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Abstract 29 
 30 
Ocean acidification and warming threaten marine life, yet the impact of these processes on 31 

microbes remains unclear. Here, we performed basin-scale DNA metabarcoding of prokaryotes 32 

(16S V4–V5) and protists (18S V9) in the Gulf of Mexico and applied generalized linear models 33 

to reveal group-specific environmental correlates of functionally diverse microbes. Models 34 

supported prior physiological trends for some groups, like positive temperature effects on 35 

SAR11 and SAR86, and a positive effect of pH on Prochlorococcus that implied a negative 36 

response to decreasing pH. New insights were revealed for protists, like Syndiniales and 37 

Sagenista (e.g., positive pH effects), which offset positive relationships with temperature and 38 

reinforced the importance of considering multiple stressors simultaneously. Indicator analysis 39 

revealed phytoplankton, like Ostreococcus sp. and Emiliania huxleyi, that were associated with 40 

more acidic waters and may reflect candidate indicators of ocean change. Our findings highlight 41 

the need for sustained microbial sampling in marine systems, with implications for carbon 42 

export, nutrient cycling, and ecosystem health. 43 

 44 
Introduction 45 
 46 
Our ability to predict how marine ecosystems and resources will respond to future ocean 47 

conditions will require accurate monitoring of marine biodiversity over space, time, and across 48 

natural environmental gradients (1). The oceans are changing rapidly, heavily impacted by rising 49 

concentrations of human-derived atmospheric carbon dioxide (CO2) that is absorbed at the 50 

ocean’s surface (2). Atmospheric CO2 has increased by nearly 50% (~420 ppm at present) over 51 

the last century, leading to increased levels of dissolved inorganic carbon (DIC) in the ocean, in 52 

turn lowering seawater pH (3). This process of ocean acidification (OA) reduces saturation states 53 

for carbonate minerals, placing stress on organisms that require these minerals for cellular 54 

growth and other functions (4, 5). The effects of OA are amplified by ocean warming, 55 

particularly at low latitudes, with surface temperatures expected to increase by 1–10 °C over the 56 

next century (6). Changes in seawater chemistry and physics can have immense impacts, both 57 

direct and indirect, on marine life (3). Thus, it is imperative to understand better how diverse 58 

marine organisms respond to present-day chemical and physical conditions to inform future 59 

potential shifts in community composition. 60 

  61 
Over the past decade, research on species sensitivity to OA has expanded greatly, particularly for 62 

multicellular organisms that rely on carbonate chemistry for their structure and function (3, 5). 63 

Much less research has been conducted on marine microbes (i.e., protists, Bacteria, and 64 

Archaea), despite the central role of microbes in food webs and their strong influence on 65 

biogeochemical cycles and carbon export (7, 8). Microbes also respond quickly to shifts in their 66 

surrounding environment, making them potentially important indicators of changing ocean 67 

conditions (9, 10). In general, global ecosystem models predict a decline in photosynthetic 68 

biomass and a shift in composition from larger plankton (e.g., diatoms) to picophytoplankton 69 
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(0.2–2 µm), primarily driven by warming and enhanced stratification (11–14). Field and 70 

laboratory experiments have measured direct and negative impacts of OA on plankton, notably 71 

among calcifying haptophytes (e.g., coccolithophores), where increased partial pressure of CO2 72 

(pCO2) and/or decreasing pH has led to reduced growth and calcification rates (15–17). 73 

However, evidence suggests that some phytoplankton species, even coccolithophores, may be 74 

resilient to rising pCO2 and warming (13, 18, 19). In addition, heterotrophic bacteria may be 75 

more resilient to OA compared to phytoplankton, impacted more directly by warming and 76 

changes to phytoplankton-derived organic matter (20, 21). Employing DNA metabarcoding to 77 

characterize the complex effects of OA parameters and temperature on a wide range of microbes 78 

(22, 23) will help guide lab-based experiments, identify indicator taxa, and inform model 79 

predictions. 80 

 81 
The Gulf of Mexico (GOM) is an ideal location to study the effects of multiple stressors on 82 

marine microbes, as microbial communities in the GOM are affected by several major 83 

hydrographic features that result in strong physicochemical gradients (24). The GOM is a semi-84 

enclosed subtropical basin, influenced by the Loop Current (and associated anticyclonic eddies) 85 

and freshwater inflow from riverine systems (Mississippi-Atchafalaya) in the north (25, 26). 86 

Most of the GOM is oligotrophic (and nutrient-limited), with phytoplankton biomass dominated 87 

by picophytoplankton (27). Despite overall low biomass, microbial food webs in the GOM 88 

support high biodiversity of mesozooplankton and micronekton (28), as well as several 89 

economically important fisheries (29). At times, nutrient runoff from terrestrial sources promotes 90 

eutrophication, resulting in coastal hypoxic zones that are more acidic (30, 31). Coastal 91 

eutrophication combined with physical upwelling of new inorganic nutrients onto the shelf can 92 

also enhance formation of harmful algal blooms (HABs), particularly along the western coast of 93 

Florida (32, 33) and in other coastal regions in the southern Gulf (34). HABs pose a threat to 94 

marine ecosystems in the GOM and can negatively impact local economies (35). While OA has 95 

resulted in observable changes in ocean chemistry in the GOM (24), research on the impacts of 96 

OA and warming on marine microbes has not been well explored. Most microbial genomics 97 

studies have been localized to specific regions or depths (36–39) or focused on responses of 98 

microbes to natural disturbances, like oil spills, in the northern Gulf (40, 41). This lack of spatial 99 

biological sampling has made it difficult to characterize environmental drivers of diverse 100 

microbes in the GOM (24), including OA parameters (e.g., pH, DIC, and pCO2), and impedes 101 

our ability to understand how microbial communities may shift in the future. 102 

 103 
Here, we performed the first basin-scale DNA metabarcoding survey of protists, Bacteria, and 104 

Archaea in the GOM as part of the fourth Gulf of Mexico Ecosystems and Carbon Cycle 105 

(GOMECC-4) cruise that sailed from late summer to early fall of 2021. Overall, we collected 106 

481 discrete DNA samples from 51 (out of 141) stations, encompassing 16 inshore–offshore 107 

transects and up to three depths per site that corresponded to the surface, deep chlorophyll 108 

maximum (DCM), and near bottom (Fig. 1A). Amplicon metabarcoding was performed to reveal 109 

population dynamics of protists (18S SSU rRNA gene, V9 region) and prokaryotes (16S SSU 110 
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rRNA gene, V4–V5 region). We constructed generalized linear models (GLMs) for major 111 

microbial groups in the photic zone to gain insight into group-specific environmental correlates, 112 

including carbonate system parameters. These GLMs were applied to all GOMECC-4 sites, 113 

including those where DNA samples were not collected, to expand spatial distributions of 114 

microbial groups in the GOM. Finally, we performed indicator analysis based on profiles of DIC 115 

and total alkalinity (TA) in the photic zone to identify microbes that were potential indicators of 116 

more or less acidic waters (based on TA:DIC ratios). This study provides an important baseline 117 

for microbial OA research in the GOM that will guide future DNA sampling efforts in this region 118 

and contribute to our growing knowledge on the potential responses of marine microbes to 119 

climate change. 120 

 121 
Results and Discussion 122 
 123 
Microbial population dynamics in the GOM 124 
 125 
We obtained a total of 8,312 sequences on average per sample (range: 3,322–16,483) from 18S 126 

metabarcoding, resulting in 13,632 protist amplicon sequence variants (ASVs) identified 127 

throughout all GOM samples. In comparison, we obtained an average of 12,963 sequences per 128 

sample (range: 5,056–28,620) for 16S metabarcoding which were assigned to 41,876 total 129 

prokaryotic ASVs. Though significant to community composition (P < 0.01), factors like 130 

transect, location on the shelf (< 200 m) vs. open ocean (> 200 m), and categorical depth had low 131 

explanatory power on their own (PERMANOVA R = 0.03–0.2). As depth is a well-known driver 132 

of global marine microbial communities (42–46), we performed hierarchical clustering of 133 

microbial composition to better control for the impact of depth on subsequent spatial analyses. 134 

This revealed separation of DNA samples into three clusters (Clusters 1–3), similar for both 135 

marker gene regions, that reflected depth of samples in the water column on the continental shelf 136 

and/or in open ocean GOM regions (Fig. 1B; fig. S1). For instance, Cluster 1 mainly consisted of 137 

samples collected on the shelf at all depths and offshore at the surface layer, with all samples 138 

located in the photic zone (2–99 m). Cluster 2 samples were mainly from the DCM (2–124 m) in 139 

more stratified open ocean regions of the GOM, while Cluster 3 samples largely represented 140 

meso- to bathypelagic waters (135–3,326 m) in the open ocean that were confined to the aphotic 141 

zone (Fig. 2A–B; Fig. 3A–B). Though Clusters 1–2 were both in the photic zone (upper ~150 142 

m), and had some overlap (Fig. 2B), they were separated into distinct clusters based on their 143 

composition that reflected total depth in the water column and shifts in physicochemical 144 

variables (fig. S2). In our case, clustering of DNA samples allowed us to better explore 145 

microbes, and their relationships with environmental variables, within distinct spatial habitats 146 

they occupy in the GOM. 147 

 148 
Microbial communities in the GOM were more species-rich and diverse in the DCM and aphotic 149 

zone (Fig. 2C; Fig. 3C), consistent with vertical profiles from other oceanic regions (43, 46, 47). 150 

