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Abstract

Ocean acidification and warming threaten marine life, yet the impact of these processes on
microbes remains unclear. Here, we performed basin-scale DNA metabarcoding of prokaryotes
(16S V4-V5) and protists (18S V9) in the Gulf of Mexico and applied generalized linear models
to reveal group-specific environmental correlates of functionally diverse microbes. Models
supported prior physiological trends for some groups, like positive temperature effects on
SARI11 and SARS6, and a positive effect of pH on Prochlorococcus that implied a negative
response to decreasing pH. New insights were revealed for protists, like Syndiniales and
Sagenista (e.g., positive pH effects), which offset positive relationships with temperature and
reinforced the importance of considering multiple stressors simultaneously. Indicator analysis
revealed phytoplankton, like Ostreococcus sp. and Emiliania huxleyi, that were associated with
more acidic waters and may reflect candidate indicators of ocean change. Our findings highlight
the need for sustained microbial sampling in marine systems, with implications for carbon
export, nutrient cycling, and ecosystem health.

Introduction

Our ability to predict how marine ecosystems and resources will respond to future ocean
conditions will require accurate monitoring of marine biodiversity over space, time, and across
natural environmental gradients (/). The oceans are changing rapidly, heavily impacted by rising
concentrations of human-derived atmospheric carbon dioxide (COz2) that is absorbed at the
ocean’s surface (2). Atmospheric COz has increased by nearly 50% (~420 ppm at present) over
the last century, leading to increased levels of dissolved inorganic carbon (DIC) in the ocean, in
turn lowering seawater pH (3). This process of ocean acidification (OA) reduces saturation states
for carbonate minerals, placing stress on organisms that require these minerals for cellular
growth and other functions (4, 5). The effects of OA are amplified by ocean warming,
particularly at low latitudes, with surface temperatures expected to increase by 1-10 °C over the
next century (6). Changes in seawater chemistry and physics can have immense impacts, both
direct and indirect, on marine life (3). Thus, it is imperative to understand better how diverse
marine organisms respond to present-day chemical and physical conditions to inform future
potential shifts in community composition.

Over the past decade, research on species sensitivity to OA has expanded greatly, particularly for
multicellular organisms that rely on carbonate chemistry for their structure and function (3, 5).
Much less research has been conducted on marine microbes (i.e., protists, Bacteria, and
Archaea), despite the central role of microbes in food webs and their strong influence on
biogeochemical cycles and carbon export (7, 8). Microbes also respond quickly to shifts in their
surrounding environment, making them potentially important indicators of changing ocean
conditions (9, 10). In general, global ecosystem models predict a decline in photosynthetic
biomass and a shift in composition from larger plankton (e.g., diatoms) to picophytoplankton
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(0.2-2 pum), primarily driven by warming and enhanced stratification (//—/4). Field and
laboratory experiments have measured direct and negative impacts of OA on plankton, notably
among calcifying haptophytes (e.g., coccolithophores), where increased partial pressure of CO2
(pCO2) and/or decreasing pH has led to reduced growth and calcification rates (/5—17).
However, evidence suggests that some phytoplankton species, even coccolithophores, may be
resilient to rising pCO2 and warming (73, 18, 19). In addition, heterotrophic bacteria may be
more resilient to OA compared to phytoplankton, impacted more directly by warming and
changes to phytoplankton-derived organic matter (20, 27). Employing DNA metabarcoding to
characterize the complex effects of OA parameters and temperature on a wide range of microbes
(22, 23) will help guide lab-based experiments, identify indicator taxa, and inform model
predictions.

