

Habitat use of rewilded horses and cattle as related to the functional and structural composition of plant communities in a European restored wetland ecosystem

Lilla Lovász^{1,2}, Fränzi Korner-Nievergelt^{2,3} and Valentin Amrhein^{1,2}

¹ Research Station Petite Camargue Alsacienne, 1 Rue de la Pisciculture, 68300 Saint Louis, France

² Department of Environmental Sciences, Universität Basel, Vesagasse 1, 4051 Basel, Switzerland

³ Oikostat GmbH, Rothmättli 16, 6218 Ettiswil, Switzerland

Abstract

1. Rewilding initiatives in European open and semi-open lowlands increasingly involve cattle and horses for ecological restoration, especially in wetland areas of high conservation value. These large herbivores contribute to spatial heterogeneity and enhance biodiversity by shaping ecosystems through movement, grazing, and resting behaviours. However, the effect of their site-specific habitat use patterns on plant communities remains unclear.
2. In this study, we investigated the fine-scale spatiotemporal distribution of rewilded cattle and horses in a recently restored alluvial grassland in a French nature reserve. We explored differences in habitat use between the two species during summer and winter on a macrohabitat scale and examined structural and functional changes in vegetation traits over four years, focusing on plant height, patch cover, species richness, and light preference, nutrient-tolerance, and mowing/grazing tolerance of plants. The study site, a former agricultural area converted into a restored alluvial nature conservation site, allowed observation of ecological processes from a "zero state".
3. Our results suggest that cattle and horses exhibit similar habitat use with seasonal variations, potentially indicating partially shared feeding niches. The mixed-species grazing prevented vegetation overgrowth by keeping plant cover and vegetation height under control, yet without causing destructive impacts. The two herbivore species induced a clear increase in grazing-tolerant plants and slight changes in the abundance of light-preferring and nutrient-tolerant species.
4. *Synthesis:* Overall, we found that the varying spatiotemporal distribution of rewilded horses and cattle likely induces changes in plant community on the patch scale but results in vegetation stability on the landscape scale, which is known to facilitate ecosystem functioning. Our study therefore informs managers of conservation initiatives, proposing rewilding with year-round grazing horses and cattle a promising strategy for ecological restoration and natural habitat maintenance in wetland areas.

1 Introduction

2
3 Rewilding with domestic cattle and horse breeds is becoming increasingly
4 widespread in ecological restoration initiatives in European open and semi-open lowlands,
5 especially in wetland areas of high conservation value (Gordon et al., 1990; Wallis DeVries,
6 1998; Carver et al., 2021). Much evidence suggests that these large herbivores are able to
7 substitute their ancestors – wild horses and aurochs – by creating and maintaining spatial
8 heterogeneity (Trepel et al., 2024) and thus contributing to species richness and diversity
9 (Olff and Ritchie, 1998; Stein et al., 2014; Lorimer et al., 2015; Pereira and Navarro, 2015;
10 Gordon et al., 2021; Svenning et al., 2024). Large herbivores shape ecosystems through their
11 movement-, grazing- and resting- behaviours (Liu et al., 2015) and by their habitat use
12 (Martin et al., 2009). This habitat choice is influenced by resource availability (Aarts et al.,
13 2013) and season (Zweifel-Schielly et al., 2009; Zielke et al., 2019), but it likely primarily
14 depends on the herbivore species and their interspecific interaction, as bovids and equids
15 differ in nutritional and behavioural needs (Olff and Ritchie, 1998; Esmaeili et al., 2021) but
16 show a strong potential for competition due to shared habitat (Menard et al., 2002).

17 Only few studies of habitat selection of co-existing cattle and horses have been
18 conducted to date (Menard et al., 2002; Lamoot et al., 2005; Thomassen et al., 2023), and
19 these seem to reveal conflicting patterns. For example, Cronsigt et al. (2018) and (Lamoot
20 et al., 2005) showed that horses almost exclusively feed on grasses and thus select grassland
21 habitats, while cattle include a solid amount of woody vegetation in their diet and therefore
22 select wood- and shrubland more often than horses. Thomassen et al. (2023) found high
23 diet richness with low seasonal variability in horses, and less diverse diet yet with increasing
24 summer-time variability in cattle. While these studies reflect considerable differences in
25 habitat use of the two species, others, e.g., Nolte et al. (2014) and Menard et al. (2002),
26 suggest strong competition for grasses between the two species especially in winter,
27 meaning an overlapping habitat choice.

28 In the first part of our study, we therefore assessed the seasonal variation of space
29 use intensity of semi-wild cattle and horses in a French nature reserve by following the
30 spatiotemporal distribution of the grazers, and contrasted this space use pattern with the
31 habitats on the study site to describe the habitat use of the grazers. Our first study question
32 was: how do the habitat use patterns differ between horses and cattle, and how does such a
33 difference vary between summer and winter?

34
35 Not only the habitat use patterns of co-existing cattle and horses are still unclear,
36 but also the effect of this habitat use on plants is not well understood.
37 In a comprehensive review, Bakker et al. (2006) found the effects of large herbivores on
38 plant diversity conflicting, with effects ranging from positive (Belsky, 1992; Collins et al.,
39 1998) through neutral (Stohlgren et al., 1999; Adler et al., 2005) to even negative
40 (Milchunas et al., 1998). This may be because grazers can have either compensatory or
41 additive effects on vegetation through selective feeding on different competing plants, or
42 through consumption of the same plants by multiple herbivore species (Ritchie and Olff,
43 1999). For example, Schmitz and Isselstein (2020) showed that cattle defoliate grasses more
44 evenly, creating a homogenous sward of grazing-tolerant plants, while horses graze
45 heterogeneously, avoiding foraging in latrine areas and strongly defoliating in other areas.
46 As an outcome, responses of the plant community will result in changes in vegetation
47 structure and diversity (Olff and Ritchie, 1998; Liu et al., 2015).

48 The response of plant community structure to grazers is believed to be principally
49 determined by functional traits of plants (Díaz et al., 2007). Investigating the response of
50 such functional traits are a “common currency” (McGill et al., 2006) to compare species
51 independently of species identity and across taxa (Reese et al., 2016). Changes in plant
52 functional traits as a function of grazer presence therefore offer generalizable predictions
53 about the effect of rewilding with large herbivores as a means for ecosystem restoration
54 (Atkinson et al., 2024). Yet, as Adler et al. (2005) points out, the challenge is identifying key
55 functional traits and then understanding how differences in their means and variances
56 translate into differences in response to grazing.

57 Such key traits may include tolerance for nutrient-rich soil, preference for exposure
58 to light, and tolerance of disturbance as predictors of changes in plant community as a
59 function of grazer presence (Milchunas et al., 1988; Augustine and McNaughton, 1998).
60 Further, simple vegetative traits such as plant height and patch cover may describe a
61 general response of herbaceous plant community to large herbivores (Díaz et al., 2001).

62 Results about how these traits predict plant responses are however often
63 contradicting. Herbivores seem to show opposing effect on plant species with different
64 nutrient-tolerance levels, as they alter rates of nutrient cycling and redistribute nutrient
65 availability (Trlica and Rittenhouse, 1993; Bardgett, 2005). For example, frequently grazed
66 patches may experience “nutrient export”, resulting in a shift towards plant species with
67 lower nutrient demands (Nolte et al., 2014; Schmitz and Isselstein, 2020); but urine and
68 dung input by herbivores may also increase organic matter and nitrogen levels of the soil on
69 intensively visited patches (Harrison and Bardgett, 2008; Peco et al., 2017), leading to an
70 opposite effect: a shift towards nutrient-tolerant species.

71 Light-preference may similarly result in vegetation composition differences as a
72 function of grazers’ space use, since heterogeneous grazing patterns can lead to spatial
73 heterogeneity of light availability (Bakker et al., 2003). Intense grazer presence at certain
74 areas may reduce competition for light by creating gaps and opening colonization windows
75 in the vegetation, and thus may favour light-demanding plants (Collins et al., 1998). Other
76 areas without frequent grazer visits may however increase competition for light, hosting
77 mainly the few most competitive light-preferent species and an array of shade-tolerant
78 plants as an understory (reviewed in: Marion et al., 2010). Yet, due to the heterogeneous
79 nature of grazing, such patterns are highly variable, and general predictions are hard to
80 draw.