Higher richness and diversity with depth may be the result of microbes utilizing a broad 151 
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spectrum of sinking organic matter, exerting alternative metabolic strategies (redox reactions), 152 

and/or forming diverse trophic relationships with other organisms to exploit such habitats (48). 153 

Alpha diversity was stable along sampling transects in the photic zone for 16S (fig. S3) and 18S 154 

samples (fig. S4), with higher variability in the DCM and aphotic zone. For example, microbial 155 

diversity in the aphotic zone steadily decreased from coastal Florida (27°N line) to regions near 156 

the Mississippi River outflow, increasing thereafter from Brownsville to Cancun (fig. S3).  157 

 158 
Shifts in taxonomy between clusters were in line with depth-related microbial dynamics seen 159 

previously in the GOM (37, 38, 49) and on a global scale (42, 43, 48). Among prokaryotes, the 160 

photic zone and DCM were dominated by common heterotrophic bacteria, such as SAR11, 161 

SAR86, and Flavobacteriales (Fig. 2D; fig. S5). Autotrophic cyanobacteria within the order 162 

Synechococcales also had high relative abundance in the photic zone (Fig. 2D; fig. S5), 163 

particularly Prochlorococcus and Synechococcus (fig. S6), both genera known to dominate 164 

primary production in the GOM (27). Prokaryotic communities shifted dramatically in the 165 

aphotic zone, with higher relative abundance of metabolically diverse taxa that are endemic to 166 

deeper waters (48–50), including nitrous oxide-reducing Marinimicrobia (SAR406), ammonia-167 

oxidizing Nitrosopumilales, and sulfur-oxidizing Thiomicrospirales (Fig. 2D; fig. S5). These 168 

microbes use redox reactions to acquire energy in less oxygenated waters (48), such as those 169 

found in the mesopelagic zone (~200–800 m) in the GOM (fig. S2), and likely contributed to 170 

increased richness of prokaryotic communities observed with depth (Fig. 2C). Certain 16S 171 

groups varied at more resolved taxonomic levels between clusters. For example, 172 

Prochlorococcus became more relatively abundant in the DCM, while SAR11 clade II increased 173 

in the aphotic zone relative to other SAR11 clades (fig. S7). Similar patterns have been observed 174 

elsewhere for Prochlorococcus (51) and SAR11 (48, 52), and reflect potential environmental 175 

niche partitioning through the water column. High abundance of SAR11 clade II in the 176 

mesopelagic has recently been observed in the Pacific Ocean (48), which may indicate particle 177 

association among SAR11 that may be more common than previously thought.  178 

 179 
Protist biodiversity was dominated by Dinophyceae, Syndiniales, Prymnesiophyceae, and 180 

Sagenista in the photic zone and DCM, transitioning to Radiolaria (Polycystinea and RAD-B) 181 

and Diplonemea in the aphotic zone (Fig. 3D). Dinophyceae and Prymnesiophyceae are common 182 

in pelagic waters, including in the GOM (36, 53), and occupy important functional roles as 183 

grazers (and mixotrophs) in microbial food webs (fig. S5). Sagenista was also abundant in the 184 

photic zone (Fig. 3D), a group of common, yet still uncultured heterotrophic protists that have 185 

important ecological roles (54). Other class level protist groups that were common in the GOM 186 

in summer–fall, like Mamiellophyceae (Chlorophyta) and Mediophyceae (Stramenopiles), varied 187 

more greatly across transects in the photic zone and DCM (Fig. 3D). Radiolarians dominated 188 

relative abundance in mesopelagic samples (Fig. 3D). While these organisms remain largely 189 

uncultivated and hard to study, they are key members of deep ocean food webs, forming 190 

endosymbiotic relationships with other microorganisms (fig. S5) and contributing to the export 191 

of carbon and biogenic silica (55).  192 
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 193 
DNA metabarcoding also reinforced the importance of obligate parasites within the group 194 

Syndiniales at all depths in the water column (42, 56, 57), including at the basin scale in the 195 

GOM (Fig. 3D; fig. S5). The prevalence of Syndiniales may be attributed to their wide host 196 

range, active (and passive) export on sinking particles, and depth related niche partitioning (56, 197 

58). We observed vertical shifts within Syndiniales at the clade level in our samples that aligned 198 

with prior observations (45, 56). For instance, there was a shift from Syndiniales Group-I Clades 199 

1 and 4 in the photic zone to other clades, like Group-II Clade 7 and Group-I Clade 2 in the 200 

aphotic zone (fig. S8). Radiolaria also varied between clusters, with certain members of 201 

Polycystinea (e.g., Heliosphaera and Pterocorys) increasing in relative abundance from the 202 

DCM to the aphotic zone (fig. S8). Diplonemea were also dominant in the GOM aphotic zone 203 

(Fig. 3D). Though enigmatic, Diplonemea have been found globally in mesopelagic waters (57) 204 

and likely represent important consumers of picoplankton and bacteria in these environments 205 

(59). 206 

 207 
Generalized linear models reveal group-specific environmental correlates 208 
 209 
We used generalized linear models (GLMs) with either Poisson or negative-binomial error 210 

distributions to identify potential explanatory variables of major 16S and 18S taxonomic groups 211 

in the GOM. GLMs account for multiple predictor variables (factors) and have been applied to 212 

ecological count (and proportional) data of higher trophic level marine organisms (60, 61). Here, 213 

we applied GLMs to microbial metabarcoding data, allowing us to observe predictor variables 214 

and their relation to group-specific relative abundance measured spatially in the photic zone (Fig. 215 

2D; Fig. 3D). We focused our models on the photic zone (Cluster 1), primarily because most 216 

factors were collinear in the DCM and aphotic zone (table S1). Collinearity among variables can 217 

result in models being less statistically reliable and confound model interpretation (62). Eight of 218 

fifteen environmental variables were initially selected for models and included temperature, 219 

salinity, dissolved oxygen (O2), nitrate (NO3), ammonium (NH4), phosphate (PO4), dissolved 220 

inorganic carbon (DIC), and total pH recalculated to in situ temperatures (Table 1). Many 221 

parameters related to OA that were measured or derived (e.g., total alkalinity, pCO2, carbonate 222 

ion concentration, and aragonite saturation) were strongly collinear to each other and 223 

temperature (Spearman rs  > 0.7 or < –0.7), and thus were excluded from initial models (table 224 

S1). Environmental conditions in the GOM surface were typical for this time of year (63, 64). 225 

For instance, offshore waters were warm (> 28 °C) and nutrient-limited (e.g., NO3 < 0.1 µmol 226 

kg–1), while coastal regions had higher nutrient concentrations, including near the Mississippi 227 

River outflow (Table 1; fig. S2). DIC was highest in the southern GOM and onto the Campeche 228 

Bank (> 2050 µmol kg–1), while pH often increased from the shelf to open ocean regions of the 229 

Gulf (Table 1; fig. S2). 230 

 231 
Microbial groups differed in the type and number of variables that significantly contributed to 232 

the final models (Table 2). Pseudo R2 values produced from GLMs ranged from 0.26–0.80 233 
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(Table 2), though several other methods confirmed appropriate model fit. First, model 234 

simulations fit the data well (Fig. 4C; Fig. 5C) and the standardized residuals were normally 235 

distributed for all groups (Kolmogorov–Smirnov, P > 0.05), except for Flavobacteriales. This 236 

was further supported by significant and often strong positive correlations (Pearson R = 0.31–237 

0.90; P < 0.01) between test and model-trained relative abundance data for all groups (fig. S9; 238 

fig. S10), with example plots shown for SAR11 (Fig. 4D) and Syndiniales (Fig. 5D). 239 

Explanatory variables like temperature, DIC, and pH had individual, and often significant (P < 240 

0.05) effects on relative abundance that varied among major 16S (Fig. 4A–B) and 18S groups 241 

(Fig. 5A–B). Through this approach, we examined individual model terms, focusing primarily on 242 

those related to ocean change, and explored their relationships with group-specific relative 243 

abundances in the GOM. 244 

 245 
Our model findings often supported prior physiological responses for certain microbial groups 246 

that have been revealed in field and culture experiments. While changes in relative abundance 247 

data with any given environmental factor does not necessarily translate to physiology, applying 248 

DNA metabarcoding to OA research can help to verify existing trends and produce new 249 

hypotheses for future testing on a wide range of microorganisms (22, 23). We found that 250 

temperature had a positive effect on the relative abundance of SAR11 and SAR86 in our models 251 

(Fig. 4A–B). Experimental evidence suggests that warmer conditions may favor increased 252 

biomass of small, oligotrophic bacteria, like SAR11 and SAR86, that have low nucleic acid 253 

content (65). In general, warming is thought to promote increased bacterial production, biomass, 254 

and respiration, while also lowering growth gross efficiency (20). DIC had a positive effect on 255 

