

1 **Assessing the effects of warming and carbonate chemistry parameters on**
2 **marine microbes in the Gulf of Mexico through basin-scale DNA**
3 **metabarcoding**

4

5 Sean R. Anderson^{1,2*}, Katherine Silliman⁴, Leticia Barbero^{3,4}, Fabian A. Gomez^{7,8}, Beth A.
6 Stauffer⁵, Astrid Schnetzer⁶, Christopher R. Kelble^{4,†}, and Luke R. Thompson^{4,7*}

7

8 ¹Department of Biological Sciences, University of New Hampshire, Durham, NH, USA

9 ²Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution,
10 Falmouth, MA, USA

11 ³Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL,
12 USA

13 ⁴National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological
14 Laboratory, Ocean Chemistry and Ecosystems Division, Miami, FL, USA

15 ⁵Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA

16 ⁶Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA

17 ⁷Northern Gulf Institute, Mississippi State University, Starkville, MS, USA

18 ⁸Physical Oceanography Division, Atlantic Oceanographic and Meteorological Laboratory,
19 Miami, FL, USA

20 [†]National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office
21 of Science and Technology

22 *Corresponding authors: Sean R. Anderson and Luke R. Thompson

23

24 **Emails:** sean.anderson1@unh.edu and luke.thompson@noaa.gov

25

26 **Keywords:** Metabarcoding; Ocean Acidification; Warming; Microbes; Protists; Bacteria;
27 Archaea; Gulf of Mexico; Generalized linear models; Indicator analysis

29 **Abstract**

30

31 Ocean acidification and warming threaten marine life, yet the impact of these processes on
32 microbes remains unclear. Here, we performed basin-scale DNA metabarcoding of prokaryotes
33 (16S V4–V5) and protists (18S V9) in the Gulf of Mexico and applied generalized linear models
34 to reveal group-specific environmental correlates of functionally diverse microbes. Models
35 supported prior physiological trends for some groups, like positive temperature effects on
36 SAR11 and SAR86, and a positive effect of pH on *Prochlorococcus* that implied a negative
37 response to decreasing pH. New insights were revealed for protists, like Syndiniales and
38 Sagenista (e.g., positive pH effects), which offset positive relationships with temperature and
39 reinforced the importance of considering multiple stressors simultaneously. Indicator analysis
40 revealed phytoplankton, like *Ostreococcus* sp. and *Emiliania huxleyi*, that were associated with
41 more acidic waters and may reflect candidate indicators of ocean change. Our findings highlight
42 the need for sustained microbial sampling in marine systems, with implications for carbon
43 export, nutrient cycling, and ecosystem health.

44

45 **Introduction**

46

47 Our ability to predict how marine ecosystems and resources will respond to future ocean
48 conditions will require accurate monitoring of marine biodiversity over space, time, and across
49 natural environmental gradients (1). The oceans are changing rapidly, heavily impacted by rising
50 concentrations of human-derived atmospheric carbon dioxide (CO₂) that is absorbed at the
51 ocean's surface (2). Atmospheric CO₂ has increased by nearly 50% (~420 ppm at present) over
52 the last century, leading to increased levels of dissolved inorganic carbon (DIC) in the ocean, in
53 turn lowering seawater pH (3). This process of ocean acidification (OA) reduces saturation states
54 for carbonate minerals, placing stress on organisms that require these minerals for cellular
55 growth and other functions (4, 5). The effects of OA are amplified by ocean warming,
56 particularly at low latitudes, with surface temperatures expected to increase by 1–10 °C over the
57 next century (6). Changes in seawater chemistry and physics can have immense impacts, both
58 direct and indirect, on marine life (3). Thus, it is imperative to understand better how diverse
59 marine organisms respond to present-day chemical and physical conditions to inform future
60 potential shifts in community composition.

61

62 Over the past decade, research on species sensitivity to OA has expanded greatly, particularly for
63 multicellular organisms that rely on carbonate chemistry for their structure and function (3, 5).
64 Much less research has been conducted on marine microbes (i.e., protists, Bacteria, and
65 Archaea), despite the central role of microbes in food webs and their strong influence on
66 biogeochemical cycles and carbon export (7, 8). Microbes also respond quickly to shifts in their
67 surrounding environment, making them potentially important indicators of changing ocean
68 conditions (9, 10). In general, global ecosystem models predict a decline in photosynthetic
69 biomass and a shift in composition from larger plankton (e.g., diatoms) to picophytoplankton

70 (0.2–2 μm), primarily driven by warming and enhanced stratification (11–14). Field and
71 laboratory experiments have measured direct and negative impacts of OA on plankton, notably
72 among calcifying haptophytes (e.g., coccolithophores), where increased partial pressure of CO_2
73 ($p\text{CO}_2$) and/or decreasing pH has led to reduced growth and calcification rates (15–17).
74 However, evidence suggests that some phytoplankton species, even coccolithophores, may be
75 resilient to rising $p\text{CO}_2$ and warming (13, 18, 19). In addition, heterotrophic bacteria may be
76 more resilient to OA compared to phytoplankton, impacted more directly by warming and
77 changes to phytoplankton-derived organic matter (20, 21). Employing DNA metabarcoding to
78 characterize the complex effects of OA parameters and temperature on a wide range of microbes
79 (22, 23) will help guide lab-based experiments, identify indicator taxa, and inform model
80 predictions.

81
82 The Gulf of Mexico (GOM) is an ideal location to study the effects of multiple stressors on
83 marine microbes, as microbial communities in the GOM are affected by several major
84 hydrographic features that result in strong physicochemical gradients (24). The GOM is a semi-
85 enclosed subtropical basin, influenced by the Loop Current (and associated anticyclonic eddies)
86 and freshwater inflow from riverine systems (Mississippi-Atchafalaya) in the north (25, 26).
87 Most of the GOM is oligotrophic (and nutrient-limited), with phytoplankton biomass dominated
88 by picophytoplankton (27). Despite overall low biomass, microbial food webs in the GOM
89 support high biodiversity of mesozooplankton and microneuston (28), as well as several
90 economically important fisheries (29). At times, nutrient runoff from terrestrial sources promotes
91 eutrophication, resulting in coastal hypoxic zones that are more acidic (30, 31). Coastal
92 eutrophication combined with physical upwelling of new inorganic nutrients onto the shelf can
93 also enhance formation of harmful algal blooms (HABs), particularly along the western coast of
94 Florida (32, 33) and in other coastal regions in the southern Gulf (34). HABs pose a threat to
95 marine ecosystems in the GOM and can negatively impact local economies (35). While OA has
96 resulted in observable changes in ocean chemistry in the GOM (24), research on the impacts of
97 OA and warming on marine microbes has not been well explored. Most microbial genomics
98 studies have been localized to specific regions or depths (36–39) or focused on responses of
99 microbes to natural disturbances, like oil spills, in the northern Gulf (40, 41). This lack of spatial
100 biological sampling has made it difficult to characterize environmental drivers of diverse
101 microbes in the GOM (24), including OA parameters (e.g., pH, DIC, and $p\text{CO}_2$), and impedes
102 our ability to understand how microbial communities may shift in the future.

103
104 Here, we performed the first basin-scale DNA metabarcoding survey of protists, Bacteria, and
105 Archaea in the GOM as part of the fourth Gulf of Mexico Ecosystems and Carbon Cycle
106 (GOMECC-4) cruise that sailed from late summer to early fall of 2021. Overall, we collected
107 481 discrete DNA samples from 51 (out of 141) stations, encompassing 16 inshore–offshore
108 transects and up to three depths per site that corresponded to the surface, deep chlorophyll
109 maximum (DCM), and near bottom (Fig. 1A). Amplicon metabarcoding was performed to reveal
110 population dynamics of protists (18S SSU rRNA gene, V9 region) and prokaryotes (16S SSU

111 rRNA gene, V4–V5 region). We constructed generalized linear models (GLMs) for major
112 microbial groups in the photic zone to gain insight into group-specific environmental correlates,
113 including carbonate system parameters. These GLMs were applied to all GOMECC-4 sites,
114 including those where DNA samples were not collected, to expand spatial distributions of
115 microbial groups in the GOM. Finally, we performed indicator analysis based on profiles of DIC
116 and total alkalinity (TA) in the photic zone to identify microbes that were potential indicators of
117 more or less acidic waters (based on TA:DIC ratios). This study provides an important baseline
118 for microbial OA research in the GOM that will guide future DNA sampling efforts in this region
119 and contribute to our growing knowledge on the potential responses of marine microbes to
120 climate change.

121

122 **Results and Discussion**

123

124 **Microbial population dynamics in the GOM**

125

126 We obtained a total of 8,312 sequences on average per sample (range: 3,322–16,483) from 18S
127 metabarcoding, resulting in 13,632 protist amplicon sequence variants (ASVs) identified
128 throughout all GOM samples. In comparison, we obtained an average of 12,963 sequences per
129 sample (range: 5,056–28,620) for 16S metabarcoding which were assigned to 41,876 total
130 prokaryotic ASVs. Though significant to community composition ($P < 0.01$), factors like
131 transect, location on the shelf (< 200 m) vs. open ocean (> 200 m), and categorical depth had low
132 explanatory power on their own (PERMANOVA $R = 0.03$ –0.2). As depth is a well-known driver
133 of global marine microbial communities (42–46), we performed hierarchical clustering of
134 microbial composition to better control for the impact of depth on subsequent spatial analyses.
135 This revealed separation of DNA samples into three clusters (Clusters 1–3), similar for both
136 marker gene regions, that reflected depth of samples in the water column on the continental shelf
137 and/or in open ocean GOM regions (Fig. 1B; fig. S1). For instance, Cluster 1 mainly consisted of
138 samples collected on the shelf at all depths and offshore at the surface layer, with all samples
139 located in the photic zone (2–99 m). Cluster 2 samples were mainly from the DCM (2–124 m) in
140 more stratified open ocean regions of the GOM, while Cluster 3 samples largely represented
141 meso- to bathypelagic waters (135–3,326 m) in the open ocean that were confined to the aphotic
142 zone (Fig. 2A–B; Fig. 3A–B). Though Clusters 1–2 were both in the photic zone (upper ~150
143 m), and had some overlap (Fig. 2B), they were separated into distinct clusters based on their
144 composition that reflected total depth in the water column and shifts in physicochemical
145 variables (fig. S2). In our case, clustering of DNA samples allowed us to better explore
146 microbes, and their relationships with environmental variables, within distinct spatial habitats
147 they occupy in the GOM.

148

149 Microbial communities in the GOM were more species-rich and diverse in the DCM and aphotic
150 zone (Fig. 2C; Fig. 3C), consistent with vertical profiles from other oceanic regions (43, 46, 47).
151 Higher richness and diversity with depth may be the result of microbes utilizing a broad

152 spectrum of sinking organic matter, exerting alternative metabolic strategies (redox reactions),
153 and/or forming diverse trophic relationships with other organisms to exploit such habitats (48).
154 Alpha diversity was stable along sampling transects in the photic zone for 16S (fig. S3) and 18S
155 samples (fig. S4), with higher variability in the DCM and aphotic zone. For example, microbial
156 diversity in the aphotic zone steadily decreased from coastal Florida (27°N line) to regions near
157 the Mississippi River outflow, increasing thereafter from Brownsville to Cancun (fig. S3).
158
159 Shifts in taxonomy between clusters were in line with depth-related microbial dynamics seen
160 previously in the GOM (37, 38, 49) and on a global scale (42, 43, 48). Among prokaryotes, the
161 photic zone and DCM were dominated by common heterotrophic bacteria, such as SAR11,
162 SAR86, and Flavobacteriales (Fig. 2D; fig. S5). Autotrophic cyanobacteria within the order
163 Synechococcales also had high relative abundance in the photic zone (Fig. 2D; fig. S5),
164 particularly *Prochlorococcus* and *Synechococcus* (fig. S6), both genera known to dominate
165 primary production in the GOM (27). Prokaryotic communities shifted dramatically in the
166 aphotic zone, with higher relative abundance of metabolically diverse taxa that are endemic to
167 deeper waters (48–50), including nitrous oxide-reducing Marinimicrobia (SAR406), ammonia-
168 oxidizing Nitrosopumilales, and sulfur-oxidizing Thiomicrospirales (Fig. 2D; fig. S5). These
169 microbes use redox reactions to acquire energy in less oxygenated waters (48), such as those
170 found in the mesopelagic zone (~200–800 m) in the GOM (fig. S2), and likely contributed to
171 increased richness of prokaryotic communities observed with depth (Fig. 2C). Certain 16S
172 groups varied at more resolved taxonomic levels between clusters. For example,
173 *Prochlorococcus* became more relatively abundant in the DCM, while SAR11 clade II increased
174 in the aphotic zone relative to other SAR11 clades (fig. S7). Similar patterns have been observed
175 elsewhere for *Prochlorococcus* (51) and SAR11 (48, 52), and reflect potential environmental
176 niche partitioning through the water column. High abundance of SAR11 clade II in the
177 mesopelagic has recently been observed in the Pacific Ocean (48), which may indicate particle
178 association among SAR11 that may be more common than previously thought.
179
180 Protist biodiversity was dominated by Dinophyceae, Syndiniales, Prymnesiophyceae, and
181 Sagenista in the photic zone and DCM, transitioning to Radiolaria (Polycystinea and RAD-B)
182 and Diplonema in the aphotic zone (Fig. 3D). Dinophyceae and Prymnesiophyceae are common
183 in pelagic waters, including in the GOM (36, 53), and occupy important functional roles as
184 grazers (and mixotrophs) in microbial food webs (fig. S5). Sagenista was also abundant in the
185 photic zone (Fig. 3D), a group of common, yet still uncultured heterotrophic protists that have
186 important ecological roles (54). Other class level protist groups that were common in the GOM
187 in summer–fall, like Mamiellophyceae (Chlorophyta) and Mediophyceae (Stramenopiles), varied
188 more greatly across transects in the photic zone and DCM (Fig. 3D). Radiolarians dominated
189 relative abundance in mesopelagic samples (Fig. 3D). While these organisms remain largely
190 uncultivated and hard to study, they are key members of deep ocean food webs, forming
191 endosymbiotic relationships with other microorganisms (fig. S5) and contributing to the export
192 of carbon and biogenic silica (55).

193

194 DNA metabarcoding also reinforced the importance of obligate parasites within the group
195 Syndiniales at all depths in the water column (42, 56, 57), including at the basin scale in the
196 GOM (Fig. 3D; fig. S5). The prevalence of Syndiniales may be attributed to their wide host
197 range, active (and passive) export on sinking particles, and depth related niche partitioning (56,
198 58). We observed vertical shifts within Syndiniales at the clade level in our samples that aligned
199 with prior observations (45, 56). For instance, there was a shift from Syndiniales Group-I Clades
200 1 and 4 in the photic zone to other clades, like Group-II Clade 7 and Group-I Clade 2 in the
201 aphotic zone (fig. S8). Radiolaria also varied between clusters, with certain members of
202 Polycystinea (e.g., *Heliosphaera* and *Pterocorys*) increasing in relative abundance from the
203 DCM to the aphotic zone (fig. S8). Diplonemea were also dominant in the GOM aphotic zone
204 (Fig. 3D). Though enigmatic, Diplonemea have been found globally in mesopelagic waters (57)
205 and likely represent important consumers of picoplankton and bacteria in these environments
206 (59).

207

208 Generalized linear models reveal group-specific environmental correlates

209

210 We used generalized linear models (GLMs) with either Poisson or negative-binomial error
211 distributions to identify potential explanatory variables of major 16S and 18S taxonomic groups
212 in the GOM. GLMs account for multiple predictor variables (factors) and have been applied to
213 ecological count (and proportional) data of higher trophic level marine organisms (60, 61). Here,
214 we applied GLMs to microbial metabarcoding data, allowing us to observe predictor variables
215 and their relation to group-specific relative abundance measured spatially in the photic zone (Fig.
216 2D; Fig. 3D). We focused our models on the photic zone (Cluster 1), primarily because most
217 factors were collinear in the DCM and aphotic zone (table S1). Collinearity among variables can
218 result in models being less statistically reliable and confound model interpretation (62). Eight of
219 fifteen environmental variables were initially selected for models and included temperature,
220 salinity, dissolved oxygen (O₂), nitrate (NO₃), ammonium (NH₄), phosphate (PO₄), dissolved
221 inorganic carbon (DIC), and total pH recalculated to in situ temperatures (Table 1). Many
222 parameters related to OA that were measured or derived (e.g., total alkalinity, pCO₂, carbonate
223 ion concentration, and aragonite saturation) were strongly collinear to each other and
224 temperature (Spearman $r_s > 0.7$ or < -0.7), and thus were excluded from initial models (table
225 S1). Environmental conditions in the GOM surface were typical for this time of year (63, 64).
226 For instance, offshore waters were warm ($> 28^\circ\text{C}$) and nutrient-limited (e.g., NO₃ $< 0.1 \mu\text{mol}$
227 kg⁻¹), while coastal regions had higher nutrient concentrations, including near the Mississippi
228 River outflow (Table 1; fig. S2). DIC was highest in the southern GOM and onto the Campeche
229 Bank ($> 2050 \mu\text{mol kg}^{-1}$), while pH often increased from the shelf to open ocean regions of the
230 Gulf (Table 1; fig. S2).