81 Tolerance to disturbance, such as grazing and trampling (often termed as herbivory)
82 is regarded to be a basic predictor for changes in plant community composition (Augustine
83 and McNaughton, 1998; Díaz and Cabido, 2001; Evju et al., 2009). Herbivory affects plant
84 physiology, morphology, and genetics, thus plants have evolved to avoid or tolerate such
85 disturbances (Trlica and Rittenhouse, 1993). However, the several forms of herbivory
86 impacts and the variation in grazing pressure make predictions about the effects of grazing
87 on different plant species difficult (Reese et al., 2016). Furthermore, the tolerance of plants
88 to grazing depends also on how they interact with neighbouring plants (Hendrickson and
89 Olson, 2006).

90 As Herrero-Jáuregui and Oesterheld (2018) emphasised, most of our knowledge of
91 the effect of grazing animals on vegetation structure is based on grazed–non-grazed
92 contrasts, but the effects of a scenario where grazing intensity varies from low to high due
93 to the movement patterns of free-roaming animals are largely unknown. Also,

94 comparatively little attention has been paid to investigating the joint effect of co-existing
95 free-roaming cattle and horses (Liu et al., 2015), especially in nature conservation initiatives.

96 In the second part of our study, we thus carried out a large-scale macrohabitat
97 survey, and additionally we recorded vegetation characteristics on a microhabitat scale to
98 assess the changes that large herbivores induce in the plant community composition and
99 the physical vegetation structure.

100 Following Díaz et al. (2007), we assessed the structural responses of the vegetation
101 to answer the question: how does plant height, patch cover and species richness change as
102 a function of the spatiotemporal distribution of the grazers? We were also interested in how
103 plant functional traits of light preference, grazing tolerance and soil-nutrient tolerance
104 changed over four years, including one year before and three years after the introduction of
105 the cattle and horses on our study site.

106 The distinctive feature of our study lies in the fact that we were able to follow the
107 ecological processes from a “zero state” on an area of a recent ecological restoration
108 initiative. The study site used to be an agricultural area, where, after eliminating the
109 remains of pesticides, the colonisation by vegetation started from bare soil, and where wild-
110 living, free-roaming rewilded cattle and horses were then introduced to fulfil the functional
111 roles of their wild ancestors in regulating natural succession and in contributing to
112 ecosystem processes (Vera, 2000; Lovász, 2022; Schmitz et al., 2023).

113 Our overall aim was to contribute to a more comprehensive understanding of the
114 seasonal and interspecific variability of habitat use of large herbivores, and of the
115 vegetation functional trait-dynamics as an outcome of this habitat use in a rewilding-based
116 ecosystem restoration area. Our study thus helps to inform management strategies when
117 applying free-roaming horses and cattle in ecosystem restoration, and especially in
118 rewilding initiatives.

120 **Methods**

121 **Study area**

122 Our study area is situated on an island of the Rhine river and the Grand Canal of
123 Alsace in France, and is part of the national nature reserve Petite Camargue Alsacienne. A
124 total of 100 hectares of the island has been dedicated to an ecosystem restoration project
125 since 2014. Our study site is a 32-hectare area, part of the restored 100-ha area.

126 In the course of the restoration initiative, former crop fields in the area were
127 transformed into an alluvial environment. The reconstructed landscape comprises open
128 grasslands with scattered shrubs and tree groups, a few gravel sites without vegetation
129 cover, groundwater ponds, and a small creek allowing part of the Rhine water to flow
130 through the island. Remnants of old alluvial forest patches that surround the area remained
131 untouched during the ecosystem restoration. Natural succession from bare ground with
132 gravel areas started with an initial prompt to vegetation growth by seeding and planting
133 indigenous plant species in 2015 (Lachat, 2012). In addition, free-roaming Konik horses and
134 Highland cattle were introduced following the concept of rewilding, i.e., the passive
135 management of ecological succession to restore natural ecosystem processes and reduce
136 the human control of landscapes (Pereira and Navarro, 2015). The cattle and horses arrived
137 between September 2018 and March 2019 and their expected role was to act as a natural
138 disturbance regime (Mackey and Currie, 2000; Vera, 2000) on the restored alluvial
139 140

141 environment by creating spatial heterogeneity and thus enhancing biodiversity (Pereira and
142 Navarro, 2015; Carver et al., 2021). The animals have thus been grazing year-round in low
143 grazing intensity (0.3-0.5 animals per ha); human intervention such as supplementary
144 feeding has been restricted so that animals have a natural impact on their environment,
145 especially on the vegetation.

146

147 The national nature reserve Petite Camargue Alsacienne granted us permission to
148 conduct our study on this site.

149

150 **Grazer spatial distribution**

151

152 Upon their arrival to the Rhine island, the horses and the cattle were equipped with
153 GPS-collars (Followit, type Pellego) for management purposes of the nature reserve. The
154 collars recorded the position of the grazers every hour, and we used the data of summers
155 and winters from 2019 to 2021 (see Supplementary Material Table 1). We described the
156 space use of the grazers based on these hourly GPS positions. Parts of those data were used
157 in two other studies (Lovász et al, 2021, and Lovász et al 2024), but for better
158 understanding, we give a detailed explanation of the corresponding methods here as well.

159 During this three-year period, the number of grazers increased from the initial 5
160 horses and 5 cattle to 7 horses and 7 cattle.

161 The GPS fixes may show some imprecision because GPS accuracy can be affected by
162 satellite or receiver errors (Hurn 1993), satellite geometry (Dussault et al. 2001),
163 atmospheric conditions, topography, or overhead canopies (Di Orio et al. 2003; Moen et al.
164 1996). The GPS collars did not record DOP (Dilution of Precision) data and we therefore
165 could not correct for the inaccuracy of the fixes. However, since in an earlier study using a
166 part of the same GPS-collar data (Lovász et al., 2021), only 3.3% of all grazer positions fell
167 outside the fenced area, and since also earlier studies about GPS-error showed marginal
168 average inaccuracy (e.g., Ganskopp and Johnson, 2007), we assumed that inaccuracy would
169 not strongly influence our results; we thus excluded GPS positions erroneously falling
170 outside of the enclosure in our analysis.

171 The data were downloaded via satellite processing and through the interface of the
172 GPS collar provider (Followit, Lindesberg, Sweden) remotely, without contact to the grazers.
173 The use of GPS collars on both cattle and horses comply with animal welfare requirements
174 and reportedly does not cause disturbance to the animals (Ungar et al., 2005; Collins et al.,
175 2014).

176

177 **Macrohabitat data**

178

179 We carried out visual landcover surveys on the 32-ha study site in the median year of
180 our sampling period (in 2020). We divided the study area into 50x50-meter grid cells, and
181 with the support of a printed map with the projected grid cells, the observer (L.L.) surveyed
182 each grid cell by standing in the midpoint of the cell and visually estimating the percentages
183 of landcover types in the respective grid cell. The data from these surveys were also used in
184 (Lovász et al., 2024).

185 We distinguished the following landcover categories: trees (trees of ca. \geq 3 years
186 old), saplings (all growth stages of young trees of ca. $<$ 3 years old), shrubs, meadow, bare

187 ground, and surface of water in the respective grid cell. These macrohabitat-scale habitat
188 characteristics remained relatively stable throughout the 3-year study period.

189

190

191 Microhabitat data

192

193 We sampled herbaceous vegetation yearly between 2018 and 2021 on 80
194 permanent quadratic plots of 1 m² each. The locations of the plots were defined by the mid-
195 points of the 50-meter UTM-grid cells that we used also for the macrohabitat data. The
196 coordinates of the sample points were determined by using QGIS (version 3.4.4-Madeira).
197 Two months before the first data collection, we marked the sampling plots by digging
198 coloured flat concrete tiles into the ground, to facilitate finding the plots visually in high
199 vegetation and to avoid that the grazers stumble on them. To avoid potential effects of the
200 marking tiles on the vegetation, the closest corner of a sampling plot was placed at a
201 distance of 50 cm from the north-western corner of a tile.

202 Vegetation sampling (performed by L.L.) took place during the peak growing season,
203 between mid-May and mid-July. For the measurements, we used a modified Daubenmire
204 method (Daubenmire, 1959), by laying a 1x1-meter sized frame onto a sampling plot. Within
205 each plot, the following attributes were measured: plant height (cm); total vegetation cover
206 (%); species (name) of the three most abundant plant species. The variable 'plant height'
207 was the average of 20 measurements per plot that were taken along the two diagonals of
208 the 1-m² frame every 10 cm. We measured the total vegetation cover in the plot by visually
209 estimating the percentage of the plot covered by plants (on a continuous scale). The three
210 most abundant plant species in each plot were identified according to visual estimation of
211 their abundance; when identification to the species level was not possible due to missing
212 identification criteria (e.g., in graminoids, the lack of flowers due to grazing), we identified
213 the plant to the genus level.

