bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.606350; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Systematic Biology (2024), 0, 0, pp. 1-83
doi:10.1093/7777 /output

Performance and Robustness of Parameter Estimation
from Phylogenetic Trees Using Neural Networks

1,2,%

TIANJIAN QIN!, KOEN J. VAN BENTHEM!, LUIS VALENTE , AND RAMPAL S. ETIENNE,*

! GRONINGEN INSTITUTE FOR EVOLUTIONARY LIFE SCIENCES, UNIVERSITY OF GRONINGEN,
NIJENBORGH 7, GRONINGEN, 9747 AG, THE NETHERLANDS
2 NATURALIS BIODIVERSITY CENTER, DARWINWEG 2, LEIDEN, 2333 CR, THE NETHERLANDS

CORRESPONDING AUTHOR: TIANJIAN QIN, E-MAIL: T.QINQRUG.NL

*JOINT SENIOR AUTHORS

ABSTRACT
1 Species diversification is characterized by speciation and extinction, the rates of which can,
. under some assumptions, be estimated from time-calibrated phylogenies. However,
s maximum likelihood estimation methods (MLE) for inferring rates are limited to simpler
+ models and can show bias, particularly in small phylogenies. Likelihood-free methods to
s estimate parameters of diversification models using deep learning have started to emerge,
s but how robust neural network methods are at handling the intricate nature of
7 phylogenetic data remains an open question. Here we present a new ensemble neural
s network approach to estimate diversification parameters from phylogenetic trees that
o leverages different classes of neural networks (dense neural network, graph neural network,
w and long short-term memory recurrent network) and simultaneously learns from graph
u representations of phylogenies, their branching times and their summary statistics. Our
» best-performing ensemble neural network (which corrects graph neural network result
15 using a recurrent neural network) can compute estimates faster than MLE and is less
u affected by tree size. Our analysis suggests that the primary limitation to accurate

15 parameter estimation is the amount of information contained within a phylogeny, as
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s indicated by its size and the strength of effects shaping it. In cases where MLE is
7 unavailable, our neural network method provides a promising alternative for estimating
s phylogenetic tree parameters. If there are detectable phylogenetic signals present, our

1 approach delivers results that are comparable to MLE but without inherent biases.

» Key words: graph neural network, recurrent neural network, machine learning, regression

2 INTRODUCTION

» Identifying the underlying mechanisms shaping biodiversity is an important goal in
» the fields of evolutionary biology and ecology. Species diversification processes can often be
» characterized by speciation and extinction rates, which can be estimated from

» time-calibrated phylogenies (Nee et al., 1997) as long as the assumed model structure of

» diversification resembles the true underlying data generation process (Louca and Pennell,
2 2021). Time-calibrated phylogenies contain branching times and topological relationships
» between species and offer a complementary source of information to the often incomplete
» fossil record (Kidwell and Flessa, 1996). The increasing availability of reconstructed

» phylogenies has empowered many studies seeking explanations for the underlying diversity
s patterns using modelling approaches (Etienne et al., 2016; Morlon, 2014; Wagner, 2000).

» One type of models — birth-death models — are often used to estimate speciation,

» extinction and diversification rates from reconstructed phylogenetic trees (Hey, 1992; Nee,
% 2001; Nee et al., 1994, 1997).

3 Likelihood-based approaches, such as maximum likelihood estimation (MLE) and

% DBayesian inference, can be used to infer not only speciation and extinction rates, but also
» possibly existing evolutionary and ecological signals, such as diversity-dependence or

% trait-dependence of rates from branching times and other information sources (Alexander
» et al., 2016; Etienne et al., 2014; Foote, 1997; Valente et al., 2015). However, MLE

» approaches are only mathematically tractable for simple diversification models (Janzen
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a et al., 2015; Lambert et al., 2023). In addition, MLE tends to be biased when estimating

» diversification parameters from phylogenetic trees. The degree of bias depends on the size
» of the phylogenetic tree (the number of tips): as tree size increases, the estimates become
« asymptotically more unbiased (Etienne et al., 2016). MLE may also perform worse on

s complex models with a high number of parameters (Ward, 2008).

w6 An alternative to these likelihood-based approaches for parameter estimation is

« Approximate Bayesian Computation (ABC), which approximates the posterior distribution
« of parameters without requiring explicit calculation of a likelihood function. ABC is often
» seen as a good substitute to MLE when a likelihood function of a model is not available, as
» long as simulations of the model are fast and tractable (Beaumont, 2010; Beaumont et al.,
s 2002; Janzen et al., 2015). However, studies using ABC for parameter estimation in

» phylogenetics remain scarce (Bokma, 2010; Kutsukake and Innan, 2013; Rabosky, 2009;

s Xie et al., 2023). This is partly due to the fact that is is often difficult to identify adequate
= summary statistics in ABC, which makes the application and development of this

s potentially powerful approach challenging.

5 A promising class of tools that may help overcome the limitations of

s likelihood-based methods and ABC are machine learning approaches, such as neural

» networks. Neural networks are comprised of layers of nodes, or "neurons", which process

s input data and learn to recognize patterns between input and output data from training

o data (Charu C, 2018). Classic feed-forward neural networks have achieved good results in
a tasks such as image recognition and natural language processing (Zhu et al., 2018).

« Another class of neural networks, graph neural networks, are designed specifically for

s graph-structured data, such as social networks, molecular structures, and ecological

« interaction networks. They can capture the dependencies and relationships inherent in

s data types that can be naturally represented as graphs (Kipf and Welling, 2016) and have
s shown strong performance in various tasks involving graph representation learning (Li

« et al., 2020; Rampéek et al., 2022; Ying et al., 2018). Phylogenetic trees can also be viewed
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e as graphs, suggesting that graph neural networks have potential applicability in

o phylogenetics. Recurrent neural networks, another type of neural network, are designed to
» handle sequential data, such as time series, by maintaining a memory of previous inputs

n (Sak et al., 2014; Salehinejad et al., 2017). Recurrent neural networks can process inputs of
» varying lengths and capture time-dependent features, making them particularly well-suited
7 for tasks where the order of data points is crucial, such as learning parameters from

= branching times when viewed as time-series data.

7 Owing to the rapid development of both hardware capability and deep learning

» algorithms, applications of neural networks in phylogenetic analyses have started to emerge
7 (e.g. Moi and Dessimoz (2022), Reiman et al. (2020), Voznica et al. (2022), Lambert et al.
» (2023), and Lajaaiti et al. (2023)). For instance, phylogenetic deep learning approaches

» have been shown to provide reliable estimates of parameters in epidemiological,

» birth-death, and trait-dependent speciation models (Lajaaiti et al., 2023; Lambert et al.,

s 2023; Voznica et al., 2022). Despite their potential, employing neural networks for

= estimating parameters based on the whole phylogenetic tree, especially those associated

s with diversification, poses significant challenges and requires further systematic research

« regarding their performance, accuracy and robustness. Specifically, feed-forward linear

»s neural networks usually require a large amount of data to be able to generalize well on the
s patterns within the data (Zhu et al., 2018); producing graph representations for

& graph-level learning can be challenging given the need to aggregate information across

s diverse graph sizes and topologies (Ying et al., 2018); the capability of the recurrent neural
» networks to predict parameters from whole sequences is often challenging (Sak et al.,

o 2014). Hence, how robust neural network methods are at handling the intricate nature of
o phylogenetic data remains an open question.

% In this study, we explore the capabilities of neural networks in research on species

o diversification using phylogenies. We first develop various neural network architectures and

« protocols for transforming phylogenetic trees and branching times into formats compatible
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s with popular neural network frameworks. We then investigate predictive performance on

« simulated data for ensemble learning strategies, which combine different neural network

o classes to maximize data utilization and enhance performance. We also assess the

» determinants of estimation accuracy and robustness for both neural network and MLE

» methods under various diversification scenarios. Finally, we implement our trained neural
w networks on empirical phylogenetic datasets and compare their estimations to those of

w  MLE.

102 Our analyses encompass three different diversification scenarios for which

s likelihood-based inference approaches already exist: a constant-rate birth-death (BD)

w  scenario, with constant speciation and extinction rates over time (Stadler, 2011); a

s diversity-dependent diversification (DDD) scenario, where the number of species in a clade
s negatively affects the speciation rate (Etienne et al., 2012); and a protracted birth-death
wr (PBD) scenario, where speciation takes time and does not always proceed to completion
s (Rosindell et al., 2010). Applying our new methodology to phylogenetic trees simulated

w under a broad range of the parameter space, our findings indicate that neural network

mw approaches are as effective, if not more so, than MLE in recovering parameters from

w  phylogenetic data simulated under these stochastic processes. Trained neural networks can
12 be conveniently applied to empirical trees for parameter estimation. To facilitate this, we
s present a new R package, "EvoNN," capable of performing such analyses based on

w  phylogenetic trees (empirical or simulated) supplied by the user (Qin, 2024).

s MATERIALS AND METHODS
116 Software Environment and Computational Budget
17 We used a hybrid programming environment with PyTorch 1.12.1 (Imambi et al.,

ws 2021), PyTorch Geometric 2.3.1 (Fey and Lenssen, 2019), Python 3.7.1 (Python, 2021),
ne CUDA 12.2.2 (Luebke, 2008) and R 4.2.1 (R Core Team, 2013). The procedures of

o simulation, data transformation, and maximum likelihood estimation were handled
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w through parallel CPU computations on the Habrék high-performance computing cluster of
12 the University of Groningen. The total computational budget for these processes was

s approximately 3000 hours (used CPU time). Our neural networks were trained, optimized
e and evaluated on the NVIDIA A100 and V100 tensor core GPUs of the Habrék cluster.

s The estimated computational budget was 1500 hours (used GPU time, excluding CPU

v time for dataset loading and saving). We implemented a user-friendly tool to estimate

1»»  parameters from phylogenetic trees using the neural network approach developed in this

s study in the new R package "evoNN".

129 Simulation Approaches

130 To train the neural networks, we simulated phylogenetic trees using different

m  functions from different R packages. For each simulated dataset we kept trees with only

1 extant lineages, mimicking reconstructed phylogenies. The settings for the parameters used
1 to simulate the trees were selected to limit the maximum total number of nodes (including
e root, internal and tip nodes, here and after, we always refer to the total number of nodes)
s for the trees in each dataset. After simulation, we further filtered out all trees containing
s more than 3000 nodes to avoid the creation of excessively large matrices that could deplete
1w the available memory space allocated to the GPUs during the GNN training process. Such
s trees are uncommon under the settings we used — typically fewer than 5 trees with more

1 than 3000 nodes (~1500 tips) are present within each set of phylogenies we acquired from
w simulation. We also filtered out all trees containing less than 5 nodes (3 tips) to ensure

w successful data transformation and summary statistic computation. Small trees inherently
w carry limited informational content. The exclusion of these trees is unlikely to impact

s performance of the neural networks on the remaining trees (typically fewer than 100 trees
w  with less than 5 nodes were present for each parameter setting).

1s To consider different diversification processes, we simulated 100,000 random

us  birth-death trees (BD phylogenies), 100,000 diversity-dependent trees (DDD phylogenies)
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wr - and 100,000 protracted birth-death trees (PBD phylogenies). The amount of simulated

s data is bounded by the resource and time limits of the computing cluster. All trees have an
uw identical crown age of 10 time units (¢ = 10) to reduce the dimension of data complexity.
s This age was chosen arbitrarily, as we can always rescale the trees in time. For simulating
s BD trees, we used the "rlineage" function from R package "ape" (Paradis and Schliep, 2019)
12 to generate complete trees and then pruned all the extinct lineages; for DDD trees, we

s used the "dd_sim" function from R package "DDD" (Etienne et al., 2012); for PBD trees
s we used the "pbd_sim" function from our R package "eveGNN" (a codebase of phylogeny
155 simulation, data transformation, neural network training and MLE computation for our

s study), which is similar to the function with the same name in the original R package

w7 "PBD" (Etienne and Rosindell, 2012), but only outputs necessary data for our study.

158 In our simulation approach we randomly sampled the (log) parameters required for
s each scenario (BD, DDD and PBD) from uniform distributions. The upper bound for the
w extinction rates were proportionally dependent on the drawn speciation rate to avoid cases
w  where extinction rates could be larger than speciation rates, because in such cases the

w2 whole tree likely goes extinct. Furthermore, to prevent a huge number of evolutionary

s events that would deplete available computational time and memory, we also imposed an
s overall cap of 1.5 on the extinction rates. See Table 1 for the detailed parameter

s distribution settings used in the simulations.

166 Data Preparation

167 We employed three different basic neural network architectures: a dense neural

s network (DNN), a graph neural network (GNN), and a long short-term memory (LSTM)
e recurrent network, as illustrated in Figure 1 (see Appendix C for a detailed description).
o  Each of these architectures was refined through validation and required different input

m data. For the DNN, the input data consisted of a total of 54 summary statistics

w»  (Appendix N) for each simulated tree. In the GNN; the full phylogeny was interpreted as a
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Table 1. Parameter settings for the simulated tree datasets. The type column specifies which function is used to
generate the trees. The columns specify the crown age (age), the number of trees in the data set (N), the lower (a)
and the upper (b) bounds of the parameters for the tree simulations, all the parameters being sampled from U (a, b),
except for A1 of the protracted birth-death scenario. A1 is computed as A\; = 10* where i is sampled from U(—3,1).
U denotes uniform distribution. Sub-table A shows the parameter distributions of the constant-rate birth-death
model and the diversity-dependent-diversification model, A: intrinsic speciation rate/birth rate; u: intrinsic
extinction rate/death rate; K: carrying capacity. Sub-table B shows the parameter distributions of the protracted
birth-death model, A;: speciation-initiation rate of good species; \2: speciation-completion rate; As:
speciation-initiation rate of incipient species; p1: extinction rate of good species; p2: extinction rate of incipient
species. *In diversity-dependent-diversification simulations, the maximum extinction rate is capped at 1.5 if
0.9A > 1.5.

A: Parameter settings for BD and DDD trees

Ao Ho K
a b a b a b

BD 10 100,000 0.1 0.8 0.0 09X\ - -
DDD 10 100,000 0.1 4.0 0.0 0.9\" 10 1000

Type Age N

B: Parameter settings for PBD trees

Type Age N A1 log(A2) A3 Ha H2
a b a b a b a b a b

PBD 10 100,000 0.1 1.0 -3 1 0.1 1.0 0.0 0.8\; 0.0 0.8A3

s graph and could in that form be used as input data (as illustrated in Figure 2). In the

s LSTM, we treated branching times of the phylogenies as sequential or time-series data

s (Sak et al., 2014). Given its recurrent architecture, LSTM is adept at sequence prediction

e tasks, making it particularly suitable for estimating tree parameters from entire sequences
w7 of branching times.