SAR11, SAR86, and Flavobacteriales in group models (Fig. 4A–B), which together with 256 

temperature effects, may imply a favorable response among these taxa to continued OA and 257 

warming in this region. It is important to note that heterotrophic bacteria will also be influenced 258 

by indirect changes in plankton composition, dissolved organic matter (DOM) availability and 259 

quality, and trophic interactions (21, 66). These factors may outweigh direct OA effects in 260 

natural communities and will be important to incorporate into future climate model predictions 261 

of bacterial diversity and composition. 262 

 263 
We observed contrasting effects of pH on the relative abundance of Prochlorococcus vs. 264 

Synechococcus in the photic zone (Fig. 4A–B). For example, in situ pH had a strong and positive 265 

effect on Prochlorococcus, implying a negative response to lower pH (more acidic) conditions. 266 

An opposite trend was observed for pH in the Synechococcus model (Fig. 4A–B); however, DIC 267 

also had a negative effect on Synechococcus, confounding model inference. Fu et al. (2007) 268 

noted that combined effects of high pCO2 and temperature significantly increased growth rates, 269 

photosynthetic capacity, and cellular pigment levels of Synechococcus but not Prochlorococcus. 270 

Mesocosm work in the subtropical North Atlantic also indicated a positive response of 271 

Synechococcus to high pCO2 (67), though others have noted small or insignificant physiological 272 

shifts to changing conditions (68). On a global scale, ecological niche models predict increased 273 

Prochlorococcus and Synechococcus biomass to ocean warming (via flow cytometry), 274 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605667doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

particularly in low latitude regions like the GOM, where these taxa already dominate plankton 275 

biomass (69). Such niche models have not considered pH (or DIC), which we show may be 276 

significant predictors. Though not resolved at the ecotype level in our amplicon dataset, 277 

individual cyanobacterial strains or ecotypes will likely respond differently to future conditions, 278 

as well as be influenced by indirect changes in top-down pressure (grazing or viral lysis), 279 

nutrients, or sunlight (70, 71). Multiple ecotypes have already been discovered for 280 

Prochlorococcus in the ocean, with evidence of different nutrient uptake rates, light preferences, 281 

and thermal optima that shape population dynamics (51, 72). Additional field and laboratory 282 

work is needed to identify responses among microbes at the species or ecotype level to support 283 

accurate model predictions (13) and reveal underlying physiological mechanisms.  284 

 285 
Future OA and warming is predicted to favor small phytoplankton, like picoeukaryotes, that can 286 

more efficiently exploit oligotrophic and nutrient-limited waters (11, 12, 14), primarily due to 287 

their larger cell surface to volume ratios that promote resource acquisition. Though for many 288 

protists, the effects of OA and warming are less clear. This is especially true for Syndiniales and 289 

Sagenista, enigmatic protist parasites and grazers that have seldom been considered with respect 290 

to climate change. In our models, temperature had a significant and positive effect on the relative 291 

abundance of Syndiniales and Sagenista (Fig. 5A–B). Temperature is often thought to enhance 292 

physiological rates (73), which may include microzooplankton grazing and parasitism; however, 293 

temperature relationships are hard to predict and can often be confounded by other factors, like 294 

host or prey composition, that can dictate mortality rates. We found that pH had a positive effect 295 

on Syndiniales and Sagenista, while DIC had a negative impact on Syndiniales relative 296 

abundance (Fig. 5A–B). This implied a negative response among these groups to more acidic 297 

conditions in the GOM at this time. Therefore, models that include only temperature or pH may 298 

result in different outcomes for certain plankton groups (74), potentially misleading how we 299 

interpret (and predict) their responses to climate change.   300 

 301 
Dinophyceae were also prevalent in the photic zone on GOMECC-4 (Fig. 3D). It is well 302 

understood that dinoflagellates are central to the microbial loop in oligotrophic regions, often 303 

exhibiting mixotrophy and representing a key link between primary production and higher 304 

trophic levels (29, 53). We found that temperature and DIC had significant and negative effects 305 

on Dinophyceae relative abundance (Fig. 5A–B), implying a negative response to warmer and/or 306 

more acidic conditions in the GOM. Similar findings on dinoflagellates have been observed in a 307 

mesocosm study (67), though others have found dinoflagellates to benefit from or be less 308 

sensitive to warming or increased pCO2 concentrations (23, 71, 74, 75). Dinoflagellates often 309 

exhibit mixotrophy, and so favorable responses to OA among this group may be indicative of 310 

increased consumption of common prey (picoeukaryotes and cyanobacteria) that tend to grow 311 

faster under such conditions (75). As is the case with many protists, dinoflagellates are extremely 312 

diverse, not only phylogenetically but also in terms of their size, physiology, and trophic modes 313 

(76). Therefore, it will likely be challenging to define a unified response for Dinophyceae to 314 

changing ocean conditions. Future work that merges DNA metabarcoding with more targeted 315 
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approaches, like single-cell genomics or qPCR, will help to shed light on species sensitivity, 316 

interactions, and drivers that would otherwise be overlooked.  317 

 318 
In addition to temperature and carbonate chemistry parameters, other factors like nutrients, 319 

salinity, and oxygen had significant effects on prominent 16S and 18S groups in the GOM (Fig. 320 

4A; Fig. 5A). As an example, limiting nutrients like NO3 and PO4 had negative effects on the 321 

relative abundance of Synechococcus and Prochlorococcus, respectively (Fig. 4A). This may be 322 

related to the ability of cyanobacteria to uptake nutrients at low concentrations in surface waters 323 

(72). Synechococcus are thought to exploit low NO3 concentrations in the GOM by maintaining a 324 

shallower distribution in the water column (64), relying on regenerated sources of NO3 via 325 

nitrification (29). Salinity was also an important variable in our models, with positive effects on 326 

the relative abundance of Prochlorococcus, Syndiniales, Dinophyceae, and Prymnesiophyceae, 327 

as well as a negative effect on Flavobacteriales (Fig. 4A; Fig. 5A). Salinity is a known driver of 328 

bacterial and plankton distribution and diversity in the GOM (37, 39, 77). This is particularly 329 

evident in the northern GOM, where plankton biomass and composition are often driven by 330 

salinity-induced stratification (and nutrient availability) that result from riverine discharge via 331 

the Mississippi–Atchafalaya system, as well as by climatic processes, like the El Niño–Southern 332 

Oscillation (77, 78). Here, interpreting the role of salinity or nutrients in driving specific 333 

microbial groups was difficult, mainly because our sampling strategy and analysis focused on 334 

large-scale spatial patterns in microbial communities that did not allow us to explore regional 335 

trends (e.g., in the northern GOM). Even so, our results emphasize the importance of including 336 

such variables to resolve microbial composition and distribution at the basin scale in the GOM.  337 

 338 
There are several caveats to consider with our model analysis. Models constructed from 339 

amplicon data on GOMECC-4 reflected only a specific time of the year (summer–fall) and did 340 

not integrate seasonal sampling. Temperature and carbonate chemistry parameters vary 341 

seasonally in the GOM (79), as does the intensity and position of the Loop Current (and eddies) 342 

and nutrient input from coastal runoff, all of which will impact microbial communities (80, 81). 343 

Consistent temporal sampling will be essential to better resolve microbes and their drivers over 344 

seasonal and interannual time scales (24). Such sustained sampling will also allow for more 345 

accurate predictions of microbial dynamics that integrate new OA data beyond the limits of 346 

GOMECC-4 measurements. We also considered GLMs for major taxonomic groups that were 347 

present in our samples (i.e., highest relative abundance), mainly to avoid issues with zero-348 

inflation and overdispersion in the models. As a result, several groups thought to be sensitive to 349 

ocean change, like diatoms and diazotrophic cyanobacteria (8), were not considered here due to 350 

lower relative abundance at the basin scale. Similarly, this constrained our ability to predict 351 

model effects below the order to class level, with the exception being highly abundant 352 

cyanobacterial genera. We examined linear trends with GLMs as a simple and conservative 353 

approach to model relative abundance in the GOM. Future work may consider applying 354 

generalized additive models (GAMs) that allow for nonlinear dynamics (82), especially as more 355 

amplicon data is collected.  356 
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 357 
Though we tested for model fit, it is important to note that amplicon data is compositional, with 358 

relative abundance of any single group being dependent on the proportion of others (83). 359 

Comparing relative abundance among eukaryotic groups is also tenuous, as 18S rRNA gene copy 360 

numbers can vary greatly (2–166 copies per cell) among protists (84). This is especially true for 361 

alveolates (Syndiniales and Dinophyceae) and can lead to overestimation of read counts and 362 

relative abundance (42). However, such concerns would not necessarily discount our modeling 363 

approach that focused on groups separately and explored their relation to environmental factors. 364 

Lastly, models did not account for trophic interactions (e.g., changes in prey or host) that may 365 

vary along with changing conditions (19) or potential evolutionary adaptations among organisms 366 

(85). Nevertheless, applying GLMs to amplicon data in this study offered a first step to define 367 

multiple environmental drivers of diverse marine microbes, many of which are not easily 368 

discerned with traditional observational methods like microscopy or cytometry. Our findings are 369 

also timely for marine regions like the GOM that have lacked basin-scale sampling. 370 

