains far more information than the TES.1152
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A: Parameter settings for BD and DDD trees

Type Age N λ0 µ0 K

a b a b a b

BD 10 60k 0.1 0.6 0.0 0.9λ0 - -
DDD 10 100k 0.1 3.0 0.0 0.9λ0

∗ 10 1000

B: Parameter settings for PBD trees

Type Age N b1 λ1 b2 µ1 µ2

a b a b a b a b a b

PBD 10 100k 0.1 0.8 0.001 10 0.1 0.8 0.0 0.8b1 0.0 0.8b2

Table 2. List of simulated tree datasets. The type column specifies which function is used to generate the trees. The
age column specifies the crown age of the trees. The N column specifies the number of trees in the dataset. The rest
of the columns specify the lower (a) and the upper (b) bounds of the initial parameters for the tree simulations, all
the parameters are sampled from U(a, b) except for λ1 of the protracted birth-death scenario. λ1 is computed as
λ1 = 10e where e is sampled from U(−3, 1). U denotes uniform distribution. List A shows the parameter
distributions of the birth-death trees and the diversity-dependent-diversification trees, λ: intrinsic speciation
rate/birth rate; µ: intrinsic extinction rate/death rate; K: carrying capacity. List B shows the parameter
distributions of the protracted birth-death trees, λ1: speciation-initiation rate of good species; λ2:
speciation-completion rate; λ3: speciation-initiation rate of incipient species; µ1: extinction rate of good species; µ2:
extinction rate of incipient species. ∗In diversity-dependent-diversification simulations, the maximum extinction
rate is capped at 1.5 if 0.9λ > 1.5.

Model Parameter Left Out In Sample Right Out
BD λ0 [0.10, 0.18) [0.18, 0.52] (0.52, 0.60]
BD µ0 [0.00, 0.08) [0.08, 0.46] (0.46, 0.54]
DDD λ0 [0.00, 0.30) [0.30, 2.70] (2.70, 3.00]
DDD µ0 [0.00, 0.10) [0.10, 0.80] (0.80, 0.90]
DDD K [10, 100) [100, 900] (900, 1000]
PBD b1 [0.10, 0.18) [0.18, 0.72] (0.72, 0.80]
PBD λ1 [0.001, 0.002) [0.002, 5] (5, 10]
PBD b2 [0.10, 0.18) [0.18, 0.72] (0.72, 0.80]
PBD µ1 [0.00, 0.06) [0.06, 0.58] (0.58, 0.64]
PBD µ2 [0.00, 0.06) [0.06, 0.58] (0.58, 0.64]

Table 3. Criteria for in-sample and out-of-sample dataset separation. Trees generated from each model are
separated into left out-of-sample group, in-sample group and right out-of-sample group, based on the parameter
ranges. The Model column shows the model of a parameter; the Parameter column shows the corresponding
parameter; the Left Out column shows the criteria for the left out-of-sample group; the In Sample column shows
the criteria for the in-sample group; the Right Out column shows the criteria of the right out-of-sample group. λ:
intrinsic speciation rate/birth rate; µ: intrinsic extinction rate/death rate; K: carrying capacity. List B shows the
parameter distributions of the protracted birth-death trees, λ1: speciation-initiation rate of good species; λ2:
speciation-completion rate; λ3: speciation-initiation rate of incipient species; µ1: extinction rate of good species; µ2:
extinction rate of incipient species.
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Fig. 25. Comparisons of relative differences (in percentage) between ground true and estimated parameter values.
From top to bottom, the panels in each row present the relative differences of trees generated by a specific
diversification process. From left to right, the panels in each column present the relative differences of a specific
parameter used when simulating the trees. Within each panel, each box represents a specific method for parameter
estimation on a specific data set (as described in x-axis labels). Red boxes represent parameter estimation by using
only graph neural network (GNN) on the in-sample datasets (Test in figure), yellow boxes represent the
non-optimal maximum likelihood estimation (MLE) method on the complete datasets (direct outputs from
simulation, without any separation), green boxes represent the optimal MLE method on the complete datasets,
purple boxes represent parameter estimation by GNN on the out-of-sample datasets. BD - birth-death trees; DDD -
diversity-dependent-diversification trees; PBD - protracted birth-death trees. λ - birth rate/intrinsic speciation
rate; µ death rate/intrinsic extinction rate; K - carrying capacity; λ1 - speciation rate of good species; λ2 -
speciation-completion rate; λ3 - speciation rate of incipient species; µ1 - extinction rate of good species; µ2
extinction rate of incipient species. T-TAS - GNN parameter estimation on full trees (with extinct lineages) in the
in-sample data set; T-TES - GNN parameter estimation on extant trees (without extinct lineages) in the in-sample
dataset; MLE-TES - MLE parameter estimation on extant trees in the complete dataset; V-TAS - GNN parameter
estimation on full trees in the out-of-sample dataset; V-TES - GNN parameter estimation on extant trees in the
out-of-sample dataset.
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L. Learning from Summary Statistics1153