178 Therefore, our data compound comprises three major components: the phylogenetic
e trees, their corresponding summary statistics, and their branching times, to maximize the

1w use of available data. The functions needed for the data transformations are either

w available in PyTorch or implemented in our package eveGNN and described in more detail

1w in Appendix A.


https://doi.org/10.1101/2024.08.02.606350
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.606350; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

NEURAL NETWORKS FOR PARAMETER ESTIMATION 9
163 Ensemble Learning Strategies
184 To leverage all available data and improve prediction accuracy, we combined GNN,

s DNN, and LSTM using bagging, stacking, and boosting, which are typical ensemble

s learning strategies (Graczyk et al., 2010). With bagging, we trained GNN, DNN and

w  LSTM independently on the same dataset, translated their original outputs to parameter
s predictions (we will use "readout" hereafter to refer to this translation) and then aggregated
w the predictions. We used four aggregation methods: mean, median, max and min.

100 With stacking, we use GNN, DNN and LSTM in the same architecture but without
w  their own readout layers. Instead, we combined the features learned from DNN, LSTM and
e GNN and fed them to a meta-learner comprising linear neural network layers that learns
s the best readout parameter predictions from these combined features. GNN, DNN, LSTM
e and the meta-learner were trained simultaneously.

105 With boosting, the neural networks were trained sequentially. Boosting strategies

s Offered various pathways for enhancing model performance. We started with a GNN to

1w make initial predictions and explored the effectiveness of both DNN and LSTM for

ws correcting residuals, either individually or in sequence. We used "Boost SS" to refer to

w correcting GNN’s residuals by DNN (from summary statistics)"Boost BT" to refer to

20 correcting GNN’s residuals by LSTM (from branching times); "Boost SS+BT" to refer to
o correcting GNN’s residuals by DNN and then correcting DNN'’s residuals of residuals by

2 LSTM; "Boost BT" to refer to correcting GNN’s residuals by LSTM (from branching

2 times); "Boost BT+SS" to refer to correcting GNN’s residuals by LSTM and then

2 correcting LSTM’s residuals of residuals by DNN.

205 See Figure 3 for a simplified illustration of the ensemble learning strategies.
206 Training Neural Networks
207 Prior to training, each dataset of 100,000 trees was randomly shuffled and

xs  subsequently divided into two segments. The first segment, consisting of 90% of the
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x dataset, was allocated for training purposes, while the remaining 10% was used as the

a0 validation dataset for monitoring and fine-tuning the neural network performance. The

a1 training session is carried out by epochs, each consisting of three major steps: first,

a2 performing forward pass on the training dataset; second, assessing the prediction accuracy;
x5 and lastly, performing back-propagation (adjusting the weights of the neuron connections
2 to improve the neural network performance). Back-propagation, requires quantifying the
x5 error between the neural networks predictions and the actual ground truth values. We

xs  quantified the 'total loss’ as the sum of the residual error and other terms for facilitating
a»  neural network training. We represented total loss using a loss function which sums up all
2 the loss terms (see Appendix B for more detail).

210 We use the AdamW (Adaptive Moment Estimation with decoupled weight decay)
20 optimizer (Loshchilov and Hutter, 2017) to iteratively update the neural networks’

21 parameters to minimize the loss function. We used default AdamW argument settings.

» During training, we adopted mini-batches of size 64 (data of 64 simulated trees per

»s  mini-batch) to reduce GPU memory usage. The total number of epochs was manually

» optimized to avoid underfitting and overfitting. This was done by comparing the loss

» metrics for the training dataset to those of the validation datasets at every epoch.

»  Overfitting is indicated by a training loss that continues to decrease while the validation
» loss starts to increase, whereas underfitting is suggested by both training and validation
»s losses being high and decreasing at a similar rate. Analyzing these loss trends over time
2 can help to optimize hyper-parameters ("settings' that might alter neural network behavior
20 or impact performance).

21 Under the BD scenario, the neural networks were trained to predict two

= parameters: birth rate (\) and death rate (u). Under the DDD scenario, the neural

= networks were trained to predict three parameters: speciation rate (), extinction rate (u)
» and carrying capacity (K). Under the PBD scenarios, the neural networks were trained to

= predict five parameters: speciation rate of the good species (A1), speciation completion rate
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2 (A2), speciation rate of the incipient species ()A3), extinction rate of the good species (u1)

= and extinction rate of the incipient species (js).

238 Baseline Benchmark

2% Maximum likelihood estimation (MLE) approaches have been developed for the

«0 BD, DDD and PBD scenarios (Etienne et al., 2012, 2014; Etienne and Rosindell, 2012).

. Per scenario, we simulated additional testing datasets each comprising 10,000 phylogenies
« using the same parameter spaces as the training datasets. For these testing datasets, we
»s adopted the MLE approaches to estimate the parameters of each phylogeny from their

as  branching times under different scenarios. For the BD trees, we estimated their birth and
s death rates. For the DDD trees, we estimated their speciation rate, extinction rate and

xs carrying capacity. There is a limitation in the MLE approach for PBD trees because to

« allow for a computation of the likelihood, the speciation initiation rates of good species

«s and incipient species need to be equal (Etienne et al., 2014). We therefore only estimated
us four initial parameters: speciation initiation rate (for both good and incipient species,

» assuming they are the same), speciation-completion rate, extinction rate of good species
= and extinction rate of incipient species, although in our simulation we have five

» independently sampled parameters. The MLE results are used as a baseline benchmark to
»s  evaluate the performance of the neural networks on tree parameter estimation.

254 We estimated two types of benchmarks using the MLE approaches: one with ground
= truth parameter values set as the starting point of the MLE searching process, the other
» With a starting point randomly sampled from the parameter space of the simulation. We
» consider the first type of benchmarks as a best-case MLE performance (as in real

» applications ground truth parameters are not known) and the other type as a typical-case
x  MLE performance, which mimics the pragmatic approach if true parameter values are not
w0 known. Note that in practice it is possible to achieve better performance than the

«  typical-case, e.g. by optimizing from several starting points.
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262 We also explored the effectiveness of different optimization approaches for MLE on
% the DDD phylogenies. We used the "Simplex" (Lagarias et al., 1998) optimizer to compute
x the baseline benchmarks for all the analyses. See Appendix E for reasons and for a detailed

xs comparison between the optimizers.

266 Performance Analysis

267 From the same testing datasets used for baseline benchmark computation, we

» analysed the patterns of residuals (differences between ground truth and predicted values,
% which can be viewed as the goodness of fit) by visually examining their relation to true

a0 values and the total node counts of the phylogenetic trees, which include root, internal and
1 tip nodes. Considering the complex nature of residual patterns, which may vary according
x> to specific characteristics of the simulation processes (for instance, carrying capacity effects
s in DDD and protracted speciation in PBD), as well as the performance and robustness of
xs the estimation methods, we calculated error metrics locally for three different phylogeny

o5 size ranges, as a global metric could be misleading.

276 The main case study we decided to focus on is based on simulated trees under the
-»  DDD scenario, because it involves more evolutionary mechanisms than the simple

x5 birth-death scenario while containing fewer parameters than the protracted birth-death

xe  scenario. This simplifies our analyses on the neural network performance while maintaining
x» enough complexity to challenge the capability of our proposed methods. From this case

x  study we identified and selected the most effective MLE optimization algorithm, neural

x network architecture and ensemble strategy, which we then applied to BD and PBD

xs  scenarios. We therefore only analysed the best-performing neural network methods against
» the typical and best MLE cases on BD and PBD. Additionally, for the PBD scenario, we
x» computed a composite parameter called the mean duration of speciation from the

x Speciation completion rate, the speciation rate of incipient species and the extinction rate

»  of incipient species (Etienne et al., 2014), because MLE can arguably better estimate the
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»s mean duration of speciation than the original parameters.

20 Robustness Analysis

200 We assessed the robustness of the estimation results of both neural networks and

= MLE by measuring the consistency with which these approaches produce similar estimates
x for phylogenies generated under identical parameter settings. In the previous simulations,
»s each parameter combination was sampled and used only once, whereas in the robustness
2 analysis we repeatedly use identical parameter settings to generate sets of phylogenies

»s  (bootstrapping) under the DDD scenario. Even when the same parameters are used, the
2 Tresulting phylogenies can vary substantially in size, topology and structure due to

»r stochasticity. Such an evaluation helps assess the neural networks’ ability to abstract the
»s underlying parameter influences from the phylogenetic data, regardless of heterogeneity.

»  For each parameter combination, 1000 trees were generated randomly. We used a total of
w80 sets of parameter combinations, thus 80,000 phylogenies in total. Specifically, we used
s all combinations of speciation rates A = 1.0, 1.5,2.0, 2.5, 3.0, extinction rates

w  p=0.2,0.4,0.6,0.8 and carrying capacities K = 200, 400, 600, 800.

303 MLE is computationally more expensive than predicting from already trained

s neural networks, and computational time rapidly increases with the size of the phylogenies.
ws  We thus performed MLE on only 2000 simulated phylogenies. To ensure fair visual and

ws numerical comparisons when plotting the results of these analyses, extreme MLE estimates
o were not shown in the figures (they exceeded the fixed range of the y-axis) and excluded
ws  from the computation of the mean absolute errors of the MLE estimates. Neural network
w0 results were randomly sub-sampled to match the MLE data count, maintaining equivalent
a0 visual density and facilitating a more accurate performance comparison between

su - approaches. For the neural networks, the mean absolute errors were computed on the

s complete dataset without sub-sampling and exclusion. In the figure, on average (we

s simulated the testing datasets many times throughout the study), out of 2000 samples,
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s 5-150 samples per MLE figure panel, and 1-3 per neural network figure panel fell beyond
2 the axis range. For the most underperforming method (Boost BT+SS) 600-1500 samples
s6  fell beyond the axis range.

217 We did not analyze the robustness of BD and PBD scenarios, because BD is a

2 special case of DDD (if we set carrying capacity to an infinite value) and PBD related

2 parameters can hardly be estimated accurately using MLE methods (Etienne et al., 2014).
20 The complete code base for this study, including simulations, data processing,

=1 neural network training, evaluation, and both data analysis and visualization tools, is

2 available in the GitHub repository eveGNN (Qin, 2023).

523 Empirical Tree Estimation

324 We deployed pre-trained neural networks to estimate phylogenetic parameters from
» a dataset of 199 empirical phylogenetic trees curated by Condamine et al. (2019), with a
2 tip count ranging from 20 to 1500. To align with the training conditions of our neural

»7  networks, which were trained on simulated phylogenies spanning exactly 10 time units

= (Myr), we rescaled the crown ages of all empirical trees to this duration. The parameter

» estimations we present are therefore rescaled. All the selected empirical trees are

= reconstructed phylogenies and fully bifurcated (each root or internal node has exactly two
s descendants). If an empirical tree fails an ultrametric (all tip-ends are aligned at the

= present) test due to branch length precision issue, we forced all its tips to end exactly at
s the present by extending the shorter tips to align with the longest one. See Appendix M
s for meta information of the empirical trees.

335 We used two distinct neural networks, each pre-trained on simulated trees from one
s of two evolutionary scenarios (BD or DDD) to estimate parameters from the empirical

s trees. For the BD scenario, we estimated the parameters A (speciation rate) and u

= (extinction rate); for the DDD scenario, we estimated A, u, and K (carrying capacity). We

» did not estimate parameters for the PBD scenarios because neither neural networks, nor
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w0  MLE approaches could recover the parameters accurately from the simulated phylogenies.
s In addition to our neural network estimates, we used MLE methods for parameter

s estimation to provide a comparative assessment of the results. The MLE methods were set
ws to use default starting points of likelihood optimization, as we do not know the true

w  parameters of the empirical phylogenies.

345 We used the same bootstrapping method described before to quantify the

us uncertainties of both MLE and neural network estimates from empirical data. The process
w7 involves three main steps: first, estimating parameters from empirical phylogenies using

xs MLE and pre-trained neural networks; second, simulating a set of phylogenies under a

x specified diversification scenario (such as BD, DDD, or PBD) using the MLE and neural
s network estimates; and third, re-estimating parameters from the simulated phylogenies

s using MLE and neural networks. The estimates derived from the bootstrapped phylogenies
x form a distribution.

353 We applied this uncertainty computation to a selected set of empirical phylogenies
s from the Condamine dataset (Condamine et al., 2019) under the DDD scenario (see

s Appendix F for details). The criteria for selection were phylogenies with more than 300

s and less than 1000 nodes, and maximum likelihood estimates (MLE) of K (carrying

w capacity) being less than 1000. The distributions of MLE and neural network estimates

s from the bootstrapped phylogenies was compared to the original MLE and neural network
w0  estimates from empirical phylogenies. For each set of parameters estimated from empirical
w0 phylogenies, we bootstrapped 1000 simulated phylogenies.

301 Our R package "EvoNN" (Qin, 2024) provides functions to perform the uncertainty

w (bootstrap) analyses.
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363 RESULTS
364 Performance Analysis
365 We evaluated the performances of various neural networks, both individually and in

s combination through ensemble strategies, in predicting parameters from simulated DDD
w7 phylogenies. These predictions were benchmarked against best-case and typical-case MLE
s results using the Simplex optimizer.

39 Among all the methods, we consider boosting GNN with LSTM as the most robust
s method based on the goodness of fit (see Figure 4, Figure 5, Figure 6 and Figure 7), the
s mean absolute errors (see Appendix G, Figure 14) and robustness (see rows named Boost
o BT in Figure 8 and Figure 15). Both neural networks and MLE approaches generally

o struggle with small phylogenies (see Figure 4, Figure 5 and Figure 6 for larger errors

o represented by the yellow data points, see also Appendix G, Figure 14). Performance

w5 improves significantly on medium and large phylogenies for both neural network and MLE
s approaches.

377 The MLE implementation sometimes fails to find an optimal solution. In our

s visualizations, failed MLE estimations are indicated by small squares spreading along the
w9 X-axis to avoid misinterpretation. MLE tended to give small or near-zero estimates,

s particularly on the extinction rate and the carrying capacity. This phenomenon is more

s prominent when starting optimization from a random point. For all figures showing the

s MLE error, the ideal situation is that all the data points lie near the horizontal black

% two-dash reference lines (at which the error is 0) and do not spread along or near the

w purple dotted reference lines (which suggests near-zero MLE estimations). See the last two
ws  panels of Figure 4, Figure 5 and Figure 6 for details.