 371 
GLMs expand microbial distributions in GOM surface waters 372 
 373 
Final models were used to predict the relative abundance of major 16S and 18S groups at 135 374 

surface sites on GOMECC-4 (Fig. 1A), including 84 sites where DNA was not collected. This 375 

allowed us to increase the spatial resolution of microbial sampling in the GOM at this time of 376 

year. Groups like SAR11 (Fig. 6A) and Syndiniales (Fig. 6F) were well distributed throughout 377 

the GOM, with highest relative abundance predicted offshore of Brownsville (Texas), in the Bay 378 

of Campeche, and regions on the Campeche Bank. Cyanobacteria genera were largely partitioned 379 

in the GOM based on their expected ecological niches (86). Prochlorococcus was most relatively 380 

abundant offshore in stratified and nutrient-limited waters (Fig. 6B), particularly in parts of the 381 

southern GOM. Synechococcus was present throughout the GOM at the surface, but relative 382 

abundance was often highest in nutrient-rich coastal regions and in a localized area in the central 383 

Gulf (Fig. 6C). Other groups like SAR86 (Fig. 6D), Prymnesiophyceae (Fig. 6H), and Sagenista 384 

(Fig. 6I) were most relatively abundant offshore in the southern GOM and onto the East Mexico 385 

Shelf, likely driven by higher temperature and DIC concentrations in these areas (fig. S2). This 386 

was supported in the model output for these taxa, where temperature and/or DIC had positive 387 

effects on relative abundance (Fig. 4A; Fig. 5A). Flavobacteriales was highest near the 388 

Mississippi River outflow (Fig. 6E), in line with strong negative effects of salinity in the model 389 

output for this group (Fig. 4A). The Mississippi River is the dominant source of freshwater into 390 

the GOM, providing nutrients and organic matter into the system (fig. S2) that can stimulate 391 

phytoplankton blooms (81). Though not widespread in the GOM, diatoms were most relatively 392 

abundant in the photic zone near the Mississippi River (Fig. 3D), which may have contributed to 393 

higher relative abundance of copiotrophs like Flavobacteriales that often associate with blooms 394 

and can rapidly consume DOM (87). 395 

 396 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605667doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

Current predictions also revealed insights into the biogeography of a HAB species in the GOM. 397 

Though prevalent through most of the GOM, including in the open ocean, relative abundance of 398 

Dinophyceae was predicted to be highest directly off the coast of Tampa, Florida (Fig. 6G). This 399 

was caused by a likely bloom event of the mixotrophic dinoflagellate, Karenia brevis, captured 400 

in our DNA samples (fig. S11) and confirmed to be highly abundant through manual counts 401 

(105–106 cells l–1) estimated around the same time and location via the Florida Fish and Wildlife 402 

Conservation Commission (https://myfwc.com/research/redtide/monitoring). HABs formed by 403 

K. brevis are common in the GOM in the summer–fall, particularly along the West Florida Shelf, 404 

and can negatively impact marine ecosystems and local economies (32, 33, 35). There is 405 

evidence that warming may increase toxin production, growth rates, bloom frequency, and range 406 

expansion of some HAB species (88). Temperature had negative effects on Dinophyceae in our 407 

models (Fig. 5A–B), but responses were not explored to genus level. In culture, K. brevis has 408 

shown increased growth rates with increasing pCO2, though changes in toxin production were 409 

not recorded (89). It remains important to monitor HABs and their drivers (90), combining 410 

traditional monitoring and molecular methods to better predict pervasive blooms in the GOM 411 

and elsewhere.  412 

 413 
Indicator analysis reveals candidate microbial indicator taxa of OA 414 
 415 
It is also important to determine specific microorganisms below the order to class level that may 416 

be indicative of different OA conditions in natural waters (9, 10, 23). To this end, we grouped 417 

samples in the photic zone (Cluster 1) based on TA:DIC ratios and examined microbial indicator 418 

taxa at the ASV level. The TA:DIC ratio is a well-used proxy for carbonate chemistry in the 419 

ocean, determining the buffering capacity against acidification (79, 91). In general, lower 420 

TA:DIC ratios indicate poorly buffered waters, and so in our case, microbes that were more 421 

prevalent in lower TA:DIC samples may be candidate indicators of more acidic conditions in the 422 

GOM. TA:DIC ratios ranged from 1.1–1.2 in the photic zone, were not influenced by sampling 423 

transect, and were positively correlated with pH (Pearson R = 0.71; P < 0.01) in surface waters 424 

(Fig. 7A–B). TA:DIC ratios were manually grouped into low (< 1.16) vs. high (> 1.16) 425 

categories to explore microbial indicators (Fig. 7A–B). 426 

 427 
Overall, we found that 146 and 117 protist ASVs were significant indicators (P < 0.001) of low 428 

or high TA:DIC ratios, respectively (table S2). Protist indicators spanned a range of taxonomic 429 

groups, though several ASVs stood out (Fig. 7C). For instance, protists with the highest indicator 430 

values (> 0.35) in samples with low TA:DIC ratios included Ostreococcus sp., which was the 431 

most relatively abundant indicator ASV on average in the photic zone (~6%), as well as other 432 

ASVs assigned to Emiliania huxleyi (now Gephyrocapsa huxleyi), Cryptomonadales, 433 

Euduboscquella (Syndiniales), and Dino-Group I Clade 1 (Syndiniales). In comparison, ASVs 434 

with high indicator values (> 0.55) in samples with high TA:DIC ratios consisted of ASVs 435 

assigned to heterotrophic flagellates like MAST 3-B (and 4-B) and Kathablepharidida, as well as 436 

parasites in Dino-Group III and V (Fig. 7D). For 16S samples, a total of 228 and 136 ASVs were 437 
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significant indicators (P < 0.001) of low vs. high TA:DIC ratios (table S2), dominated by 438 

Proteobacteria (fig. S12). 16S ASVs with the highest indicator values (> 0.45) in low TA:DIC 439 

samples included an ASV assigned to SAR11 clade Ia, which accounted for 10% of reads on 440 

average in Cluster 1, as well as other ASVs assigned to SAR11 (clade I and Ia), SAR406, and 441 

AEGEAN-169 (fig. S12). The 16S ASVs that were most indicative of high TA:DIC were 442 

assigned to SAR116, SAR86, AEGEAN-169, and Rickettsiales (family S25-593; fig. S12). 443 

 444 
Pico- and nanoeukaryotes dominate warm and oligotrophic regions like the open GOM (27, 53, 445 

64) and are sensitive to changing ocean conditions (15, 23). Two of arguably the most well 446 

studied taxa in the field of phytoplankton OA research, Ostreococcus sp. and Emiliania huxleyi, 447 

were associated with less buffered (and more acidic) waters in the GOM (Fig. 7C). Both species 448 

are widespread and impact global biogeochemical cycles (92), with E. huxleyi being a major 449 

calcifier and contributor to CaCO3 flux (93). In a prior 18S rRNA metabarcoding survey in the 450 

southern GOM, Ostreococcus was the only genus with significantly different relative abundance 451 

between upwelling and downwelling conditions in the DCM and when comparing the DCM to 452 

mixed layer (38), which authors suggest may make this species an indicator of vertical nitrate 453 

flux. Our findings imply Ostreococcus may also be a candidate indicator of acidic conditions in 454 

GOM surface waters. Calcifying plankton, like E. huxleyi, are thought to be strongly impacted by 455 

OA, with increased pCO2 and/or lower pH having detrimental effects on growth and calcification 456 

rates (15, 16). However, contrasting effects have been observed and may reflect considerable 457 

strain and ecotype variability (18, 23). Indeed, several culture-based studies with E. huxleyi (and 458 

Ostreococcus) have revealed adaptive mechanisms of cells to elevated pCO2 over hundreds of 459 

generations (94, 95). Though E. huxleyi was not prevalent overall in our samples (fig. S8), this 460 

species has been measured in high concentrations (~104 cells l–1) in the southern GOM in spring 461 

(96). Together with model results at the class level (positive temperature effects on 462 

Prymnesiophyceae), our findings highlight the potential sensitivity of haptophytes to changing 463 

conditions in the GOM that should be further explored. 464 

 465 
Indicator analysis also revealed SAR11, specifically ASVs assigned to clades 1 and 1a, as being 466 

possible indicators of less buffered waters in the GOM in summer–fall (fig. S12). SAR11 is the 467 

most abundant bacterial group in the oceans, playing an important role in global carbon cycling 468 

(97). Though diverse, members of the SAR11 clade Ia ecotype tend to be most prevalent in 469 

surface oceans (52), adapted to nutrient-poor conditions via small cell sizes and streamlined 470 

genomes (98). Though direct effects of OA on SAR11 remain unclear and are likely to be less 471 

important compared to shifts in DOM (21), SAR11 exhibits known seasonality in the surface 472 

oceans and is sensitive to temperature (48, 65). Such temperature sensitivity was supported in 473 

our model analysis (Fig. 4A–B). Given the ubiquity of SAR11 and its role in global carbon 474 

cycles, it remains critical to confirm and further investigate the potential of this group as an 475 

indicator of ocean change.  476 

 477 
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Future sampling to characterize microbes in changing oceans 478 
 479 
Efforts to characterize microbial communities over natural physicochemical gradients are 480 

essential to inform how these communities may shift in the face of changing ocean conditions 481 