214 Using the dataset of Flora Indicativa (Landolt et al., 2010), the following functional-
215 trait attributes were assigned to each species identified in our study area: light preference,
216 soil-nutrient tolerance and mowing/grazing tolerance (see Table 1 for the scales used to
217 describe the plant species).

218

Scale	Light (L)	Nutrients in the soil (N)	Mowing/grazing tolerance (MT)
1	full shade	very infertile	bad
2	shade	infertile	little
3	semi-shade	medium fertile	moderate
4	light	fertile	good
5	full light	over-rich	very good

219 *Table 1. Plant functional trait attributes according to Landolt et al. (2010).*

220 We estimated how the means of these functional traits of the most abundant
221 species in the 80 sampling plots changed as a function of horse and cattle location density.

222 Because vegetation sampling took place during the summers of the study period, we
223 assessed the effect of average grazer location density on the functional and structural traits
224 of plants in summer only. For each trait, we assessed the response to both horse and cattle
225 location density, and we also estimated average yearly changes.

226 In addition to the mean light preference of the three most abundant plant species in
227 a plot, we also assessed variation between plots by calculating the standard deviation of
228 light preference among the species.

229 We also calculated the overall species richness, species (alpha) diversity and relative
230 evenness of the plant community for each year of the study, using the species list arising
231 from taking the three most abundant species identified from all sampling plots. Species
232 richness refers to the sum of all species recorded on the study site in a given year. For
233 calculating species diversity, we used the Shannon-index $H' = - \sum p_i \ln(p_i)$, where p is the
234 proportion of individuals of the i species divided by the total number of species. We
235 computed the relative evenness using the Pielou's index $J = H'/\ln(N)$, where H' is the
236 Shannon-index and N is the total number of species in our study site. Both indices were
237 measured taking the number of occupied cells per species as if they were the numbers of
238 individuals.

239

240 Statistical analysis

241

242 For the macrohabitat analysis, we used the 50x50-m grid cells of the UTM grid over
243 the study area. We calculated the average number of locations in a grid cell across days and
244 individuals within each of the six seasons, i.e., summer and winter in the years 2019 to
245 2021. We averaged across days and individuals because seasons differed in duration and a
246 different number of animals were tracked in the different seasons (Suppl. Mat. Table 1). The
247 average number of locations in a grid cell was calculated separately for horses, cattle and
248 the sum of the two, i.e. "grazers". We increased the three variables by half of their minimal
249 non-zero value to get rid of the zero-values before we applied the logarithm transformation.

250

251

252 We analysed the logarithm transformed average number of locations per grid cell
253 using a liner mixed model with season (summer vs. winter), landcover variables and the
254 two-way interactions between season and each of the landcover variable as predictors. The
255 grid cell ID was used as a random factor to account for repeated measures of the same grid
256 cells over the six seasons. We included only five of the six landcover variables because the
257 six sum up to 100% which would cause redundancy in the model if all were included. We
258 decided to drop meadow because that was the most abundant landcover and leaving this
259 variable out produces a set of predictors with the lowest possible correlation. Of all
260 landcover variables, both linear and quadratic terms were included.

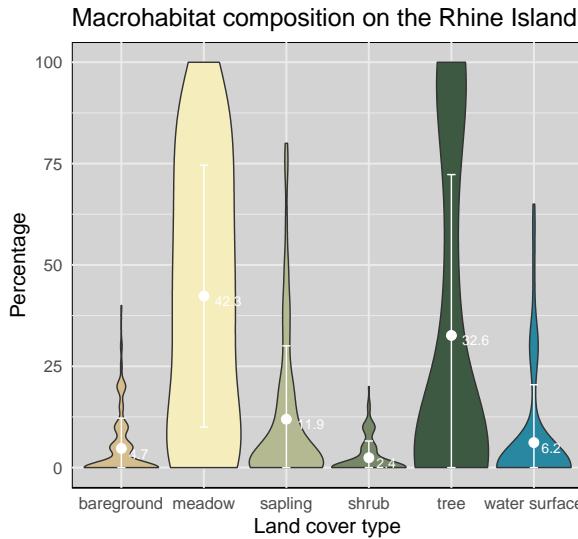
261 We checked the model assumptions (normal distribution, linear relationship,
262 homogeneity of variance) by standard diagnostic residual plots. We further checked for
263 spatial correlation by plotting the residuals in space (bubble plot) and by the semi-
264 variogram.

265 To analyse how grazer location density influences vegetation structure, we summed
266 grazer locations within each grid cell from 1 January to 1 June of each of four years. During
267 the first year 2018 grazer density was zero. Because not all animals were tracked and the
268 number of tracked animals varied over the five-month period, we corrected that number by
269 dividing it by the number of "animal-days" of tracked animals and multiplied it by the
270 number of "animal-days" of the total number of animals. The total number of horses varied
271 between 5 and 9 individuals (of which 3 to 5 were tracked) and the total number of cattle
272 varied between 3 and 8 individuals (of which 2 to 5 were tracked). In that way, we got for

273 every 50x50m grid cell an expected grazer density that was obtained from the space use of
274 the grazers and the total grazer abundance. We square-root transformed the horse and
275 cattle grazer density variables before we used them as predictors in the analyses of
276 vegetation structure.

277 We used a normal linear mixed model for analysing each of the six vegetation trait
278 variables: average light preference value, standard deviation of light preference value,
279 average nutrient-tolerance value, average mowing/grazing tolerance value, total cover,
280 average height. We used horse and cattle location density and year as numeric predictors,
281 and the cell ID was used as a random factor to account for the repeated measure of the
282 same cells over the four years. Standard diagnostic residual plots were used to assess
283 normal distribution of the residuals, linearity assumption and homogeneity of variance. We
284 further used semi-variograms to check for spatial correlation and auto-correlation plots to
285 check for temporal correlation.

286 Data preparation and model fitting was done in R 4.2.2 (RCoreTeam, 2022). For fitting the
287 normal linear mixed models, we used the function `lmer` of the package `lme4` (Bates et al.,
288 2015). We used flat prior distributions for all model parameters to obtain posterior
289 distributions from which we report the 2.5% and 97.5% quantiles as lower and upper limits
290 of compatibility intervals of parameters and fitted values. The function `sim` from the
291 package `arm` (Gelman and Hill, 2007) was used to obtain the posterior distribution.


292
293

294 **Results**

295
296

297 **Landcover characterization**

298 From the six landcover types (see Fig. 1), meadow cover was the most abundant
299 (42.3%). The relatively high percentage of tree cover (32.6%) was mostly due to an old oak
300 forest in the south-eastern corner of the grazed area, while at other parts of the study site,
301 trees were found only in small patches. The percentage of sapling cover (11.9%) indicated a
302 fast succession of mainly poplar trees. Open bare ground and shrub cover were present in
303 small proportions (4.7% and 2.4%). Water bodies represented 6.2% of all cover types and
304 were all groundwater ponds with stable water levels throughout the year.