356 Neural networks often return values closer to the parameter space’s mid-points

w (indicated by red dashed lines), a result of making "safer" predictions that minimize loss
% compared to random guesses. Consequently, neural networks usually overestimate at low

% true values and underestimate at high true values (see Figure 4, Figure 5 and Figure 6).
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w0 These errors are mitigated or partially corrected when the neural networks are trained in
. tandem through boosting strategies, e.g. boosting GNN results with DNN or LSTM or

w» both (see the panels of Boost SS, Boost BT and Boost SS+BT in Figure 4, Figure 5 and
»s  Figure 6). This happens particularly for large phylogenies (the blue data points in

w  Appendix G, Figure 14) when the underlying true carrying capacity (K) is large, or for

w small phylogenies (the yellow data points) when the underlying true speciation rate (\) is
0 small.

307 However, boosting strategies can introduce their own challenges. When boosting

ws  GNN results first with LSTM and then with DNN, the DNN failed to identify a general
w0 pattern of errors from LSTM results. This led to overfitting on the training dataset at the
w0 second epoch of the training session (the total loss in the validation dataset started to

w increase and became much larger than the total loss in the training dataset), which, in

« turn, resulted in poor performance on the testing dataset (see the panels named Boost

ws BT+SS in Figure 4, Figure 5, Figure 6 and Appendix G, Figure 14).

a0 Upon further analysis of the residuals, we observed that inaccuracies in the

ws predictions were largely influenced by the size of the phylogeny (Figure 4, Figure 5 and

ws Figure 6). For neural network approaches, the prediction errors for speciation rate,

«  extinction rate, and carrying capacity tended to increase as the size of the phylogeny

ws decreased, especially in phylogenies with fewer than 200 nodes. Systematic error was also
w0 identified in the estimation of carrying capacity: neural networks generally overestimated
a0 this parameter in smaller phylogenies and underestimated it in larger ones. Boosting

m  strategies were effective in mitigating or partially correcting systematic errors, and

«» enhancing prediction accuracy, particularly for carrying capacity (see the rows of Boost SS,
a5 Boost BT and Boost SS+BT in Appendix G, Figure 14).

a4 We calculated the strength of the carrying capacity effect using the formula

as 1/K'"= (XA — u)/K, where X represents the true speciation rate, y the true extinction rate,

as K the true carrying capacity, and K’ the diversity at which speciation becomes zero for


https://doi.org/10.1101/2024.08.02.606350
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.606350; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

18 TIANJIAN QIN, KOEN J. VAN BENTHEM, LUIS VALENTE, RAMPAL S. ETIENNE

ar linear negative diversity-dependence (Etienne et al., 2012). A larger (A — )/ K value

as  corresponds to smaller K" and therefore a stronger carrying capacity effect. Phylogenies

a0 exhibiting a stronger carrying capacity effect typically have more accurate estimates.

= However, in the case of smaller phylogenies, neural networks tended to underestimate

= speciation and extinction rates while overestimating carrying capacity when the carrying
= capacity effect is weak, and the reverse is observed when the effect is strong. In contrast,
»s MLE tends to overestimate speciation and extinction rates while underestimating carrying
o capacity under conditions of weak carrying capacity effect, with the reverse occurring

o under strong effects, except for the carrying capacity which is always underestimated (see
2 Appendix G, Figure 14). Neural network methods tend to underestimate the carrying

w  capacity effect. This phenomenon can be mitigated by the boosting strategies, especially

2 the Boost BT method, which achieved similar performance to the best case MLE estimates
o (see Figure 7).

130 Unlike GNN and LSTM, DNN cannot by itself reliably recover speciation and

= extinction rates from the summary statistics of the phylogenies, with its predictions mostly
# clustering around the mid-points of the parameter space (around the red dashed lines in

s the DNN panels in Figure 4, Figure 5 and Figure 6). The overall accuracy of the carrying
= capacities recovered by the DNN is also inferior compared to the other approaches (see the
s row named DNN in Appendix G, Figure 14).

a6 Among all ensemble learning strategies, boosting consistently outperformed both

= bagging and stacking in enhancing prediction accuracy compared to using neural networks
s independently, as can be seen, for instance, by the lower mean absolute prediction errors in
= Appendix G, Figure 14. Boosting strategies also exhibited better performance in recovering
w0 the true values of the carrying capacity effect (see Figure 7). The most effective neural

w1 network approaches overall matched or even surpassed the results of MLE while exhibiting
w10 bias, even on smaller phylogenies. Overall, sequential boosting of GNN results first with

«s  DNN and then with LSTM (Boost SS+BT) led to best performance in terms of prediction
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ws accuracy, except for estimating carrying capacity on large phylogenies with around 2000
«s nodes (see the row named Boost SS+BT in Appendix G, Figure 14 this strategy led to
«s overestimation on very large phylogenies). However, Boost SS+BT led to more

w7 overestimation on the true values of the carrying capacity effect, as compared to the

ws  strategy boosting the GNN results with only LSTM (Boost BT, see Figure 7).

119 Robustness Analysis

450 As a proxy for robustness of each method, we used the mean absolute errors of the
s parameters estimated from sets of phylogenies simulated under identical true parameters.
« Our analysis indicates that the robustness of the methods against phylogenetic

# heterogeneity (e.g., phylogenies of very different sizes, topologies and other characteristics)
= depends on the values of the underlying true parameters. We observed that the strength of
=5 the carrying capacity effect critically influences robustness. Generally, a weaker carrying

= capacity effect (associated to a smaller value of (A — p)/K) tends to diminish the

s robustness of both MLE and neural network methods across all parameters: speciation

= rate, extinction rate, and carrying capacity (as can be seen in Figure 8 and Appendix G,
s Figure 16 and Figure 15, by observing the increase of error along with the darkening

w0 background colors from light pink to dark blue).

w01 When the carrying capacity effect is weak, neural network methods typically exhibit
« greater robustness in estimating speciation and extinction rates compared to the best-case
«s MLE results (see Figure 8 and Appendix G, Figure 16). When the carrying capacity effect
w18 exceptionally strong, the best-case MLE results can outperform neural networks

ws particularly when estimating carrying capacity. Typical-case MLE results consistently

w show less robustness compared to all neural network methods.

467 A higher extinction rate generally decreases the robustness of all methods in

« estimating any parameter. A higher speciation rate enhances the robustness of carrying

w capacity estimates across all methods, although its impact on the robustness of speciation
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w0 and extinction rate estimates is not consistent. A higher carrying capacity generally

= decreases the robustness of all methods in estimating carrying capacity.

s Note that MLE typical-case results often contained more extreme estimations than
a3 best-case results, consequently, the exclusion of extreme values could lead to a wrong

w impression in the figures that when the carrying capacity effect is weak, the typical-case

#s  MLE is more robust than the best-case MLE. This is particularly prominent for the

ws  speciation rate. The exclusion of these extreme values is crucial, however, as they are rare
7 and their magnitude can obstruct meaningful interpretation and comparison.

a8 We find that DNN alone (estimating parameters from summary statistics) shows

a the worst robustness among all the methods and LSTM alone (estimating parameters from
w0 branching times) shows the greatest robustness overall. Among all the estimation methods,
# the MLE best-case achieved the greatest possible robustness in estimating the extinction
« rate and the carrying capacity while GNN alone (estimating parameters from phylogenies)
s achieved the greatest possible robustness in estimating the speciation rate. Among the

« neural network methods, GNN alone achieved the greatest possible robustness in

ws estimating the speciation rate and the carrying capacity while Boost BT (boosting GNN
w estimates with LSTM) achieved the the greatest possible robustness in estimating the

w extinction rate. See Figure 8 and Appendix G, Figure 15 and Figure 16 for details.

a8 Empirical Data

159 MLE estimates of carrying capacity are typically lower than those of the neural

w0 networks, especially in smaller phylogenies (Figure 9). However, as the size of the

w1 phylogenies increases, MLE estimates tend to converge towards those produced by neural
« networks. Similarly, MLE estimates of net diversification rate (computed as A — u) also
w3 align more closely with neural network estimates in larger phylogenies Figure 9.

404 MLE generally provides a broader range of estimates on all the parameters except

w5 for carrying capacity on small phylogenies. Neural networks provide a broader range of
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carrying capacity estimates on small phylogenies and less frequently produce zero or
near-zero estimates for extinction rates which we often observe for MLE. We also observed
that MLE sometimes produces extreme values (ranging from 10,000 to infinity) for
carrying capacity on empirical trees, see Figure 9 for the comparison between MLE and
neural networks on empirical tree parameter estimation.

Generally, neural network estimates of all the parameters under the DDD scenario
are close to the center (mean) of the distribution generated by the bootstrapping method.