(10). In the GOM, there is evidence of increased pCO2 in many parts of the open ocean that are 482 

on par with rates of change in other oligotrophic regions (99), like those measured in the Pacific 483 

Ocean via the Hawaiian Ocean Time-series (1.72 µatm yr−1) and in the Atlantic Ocean via the 484 

Bermuda Atlantic Time-series Study (1.69 µatm yr−1). Yet, knowledge on the effects of OA and 485 

warming on biological organisms is limited in the GOM, particularly for microbes. Here, we 486 

performed the first basin-scale DNA metabarcoding survey in the GOM and paired this with 487 

extensive hydrographic, nutrient, and carbonate chemistry measurements to investigate diverse 488 

prokaryotes and protists and their specific environmental drivers (Fig. 1). In line with prior 489 

physiological and modeling-based observations, our GOM model analyses suggest that more 490 

acidic and warmer conditions in the GOM may favor heterotrophic bacteria (SAR11 and SAR86) 491 

and smaller phytoplankton (e.g., Prymnesiophyceae), with groups like Dinophyceae potentially 492 

being less favored in future conditions (Fig. 4; Fig. 5). Warming and OA in the GOM may have 493 

contrasting effects on major plankton parasites (Syndiniales) and grazers (Sagenista) that are 494 

seldom considered with respect to climate change and underscores the importance to measure 495 

multiple stressors simultaneously (Fig. 5). We also defined microbial indicator taxa at the ASV 496 

level (Fig. 7), which resulted in several ubiquitous (and environmentally sensitive) microbes, like 497 

Ostreococcus sp., Emiliania huxleyi, and SAR11 clade Ia, being associated with more acidic 498 

waters in the GOM. Model inference and the utility of identified ASVs to act as indicator species 499 

of OA will need to be further tested, including at different times of the year to reflect seasonal 500 

turnover of the microbial community. 501 

 502 
Though still unclear, empirical and predictive work suggests that changes in our ocean systems 503 

will likely have profound impacts on microbial composition, biogeography, and physiology (8, 504 

100), with consequences for trophic transfer, nutrient cycling, and carbon export. Global models 505 

and experimental evidence predict increased stratification with warming, shifting communities to 506 

smaller picophytoplankton that can better exploit nutrients and other resources (12, 14). 507 

Warming-induced stratification may also result in an overall net reduction in carbon export that 508 

may threaten to decrease the amount of organic carbon that reaches the seafloor (101). Yet, 509 

predicted shifts in carbon export in global ecosystem models remains uncertain, ranging from a 510 

41% decrease to 8% increase in carbon export flux in future oceans (102). Strong selection 511 

imposed by climate change may also drive rapid adaptation, competition, or the emergence of 512 

new species (e.g., with higher thermal tolerance), all restructuring microbial communities (8, 13, 513 

85). In culture, some microbes demonstrate the ability to adapt to warmer or more acidic 514 

conditions (94, 95), though this does not necessarily mean they will remain competitive and it 515 

remains an open question on how this will apply to natural systems with mixed assemblages (19, 516 

85). Further, current models do not fully account for trophic interactions, like grazing or 517 

parasitism, the rates of which will likely vary in future oceans and offset direct physiological 518 
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effects of OA or warming on certain microbes. It remains important to measure microbial 519 

interactions, plankton mortality rates, and carbon export rates over time and in space (10, 102), 520 

which will support a more mechanistic approach to model predictions.  521 

  522 
Our findings provide an important baseline for microbial OA research in the GOM; however, 523 

sampling on GOMECC-4 only reflected a single time of the year and did not consider known 524 

seasonal variability in carbonate chemistry parameters or hydrography (79, 80), which are likely 525 

to influence microbes and their drivers (36). In response, there is a need for sustained biological 526 

measurements in the GOM, either by establishing long-term monitoring programs or continuing 527 

to leverage existing oceanographic surveys, like GOMECC. Long term microbial sampling in the 528 

GOM will be essential to accurately predict future changes in microbial groups that may be 529 

expected with continued OA or warming. For example, increased DNA collection would support 530 

ecosystem modeling of microbes in the GOM, integrating climate model scenarios (e.g., via the 531 

Coupled Model Intercomparison Project) to predict shifts in microbial abundance by the end of 532 

the century. Ultimately, our ability to predict the response of marine microbes to climate change 533 

will depend on sustained and coordinated sampling efforts across a range of dynamic marine 534 

ecosystems. 535 

 536 
Materials and Methods 537 

Seawater collection, DNA filtration, and environmental metadata 538 
 539 
Seawater was collected on board the NOAA Ship Ronald H. Brown as part of GOMECC-4 from 540 

September 13 to October 21, 2021. Sampling for GOMECC-4 occurred along 16 inshore–541 

offshore transects across the entire GOM and an additional line at 27°N latitude in the Atlantic 542 

Ocean (Fig. 1A). Sampling started at the 27°N line and continued counterclockwise across the 543 

GOM, ending at Florida Straits and Cape Coral. We also collected DNA samples near Padre 544 

Island National Seashore (U.S. National Parks Service), a barrier island located off the coast of 545 

south Texas (Fig. 1A). Vertical CTD sampling was employed at each site to measure discrete 546 

physical, chemical, and biological properties. Water sampling for DNA filtration was conducted 547 

at 51 out of 141 total sites and three depths per site, representing the surface, deep chlorophyll 548 

maximum (DCM), and near bottom (fig. S1). 549 

  550 
At each respective site and depth, seawater was collected from pre-designated Niskin bottles on a 551 

CTD rosette. To ensure adequate amounts of water were filtered for DNA analysis, samples for 552 

chemical parameters were taken at the same depths but with different discrete Niskin bottles. 553 

Following a CTD cast, which varied in duration from 30 min to 3 h depending on water depth, 554 

whole seawater was transferred from Niskin bottles to triplicate Whirl-Pak bags (3 depths x 3 555 

replicates = 9 bags per site). Within an hour, whole seawater (~2 L per replicate) was filtered 556 

through 0.22-µm Sterivex filters (Millipore; CAT# SVGP01050) via a peristaltic pump (100–150 557 

rpm) and run dry. Filters were capped and outlets were sealed with parafilm. Filters were stored 558 
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at –80 °C on the ship and kept at the same temperature in the laboratory for longer-term storage. 559 

Filter lines were sterilized with 2% bleach and rinsed with Milli-Q after every site. Milli-Q 560 

blanks were also filtered randomly throughout the duration of the cruise. Accounting for blanks 561 

and replication, a total of 481 Sterivex filters were collected on GOMECC-4. 562 

  563 
Discrete samples for water column hydrography and chemistry were taken at each site and depth 564 

during GOMECC-4, including sites sampled for DNA. Temperature, salinity, pressure, and 565 

chlorophyll fluorescence were obtained from the CTD. Vertical CTD profiles on the downcast 566 

were used to estimate the position of the DCM at each site. Blanks and quality control samples 567 

were considered for each discrete chemical parameter. Dissolved oxygen concentration was 568 

estimated from water samples (125 ml) using an automated oxygen titrator with amperometric 569 

end-point detection (103). Nutrient samples were collected from Niskin bottles into 50-ml acid 570 

washed bottles. Dissolved nutrients (NO3, NO2, NH4, PO4, and SiO4) were measured on board 571 

using an automated continuous flow analytical system with colorimetric detection ((104); SEAL 572 

Analytical). Samples for DIC were collected from Niskin bottles into 294-ml borosilicate glass 573 

bottles, sealed with glass stoppers, and stored for 12 h at room temperature. DIC samples were 574 

analyzed on the ship using two analytical systems, each consisting of a coulometer (CM5017, 575 

UIC Inc.) coupled with a Dissolved Inorganic Carbon Extractor (105). 576 

  577 
Samples for total alkalinity (TA) were collected from Niskin bottles into 500-ml collection 578 

bottles, preserved with a mercuric chloride solution, and kept in a water bath at 22 ºC for 1 h 579 

prior to analysis. TA measurements were made using a two-titration system, consisting of a 580 

Metrohm 765 or 665 Dosimat Titrator and Orion 720A or 2-Star pH meter (106). Samples for 581 

pCO2 were drawn from Niskin bottles into 500-ml glass bottles, preserved with mercuric 582 

chloride, and stored at room temperature for 8 h before analysis. Details on the system used to 583 

measure pCO2 are described in (107) and include equilibrating each sample with a constantly 584 

circulating gas phase. Lastly, for pH analysis, samples were collected from Niskin bottles into 585 

10-cm (~30 ml) glass cylindrical optical cells and analyzed on an Agilent 8453 586 

spectrophotometer with a custom-made temperature-controlled cell holder (108). Aragonite 587 

saturation state was calculated at each site and depth based on temperature, salinity, pressure, 588 

DIC, and TA using the CO2SYS program for CO2 System Calculations (109). Measurements of 589 

pCO2 (20 ºC) and pH (25 ºC) were re-calculated to in situ conditions using pressure, temperature, 590 

salinity, DIC, and TA in CO2SYS (109). Environmental metadata associated with DNA samples 591 

are provided in table S3. 592 

 593 
DNA extractions, PCRs, and library preparations 594 
 595 
Sterivex filters were extracted in-house at NOAA’s Atlantic Oceanographic and Meteorological 596 