The Gulf of Mexico (GOM) is an ideal location to study the effects of multiple stressors on
marine microbes, as microbial communities in the GOM are affected by several major
hydrographic features that result in strong physicochemical gradients (24). The GOM is a semi-
enclosed subtropical basin, influenced by the Loop Current (and associated anticyclonic eddies)
and freshwater inflow from riverine systems (Mississippi-Atchafalaya) in the north (25, 26).
Most of the GOM is oligotrophic (and nutrient-limited), with phytoplankton biomass dominated
by picophytoplankton (27). Despite overall low biomass, microbial food webs in the GOM
support high biodiversity of mesozooplankton and micronekton (28), as well as several
economically important fisheries (29). At times, nutrient runoff from terrestrial sources promotes
eutrophication, resulting in coastal hypoxic zones that are more acidic (30, 37). Coastal
eutrophication combined with physical upwelling of new inorganic nutrients onto the shelf can
also enhance formation of harmful algal blooms (HABs), particularly along the western coast of
Florida (32, 33) and in other coastal regions in the southern Gulf (34). HABs pose a threat to
marine ecosystems in the GOM and can negatively impact local economies (35). While OA has
resulted in observable changes in ocean chemistry in the GOM (24), research on the impacts of
OA and warming on marine microbes has not been well explored. Most microbial genomics
studies have been localized to specific regions or depths (36—39) or focused on responses of
microbes to natural disturbances, like oil spills, in the northern Gulf (40, 417). This lack of spatial
biological sampling has made it difficult to characterize environmental drivers of diverse
microbes in the GOM (24), including OA parameters (e.g., pH, DIC, and pCO3), and impedes
our ability to understand how microbial communities may shift in the future.

Here, we performed the first basin-scale DNA metabarcoding survey of protists, Bacteria, and
Archaea in the GOM as part of the fourth Gulf of Mexico Ecosystems and Carbon Cycle
(GOMECC-4) cruise that sailed from late summer to early fall of 2021. Overall, we collected
481 discrete DNA samples from 51 (out of 141) stations, encompassing 16 inshore—offshore
transects and up to three depths per site that corresponded to the surface, deep chlorophyll
maximum (DCM), and near bottom (Fig. 1A). Amplicon metabarcoding was performed to reveal
population dynamics of protists (18S SSU rRNA gene, V9 region) and prokaryotes (16S SSU
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rRNA gene, V4-V5 region). We constructed generalized linear models (GLMs) for major
microbial groups in the photic zone to gain insight into group-specific environmental correlates,
including carbonate system parameters. These GLMs were applied to all GOMECC-4 sites,
including those where DNA samples were not collected, to expand spatial distributions of
microbial groups in the GOM. Finally, we performed indicator analysis based on profiles of DIC
and total alkalinity (TA) in the photic zone to identify microbes that were potential indicators of
more or less acidic waters (based on TA:DIC ratios). This study provides an important baseline
for microbial OA research in the GOM that will guide future DNA sampling efforts in this region
and contribute to our growing knowledge on the potential responses of marine microbes to
climate change.

Results and Discussion
Microbial population dynamics in the GOM

We obtained a total of 8,312 sequences on average per sample (range: 3,322—-16,483) from 18S
metabarcoding, resulting in 13,632 protist amplicon sequence variants (ASVs) identified
throughout all GOM samples. In comparison, we obtained an average of 12,963 sequences per
sample (range: 5,056-28,620) for 16S metabarcoding which were assigned to 41,876 total
prokaryotic ASVs. Though significant to community composition (P < 0.01), factors like
transect, location on the shelf (< 200 m) vs. open ocean (> 200 m), and categorical depth had low
explanatory power on their own (PERMANOVA R = 0.03—-0.2). As depth is a well-known driver
of global marine microbial communities (42—46), we performed hierarchical clustering of
microbial composition to better control for the impact of depth on subsequent spatial analyses.
This revealed separation of DNA samples into three clusters (Clusters 1-3), similar for both
marker gene regions, that reflected depth of samples in the water column on the continental shelf
and/or in open ocean GOM regions (Fig. 1B; fig. S1). For instance, Cluster 1 mainly consisted of
samples collected on the shelf at all depths and offshore at the surface layer, with all samples
located in the photic zone (2-99 m). Cluster 2 samples were mainly from the DCM (2—-124 m) in
more stratified open ocean regions of the GOM, while Cluster 3 samples largely represented
meso- to bathypelagic waters (135-3,326 m) in the open ocean that were confined to the aphotic
zone (Fig. 2A-B; Fig. 3A-B). Though Clusters 1-2 were both in the photic zone (upper ~150
m), and had some overlap (Fig. 2B), they were separated into distinct clusters based on their
composition that reflected total depth in the water column and shifts in physicochemical
variables (fig. S2). In our case, clustering of DNA samples allowed us to better explore
microbes, and their relationships with environmental variables, within distinct spatial habitats
they occupy in the GOM.