See Figure 13 in Appendix F for details.
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Fig. 1. Illustration of the neural network architectures. From left to right, for each neural network, the inputs are
filtered through the layers, and the network ultimately outputs the final predictions of the parameters through the
readout layers. A: dense neural network (DNN), whose input data are summary statistics. The major component of
the DNN is a stack comprising five linear layers ("DNN stack"), each followed by a Batch Normalization for 1D
Inputs operator (BatchNorm1D, not shown in figure) and Gaussian Error Linear Units (GELU, the orange band
within the boxes). Learned features from all the linear layers within the stacks are collected and concatenated
("concat"). A single linear readout layer ("readout") outputs n predicted parameters ("pred"). B: long short-term
memory recurrent neural network (LSTM), whose input data are the branching times. The major component of the
LSTM is a stack of five LSTM recurrent neural network layers ("LSTM stack"). Learned features are processed by a
linear layer accompanied by a GELU ("linear"), then passed to a single linear readout layer ("readout") that
outputs n predicted parameters ("pred"). C: graph neural network (GNN), whose input data is a graph
representation of the phylogeny. GNN is assembled from five modules. Each module comprises the same number of
GraphSAGE (sample-and-aggregate graph convolutional neural network) operators. Each operator is accompanied
by a BatchNormld (not shown in the figure) operator and then a GELU activation function (illustrated by the
orange bands within the yellow boxes). Learned features from all the GraphSAGE operators within a module are
collected and concatenated. The differentiable pooling (DiffPool) technique is adopted to perform graph coarsening.
In the first coarsening operation, the graph data inputs are passed to two GNN modules ("GNN pooll" and "GNN
embedl"). The pooling group reduces the graph size, while the embedding group captures the node features. The
filtered data from each GraphSAGE operator are concatenated ("concatl") and then passed to a DiffPool layer
("diff-pooll"), which finalizes the first coarsening operation. The second coarsening operation is applied in the same
way as the first (as represented by "GNN pooll", "GNN embed2", "concat2"), and the outputs from the second
DiffPool layer ("diff-pool2") are passed to the final (fifth) GNN module ("GNN embed3"). After the final GNN
module, the outputs are concatenated ("concat3") and transformed by a global mean pooling operation (red ball
"M") to create a final graph representation. This graph representation is passed to a readout layer group ('readout’
as represented by light blue boxes) consisting of two linear layers to perform graph-level regression which ultimately
outputs a vector of n predicted parameters ("pred" as represented by a purple box). Only the first linear layer is
followed by GELU (see the orange band of the first linear layer). See Appendix C for the detailed description and
technical details.
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Fig. 2. Illustration of data transformation between a "phylo" object and its graph representation. The left panel
shows a visualization of a "phylo" object. The blue circle represents the root node, orange circles represent the
internal nodes and green circles represent the tip nodes. Arrows represent directed edges between each pair of the
nodes. The right panel shows the transformed graph data structure. The adjacency list is denoted as £. Each row of
the adjacency list represents one edge, the first column represents the starting node and the second column
represents the end node. Note that the adjacency list is transposed (in the example into £2*®) after converting to a
tensor. The node feature matrix is denoted as X. Each row of the node feature matrix represents the features
contained in one node, the first column represents the distance from the node to its direct ancestor node, the
second and the third columns represent the distances from the node to its two descendants. In the node feature
matrix, the distances from a node to non-existing nodes (e.g. the tip nodes have no descendants, and the root node
has no ancestor) are represented by zeros. The node and edge labels before the colons (including the colons) are
placed here for visual assistance. After transformation, we use graph-level attributes ) to store the parameters used
to generate the "phylo" object. The node labels are given by ni,n2,ns,...,ng, the edge labels are given by
e1,e2,es,...,es, the edge lengths are given by |ei1|, |e2], |es], . .., |es|. The generating parameters are given by a
vector [y1,¥2,-..,Yn] where n is the number of parameters
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Fig. 3. (Figure on previous page.) lllustration of the ensemble learning strategies to combine the graph neural
network (GNN), the dense neural network (DNN) and the long short-term memory recurrent neural network
(LSTM). The neural networks are largely simplified. With boosting, GNN, DNN and LSTM were trained
sequentially to iteratively correct residuals. For example, DNN is trained to predict the residuals of GNN
predictions. Subsequently, LSTM is trained to predict the residuals of the residuals after DNN corrected the GNN
predictions. The final prediction comes from the initial prediction by GNN minus two learned residual terms by
DNN and LSTM. With bagging, we trained GNN, DNN and LSTM independently, translated their original outputs
to parameter predictions and then aggregated the predictions. With stacking, we trained GNN, DNN and LSTM
simultaneously but without readout. We directly concatenated the outputs from GNN, DNN and LSTM and then
used a meta-learner to make predictions from the outputs. With bagging, we trained GNN, DNN and LSTM
independently ("GNN", "DNN" and "LSTM" blocks of boxes), translated their outputs to parameter predictions
through their own readout layers (three "readout" boxes next to the neural networks and three "pred" boxes next to
the readout layers) and then aggregated the predictions (red ball "A"). With stacking, we trained GNN, DNN and
LSTM simultaneously ("GNN", "DNN" and "LSTM" blocks of boxes) but without their own readout layers. We
combined the features from DNN, LSTM and GNN and fed to a meta-learner ("meta-learner") comprising linear
neural network layers to output parameter predictions. With boosting, there can be different pathways. In our
illustration, GNN, DNN and LSTM were trained sequentially to iteratively correct residuals. First, the GNN is
trained from the graphs to make the initial predictions (see "GNN", "readout" and then "pred0") and from predicted
and ground truth values of the parameters we computed the residuals ("res1")second, the DNN is trained to predict
these residuals from the summary statistics (see "DNN", "readout" and then "pred-resl"), learning to correct the
GNN’s errorslastly, the LSTM is trained to predict the residuals of the residuals (see "LSTM", "readout" and then
"pred-res2"), which is the initial predictions minus the predicted residuals by the DNN, from branching times, to
further improve the predictive accuracy. Finally, we subtracted the two residual terms from the initial predictions
(red ball "S") to make the corrected predictions. See Appendix D for a detailed explanation.
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Performance Analysis DDD against True Value of Speciation Rate
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Fig. 4. Prediction error of various methods applied to phylogenies simulated under a diversity-dependent
diversification scenario, against true values of the speciation rate. The errors shown (y-axis) are the differences
between the true parameters (x-axis) used to simulate the phylogenies and the values predicted or estimated by
each method. Each panel represents an estimation method. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes, refer to Appendix G,
Figure 17 for how the tree sizes are distributed. GNN: Predictions obtained by the graph neural network using the
phylogenies. DNN: Predictions by the dense neural network using summary statistics. LSTM: Predictions by the
long short-term memory recurrent neural network using branching times. Median: Bagging strategy that takes the
median value of the predictions from GNN, DNN, and LSTM. Stack: Stacking strategy that utilizes a meta-learner
to integrate results from GNN, DNN, and LSTM. Boost SS: Boosting strategy that corrects GNN results using
DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of
GNN errors first using DNN, followed by LSTM. Boost BT+SS: Sequential correction of GNN errors first using
LSTM, followed by DNN. MLE Typ: Maximum Likelihood Estimation results using a random starting point within
the parameter space of the training dataset for each parameter’s optimization. MLE Best: MLE results using the
true parameter values as the starting points for optimization. Red dashed lines in panels representing neural
network results indicate the mid-points of the parameter spaces (§ = ¢y where § denotes a estimated parameter and
y denotes the mid-point of the parameter space). Data points close to purple dotted lines (§ = 0) in MLE result
panels indicate near-zero estimates. Black two-dash lines indicate accurate estimates (§ = y where y denotes the
true parameter value). In the MLE result panels, small squares spreading along the x-axis signify optimization
failures. Due to significantly lower accuracy, other aggregation methods from the bagging strategy are not displayed
on the plot. A: Speciation rate.
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Performance Analysis DDD against True Value of Extinction Rate
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Fig. 5. Prediction error of various methods applied to phylogenies simulated under a diversity-dependent
diversification scenario, against true values of the extinction rate. The errors shown (y-axis) are the differences
between the true parameters (x-axis) used to simulate the phylogenies and the values predicted or estimated by
each method. Each panel represents an estimation method. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. GNN: Predictions
obtained by the graph neural network using the phylogenies. DNN: Predictions by the dense neural network using
summary statistics. LSTM: Predictions by the long short-term memory recurrent neural network using branching
times. Median: Bagging strategy that takes the median value of the predictions from GNN, DNN, and LSTM.
Stack: Stacking strategy that utilizes a meta-learner to integrate results from GNN, DNN, and LSTM. Boost SS:
Boosting strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results
using LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN; followed by LSTM. Boost
BT+SS: Sequential correction of GNN errors first using LSTM, followed by DNN. MLE Typ: Maximum Likelihood
Estimation results using a random starting point within the parameter space of the training dataset for each
parameter’s optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. Red dashed lines in panels representing neural network results indicate the mid-points of the
parameter spaces (§ = y where § denotes a estimated parameter and § denotes the mid-point of the parameter
space). Data points close to purple dotted lines (§ = 0) in MLE result panels indicate near-zero estimates. Black
two-dash lines indicate accurate estimates (§ = y where y denotes the true parameter value). In the MLE result
panels, small squares spreading along the x-axis signify optimization failures. Due to significantly lower accuracy,
other aggregation methods from the bagging strategy are not displayed on the plot. u: extinction rate.
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Performance Analysis DDD against True Value of Carrying Capacity
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Fig. 6. Prediction error of various methods applied to phylogenies simulated under a diversity-dependent
diversification scenario, against true values of the carrying capacity. The errors shown (y-axis) are the differences
between the true parameters (x-axis) used to simulate the phylogenies and the values predicted or estimated by
each method. Each panel represents an estimation method. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. GNN: Predictions
obtained by the graph neural network using the phylogenies. DNN: Predictions by the dense neural network using
summary statistics. LSTM: Predictions by the long short-term memory recurrent neural network using branching
times. Median: Bagging strategy that takes the median value of the predictions from GNN, DNN, and LSTM.
Stack: Stacking strategy that utilizes a meta-learner to integrate results from GNN, DNN, and LSTM. Boost SS:
Boosting strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results
using LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN; followed by LSTM. Boost
BT+SS: Sequential correction of GNN errors first using LSTM, followed by DNN. MLE Typ: Maximum Likelihood
Estimation results using a random starting point within the parameter space of the training dataset for each
parameter’s optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. Red dashed lines in panels representing neural network results indicate the mid-points of the
parameter spaces (§ = § where § denotes a estimated parameter and y denotes the mid-point of the parameter
space). Data points close to purple dotted lines (§ = 0) in MLE result panels indicate near-zero estimates. Black
two-dash lines indicate accurate estimates (§ = y where y denotes the true parameter value). In the MLE result
panels, small squares spreading along the x-axis signify optimization failures. Due to significantly lower accuracy,
other aggregation methods from the bagging strategy are not displayed on the plot. K: carrying capacity.
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Performance Analysis DDD against True Value of Carrying Capacity Effect Strength
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Fig. 7. Prediction error of estimated carrying capacity effect computed from estimated values of speciation rate,
extinction rate and carrying capacity using various methods applied to phylogenies simulated under a
diversity-dependent diversification scenario, plotted against the true carrying capacity effect computed from true
parameters. The errors shown (y-axis) are the differences between the values of true carrying capacity effect (x-axis)
used to simulate the phylogenies and the values predicted or estimated by each method. Each panel represents an
estimation method. Phylogenies are categorized based on their size: yellow for small phylogenies with fewer than
200 nodes (including root, internal, and tip nodes), green for medium-sized phylogenies with 200 to 500 nodes, and
blue for large phylogenies with more than 500 nodes. GNN: Predictions obtained by the graph neural network using
the phylogenies. DNN: Predictions by the dense neural network using summary statistics. LSTM: Predictions by
the long short-term memory recurrent neural network using branching times. Stack: Stacking strategy that utilizes
a meta-learner to integrate results from GNN, DNN, and LSTM. Boost SS: Boosting strategy that corrects GNN
results using DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential
correction of GNN errors first using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results
using random starting points for parameter optimization. MLE Best: MLE results using the true parameter values
as the starting points for optimization. Red dashed lines in panels representing neural network results indicate the
mid-points of the parameter spaces (§ = § where 9 denotes an estimated parameter and § denotes the mid-point of
the parameter space). Data points close to purple dotted lines (§ = 0) in MLE result panels indicate near-zero
estimates. Black two-dash lines indicate accurate estimates (§ = y where y denotes the true parameter value). In
the MLE result panels, small squares spreading along the x-axis signify optimization failures. The title of the figure
shows how the carrying capacity effect is computed, \: Speciation rate. p: extinction rate. K: carrying capacity.
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Fig. 8. (Figure on previous page.) The robustness (mean absolute error) of neural network and maximum likelihood
estimation was assessed for 80 sets of phylogenies, each containing 1000 trees randomly simulated under a
diversity-dependent diversification scenario, employing identical parameter settings but varying in size, topology,
and structure. The robustness results of the speciation rate, the extinction rate and the carrying capacity are
shown from top to bottom. For each panel group associated to a parameter, each panel contains the robustness of
different estimation methods (the MLE and neural networks) under a combination of parameters indicated by the
facet strip labels. Each facet column represents the robustness under a specific carrying capacity (K) setting used
in the simulation of the phylogenies. Each facet row represents a specific speciation rate (A). Each group of the bars
represents a specific extinction rate (u) as shown by the x-axis. The background color of a panel represents the
carrying capacity effect strength (calculated as (A — p)/K and visualized in "logl0" scale), from bottom-left to
top-right, the carrying capacity effect strength decreases. The color of a bar represents the associated estimation
method. Boosting BT: Graph neural network with long short-term memory recurrent neural network correcting its
residuals using branching times. Boosting SS + BT: Graph neural network with dense neural network and long
short-term memory recurrent neural network correcting residuals sequentially using summary statistics and
branching times. GNN: Graph neural network. MLE Best: Maximum likelihood estimation using true parameters as
the starting points. MLE Typ: Maximum likelihood estimation using a random value as the starting point of
optimization for each parameter. X-axis: Represents extinction rate (u) settings. Y-axis: Represents the mean
absolute error in a square-root transformed scale. Some bars are marked; for each parameter, the blue triangle
represents the greatest possible robustness achieved among all the estimation methods, the red triangle represents
the greatest possible robustness achieved among the neural network methods.
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Parameter Estimation on Empirical Trees (Diversity-Dependent Diversification Scenario), Neural Network against MLE

Net diversification rate (A - p) Speciation rate (A) Extinction rate () Carrying capacity (K)

3 1000

5 5 5 Size

MLE
MLE
MLE

3 [ 250

+ % H 3 50
Boosting BT Boosting BT Boosting BT Boosting BT

Fig. 9. Comparison of the estimations of Maximum Likelihood Estimation (MLE) and neural network methods
(specifically, Boosting BT, which refers to using graph neural network to make first predictions and then using a
long short-term memory recurrent neural network to correct for residuals) on empirical trees under a
diversity-dependent diversification scenario. Each panel, arranged from left to right, focuses on a specific parameter
being estimated. X-axis: Represents the estimated values of the neural network. Y-axis: Represents estimated the
values from MLE. A gray dashed line is included in each panel to indicate where the estimations from the neural
network and MLE are exactly the same. The color of the points varies from purple to blue, with the gradient
representing the size of the phylogenies measured by the total number of nodes (including root, internal, and tip
nodes).

Other Scenarios

Birth-Death Scenario Neural network methods outperformed MLE in accuracy,
particularly on smaller phylogenies, under the BD scenario in the simulated dataset (see
Appendix H, Figure 19 and Figure 18). Both MLE and neural network methods give less
accurate estimates on small phylogenies; this is more prominent for the MLE estimates.

On empirical phylogenies, similar to the DDD scenario, neural network methods
seldom produce zero-estimation of extinction rate, unlike MLE, which often gives zero or
near-zero estimation on extinction rate. Neural networks tend to give estimates within the
parameter space of the training dataset. They predict conservative speciation and
extinction rates yet are highly consistent with MLE estimation on the net diversification
rate, defined as the difference between speciation and extinction rates (A — u). The

consistency of prediction increases on larger empirical phylogenies. See Figure 10 for

details.
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Parameter Estimation on Empirical Trees (Birth-Death Scenario), Neural Network against MLE

Net diversification rate (A - p) Speciation rate (A) Extinction rate ()

Size

w w w 1000
-} - -}
= = =
500
1 . 1 4 1 . 200
. e
) []
o 4
. ¢
0 0 0f €
0 1 2 3 0 1 2 3 0 1 2 3
Boosting BT Boosting BT Boosting BT

Fig. 10. Comparing the estimations of Maximum Likelihood Estimation (MLE) and neural network methods
(specifically, Boosting BT, which refers to using graph neural network to make first predictions and then using long
short-term memory recurrent neural network to correct for residuals) on empirical trees under a birth-death
scenario. Each panel, arranged from left to right, focuses on a specific parameter being estimated. X-axis:
Represents the estimated values of the neural network. Y-axis: Represents estimated the values from MLE. A gray
dashed line is included in each panel to indicate where the estimations from the neural network and MLE are
exactly the same. The color of the points varies from purple to blue, with the gradient representing the size of the
phylogenies measured by the total number of nodes (including root, internal, and tip nodes).

Protracted Birth-Death Scenario Both maximum likelihood estimation (MLE) and
neural network methods did not perform well on estimating parameters under the PBD
scenario; MLE estimates were generally less accurate, but neural networks also failed to
predict the parameters as all the parameter estimates are close to the mid-points of
corresponding parameter spaces (Appendix I, Figure 20,). However, there are exceptions:
neural networks seem to perform better on the speciation rate of the incipient species (\3)
and on the mean duration of speciation (7) when the true value is between 0 and 2.

MLE estimates become significantly inaccurate as phylogenies become increasingly
small (Appendix I, Figure 21); it is also noticeable that MLE estimates of the speciation
completion rate (\y) are very inaccurate, especially when the phylogenies are large. A
general pattern is that both MLE and neural network methods achieve more accurate

estimates on phylogenies with higher true values of the mean duration of speciation

(Appendix I, Figure 22).
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530 DiscussioN
531 We have developed an ensemble learning based neural network approach that

s» matches and sometimes outperforms the accuracy and robustness of maximum likelihood
s estimation (MLE) for estimating phylogenetic tree parameters. Our approach leverages

s different classes of neural networks by learning from the phylogenies, their branching times
s and their summary statistics simultaneously.

536 When trained, our neural networks can compute estimates faster than MLE on

s larger phylogenies as computation time is less affected by increases in phylogeny size. We
s considered boosting strategies most effective in eliminating systematic prediction errors in
= neural network estimates. Among them, Boost BT (which corrects GNN results using

s0 LSTM) achieved overall best performance which is comparable to, or even surpassing, the
s best case MLE, in terms of accuracy and robustness. We observed that generally the

s performance of the typical MLE was second-worst (Boost BT+SS was worst).

s Interestingly, some phylogenies, such as small trees and those shaped by relatively weak
s effects, pose significant challenges to both MLE and neural network methods.

545 Previous neural network methods applied to phylogenies have experimented with
s various architectures such as convolutional neural networks (CNN), GNN, and LSTM

= (Lajaaiti et al., 2023; Lambert et al., 2023; Voznica et al., 2022). The deep learning

s architectures we employed differ from those used in prior studies, making direct

s comparisons challenging. Additionally, while previous research focused on birth-death

= (Lambert et al., 2023) and trait-state-dependent models (Lajaaiti et al., 2023), our

s approach is novel in its application to models such as diversity-dependent diversification
= (DDD) and protracted birth-death (PBD) from a neural network perspective. Despite

s these differences, our findings align with recent studies in underscoring the potential of

s« neural networks to infer diversification processes, offering a viable alternative to

s mathematically complex methods.
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556 Rethinking Neural Networks
557 Although performance was equal or better than MLE, the neural network approach

s 18 not without its shortcomings. The neural networks often defaulted to predicting values
s close to the mid-point of the true parameter space of the training dataset, indicating that
s they struggle to extract meaningful features from the dataset. This conservative prediction
s strategy minimizes overall error compared to random guessing. Examples can be found in
s» the GNN predictions of carrying capacity from simulated DDD trees, the DNN estimates
s of the speciation and extinction rates (Figure 4, Figure 5 and Figure 6, but see

s Appendix L for a detailed investigation of possible under-performance of DNN on the

s summary statistics) and most neural network predictions of PBD related parameters

s (Appendix I, Figure 20), especially for smaller phylogenies.