231

232 Microbial groups differed in the type and number of variables that significantly contributed to
233 the final models (Table 2). Pseudo R^2 values produced from GLMs ranged from 0.26–0.80

234 (Table 2), though several other methods confirmed appropriate model fit. First, model
235 simulations fit the data well (Fig. 4C; Fig. 5C) and the standardized residuals were normally
236 distributed for all groups (Kolmogorov–Smirnov, $P > 0.05$), except for Flavobacteriales. This
237 was further supported by significant and often strong positive correlations (Pearson $R = 0.31$ –
238 0.90 ; $P < 0.01$) between test and model-trained relative abundance data for all groups (fig. S9;
239 fig. S10), with example plots shown for SAR11 (Fig. 4D) and Syndiniales (Fig. 5D).
240 Explanatory variables like temperature, DIC, and pH had individual, and often significant ($P <$
241 0.05) effects on relative abundance that varied among major 16S (Fig. 4A–B) and 18S groups
242 (Fig. 5A–B). Through this approach, we examined individual model terms, focusing primarily on
243 those related to ocean change, and explored their relationships with group-specific relative
244 abundances in the GOM.

245 Our model findings often supported prior physiological responses for certain microbial groups
246 that have been revealed in field and culture experiments. While changes in relative abundance
247 data with any given environmental factor does not necessarily translate to physiology, applying
248 DNA metabarcoding to OA research can help to verify existing trends and produce new
249 hypotheses for future testing on a wide range of microorganisms (22, 23). We found that
250 temperature had a positive effect on the relative abundance of SAR11 and SAR86 in our models
251 (Fig. 4A–B). Experimental evidence suggests that warmer conditions may favor increased
252 biomass of small, oligotrophic bacteria, like SAR11 and SAR86, that have low nucleic acid
253 content (65). In general, warming is thought to promote increased bacterial production, biomass,
254 and respiration, while also lowering growth gross efficiency (20). DIC had a positive effect on
255 SAR11, SAR86, and Flavobacteriales in group models (Fig. 4A–B), which together with
256 temperature effects, may imply a favorable response among these taxa to continued OA and
257 warming in this region. It is important to note that heterotrophic bacteria will also be influenced
258 by indirect changes in plankton composition, dissolved organic matter (DOM) availability and
259 quality, and trophic interactions (21, 66). These factors may outweigh direct OA effects in
260 natural communities and will be important to incorporate into future climate model predictions
261 of bacterial diversity and composition.

262
263 We observed contrasting effects of pH on the relative abundance of *Prochlorococcus* vs.
264 *Synechococcus* in the photic zone (Fig. 4A–B). For example, in situ pH had a strong and positive
265 effect on *Prochlorococcus*, implying a negative response to lower pH (more acidic) conditions.
266 An opposite trend was observed for pH in the *Synechococcus* model (Fig. 4A–B); however, DIC
267 also had a negative effect on *Synechococcus*, confounding model inference. Fu et al. (2007)
268 noted that combined effects of high $p\text{CO}_2$ and temperature significantly increased growth rates,
269 photosynthetic capacity, and cellular pigment levels of *Synechococcus* but not *Prochlorococcus*.
270 Mesocosm work in the subtropical North Atlantic also indicated a positive response of
271 *Synechococcus* to high $p\text{CO}_2$ (67), though others have noted small or insignificant physiological
272 shifts to changing conditions (68). On a global scale, ecological niche models predict increased
273 *Prochlorococcus* and *Synechococcus* biomass to ocean warming (via flow cytometry),

275 particularly in low latitude regions like the GOM, where these taxa already dominate plankton
276 biomass (69). Such niche models have not considered pH (or DIC), which we show may be
277 significant predictors. Though not resolved at the ecotype level in our amplicon dataset,
278 individual cyanobacterial strains or ecotypes will likely respond differently to future conditions,
279 as well as be influenced by indirect changes in top-down pressure (grazing or viral lysis),
280 nutrients, or sunlight (70, 71). Multiple ecotypes have already been discovered for
281 *Prochlorococcus* in the ocean, with evidence of different nutrient uptake rates, light preferences,
282 and thermal optima that shape population dynamics (51, 72). Additional field and laboratory
283 work is needed to identify responses among microbes at the species or ecotype level to support
284 accurate model predictions (13) and reveal underlying physiological mechanisms.

285
286 Future OA and warming is predicted to favor small phytoplankton, like picoeukaryotes, that can
287 more efficiently exploit oligotrophic and nutrient-limited waters (11, 12, 14), primarily due to
288 their larger cell surface to volume ratios that promote resource acquisition. Though for many
289 protists, the effects of OA and warming are less clear. This is especially true for Syndiniales and
290 Sagenista, enigmatic protist parasites and grazers that have seldom been considered with respect
291 to climate change. In our models, temperature had a significant and positive effect on the relative
292 abundance of Syndiniales and Sagenista (Fig. 5A–B). Temperature is often thought to enhance
293 physiological rates (73), which may include microzooplankton grazing and parasitism; however,
294 temperature relationships are hard to predict and can often be confounded by other factors, like
295 host or prey composition, that can dictate mortality rates. We found that pH had a positive effect
296 on Syndiniales and Sagenista, while DIC had a negative impact on Syndiniales relative
297 abundance (Fig. 5A–B). This implied a negative response among these groups to more acidic
298 conditions in the GOM at this time. Therefore, models that include only temperature or pH may
299 result in different outcomes for certain plankton groups (74), potentially misleading how we
300 interpret (and predict) their responses to climate change.

301
302 Dinophyceae were also prevalent in the photic zone on GOMECC-4 (Fig. 3D). It is well
303 understood that dinoflagellates are central to the microbial loop in oligotrophic regions, often
304 exhibiting mixotrophy and representing a key link between primary production and higher
305 trophic levels (29, 53). We found that temperature and DIC had significant and negative effects
306 on Dinophyceae relative abundance (Fig. 5A–B), implying a negative response to warmer and/or
307 more acidic conditions in the GOM. Similar findings on dinoflagellates have been observed in a
308 mesocosm study (67), though others have found dinoflagellates to benefit from or be less
309 sensitive to warming or increased $p\text{CO}_2$ concentrations (23, 71, 74, 75). Dinoflagellates often
310 exhibit mixotrophy, and so favorable responses to OA among this group may be indicative of
311 increased consumption of common prey (picoeukaryotes and cyanobacteria) that tend to grow
312 faster under such conditions (75). As is the case with many protists, dinoflagellates are extremely
313 diverse, not only phylogenetically but also in terms of their size, physiology, and trophic modes
314 (76). Therefore, it will likely be challenging to define a unified response for Dinophyceae to
315 changing ocean conditions. Future work that merges DNA metabarcoding with more targeted

316 approaches, like single-cell genomics or qPCR, will help to shed light on species sensitivity,
317 interactions, and drivers that would otherwise be overlooked.

318

319 In addition to temperature and carbonate chemistry parameters, other factors like nutrients,
320 salinity, and oxygen had significant effects on prominent 16S and 18S groups in the GOM (Fig.
321 4A; Fig. 5A). As an example, limiting nutrients like NO_3 and PO_4 had negative effects on the
322 relative abundance of *Synechococcus* and *Prochlorococcus*, respectively (Fig. 4A). This may be
323 related to the ability of cyanobacteria to uptake nutrients at low concentrations in surface waters
324 (72). *Synechococcus* are thought to exploit low NO_3 concentrations in the GOM by maintaining a
325 shallower distribution in the water column (64), relying on regenerated sources of NO_3 via
326 nitrification (29). Salinity was also an important variable in our models, with positive effects on
327 the relative abundance of *Prochlorococcus*, Syndiniales, Dinophyceae, and Prymnesiophyceae,
328 as well as a negative effect on Flavobacteriales (Fig. 4A; Fig. 5A). Salinity is a known driver of
329 bacterial and plankton distribution and diversity in the GOM (37, 39, 77). This is particularly
330 evident in the northern GOM, where plankton biomass and composition are often driven by
331 salinity-induced stratification (and nutrient availability) that result from riverine discharge via
332 the Mississippi–Atchafalaya system, as well as by climatic processes, like the El Niño–Southern
333 Oscillation (77, 78). Here, interpreting the role of salinity or nutrients in driving specific
334 microbial groups was difficult, mainly because our sampling strategy and analysis focused on
335 large-scale spatial patterns in microbial communities that did not allow us to explore regional
336 trends (e.g., in the northern GOM). Even so, our results emphasize the importance of including
337 such variables to resolve microbial composition and distribution at the basin scale in the GOM.
338

339 There are several caveats to consider with our model analysis. Models constructed from
340 amplicon data on GOMECC-4 reflected only a specific time of the year (summer–fall) and did
341 not integrate seasonal sampling. Temperature and carbonate chemistry parameters vary
342 seasonally in the GOM (79), as does the intensity and position of the Loop Current (and eddies)
343 and nutrient input from coastal runoff, all of which will impact microbial communities (80, 81).
344 Consistent temporal sampling will be essential to better resolve microbes and their drivers over
345 seasonal and interannual time scales (24). Such sustained sampling will also allow for more
346 accurate predictions of microbial dynamics that integrate new OA data beyond the limits of
347 GOMECC-4 measurements. We also considered GLMs for major taxonomic groups that were
348 present in our samples (i.e., highest relative abundance), mainly to avoid issues with zero-
349 inflation and overdispersion in the models. As a result, several groups thought to be sensitive to
350 ocean change, like diatoms and diazotrophic cyanobacteria (8), were not considered here due to
351 lower relative abundance at the basin scale. Similarly, this constrained our ability to predict
352 model effects below the order to class level, with the exception being highly abundant
353 cyanobacterial genera. We examined linear trends with GLMs as a simple and conservative
354 approach to model relative abundance in the GOM. Future work may consider applying
355 generalized additive models (GAMs) that allow for nonlinear dynamics (82), especially as more
356 amplicon data is collected.

357

358 Though we tested for model fit, it is important to note that amplicon data is compositional, with
359 relative abundance of any single group being dependent on the proportion of others (83).
360 Comparing relative abundance among eukaryotic groups is also tenuous, as 18S rRNA gene copy
361 numbers can vary greatly (2–166 copies per cell) among protists (84). This is especially true for
362 alveolates (Syndiniales and Dinophyceae) and can lead to overestimation of read counts and
363 relative abundance (42). However, such concerns would not necessarily discount our modeling
364 approach that focused on groups separately and explored their relation to environmental factors.
365 Lastly, models did not account for trophic interactions (e.g., changes in prey or host) that may
366 vary along with changing conditions (19) or potential evolutionary adaptations among organisms
367 (85). Nevertheless, applying GLMs to amplicon data in this study offered a first step to define
368 multiple environmental drivers of diverse marine microbes, many of which are not easily
369 discerned with traditional observational methods like microscopy or cytometry. Our findings are
370 also timely for marine regions like the GOM that have lacked basin-scale sampling.

371

372 **GLMs expand microbial distributions in GOM surface waters**

373

374 Final models were used to predict the relative abundance of major 16S and 18S groups at 135
375 surface sites on GOMECC-4 (Fig. 1A), including 84 sites where DNA was not collected. This
376 allowed us to increase the spatial resolution of microbial sampling in the GOM at this time of
377 year. Groups like SAR11 (Fig. 6A) and Syndiniales (Fig. 6F) were well distributed throughout
378 the GOM, with highest relative abundance predicted offshore of Brownsville (Texas), in the Bay
379 of Campeche, and regions on the Campeche Bank. Cyanobacteria genera were largely partitioned
380 in the GOM based on their expected ecological niches (86). *Prochlorococcus* was most relatively
381 abundant offshore in stratified and nutrient-limited waters (Fig. 6B), particularly in parts of the
382 southern GOM. *Synechococcus* was present throughout the GOM at the surface, but relative
383 abundance was often highest in nutrient-rich coastal regions and in a localized area in the central
384 Gulf (Fig. 6C). Other groups like SAR86 (Fig. 6D), Prymnesiophyceae (Fig. 6H), and Sagenista
385 (Fig. 6I) were most relatively abundant offshore in the southern GOM and onto the East Mexico
386 Shelf, likely driven by higher temperature and DIC concentrations in these areas (fig. S2). This
387 was supported in the model output for these taxa, where temperature and/or DIC had positive
388 effects on relative abundance (Fig. 4A; Fig. 5A). Flavobacteriales was highest near the
389 Mississippi River outflow (Fig. 6E), in line with strong negative effects of salinity in the model
390 output for this group (Fig. 4A). The Mississippi River is the dominant source of freshwater into
391 the GOM, providing nutrients and organic matter into the system (fig. S2) that can stimulate
392 phytoplankton blooms (81). Though not widespread in the GOM, diatoms were most relatively
393 abundant in the photic zone near the Mississippi River (Fig. 3D), which may have contributed to
394 higher relative abundance of copiotrophs like Flavobacteriales that often associate with blooms
395 and can rapidly consume DOM (87).

396

397 Current predictions also revealed insights into the biogeography of a HAB species in the GOM.
398 Though prevalent through most of the GOM, including in the open ocean, relative abundance of
399 Dinophyceae was predicted to be highest directly off the coast of Tampa, Florida (Fig. 6G). This
400 was caused by a likely bloom event of the mixotrophic dinoflagellate, *Karenia brevis*, captured
401 in our DNA samples (fig. S11) and confirmed to be highly abundant through manual counts
402 (10^5 – 10^6 cells l^{-1}) estimated around the same time and location via the Florida Fish and Wildlife
403 Conservation Commission (<https://myfwc.com/research/redtide/monitoring>). HABs formed by
404 *K. brevis* are common in the GOM in the summer–fall, particularly along the West Florida Shelf,
405 and can negatively impact marine ecosystems and local economies (32, 33, 35). There is
406 evidence that warming may increase toxin production, growth rates, bloom frequency, and range
407 expansion of some HAB species (88). Temperature had negative effects on Dinophyceae in our
408 models (Fig. 5A–B), but responses were not explored to genus level. In culture, *K. brevis* has
409 shown increased growth rates with increasing pCO_2 , though changes in toxin production were
410 not recorded (89). It remains important to monitor HABs and their drivers (90), combining
411 traditional monitoring and molecular methods to better predict pervasive blooms in the GOM
412 and elsewhere.

413

414 **Indicator analysis reveals candidate microbial indicator taxa of OA**

415

416 It is also important to determine specific microorganisms below the order to class level that may
417 be indicative of different OA conditions in natural waters (9, 10, 23). To this end, we grouped
418 samples in the photic zone (Cluster 1) based on TA:DIC ratios and examined microbial indicator
419 taxa at the ASV level. The TA:DIC ratio is a well-used proxy for carbonate chemistry in the
420 ocean, determining the buffering capacity against acidification (79, 91). In general, lower
421 TA:DIC ratios indicate poorly buffered waters, and so in our case, microbes that were more
422 prevalent in lower TA:DIC samples may be candidate indicators of more acidic conditions in the
423 GOM. TA:DIC ratios ranged from 1.1–1.2 in the photic zone, were not influenced by sampling
424 transect, and were positively correlated with pH (Pearson $R = 0.71$; $P < 0.01$) in surface waters
425 (Fig. 7A–B). TA:DIC ratios were manually grouped into low (< 1.16) vs. high (> 1.16)
426 categories to explore microbial indicators (Fig. 7A–B).