Microbial communities in the GOM were more species-rich and diverse in the DCM and aphotic
zone (Fig. 2C; Fig. 3C), consistent with vertical profiles from other oceanic regions (43, 46, 47).
Higher richness and diversity with depth may be the result of microbes utilizing a broad
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152  spectrum of sinking organic matter, exerting alternative metabolic strategies (redox reactions),
153  and/or forming diverse trophic relationships with other organisms to exploit such habitats (48).
154  Alpha diversity was stable along sampling transects in the photic zone for 16S (fig. S3) and 18S
155  samples (fig. S4), with higher variability in the DCM and aphotic zone. For example, microbial
156  diversity in the aphotic zone steadily decreased from coastal Florida (27°N line) to regions near
157  the Mississippi River outflow, increasing thereafter from Brownsville to Cancun (fig. S3).

158
159  Shifts in taxonomy between clusters were in line with depth-related microbial dynamics seen

160  previously in the GOM (37, 38, 49) and on a global scale (42, 43, 48). Among prokaryotes, the
161  photic zone and DCM were dominated by common heterotrophic bacteria, such as SAR11,

162  SARS6, and Flavobacteriales (Fig. 2D; fig. S5). Autotrophic cyanobacteria within the order

163  Synechococcales also had high relative abundance in the photic zone (Fig. 2D; fig. S5),

164  particularly Prochlorococcus and Synechococcus (fig. S6), both genera known to dominate

165  primary production in the GOM (27). Prokaryotic communities shifted dramatically in the

166  aphotic zone, with higher relative abundance of metabolically diverse taxa that are endemic to
167  deeper waters (48—50), including nitrous oxide-reducing Marinimicrobia (SAR406), ammonia-
168  oxidizing Nitrosopumilales, and sulfur-oxidizing Thiomicrospirales (Fig. 2D; fig. S5). These
169  microbes use redox reactions to acquire energy in less oxygenated waters (48), such as those
170  found in the mesopelagic zone (~200—-800 m) in the GOM (fig. S2), and likely contributed to
171  increased richness of prokaryotic communities observed with depth (Fig. 2C). Certain 16S

172  groups varied at more resolved taxonomic levels between clusters. For example,

173  Prochlorococcus became more relatively abundant in the DCM, while SAR11 clade II increased
174  in the aphotic zone relative to other SAR11 clades (fig. S7). Similar patterns have been observed
175  elsewhere for Prochlorococcus (51) and SAR11 (48, 52), and reflect potential environmental
176  niche partitioning through the water column. High abundance of SAR11 clade II in the

177  mesopelagic has recently been observed in the Pacific Ocean (48), which may indicate particle
178  association among SAR11 that may be more common than previously thought.