567 This behavior, while effective in reducing apparent error metrics, can skew our

s« understanding of a neural networks performance particularly when the focal parameter

s space is relatively narrow. Neural networks may consistently show smaller overall error

s compared to MLE, because the latter has no prior knowledge of the limits of the

sn  parameter space, which would lead to a false impression of better accuracy of the neural

s» networks. We therefore recommend performing case-specific residual analyses on the neural
s network predictions and the MLE estimates, which are often overlooked or over-simplified.
574 We propose two strategies to minimize the influence of possible under-representing
s training dataset. The first strategy is to estimate parameters using MLE (if possible) and
s then training neural networks with a dataset generated by true parameter values that

s» cover the MLE estimates, if the estimates seem reasonable. When MLE does not exist, or
=5 the estimates seem unrealistic, we can use the second strategy, that is, to train the neural
s networks and predict parameters on a relatively narrow training dataset, then retrain on a
=0 broader dataset generated from a parameter space with different means. We can examine if
s our predictions are subject to the range of the training dataset by observing whether the

s» prediction changes. Generally, we recommend to train the neural networks with as large a
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= dataset (sample size) and as broad a parameter space as possible.

554 Improving neural network predictions that are close to the mean is unlikely to be

s achieved by increasing the amount of training data: we did not observe major performance
s improvement when changing the size of the datasets (from 1,000 to 100,000 phylogenies

s» per dataset). Instead, one might consider increasing the complexity of the network

s architecture, such as increasing their depth or adapting the scale of the hidden nodes

s (Zhang et al., 2021), but note that this may require larger data.

590 Although potentially beneficial, increasing the depth can also harm predictive

s:  power. In particular for GNNs, increasing their depth may lead to "over-smoothing" and

s 'over-squashing'. Over-smoothing causes node features to become increasingly similar as
s more layers are added (Li et al., 2018), leading to a loss of distinct node embeddings across
s different clusters. Over-squashing involves the compression of expansive node information
s through bottleneck edges into a fixed-size vector, which is problematic in graphs with large
= diameters and long-range dependencies (Alon and Yahav, 2021), e.g.phylogenies. Both

7 issues degrade node representations and distort information flow, making deeper GNNs

= potentially less effective than shallower ones (Dwivedi et al., 2022). Moreover,

0 over-smoothing and over-squashing are intrinsically linked, creating a trade-off that cannot
w0 be easily resolved (Giraldo et al., 2023).

601 In our analyses, we observed that increasing the number of GraphSAGE layers

« beyond three in the differentiable pooling architecture destabilized the training process

«s and reduced the accuracy of estimates on validation datasets, introducing more outliers.

o«  We therefore opted to maintain two layers throughout our study. We explored newer

s algorithms designed to mitigate deep GNN issues (Chen et al., 2020; Gravina et al., 2022;
o Li et al., 2018), but found that these deeper architectures performed worse than our

«7 differentiable pooling approach with fewer layers. For DNN and LSTM, we also

o experimented with more complex architectures, different activation functions and various

oo hyper-parameter optimizations but failed to achieve better performance.
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610 Fundamental Problems with Phylogenies
611 The lack of improvement when changing the amount of training data or the

a2 network architecture suggests that the real challenges of estimating parameters might not
a3 lie in the architecture of the networks, but might instead be attributed to underlying weak
s Or absent phylogenetic signals. Whenever this is the case, we expect similarities in

as inaccuracies of both MLE and neural network approaches. This occurs, for example, for

s the carrying capacity when it is high and thus has a weak effect (measured by (A — p)/K).
a7 Here, the phylogeny is typically not near the carrying capacity, allowing the number of

e species to grow (almost) unbounded. This may result in carrying capacity estimates that
a0 are arbitrarily high, especially in the MLE methods. The PBD scenario is known to

o0 present difficulties in recovering parameters reliably with MLE (Etienne et al., 2014) and
e we find similar poor performance with neural networks. A second case where accurate

o2 parameter estimation is complicated occurs when extinction processes erase critical

o information (Louca and Pennell, 2021), as observed in the decline of estimation robustness
o associated with increasing extinction rate.

625 More generally, small phylogenies tend to contain less information than large ones.
e In our results we see that estimation accuracy and robustness decline with decreasing size
o of the phylogenies. This trend is observed across both MLE and neural network methods.
o In the BD and PBD scenarios, where datasets have greater variability in phylogeny sizes,
o0 poor estimations for small trees could be explained by both low information content, or

s under-representation of such trees. To account for the potential effects of under- and

e over-representation of phylogenies of different sizes in our datasets, we conducted a

s supplementary study to explore whether the patterns we observed persist in a dataset with
s a re-balanced distribution of phylogeny sizes (see Appendix J, Figure 24). This shows the
s same patterns and they are therefore unlikely to be a result of under- or

s  over-representation of different phylogeny sizes, and instead reflect low information content

e of small trees (compare Figure 18 and Figure 24).
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637 Low information content for specific parameters is expected to be more likely as the
s complexity of the underlying diversification models increases (see the results of BD in

e Appendix H, the results of DDD and the results of PBD in Appendix I, from BD to DDD
a0 to PBD, the complexity increases). This difficulty may stem from the increasingly complex
« and substantial signals that the phylogenies are required to convey, which may not be fully
e« captured in the stochastically generated data. When applying these methods to empirical
«s phylogenies, there is a noticeable decline in the agreement between MLE and neural

s network estimates from the BD scenario to the DDD scenario.

615 Confronting the Empirical Phylogenies

646 The processes of evolution within natural systems are often unknown. Determining
o7 the "true parameters" of an empirical phylogeny is challenging, even when they meet

«s theoretical assumptions, making it difficult to evaluate which tool provides more accurate
w0 estimates. Therefore, choosing the right tool is crucial.

650 With neural networks, it is possible that the true parameter value is not part of the
e assumed parameter range for simulating the training data. In such cases, neural network
s accuracy decreases notably, as shown in a supplementary study (explained in

s Appendix K). We also noticed that when comparing the estimates of MLE and neural

s network methods on the empirical phylogenies (see Figure 9, Figure 10), MLE estimates

s spread wider than the neural networks (e.g. our BD training dataset comprises phylogenies
s simulated using speciation rate between 0 and 0.8 and extinction rate between 0 and 0.72,
&7 our neural networks never predict speciation rate larger than 0.8 or extinction rate larger
s than 0.72; see Figure 10, similar results can be found under the DDD scenario in Figure 9).
s Expanding the training dataset’s parameter space can resolve the generalization issue (we
s expanded our training datasets several times in the experiments), but this approach

e Tequires significantly more computational resources for both simulation and training of the

s neural networks.
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663 Our supplementary study (explained in Appendix K) also reveals that neural

e networks tend to provide more accurate estimates of speciation and extinction rates from
«s complete phylogenies than from extant ones under the BD scenario. This increase in

e accuracy was not observed in the DDD scenario. While complete phylogenies offer a

o broader picture and more contextual information, obtaining them is challenging because it
s 1S nearly impossible to account for all extinct species.

669 Our analyses indicate that GNN is more robust but more prone to systematic errors
s (GNN achieved the greatest possible robustness in estimating the speciation rate and

e carrying capacity among neural network methods). We show that using GNN as a base

e and other neural networks like LSTM to enhance GNN might effectively combine the

e advantages of different methods and information sources, thus strengthening overall

e generalization ability. Our boosting methods (e.g. Boost BT) perform the best in this

o5 context.

676 In conclusion, when applied with caution, neural network methods can be applied
ez to other diversification scenarios where MLE is absent or non-tractable, as our

e best-performing neural network method showed comparable or even better performance to
oo the best-case MLE. Our neural networks particularly perform better than MLE in terms of
e accuracy and robustness on small phylogenies and can be significantly faster when

e estimating very large phylogenies. Thus, if properly trained, neural network methods may

e substitute for or at least cross-reference with MLE estimates where they exist.
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846 APPENDIX

a7 A. DATA TRANSFORMATION PROTOCOL

sa8 Protocol Transforming Phylogenies for Graph Neural Network

849 Phylogenetic trees are usually stored in the "phylo" data format in R. This data

=0 format is not directly compatible with GNN implementations. To facilitate graph

s convolutional operations, we transformed phylogeny from a "phylo" object into three major
s components: adjacency list, node feature matrix and graph attributes (see Figure 2). The
s adjacency list contains information on the connectivity between nodes and tips, the node
= feature matrix contains distances between nodes and tips, and the graph-level attributes

s include the true initial values to generate the phylogenies. These components are stored in
= separate tensors. In machine learning, a tensor is a mathematical object that generalizes

&7 scalars, vectors, and matrices to higher dimensions, allowing complex operations to be

s performed efficiently on multi-dimensional arrays.

859 Adjacency List In the context of a phylogenetic tree, tip nodes usually represent
s0 taxonomic units such as species, while root nodes and internal nodes represent the points
s where two taxonomic units depart from each other. An edge in a phylogenetic tree

s represents the connection between two nodes, and as such describes the evolutionary

s relatedness between taxa. Each root node, internal node and tip node in an R "phylo"

= ODbject is indexed sequentially, each edge is also sequentially indexed independently of node
s indices. The sub-list "edge" of a "phylo" object contains the adjacency list of a phylogenetic
s tree which describes the relationships between nodes. Each row of the adjacency list

s represents an edge, the first column contains the index (or numbering) of the ancestor

s« node, and the second column contains the index of the descendant node.

869 This data structure effectively captures the tree’s branching pattern, showing how
so each taxon (or node) is connected to others. The adjacency list in "phylo" object uses a

en ' 1-based" indexing in R, we therefore element-wise deduct 1 from the list to convert it into
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e '0O-based" indexing which is compatible with the python environment.

&73 We output the converted adjacency list within the "phylo" object as the adjacency
e list £ of the graph representation, in PyTorch Geometric, which is conventionally named as
o 'data.edge index'. We store £ as a "torch.long" long integer type tensor and transpose it
7w such that it has shape [2, num__edges|, where "num__edges' is the number of edges in the
ez 'phylo" object. This tensor has two dimensions. This way, the connections between nodes
s in the transformed graph are all single-directional, from the ancestor nodes to their

sn  descendants (if any). Training the GNN with graphs of non-directed edges gives no

=0 performance advantage, according to our tests in phylogenetic tree parameter estimation
s tasks. Single-directional data structure can save GPU memory and reduce the computation

882 Complexity.

883 Node Feature Matriz In a "phylo" object in R, the "edge.length" sub-list defines the
= lengths of the edges in the phylogenetic tree. In a phylogenetic context, these lengths often
= correspond to evolutionary distances, time, or genetic change. "edge.length" is a numeric

= vector where each element corresponds to the length of the edge as defined in the

s adjacency list. The order of lengths in the "edge.length" vector aligns with the order of

s edges in the adjacency list.

889 For each tree, we aggregate information contained in "edge.length" to a node feature
w0 matrix. Each row of the matrix represents features contained in a node. The first column
=1 contains the edge length from a node to its direct ancestor node, the second and the third
s columns contain the edge lengths from a node to its two daughter nodes. We pad the row
s Of the root node with an 0 in the first column as it has no ancestor. We also pad the rows of
s« the tip nodes with two Os in the second and the third columns as they have no descendants.
»s Lhe row order of feature matrix aligns with the order of edges in the adjacency list.

896 We output the node feature matrix of each tree as the node feature matrix X of the
s7 graph representation, in PyTorch Geometric, this is conventionally named as "data.x". We

0 store X' as a "torch.float" floating point type tensor, it has shape


https://doi.org/10.1101/2024.08.02.606350
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.606350; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

REFERENCES 49

s [num_nodes,num_node__features], where '"num_ nodes" is the number of nodes

w0 (including tip nodes) in the "phylo" object and '"num_ node_features" in our case is 3, i.e.
o the phylogenetic distances from a node to its ancestor (if any) and two descendants (if

o« any). This tensor has two dimensions. We do not store the phylogenetic distance

«s information in edge features because GCN operators will eventually pass and aggregate the
« edge features into each of the node. Our data structure is simpler and so is the GNN

w5 architecture.

%06 Graph-Level Attributes as Training Targets We store all the parameters used to

o simulate a tree (ground truth values) in the graph-level attributes ). These can have

ws arbitrary length, which should be consistent with the number of the parameters to be

o estimated (the three diversification scenarios, BD, DDD and PBD, have different number
a0 of parameters). We store graph-level attributes as a "torch.float" floating point type tensor
a1 with length of the number of parameters we want to predict for each type of the

a2 phylogenetic tree. In PyTorch Geometric, graph-level attributes can be named as "data.y".
a3 The graph-level attributes are used as training targets to compute loss (see Appendix B for

o« the definition of loss).

o15 Protocol Transforming Summary Statistics for Dense Neural Network

016 The summary statistics of a phylogeny are represented by a 1D vector, so the

a7 protocol for DNN is straightforward: we convert the vector into a tensor containing

as floating type data, with the shape [num_ stats], where "num_ stats" denotes the total

ae  number of statistics. This tensor has only one dimension. This conversion guarantees that
o each tensor is associated with its respective tree, with all contained statistics maintaining
o their original order. Within the PyTorch Geometric framework, these statistics are

o encapsulated as "data.stats" for each tree. When using DNN alone to estimate parameters

o from the summary statistics, the ground truth values of the parameters of the trees are
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o stored in the same way as the graph-level attributes, as model training targets. When
o using DNN with other neural networks (e.g. in stacking and boosting strategies), they

o share the same ground truth values which are the graph-level attributes.

027 Protocol Transforming Branching Times for Recurrent Neural Network

o8 To address the varying lengths in branching times across different phylogenetic

o trees, we standardize these sequences by padding them to match the length of the longest
a0 branching time sequence. This is achieved by appending zeros to the shorter sequences

o until they match the predefined maximum length. The padded sequences are stored in

« tensors containing floating type data. As the original branching times do not contain zero
o values, this padding strategy allows us to distinguish between original data and padding.
o« Consequently, we can pass masks of the sequences to the LSTM, which indicates the

s positions of the paddings, making LSTM concentrate only on the informative portions of
s the sequences, thereby optimizing its performance. When using LSTM alone to estimate
o7 parameters from the branching times, the ground truth values of the parameters of the

as  trees are stored in the same way as the graph-level attributes, as model training targets.
s When using LSTM with other neural networks (e.g. in stacking and boosting strategies),

w0 they share the same ground truth values which are the graph-level attributes.
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o B. TorAL Loss
02 Total loss comprises three key components: Huber loss, link prediction loss and

ws entropy of regularization. Huber loss was used for optimizing regression accuracy while the
«e  remaining components focused on alleviating a possible issue where GNN can be hard to
ws train, if incorporating the differentiable pooling method (Ying et al., 2018).

ods The Huber loss (Huber, 1992) for vectors y and g, each with n elements, computed

w7 as the average loss across all elements, is given by:

7 n = | 0(lyi — G| — 30) otherwise, '

018 where y is the true value vector comprising the ground truth parameters used for
w simulating a phylogenetic tree, ¥ is the predicted value vector comprising the parameter
w0 predictions, y; and §; are the i-th elements of y and ¥ respectively, n is the number of
s elements in the vectors y and § and ¢ is the threshold parameter that defines the

s transition from squared to linear loss (here loss refers to the difference between ground
s truth and predicted values). In our research, we set § = 0.8 for all the training sessions,

s making the neural networks more sensitive to smaller errors and more robust to outliers .