427

428 Overall, we found that 146 and 117 protist ASVs were significant indicators ($P < 0.001$) of low
429 or high TA:DIC ratios, respectively (table S2). Protist indicators spanned a range of taxonomic
430 groups, though several ASVs stood out (Fig. 7C). For instance, protists with the highest indicator
431 values (> 0.35) in samples with low TA:DIC ratios included *Ostreococcus* sp., which was the
432 most relatively abundant indicator ASV on average in the photic zone (~6%), as well as other
433 ASVs assigned to *Emiliania huxleyi* (now *Gephyrocapsa huxleyi*), Cryptomonadales,
434 *Euduboscquella* (Syndiniales), and Dino-Group I Clade 1 (Syndiniales). In comparison, ASVs
435 with high indicator values (> 0.55) in samples with high TA:DIC ratios consisted of ASVs
436 assigned to heterotrophic flagellates like MAST 3-B (and 4-B) and Kathablepharidida, as well as
437 parasites in Dino-Group III and V (Fig. 7D). For 16S samples, a total of 228 and 136 ASVs were

438 significant indicators ($P < 0.001$) of low vs. high TA:DIC ratios (table S2), dominated by
439 Proteobacteria (fig. S12). 16S ASVs with the highest indicator values (> 0.45) in low TA:DIC
440 samples included an ASV assigned to SAR11 clade Ia, which accounted for 10% of reads on
441 average in Cluster 1, as well as other ASVs assigned to SAR11 (clade I and Ia), SAR406, and
442 AEGEAN-169 (fig. S12). The 16S ASVs that were most indicative of high TA:DIC were
443 assigned to SAR116, SAR86, AEGEAN-169, and Rickettsiales (family S25-593; fig. S12).
444
445 Pico- and nanoeukaryotes dominate warm and oligotrophic regions like the open GOM (27, 53,
446 64) and are sensitive to changing ocean conditions (15, 23). Two of arguably the most well
447 studied taxa in the field of phytoplankton OA research, *Ostreococcus* sp. and *Emiliania huxleyi*,
448 were associated with less buffered (and more acidic) waters in the GOM (Fig. 7C). Both species
449 are widespread and impact global biogeochemical cycles (92), with *E. huxleyi* being a major
450 calcifier and contributor to CaCO_3 flux (93). In a prior 18S rRNA metabarcoding survey in the
451 southern GOM, *Ostreococcus* was the only genus with significantly different relative abundance
452 between upwelling and downwelling conditions in the DCM and when comparing the DCM to
453 mixed layer (38), which authors suggest may make this species an indicator of vertical nitrate
454 flux. Our findings imply *Ostreococcus* may also be a candidate indicator of acidic conditions in
455 GOM surface waters. Calcifying plankton, like *E. huxleyi*, are thought to be strongly impacted by
456 OA, with increased $p\text{CO}_2$ and/or lower pH having detrimental effects on growth and calcification
457 rates (15, 16). However, contrasting effects have been observed and may reflect considerable
458 strain and ecotype variability (18, 23). Indeed, several culture-based studies with *E. huxleyi* (and
459 *Ostreococcus*) have revealed adaptive mechanisms of cells to elevated $p\text{CO}_2$ over hundreds of
460 generations (94, 95). Though *E. huxleyi* was not prevalent overall in our samples (fig. S8), this
461 species has been measured in high concentrations ($\sim 10^4$ cells l^{-1}) in the southern GOM in spring
462 (96). Together with model results at the class level (positive temperature effects on
463 Prymnesiophyceae), our findings highlight the potential sensitivity of haptophytes to changing
464 conditions in the GOM that should be further explored.
465
466 Indicator analysis also revealed SAR11, specifically ASVs assigned to clades 1 and 1a, as being
467 possible indicators of less buffered waters in the GOM in summer–fall (fig. S12). SAR11 is the
468 most abundant bacterial group in the oceans, playing an important role in global carbon cycling
469 (97). Though diverse, members of the SAR11 clade Ia ecotype tend to be most prevalent in
470 surface oceans (52), adapted to nutrient-poor conditions via small cell sizes and streamlined
471 genomes (98). Though direct effects of OA on SAR11 remain unclear and are likely to be less
472 important compared to shifts in DOM (21), SAR11 exhibits known seasonality in the surface
473 oceans and is sensitive to temperature (48, 65). Such temperature sensitivity was supported in
474 our model analysis (Fig. 4A–B). Given the ubiquity of SAR11 and its role in global carbon
475 cycles, it remains critical to confirm and further investigate the potential of this group as an
476 indicator of ocean change.
477

478 **Future sampling to characterize microbes in changing oceans**

479
480 Efforts to characterize microbial communities over natural physicochemical gradients are
481 essential to inform how these communities may shift in the face of changing ocean conditions
482 (10). In the GOM, there is evidence of increased $p\text{CO}_2$ in many parts of the open ocean that are
483 on par with rates of change in other oligotrophic regions (99), like those measured in the Pacific
484 Ocean via the Hawaiian Ocean Time-series ($1.72 \mu\text{atm yr}^{-1}$) and in the Atlantic Ocean via the
485 Bermuda Atlantic Time-series Study ($1.69 \mu\text{atm yr}^{-1}$). Yet, knowledge on the effects of OA and
486 warming on biological organisms is limited in the GOM, particularly for microbes. Here, we
487 performed the first basin-scale DNA metabarcoding survey in the GOM and paired this with
488 extensive hydrographic, nutrient, and carbonate chemistry measurements to investigate diverse
489 prokaryotes and protists and their specific environmental drivers (Fig. 1). In line with prior
490 physiological and modeling-based observations, our GOM model analyses suggest that more
491 acidic and warmer conditions in the GOM may favor heterotrophic bacteria (SAR11 and SAR86)
492 and smaller phytoplankton (e.g., Prymnesiophyceae), with groups like Dinophyceae potentially
493 being less favored in future conditions (Fig. 4; Fig. 5). Warming and OA in the GOM may have
494 contrasting effects on major plankton parasites (Syndiniales) and grazers (Sagenista) that are
495 seldom considered with respect to climate change and underscores the importance to measure
496 multiple stressors simultaneously (Fig. 5). We also defined microbial indicator taxa at the ASV
497 level (Fig. 7), which resulted in several ubiquitous (and environmentally sensitive) microbes, like
498 *Ostreococcus* sp., *Emiliania huxleyi*, and SAR11 clade Ia, being associated with more acidic
499 waters in the GOM. Model inference and the utility of identified ASVs to act as indicator species
500 of OA will need to be further tested, including at different times of the year to reflect seasonal
501 turnover of the microbial community.

502
503 Though still unclear, empirical and predictive work suggests that changes in our ocean systems
504 will likely have profound impacts on microbial composition, biogeography, and physiology (8,
505 100), with consequences for trophic transfer, nutrient cycling, and carbon export. Global models
506 and experimental evidence predict increased stratification with warming, shifting communities to
507 smaller picophytoplankton that can better exploit nutrients and other resources (12, 14).
508 Warming-induced stratification may also result in an overall net reduction in carbon export that
509 may threaten to decrease the amount of organic carbon that reaches the seafloor (101). Yet,
510 predicted shifts in carbon export in global ecosystem models remains uncertain, ranging from a
511 41% decrease to 8% increase in carbon export flux in future oceans (102). Strong selection
512 imposed by climate change may also drive rapid adaptation, competition, or the emergence of
513 new species (e.g., with higher thermal tolerance), all restructuring microbial communities (8, 13,
514 85). In culture, some microbes demonstrate the ability to adapt to warmer or more acidic
515 conditions (94, 95), though this does not necessarily mean they will remain competitive and it
516 remains an open question on how this will apply to natural systems with mixed assemblages (19,
517 85). Further, current models do not fully account for trophic interactions, like grazing or
518 parasitism, the rates of which will likely vary in future oceans and offset direct physiological

519 effects of OA or warming on certain microbes. It remains important to measure microbial
520 interactions, plankton mortality rates, and carbon export rates over time and in space (10, 102),
521 which will support a more mechanistic approach to model predictions.

522
523 Our findings provide an important baseline for microbial OA research in the GOM; however,
524 sampling on GOMECC-4 only reflected a single time of the year and did not consider known
525 seasonal variability in carbonate chemistry parameters or hydrography (79, 80), which are likely
526 to influence microbes and their drivers (36). In response, there is a need for sustained biological
527 measurements in the GOM, either by establishing long-term monitoring programs or continuing
528 to leverage existing oceanographic surveys, like GOMECC. Long term microbial sampling in the
529 GOM will be essential to accurately predict future changes in microbial groups that may be
530 expected with continued OA or warming. For example, increased DNA collection would support
531 ecosystem modeling of microbes in the GOM, integrating climate model scenarios (e.g., via the
532 Coupled Model Intercomparison Project) to predict shifts in microbial abundance by the end of
533 the century. Ultimately, our ability to predict the response of marine microbes to climate change
534 will depend on sustained and coordinated sampling efforts across a range of dynamic marine
535 ecosystems.

536
537 **Materials and Methods**

538 **Seawater collection, DNA filtration, and environmental metadata**

539
540 Seawater was collected on board the NOAA Ship *Ronald H. Brown* as part of GOMECC-4 from
541 September 13 to October 21, 2021. Sampling for GOMECC-4 occurred along 16 inshore–
542 offshore transects across the entire GOM and an additional line at 27°N latitude in the Atlantic
543 Ocean (Fig. 1A). Sampling started at the 27°N line and continued counterclockwise across the
544 GOM, ending at Florida Straits and Cape Coral. We also collected DNA samples near Padre
545 Island National Seashore (U.S. National Parks Service), a barrier island located off the coast of
546 south Texas (Fig. 1A). Vertical CTD sampling was employed at each site to measure discrete
547 physical, chemical, and biological properties. Water sampling for DNA filtration was conducted
548 at 51 out of 141 total sites and three depths per site, representing the surface, deep chlorophyll
549 maximum (DCM), and near bottom (fig. S1).

550
551 At each respective site and depth, seawater was collected from pre-designated Niskin bottles on a
552 CTD rosette. To ensure adequate amounts of water were filtered for DNA analysis, samples for
553 chemical parameters were taken at the same depths but with different discrete Niskin bottles.
554 Following a CTD cast, which varied in duration from 30 min to 3 h depending on water depth,
555 whole seawater was transferred from Niskin bottles to triplicate Whirl-Pak bags (3 depths x 3
556 replicates = 9 bags per site). Within an hour, whole seawater (~2 L per replicate) was filtered
557 through 0.22-µm Sterivex filters (Millipore; CAT# SVGP01050) via a peristaltic pump (100–150
558 rpm) and run dry. Filters were capped and outlets were sealed with parafilm. Filters were stored

559 at -80°C on the ship and kept at the same temperature in the laboratory for longer-term storage.
560 Filter lines were sterilized with 2% bleach and rinsed with Milli-Q after every site. Milli-Q
561 blanks were also filtered randomly throughout the duration of the cruise. Accounting for blanks
562 and replication, a total of 481 Sterivex filters were collected on GOMECC-4.
563

564 Discrete samples for water column hydrography and chemistry were taken at each site and depth
565 during GOMECC-4, including sites sampled for DNA. Temperature, salinity, pressure, and
566 chlorophyll fluorescence were obtained from the CTD. Vertical CTD profiles on the downcast
567 were used to estimate the position of the DCM at each site. Blanks and quality control samples
568 were considered for each discrete chemical parameter. Dissolved oxygen concentration was
569 estimated from water samples (125 ml) using an automated oxygen titrator with amperometric
570 end-point detection (103). Nutrient samples were collected from Niskin bottles into 50-ml acid
571 washed bottles. Dissolved nutrients (NO_3 , NO_2 , NH_4 , PO_4 , and SiO_4) were measured on board
572 using an automated continuous flow analytical system with colorimetric detection ((104); SEAL
573 Analytical). Samples for DIC were collected from Niskin bottles into 294-ml borosilicate glass
574 bottles, sealed with glass stoppers, and stored for 12 h at room temperature. DIC samples were
575 analyzed on the ship using two analytical systems, each consisting of a coulometer (CM5017,
576 UIC Inc.) coupled with a Dissolved Inorganic Carbon Extractor (105).
577

578 Samples for total alkalinity (TA) were collected from Niskin bottles into 500-ml collection
579 bottles, preserved with a mercuric chloride solution, and kept in a water bath at 22°C for 1 h
580 prior to analysis. TA measurements were made using a two-titration system, consisting of a
581 Metrohm 765 or 665 Dosimat Titrator and Orion 720A or 2-Star pH meter (106). Samples for
582 $p\text{CO}_2$ were drawn from Niskin bottles into 500-ml glass bottles, preserved with mercuric
583 chloride, and stored at room temperature for 8 h before analysis. Details on the system used to
584 measure $p\text{CO}_2$ are described in (107) and include equilibrating each sample with a constantly
585 circulating gas phase. Lastly, for pH analysis, samples were collected from Niskin bottles into
586 10-cm (~ 30 ml) glass cylindrical optical cells and analyzed on an Agilent 8453
587 spectrophotometer with a custom-made temperature-controlled cell holder (108). Aragonite
588 saturation state was calculated at each site and depth based on temperature, salinity, pressure,
589 DIC, and TA using the CO2SYS program for CO₂ System Calculations (109). Measurements of
590 $p\text{CO}_2$ (20°C) and pH (25°C) were re-calculated to in situ conditions using pressure, temperature,
591 salinity, DIC, and TA in CO2SYS (109). Environmental metadata associated with DNA samples
592 are provided in table S3.
593

594 **DNA extractions, PCRs, and library preparations**

595 Sterivex filters were extracted in-house at NOAA's Atlantic Oceanographic and Meteorological
596 Laboratory (AOML) using the ZymoBIOMICS 96 DNA/RNA MagBead kit (Zymo; CAT#
597 D4308), with modifications for in-cartridge bead beating as described in (110). Filters were
598 thawed, the inlet caps were removed, and excess water was dried from the inlet using kimwipes
599

600 to allow for dispensing of beads into the cartridge. Premade mixtures of 0.1 mm and 0.5 mm
601 beads were directly added into the filters to ensure adequate lysis and recovery of hard-to-lyse
602 phytoplankton groups (110). This was followed by the addition of a lysis buffer (1 ml). Sterivex
603 filters were vortexed for 40 min on a Vortex-Genie at maximum speed (~3200 rpm). DNA
604 lysates were transferred to 2-ml LoBind tubes (Eppendorf) via syringe and centrifuged for 1 min
605 at 10,000 g. Supernatant (750 μ l per sample) was split across three KingFisher 96-well plates
606 (250 μ l per plate). Zymo MagBinding buffer (600 μ l) and magnetic beads (25 μ l) were added to
607 each well in each of the three plates. With this setup, 96 samples were extracted at the same time
608 on the automated KingFisher Flex (Thermo Fisher). Each run included three wash plates with
609 500–900 μ l per well of MagWash and an elution plate with 150 μ l per well of molecular-grade
610 water. DNA was eluted into a single well from the same discrete sample across replicate plates.
611 Concentrations of eluted DNA were measured using a Varioskan LUX plate reader and the
612 Quant-IT dsDNA Assay (Thermo Fisher) and corrected per replicate sample based on volume of
613 seawater filtered (ng l⁻¹; fig. S13). Filters were processed randomly. Extraction blanks (clean
614 Sterivex filters) were also included and processed similarly. A bacterial mock community
615 (Zymo) was included as a positive control.

616
617 Metabarcoding libraries were initially prepared at AOML, amplifying DNA of target organisms
618 with universal primers, including 16S (Bacteria and Archaea) and 18S rRNA (protists). Primers
619 from (111) were used to target the 16S V4–V5 region: forward (515f; 5'-
620 GTGYCAGCMGCCGCGGTAA-3') and reverse (926r; 5'-CCGYCAATTYMTTTRAGTTT-
621 3'). Primers from (112) and the Earth Microbiome Project
622 (<http://www.earthmicrobiome.org/emp-standard-protocols/18s/>) targeted the 18S V9 region:
623 forward (1391f; 5'-GTACACACCGCCCCGTC-3') and reverse (EukBr; 5'-
624 TGATCCTTCTGCAGGTTCACCTAC-3'). Primers were constructed with Fluidigm common
625 oligos CS1 forward (CS1-TS-F: 5'-ACACTGACGACATGGTTCTACA-3') and CS2 reverse
626 (CS2-TS-R: 5'-TACGGTAGCAGAGACTTGGTCT-3') fused to their 5' ends, to enable two-
627 step library preparation at the Michigan State University Research Technology Support Facility
628 (RTSF).
629

630 PCR reactions were run in triplicate (12.5 μ l per sample), with 1 μ l of DNA per sample. 16S
631 PCR reactions consisted of 5 μ l of AmpliTaq Gold, 6.25 μ l of water, and 0.375 μ l of each primer
632 (10 μ M); PCR conditions included denaturation at 95 °C for 2 min, 25 cycles of 95 °C for 45 s,
633 50 °C for 45 s, and 68 °C for 90 s, followed by a final elongation step of 68 °C for 5 min (111).
634 18S PCR reactions consisted of 5 μ l of AmpliTaq Gold, 6.5 μ l of water, and 0.25 μ l of each
635 primer (10 μ M); PCR reactions involved denaturation at 94 °C for 3 min, 35 cycles of 94 °C for
636 45 s, 65 °C for 15 s, 57 °C for 30 s, and 72 °C for 90 s, followed by a final elongation step of 72
637 °C for 10 min (112). PCR products were pooled and run on a 2% agarose gel to confirm
638 amplification of target bands. Sample plates were submitted to the Michigan State University
639 RTSF Genomics Core for secondary PCR and sequencing.
640

641 Secondary PCR used dual-indexed, Illumina-compatible primers, targeting the Fluidigm
642 CS1/CS2 oligomers at the ends of the PCR products. PCR conditions for the secondary run
643 included an initial denaturation step at 95 °C for 3 min, 11 cycles of 95 °C for 15 s, 60 °C for 30
644 s, and 72 °C for 60 s, followed by elongation at 72 °C for 3 min. Amplicons were batch
645 normalized using Invitrogen SequalPrep DNA Normalization plates and the recovered product
646 was pooled. The pool was QC'd and quantified using a combination of Qubit dsDNA HS,
647 Agilent 4200 TapeStation HS DNA1000, and Invitrogen Collibri Library Quantification qPCR
648 assays. The RTSF Core included a sequencing blank for each sample plate. Separate sequencing
649 runs were performed using an Illumina MiSeq (2 × 250 bp) for 18S and 16S samples. Custom
650 sequencing and index primers complementary to the Fluidigm CS1 and CS2 oligomers were
651 added to appropriate wells of the reagent cartridge. Base calling was done by Illumina Real Time
652 Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and converted to FASTQ
653 format with Illumina Bcl2fastq v2.20.0.

654

655 **Bioinformatics and functional assignments**

656

657 Primers were removed from demultiplexed FASTQ sequences using Cutadapt (113). Trimmed
658 reads were processed in Tourmaline, which implements QIIME 2 (and DADA2 plugins) in a
659 Snakemake workflow (114). Paired-end DADA2 was used to infer 16S and 18S amplicon
660 sequence variants or ASVs (115). Taxonomic assignments were also performed in Tourmaline
661 using reference files from SILVA (Version 138.1; (116)) and the Protistan Ribosomal Reference
662 or PR2 (Version 5.0.1; (117)) databases for 16S and 18S ASVs, respectively. In both cases,
663 taxonomy was assigned using a Naïve Bayes classifier trained to the respective databases and
664 trimmed to the primer regions (118). Output files (taxonomy, count, and metadata) were
665 imported separately into R (Version 4.3.1) using qiime2R (Version 0.99.6;
666 <https://github.com/jbisanz/qiime2R>) and merged with phyloseq (Version 1.44.0; (119)). Several
667 groups were removed from the 18S dataset: Metazoa, Streptophyta, Rhodophyta, and unassigned
668 reads at the Subdivision level. 18S reads assigned to non-marine taxa, e.g., Insecta, Archosauria,
669 and Ascomycota were also filtered out. For 16S, reads assigned to Chloroplast, Mitochondria,
670 and Eukaryota were removed. Samples with less than 3,000 reads counts were filtered out for
671 18S (5,000 reads for 16S), along with ASVs only observed once in each respective dataset.
672 Species accumulation curves were generated for 18S and 16S samples using the R package
673 ranacapa (Version 0.1.0; (120)). The number of reads vs. ASVs was saturated with respect to
674 categorial depth and position of samples on the shelf vs. open GOM, indicating that an
675 appropriate sequencing depth was reached (fig. S14). Samples were rarefied to the minimum
676 read count to normalize for differences in library size.