179
180  Protist biodiversity was dominated by Dinophyceae, Syndiniales, Prymnesiophyceae, and

181  Sagenista in the photic zone and DCM, transitioning to Radiolaria (Polycystinea and RAD-B)
182  and Diplonemea in the aphotic zone (Fig. 3D). Dinophyceae and Prymnesiophyceae are common
183  in pelagic waters, including in the GOM (36, 53), and occupy important functional roles as

184  grazers (and mixotrophs) in microbial food webs (fig. S5). Sagenista was also abundant in the
185  photic zone (Fig. 3D), a group of common, yet still uncultured heterotrophic protists that have
186  important ecological roles (54). Other class level protist groups that were common in the GOM
187  in summer—fall, like Mamiellophyceae (Chlorophyta) and Mediophyceae (Stramenopiles), varied
188  more greatly across transects in the photic zone and DCM (Fig. 3D). Radiolarians dominated
189 relative abundance in mesopelagic samples (Fig. 3D). While these organisms remain largely

190  uncultivated and hard to study, they are key members of deep ocean food webs, forming

191  endosymbiotic relationships with other microorganisms (fig. S5) and contributing to the export
192  of carbon and biogenic silica (55).
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193
194  DNA metabarcoding also reinforced the importance of obligate parasites within the group

195  Syndiniales at all depths in the water column (42, 56, 57), including at the basin scale in the
196 GOM (Fig. 3D; fig. S5). The prevalence of Syndiniales may be attributed to their wide host

197  range, active (and passive) export on sinking particles, and depth related niche partitioning (56,
198  58). We observed vertical shifts within Syndiniales at the clade level in our samples that aligned
199  with prior observations (45, 56). For instance, there was a shift from Syndiniales Group-I Clades
200 1 and 4 in the photic zone to other clades, like Group-II Clade 7 and Group-I Clade 2 in the

201  aphotic zone (fig. S8). Radiolaria also varied between clusters, with certain members of

202  Polycystinea (e.g., Heliosphaera and Pterocorys) increasing in relative abundance from the

203 DCM to the aphotic zone (fig. S8). Diplonemea were also dominant in the GOM aphotic zone
204  (Fig. 3D). Though enigmatic, Diplonemea have been found globally in mesopelagic waters (57)
205  and likely represent important consumers of picoplankton and bacteria in these environments
206 (59

207

208 Generalized linear models reveal group-specific environmental correlates

209
210  We used generalized linear models (GLMs) with either Poisson or negative-binomial error

211  distributions to identify potential explanatory variables of major 16S and 18S taxonomic groups
212  in the GOM. GLMs account for multiple predictor variables (factors) and have been applied to
213  ecological count (and proportional) data of higher trophic level marine organisms (60, 61). Here,
214  we applied GLMs to microbial metabarcoding data, allowing us to observe predictor variables
215  and their relation to group-specific relative abundance measured spatially in the photic zone (Fig.
216  2D; Fig. 3D). We focused our models on the photic zone (Cluster 1), primarily because most
217  factors were collinear in the DCM and aphotic zone (table S1). Collinearity among variables can
218  result in models being less statistically reliable and confound model interpretation (62). Eight of
219 fifteen environmental variables were initially selected for models and included temperature,

220  salinity, dissolved oxygen (Oz2), nitrate (NO3), ammonium (NH4), phosphate (POs), dissolved
221  inorganic carbon (DIC), and total pH recalculated to in situ temperatures (Table 1). Many

222  parameters related to OA that were measured or derived (e.g., total alkalinity, pCOz, carbonate
223  ion concentration, and aragonite saturation) were strongly collinear to each other and

224  temperature (Spearman rs > 0.7 or <—0.7), and thus were excluded from initial models (table
225  S1). Environmental conditions in the GOM surface were typical for this time of year (63, 64).
226  For instance, offshore waters were warm (> 28 °C) and nutrient-limited (e.g., NO3 < 0.1 pmol
227  kg'), while coastal regions had higher nutrient concentrations, including near the Mississippi
228  River outflow (Table 1; fig. S2). DIC was highest in the southern GOM and onto the Campeche
229  Bank (> 2050 umol kg '), while pH often increased from the shelf to open ocean regions of the
230  Gulf (Table 1; fig. S2).