Laboratory (AOML) using the ZymoBIOMICS 96 DNA/RNA MagBead kit (Zymo; CAT# 597 

D4308), with modifications for in-cartridge bead beating as described in (110). Filters were 598 

thawed, the inlet caps were removed, and excess water was dried from the inlet using kimwipes 599 
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to allow for dispensing of beads into the cartridge. Premade mixtures of 0.1 mm and 0.5 mm 600 

beads were directly added into the filters to ensure adequate lysis and recovery of hard-to-lyse 601 

phytoplankton groups (110). This was followed by the addition of a lysis buffer (1 ml). Sterivex 602 

filters were vortexed for 40 min on a Vortex-Genie at maximum speed (~3200 rpm). DNA 603 

lysates were transferred to 2-ml LoBind tubes (Eppendorf) via syringe and centrifuged for 1 min 604 

at 10,000 g. Supernatant (750 µl per sample) was split across three KingFisher 96-well plates 605 

(250 µl per plate). Zymo MagBinding buffer (600 µl) and magnetic beads (25 µl) were added to 606 

each well in each of the three plates. With this setup, 96 samples were extracted at the same time 607 

on the automated KingFisher Flex (Thermo Fisher). Each run included three wash plates with 608 

500–900 µl per well of MagWash and an elution plate with 150 µl per well of molecular-grade 609 

water. DNA was eluted into a single well from the same discrete sample across replicate plates. 610 

Concentrations of eluted DNA were measured using a Varioskan LUX plate reader and the 611 

Quant-IT dsDNA Assay (Thermo Fisher) and corrected per replicate sample based on volume of 612 

seawater filtered (ng l–1; fig. S13). Filters were processed randomly. Extraction blanks (clean 613 

Sterivex filters) were also included and processed similarly. A bacterial mock community 614 

(Zymo) was included as a positive control. 615 

  616 
Metabarcoding libraries were initially prepared at AOML, amplifying DNA of target organisms 617 

with universal primers, including 16S (Bacteria and Archaea) and 18S rRNA (protists). Primers 618 

from (111) were used to target the 16S V4–V5 region: forward (515f; 5’-619 

GTGYCAGCMGCCGCGGTAA-3’) and reverse (926r; 5’-CCGYCAATTYMTTTRAGTTT-620 

3’). Primers from (112) and the Earth Microbiome Project 621 

(http://www.earthmicrobiome.org/emp-standard-protocols/18s/) targeted the 18S V9 region: 622 

forward (1391f; 5’-GTACACACCGCCCGTC-3’) and reverse (EukBr; 5’-623 

TGATCCTTCTGCAGGTTCACCTAC-3’). Primers were constructed with Fluidigm common 624 

oligos CS1 forward (CS1-TS-F: 5’-ACACTGACGACATGGTTCTACA-3’) and CS2 reverse 625 

(CS2-TS-R: 5’-TACGGTAGCAGAGACTTGGTCT-3’) fused to their 5’ ends, to enable two-626 

step library preparation at the Michigan State University Research Technology Support Facility 627 

(RTSF). 628 

  629 
PCR reactions were run in triplicate (12.5 µl per sample), with 1 µl of DNA per sample. 16S 630 

PCR reactions consisted of 5 µl of AmpliTaq Gold, 6.25 µl of water, and 0.375 µl of each primer 631 

(10 µM); PCR conditions included denaturation at 95 °C for 2 min, 25 cycles of 95 °C for 45 s, 632 

50 °C for 45 s, and 68 °C for 90 s, followed by a final elongation step of 68 °C for 5 min (111). 633 

18S PCR reactions consisted of 5 µl of AmpliTaq Gold, 6.5 µl of water, and 0.25 µl of each 634 

primer (10 µM); PCR reactions involved denaturation at 94 °C for 3 min, 35 cycles of 94 °C for 635 

45 s, 65 °C for 15 s, 57 °C for 30 s, and 72 °C for 90 s, followed by a final elongation step of 72 636 

°C for 10 min (112). PCR products were pooled and run on a 2% agarose gel to confirm 637 

amplification of target bands. Sample plates were submitted to the Michigan State University 638 

RTSF Genomics Core for secondary PCR and sequencing. 639 

  640 
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Secondary PCR used dual-indexed, Illumina-compatible primers, targeting the Fluidigm 641 

CS1/CS2 oligomers at the ends of the PCR products. PCR conditions for the secondary run 642 

included an initial denaturation step at 95 °C for 3 min, 11 cycles of 95 °C for 15 s, 60 °C for 30 643 

s, and 72 °C for 60 s, followed by elongation at 72 °C for 3 min. Amplicons were batch 644 

normalized using Invitrogen SequalPrep DNA Normalization plates and the recovered product 645 

was pooled. The pool was QC’d and quantified using a combination of Qubit dsDNA HS, 646 

Agilent 4200 TapeStation HS DNA1000, and Invitrogen Collibri Library Quantification qPCR 647 

assays. The RTSF Core included a sequencing blank for each sample plate. Separate sequencing 648 

runs were performed using an Illumina MiSeq (2 × 250 bp) for 18S and 16S samples. Custom 649 

sequencing and index primers complementary to the Fluidigm CS1 and CS2 oligomers were 650 

added to appropriate wells of the reagent cartridge. Base calling was done by Illumina Real Time 651 

Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and converted to FASTQ 652 

format with Illumina Bcl2fastq v2.20.0. 653 

 654 
Bioinformatics and functional assignments 655 
 656 
Primers were removed from demultiplexed FASTQ sequences using Cutadapt (113). Trimmed 657 

reads were processed in Tourmaline, which implements QIIME 2 (and DADA2 plugins) in a 658 

Snakemake workflow (114). Paired-end DADA2 was used to infer 16S and 18S amplicon 659 

sequence variants or ASVs (115). Taxonomic assignments were also performed in Tourmaline 660 

using reference files from SILVA (Version 138.1; (116)) and the Protistan Ribosomal Reference 661 

or PR2 (Version 5.0.1; (117)) databases for 16S and 18S ASVs, respectively. In both cases, 662 

taxonomy was assigned using a Naïve Bayes classifier trained to the respective databases and 663 

trimmed to the primer regions (118). Output files (taxonomy, count, and metadata) were 664 

imported separately into R (Version 4.3.1) using qiime2R (Version 0.99.6; 665 

https://github.com/jbisanz/qiime2R) and merged with phyloseq (Version 1.44.0; (119)). Several 666 

groups were removed from the 18S dataset: Metazoa, Streptophyta, Rhodophyta, and unassigned 667 

reads at the Subdivision level. 18S reads assigned to non-marine taxa, e.g., Insecta, Archosauria, 668 

and Ascomycota were also filtered out. For 16S, reads assigned to Chloroplast, Mitochondria, 669 

and Eukaryota were removed. Samples with less than 3,000 reads counts were filtered out for 670 

18S (5,000 reads for 16S), along with ASVs only observed once in each respective dataset. 671 

Species accumulation curves were generated for 18S and 16S samples using the R package 672 

ranacapa (Version 0.1.0; (120)). The number of reads vs. ASVs was saturated with respect to 673 

categorial depth and position of samples on the shelf vs. open GOM, indicating that an 674 

appropriate sequencing depth was reached (fig. S14). Samples were rarefied to the minimum 675 

read count to normalize for differences in library size. 676 

  677 
Protist ASVs were manually assigned to functional groups based on 18S V9 functional 678 

annotations (https://doi.org/10.5281/zenodo.3768950) that were previously applied to Tara 679 

Ocean communities (57). Additional databases (e.g., World Register of Marine Species) and 680 

literature searches were also used. The following functional groups were included for 18S 681 
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protists: autotrophic protists, heterotrophic protists, mixotrophic protists, parasites, 682 

photosymbionts, and other protists. Mixotrophic protists were further categorized as being 683 

constitutive mixotrophs (CM) that inherently have chloroplasts and endosymbiotic specialist 684 

non-constitutive mixotrophs (eSNCM) that harbor endosymbionts to support growth (121). We 685 

recognize that many protists likely exhibit mixotrophy in some capacity, and so, our functional 686 

annotation of this group may be underrepresented. Other protists represented higher level 687 

taxonomic groups (domain or supergroup) that were unassigned at lower levels. Bacteria and 688 

Archaea were categorized functionally as being heterotrophic or autotrophic. 689 

 690 
Statistical analyses 691 
 692 
Prior to ordination, ASV count tables were transformed to Aitchison distances, which is 693 

estimated by transforming read counts via centered log-ratio normalization and computing 694 

Euclidean distances. The resulting Aitchison distance matrices were used to observe microbial 695 

composition and aimed to minimize compositional bias inherent with amplicon data (83). 696 