677

678 Protist ASVs were manually assigned to functional groups based on 18S V9 functional
679 annotations (<https://doi.org/10.5281/zenodo.3768950>) that were previously applied to Tara
680 Ocean communities (57). Additional databases (e.g., World Register of Marine Species) and
681 literature searches were also used. The following functional groups were included for 18S

682 protists: autotrophic protists, heterotrophic protists, mixotrophic protists, parasites,
683 photosymbionts, and other protists. Mixotrophic protists were further categorized as being
684 constitutive mixotrophs (CM) that inherently have chloroplasts and endosymbiotic specialist
685 non-constitutive mixotrophs (eSNCM) that harbor endosymbionts to support growth (121). We
686 recognize that many protists likely exhibit mixotrophy in some capacity, and so, our functional
687 annotation of this group may be underrepresented. Other protists represented higher level
688 taxonomic groups (domain or supergroup) that were unassigned at lower levels. Bacteria and
689 Archaea were categorized functionally as being heterotrophic or autotrophic.

690

691 Statistical analyses

692

693 Prior to ordination, ASV count tables were transformed to Aitchison distances, which is
694 estimated by transforming read counts via centered log-ratio normalization and computing
695 Euclidean distances. The resulting Aitchison distance matrices were used to observe microbial
696 composition and aimed to minimize compositional bias inherent with amplicon data (83).
697 Principal coordinate analysis (PCoA) of Aitchison distances was used to visualize 16S and 18S
698 community composition. Permutational multivariate analysis of variance (PERMANOVA) tests
699 were employed with the adonis2 function in vegan (9999 permutations) to estimate the impact of
700 spatial factors on community composition. This included categorical depth (surface, DCM, and
701 near bottom), sampling transect, and location of samples on the continental shelf vs. in open
702 ocean regions of the GOM designated by the 200 m isobath (Fig. 1A).

703

704 Samples were also grouped into clusters via hierarchical clustering (Ward's method) based on
705 Aitchison distances using the hclust function in vegan (Version 2.6-6.1; (122)). The optimal
706 number of clusters was determined based on average silhouette widths using the factoextra
707 package (Version 1.0.7; (123)). Silhouette widths offer an estimate on the quality of sample
708 clustering, with higher width coefficients indicating optimal clustering (124). Three clusters were
709 found to be optimal for both 16S and 18S (fig. S15), which largely reflected depth in the water
710 column (Fig. 1B; fig. S1). Cluster 1 consisted of samples collected at all depths on the shelf and
711 offshore in the surface layer, all confined to the photic zone (2–99 m). Cluster 2 consisted of
712 samples mainly from offshore and more stratified waters in the DCM (2–124 m), while Cluster 3
713 represented samples collected offshore in meso- to bathypelagic waters (135–3,326 m). The
714 photic zone extends to 200 m in many deeper regions of the GOM, and so, samples in Cluster 2
715 (and a handful in Cluster 3) were also technically collected within the photic zone. However, we
716 distinguish communities in Clusters 2–3 from Cluster 1 based on the large proportion of samples
717 confined to the open ocean DCM (Cluster 2; 80%) and mesopelagic (Cluster 3; 98%) that reflect
718 disparate habitats in the GOM.

719

720 Mean Shannon diversity index and richness (# of ASVs) were determined for each cluster using
721 the estimate_richness function in phyloseq (119) and compared against other clusters with
722 Wilcoxon tests ($P < 0.05$). Mean diversity and richness were also estimated along transects,

723 applying local regression (loess) curves to visualize trends using the geom_smooth function in
724 ggplot2 (Version 3.5.1; (125)). Stacked bar plots displaying mean relative abundance were
725 observed at the class level for 18S and order level for 16S for each sampling transect and cluster
726 using the microeco package in R (Version 1.7.1; (126)). Taxonomic profiles were also observed
727 using the treemap package in R (Version 2.4-4; (127)), a tiered approach to visualize relative
728 abundance across multiple taxonomic levels.

729
730 Indicator taxa that were more abundant and representative of high (or low) TA:DIC ratios were
731 statistically inferred using the indic species package in R (Version 1.7.14; (128)). The TA:DIC
732 ratio was chosen because it is a good proxy to determine the ocean's capacity to absorb
733 anthropogenic CO₂ by influencing its buffering capacity (91). Higher ratios indicate strong
734 buffering capacity (i.e., the capacity of seawater to buffer against acidification). Based on
735 histograms of TA:DIC, samples were grouped a priori into high (> 1.16) or low categories (<
736 1.16) that reflect different OA conditions (Fig. 7A–B). We focused on DNA samples collected
737 from the photic zone (Cluster 1) to mitigate natural depth effects and to provide additional
738 context to models (see next section). Indicator analysis was run separately on rarefied 16S or 18S
739 samples that were agglomerated to the species level using the function multipatt with 999
740 permutations (128). Significant ASVs ($P < 0.001$) were retained and summarized for high (or
741 low) TA:DIC and plotted against their mean relative abundance in the photic zone.

742
743 **Generalized linear models**
744

745 Generalized linear models (GLMs) were used to examine relationships between environmental
746 factors (predictor variables) and the relative abundance of major microbial groups (response
747 variables). GLMs focused on DNA samples collected in the photic zone (Cluster 1), in large part
748 to mitigate collinearity of factors that was prevalent in Clusters 2–3 (table S1). Separate GLMs
749 were performed for the top four most relatively abundant order level 16S and class level 18S
750 groups (Table 2). Separate models were constructed for *Synechococcus* and *Prochlorococcus* to
751 resolve differences between major cyanobacteria genera. Only variables that met requirements of
752 low collinearity (Spearman $r_s < 0.7$ or > -0.7) and a variance inflation factor (VIF) < 10 were
753 considered (129). Zurr et al. (2010) suggest using a more stringent VIF cutoff (< 3). However,
754 we aimed to retain as many variables in the dataset as possible, which meant a few variables
755 (e.g., DIC and salinity) approached VIF = 10. To select the best model for each 18S or 16S
756 group, variables were further selected in a stepwise manner based on Akaike Information Criteria
757 (AIC) values using the stepAIC function in the MASS package in R (Version 7.3-60; (130)).
758 Only significant variables ($P < 0.05$) were used in the final model.

759
760 Final models were constructed with either Poisson or negative binomial error distributions.
761 Initial model type was chosen by comparing standardized residuals and other model indices (e.g.,
762 AIC) with the compare_performance function in the performance package in R (Version 0.11.0;
763 (131)). GLMs were implemented with the glm.nb function for negative binomial models in the

764 MASS package or the `glm` function for Poisson models (family = Poisson) in the `stats` package in
765 base R (Version 4.3.1). We observed overdispersion in relative abundance data for several
766 Poisson models (Syndiniales, Dinophyceae, *Synechococcus*, and *Prochlorococcus*), in which
767 case negative binomial models were applied (Table 2). Model quality and fit was estimated for
768 each group using the `check_model` function in the `performance` package (131), which included
769 plots of posterior predictive checks (model simulations), standardized residuals (Q–Q plots),
770 homogeneity of variance, and collinearity of selected predictor variables. The goodness of fit
771 was assessed with a pseudo R^2 (Nagelkerke's), though standardized residual checks of the final
772 models were also carried out (62) to assess model fit and uniformity of the residuals
773 (Kolmogorov–Smirnov, $P > 0.05$). As an additional validation, relative abundance data for each
774 group was randomly split and trained with respective models using 80% of the data to predict a
775 test set that was left out (20%). Pearson correlations were performed between model-trained and
776 test data.

777
778 Model coefficients were scaled and visualized for each 18S and 16S group using the `multiplot`
779 function in the `coefplot` package in R (Version 1.2.8; (132)). Individual factors were plotted
780 against predicted relative abundance using the `plot_model` function in the `sjPlot` package in R
781 (Version 2.8.16; (133)). We focused predictive plots on temperature and carbonate chemistry
782 parameters (DIC and pH). Group-specific GLMs were used to predict relative abundance at all
783 GOMECC-4 sites where surface layer (< 10 m) variables were collected (135 out of 141 sites).
784 Six stations did not have representative CTD data available at the surface layer and were
785 excluded. Predicted relative abundance for all surface GOMECC-4 sites were observed in Ocean
786 Data View using Data-Interpolating Variational Analysis (DIVA) interpolation (134).
787

788 References

- 789 1. S. Díaz, J. Fargione, F. S. Chapin 3rd, D. Tilman, Biodiversity loss threatens human well-being. *PLoS Biol.* **4**, e277 (2006).
- 790
- 791 2. N. Gruber, D. Clement, B. R. Carter, R. A. Feely, S. van Heuven, M. Hoppema, M. Ishii, R. M. Key, A. Kozyr, S. K. Lauvset, C. Lo Monaco, J. T. Mathis, A. Murata, A. Olsen, F. Perez, C. L. Sabine, T. Tanhua, R. Wanninkhof, The oceanic sink for anthropogenic CO₂ from 1994 to 2007. *Science* **363**, 1193–1199 (2019).
- 792
- 793
- 794
- 795 3. S. C. Doney, D. S. Busch, S. R. Cooley, K. J. Kroeker, The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. *Annu. Rev. Environ. Resour.* **45**, 1–30 (2020).
- 796
- 797
- 798 4. J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, M.-F. Weirig, Y. Yamanaka, A. Yool, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature* **437**, 681–686 (2005).
- 799
- 800
- 801
- 802
- 803
- 804 5. M. M. White, D. C. McCorkle, L. S. Mullenax, A. L. Cohen, Early exposure of bay scallops (*Argopecten irradians*) to high CO₂ causes a decrease in larval shell growth. *PLoS One* **8**, e61065 (2013).
- 805
- 806
- 807 6. R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A. Church, L. Clarke, Q. Dahe, P. Dasgupta, N. K. Dubash, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
- 808
- 809
- 810
- 811 7. A. Z. Worden, M. J. Follows, S. J. Giovannoni, S. Wilken, A. E. Zimmerman, P. J. Keeling, Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. *Science* **347**, 127594 (2015).
- 812
- 813
- 814 8. D. A. Hutchins, F. Fu, Microorganisms and ocean global change. *Nat Microbiol* **2**, 17058 (2017).
- 815
- 816 9. P. W. Boyd, D. A. Hutchins, Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. *Mar. Ecol. Prog. Ser.* **470**, 125–135 (2012).
- 817
- 818 10. D. A. Caron, D. A. Hutchins, The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. *J. Plankton Res.* **35**, 235–252 (2012).
- 819
- 820
- 821 11. D. G. Boyce, M. R. Lewis, B. Worm, Global phytoplankton decline over the past century. *Nature* **466**, 591–596 (07 2010).
- 822
- 823 12. L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, M. Vichi, Multiple stressors of ocean
- 824

825 ecosystems in the 21st century: projections with CMIP5 models. *Biogeosciences* **10**,
826 6225–6245 (2013).

827 13. S. Dutkiewicz, J. J. Morris, M. J. Follows, J. Scott, O. Levitan, S. T. Dyhrman, I.
828 Berman-Frank, Impact of ocean acidification on the structure of future phytoplankton
829 communities. *Nat. Clim. Chang.* **5**, 1002–1006 (2015).

830 14. S. A. Henson, B. B. Cael, S. R. Allen, S. Dutkiewicz, Future phytoplankton diversity in a
831 changing climate. *Nat. Commun.* **12**, 5372 (2021).

832 15. K. R. M. Mackey, J. J. Morris, F. M. M. Morel, S. A. Kranz, Response of Photosynthesis
833 to Ocean Acidification. *Oceanography* **28**, 74–91 (2015).

834 16. M. Segovia, M. R. Lorenzo, C. Iñiguez, C. García-Gómez, Physiological stress response
835 associated with elevated CO₂ and dissolved iron in a phytoplankton community
836 dominated by the coccolithophore *Emiliania huxleyi*. *Mar. Ecol. Prog. Ser.* **586**, 73–89
837 (2018).

838 17. V. Vázquez, P. León, F. J. L. Gordillo, C. Jiménez, I. Concepción, K. Mackenzie, E.
839 Bresnan, M. Segovia, High-CO₂ Levels Rather than Acidification Restrict *Emiliania*
840 *huxleyi* Growth and Performance. *Microb. Ecol.* **86**, 127–143 (2023).

841 18. M. D. Iglesias-Rodriguez, P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-
842 Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, P. von Dassow, E. Rehm,
843 E. V. Armbrust, K. P. Boessenkool, Phytoplankton calcification in a high-CO₂ world.
844 *Science* **320**, 336–340 (2008).

845 19. A. C. Martiny, G. I. Hagstrom, T. DeVries, R. T. Letscher, G. L. Britten, C. A. Garcia, E.
846 Galbraith, D. Karl, S. A. Levin, M. W. Lomas, A. R. Moreno, D. Talmy, W. Wang, K.
847 Matsumoto, Marine phytoplankton resilience may moderate oligotrophic ecosystem
848 responses and biogeochemical feedbacks to climate change. *Limnol. Oceanogr.* **67**,
849 S378–S389 (2022).

850 20. H. Sarmento, J. M. Montoya, E. Vázquez-Domínguez, D. Vaqué, J. M. Gasol, Warming
851 effects on marine microbial food web processes: how far can we go when it comes to
852 predictions? *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **365**, 2137–2149 (2010).

853 21. X. A. G. Morán, F. Baltar, C. Carreira, C. Lønborg, Responses of physiological groups of
854 tropical heterotrophic bacteria to temperature and dissolved organic matter additions:
855 food matters more than warming. *Environ. Microbiol.* **22**, 1930–1943 (2020).

856 22. T. E. Berry, B. J. Saunders, M. L. Coghlan, M. Stat, S. Jarman, A. J. Richardson, C. H.
857 Davies, O. Berry, E. S. Harvey, M. Bunce, Marine environmental DNA biomonitoring
858 reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous
859 climatic events. *PLoS Genet.* **15**, e1007943 (2019).

860 23. R. Gallego, E. Jacobs-Palmer, K. Cribari, R. P. Kelly, Environmental DNA
861 metabarcoding reveals winners and losers of global change in coastal waters.
862 *Proceedings of the Royal Society B* **287**, 20202424 (2020).

863 24. E. Osborne, X. Hu, E. R. Hall, K. Yates, J. Vreeland-Dawson, K. Shamberger, L.
864 Barbero, J. Martin Hernandez-Ayon, F. A. Gomez, T. Hicks, Y.-Y. Xu, M. R.
865 McCutcheon, M. Acquafredda, C. Chapa-Balcorta, O. Norzagaray, D. Pierrot, A. Munoz-
866 Caravaca, K. L. Dobson, N. Williams, N. Rabalais, P. Dash, Ocean acidification in the
867 Gulf of Mexico: Drivers, impacts, and unknowns. *Prog. Oceanogr.* **209**, 102882 (2022).

868 25. N. N. Rabalais, R. E. Turner, W. J. Wiseman Jr, Hypoxia in the Gulf of Mexico. *J.
869 Environ. Qual.* **30**, 320–329 (2001).

870 26. W. Sturges, R. Leben, Frequency of Ring Separations from the Loop Current in the Gulf
871 of Mexico: A Revised Estimate. *J. Phys. Oceanogr.* **30**, 1814–1819 (2000).

872 27. L. Linacre, R. Durazo, V. F. Camacho-Ibar, K. E. Selph, J. R. Lara-Lara, U. Mirabal-
873 Gómez, C. Bazán-Guzmán, A. Lago-Lestón, E. M. Fernández-Martín, K. Sidón-Ceseña,
874 Picoplankton carbon biomass assessments and distribution of *Prochlorococcus* ecotypes
875 linked to loop current eddies during summer in the southern gulf of Mexico. *J. Geophys.
876 Res. C: Oceans* **124**, 8342–8359 (2019).

877 28. T. T. Sutton, M. R. Clark, D. C. Dunn, P. N. Halpin, A. D. Rogers, J. Guinotte, S. J.
878 Bograd, M. V. Angel, J. A. A. Perez, K. Wishner, R. L. Haedrich, D. J. Lindsay, J. C.
879 Drazen, A. Vereshchaka, U. Piatkowski, T. Morato, K. Błachowiak-Samołyk, B. H.
880 Robison, K. M. Gjerde, A. Pierrot-Bults, P. Bernal, G. Reygondeau, M. Heino, A global
881 biogeographic classification of the mesopelagic zone. *Deep Sea Res. Part 1 Oceanogr.
882 Res. Pap.* **126**, 85–102 (2017).

883 29. M. R. Stukel, T. B. Kelly, M. R. Landry, K. E. Selph, R. Swalethorp, Sinking carbon,
884 nitrogen, and pigment flux within and beneath the euphotic zone in the oligotrophic,
885 open-ocean Gulf of Mexico. *J. Plankton Res.* **44**, 711–727 (2022).