231
232  Microbial groups differed in the type and number of variables that significantly contributed to

233  the final models (Table 2). Pseudo R* values produced from GLMs ranged from 0.26-0.80
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(Table 2), though several other methods confirmed appropriate model fit. First, model
simulations fit the data well (Fig. 4C; Fig. 5C) and the standardized residuals were normally
distributed for all groups (Kolmogorov—Smirnov, P > 0.05), except for Flavobacteriales. This
was further supported by significant and often strong positive correlations (Pearson R = 0.31—
0.90; P <0.01) between test and model-trained relative abundance data for all groups (fig. S9;
fig. S10), with example plots shown for SAR11 (Fig. 4D) and Syndiniales (Fig. 5D).
Explanatory variables like temperature, DIC, and pH had individual, and often significant (P <
0.05) effects on relative abundance that varied among major 16S (Fig. 4A—B) and 18S groups
(Fig. 5A-B). Through this approach, we examined individual model terms, focusing primarily on
those related to ocean change, and explored their relationships with group-specific relative
abundances in the GOM.

Our model findings often supported prior physiological responses for certain microbial groups
that have been revealed in field and culture experiments. While changes in relative abundance
data with any given environmental factor does not necessarily translate to physiology, applying
DNA metabarcoding to OA research can help to verify existing trends and produce new
hypotheses for future testing on a wide range of microorganisms (22, 23). We found that
temperature had a positive effect on the relative abundance of SAR11 and SAR86 in our models
(Fig. 4A-B). Experimental evidence suggests that warmer conditions may favor increased
biomass of small, oligotrophic bacteria, like SAR11 and SAR86, that have low nucleic acid
content (65). In general, warming is thought to promote increased bacterial production, biomass,
and respiration, while also lowering growth gross efficiency (20). DIC had a positive effect on
SAR11, SARS86, and Flavobacteriales in group models (Fig. 4A—B), which together with
temperature effects, may imply a favorable response among these taxa to continued OA and
warming in this region. It is important to note that heterotrophic bacteria will also be influenced
by indirect changes in plankton composition, dissolved organic matter (DOM) availability and
quality, and trophic interactions (27, 66). These factors may outweigh direct OA effects in
natural communities and will be important to incorporate into future climate model predictions
of bacterial diversity and composition.

We observed contrasting effects of pH on the relative abundance of Prochlorococcus vs.
Synechococcus in the photic zone (Fig. 4A-B). For example, in situ pH had a strong and positive
effect on Prochlorococcus, implying a negative response to lower pH (more acidic) conditions.
An opposite trend was observed for pH in the Syrnechococcus model (Fig. 4A-B); however, DIC
also had a negative effect on Synechococcus, confounding model inference. Fu et al. (2007)
noted that combined effects of high pCO: and temperature significantly increased growth rates,
photosynthetic capacity, and cellular pigment levels of Synechococcus but not Prochlorococcus.
Mesocosm work in the subtropical North Atlantic also indicated a positive response of
Synechococcus to high pCOz2 (67), though others have noted small or insignificant physiological
shifts to changing conditions (68). On a global scale, ecological niche models predict increased
Prochlorococcus and Synechococcus biomass to ocean warming (via flow cytometry),
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particularly in low latitude regions like the GOM, where these taxa already dominate plankton
biomass (69). Such niche models have not considered pH (or DIC), which we show may be
significant predictors. Though not resolved at the ecotype level in our amplicon dataset,
individual cyanobacterial strains or ecotypes will likely respond differently to future conditions,
as well as be influenced by indirect changes in top-down pressure (grazing or viral lysis),
nutrients, or sunlight (70, 71). Multiple ecotypes have already been discovered for
Prochlorococcus in the ocean, with evidence of different nutrient uptake rates, light preferences,
and thermal optima that shape population dynamics (57, 72). Additional field and laboratory
work is needed to identify responses among microbes at the species or ecotype level to support
accurate model predictions (/3) and reveal underlying physiological mechanisms.