Principal coordinate analysis (PCoA) of Aitchison distances was used to visualize 16S and 18S 697 

community composition. Permutational multivariate analysis of variance (PERMANOVA) tests 698 

were employed with the adonis2 function in vegan (9999 permutations) to estimate the impact of 699 

spatial factors on community composition. This included categorical depth (surface, DCM, and 700 

near bottom), sampling transect, and location of samples on the continental shelf vs. in open 701 

ocean regions of the GOM designated by the 200 m isobath (Fig. 1A).  702 

 703 
Samples were also grouped into clusters via hierarchical clustering (Ward’s method) based on 704 

Aitchison distances using the hclust function in vegan (Version 2.6-6.1; (122)). The optimal 705 

number of clusters was determined based on average silhouette widths using the factoextra 706 

package (Version 1.0.7; (123)). Silhouette widths offer an estimate on the quality of sample 707 

clustering, with higher width coefficients indicating optimal clustering (124). Three clusters were 708 

found to be optimal for both 16S and 18S (fig. S15), which largely reflected depth in the water 709 

column (Fig. 1B; fig. S1). Cluster 1 consisted of samples collected at all depths on the shelf and 710 

offshore in the surface layer, all confined to the photic zone (2–99 m). Cluster 2 consisted of 711 

samples mainly from offshore and more stratified waters in the DCM (2–124 m), while Cluster 3 712 

represented samples collected offshore in meso- to bathypelagic waters (135–3,326 m). The 713 

photic zone extends to 200 m in many deeper regions of the GOM, and so, samples in Cluster 2 714 

(and a handful in Cluster 3) were also technically collected within the photic zone. However, we 715 

distinguish communities in Clusters 2–3 from Cluster 1 based on the large proportion of samples 716 

confined to the open ocean DCM (Cluster 2; 80%) and mesopelagic (Cluster 3; 98%) that reflect 717 

disparate habitats in the GOM.  718 

 719 
Mean Shannon diversity index and richness (# of ASVs) were determined for each cluster using 720 

the estimate_richness function in phyloseq (119) and compared against other clusters with 721 

Wilcoxon tests (P < 0.05). Mean diversity and richness were also estimated along transects, 722 
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applying local regression (loess) curves to visualize trends using the geom_smooth function in 723 

ggplot2 (Version 3.5.1; (125)). Stacked bar plots displaying mean relative abundance were 724 

observed at the class level for 18S and order level for 16S for each sampling transect and cluster 725 

using the microeco package in R (Version 1.7.1; (126)). Taxonomic profiles were also observed 726 

using the treemap package in R (Version 2.4-4; (127)), a tiered approach to visualize relative 727 

abundance across multiple taxonomic levels. 728 

 729 
Indicator taxa that were more abundant and representative of high (or low) TA:DIC ratios were 730 

statistically inferred using the indicspecies package in R (Version 1.7.14; (128)). The TA:DIC 731 

ratio was chosen because it is a good proxy to determine the ocean’s capacity to absorb 732 

anthropogenic CO2 by influencing its buffering capacity (91). Higher ratios indicate strong 733 

buffering capacity (i.e., the capacity of seawater to buffer against acidification). Based on 734 

histograms of TA:DIC, samples were grouped a priori into high (> 1.16) or low categories (< 735 

1.16) that reflect different OA conditions (Fig. 7A–B). We focused on DNA samples collected 736 

from the photic zone (Cluster 1) to mitigate natural depth effects and to provide additional 737 

context to models (see next section). Indicator analysis was run separately on rarefied 16S or 18S 738 

samples that were agglomerated to the species level using the function multipatt with 999 739 

permutations (128). Significant ASVs (P < 0.001) were retained and summarized for high (or 740 

low) TA:DIC and plotted against their mean relative abundance in the photic zone. 741 

 742 
Generalized linear models 743 
 744 
Generalized linear models (GLMs) were used to examine relationships between environmental 745 

factors (predictor variables) and the relative abundance of major microbial groups (response 746 

variables). GLMs focused on DNA samples collected in the photic zone (Cluster 1), in large part 747 

to mitigate collinearity of factors that was prevalent in Clusters 2–3 (table S1). Separate GLMs 748 

were performed for the top four most relatively abundant order level 16S and class level 18S 749 

groups (Table 2). Separate models were constructed for Synechococcus and Prochlorococcus to 750 

resolve differences between major cyanobacteria genera. Only variables that met requirements of 751 

low collinearity (Spearman rs < 0.7 or > –0.7) and a variance inflation factor (VIF) < 10 were 752 

considered (129). Zurr et al. (2010) suggest using a more stringent VIF cutoff (< 3). However, 753 

we aimed to retain as many variables in the dataset as possible, which meant a few variables 754 

(e.g., DIC and salinity) approached VIF = 10. To select the best model for each 18S or 16S 755 

group, variables were further selected in a stepwise manner based on Akaike Information Criteria 756 

(AIC) values using the stepAIC function in the MASS package in R (Version 7.3-60; (130)). 757 

Only significant variables (P < 0.05) were used in the final model.  758 

  759 
Final models were constructed with either Poisson or negative binomial error distributions. 760 

Initial model type was chosen by comparing standardized residuals and other model indices (e.g., 761 

AIC) with the compare_performance function in the performance package in R (Version 0.11.0; 762 

(131)). GLMs were implemented with the glm.nb function for negative binomial models in the 763 
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MASS package or the glm function for Poisson models (family = Poisson) in the stats package in 764 

base R (Version 4.3.1). We observed overdispersion in relative abundance data for several 765 

Poisson models (Syndiniales, Dinophyceae, Synechococcus, and Prochlorococcus), in which 766 

case negative binomial models were applied (Table 2). Model quality and fit was estimated for 767 

each group using the check_model function in the performance package (131), which included 768 

plots of posterior predictive checks (model simulations), standardized residuals (Q–Q plots), 769 

homogeneity of variance, and collinearity of selected predictor variables. The goodness of fit 770 

was assessed with a pseudo R2 (Nagelkerke’s), though standardized residual checks of the final 771 

models were also carried out (62) to assess model fit and uniformity of the residuals 772 

(Kolmogorov–Smirnov, P > 0.05). As an additional validation, relative abundance data for each 773 

group was randomly split and trained with respective models using 80% of the data to predict a 774 

test set that was left out (20%). Pearson correlations were performed between model-trained and 775 

test data. 776 

 777 
Model coefficients were scaled and visualized for each 18S and 16S group using the multiplot 778 

function in the coefplot package in R (Version 1.2.8; (132)). Individual factors were plotted 779 

against predicted relative abundance using the plot_model function in the sjPlot package in R 780 

(Version 2.8.16; (133)). We focused predictive plots on temperature and carbonate chemistry 781 

parameters (DIC and pH). Group-specific GLMs were used to predict relative abundance at all 782 

GOMECC-4 sites where surface layer (< 10 m) variables were collected (135 out of 141 sites). 783 

Six stations did not have representative CTD data available at the surface layer and were 784 

excluded. Predicted relative abundance for all surface GOMECC-4 sites were observed in Ocean 785 

Data View using Data-Interpolating Variational Analysis (DIVA) interpolation (134). 786 

  787 
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Figure 1: Vertical and horizontal DNA sampling across the GOM. (A) Map of all sites 1269 

sampled on GOMECC-4. Sites are colored by transect and indicate instances where DNA was 1270 

(filled) or was not (empty) sampled. Samples at all sites were collected in triplicate. 1271 

Environmental metadata was collected from all stations. Contour lines indicate depth in the 1272 

GOM and correspond to the right y-axis in panel B. Transects are also labeled to match the color 1273 

of stations along a given transect. Samples were collected counterclockwise in the Gulf starting 1274 

at the 27°N line. (B) Map displaying depth-related position (log scale) of samples across the 1275 

GOM. Stations are colored by transect at the surface, matching transect colors in panel A. 1276 

Samples with depth are colored by their clusters (Clusters 1–3) that were determined via 1277 

hierarchical clustering of Aitchison distances and largely reflected depth in the water column. 1278 

Cluster 1 generally corresponded to shelf waters at all depths and in the open GOM at the surface 1279 

(photic zone; n = 235), Cluster 2 represented sites in the DCM in the open GOM (DCM; n = 1280 

137), and Cluster 3 was confined to open ocean sites in deep waters (aphotic zone; n = 89). 1281 

Clustering was similar between 18S (shown) and 16S samples (fig. S16). 1282 
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Figure 2: Bacterial and archaeal community dynamics in the GOM from 16S 1285 

metabarcoding. (A) Ridgeline plots showing the depth distribution of samples within each 1286 

cluster (Clusters 1–3). Clusters were determined via hierarchical clustering of Aitchison 1287 

distances: Cluster 1 (photic zone), Cluster 2 (DCM), and Cluster 3 (aphotic zone). (B) Principal 1288 

coordinates analysis of Aitchison distances, with samples colored by their respective clusters. 1289 

(C) Mean observed richness (# of ASVs) and Shannon diversity index for Clusters 1–3, with 1290 

points representing individual samples. Significant differences between clusters were determined 1291 

with Wilcoxon tests (** P < 0.01, *** P < 0.001, **** P < 0.0001). (D) Stacked bar plots of 1292 

mean relative abundance (%) at the order level in each sampling transect and faceted by cluster. 1293 

Transects are ordered on the x-axis based on the order of sampling (counterclockwise) on 1294 