886 30. W.-J. Cai, X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou,
887 W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, G.-C.
888 Gong, Acidification of subsurface coastal waters enhanced by eutrophication. *Nat.
889 Geosci.* **4**, 766–770 (2011).

890 31. R. Wanninkhof, L. Barbero, R. Byrne, W.-J. Cai, W.-J. Huang, J.-Z. Zhang, M. Baringer,
891 C. Langdon, Ocean acidification along the Gulf Coast and East Coast of the USA. *Cont.
892 Shelf Res.* **98**, 54–71 (2015).

893 32. R. H. Weisberg, L. Zheng, Y. Liu, West Florida shelf upwelling: Origins and pathways.
894 *J. Geophys. Res. C: Oceans* **121**, 5672–5681 (2016).

895 33. E. R. Hall, K. K. Yates, K. A. Hubbard, M. J. Garrett, J. D. Frankle, Nutrient and
896 carbonate chemistry patterns associated with *Karenia brevis* blooms in three West
897 Florida Shelf estuaries 2020-2023. *Frontiers in Marine Science* **11** (2024).

898 34. M. J. Ulloa, P. Álvarez-Torres, K. P. Horak-Romo, R. Ortega-Izaguirre, Harmful algal
899 blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine
900 ecosystem. *Environmental Development* **22**, 120–128 (2017).

901 35. C. A. Heil, A. L. Muni-Morgan, Florida's Harmful Algal Bloom (HAB) Problem:
902 Escalating Risks to Human, Environmental and Economic Health With Climate Change.
903 *Frontiers in Ecology and Evolution* **9** (2021).

904 36. P. M. Brannock, A. C. Ortmann, A. G. Moss, K. M. Halanych, Metabarcoding reveals
905 environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes.
906 *Mol. Ecol.* **25**, 3593–3604 (2016).

907 37. C. G. Easson, J. V. Lopez, Depth-Dependent Environmental Drivers of Microbial
908 Plankton Community Structure in the Northern Gulf of Mexico. *Front. Microbiol.* **9**,
909 3175 (2018).

910 38. K. Sidón-Ceseña, M. A. Martínez-Mercado, J. Chong-Robles, Y. Ortega-Saad, V. F.
911 Camacho-Ibar, L. Linacre, A. Lago-Lestón, Response of microbial eukaryote community
912 to the oligotrophic waters of the Gulf of Mexico: a plausible scenario for warm and
913 stratified oceans, *bioRxiv* (2023)

914 39. M. W. Henson, J. C. Thrash, Microbial ecology of northern Gulf of Mexico estuarine
915 waters. *mSystems*, e0131823 (2024).

916 40. B. B. Tolar, G. M. King, J. T. Hollibaugh, An analysis of thaumarchaeota populations
917 from the northern Gulf of Mexico. *Front. Microbiol.* **4**, 72 (2013).

918 41. Thrash J. Cameron, Seitz Kiley W., Baker Brett J., Temperton Ben, Gillies Lauren E.,
919 Rabalais Nancy N., Henrissat Bernard, Mason Olivia U., Metabolic Roles of
920 Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico “Dead Zone.”
921 *MBio* **8**, 10.1128/mbio.01017–17 (2017).

922 42. C. de Vargas, S. Audic, N. Henry, J. Decelle, F. Mahe, R. Logares, E. Lara, C. Berney,
923 N. L. Bescot, I. Probert, M. Carmichael, J. Poulain, S. Romac, S. Colin, J.-M. Aury, L.
924 Bittner, S. Chaffron, M. Dunthorn, S. Engelen, O. Flegontova, L. Guidi, A. Horak, O.
925 Jaillon, G. Lima-Mendez, J. Luke, S. Malviya, R. Morard, M. Mulot, E. Scalco, R. Siano,
926 F. Vincent, A. Zingone, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, T. O.
927 Coordinators, S. G. Acinas, P. Bork, C. Bowler, G. Gorsky, N. Grimsley, P. Hingamp, D.
928 Iudicone, F. Not, H. Ogata, S. Pesant, J. Raes, M. E. Sieracki, S. Speich, L. Stemmann, S.
929 Sunagawa, J. Weissenbach, P. Wincker, E. Karsenti, E. Boss, M. Follows, L. Karp-Boss,
930 U. Krzic, E. G. Reynaud, C. Sardet, M. B. Sullivan, D. Velayoudon, Eukaryotic plankton
931 diversity in the sunlit ocean. *Science* **348**, 1261605–1261605 (2015).

932 43. S. Sunagawa, L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B.
933 Djahanschiri, G. Zeller, D. R. Mende, A. Alberti, F. M. Cornejo-Castillo, P. I. Costea, C.
934 Cruaud, F. d’Ovidio, S. Engelen, I. Ferrera, J. M. Gasol, L. Guidi, F. Hildebrand, F.
935 Kokoszka, C. Lepoivre, G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-Llonch, H.
936 Sarmento, S. Vieira-Silva, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, T. O.
937 Coordinators, C. Bowler, C. de Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D.
938 Iudicone, O. Jaillon, F. Not, H. Ogata, S. Pesant, S. Speich, L. Stemmann, M. B.
939 Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, J. Raes, S. G. Acinas, P. Bork,
940 Structure and function of the global ocean microbiome. *Science* **348**, 1261359–1261359

941 (05 2015).

942 44. A. Djurhuus, P. H. Boersch-Supan, S.-O. Mikalsen, A. D. Rogers, Microbe biogeography
943 tracks water masses in a dynamic oceanic frontal system. *R Soc Open Sci* **4**, 170033
944 (2017).

945 45. J. K. Pearman, B. Jones, M. Qashqari, S. Carvalho, Eukaryotic diversity patterns in the
946 Red Sea: from the surface to the deep. *Frontiers in Marine Science* **10** (2024).

947 46. E. A. Walsh, J. B. Kirkpatrick, S. D. Rutherford, D. C. Smith, M. Sogin, S. D'Hondt,
948 Bacterial diversity and community composition from seafloor to subseafloor. *ISME J.*
949 **10**, 979–989 (2016).

950 47. T. Pommier, P. R. Neal, J. M. Gasol, M. Coll, S. G. Acinas, C. Pedrós-Alió, Spatial
951 patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by
952 pyrosequencing of the 16S rRNA. *Aquat. Microb. Ecol.* **61**, 221–233 (2010).

953 48. Y.-C. Yeh, J. A. Fuhrman, Contrasting diversity patterns of prokaryotes and protists over
954 time and depth at the San-Pedro Ocean Time series. *ISME Commun* **2**, 36 (2022).

955 49. N. V. Patin, Z. A. Dietrich, A. Stancil, M. Quinan, J. S. Beckler, E. R. Hall, J. Culter, C.
956 G. Smith, M. Taillefert, F. J. Stewart, Gulf of Mexico blue hole harbors high levels of
957 novel microbial lineages. *ISME J.* **15**, 2206–2232 (2021).

958 50. A. E. Santoro, C. Buchwald, M. R. McIlvin, K. L. Casciotti, Isotopic signature of N(2)O
959 produced by marine ammonia-oxidizing archaea. *Science* **333**, 1282–1285 (2011).

960 51. Z. I. Johnson, E. R. Zinser, A. Coe, N. P. McNulty, E. M. S. Woodward, S. W. Chisholm,
961 Niche partitioning among *Prochlorococcus* ecotypes along ocean-scale environmental
962 gradients. *Science* **311**, 1737–1740 (03 2006).

963 52. D. Tsementzi, J. Wu, S. Deutsch, S. Nath, L. M. Rodriguez-R, A. S. Burns, P. Ranjan, N.
964 Sarode, R. R. Malmstrom, C. C. Padilla, B. K. Stone, L. A. Bristow, M. Larsen, J. B.
965 Glass, B. Thamdrup, T. Woyke, K. T. Konstantinidis, F. J. Stewart, SAR11 bacteria
966 linked to ocean anoxia and nitrogen loss. *Nature* **536**, 179–183 (08 2016).

967 53. K. E. Selph, R. Swalethorp, M. R. Stukel, T. B. Kelly, A. N. Knapp, K. Fleming, T.
968 Hernandez, M. R. Landry, Phytoplankton community composition and biomass in the
969 oligotrophic Gulf of Mexico. *J. Plankton Res.* **44**, 618–637 (2022).

970 54. R. Massana, J. del Campo, M. E. Sieracki, S. Audic, R. Logares, Exploring the
971 uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within
972 stramenopiles. *ISME J.* **8**, 854–866 (2014).

973 55. T. Biard, Diversity and ecology of Radiolaria in modern oceans. *Environ. Microbiol.* **24**,
974 2179–2200 (2022).

975 56. L. Guillou, M. Viprey, A. Chambouvet, R. M. Welsh, A. R. Kirkham, R. Massana, D. J.
976 Scanlan, A. Z. Worden, Widespread occurrence and genetic diversity of marine

977 57. T. Cordier, I. B. Angeles, N. Henry, F. Lejzerowicz, C. Berney, R. Morard, A. Brandt,
978 M.-A. Cambon-Bonavita, L. Guidi, F. Lombard, P. M. Arbizu, R. Massana, C. Orejas, J.
980 Poulain, C. R. Smith, P. Wincker, S. Arnaud-Haond, A. J. Gooday, C. de Vargas, J.
981 Pawłowski, Patterns of eukaryotic diversity from the surface to the deep-ocean sediment.
982 *Science Advances* **8**, eabj9309 (2022).

983

984 58. C. A. Durkin, I. Cetinić, M. Estapa, Z. Ljubešić, M. Mucko, A. Neeley, M. Omand,
985 Tracing the path of carbon export in the ocean through DNA sequencing of individual
986 sinking particles. *ISME J.*, 1–11 (2022).

987 59. O. Flegontova, P. Flegontov, S. Malviya, S. Audic, P. Wincker, C. de Vargas, C. Bowler,
988 J. Lukeš, A. Horák, Extreme Diversity of Diplonemid Eukaryotes in the Ocean. *Curr.
989 Biol.* **26**, 3060–3065 (2016).

990 60. J. Saltzman, E. R. White, Determining the role of environmental covariates on
991 planktivorous elasmobranch population trends within an isolated marine protected area.
992 *Mar. Ecol. Prog. Ser.* **722**, 107–123 (2023).

993 61. E. Bravo-Ormaza, R. Arauz, S. Bessudo, A. Hearn, A. P. Klimley, F. Ladino-Archila, J.
994 López-Macías, T. Steiner, C. Peñaherrera-Palma, Scalloped hammerhead shark *Sphyrna
995 lewini* relative abundance comparison in three offshore marine protected areas of the
996 Eastern Tropical Pacific. *Environ. Biol. Fishes*, doi: 10.1007/s10641-023-01454-6
997 (2023).

998 62. A. F. Zuur, E. N. Ieno, C. S. Elphick, A protocol for data exploration to avoid common
999 statistical problems. *Methods Ecol. Evol.* **1**, 3–14 (2010).

1000 63. F. E. Muller-Karger, J. P. Smith, S. Werner, R. Chen, M. Roffer, Y. Liu, B. Muhling, D.
1001 Lindo-Atchati, J. Lamkin, S. Cerdeira-Estrada, D. B. Enfield, Natural variability of
1002 surface oceanographic conditions in the offshore Gulf of Mexico. *Prog. Oceanogr.* **134**,
1003 54–76 (2015).

1004 64. N. Yingling, T. B. Kelly, T. A. Shropshire, M. R. Landry, K. E. Selph, A. N. Knapp, S.
1005 A. Kranz, M. R. Stukel, Taxon-specific phytoplankton growth, nutrient utilization and
1006 light limitation in the oligotrophic Gulf of Mexico. *J. Plankton Res.* **44**, 656–676 (2022).

1007 65. X. A. G. Morán, L. Alonso-Sáez, E. Nogueira, H. W. Ducklow, N. González, Á. López-
1008 Urrutia, L. Díaz-Pérez, A. Calvo-Díaz, N. Arandia-Gorostidi, T. M. Huete-Stauffer,
1009 More, smaller bacteria in response to ocean's warming? *Proc. Biol. Sci.* **282** (2015).

1010 66. N. Arandia-Gorostidi, P. K. Weber, L. Alonso-Sáez, X. A. G. Morán, X. Mayali,
1011 Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and
1012 heterotrophic bacteria through physical attachment. *ISME J.* **11**, 641–650 (2017).

1013 67. J. Taucher, J. Arístegui, L. T. Bach, W. Guan, M. F. Montero, A. Nauendorf, E. P.
1014 Achterberg, U. Riebesell, Response of Subtropical Phytoplankton Communities to Ocean

1015 Acidification Under Oligotrophic Conditions and During Nutrient Fertilization. *Frontiers*
1016 in *Marine Science* **5** (2018).

1017 68. M. W. Lomas, B. M. Hopkinson, J. L. Losh, D. E. Ryan, D. L. Shi, Y. Xu, F. M. M.
1018 Morel, Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic.
1019 *Vol. 66*, 211–222 (2012).

1020 69. P. Flombaum, W.-L. Wang, F. W. Primeau, A. C. Martiny, Global picophytoplankton
1021 niche partitioning predicts overall positive response to ocean warming. *Nat. Geosci.* **13**,
1022 116–120 (2020).

1023 70. F.-X. Fu, M. E. Warner, Y. Zhang, Y. Feng, D. A. Hutchins, Effects of increased
1024 temperature and CO₂ on photosynthesis, growth, and elemental ratios in marine
1025 *Synechococcus* and *Prochlorococcus* (cyanobacteria). *J. Phycol.* **43**, 485–496 (2007).

1026 71. L. T. Bach, S. Alvarez-Fernandez, T. Hornick, A. Stuhr, U. Riebesell, Simulated ocean
1027 acidification reveals winners and losers in coastal phytoplankton. *PLoS One* **12**,
1028 e0188198 (2017).

1029 72. A. Martiny, S. Kathuria, P. Berube, Widespread metabolic potential for nitrite and nitrate
1030 assimilation among *Prochlorococcus* ecotypes. *Proc. Natl. Acad. Sci. U. S. A.*, doi:
1031 10.1073/pnas.0902532106 (06 2009).

1032 73. J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic
1033 theory of ecology. *Ecology* **85**, 1771–1789 (2004).

1034 74. Y. Feng, F. Chai, M. L. Wells, Y. Liao, P. Li, T. Cai, T. Zhao, F. Fu, D. A. Hutchins, The
1035 Combined Effects of Increased pCO₂ and Warming on a Coastal Phytoplankton
1036 Assemblage: From Species Composition to Sinking Rate. *Frontiers in Marine Science* **8**
1037 (2021).

1038 75. H. G. Horn, N. Sander, A. Stuhr, M. Algueró-Muñiz, L. T. Bach, M. G. J. Löder, M.
1039 Boersma, U. Riebesell, N. Aberle, Low CO₂ Sensitivity of Microzooplankton
1040 Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm
1041 Study. *PLoS One* **11**, e0165800 (2016).

1042 76. D. K. Stoecker, P. J. Hansen, D. A. Caron, A. Mitra, Mixotrophy in the Marine Plankton.
1043 *Ann. Rev. Mar. Sci.* **9**, 311–335 (2017).

1044 77. O. U. Mason, E. J. Canter, L. E. Gillies, T. K. Paisie, B. J. Roberts, Mississippi River
1045 Plume Enriches Microbial Diversity in the Northern Gulf of Mexico. *Front. Microbiol.* **7**,
1046 1048 (2016).

1047 78. F. A. Gomez, S.-K. Lee, F. J. Hernandez Jr, L. M. Chiaverano, F. E. Muller-Karger, Y.
1048 Liu, J. T. Lamkin, ENSO-induced co-variability of Salinity, Plankton Biomass and
1049 Coastal Currents in the Northern Gulf of Mexico. *Sci. Rep.* **9**, 178 (2019).

1050 79. F. A. Gomez, R. Wanninkhof, L. Barbero, S.-K. Lee, F. J. Hernandez Jr, Seasonal
1051 patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from

1052 1053 a regional high-resolution ocean biogeochemical model. *Biogeosciences* **17**, 1685–1700 (2020).

1054 80. A. K. Williams, A. S. McInnes, J. R. Rooker, A. Quigg, Changes in Microbial Plankton Assemblages Induced by Mesoscale Oceanographic Features in the Northern Gulf of Mexico. *PLoS One* **10**, e0138230 (2015).

1055 1056 81. S. Anglès, A. Jordi, D. W. Henrichs, L. Campbell, Influence of coastal upwelling and river discharge on the phytoplankton community composition in the northwestern Gulf of Mexico. *Prog. Oceanogr.* **173**, 26–36 (2019).

1057 1058 1059 82. S. Wood, Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

1060 1061 1062 1063 83. G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome Datasets Are Compositional: And This Is Not Optional. *Front. Microbiol.* **8**, 2224 (2017).

1064 1065 1066 84. W. Gong, A. Marchetti, Estimation of 18S Gene Copy Number in Marine Eukaryotic Plankton Using a Next-Generation Sequencing Approach. *Frontiers in Marine Science* **6** (2019).

1067 1068 85. S. Collins, P. W. Boyd, M. A. Doblin, Evolution, Microbes, and Changing Ocean Conditions. *Ann. Rev. Mar. Sci.* **12**, 181–208 (2020).

1069 1070 1071 86. F. Partensky, J. Blanchot, D. Vaulot, Differential distribution and ecology of *Prochlorococcus* and *Synechococcus* in oceanic waters: a review. *Bulletin de l'Institut océanographique. Monaco. n° spécial*, 457–475 (1999).