055 The total loss L is given by
L=Ls(y,9)+ Lip + Lg, (B.2)
056 where Lpp is the link prediction loss and Lg is the entropy of regularization, see

s Ying et al. (2018) for their definitions.


https://doi.org/10.1101/2024.08.02.606350
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.606350; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

52 REFERENCES
oss C. NEURAL NETWORK ARCHITECTURE
050 For the graph neural network, we used GraphSAGE (Hamilton et al., 2017), a

w sample-and-aggregate graph convolutional neural network, to capture a graph-level

s« representation. GraphSAGE has achieved strong performance of learning from large

o« graphs. We use graph neural network (GNN) to refer to the graph neural network

ws approach which incorporates GraphSAGE.

904 GNN is mainly assembled from five GNN modules (see Figure 1-C for five blocks of
o« boxes in yellow and orange colors). Each module comprises the same number of

s GraphSAGE operators (Hamilton et al., 2017), where the number of layers (GraphSAGE
o« Operators, as illustrated by the number of combined boxes within each GNN modules in
ws Figure 1-C) Np =1,2,...,6. Each GNN operator is accompanied by a Batch

o« Normalization for 1D Inputs (BatchNormld, not shown in Figure 1) operator (Ioffe and
o Szegedy, 2015) and then a Gaussian Error Linear Units (GELU, as illustrated by the
onorange bands within the yellow boxes in Figure 1-C) activation function (Hendrycks and
o Gimpel, 2016). The GraphSAGE operators facilitate the convolution operation over

oz graphs, capturing both local node features and their neighborhood information. The

o BatchNormld operator is commonly employed in neural networks to stabilize and

o5 accelerate the training process. The GELU activation layer is used for introducing

o non-linearity into the data. Learned features from all the GraphSAGE operators within a
oz module are collected and concatenated. Larger N, will result in the GNN modules to

os  aggregate information into each node from its more distantly connected neighbors.

oo According to our experiments, the optimal case is N, = 2, all figures and results relating
w to GNN were reported on the optimal case.

081 The graph-learning process also involves graph coarsening operations. We

« incorporated the differentiable pooling (DiffPool hereafter) technique to better learn

«s hierarchical representations of the graphs. DiffPool can aggregate graph nodes into clusters

« after each operation. It facilitates graph coarsening and captures intricate hierarchical
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o  structure, which makes it particularly suitable for graph-level tasks (Ying et al., 2018). In
ws the first coarsening operation, the graph data inputs are passed to two GNN modules

o (pooling and embedding, see Figure 1-C for the blocks marked as "GNN pooll" and "GNN
o embedl"). The pooling group reduces the graph size, while the embedding group captures
w the node features. The filtered data from each GraphSAGE operator are concatenated (see
w0 Figure 1-C for the blocks of boxes marked as "concatl") then passed to a DiffPool layer

o« (see Figure 1-C for the red box marked as "diff-pooll"), which finalizes the first coarsening
« operation. The second coarsening operation is applied in the same way as the first (as

o« represented by "GNN pooll", "GNN embed2', "concat2" in Figure 1-C), and the outputs

o« from the second DiffPool layer ("diff-pool2" in Figure 1-C) are passed to the final (fifth)

o GNN module ("GNN embed3" in Figure 1-C). The nodes in a graph are dynamically

ws clustered and reduced after each coarsening operation. The coarsening ratio at each

w7 Operation is determined by a pre-set DiffPool pooling ratio. Let Neoarsenea represent the

w number of nodes in the coarsened graph and Nyyigina the number of nodes in the original
o graph. The DiffPool pooling ratio pper is given by ppool = ]\]fvj‘i“‘;ld Throughout the study,
o we used a manually optimized value ppoor = 0.25. This is a manually optimized

wn hyper-parameter.

1002 After the final GNN module, the outputs are concatenated ("concat3" in

ws  Figure 1-C) and transformed by a global mean pooling operation (red ball "M" in

wa  Figure 1-C) to create a final graph representation. This graph representation is passed to a
ws  readout layer group ('readout" as represented by light blue boxes in Figure 1-C) consisting
ws  Of two linear layers to perform graph-level regression which ultimately outputs a vector of
w7 predicted parameters ("pred" as represented by a purple box in Figure 1-C). Only the

we  first linear layer is followed by GELU (see the orange band of the first linear layer). All the
woe linear layers incorporate dropout operations with a pre-set dropout ratio to prevent

wo over-fitting and to utilize as many neuron connections as possible. Let pgropout Tepresent

o the probability p of disabling a connection between an input node and a hidden node of a
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w2 linear layer in each epoch. The dropout ratio pgropout is simply given by paropous = P-

w3 Throughout the study, we used a commonly picked value pgropous = 0.5. This is a manually
v Optimized hyper-parameter.

1015 DNN’s major component is a stack comprises 5 linear layers ("DNN stack" in

e Figure 1-A), each followed by a BatchNorm1D (not shown in figure) and a GELU (the

wrr - orange band within the boxes). All the linear layers within the stack incorporate dropout
ws  operations with paropous = 0.5. Learned features from all the linear layers within the stacks
e are collected and concatenated ("concat" in Figure 1-A). A single linear readout layer

wo ('readout" in Figure 1-A) outputs n predicted parameters ("pred" in Figure 1-A).

wa  According to our experiments, stacking more linear layers gives no substantial

> improvement to the performance.

1023 LSTM’s major component is a stack of 5 LSTM recurrent neural network layers

we  ("LSTM stack" in Figure 1-B). The final hidden state from the last recurrent neural

s network layer is processed by a linear layer with pgropous = 0.5 accompanied by a GELU
ws ("linear" in Figure 1-B), then passed to a single linear readout layer ('readout’ in

wr  Figure 1-B) that outputs n predicted parameters ("pred" in Figure 1-B). According to our
ws  experiments, stacking more recurrent neural network layers provides no substantial

we improvement to the performance.

1030 The hyper-parameters not mentioned are set by their default values. The

wn  dimensions of the boxes do not map to any hyper-parameter settings, they are set for the
w2 best visual effect. The values below the boxes indicate their respective number of hidden
s neurons, their input and output neurons are not shown in the figure, they can be found in

wa  the configuration files in our GitHub repository "eveGNN" (Qin, 2023).
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1035 D. ENSEMBLE LEARNING
103 With bagging, we trained GNN, DNN and LSTM independently ("GNN", "DNN'

wrand "LSTM" blocks of boxes in Figure 3-Bagging), translated their outputs to parameter
ws  predictions through their own readout layers (three "readout" boxes next to the neural

we  networks and three "pred" boxes next to the readout layers in Figure 3-Bagging) and then
w0 aggregated the predictions (red ball "A" in Figure 3-Bagging). We experimented with four
wn  aggregation methods: taking the mean, median, max and min values among the three

e predictions. We also recorded the individual predictions without aggregation.

1043 With stacking, we trained GNN, DNN and LSTM simultaneously ("GNN", "DNN'
wa  and "LSTM" blocks of boxes in Figure 3-Stacking) but without their own readout layers.
s We combined the features from DNN, the LSTM’s final hidden state, and GNN’s graph
we  Tepresentation and fed to a meta-learner ("meta-learner" in Figure 3-Stacking) comprising
we  linear neural network layers that learns to best readout parameter predictions from these
ws  combined outputs.

1040 With boosting, there can be different pathways. In our illustration, GNN, DNN and
wo  LSTM were trained sequentially to iteratively correct residuals. For example, firstly, the
wi GNN ("GNN" in Figure 3-Boosting) is trained from the graphs to make the initial

w2 predictions ("readout" and then "pred0" in Figure 3-Boosting) and from predicted and

w3 ground truth values of the parameters we computed the residuals ("resl" in

e Figure 3-Boosting)secondly, the DNN ("DNN" in Figure 3-Boosting) is trained to predict
wss  these residuals from the summary statistics ("readout"” and then "pred-resl" in

e Figure 3-Boosting), learning to correct the GNN’s errorslastly, the LSTM ("LSTM" in

wr  Figure 3-Boosting) is trained to predict the residuals of the residuals ("readout’ and then
ws 'pred-res2’ in Figure 3-Boosting), which is the initial predictions minus the predicted

we Tresiduals by the DNN, from branching times, to further improve the predictive accuracy.
wo Finally, we subtracted the two residual terms from the initial predictions (red ball "S" in

s Figure 3-Boosting) to make the corrected predictions.
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1062 E. COMPARISON BETWEEN MLE OPTIMIZERS
1063 On the phylogenies from the diversity-dependent diversification (DDD) dataset, we

we compared between three approaches: "Simplex", "Subplex" and "DEoptim". Simplex is a
wes  derivative-free optimization method that uses a simplex of solutions to iteratively explore
ws and adjust within the parameter space, suitable for non-smooth objective functions but

wsr  potentially slow for high-dimensional problems (Morgan and Deming, 1974). Subplex is an
wes enhancement of the Simplex method, Subplex breaks high-dimensional optimization into
we Smaller subproblems, each optimized using Simplex techniques, providing improved

wo  efficiency and effectiveness in complex parameter landscapes (Rowan, 1990). DEoptim

o (Differential Evolution) is a more recent population-based algorithm that applies

w2 evolutionary strategies such as mutation, crossover, and selection to efficiently navigate

ws and optimize multimodal and complex objective functions (Ardia et al., 2010).

1074 All three MLE methods encountered consistent optimization challenges, likely due
ws  to numerical issues related to machine precision limits or unexpected negative values during
ws  matrix operations. From a random sample of 2000 DDD phylogenies, the completion rates
w7 for each method were as follows: Simplex achieved 1966 completions from true parameter
ws  starts and 1910 from random starts; Subplex completed 1681 from true starts and 1612

we  from random starts; DEoptim finished 1122 from true starts and 999 from random starts.
wo It is more difficult to estimate parameters from random starts, comparing to true starts.
1081 For all the three optimization approaches, -1 will be returned as a parameter

v estimation if the likelihood becomes too small in the searching process. This means that
wes  the algorithm cannot find optima given the initial starting point of the parameters. It is
wee highly possible that the unfinished estimations consisted of inaccurate or even -1 values.
wss ' The comparison between MLE optimizers can be skewed due to less completion rate of the
ws  Subplex and DEoptim results.

1087 In instances where optimization starting points were randomly set, a significant

wes  number of outcomes were trapped at local optima, failing to achieve global optima and
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wso  Often leading to inaccurate parameter estimates. This issue was less prevalent when

wo Starting points were the true parameters. For visual reference, see Figure 11 and Figure 12.
we  Notably, in DEoptim’s best-case scenarios, estimation accuracy deteriorated significantly
we on larger phylogenies, as shown in the last row of Figure 12.

1003 In the best cases, all the MLE optimizers are more likely to give accurate

we estimations on larger phylogenies while in the typical cases, larger phylogenies become a
ws  burden. Nevertheless, the MLE optimizers generally perform better on larger trees. All the
ws  MLE results showed similar trends of bias. We calculated the strength of the carrying

wr  capacity effect using the formula (A — p)/ K, where A represents the true speciation rate, p
we the true extinction rate, and K the true carrying capacity. Phylogenies exhibiting a

wo stronger carrying capacity effect typically link to more accurate estimates.

1100 In the best-case scenarios, all MLE methods tended to yield more accurate

un  estimates on larger phylogenies, while in typical cases, larger phylogenies posed challenges.
ue  However, all MLE methods generally performed better with larger trees, and all displayed
us  similar trends of bias. We calculated the strength of the carrying capacity effect with the
we  formula (A — p)/K, where X is the true speciation rate, p is the true extinction rate, and
us K is the true carrying capacity.

1106 Subplex was the fastest among the tested algorithms, Simplex and DEoptim were
uwr - slower. Simplex, although slower, completed the most computations and did not show a

us  definitive performance disadvantage compared to Subplex or DEoptim. For this reason, in
ue all comparisons between MLE and neural network methods, we consistently used results

o from the Simplex optimizer due to data coverage and reliability.
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MLE Optimzer Performance against True Value (DDD)
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Fig. 11. Error of maximum likelihood estimation using Simplex, Subplex and DEoptim optimzers applied to
phylogenies simulated under a diversity-dependent diversification scenario, against true values. For each optimzer
there were two cases. The typical case (Typ) refers to using the true parameter values as the starting points for the
searching process; the best case (Best) refers to using randomly sampled values from the true parameter space as
the starting points. The errors shown (y-axis) are the differences between the true parameters (x-axis) used to
simulate the phylogenies and the values estimated by each method. Each row represents a method, and each
column corresponds to the results for one specific parameter. Phylogenies are categorized based on their size: yellow
for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized
phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. Data points close to
purple dotted lines (§ = 0) in MLE result panels indicate near-zero estimates. Black two-dash lines indicate
accurate estimates (§ = y where y denotes the true parameter value). Small squares spreading along the x-axis
signify optimization failures. Extremely deviating estimates are not shown in the figure. A: Speciation rate. u:

extinction rate. K: carrying capacity.
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MLE Optimzer Performance against Phylogeny Size (DDD)
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Fig. 12. Error of maximum likelihood estimation using Simplex, Subplex and DEoptim optimzers applied to
phylogenies simulated under a diversity-dependent diversification scenario, against the total number of nodes

(including root, internal, and tip nodes) in the phylogenies. For each optimzer there were two cases. The typical
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(A-p) /K
F 0.1353352832

0.0067379470

I 0.0003354626

case (Typ) refers to using the true parameter values as the starting points for the searching process; the best case

(Best) refers to using randomly sampled values from the true parameter space as the starting points. The errors

shown (y-axis) are the differences between the true parameters used to simulate the phylogenies and the values
estimated by each method. Each row represents a method, and each column corresponds to the results for one
specific parameter. Phylogenies are categorized based on their size into three sectors within each panel, separated
by four vertical red dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes,
medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than 500 nodes. The values

shown in black within each sector are the mean absolute prediction errors of all data points in the sectors. Color

coding: The color of the data points illustrates the strength of the carrying capacity effect, calculated as (A — u)/K.

The color gradient transitions from red to purple, indicating increasing strength of the effect. This scale is
transformed using logl0 for clearer visual differentiation. Small squares spreading along the x-axis signify
optimization failures. Extremely deviating estimates are not shown in the figure. X-axis: Size of the phylogenies.