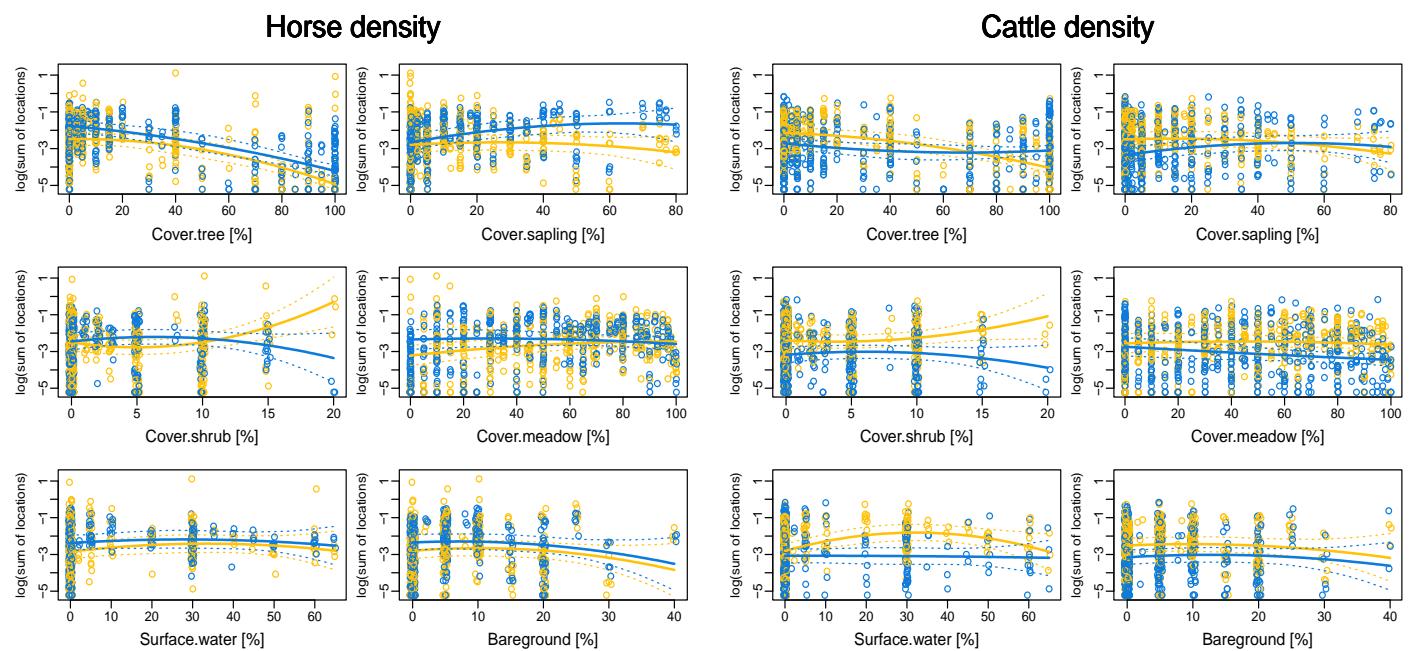
Figure 1. Macrohabitat composition on the Rhine Island. Violin plots show the percentages for each land cover type, with mean percentage (white dot, and value in %) and standard deviation (white error bars) over all grid cells sampled

305
306
307

308 **Macrohabitat use of horses and cattle**

309

310 In our study site, Highland cattle and Konik horses used the different habitats in a
311 similar manner, but we found differences in seasonal patterns and the magnitude of the
312 patterns (Fig. 2 and 3, and Suppl. Mat. Fig. 1).


313 Both grazer species were similarly less frequently present in areas with high than
314 with low tree cover in summer, but in winter cattle densities outnumbered horse densities
315 in forested grid cells (Fig. 2 and 3).

316 Areas with higher sapling cover were increasingly used in winter by horses but not so
317 much by cattle. In summer, sapling-covered areas seemed not to be very important habitats
318 for either of the grazer species, as regression lines show a likely negative relationship (Fig. 2
319 and 3, but note that the compatibility intervals (Amrhein and Greenland, 2022) would allow
320 a slight positive relationship too).

321 Patterns were clearer regarding the use of grid cells with shrubs both in case of
322 cattle and horses (Fig. 2 and 3), with a preference for such shrub-covered habitats in
323 summer. However, note that shrub cover was rather patchy in our study site, with a
324 maximum of 20% cover by grid cell, and an average of 4.7% of the total area (Fig. 1),
325 therefore locations of animals in these habitats may be a consequence of selecting
326 neighbouring habitats (which were often meadows, since meadow was the most abundant
327 cover variable in our dataset).

328
329
330
331

332

333

Figure 2. Logarithm of horse location density in relation to the cover variables in summer (orange) and winter (blue). Dotted lines are 95% compatibility intervals

Figure 3. Logarithm of cattle location density in relation to the cover variables in summer (orange) and winter (blue). Dotted lines are 95% compatibility intervals

334

335 Meadows – i.e., habitats of extensive grass cover – were used rather evenly by both
 336 grazer species, except in winter, when cattle densities decreased as meadow-cover
 337 increased. This refers to a preference towards habitats other than only meadow-covered
 338 areas in winter. In summer, the location densities of cattle were quite similar in all scales of
 339 grass-cover, possibly meaning a preference for meadows compared to other cover variables,
 340 yet without a strong trend. Horses on the other hand were aggregating on grid cells with the
 341 highest meadow-cover percentages in summer.

342

343 Grid cells with average percentages of waterbodies were used by cattle more often
 344 in summer than in winter, while we observed horses in similar densities in both seasons in
 345 areas with water presence.

346

347 Unsurprisingly, neither grazer species selected areas with extensive bare-ground
 348 percentages, both cattle and horses showed a clear negative relationship to bare-ground.

349

350 Grazer spatiotemporal densities and plant communities on a microhabitat scale

351

352 In the 80 sampling plots, the mean number of light-preferring plant species (Light
 353 mean; Fig 4, Table 2) did not seem to change at areas with different intensity of occurrence
 354 (i.e., GPS-location density) of horse and cattle (effect size: 0.00, Crl: 0.00 – 0.01 for both
 355 horses and cattle). At the same time, throughout the 4 years of the study, there seemed to
 356 be a slight decrease in species with higher light preference, but the effect was not strong
 357 (effect size: -0.03, Crl: -0.07 – 0.01).

358

359 The variation between species of different light preference values (Light SD; Fig 4,
 360 Table 2) showed a relatively flat relationship to horse density, but at higher cattle densities,

360 the within-plot variation in light preference among plant species was higher. The long-term
361 general trend was a rather slight decrease in the variation of species according to light
362 preference over the 4 years (effect size: -0.02, Crl: -0.06 – 0.02).

363 The mean number of plants with nutrient-rich soil preference (N mean; Fig 4, Table
364 2) did not seem to differ in areas with different intensity of horse presence (effect size:
365 0.00, Crl: -0.01 – 0.01), and their numbers were only slightly higher at higher cattle densities
366 (effect size: 0.01, Crl: -0.01 – 0.02). We found a slight yearly decrease in nutrient-preferring
367 plants (effect size: -0.07, Crl: -0.13 – 0.00).

368 Grazing-tolerant plant species (MV mean; Fig 4, Table 2) increased with increasing
369 horse densities but decreased with cattle densities. In the course of the four study years,
370 there was a clear increase in grazing-tolerant plant species (effect size: 0.23, Crl: 0.15–0.31).

371 Mean vegetation height (Fig 4, Table 2) was similar at low and high densities of both
372 horses and cattle. Yet, throughout the years, the mean vegetation height clearly decreased
373 (effect size (log): -0.25, Crl: -0.34 – 0.17).

374 The average of total vegetation cover seemed to increase in areas where horse
375 density was higher but the direction of the effect in case of cattle location densities
376 indicated a potentially negative relationship (although compatibility intervals might also
377 allow for the opposite direction of the effects, Fig. 4.). However, throughout the four years
378 of the study period – including the first year without grazer presence – the average total
379 cover seemed to stay rather stable (effect size: -0.1, Crl: -2.62 – 2.37). This may suggest that
380 the effects of horses and cattle potentially balance each other out on the overall vegetation
381 cover.

382

383 The total number of species decreased after grazers were introduced (2019), and
384 this trend continued until the third year of grazing (2021), when species richness slightly
385 increased again. Similarly, the Shannon-index showed a small decrease in diversity until
386 2021, when diversity increased again. The Pielou's index of evenness however almost did
387 not decrease from 2018 to 2019, and after a small decline, it slightly increased in the last
388 year of the study (Table 3.)