1072 1073 1074 87. A. Buchan, G. R. LeCleir, C. A. Gulvik, J. M. González, Master recyclers: features and functions of bacteria associated with phytoplankton blooms. *Nat. Rev. Microbiol.* **12**, 686–698 (2014).

1075 1076 88. C. J. Gobler, Climate Change and Harmful Algal Blooms: Insights and perspective. *Harmful Algae* **91**, 101731 (2020).

1077 1078 1079 89. R. M. Errera, S. Yvon-Lewis, J. D. Kessler, L. Campbell, Responses of the dinoflagellate *Karenia brevis* to climate change: pCO₂ and sea surface temperatures. *Harmful Algae* **37**, 110–116 (2014).

1080 1081 1082 1083 90. B. A. Stauffer, H. A. Bowers, E. Buckley, T. W. Davis, T. H. Johengen, R. Kudela, M. A. McManus, H. Purcell, G. J. Smith, A. Vander Woude, M. N. Tamburri, Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives From a Consensus-Building Workshop and Technology Testing. *Frontiers in Marine Science* **6** (2019).

1084 1085 1086 91. E. S. Egleston, C. L. Sabine, F. M. M. Morel, Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. *Global Biogeochem. Cycles* (2010).

1087 92. A. Z. Worden, J. K. Nolan, B. Palenik, Assessing the dynamics and ecology of marine

1088 picophytoplankton: The importance of the eukaryotic component. *Limnol. Oceanogr.* **49**,
1089 168–179 (2004).

1090 93. P. Ziveri, B. de Bernardi, K.-H. Baumann, H. M. Stoll, P. G. Mortyn, Sinking of
1091 coccolith carbonate and potential contribution to organic carbon ballasting in the deep
1092 ocean. *Deep Sea Res. Part 2 Top. Stud. Oceanogr.* **54**, 659–675 (2007).

1093 94. C.-E. Schaum, B. Rost, S. Collins, Environmental stability affects phenotypic evolution
1094 in a globally distributed marine picoplankton. *ISME J.* **10**, 75–84 (2016).

1095 95. K. T. Lohbeck, U. Riebesell, T. B. H. Reusch, Adaptive evolution of a key phytoplankton
1096 species to ocean acidification. *Nat. Geosci.* **5**, 346–351 (2012).

1097 96. K.-H. Baumann, B. Boeckel, Spatial distribution of living coccolithophores in the
1098 southwestern Gulf of Mexico. *J. Micropalaeontol.* **32**, 123–133 (2013).

1099 97. S. J. Giovannoni, SAR11 Bacteria: The Most Abundant Plankton in the Oceans. *Ann.*
1100 *Rev. Mar. Sci.* **9**, 231–255 (2017).

1101 98. M. S. Rappé, S. A. Connon, K. L. Vergin, S. J. Giovannoni, Cultivation of the ubiquitous
1102 SAR11 marine bacterioplankton clade. *Nature* **418**, 630–633 (08 2002).

1103 99. N. R. Bates, Y. M. Astor, M. J. Church, K. Currie, J. E. Dore, M. González-Dávila, L.
1104 Lorenzoni, F. Muller-Karger, J. Olafsson, J. M. Santana-Casiano, A Time-Series View of
1105 Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO₂ and
1106 Ocean Acidification. *Oceanography* **27**, 126–141 (2014).

1107 100. S. Dutkiewicz, P. Cermeno, O. Jahn, M. J. Follows, A. E. Hickman, D. A. A. Taniguchi,
1108 B. A. Ward, Dimensions of marine phytoplankton diversity. *Biogeosciences* **17**, 609–634
1109 (2020).

1110 101. E. L. Cavan, S. A. Henson, P. W. Boyd, The Sensitivity of Subsurface Microbes to Ocean
1111 Warming Accentuates Future Declines in Particulate Carbon Export. *Frontiers in*
1112 *Ecology and Evolution* **6** (2019).

1113 102. S. A. Henson, C. Laufkötter, S. Leung, S. L. C. Giering, H. I. Palevsky, E. L. Cavan,
1114 Uncertain response of ocean biological carbon export in a changing world. *Nat. Geosci.*
1115 **15**, 248–254 (2022).

1116 103. C. Langdon, Determination of dissolved oxygen in seawater by Winkler titration using
1117 the amperometric technique. (2010).

1118 104. J.-Z. Zhang, G. A. Berberian, Determination of dissolved silicate in estuarine and coastal
1119 waters by gas segmented continuous flow colorimetric analysis. *Methods for the*
1120 *determination of chemical substances in marine and estuarine environmental matrices*,
1121 366–360 (1997).

1122 105. K. M. Johnson, A. E. King, J. M. Sieburth, Coulometric TCO₂ analyses for marine
1123 studies; an introduction. *Mar. Chem.* **16**, 61–82 (1985).

1124 106. A. G. Dickson, C. L. Sabine, J. R. Christian, "Guide to best practices for ocean CO₂
1125 measurements" (Report, North Pacific Marine Science Organization, 2007).

1126 107. R. Wanninkhof, K. Thoning, Measurement of fugacity of CO₂ in surface water using
1127 continuous and discrete sampling methods. *Mar. Chem.* **44**, 189–204 (1993).

1128 108. R. H. Byrne, L. R. Kump, K. J. Cantrell, The influence of temperature and pH on trace
1129 metal speciation in seawater. *Mar. Chem.* **25**, 163–181 (1988).

1130 109. S. M. A. C. van Heuven, M. Hoppema, O. Huhn, H. A. Slagter, H. J. W. de Baar, Direct
1131 observation of increasing CO₂ in the Weddell Gyre along the Prime Meridian during
1132 1973–2008. *Deep Sea Res. Part 2 Top. Stud. Oceanogr.* **58**, 2613–2635 (2011).

1133 110. S. R. Anderson, L. R. Thompson, Optimizing an enclosed bead beating extraction method
1134 for microbial and fish environmental DNA. *Environmental DNA*, doi: 10.1002/edn3.251
1135 (2021).

1136 111. A. E. Parada, D. M. Needham, J. A. Fuhrman, Every base matters: assessing small
1137 subunit rRNA primers for marine microbiomes with mock communities, time series and
1138 global field samples. *Environ. Microbiol.* **18**, 1403–1414 (05 2016).

1139 112. L. A. Amaral-Zettler, E. A. McCliment, H. W. Ducklow, S. M. Huse, A method for
1140 studying protistan diversity using massively parallel sequencing of V9 hypervariable
1141 regions of small-subunit ribosomal RNA Genes. *PLoS One* **4**, e6372 (07 2009).

1142 113. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
1143 *EMBnet.journal* **17**, 10–12 (2011).

1144 114. L. R. Thompson, S. R. Anderson, P. A. Den Uyl, N. V. Patin, S. J. Lim, G. Sanderson, K.
1145 D. Goodwin, Tourmaline: A containerized workflow for rapid and iterable amplicon
1146 sequence analysis using QIIME 2 and Snakemake. *Gigascience* **11** (2022).

1147 115. B. J. Callahan, P. J. McMurdie, S. P. Holmes, Exact sequence variants should replace
1148 operational taxonomic units in marker-gene data analysis. *ISME J.* **11**, 2639–2643
1149 (2016).

1150 116. E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, F. O. Glöckner,
1151 SILVA: a comprehensive online resource for quality checked and aligned ribosomal
1152 RNA sequence data compatible with ARB. *Nucleic Acids Res.* **35**, 7188–7196 (2007).

1153 117. L. Guillou, D. Bachar, S. Audic, D. Bass, C. Berney, L. Bittner, C. Boutte, G. Burgaud,
1154 C. De Vargas, J. Decelle, J. Del Campo, J. R. Dolan, M. Dunthorn, B. Edvardsen, M.
1155 Holzmann, W. H. C. F. Kooistra, E. Lara, N. Le Bescot, R. Logares, F. Mahé, R.
1156 Massana, M. Montresor, R. Morard, F. Not, J. Pawłowski, I. Probert, A. L. Sauvadet, R.
1157 Siano, T. Stoeck, D. Vaulot, P. Zimmermann, R. Christen, The Protist Ribosomal
1158 Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA
1159 sequences with curated taxonomy. *Nucleic Acids Res.* **41** (2013).

1160 118. N. A. Bokulich, B. D. Kaehler, J. R. Rideout, M. Dillon, E. Bolyen, R. Knight, G. A.

1161 Huttley, J. Gregory Caporaso, Optimizing taxonomic classification of marker-gene
1162 amplicon sequences with QIIME 2's q2-feature-classifier plugin. *Microbiome* **6**, 90
1163 (2018).

1164 119. P. J. McMurdie, S. Holmes, Phyloseq: An R Package for Reproducible Interactive
1165 Analysis and Graphics of Microbiome Census Data. *PLoS One* **8** (2013).

1166 120. G. S. Kandlikar, Z. J. Gold, M. C. Cowen, R. S. Meyer, A. C. Freise, N. J. B. Kraft, J.
1167 Moberg-Parker, J. Sprague, D. J. Kushner, E. E. Curd, ranacapa: An R package and
1168 Shiny web app to explore environmental DNA data with exploratory statistics and
1169 interactive visualizations. *F1000Res.* **7**, 1734 (2018).

1170 121. A. Mitra, D. A. Caron, E. Faure, K. J. Flynn, S. G. Leles, P. J. Hansen, G. B. McManus,
1171 F. Not, H. do Rosario Gomes, L. F. Santoferrara, D. K. Stoecker, U. Tillmann, The
1172 Mixoplankton Database (MDB): Diversity of photo-phago-trophic plankton in form,
1173 function, and distribution across the global ocean. *J. Eukaryot. Microbiol.* **70**, e12972
1174 (2023).

1175 122. J. Oksanen, F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R.
1176 Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, H.
1177 Wagne, Vegan: Community ecology package. R package version 2.6-6.1 (2024).

1178 123. A. Kassambara, Practical Guide to Cluster Analysis in R: Unsupervised Machine
1179 Learning Vol. 1 (Sthda, 2017).

1180 124. L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
1181 Analysis (John Wiley & Sons, 2009).

1182 125. H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G.
1183 Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K.
1184 Müller, J. Ooms, D. Robinson, D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke,
1185 K. Woo, H. Yutani, Welcome to the tidyverse. *J. Open Source Softw.* **4**, 1686 (2019).

1186 126. C. Liu, Y. Cui, X. Li, M. Yao, microeco: an R package for data mining in microbial
1187 community ecology. *FEMS Microbiol. Ecol.* **97**, fiaa255 (2021).

1188 127. B. Bederson, B. Shneiderman, M. Wattenberg, Ordered and quantum treemaps: Making
1189 effective use of 2D space to display hierarchies. *ACM Trans. Graph.* **21**, 833–854 (2002).

1190 128. M. De Cáceres, P. Legendre, M. Moretti, Improving indicator species analysis by
1191 combining groups of sites. *Oikos* **119**, 1674–1684 (2010).

1192 129. G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning
1193 (Springer, 2013), vol. 112.

1194 130. B. Ripley, B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, D. Firth, M. B. Ripley,
1195 Package “mass.” *Cran r* **538**, 113–120 (2013).

1196 131. D. Lüdecke, M. Ben-Shachar, I. Patil, P. Waggoner, D. Makowski, Performance: An R

1197 package for assessment, comparison and testing of statistical models. *J. Open Source*
1198 *Softw.* **6**, 3139 (2021).

1199 132. J. P. Lander, *coefplot*: Plots coefficients from fitted models. R package version 1.2.8
1200 (2022).

1201 133. D. Lüdecke, *sjPlot*: Data visualization for statistics in social science. R package version
1202 2.8.16 (2024).

1203 134. R. Schlitzer, Ocean Data View. <https://odv.awi.de> (2023).

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

1228 **Acknowledgements**

1229

1230 We thank the captain and crew of the NOAA Ship *Ronald H. Brown* for logistical support for
1231 sample collection in the Gulf. We acknowledge the efforts of many scientists at NOAA and
1232 partnering institutions for collecting and processing oceanographic data on GOMECC-4. We
1233 thank Easton White and Elizabeth Harvey for their helpful conversations, and Sean McAllister
1234 for carefully reviewing the manuscript. We acknowledge the genomics services performed in the
1235 RTSF Genomics Core at Michigan State University.

1236 **Funding:** This work was funded in part through the NOAA Ocean Acidification Program (OAP)
1237 ROR #02bfn4816 under project numbers 21392 (Thompson) and 20708 (Barbero) and by awards
1238 NA16OAR4320199 and NA21OAR4320190 to the Northern Gulf Institute from NOAA's Office
1239 of Oceanic and Atmospheric Research, U.S. Department of Commerce. This research was
1240 carried out in part under the auspices of the Cooperative Institute for Marine and Atmospheric
1241 Studies (CIMAS) and NOAA, cooperative agreement NA20OAR4320472. This work was also
1242 supported by NSF award OCE-2019589 for the Center for Chemical Currencies of a Microbial
1243 Planet (C-CoMP). This is C-CoMP publication #046.

1244 **Author contributions:** LRT, SRA, LB, and CRK conceived the study. SRA collected DNA
1245 samples. LB led collection of carbonate chemistry parameters. SRA and LRT processed DNA
1246 samples. SRA performed bioinformatics and data analysis. LRT, KS, and FAG contributed to
1247 improve data analysis. BAS and AS provided guidance on taxonomy and functional assignments.
1248 SRA and LRT led the writing of the manuscript. All authors contributed to revising the
1249 manuscript and approved the final version.

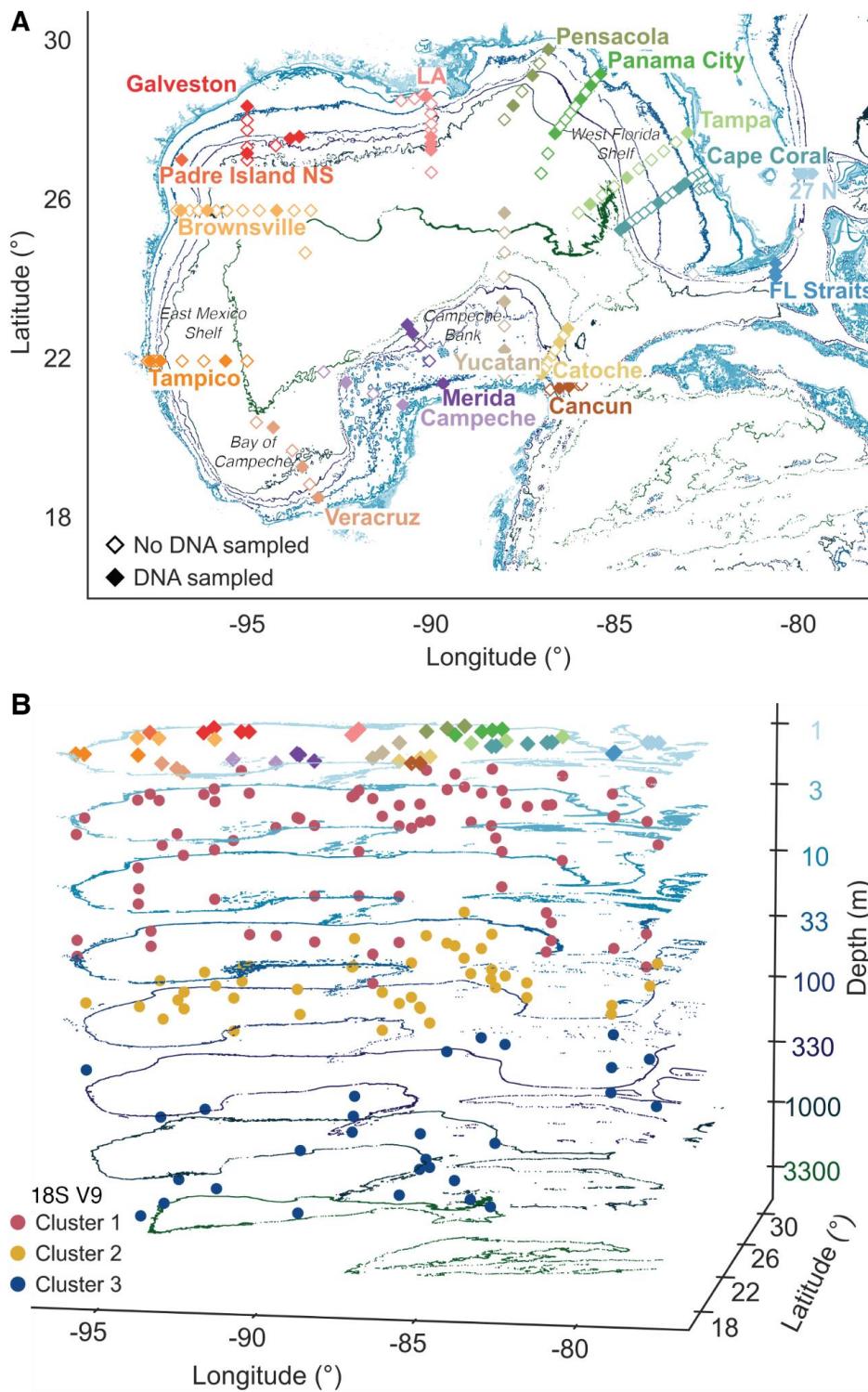
1250 **Competing interests:** Authors declare that they have no competing interests.