Future OA and warming is predicted to favor small phytoplankton, like picoeukaryotes, that can
more efficiently exploit oligotrophic and nutrient-limited waters (117, 12, 14), primarily due to
their larger cell surface to volume ratios that promote resource acquisition. Though for many
protists, the effects of OA and warming are less clear. This is especially true for Syndiniales and
Sagenista, enigmatic protist parasites and grazers that have seldom been considered with respect
to climate change. In our models, temperature had a significant and positive effect on the relative
abundance of Syndiniales and Sagenista (Fig. SA-B). Temperature is often thought to enhance
physiological rates (73), which may include microzooplankton grazing and parasitism; however,
temperature relationships are hard to predict and can often be confounded by other factors, like
host or prey composition, that can dictate mortality rates. We found that pH had a positive effect
on Syndiniales and Sagenista, while DIC had a negative impact on Syndiniales relative
abundance (Fig. 5A-B). This implied a negative response among these groups to more acidic
conditions in the GOM at this time. Therefore, models that include only temperature or pH may
result in different outcomes for certain plankton groups (74), potentially misleading how we
interpret (and predict) their responses to climate change.

Dinophyceae were also prevalent in the photic zone on GOMECC-4 (Fig. 3D). It is well
understood that dinoflagellates are central to the microbial loop in oligotrophic regions, often
exhibiting mixotrophy and representing a key link between primary production and higher
trophic levels (29, 53). We found that temperature and DIC had significant and negative effects
on Dinophyceae relative abundance (Fig. SA-B), implying a negative response to warmer and/or
more acidic conditions in the GOM. Similar findings on dinoflagellates have been observed in a
mesocosm study (67), though others have found dinoflagellates to benefit from or be less
sensitive to warming or increased pCO:2 concentrations (23, 71, 74, 75). Dinoflagellates often
exhibit mixotrophy, and so favorable responses to OA among this group may be indicative of
increased consumption of common prey (picoeukaryotes and cyanobacteria) that tend to grow
faster under such conditions (75). As is the case with many protists, dinoflagellates are extremely
diverse, not only phylogenetically but also in terms of their size, physiology, and trophic modes
(76). Therefore, it will likely be challenging to define a unified response for Dinophyceae to
changing ocean conditions. Future work that merges DNA metabarcoding with more targeted
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approaches, like single-cell genomics or qPCR, will help to shed light on species sensitivity,
interactions, and drivers that would otherwise be overlooked.

In addition to temperature and carbonate chemistry parameters, other factors like nutrients,
salinity, and oxygen had significant effects on prominent 16S and 18S groups in the GOM (Fig.
4A; Fig. 5A). As an example, limiting nutrients like NO3 and PO4 had negative effects on the
relative abundance of Synechococcus and Prochlorococcus, respectively (Fig. 4A). This may be
related to the ability of cyanobacteria to uptake nutrients at low concentrations in surface waters
(72). Synechococcus are thought to exploit low NO3 concentrations in the GOM by maintaining a
shallower distribution in the water column (64), relying on regenerated sources of NO3 via
nitrification (29). Salinity was also an important variable in our models, with positive effects on
the relative abundance of Prochlorococcus, Syndiniales, Dinophyceae, and Prymnesiophyceae,
as well as a negative effect on Flavobacteriales (Fig. 4A; Fig. SA). Salinity is a known driver of
bacterial and plankton distribution and diversity in the GOM (37, 39, 77). This is particularly
evident in the northern GOM, where plankton biomass and composition are often driven by
salinity-induced stratification (and nutrient availability) that result from riverine discharge via
the Mississippi—Atchafalaya system, as well as by climatic processes, like the El Nifio—Southern
Oscillation (77, 78). Here, interpreting the role of salinity or nutrients in driving specific
microbial groups was difficult, mainly because our sampling strategy and analysis focused on
large-scale spatial patterns in microbial communities that did not allow us to explore regional
trends (e.g., in the northern GOM). Even so, our results emphasize the importance of including
such variables to resolve microbial composition and distribution at the basin scale in the GOM.