To analyze the relationships between summary statistics and the true parameters1154

used in the diversity-dependent diversification simulations, we computed Pearson1155

correlation indices for each summary statistic against the true values of the three1156

parameters. The absolute values of the correlations are visualized as a heatmap, detailed in1157

Figure 26.1158

Fig. 26. Heatmap of absolute correlation strengths between true parameters and summary statistics from simulated
trees under a diversity-dependent diversification scenario. Each column corresponds to a specific summary statistic,
while each row corresponds to a true parameter that was used to simulate the phylogenies. The true parameters are
denoted as follows: λ for speciation rate, µ for extinction rate, and K for carrying capacity. The color gradient,
ranging from dark purple to yellow, represents the increasing values of the absolute Pearson correlations between
the summary statistics and the true parameters, See Appendix N for the details of the statistics.

The heatmap analysis reveals that a large number of summary statistics showed a1159

high correlation with carrying capacity, whereas strong correlations with speciation and1160

extinction rates are considerably less frequent. Generally, the correlation strength between1161

the true parameters and extinction rate is markedly lower. These findings align with the1162

observed performance of DNN, which generally yields good estimates for carrying capacity1163

but is much less effective in accurately predicting speciation rates and particularly poor at1164

estimating extinction rates.1165

We further evaluated the DNN’s performance by benchmarking it against a range of1166

non-neural-network regression techniques using the same summary statistics. These1167
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included multivariate linear regression, Ridge regression, Lasso regression, random forest1168

regression, and gradient boosting regression. Our findings indicated that while these1169

traditional regression and machine learning methods generally outperformed the DNN,1170

they still did not match the performance of our more complex neural networks.1171

Traditional regression methods and other machine learning techniques often1172

outperform linear feed-forward neural networks in classical regression tasks. Such methods1173

can stabilize performance with less data compared to neural networks, which usually1174

require large datasets to generalize effectively. In our study, the dataset size – consisting of1175

100,000 entries across 54 statistics – may seem substantial, but it is still relatively modest1176

when tasked with regressing multiple parameters simultaneously.1177

Despite these findings, DNNs have shown efficacy in enhancing the performance of1178

other neural networks, particularly through the prediction of residuals using summary1179

statistics. DNN might not be the optimal choice for estimating parameters from summary1180

statistics alone, but they can be valuable in ensemble learning strategies.1181
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M. Meta Information of the Selected Empirical Trees1182