1251 **Data and materials availability:** Code and associated files needed to reproduce results and
1252 figures for this study are available on GitHub (<https://github.com/aomlomics/gomecc>) and have
1253 been archived on Zenodo (<https://zenodo.org/records/13102580>). All 18S and 16S sequence data
1254 generated from this study have been published at the National Center for Biotechnology
1255 Information (NCBI)'s Sequence Read Archive and BioSample database and are available with
1256 BioProject accession number PRJNA887898. Species count data generated from this study have
1257 been published on the Ocean Biodiversity Information System (OBIS) and the Global
1258 Biodiversity Information Facility (GBIF) at <https://doi.org/10.15468/sm6fpz>. Biological data has
1259 also been submitted to the National Centers for Environmental Information (NCEI) at
1260 <https://www.ncei.noaa.gov/archive/accession/0250940/data/0-data/noaa-aoml-gomecc>.
1261 Environmental measurements from the Niskin bottles and CTD profiles are also available at
1262 NCEI at <https://doi.org/10.25921/4twf-pp50> and <https://doi.org/10.25921/04h7-gv36>,
1263 respectively. A cruise report detailing all the sampling and analyzing procedures during
1264 GOMECC-4 is available at <https://doi.org/10.25923/rwx5-s713>.

1265

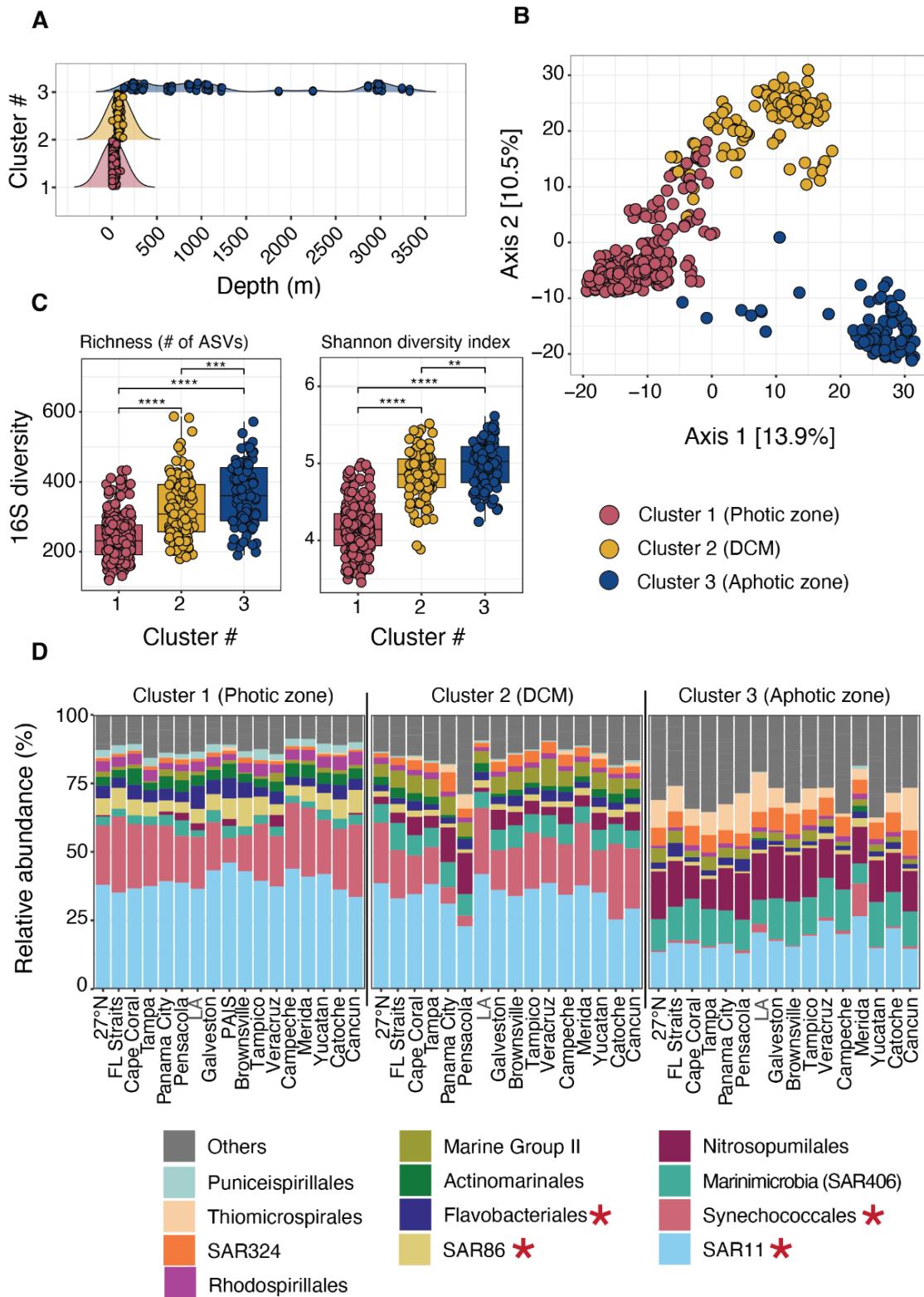
1266 **Figures and Tables**

1267

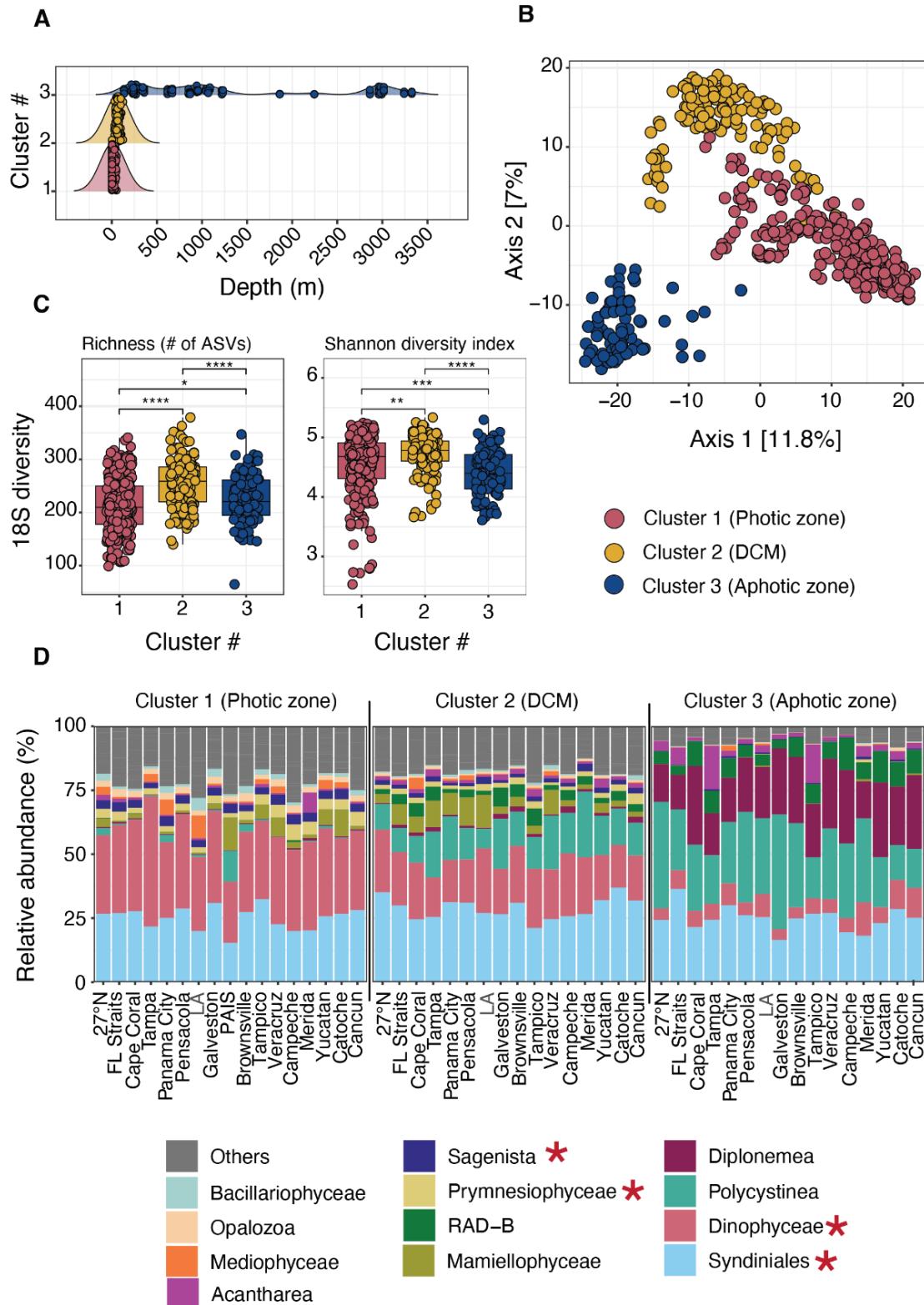


1268

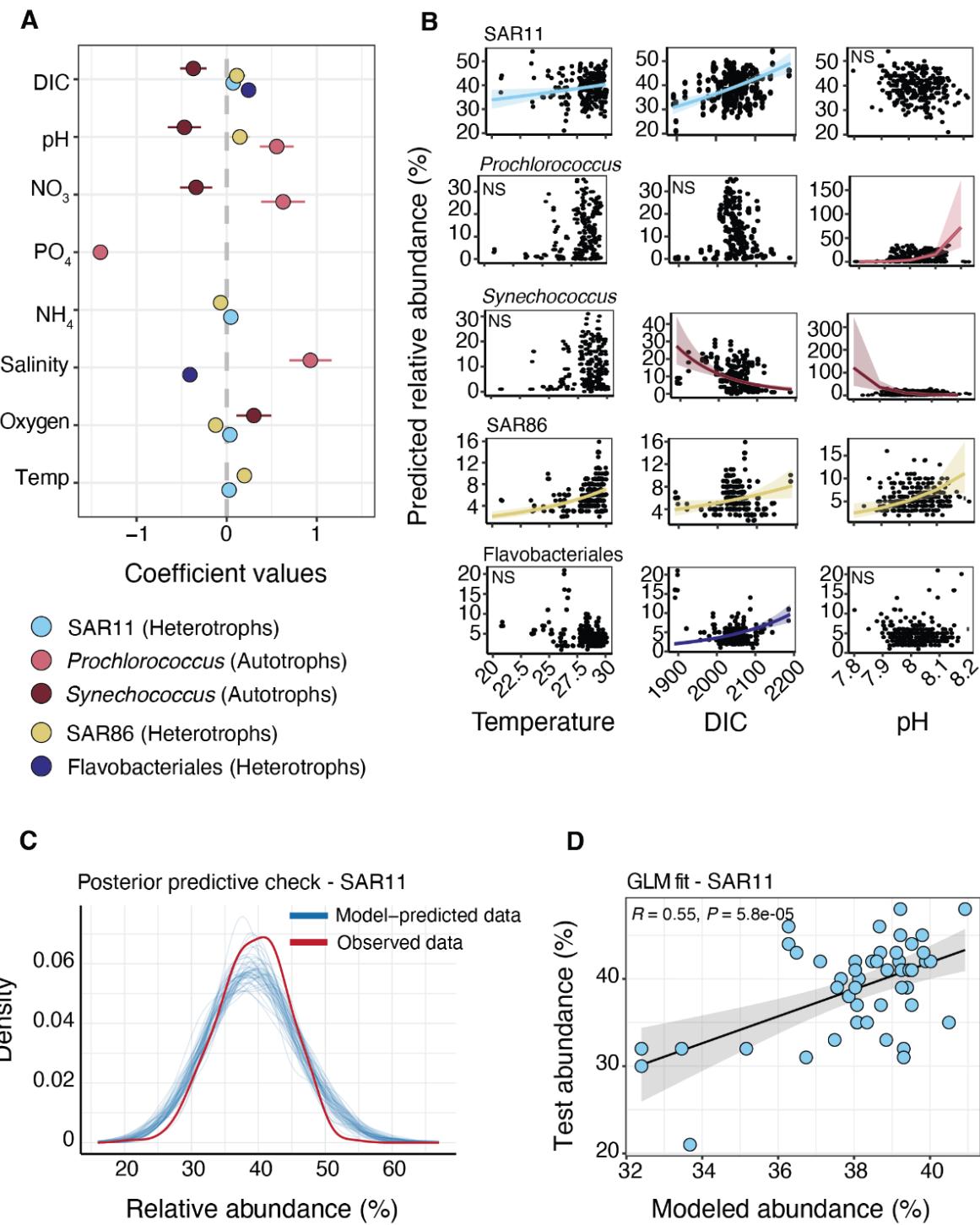
1269 **Figure 1: Vertical and horizontal DNA sampling across the GOM. (A)** Map of all sites
1270 sampled on GOMECC-4. Sites are colored by transect and indicate instances where DNA was
1271 (filled) or was not (empty) sampled. Samples at all sites were collected in triplicate.
1272 Environmental metadata was collected from all stations. Contour lines indicate depth in the
1273 GOM and correspond to the right y-axis in panel **B**. Transects are also labeled to match the color
1274 of stations along a given transect. Samples were collected counterclockwise in the Gulf starting
1275 at the 27°N line. **(B)** Map displaying depth-related position (log scale) of samples across the
1276 GOM. Stations are colored by transect at the surface, matching transect colors in panel **A**.
1277 Samples with depth are colored by their clusters (Clusters 1–3) that were determined via
1278 hierarchical clustering of Aitchison distances and largely reflected depth in the water column.
1279 Cluster 1 generally corresponded to shelf waters at all depths and in the open GOM at the surface
1280 (photic zone; n = 235), Cluster 2 represented sites in the DCM in the open GOM (DCM; n =
1281 137), and Cluster 3 was confined to open ocean sites in deep waters (aphotic zone; n = 89).
1282 Clustering was similar between 18S (shown) and 16S samples (fig. S16).
1283



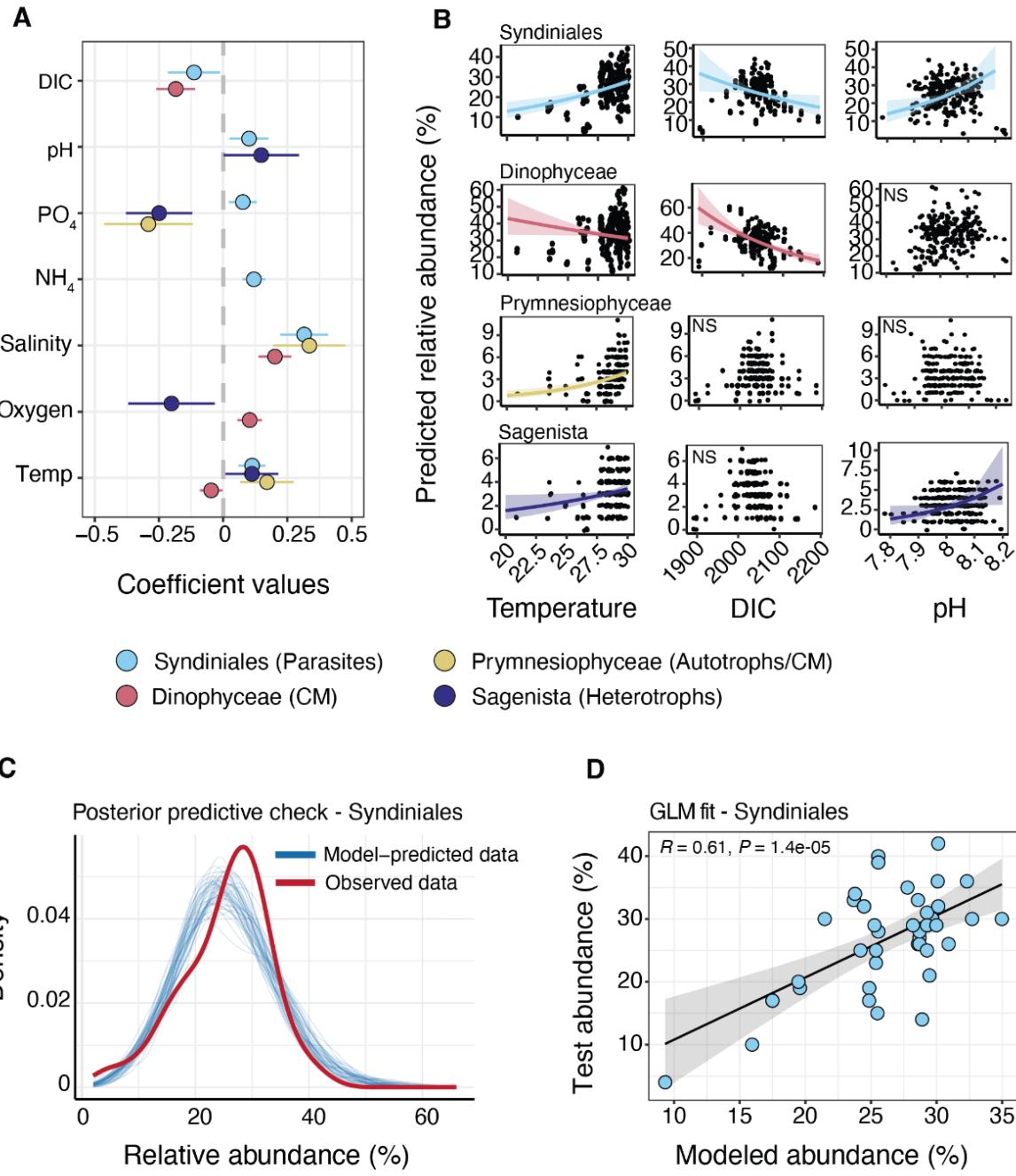
1285 **Figure 2: Bacterial and archaeal community dynamics in the GOM from 16S**
1286 **metabarcoding.** **(A)** Ridgeline plots showing the depth distribution of samples within each
1287 cluster (Clusters 1–3). Clusters were determined via hierarchical clustering of Aitchison
1288 distances: Cluster 1 (photic zone), Cluster 2 (DCM), and Cluster 3 (aphotic zone). **(B)** Principal
1289 coordinates analysis of Aitchison distances, with samples colored by their respective clusters.
1290 **(C)** Mean observed richness (# of ASVs) and Shannon diversity index for Clusters 1–3, with
1291 points representing individual samples. Significant differences between clusters were determined
1292 with Wilcoxon tests (** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$). **(D)** Stacked bar plots of
1293 mean relative abundance (%) at the order level in each sampling transect and faceted by cluster.
1294 Transects are ordered on the x-axis based on the order of sampling (counterclockwise) on
1295 GOMECC-4, except for FL straits and Cape Coral that were sampled last but grouped spatially
1296 with other FL lines. Bar plots display the top 12 most relatively abundant groups over all
1297 samples (“others” in gray). Taxonomy was assigned via the SILVA database. Generalized linear
1298 models focused on the top four most relatively abundant groups in Cluster 1 (red asterisks).
1299 Models for Synechococcales were constructed at the genus level to discriminate between
1300 *Prochlorococcus* and *Synechococcus*. LA = Louisiana and PAIS = Padre Island National
1301 Seashore. Transects have the same labels in all subsequent plots.
1302