Y-axis: Error. A: Speciation rate. p: extinction rate. K: carrying capacity.
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11 F. ESTIMATION UNCERTAINTY FOR EMPIRICAL TREES
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Fig. 13. The neural network estimation uncertainty for a bird phylogeny (Furnariidae). The parameters are
estimated using a pre-trained neural network (Boost BT, boosting strategy that corrects GNN results using LSTM)
under a diversity-dependent diversification scenario. For reference, maximum likelihood estimation (MLE) is also
used to estimate the same parameters. Each panel shows one parameter’s estimates using neural network and MLE
methods with their uncertainties. The red dashed lines with red numbers indicate the estimates by the neural
network method. The blue dashed lines with blue numbers indicate the estimates by the MLE method. Each pink
area indicates the density distribution of a neural network estimate from 1000 bootstrap-simulated phylogenies,
showing the uncertainty of neural network. Each blue area indicates the density distribution of an MLE estimate
from the same set of simulated phylogenies, showing the uncertainty of MLE. X-axis: Parameter (Estimate) values.
Y-axis: Density. A: Speciation rate. pu: Extinction rate. K: Carrying capacity. A\ — u: Net speciation rate.

12 The rest of the figures of neural network estimation uncertainty on the empirical
ms  phylogenies under the DDD scenario can be found at

me https://github.com/EvoLandEco/eveGNN/tree/master/uncertainty
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18 (Caption on next page.)
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Fig. 14. (Figure on previous page.) The prediction error of various methods applied to phylogenies simulated under
a diversity-dependent diversification scenario, against the total number of nodes (including root, internal, and tip
nodes) in the phylogenies. The errors shown are the differences between the true parameters used to simulate the
phylogenies and the values predicted or estimated by each method. Each row represents a method, and each
column corresponds to the results for one specific parameter. Phylogenies are categorized based on their size into
three sectors within each panel, separated by four vertical red dashed lines. From left to right, the sectors are: small
phylogenies with fewer than 200 nodes, medium-sized phylogenies with 200 to 500 nodes, and large phylogenies
with more than 500 nodes. The values shown in black within each sector are the mean absolute prediction errors of
all data points in the sectors. Color coding: The color of the data points illustrates the strength of the carrying
capacity effect, calculated as (A — u)/K. The color gradient transitions from red to purple, indicating increasing
strength of the effect. This scale is transformed using log10 for clearer visual differentiation. GNN: Predictions
obtained by the graph neural network using the phylogenies transformed to graph format. DNN: Predictions by the
dense neural network using summary statistics. LSTM: Predictions by the long short-term memory recurrent neural
network using branching times. Median: Bagging strategy that takes the median value of the predictions from
GNN, DNN, and LSTM. Stack: Stacking strategy that utilizes a meta-learner to integrate results from GNN, DNN,
and LSTM. Boost SS: Boosting strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that
corrects GNN results using LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed
by LSTM. Boost BT+SS: Sequential correction of GNN errors first using LSTM, followed by DNN. MLE Typ:
Maximum Likelihood Estimation results using random starting points for parameter optimization. MLE Best: MLE
results using the true parameter values as the starting points for optimization. In the MLE result panels, small
squares spreading along the x-axis signify optimization failures. Due to significantly lower accuracy, other
aggregation methods from the bagging strategy are not displayed on the plot. X-axis: Size of the phylogenies.
Y-axis: Error. \: Speciation rate. u: Extinction rate. K: Carrying capacity.
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Fig. 15. Robustness comparison between graph neural network (GNN), dense neural network (DNN) and long
short-term memory recurrent neural network (LSTM) when operating independently. Same structure as the
previous figure.
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Fig. 16. (Figure on previous page.) The robustness of neural network and maximum likelihood estimation was
assessed on 80 sets of phylogenies, each containing 1000 trees randomly simulated under a diversity-dependent
diversification scenario, employing identical parameter settings but varied in size, topology, and structure. Each
segment delineated by dashed lines corresponds to distinct methods. Each column within a segment is associated
with a specific carrying capacity (K) used in the simulation of the phylogenies. Each row within a segment details
the mean absolute errors between the true and estimated values of a specific parameter, with parameter names
labeled on the left side of each row. GNN: Graph neural network. Boosting BT: Graph neural network with long
short-term memory recurrent neural network correcting its residuals using branching times. Boosting SS + BT:
Graph neural network with dense neural network and long short-term memory recurrent neural network correcting
residuals sequentially using summary statistics and branching times. Typical Case: Maximum likelihood estimation
using random initial parameter as the starting point. Best Case: Maximum likelihood estimation using true
parameter as the starting point. X-axis: Represents the true speciation rate (\) used to simulate phylogenies.
Y-axis: Represents the true extinction rate (i) used to simulate phylogenies. Cell Content: The numbers displayed
within each heatmap cell indicate the mean absolute error for a parameter, given the specific A\, 4 and K settings.
Color Coding: The background color of each cell illustrates the strength of the carrying capacity effect, calculated
as (A — p)/K. The color gradient transitions from red to purple, indicating increasing strength of the effect. This
scale is transformed using logl0 for clearer visual differentiation. Note that the numerical values within the cells are
not mapped to the background colors. For a detailed reference to the effect strength values corresponding to the
background colors, refer to the figure legends.
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Fig. 17. The density distribution of phylogeny sizes under the diversity-dependent diversification (DDD) scenario.
The colors of the areas under the density curve indicate the three categories used in our analyses. Yellow area:
Small-sized phylogenies with less than 200 nodes (approx. 100 tips). Greed area: Medium-sized phylogenies with
more than 200 nodes and less than 500 nodes (approx. 250 tips). Blue area: Large-sized phylogenies with more than
500 nodes.
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Fig. 18. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
birth-death scenario, against true values. The errors shown are the differences between the true parameters used to
simulate the phylogenies and the values predicted or estimated by each method. Each row represents a method, and
each column corresponds to the results for one specific parameter. Phylogenies are categorized based on their size:
yellow for small phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for
medium-sized phylogenies with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. GNN:
Predictions obtained by the graph neural network using the phylogenies. Boost SS: Boosting strategy that corrects
GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT:
Sequential correction of GNN errors first using DNN;, followed by LSTM. MLE Typ: Maximum Likelihood
Estimation results using random starting points for parameter optimization. MLE Best: MLE results using the true
parameter values as the starting points for optimization. Red dashed lines in panels representing neural network
results indicate the mid-points of the parameter spaces (§ = § where § denotes a estimated parameter and y
denotes the mid-point of the parameter space). Data points close to purple dotted lines (§ = 0) in MLE result
panels indicate near-zero estimates. Black two-dash lines indicate accurate estimates (§ = y where y denotes the
true parameter value). In the MLE result panels, small squares spreading along the x-axis signify optimization
failures. X-axis: True parameter values. Y-axis: Error, or difference between true and predicted values. A:
Speciation rate. p: Extinction rate.
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Fig. 19. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
birth-death scenario, against the total number of nodes in the phylogenies. The errors shown are the differences
between the true parameters used to simulate the phylogenies and the values predicted or estimated by each
method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Phylogenies are categorized based on their size into three sectors within each panel, separated by four vertical red
dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes (including root,
internal, and tip nodes), medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than
500 nodes. GNN: Predictions obtained by the graph neural network using the phylogenies. Boost SS: Boosting
strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results using
LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed by LSTM. MLE Typ:
Maximum Likelihood Estimation results using random starting points for parameter optimization. MLE Best: MLE
results using the true parameter values as the starting points for optimization. X-axis: Size of the phylogenies.
Y-axis: Error. A: Speciation rate. p: Extinction rate.
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Fig. 20. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
protracted birth-death scenario, against true values. The errors shown are the differences between the true
parameters used to simulate the phylogenies and the values predicted or estimated by each method. Each row
represents a method, and each column corresponds to the results for one specific parameter. Phylogenies are
categorized based on their size: yellow for small phylogenies with fewer than 200 nodes (including root, internal,
and tip nodes), green for medium-sized phylogenies with 200 to 500 nodes, and blue for large phylogenies with more
than 500 nodes. GNN: Predictions obtained by the graph neural network using the phylogenies. Boost SS: Boosting
strategy that corrects GNN results using DNN. Boost BT: Boosting strategy that corrects GNN results using
LSTM. Boost SS+BT: Sequential correction of GNN errors first using DNN, followed by LSTM. MLE Typ:
Maximum Likelihood Estimation results using random starting points for parameter optimization. MLE Best: MLE
results using the true parameter values as the starting points for optimization. Red dashed lines in panels
representing neural network results indicate the mid-points of the parameter spaces. Purple dotted lines in MLE
result panels signify where estimated values are 0. X-axis: True parameter values. Y-axis: Error, or difference
between true and predicted values. Ai: Speciation initiation rate of the good species. A2: Speciation completion
rate. A\3: Speciation initiation rate of the incipient species. pui1: Extinction rate of the good species. u2: Extinction
rate of the incipient species. 7: Expected duration of speciation.
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Fig. 21. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
protracted birth-death scenario, against the total number of nodes in the phylogenies. The errors shown are the
differences between the true parameters used to simulate the phylogenies and the values predicted or estimated by
each method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Phylogenies are categorized based on their size into three sectors within each panel, separated by four vertical red
dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes (including root,
internal, and tip nodes), medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than
500 nodes. Color Coding: The color of the data points illustrates the expected duration of speciation. The color
gradient transitions from light purple to dark blue, indicating increasing value of the duration. This scale is
transformed using square root for clearer visual differentiation. GNN: Predictions obtained by the graph neural
network using the phylogenies. Boost SS: Boosting strategy that corrects GNN results using DNN. Boost BT:
Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of GNN errors first
using DNN;, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results using random starting points
for parameter optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. X-axis: Size of the phylogenies. Y-axis: Error. A\i: Speciation initiation rate of the good species. A2:
Speciation completion rate. A3: Speciation initiation rate of the incipient species. pu1: Extinction rate of the good
species. u2: Extinction rate of the incipient species. 7: Expected duration of speciation.
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Fig. 22. The prediction error (absolute error) of various methods applied to phylogenies simulated under a
protracted birth-death scenario, against the true mean duration of speciation. The errors shown are the differences
between the true parameters used to simulate the phylogenies and the values predicted or estimated by each
method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Color Coding: The color of the data points illustrates the total number of nodes of the phylogenies. The color
gradient transitions from light purple to dark blue, indicating increasing value of the node number. This scale is
transformed using square root for clearer visual differentiation. GNN: Predictions obtained by the graph neural
network using the phylogenies. Boost SS: Boosting strategy that corrects GNN results using DNN. Boost BT:
Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of GNN errors first
using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results using random starting points
for parameter optimization. MLE Best: MLE results using the true parameter values as the starting points for
optimization. X-axis: Size of the phylogenies. Y-axis: Error. A\i: Speciation initiation rate of the good species. A2:
Speciation completion rate. Az: Speciation initiation rate of the incipient species. pu1: Extinction rate of the good
species. u2: Extinction rate of the incipient species. 7: Expected duration of speciation.


https://doi.org/10.1101/2024.08.02.606350
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.606350; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

REFERENCES 71

Correlation between the Mean Duration of Speciation and the Parameters
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Fig. 23. The correlation between the mean duration of speciation and the true parameter values under the
protracted birth-death diversification scenario. Phylogenies are categorized based on their size: yellow for small
phylogenies with fewer than 200 nodes (including root, internal, and tip nodes), green for medium-sized phylogenies
with 200 to 500 nodes, and blue for large phylogenies with more than 500 nodes. X-axis: Mean duration of
speciation. Y-axis: Tree size.
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1122 J. DATASET RE-BALANCING
1123 Birth-death processes without carrying capacity effect may have larger variance of

us  tree size than the DDD trees. A skew in the frequency of tree size across datasets may

s appear that leads to a non-representative sample.

1126 To address this issue, we re-balanced the BD dataset by creating 10 bins, each

wr designated to hold phylogenies within specific size ranges, spanning from 10 to 2000 nodes
ws  in increments of 200 nodes per bin (the first bin accepts phylogeny of sizes 10 to 200). We
s randomly simulated phylogenies using parameters sampled from the same space as the BD
un training dataset and allocated them to these bins according to their sizes, continuing this
usn process until each bin reached its target capacity of 10,000 phylogenies. This method leads
uz  to a more equal representation of phylogenies of each size range, reducing size-based

us  sampling bias. The filled bins were subsequently combined to form a re-balanced dataset,
ux  which in total has 100,000 phylogenies.

1135 To compare with the original BD dataset, we trained neural networks on the

s re-balanced dataset, and validated neural network performance on an additional testing
ue  dataset (10,000 phylogenies simulated using the same parameter space). We computed

uws  MLE estimates on 2,000 randomly sampled phylogenies from the testing dataset.
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Fig. 24. The prediction error (absolute error) of various methods applied to re-balanced phylogenies simulated
under a birth-death scenario, against the total number of nodes in the phylogenies. The errors shown are the
differences between the true parameters used to simulate the phylogenies and the values predicted or estimated by
each method. Each row represents a method, and each column corresponds to the results for one specific parameter.
Phylogenies are categorized based on their size into three sectors within each panel, separated by four vertical red
dashed lines. From left to right, the sectors are: small phylogenies with fewer than 200 nodes (including root,
internal, and tip nodes), medium-sized phylogenies with 200 to 500 nodes, and large phylogenies with more than
500 nodes. This scale is transformed using square root for clearer visual differentiation. GNN: Predictions obtained
by the graph neural network using the phylogenies. Boost SS: Boosting strategy that corrects GNN results using
DNN. Boost BT: Boosting strategy that corrects GNN results using LSTM. Boost SS+BT: Sequential correction of
GNN errors first using DNN, followed by LSTM. MLE Typ: Maximum Likelihood Estimation results using random
starting points for parameter optimization. MLE Best: MLE results using the true parameter values as the starting
points for optimization. X-axis: Size of the phylogenies. Y-axis: Error. A: Speciation rate. u: Extinction rate.
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1130 K. UNSEEN DATA AND COMPLETE PHYLOGENY
1140 We simulated additional datasets to explore the generalization ability of the neural

ua  networks when facing data with completely unseen true parameters, as well as to compare
ue  neural network performances between extant and complete phylogenies. Each simulated
s dataset was divided into in-sample and out-of-sample datasets. We used the in-sample

e datasets for training and testing and the out-of-sample datasets for evaluating the

us  generalization ability of the trained neural networks. Validating trained neural networks on
ws  the out-of-sample datasets can provide insights into whether their performances are

ue  tailored to the peculiarities of the already seen data and whether they are robust to new,
wes unseen phylogenies. For each tree we kept two versions: tree of all species (TAS) and tree
we  of extant species (TES). See Table 2 for the parameter settings of the additional datasets,
uso  see Table 3 for the criteria of in-sample and out-of-sample dataset separation. To conserve
us GPU memory, the parameter space for additional datasets was deliberately kept smaller,

u  given that the TAS dataset inherently contains far more information than the TES.
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A: Parameter settings for BD and DDD trees
Ao Ho K
a b a b a b

Type Age N

BD 10 60k 0.1 0.6 00 09\ - -
DDD 10 100k 0.1 3.0 0.0 0.9X%* 10 1000
B: Parameter settings for PBD trees
b, A by Ha 2

Type Age N
a b a b a b a b a b

100k 0.1 0.8 0.001 10 0.1 08 0.0 0.80; 0.0 0.8by

PBD 10

Table 2. List of simulated tree datasets. The type column specifies which function is used to generate the trees. The
age column specifies the crown age of the trees. The N column specifies the number of trees in the dataset. The rest
of the columns specify the lower (a) and the upper (b) bounds of the initial parameters for the tree simulations, all
the parameters are sampled from U(a, b) except for A1 of the protracted birth-death scenario. A1 is computed as

A1 = 10° where e is sampled from U(—3,1). U denotes uniform distribution. List A shows the parameter
distributions of the birth-death trees and the diversity-dependent-diversification trees, A: intrinsic speciation
rate/birth rate; p: intrinsic extinction rate/death rate; K: carrying capacity. List B shows the parameter
distributions of the protracted birth-death trees, A1: speciation-initiation rate of good species; Az:
speciation-completion rate; \3: speciation-initiation rate of incipient species; p1: extinction rate of good species; pso:
extinction rate of incipient species. *In diversity-dependent-diversification simulations, the maximum extinction
rate is capped at 1.5 if 0.9\ > 1.5.