Family Tree Ntip
Amphibia Caecilidae 31
Amphibia Hynobiidae 46
Amphibia Salamandridae 42
Amphibia Plethodontidae 278
Amphibia Pipidae 23
Amphibia Eleutherodactylidae 145
Amphibia Ranidae 218
Bird Tyrannidae 419
Bird Thraupidae 370
Bird Psittacidae 330
Bird Trochilidae 334
Bird Columbidae 306
Bird Furnariidae 302
Bird Muscicapidae 279
Bird Accipitridae 242
Bird Picidae 223
Bird Thamnophilidae 219
Bird Fringillidae 194
Bird Strigidae 191
Bird Turdidae 170
Bird Meliphagidae 177
Bird Phasianidae 176
Bird Emberizidae 163
Bird Anatidae 157
Bird Cisticolidae 142
Bird Pycnonotidae 124
Bird Rallidae 125
Bird Cuculidae 138
Bird Estrildidae 140
Bird Nectariniidae 127
Bird Leiothrichidae 127
Bird Corvidae 120
Bird Zosteropidae 120
Bird Sturnidae 109
Bird Parulidae 109
Bird Ploceidae 108
Bird Icteridae 102
Bird Apodidae 99
Bird Laridae 99
Bird Alaudidae 91
Bird Monarchidae 87
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Bird Scolopacidae 89
Bird Caprimulgidae 88
Bird Alcedinidae 91
Bird Campephagidae 80
Bird Procellariidae 81
Bird Hirundinidae 83
Bird Troglodytidae 79
Bird Phylloscopidae 71
Bird Ardeidae 61
Bird Pellorneidae 66
Bird Sylviidae 62
Bird Cardinalidae 68
Bird Charadriidae 64
Bird Falconidae 64
Bird Motacillidae 62
Bird Acanthizidae 63
Bird Cotingidae 65
Bird Vireonidae 58
Bird Acrocephalidae 52
Bird Bucerotidae 55
Bird Paridae 53
Bird Pachycephalidae 50
Bird Locustellidae 53
Bird Rhinocryptidae 53
Bird Timaliidae 55
Bird Cracidae 50
Bird Pipridae 52
Bird Grallariidae 49
Bird Malaconotidae 46
Bird Passeridae 48
Bird Rhipiduridae 42
Bird Dicaeidae 45
Bird Tinamidae 47
Bird Petroicidae 44
Bird Ramphastidae 35
Bird Tityridae 41
Bird Trogonidae 42
Bird Lybiidae 41
Bird Paradisaeidae 40
Bird Phalacrocoracidae 33
Bird Bucconidae 35
Bird Threskiornithidae 34
Bird Mimidae 34
Bird Odontophoridae 34
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Bird Oriolidae 30
Bird Laniidae 29
Bird Pittidae 31
Bird Platysteiridae 30
Bird Cettiidae 32
Bird Megalaimidae 28
Bird Maluridae 27
Bird Sittidae 24
Bird Meropidae 26
Bird Dicruridae 24
Bird Otididae 25
Bird Alcidae 23
Bird Hydrobatidae 22
Bird Musophagidae 23
Bird Megapodiidae 21
Bird Cacatuidae 21
Bird Diomedeidae 21
Bird Vangidae 21
CrocoTurtle Crocodylia 25
CrocoTurtle Testudines 233
Mammal Vespertilionidae 386
Mammal Soricidae 329
Mammal Sciuridae 276
Mammal Pteropodidae 174
Mammal Phyllostomidae 150
Mammal Bovidae 138
Mammal Cercopithecidae 127
Mammal Molossidae 98
Mammal Didelphidae 84
Mammal Hipposideridae 74
Mammal Rhinolophidae 73
Mammal Echimyidae 69
Mammal Dasyuridae 63
Mammal Mustelidae 59
Mammal Heteromyidae 58
Mammal Leporidae 58
Mammal Macropodidae 56
Mammal Nesomyidae 55
Mammal Ctenomyidae 51
Mammal Dipodidae 51
Mammal Emballonuridae 49
Mammal Cebidae 48
Mammal Cervidae 45
Mammal Felidae 40
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Mammal Talpidae 39
Mammal Geomyidae 38
Mammal Pitheciidae 37
Mammal Canidae 34
Mammal Delphinidae 34
Mammal Viverridae 34
Mammal Herpestidae 33
Mammal Spalacidae 31
Mammal Ochotonidae 28
Mammal Gliridae 27
Mammal Tenrecidae 25
Mammal Atelidae 24
Mammal Erinaceidae 22
Mammal Phalangeridae 22
Squamate Xantusiidae 26
Squamate Gerrhosauridae 28
Squamate Cordylidae 42
Squamate Varanidae 53
Squamate Chamaeleonidae 142
Squamate Iguanidae 31
Squamate Phrynosomatidae 114
Squamate Pythonidae 26
Squamate Viperidae 209
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N. List of Summary Statistics1183

Summary Statistics
Gamma Area Per Pair (aPP)
Sackin Average Leaf Depth (aLD)
Colless I Statistic
Aldous’ Beta Statistic ewColless
Blum Max Delta Width (maxDelW)
Crown Age Maximum of Depth
Tree Height Variance of Depth
Pigot’s Rho Maximum Width
Number of Lineages Rogers
nLTT with Empty Tree Total Cophenetic Distance
Phylogenetic Diversity Symmetry Nodes
AvgLadder Index Mean of Pairwise Distance (mpd)
Cherries Variance of Pairwise Distance (vpd)
ILnumber Phylogenetic Species Variability (psv)
Pitchforks Mean Nearest Taxon Distance (mntd)
Stairs J Statistic of Entropy
Stairs2 Rquartet Index
Laplacian Spectrum Asymmetry Laplacian Spectrum Log Eigen
Laplacian Spectrum Peakedness Laplacian Spectrum Eigengap
Number of Nodes Wiener Index
B1 Max Betweenness
B2 Max Closeness
Diameter, Without Branch Lengths Maximum Eigen Vector Value
Mean Branch Length Variance of Branch Length
Mean External Branch Length Variance of External Branch Length
Mean Internal Branch Length Variance of Internal Branch Length
Number of Imbalancing Steps J_One Statistic

Table 5. List of phylogenetic summary statistics used in neural network training
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