389

390

391

392

393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

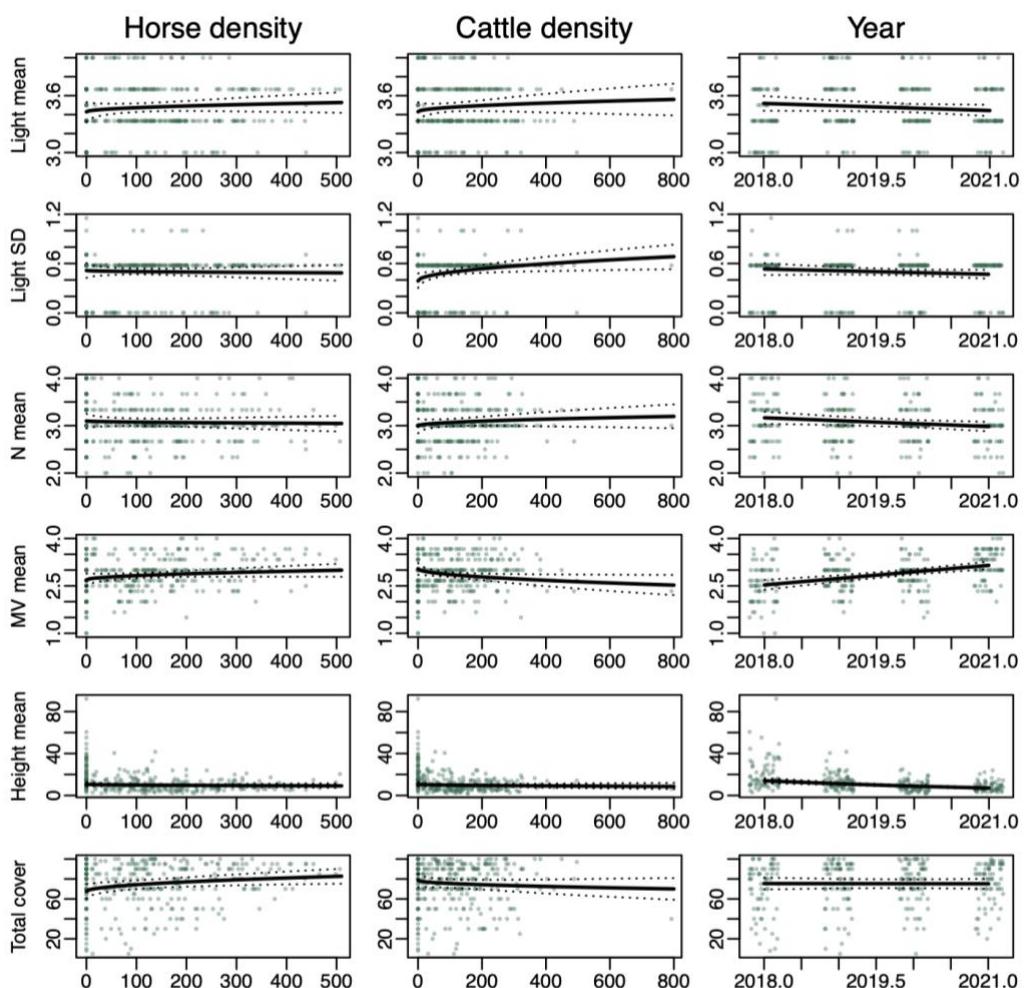


Figure 4. Relationship between horse and cattle location densities and plant functional (mean of light-preference values [Light mean]; standard deviation of light preference values [Light SD]; mean nutrient-tolerance [N mean]; mean of mowing/grazing tolerance values [MV mean]) and structural traits (mean height [cm] and total cover [%]), and the changes of the plant community along these traits throughout the 4 years of the study.

421
422

	Interc.	Int.lwr	Int.upr	horse	horse. lwr	horse. upr	cattle	cattle. lwr	cattle. upr	year.z	year. lwr	year. upr
Light.mean	3.38	3.30	3.46	0.00	0.00	0.01	0.00	0.00	0.01	-0.03	-0.07	0.01
Light.SD	0.40	0.33	0.47	0.00	-0.01	0.01	0.01	0.00	0.02	-0.02	-0.06	0.02
N.mean	3.02	2.90	3.15	0.00	-0.01	0.01	0.01	-0.01	0.02	-0.07	-0.13	0.00
MV.mean	2.88	2.73	3.03	0.01	0.00	0.03	-0.02	-0.04	0.00	0.23	0.15	0.31
log(height.m)	2.45	2.29	2.61	-0.01	-0.02	0.01	-0.01	-0.03	0.01	-0.25	-0.34	-0.17
total cover	70.66	64.76	76.70	0.67	0.15	1.20	-0.29	-0.82	0.25	-0.10	-2.62	2.37

423
424
Table 2. Response of plant functional and structural traits to grazing by horses and cattle. Effect sizes and compatibility intervals

425

Year	Nr of species	Shannon index	Pielou evenness
2018	51	3.352321	0.8526119
2019	46	3.263625	0.8524238
2020	42	3.099439	0.8292438
2021	43	3.138654	0.8344821

Table 3. Diversity of vegetation on the study site in the different years: Species richness (Nr of species), Shannon diversity index and Pielou evenness.

426
427
428

429

430 Discussion

431

432 Macrohabitat use of horses and cattle

433

434 Our investigation of the habitat use of co-existing free-roaming rewilded horses and cattle
435 revealed overall similar habitat use, but with seasonal and, to some degree, directional
436 differences. In light of our results, we assume that these two species share feeding niches to
437 a certain level and may compete for certain resources, as for instance the findings of Scasta
438 et al. (2016) suggest in western North American rangeland habitats, or as Menard et al.
439 (2002) found in European wetlands. However, since overall grazing pressure remained low
440 in our study site –0.3-0.4 animal per hectare –, resource availability stayed high enough
441 throughout all seasons, therefore strong competition did likely not occur.

442 During summer, both grazer species exhibited low location densities in areas with
443 high tree cover, but cattle were found in forested areas more frequently than horses.
444 Especially in winter, cattle sought out grid cells in densely forested areas, while horses
445 stayed away from high-percentage tree cover, similarly as for example Menard et al. (2002)
446 and Cronsigt et al. (2018) found. The use of forested habitats by cattle in winter on our
447 study site is in contrast with some earlier findings that showed the lowest probability of
448 woodland selection by cattle in autumn and winter and the highest in spring and summer
449 (Lamoot et al., 2005). On the other hand, the work by Pratt et al. (1986) detected a pattern
450 similar to what we found, and assumed the shelter-seeking behaviour of cattle as a reason
451 for searching woodlands in winter. This may have also played a role in our study area.
452 However, on our study site, the reason why Highland cattle might have searched for
453 forested areas in winter could have been their capacity to reach higher branches of trees
454 with their horns and by bending them down, they could eat the leftover leaves and bark of
455 the branch (L.L. personal observation). Previous studies (Putman et al., 1987; Bokdam et al.,
456 2003) investigated the habitat use of horn-less cattle breeds, which may have been the
457 cause of finding overwhelmingly higher grassland than woodland use by cattle. Our results
458 may thus indicate that conservation grazing involving cattle breeds with long horns, such as
459 Highland cattle, may facilitate the suppression of woody encroachment.

460 Horses, on the other hand, used areas with higher sapling cover during winter
461 instead of old woodlands. Such habitat preference in free-roaming horses was, to our
462 knowledge, so far not described. An earlier work found increased tree or shrub consumption
463 of horses in winter (Thomassen et al., 2023), but in their study site, sapling-covered areas
464 were not present in similarly high percentage as in our site. It seems therefore that in
465 winter, upon availability, horses rather choose to feed on young trees than on older trees,
466 by eating twigs and debarking thicker stands (L.L. personal observation). Since cattle only
467 showed a relatively neutral relationship to sapling cover in winter, our results may refer to a
468 possible niche separation by the two species.

469 Water-bodies on the Rhine Island did not seem to have a strong effect on horse
470 location densities, but cattle seemed to search for specific grid cells with water-cover in
471 them. This may be because – according to our personal observations (L.L.) – Highland cattle
472 often cool themselves in warm weather in ponds, and likely also spend much time standing
473 in water to avoid insect harassment. Such behaviour is a natural response to environmental
474 conditions and was not observed in studies about domestic cattle (Senft et al., 1985). Our

475 result may therefore indicate that, to fulfil the natural needs of grazers in nature
476 conservation areas, the presence of large ponds is desirable over drinking wells.

477 As for the use of meadow habitats, horses seemed to be present constantly
478 throughout winter regardless of the percentage cover of meadows by grid cell, while in
479 summer, horse location density was larger in grid cells with very high (80-100%) meadow
480 cover. Our results are in line with other studies showing that horses prefer grassland areas
481 year-round (e.g., Girard et al., 2013; Scasta et al., 2016).

482 Cattle, on the other hand, were not found more often in habitats with high
483 percentage of grass cover in summer, even though the availability of meadows was high in
484 our study site (42,3% in total), and even though this species is also considered to be a grazer
485 rather than browser and to select for grasslands more often than woody areas (Pratt et al.,
486 1986). However, as it is theoretically assumed and also recently shown by Thomassen et al.
487 (2023), in co-existing herbivore communities, niche separation between cattle and horses
488 may lead to extended consumption of woody vegetation by cattle. Our results are in line
489 with this theory. Such patterns likely make it possible that the two grazer species may co-
490 exist in natural circumstances, and at the same time have a substantial effect on the
491 vegetation composition (Vermeulen, 2015), facilitating the aims of rewilding initiatives.

492
493

494 **Grazer spatiotemporal densities and plant communities on a microhabitat scale**

495
496 Our analysis of vegetation functional and structural traits in relation to grazer location
497 density showed different effects of horses and cattle, which seemed to either cancel out or
498 lead to different directional changes when looking at the long-term effects throughout the
499 years.