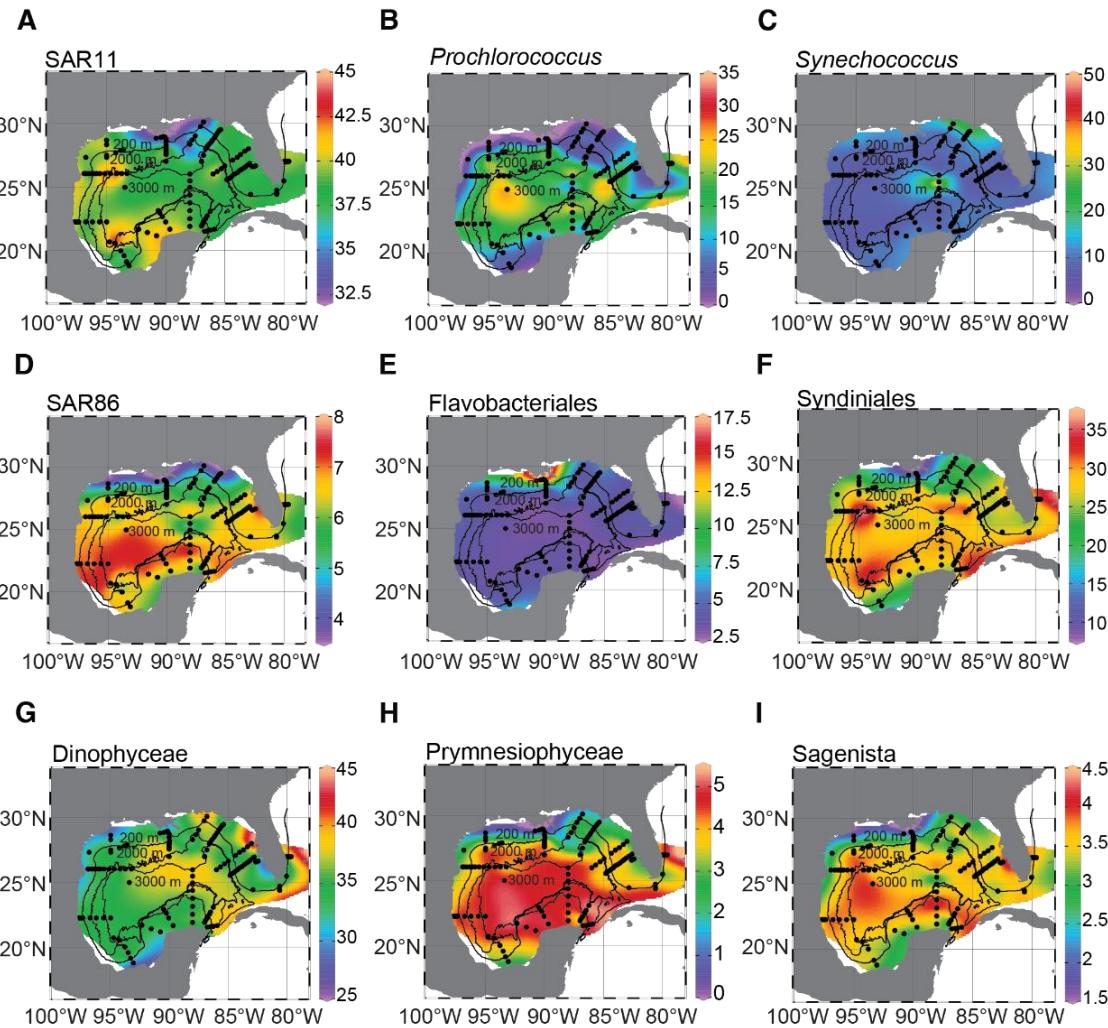
1304 **Figure 3: Protist community dynamics in the GOM from 18S metabarcoding. (A)** Ridgeline
1305 plots showing the depth distribution of samples within each cluster (Clusters 1–3). Clusters
1306 reflected depth along the shelf and open GOM and closely resembled clustering of 16S samples.
1307 **(B)** Principal coordinates analysis of Aitchison distances, with 18S samples colored by cluster.
1308 **(C)** Mean observed richness (# of ASVs) and Shannon diversity index for Clusters 1–3, with
1309 points representing individual samples. Significant differences between clusters were determined
1310 with Wilcoxon tests (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$). **(D)** Stacked bar
1311 plots of mean relative abundance (%) at the class level in each sampling transect and faceted by
1312 cluster. Transects are ordered the same as in Fig. 2. Bar plots display the top 12 most relatively
1313 abundant groups over all samples (“others” in gray). Protist taxonomy was assigned via the PR2
1314 database. Generalized linear models focused on the top four most relatively abundant groups in
1315 Cluster 1 (red asterisks).
1316



1318 **Figure 4: Generalized linear models of major 16S taxa reveal group-specific environmental**
1319 **drivers in the photic zone. (A)** Scaled model coefficients (± 2 standard deviations) of predictor
1320 variables (environmental factors) that were significant to the final model (based on AIC values).
1321 Models were constructed with group-specific relative abundance as the response variable. The
1322 most relatively abundant 16S groups were modeled, which included heterotrophs and autotrophs.
1323 Models were generated at the order level, except for cyanobacteria (Synechococcales), where
1324 separate models were run for *Prochlorococcus* and *Synechococcus*. Only covariates that were
1325 statistically significant to a given model were plotted. **(B)** Predicted response estimates (relative
1326 abundance) and 95% confidence intervals (CIs) of major 16S groups to temperature, DIC, and in
1327 situ pH. NS = not significant. **(C)** An example of a posterior predictive plot, highlighting the fit
1328 of observed vs. model-predicted relative abundance for the final SAR11 model. The model-
1329 predicted data was simulated with 50 bootstraps and followed a similar trend as the observed
1330 data. **(D)** Pearson correlation (with 95% CI) between SAR11 test and modeled relative
1331 abundance to estimate model fit. Predicted abundance was derived from the final SAR11 model
1332 using a subset of the data (80%; 219 samples) and correlated to test data that was left out (20%;
1333 48 samples). Model fit of other major 16S groups is shown in fig. S9.
1334

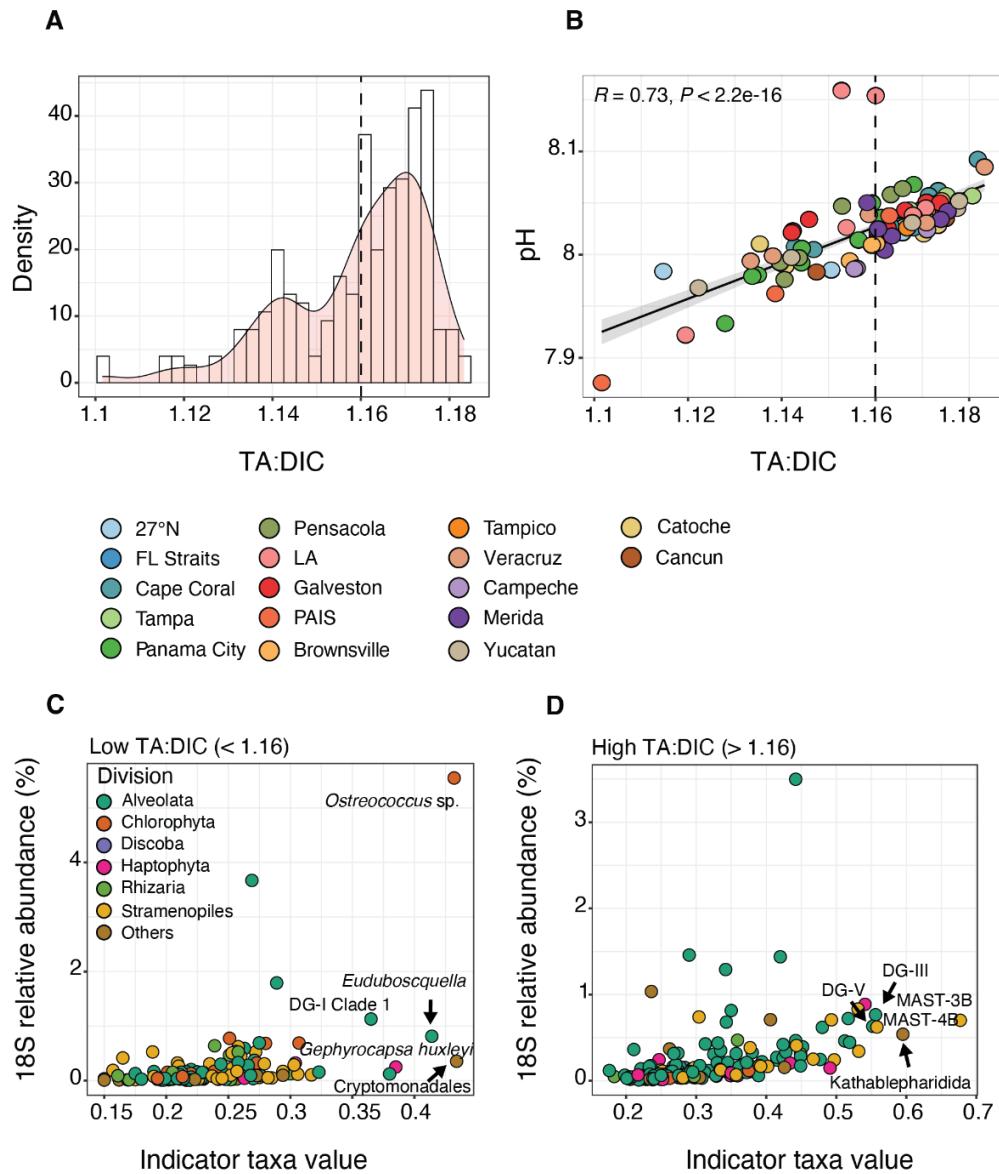


1336 **Figure 5: GLMs of major 18S taxa reveal group-specific drivers in the photic zone. (A)**
1337 Scaled model coefficients (± 2 standard deviations) of predictor variables (environmental
1338 factors) that were significant to the final model (based on AIC values). Models were constructed
1339 with group-specific relative abundance as the response variable. The top four most relatively
1340 abundant 18S groups were modeled separately, spanning constitutive mixotrophs (CM),
1341 parasites, autotrophs, and heterotrophs. Covariates that were not statistically significant to a
1342 given model are not shown. **(B)** Predicted response estimates (relative abundance) and 95%
1343 confidence intervals (CIs) of major 18S groups to temperature, DIC, and pH. NS = not
1344 significant. **(C)** An example of a posterior predictive plot, highlighting the fit of observed vs.
1345 model-predicted relative abundance for the final Syndiniales model. The model-predicted data
1346 was simulated with 50 bootstraps and followed a similar trend as the observed data. **(D)** Pearson
1347 correlation (with 95% CI) between Syndiniales test and modeled relative abundance. Predicted
1348 abundance was derived from the final Syndiniales model using a subset of the data (80%; 187
1349 samples) and correlated to test values that were left out (20%; 43 samples). Model fit of other
1350 major 18S groups is shown in fig. S10.



1351
1352
1353
1354
1355
1356
1357

Figure 6: Expanding current microbial distributions in the GOM. Predicted relative abundance (%) of major 16S (A–E) and 18S groups (F–I) at 135 GOMECC-4 sites modeled with each respective GLM (from Table 2). Model results have been interpolated using DIVA interpolation in Ocean Data View. Isobaths are shown for 200 m, 2,000 m, and 3,000 m. Scales for predicted relative abundance vary by taxonomic group (on the right of each panel) but display low to high relative abundance.



1358
1359 **Figure 7: Protist indicator taxa based on TA:DIC ratios in the photic zone. (A)** Histogram
1360 showing the density distribution of 18S samples in the photic zone (Cluster 1) based on TA:DIC
1361 ratios. **(B)** Values of in situ pH vs. TA:DIC in the photic zone, with samples colored by transect.
1362 Pearson correlation between variables is shown, with 95% confidence interval. The dotted line in
1363 panels **A–B** indicate the manual cutoff used for indicator analysis: low TA:DIC < 1.16 vs. high
1364 TA:DIC > 1.16. **(C–D)** Indicator values vs. average relative abundance (%) for protist ASVs in
1365 the photic zone that were significant to the analysis ($P < 0.001$) in samples with either low
1366 TA:DIC (**C**) or high TA:DIC (**D**). Protist ASVs are colored by division and the top five ASVs
1367 with the highest indicator values are labeled in each panel, identified to their lowest possible
1368 taxonomic assignment (via the PR2 database). DG = Dino-Group. See table S2 for a full list of
1369 18S (and 16S) indicator ASVs. Similar plots for 16S ASVs are shown in fig. S12.

1370 **Table 1: Environmental factors used in microbial models.** Factors were grouped into
1371 parameter type and chosen for initial GLMs based on Spearman correlations (table S1) and low
1372 variance inflation factors (VIF < 10) to mitigate collinearity among predictor variables. VIFs
1373 varied slightly between 16S and 18S (in parentheses) due to differences in sample size (n = 274
1374 for 16S; n = 235 for 18S) following clustering analysis. Triplicate samples were included in
1375 models. Datasets clustered similarly, as evidenced by a similar range in the predictor values.
1376 Initial factors were used to construct group-specific models.
1377

Parameter type	Factor	Values	VIF 16S (18S)
Hydrography	Temperature	20.83–30.12 (°C)	2.8 (2.4)
	Salinity	25.16–36.61 (psu)	7 (7.5)
	Oxygen	105.46–232.33 (μmol kg ⁻¹)	3.1 (5)
Nutrients	Nitrate	0–6.16 (μmol kg ⁻¹)	4.6 (4.2)
	Phosphate	0–0.85 (μmol kg ⁻¹)	5.7 (6.2)
	Ammonium	0.12–2.37 (μmol kg ⁻¹)	1.6 (1.7)
Carbonate chemistry	DIC	1891.67–2186.16 (μmol kg ⁻¹)	9.1 (8.9)
	pH	7.88–8.16	5.2 (6.1)

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

1398 **Table 2: Final models for major microbial groups in the photic zone.** Protists were examined
1399 at the class level and prokaryotes at the order level. GLMs were constructed for *Prochlorococcus*
1400 and *Synechococcus*. Models were run either with negative binomial (neg bin) or Poisson
1401 distributions. Variables that were significant to the final model ($P < 0.05$) are shown for each
1402 group and reflect stepwise selection based on Akaike Information Criterion (AIC). See Table 1
1403 for the full list of variables considered. Pseudo R^2 values are shown as a proxy for model fit,
1404 though standardized residuals and validation tests confirmed model fit. Temp = temperature
1405 ($^{\circ}\text{C}$); Sal = salinity; Oxy = oxygen ($\mu\text{mol kg}^{-1}$); PO₄ = phosphate ($\mu\text{mol kg}^{-1}$); NO₃ = nitrate
1406 ($\mu\text{mol kg}^{-1}$); NH₄ = ammonium ($\mu\text{mol kg}^{-1}$); DIC = dissolved inorganic carbon ($\mu\text{mol kg}^{-1}$).

Group	Taxonomy	GLM	Type	R^2
Protists	Dinophyceae	Temp + Sal + Oxy + DIC	Neg Bin	0.5
	Syndiniales	Temp + Sal + PO ₄ + NH ₄ + pH + DIC	Neg Bin	0.57
	Sagenista	Temp + Oxy + PO ₄ + pH	Poisson	0.28
	Prymnesiophyceae	Temp + Sal + PO ₄	Poisson	0.6
Prokaryotes	SAR11	Temp + Oxy + NH ₄ + DIC	Poisson	0.26
	<i>Synechococcus</i>	Oxy + NO ₃ + pH + DIC	Neg Bin	0.38
	<i>Prochlorococcus</i>	Sal + PO ₄ + NO ₃ + pH	Neg Bin	0.8
	SAR86	Temp + Oxy + NH ₄ + pH + DIC	Poisson	0.33
	Flavobacteriales	Sal + DIC	Poisson	0.64

1407

1408