Model Parameter Left Out In Sample Right Out
BD Ao [0.10,0.18) [0.18,0.52] (0.52,0.60]
BD Lo [0.00, 0.08) [0.08,0.46] (0.46, 0.54]
DDD ) [0.00,0.30) [0.30,2.70] (2.70, 3.00]
DDD  pyg [0.00,0.10) [0.10,0.80] (0.80,0.90]
DDD K [10, 100) [100, 900] (900, 1000]
PBD 0, [0.10,0.18) [0.18,0.72] (0.72,0.80]
PBD X\ [0.001,0.002) [0.002, 5] (5, 10]

PBD b [0.10,0.18) [0.18,0.72] (0.72,0.80]
PBD 1y [0.00, 0.06) [0.06,0.58] (0.58,0.64]
PBD  pus [0.00, 0.06) [0.06,0.58] (0.58,0.64]

Table 3. Criteria for in-sample and out-of-sample dataset separation. Trees generated from each model are
separated into left out-of-sample group, in-sample group and right out-of-sample group, based on the parameter
ranges. The Model column shows the model of a parameter; the Parameter column shows the corresponding
parameter; the Left Out column shows the criteria for the left out-of-sample group; the In Sample column shows
the criteria for the in-sample group; the Right Out column shows the criteria of the right out-of-sample group. A:
intrinsic speciation rate/birth rate; u: intrinsic extinction rate/death rate; K: carrying capacity. List B shows the
parameter distributions of the protracted birth-death trees, A1: speciation-initiation rate of good species; Aa:
speciation-completion rate; \3: speciation-initiation rate of incipient species; p1: extinction rate of good species; usa:
extinction rate of incipient species.
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Relative Difference by Models and Estimation Methods

Ao Ho
200% 600%
100% 300% 1
[a}
0%---*---*--- -
-300% 1
-100%
-600% 1
T-TAS T-TES MLE-TES V-TAS V-TES T-TAS T-TES MLE-TES V-TAS V-TES
Ao Ho K
200% 600%
400%
9
100% 400%
200%
8 0%--+-+- - - . 200%
o 0%4_.+-.+-é#=- - -
1009
100% 200% 4 0% _+_+_ - - -
-200% -400%
TTAS  T-TES MLE-TES V-TAS  V-TES T-TAS  T-TES MLE-TES V-TAS  V-TES TTAS  T-TES MLE-TES V-TAS  V-TES
by M b, M Mo
0
2000% 400%
200% 750%
1000%
o
1000% 200% oo
a 100% ’
o 0% 1 - - - 500%
0
ol i i i oo L _ _ _ 250%
N -1000%
0%+ - - - 0%+ - - -
-100% -2000% -200%
T-TES MLE-TES V-TES T-TES MLE-TES V-TES T-TES MLE-TES V-TES T-TES MLE-TES V-TES T-TES MLE-TES V-TES

Type ‘ Test E MLE non-optimal E MLE optimal ‘ Validation

Fig. 25. Comparisons of relative differences (in percentage) between ground true and estimated parameter values.
From top to bottom, the panels in each row present the relative differences of trees generated by a specific
diversification process. From left to right, the panels in each column present the relative differences of a specific
parameter used when simulating the trees. Within each panel, each box represents a specific method for parameter
estimation on a specific data set (as described in x-axis labels). Red boxes represent parameter estimation by using
only graph neural network (GNN) on the in-sample datasets (Test in figure), yellow boxes represent the
non-optimal maximum likelihood estimation (MLE) method on the complete datasets (direct outputs from
simulation, without any separation), green boxes represent the optimal MLE method on the complete datasets,
purple boxes represent parameter estimation by GNN on the out-of-sample datasets. BD - birth-death trees; DDD -
diversity-dependent-diversification trees; PBD - protracted birth-death trees. A - birth rate/intrinsic speciation
rate; u death rate/intrinsic extinction rate; K - carrying capacity; A1 - speciation rate of good species; A2 -
speciation-completion rate; As - speciation rate of incipient species; u1 - extinction rate of good species; s
extinction rate of incipient species. T-TAS - GNN parameter estimation on full trees (with extinct lineages) in the
in-sample data set; T-TES - GNN parameter estimation on extant trees (without extinct lineages) in the in-sample
dataset; MLE-TES - MLE parameter estimation on extant trees in the complete dataset; V-TAS - GNN parameter
estimation on full trees in the out-of-sample dataset; V-TES - GNN parameter estimation on extant trees in the
out-of-sample dataset.
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1153 L. LEARNING FROM SUMMARY STATISTICS
1154 To analyze the relationships between summary statistics and the true parameters

uss  used in the diversity-dependent diversification simulations, we computed Pearson
uss correlation indices for each summary statistic against the true values of the three
uss - parameters. The absolute values of the correlations are visualized as a heatmap, detailed in

1158 Figure 26.

Heatmap of Absolute Correlation Strengths
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Fig. 26. Heatmap of absolute correlation strengths between true parameters and summary statistics from simulated
trees under a diversity-dependent diversification scenario. Each column corresponds to a specific summary statistic,
while each row corresponds to a true parameter that was used to simulate the phylogenies. The true parameters are
denoted as follows: A for speciation rate, p for extinction rate, and K for carrying capacity. The color gradient,
ranging from dark purple to yellow, represents the increasing values of the absolute Pearson correlations between
the summary statistics and the true parameters, See Appendix N for the details of the statistics.

1150 The heatmap analysis reveals that a large number of summary statistics showed a
ueo high correlation with carrying capacity, whereas strong correlations with speciation and

ue  extinction rates are considerably less frequent. Generally, the correlation strength between
e the true parameters and extinction rate is markedly lower. These findings align with the
ues  observed performance of DNN, which generally yields good estimates for carrying capacity
uee  but is much less effective in accurately predicting speciation rates and particularly poor at
ues  estimating extinction rates.

1166 We further evaluated the DNN’s performance by benchmarking it against a range of

uer  non-neural-network regression techniques using the same summary statistics. These
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ue included multivariate linear regression, Ridge regression, Lasso regression, random forest
ue regression, and gradient boosting regression. Our findings indicated that while these

uo  traditional regression and machine learning methods generally outperformed the DNN,

un they still did not match the performance of our more complex neural networks.

e Traditional regression methods and other machine learning techniques often

us  outperform linear feed-forward neural networks in classical regression tasks. Such methods
uwa  can stabilize performance with less data compared to neural networks, which usually

urs  require large datasets to generalize effectively. In our study, the dataset size — consisting of
ue 100,000 entries across 54 statistics — may seem substantial, but it is still relatively modest
ur when tasked with regressing multiple parameters simultaneously.

178 Despite these findings, DNNs have shown efficacy in enhancing the performance of
un other neural networks, particularly through the prediction of residuals using summary

uso  statistics. DNN might not be the optimal choice for estimating parameters from summary

us  statistics alone, but they can be valuable in ensemble learning strategies.
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1182 M. META INFORMATION OF THE SELECTED EMPIRICAL TREES

Family Tree Ntip
Amphibia Caecilidae 31
Amphibia Hynobiidae 46
Amphibia Salamandridae 42
Amphibia Plethodontidae 278
Amphibia Pipidae 23
Amphibia Eleutherodactylidae 145
Amphibia Ranidae 218
Bird Tyrannidae 419
Bird Thraupidae 370
Bird Psittacidae 330
Bird Trochilidae 334
Bird Columbidae 306
Bird Furnariidae 302
Bird Muscicapidae 279
Bird Accipitridae 242
Bird Picidae 223
Bird Thamnophilidae 219
Bird Fringillidae 194
Bird Strigidae 191
Bird Turdidae 170
Bird Meliphagidae 177
Bird Phasianidae 176
Bird Emberizidae 163
Bird Anatidae 157
Bird Cisticolidae 142
Bird Pycnonotidae 124
Bird Rallidae 125
Bird Cuculidae 138
Bird Estrildidae 140
Bird Nectariniidae 127
Bird Leiothrichidae 127
Bird Corvidae 120
Bird Zosteropidae 120
Bird Sturnidae 109
Bird Parulidae 109
Bird Ploceidae 108
Bird Icteridae 102
Bird Apodidae 99
Bird Laridae 99
Bird Alaudidae 91

Bird Monarchidae 87
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Bird Scolopacidae 89
Bird Caprimulgidae 88
Bird Alcedinidae 91
Bird Campephagidae 80
Bird Procellariidae 81
Bird Hirundinidae 83
Bird Troglodytidae 79
Bird Phylloscopidae 71
Bird Ardeidae 61
Bird Pellorneidae 66
Bird Sylviidae 62
Bird Cardinalidae 68
Bird Charadriidae 64
Bird Falconidae 64
Bird Motacillidae 62
Bird Acanthizidae 63
Bird Cotingidae 65
Bird Vireonidae 58
Bird Acrocephalidae 52
Bird Bucerotidae 55
Bird Paridae 53
Bird Pachycephalidae 50
Bird Locustellidae 53
Bird Rhinocryptidae 53
Bird Timaliidae 55
Bird Cracidae 50
Bird Pipridae 52
Bird Grallariidae 49
Bird Malaconotidae 46
Bird Passeridae 48
Bird Rhipiduridae 42
Bird Dicaeidae 45
Bird Tinamidae 47
Bird Petroicidae 44
Bird Ramphastidae 35
Bird Tityridae 41
Bird Trogonidae 42
Bird Lybiidae 41
Bird Paradisaeidae 40
Bird Phalacrocoracidae 33
Bird Bucconidae 35
Bird Threskiornithidae 34
Bird Mimidae 34

Bird Odontophoridae 34
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Bird Oriolidae 30
Bird Laniidae 29
Bird Pittidae 31
Bird Platysteiridae 30
Bird Cettiidae 32
Bird Megalaimidae 28
Bird Maluridae 27
Bird Sittidae 24
Bird Meropidae 26
Bird Dicruridae 24
Bird Otididae 25
Bird Alcidae 23
Bird Hydrobatidae 22
Bird Musophagidae 23
Bird Megapodiidae 21
Bird Cacatuidae 21
Bird Diomedeidae 21
Bird Vangidae 21
CrocoTurtle Crocodylia 25
CrocoTurtle Testudines 233
Mammal Vespertilionidae 386
Mammal Soricidae 329
Mammal Sciuridae 276
Mammal Pteropodidae 174
Mammal Phyllostomidae 150
Mammal Bovidae 138
Mammal Cercopithecidae 127
Mammal Molossidae 98
Mammal Didelphidae 84
Mammal Hipposideridae 74
Mammal Rhinolophidae 73
Mammal Echimyidae 69
Mammal Dasyuridae 63
Mammal Mustelidae 59
Mammal Heteromyidae 58
Mammal Leporidae 58
Mammal Macropodidae 56
Mammal Nesomyidae 55
Mammal Ctenomyidae 51
Mammal Dipodidae 51
Mammal Emballonuridae 49
Mammal Cebidae 48
Mammal Cervidae 45

Mammal Felidae 40
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Mammal Talpidae 39
Mammal Geomyidae 38
Mammal Pitheciidae 37
Mammal Canidae 34
Mammal Delphinidae 34
Mammal Viverridae 34
Mammal Herpestidae 33
Mammal Spalacidae 31
Mammal Ochotonidae 28
Mammal Gliridae 27
Mammal Tenrecidae 25
Mammal Atelidae 24
Mammal Erinaceidae 22
Mammal Phalangeridae 22
Squamate Xantusiidae 26
Squamate Gerrhosauridae 28
Squamate Cordylidae 42
Squamate Varanidae 53
Squamate Chamaeleonidae 142
Squamate [guanidae 31
Squamate Phrynosomatidae 114
Squamate Pythonidae 26

Squamate Viperidae 209
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163 N. LiST OF SUMMARY STATISTICS
Summary Statistics

Gamma Area Per Pair (aPP)

Sackin Average Leaf Depth (aL.D)

Colless I Statistic

Aldous’ Beta Statistic ewColless

Blum Max Delta Width (maxDelW)

Crown Age Maximum of Depth

Tree Height Variance of Depth

Pigot’s Rho Maximum Width

Number of Lineages Rogers

nLLTT with Empty Tree Total Cophenetic Distance

Phylogenetic Diversity Symmetry Nodes

AvglLadder Index Mean of Pairwise Distance (mpd)

Cherries Variance of Pairwise Distance (vpd)

ILnumber Phylogenetic Species Variability (psv)

Pitchforks Mean Nearest Taxon Distance (mntd)

Stairs J Statistic of Entropy

Stairs2 Rquartet Index

Laplacian Spectrum Asymmetry Laplacian Spectrum Log Eigen

Laplacian Spectrum Peakedness Laplacian Spectrum Eigengap

Number of Nodes Wiener Index

B1 Max Betweenness

B2 Max Closeness

Diameter, Without Branch Lengths | Maximum Eigen Vector Value

Mean Branch Length Variance of Branch Length

Mean External Branch Length Variance of External Branch Length

Mean Internal Branch Length Variance of Internal Branch Length

Number of Imbalancing Steps J One Statistic

Table 5. List of phylogenetic summary statistics used in neural network training
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