500 In the apparent response of the functional traits of plants to grazers, we did not
501 observe strong differences between herbivores and between years, except in the trait of
502 grazing tolerance. Only horse location densities seemed to be related to a higher number of
503 grazing-tolerant plants, while lower numbers of these plants were found at higher cattle
504 densities. This may be because free-roaming cattle are known to spend only about 30% of
505 their daily budget with grazing (Van Rees and Hutson, 1983; Tofastrud et al., 2018),
506 therefore the areas where their location densities accumulated in our study site were likely
507 not at feeding but rather at resting/ruminating areas. Resting and ruminating do not involve
508 defoliating disturbance on the vegetation, which can explain why cattle-presence was
509 negatively correlated with grazing-tolerant plant abundance. In contrast, since horses graze
510 about 50-70% of their daily time budget (Gudmundsson and Dyrmundsson, 1994; Houpt,
511 2005), high horse densities in our dataset likely indicated feeding activity (rather than only
512 trampling) by horses and thus defoliation disturbance on the vegetation. This may also
513 mean that in our dataset, the classification of plants by Landolt et al. (2010) as
514 grazing/mowing tolerant tended to include tolerance to defoliation rather than tolerance to
515 trampling. In view of this, it is not surprising that the average number of grazing/mowing
516 tolerant plants increased throughout the years (Pakeman, 2004; Evju et al., 2009), also
517 explaining why horse-density had a stronger influence on such plants than cattle-density.

518 Less clear were the effects of the herbivores on light- and nutrient-preferent plants.

519 The mean number and also the within-plot variation of light-preferent species
520 seemed to be mainly independent from densities of both horses and cattle.. The relatively
521 flat regression line of the correlations of both the mean and the standard deviation of light

522 preference and grazer densities throughout the four years of the study may indicate a
523 landscape-scale stability over years (Briske et al., 2003). Yet, the slight increase in the within-
524 plot variation of light-preferring plants at higher cattle densities may refer to heterogeneity
525 on the patch-scale and on the short term (Oñatibia et al., 2018; Li et al., 2021).

526 A similar trend seems to be apparent in the nutrient-preference trait of plants. The
527 nutrient distribution capacity of large herbivores (Doughty et al., 2016) may have resulted in
528 altered nutrient availability in the soil which could lead to differences in nutrient-tolerant
529 species abundance along the gradient of grazer densities (Harrison and Bardgett, 2008),
530 especially in cattle-frequented areas. Yet, the changes across years did not indicate a clear
531 difference and thus may suggest an overall stability of the nutrient preferring plant
532 community.

533

534 Structural changes, such as plant height and cover, seemed to be not considerable
535 on the long term. The mean total cover in the 80 sampling plots remained constant over the
536 four years of the study, probably because the percentage of vegetation cover increased with
537 high horse densities, and decreased with high cattle densities. Average height remained
538 relatively constant, with a small mean decline of approximately 10 cm-s between the first
539 and the last year of the study. The mixed-species grazing by horses and cattle therefore
540 seemed to have a conserving effect on plant cover and vegetation height, indicating that
541 such grazing effectively prevents vegetation overgrowth, but at the same time, does not
542 destroy plant physical structure. Our results indicate that, contrary to some earlier findings
543 (e.g., Eldridge et al., 2019) and the concerns of conservation managers, multi-species grazer
544 assemblages in close-to-natural (i.e. 0.3-0.4 animals per ha) densities do not have a
545 destructive impact on herbaceous plants, but are rather an effective tool in conservation
546 management, in line with recent findings (Bonavent et al., 2023).

547 Our estimation of species richness, diversity and evenness indices suggest slight
548 vegetation compositional changes, likely as a response to grazing. The limitation of our
549 estimation may be that we used only the three most abundant species rather than the
550 entire species pool in each of the 80 sampling plots as a proxy to calculate the diversity
551 indices, the results nevertheless seem to reflect a realistic trend. We detected a small
552 decrease in all indices at the beginning of the grazer introductions, which may be a result of
553 the sensitivity of some of the species (Olff and Ritchie, 1998) that were sown by the
554 management (L. Merckling, 2022, pers. com.) to establish the local species pool on a 'zero-
555 state' environment. Further, after introducing the herbivores, a visible decrease of invasive
556 plant species (e.g. , *Solidago gigantea*) was observed (L. Merckling, 2022, pers. com., and
557 L.L. personal observation) on the grazed area, which may be due to the effectiveness of
558 grazers in reducing certain alien species to the advantage of local species, similarly as Firn et
559 al. (2013) and Marchetto et al. (2021) found. These two factors therefore might have
560 decreased the total number and diversity of species shortly after the grazer introduction,
561 until it again started slightly increasing in the third year of the grazing management, possibly
562 by species that are more resistant to local conditions, as proposed by Olff and Ritchie
563 (1998). An opposite pattern was shown by Kimball and Schiffman (2003) and McIntyre et al.
564 (2003) but only for cattle grazing and in American and Australian environments, where
565 conditions substantially differ from the European context. Further research could thus
566 investigate the background of such effects in European mixed-grazer assemblages.

567

568

569 Conclusion

570

571 This study fills a gap in previous knowledge by linking the habitat use of rewilded
572 cattle and horses with their effect on functional traits and structure of vegetation, since
573 studies so far mainly investigated one of these subjects but not each of them. The results
574 extend our current understanding of how these animals influence the plant community, by
575 showing complementary habitat use and conserving effects on plant functional and
576 structural traits. We conclude that the varying spatiotemporal distribution of these grazers
577 likely involves changes on the patch scale but vegetation stability on the landscape scale,
578 which is known to facilitate ecosystem functions. Our work may therefore serve as an
579 important source for conservation managers: the results support nature conservation
580 involving mixed species of large herbivores along rewilding principles.

581

582

583 Acknowledgements and funding

584

585 We thank the team of the Réserve Naturelle Petite Camargue Alsacienne for making it
586 possible to conduct our research in the nature reserve. We are grateful for Heiner Lenzin for his
587 support in plant species determination in the initial phase of the study.
588 This work was supported by the Fondation de bienfaisance Jeanne Lovioz, the Foundation Emilia
589 Guggenheim-Schnurr, the Ornithologische Gesellschaft Basel, the Swiss Association Pro Petite
590 Camargue Alsacienne, the Foundation Wolfermann-Nägeli, the Foundation Frey-Clavel, and the
591 MAVA Foundation. The funders had no role in study design, data collection and analysis, decision to
592 publish, or preparation of the manuscript.

593

594 Author Contributions

595 *Lilla Lovász* conceived, designed and performed the experiments, analyzed the data,
596 prepared figures and/or tables, authored and/or reviewed drafts of the article, and approved the
597 final draft.

598 *Fränzi Korner-Nievergelt* conceived and designed the experiments, analyzed the data, prepared
599 figures and/or tables, authored and/or reviewed drafts of the article, and approved the final draft.
600 *Valentin Amrhein* conceived and designed the experiments, authored and/or reviewed drafts of the
601 article, and approved the final draft.

602

603

604

605

References

606

607 Aarts, G., Fieberg, J., Brasseur, S., Matthiopoulos, J., 2013. Quantifying the effect of habitat
608 availability on species distributions. *J. Anim. Ecol.* 82, 1135-1145.

609 Adler, P.B., Milchunas, D.G., Sala, O.E., Burke, I.C., Lauenroth, W.K., 2005. Plant traits and
610 ecosystem grazing effects: comparison of US sagebrush steppe and Patagonian steppe. *Ecol.*
611 *Appl.* 15, 774-792.

612 Amrhein, V., Greenland, S., 2022. Discuss practical importance of results based on interval
613 estimates and p-value functions, not only on point estimates and null p-values. *Journal of*
614 *information technology* 37, 316-320.

615 Atkinson, J., Gallagher, R., Czyżewski, S., Kerr, M., Trepel, J., Buitenhof, R., Svenning, J.C.,
616 2024. Integrating functional traits into trophic rewilding science. *Journal of Ecology* 112,
617 936-953.

618 Augustine, D.J., McNaughton, S.J., 1998. Ungulate effects on the functional species
619 composition of plant communities: herbivore selectivity and plant tolerance. *The Journal of*
620 *wildlife management*, 1165-1183.

621 Bakker, C., Blair, J., Knapp, A., 2003. Does resource availability, resource heterogeneity or
622 species turnover mediate changes in plant species richness in grazed grasslands? *Oecologia*
623 137, 385-391.