GOMECC-4, except for FL straits and Cape Coral that were sampled last but grouped spatially 1295 

with other FL lines. Bar plots display the top 12 most relatively abundant groups over all 1296 

samples (“others” in gray). Taxonomy was assigned via the SILVA database. Generalized linear 1297 

models focused on the top four most relatively abundant groups in Cluster 1 (red asterisks). 1298 

Models for Synechococcales were constructed at the genus level to discriminate between 1299 

Prochlorococcus and Synechococcus. LA = Louisiana and PAIS = Padre Island National 1300 

Seashore. Transects have the same labels in all subsequent plots.  1301 
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Figure 3: Protist community dynamics in the GOM from 18S metabarcoding. (A) Ridgeline 1304 

plots showing the depth distribution of samples within each cluster (Clusters 1–3). Clusters 1305 

reflected depth along the shelf and open GOM and closely resembled clustering of 16S samples. 1306 

(B) Principal coordinates analysis of Aitchison distances, with 18S samples colored by cluster. 1307 

(C) Mean observed richness (# of ASVs) and Shannon diversity index for Clusters 1–3, with 1308 

points representing individual samples. Significant differences between clusters were determined 1309 

with Wilcoxon tests (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). (D) Stacked bar 1310 

plots of mean relative abundance (%) at the class level in each sampling transect and faceted by 1311 

cluster. Transects are ordered the same as in Fig. 2. Bar plots display the top 12 most relatively 1312 

abundant groups over all samples (“others” in gray). Protist taxonomy was assigned via the PR2 1313 

database. Generalized linear models focused on the top four most relatively abundant groups in 1314 

Cluster 1 (red asterisks). 1315 
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Figure 4: Generalized linear models of major 16S taxa reveal group-specific environmental 1318 

drivers in the photic zone. (A) Scaled model coefficients (± 2 standard deviations) of predictor 1319 

variables (environmental factors) that were significant to the final model (based on AIC values). 1320 

Models were constructed with group-specific relative abundance as the response variable. The 1321 

most relatively abundant 16S groups were modeled, which included heterotrophs and autotrophs. 1322 

Models were generated at the order level, except for cyanobacteria (Synechococcales), where 1323 

separate models were run for Prochlorococcus and Synechococcus. Only covariates that were 1324 

statistically significant to a given model were plotted. (B) Predicted response estimates (relative 1325 

abundance) and 95% confidence intervals (CIs) of major 16S groups to temperature, DIC, and in 1326 

situ pH. NS = not significant. (C) An example of a posterior predictive plot, highlighting the fit 1327 

of observed vs. model-predicted relative abundance for the final SAR11 model. The model-1328 

predicted data was simulated with 50 bootstraps and followed a similar trend as the observed 1329 

data. (D) Pearson correlation (with 95% CI) between SAR11 test and modeled relative 1330 

abundance to estimate model fit. Predicted abundance was derived from the final SAR11 model 1331 

using a subset of the data (80%; 219 samples) and correlated to test data that was left out (20%; 1332 

48 samples). Model fit of other major 16S groups is shown in fig. S9. 1333 
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Figure 5: GLMs of major 18S taxa reveal group-specific drivers in the photic zone. (A) 1336 

Scaled model coefficients (± 2 standard deviations) of predictor variables (environmental 1337 

factors) that were significant to the final model (based on AIC values). Models were constructed 1338 

with group-specific relative abundance as the response variable. The top four most relatively 1339 

abundant 18S groups were modeled separately, spanning constitutive mixotrophs (CM), 1340 

parasites, autotrophs, and heterotrophs. Covariates that were not statistically significant to a 1341 

given model are not shown. (B) Predicted response estimates (relative abundance) and 95% 1342 

confidence intervals (CIs) of major 18S groups to temperature, DIC, and pH. NS = not 1343 

significant. (C) An example of a posterior predictive plot, highlighting the fit of observed vs. 1344 

model-predicted relative abundance for the final Syndiniales model. The model-predicted data 1345 

was simulated with 50 bootstraps and followed a similar trend as the observed data. (D) Pearson 1346 

correlation (with 95% CI) between Syndiniales test and modeled relative abundance. Predicted 1347 

abundance was derived from the final Syndiniales model using a subset of the data (80%; 187 1348 

samples) and correlated to test values that were left out (20%; 43 samples). Model fit of other 1349 

major 18S groups is shown in fig. S10.  1350 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605667doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44 

 1351 
Figure 6: Expanding current microbial distributions in the GOM. Predicted relative 1352 

abundance (%) of major 16S (A–E) and 18S groups (F–I) at 135 GOMECC-4 sites modeled 1353 

with each respective GLM (from Table 2). Model results have been interpolated using DIVA 1354 

interpolation in Ocean Data View. Isobaths are shown for 200 m, 2,000 m, and 3,000 m. Scales 1355 

for predicted relative abundance vary by taxonomic group (on the right of each panel) but 1356 

display low to high relative abundance. 1357 
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 1358 
Figure 7: Protist indicator taxa based on TA:DIC ratios in the photic zone. (A) Histogram 1359 

showing the density distribution of 18S samples in the photic zone (Cluster 1) based on TA:DIC 1360 

ratios. (B) Values of in situ pH vs. TA:DIC in the photic zone, with samples colored by transect. 1361 

Pearson correlation between variables is shown, with 95% confidence interval. The dotted line in 1362 

panels A–B indicate the manual cutoff used for indicator analysis: low TA:DIC < 1.16 vs. high 1363 

TA:DIC > 1.16. (C–D) Indicator values vs. average relative abundance (%) for protist ASVs in 1364 

the photic zone that were significant to the analysis (P < 0.001) in samples with either low 1365 

TA:DIC (C) or high TA:DIC (D). Protist ASVs are colored by division and the top five ASVs 1366 

with the highest indicator values are labeled in each panel, identified to their lowest possible 1367 

taxonomic assignment (via the PR2 database). DG = Dino-Group. See table S2 for a full list of 1368 

18S (and 16S) indicator ASVs. Similar plots for 16S ASVs are shown in fig. S12. 1369 
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Table 1: Environmental factors used in microbial models. Factors were grouped into 1370 

parameter type and chosen for initial GLMs based on Spearman correlations (table S1) and low 1371 

variance inflation factors (VIF < 10) to mitigate collinearity among predictor variables. VIFs 1372 

varied slightly between 16S and 18S (in parentheses) due to differences in sample size (n = 274 1373 

for 16S; n = 235 for 18S) following clustering analysis. Triplicate samples were included in 1374 

models. Datasets clustered similarly, as evidenced by a similar range in the predictor values. 1375 

Initial factors were used to construct group-specific models. 1376 

 1377 

Parameter type Factor Values VIF 16S (18S) 

Hydrography Temperature  20.83–30.12 (°C) 2.8 (2.4) 

Salinity 25.16–36.61 (psu) 7 (7.5) 

Oxygen 105.46–232.33 (µmol kg–1) 3.1 (5) 

    

Nutrients Nitrate 0–6.16 (µmol kg–1) 4.6 (4.2) 

Phosphate 0–0.85 (µmol kg–1) 5.7 (6.2) 

Ammonium  0.12–2.37 (µmol kg–1) 1.6 (1.7) 

    

Carbonate chemistry DIC 1891.67–2186.16 (µmol kg–1) 9.1 (8.9) 

pH 7.88–8.16 5.2 (6.1) 

 1378 
 1379 

 1380 

 1381 

 1382 

 1383 

 1384 

 1385 
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 1389 

 1390 

 1391 
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Table 2: Final models for major microbial groups in the photic zone. Protists were examined 1398 

at the class level and prokaryotes at the order level. GLMs were constructed for Prochlorococcus 1399 

and Synechococcus. Models were run either with negative binomial (neg bin) or Poisson 1400 

distributions. Variables that were significant to the final model (P < 0.05) are shown for each 1401 

group and reflect stepwise selection based on Akaike Information Criterion (AIC). See Table 1 1402 

for the full list of variables considered. Pseudo R2 values are shown as a proxy for model fit, 1403 

though standardized residuals and validation tests confirmed model fit. Temp = temperature 1404 

(°C); Sal = salinity; Oxy = oxygen (µmol kg–1); PO4 = phosphate (µmol kg–1); NO3 = nitrate 1405 

(µmol kg–1); NH4 = ammonium (µmol kg–1); DIC = dissolved inorganic carbon (µmol kg–1).  1406 

 1407 

 1408 

Group Taxonomy GLM Type R2 

Protists Dinophyceae Temp + Sal + Oxy + DIC Neg Bin 0.5 

Syndiniales Temp + Sal + PO4 + NH4 + pH + DIC Neg Bin 0.57 

Sagenista Temp + Oxy + PO4 + pH Poisson 0.28 

Prymnesiophyceae Temp + Sal + PO4 Poisson 0.6 

     

Prokaryotes SAR11 Temp + Oxy + NH4 + DIC Poisson 0.26 

Synechococcus Oxy + NO3 + pH + DIC Neg Bin 0.38 

Prochlorococcus Sal + PO4 + NO3 + pH Neg Bin 0.8 

SAR86 Temp + Oxy + NH4 + pH + DIC Poisson 0.33 

Flavobacteriales Sal + DIC Poisson 0.64  
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