624 Bakker, E.S., Ritchie, M.E., Olff, H., Milchunas, D.G., Knops, J.M., 2006. Herbivore impact on
625 grassland plant diversity depends on habitat productivity and herbivore size. *Ecol. Lett.* 9,
626 780-788.

627 Bardgett, R., 2005. *The biology of soil: a community and ecosystem approach*. Oxford
628 university press.

629 Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models
630 Using *lme4*. *Journal of Statistical Software* 67, 1 - 48.

631 Belsky, A.J., 1992. Effects of grazing, competition, disturbance and fire on species
632 composition and diversity in grassland communities. *Journal of vegetation science* 3, 187-
633 200.

634 Bokdam, J., Gleichman, J.M., van Wieren, S.E., Wallis De Vries, M.F., 2003. Free-ranging
635 cattle as opportunistic exploiters of a successional woodland-grassland-heathland mosaic.
636 *Nature conservation and grazing management*, 87-116.

637 Bonavent, C., Olsen, K., Ejrnæs, R., Fløjgaard, C., Hansen, M.D., Normand, S., Svenning, J.C.,
638 Bruun, H.H., 2023. Grazing by semi-feral cattle and horses supports plant species richness
639 and uniqueness in grasslands. *Appl. Veg. Sci.* 26, e12718.

640 Briske, D.D., Fuhlendorf, S.D., Smeins, F.E., 2003. Vegetation dynamics on rangelands: a
641 critique of the current paradigms. *J. Appl. Ecol.*, 601-614.

642 Carver, S., Convery, I., Hawkins, S., Beyers, R., Eagle, A., Kun, Z., Van Maanen, E., Cao, Y.,
643 Fisher, M., Edwards, S.R., 2021. Guiding principles for rewilding. *Conserv. Biol.* 35, 1882-
644 1893.

645 Collins, G.H., Petersen, S.L., Carr, C.A., Pielstick, L., 2014. Testing VHF/GPS collar design and
646 safety in the study of free-roaming horses. *PLoS One* 9.

647 Collins, S.L., Knapp, A.K., Briggs, J.M., Blair, J.M., Steinauer, E.M., 1998. Modulation of
648 diversity by grazing and mowing in native tallgrass prairie. *Science* 280, 745-747.

649 Cromsigt, J.P., Kemp, Y.J., Rodriguez, E., Kivit, H., 2018. Rewilding Europe's large grazer
650 community: how functionally diverse are the diets of European bison, cattle, and horses?
651 *Restoration Ecology* 26, 891-899.

652 Daubenmire, R.F., 1959. Canopy coverage method of vegetation analysis. *Northwest Sci* 33,
653 39-64.

654 Díaz, S., Cabido, M., 2001. Vive la différence: plant functional diversity matters to ecosystem
655 processes. *Trends Ecol. Evol.* 16, 646-655.

656 Díaz, S., Lavorel, S., McIntyre, S., Falcuk, V., Casanoves, F., Milchunas, D.G., Skarpe, C.,
657 Rusch, G., Sternberg, M., Noy-Meir, I., 2007. Plant trait responses to grazing—a global
658 synthesis. *Global change biology* 13, 313-341.

659 Díaz, S., Noy-Meir, I., Cabido, M., 2001. Can grazing response of herbaceous plants be
660 predicted from simple vegetative traits? *J. Appl. Ecol.* 38, 497-508.

661 Doughty, C.E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E.S., Malhi, Y., Dunning,
662 J.B., Svenning, J.-C., 2016. Global nutrient transport in a world of giants. *Proceedings of the*
663 *National Academy of Sciences* 113, 868-873.

664 Eldridge, D.J., Travers, S.K., Val, J., Zaja, A., Veblen, K.E., 2019. Horse activity is associated
665 with degraded subalpine grassland structure and reduced habitat for a threatened rodent.
666 *Rangel. Ecol. Manag.* 72, 467-473.

667 Esmaeili, S., Jesmer, B.R., Albeke, S.E., Aikens, E.O., Schoenecker, K.A., King, S.R., Abrahms,
668 B., Buuveibaatar, B., Beck, J.L., Boone, R.B., 2021. Body size and digestive system shape
669 resource selection by ungulates: A cross-taxa test of the forage maturation hypothesis. *Ecol.*
670 *Lett.* 24, 2178-2191.

671 Evju, M., Austrheim, G., Halvorsen, R., Mysterud, A., 2009. Grazing responses in herbs in
672 relation to herbivore selectivity and plant traits in an alpine ecosystem. *Oecologia* 161, 77-
673 85.

674 Firn, J., Price, J.N., Whalley, R.D., 2013. Using strategically applied grazing to manage
675 invasive alien plants in novel grasslands. *Ecological Processes* 2, 1-11.

676 Ganskopp, D.C., Johnson, D.D., 2007. GPS error in studies addressing animal movements and
677 activities. *Rangel. Ecol. Manag.* 60, 350-358.

678 Gelman, A., Hill, J., 2007. *Data Analysis Using Regression and Multilevel. Hierarchical*
679 *Models.*

680 Girard, T.L., Bork, E.W., Nielsen, S.E., Alexander, M.J., 2013. Seasonal variation in habitat
681 selection by free-ranging feral horses within Alberta's forest reserve. *Rangel. Ecol. Manag.*
682 66, 428-437.

683 Gordon, I., Duncan, P., Grillas, P., Lecomte, T., 1990. The use of domestic herbivores in the
684 conservation of the biological richness of European wetlands. *Bulletin d'écologie* 21, 49-60.

685 Gordon, I.J., Pérez-Barbería, F.J., Manning, A.D., 2021. Rewilding lite: Using traditional
686 domestic livestock to achieve rewilding outcomes. *Sustainability* 13, 3347.

687 Gudmundsson, O., Dyrmundsson, O., 1994. Horse grazing under cold and wet conditions: a
688 review. *Livestock Production Science* 40, 57-63.

689 Harrison, K.A., Bardgett, R.D., 2008. Impacts of grazing and browsing by large herbivores on
690 soils and soil biological properties. *The ecology of browsing and grazing*, 201-216.

691 Hendrickson, J., Olson, B., 2006. Understanding plant response to grazing. *Targeted Grazing:*
692 *A Natural Approach to Vegetation Management and Landscape Enhancement*, ed.
693 Launchbaugh K, 32-39.

694 Herrero-Jáuregui, C., Oesterheld, M., 2018. Effects of grazing intensity on plant richness and
695 diversity: A meta-analysis. *Oikos* 127, 757-766.

696 Houpt, K.A., 2005. Maintenance behaviours, in: Mills, D.S., McDonnell, Sue M. (Ed.), *The*
697 *domestic horse: the origins, development and management of its behaviour.*, Cambridge
698 University Press, pp. 94-108.

699 Kimball, S., Schiffman, P.M., 2003. Differing effects of cattle grazing on native and alien
700 plants. *Conserv. Biol.* 17, 1681-1693.

701 Lachat, B., 2012. Projet de renaturation d'un ancien bras sur l'Ile du Rhin, In: EDF (Ed.), EDF-
702 CIH.

703 Lamoot, I., Meert, C., Hoffmann, M., 2005. Habitat use of ponies and cattle foraging
704 together in a coastal dune area. *Biol. Conserv.* 122, 523-536.

705 Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann-
706 Maurer, K., Schweingruber, F., Theurillat, J.-P., 2010. Flora indicativa= Ecological indicator
707 values and biological attributes of the flora of Switzerland and the Alps: ökologische
708 Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen, Haupt
709 Verlag.

710 Li, W., Hooper, D.U., Wu, L., Bakker, J.D., Gianuca, A.T., Wu, X.B., Taube, F., Wang, C., Bai, Y.,
711 2021. Grazing regime alters plant community structure via patch-scale diversity in semiarid
712 grasslands. *Ecosphere* 12, e03547.

713 Liu, J., Feng, C., Wang, D., Wang, L., Wilsey, B.J., Zhong, Z., 2015. Impacts of grazing by
714 different large herbivores in grassland depend on plant species diversity. *J. Appl. Ecol.* 52,
715 1053-1062.

716 Lorimer, J., Sandom, C., Jepson, P., Doughty, C., Barua, M., Kirby, K.J., 2015. Rewilding:
717 science, practice, and politics. *Annu. Rev. Environ. Resour.* 40, 39-62.

718 Lovász, L., 2022. Nature conservation with large herbivores in a restored riparian
719 environment, University_of_Basel.

720 Lovász, L., Korner-Nievergelt, F., Amrhein, V., 2021. Grazer density and songbird counts in a
721 restored conservation area. *PeerJ* 9, e10657.

722 Lovász, L., Korner-Nievergelt, F., Amrhein, V., 2024. Effects of grazer density, season and
723 landcover on bird guilds in a restored conservation area. ResearchSquare.

724 Mackey, R.L., Currie, D.J., 2000. A re-examination of the expected effects of disturbance on
725 diversity. *Oikos* 88, 483-493.

726 Marchetto, K.M., Wolf, T.M., Larkin, D.J., 2021. The effectiveness of using targeted grazing
727 for vegetation management: a meta-analysis. *Restoration Ecology* 29, e13422.

728 Marion, B., Bonis, A., Bouzillé, J.-B., 2010. How much does grazing-induced heterogeneity
729 impact plant diversity in wet grasslands? *Ecoscience* 17, 229-239.

730 Martin, J., Tolon, V., Van Moorter, B., Basille, M., Calenge, C., 2009. On the use of telemetry
731 in habitat selection studies. *Telemetry: Research, technology and applications*. Hauppauge
732 (NY): Nova Science Publishers, 37-55.

733 McGill, B.J., Enquist, B.J., Weiher, E., Westoby, M., 2006. Rebuilding community ecology
734 from functional traits. *Trends Ecol. Evol.* 21, 178-185.

735 McIntyre, S., Heard, K., Martin, T., 2003. The relative importance of cattle grazing in
736 subtropical grasslands: does it reduce or enhance plant biodiversity? *J. Appl. Ecol.* 40, 445-
737 457.

738 Menard, C., Duncan, P., Fleurance, G., Georges, J.Y., Lila, M., 2002. Comparative foraging
739 and nutrition of horses and cattle in European wetlands. *J. Appl. Ecol.* 39, 120-133.

740 Milchunas, D., Sala, O., Lauenroth, W.K., 1988. A generalized model of the effects of grazing
741 by large herbivores on grassland community structure. *The American Naturalist* 132, 87-106.

742 Milchunas, D.G., Lauenroth, W.K., Burke, I.C., 1998. Livestock grazing: animal and plant
743 biodiversity of shortgrass steppe and the relationship to ecosystem function. *Oikos* 83, 65-
744 74.

745 Nolte, S., Esselink, P., Smit, C., Bakker, J.P., 2014. Herbivore species and density affect
746 vegetation-structure patchiness in salt marshes. *Agriculture, Ecosystems & Environment*
747 185, 41-47.

748 Olff, H., Ritchie, M.E., 1998. Effects of herbivores on grassland plant diversity. *Trends Ecol.*
749 *Evol.* 13, 261-265.

750 Oñatibia, G.R., Boyero, L., Aguiar, M.R., 2018. Regional productivity mediates the effects of
751 grazing disturbance on plant cover and patch-size distribution in arid and semi-arid
752 communities. *Oikos* 127, 1205-1215.

753 Pakeman, R.J., 2004. Consistency of plant species and trait responses to grazing along a
754 productivity gradient: a multi-site analysis. *Journal of Ecology* 92, 893-905.

755 Peco, B., Navarro, E., Carmona, C., Medina, N., Marques, M., 2017. Effects of grazing
756 abandonment on soil multifunctionality: The role of plant functional traits. *Agriculture,*
757 *Ecosystems & Environment* 249, 215-225.

758 Pereira, H.M., Navarro, L.M., 2015. *Rewilding european landscapes*. Springer Nature.

759 Pratt, R., Putman, R., Ekins, J., Edwards, P., 1986. Use of habitat by free-ranging cattle and
760 ponies in the New Forest, Southern England. *J. Appl. Ecol.*, 539-557.

761 Putman, R., Pratt, R., Ekins, J., Edwards, P., 1987. Food and feeding behaviour of cattle and
762 ponies in the New Forest, Hampshire. *J. Appl. Ecol.*, 369-380.

763 RCoreTeam, 2022. R: A language and environment for statistical computing. R Foundation
764 for Statistical Computing, Vienna, Austria. 2012.

765 Reese, A.T., Ames, G.M., Wright, J.P., 2016. Variation in plant response to herbivory
766 underscored by functional traits. *PLoS One* 11, e0166714.

767 Ritchie, M., Olff, H., 1999. Herbivore diversity and plant dynamics: compensatory and
768 additive effects. *Herbivores: between plants and predators*, 175-204.

769 Scasta, J.D., Beck, J.L., Angwin, C.J., 2016. Meta-analysis of diet composition and potential
770 conflict of wild horses with livestock and wild ungulates on western rangelands of North
771 America. *Rangel. Ecol. Manag.* 69, 310-318.

772 Schmitz, A., Isselstein, J., 2020. Effect of grazing system on grassland plant species richness
773 and vegetation characteristics: Comparing horse and cattle grazing. *Sustainability* 12, 3300.

774 Schmitz, O.J., Sylvén, M., Atwood, T.B., Bakker, E.S., Berzaghi, F., Brodie, J.F., Cronsigt, J.P.,
775 Davies, A.B., Leroux, S.J., Schepers, F.J., 2023. Trophic rewilding can expand natural climate
776 solutions. *Nature Climate Change*, 1-10.

777 Senft, R., Rittenhouse, L., Woodmansee, R., 1985. Factors influencing patterns of cattle
778 grazing behavior on shortgrass steepe. *Rangeland Ecology & Management/Journal of Range*
779 *Management Archives* 38, 82-87.

780 Stein, A., Gerstner, K., Kreft, H., 2014. Environmental heterogeneity as a universal driver of
781 species richness across taxa, biomes and spatial scales. *Ecol. Lett.* 17, 866-880.

782 Stohlgren, T.J., Schell, L.D., Vanden Heuvel, B., 1999. How grazing and soil quality affect
783 native and exotic plant diversity in Rocky Mountain grasslands. *Ecol. Appl.* 9, 45-64.

784 Svenning, J.-C., Buitenhof, R., Le Roux, E., 2024. Trophic rewilding as a restoration
785 approach under emerging novel biosphere conditions. *Curr. Biol.* 34, R435-R451.

786 Thomassen, E.E., Sigsgaard, E.E., Jensen, M.R., Olsen, K., Hansen, M.D., Svenning, J.C.,
787 Thomsen, P.F., 2023. Contrasting seasonal patterns in diet and dung-associated
788 invertebrates of feral cattle and horses in a rewilding area. *Mol. Ecol.*

789 Tofastrud, M., Hegnes, H., Devineau, O., Zimmermann, B., 2018. Activity patterns of free-
790 ranging beef cattle in Norway. *Acta Agriculturae Scandinavica, Section A—Animal Science*
791 68, 39-47.

792 Trepel, J., le Roux, E., Abraham, A.J., Buitenwerf, R., Kamp, J., Kristensen, J.A., Tietje, M.,
793 Lundgren, E.J., Svenning, J.-C., 2024. Meta-analysis shows that wild large herbivores shape
794 ecosystem properties and promote spatial heterogeneity. *Nature Ecology & Evolution* 8,
795 705-716.

796 Trlica, M., Rittenhouse, L., 1993. Grazing and plant performance. *Ecol. Appl.* 3, 21-23.

797 Ungar, E.D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A., Ganskopp, D., 2005. Inference of
798 animal activity from GPS collar data on free-ranging cattle. *Rangel. Ecol. Manag.* 58, 256-
799 266.

800 Van Rees, H., Hutson, G., 1983. The behaviour of free-ranging cattle on an alpine range in
801 Australia. *Rangeland Ecology & Management/Journal of Range Management Archives* 36,
802 740-743.

803 Vera, F.W.M., 2000. *Grazing ecology and forest history*. CABI publishing.

804 Vermeulen, R., 2015. Natural grazing: Practices in the rewilding of cattle and horses.
805 Rewilding Europe.

806 Wallis DeVries, M.F., 1998. Large herbivores as key factors for nature conservation, in:
807 WallisDeVries, M.F., Bakker, J.P., van Wieren, S.E. (Eds.) (Ed.), *Grazing and Conservation*
808 Management, *Conservation Biology Series* 11., Kluwer, Dordrecht, pp. pp1-17.

809 Zielke, L., Wrage-Mönnig, N., Müller, J., Neumann, C., 2019. Implications of spatial habitat
810 diversity on diet selection of European Bison and Przewalski's Horses in a Rewilding Area.
811 *Diversity* 11, 63.

812 Zweifel-Schielly, B., Kreuzer, M., Ewald, K.C., Suter, W., 2009. Habitat selection by an Alpine
813 ungulate: the significance of forage characteristics varies with scale and season. *Ecography*
814 32, 103-113.

815
816
817
818