There are several caveats to consider with our model analysis. Models constructed from
amplicon data on GOMECC-4 reflected only a specific time of the year (summer—fall) and did
not integrate seasonal sampling. Temperature and carbonate chemistry parameters vary
seasonally in the GOM (79), as does the intensity and position of the Loop Current (and eddies)
and nutrient input from coastal runoff, all of which will impact microbial communities (80, §1).
Consistent temporal sampling will be essential to better resolve microbes and their drivers over
seasonal and interannual time scales (24). Such sustained sampling will also allow for more
accurate predictions of microbial dynamics that integrate new OA data beyond the limits of
GOMECC-4 measurements. We also considered GLMs for major taxonomic groups that were
present in our samples (i.e., highest relative abundance), mainly to avoid issues with zero-
inflation and overdispersion in the models. As a result, several groups thought to be sensitive to
ocean change, like diatoms and diazotrophic cyanobacteria (&), were not considered here due to
lower relative abundance at the basin scale. Similarly, this constrained our ability to predict
model effects below the order to class level, with the exception being highly abundant
cyanobacterial genera. We examined linear trends with GLMs as a simple and conservative
approach to model relative abundance in the GOM. Future work may consider applying
generalized additive models (GAMs) that allow for nonlinear dynamics (82), especially as more
amplicon data is collected.
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Though we tested for model fit, it is important to note that amplicon data is compositional, with
relative abundance of any single group being dependent on the proportion of others (83).
Comparing relative abundance among eukaryotic groups is also tenuous, as 18S rRNA gene copy
numbers can vary greatly (2—166 copies per cell) among protists (84). This is especially true for
alveolates (Syndiniales and Dinophyceae) and can lead to overestimation of read counts and
relative abundance (42). However, such concerns would not necessarily discount our modeling
approach that focused on groups separately and explored their relation to environmental factors.
Lastly, models did not account for trophic interactions (e.g., changes in prey or host) that may
vary along with changing conditions (/9) or potential evolutionary adaptations among organisms
(85). Nevertheless, applying GLMs to amplicon data in this study offered a first step to define
multiple environmental drivers of diverse marine microbes, many of which are not easily
discerned with traditional observational methods like microscopy or cytometry. Our findings are
also timely for marine regions like the GOM that have lacked basin-scale sampling.

GLMs expand microbial distributions in GOM surface waters

Final models were used to predict the relative abundance of major 16S and 18S groups at 135
surface sites on GOMECC-4 (Fig. 1A), including 84 sites where DNA was not collected. This
allowed us to increase the spatial resolution of microbial sampling in the GOM at this time of
year. Groups like SAR11 (Fig. 6A) and Syndiniales (Fig. 6F) were well distributed throughout
the GOM, with highest relative abundance predicted offshore of Brownsville (Texas), in the Bay
of Campeche, and regions on the Campeche Bank. Cyanobacteria genera were largely partitioned
in the GOM based on their expected ecological niches (86). Prochlorococcus was most relatively
abundant offshore in stratified and nutrient-limited waters (Fig. 6B), particularly in parts of the
southern GOM. Synechococcus was present throughout the GOM at the surface, but relative
abundance was often highest in nutrient-rich coastal regions and in a localized area in the central
Gulf (Fig. 6C). Other groups like SAR86 (Fig. 6D), Prymnesiophyceae (Fig. 6H), and Sagenista
(Fig. 61) were most relatively abundant offshore in the southern GOM and onto the East Mexico
Shelf, likely driven by higher temperature and DIC concentrations in these areas (fig. S2). This
was supported in the model output for these taxa, where temperature and/or DIC had positive
effects on relative abundance (Fig. 4A; Fig. SA). Flavobacteriales was highest near the
Mississippi River outflow (Fig. 6E), in line with strong negative effects of salinity in the model
output for this group (Fig. 4A). The Mississippi River is the dominant source of freshwater into
the GOM, providing nutrients and organic matter into the system (fig. S2) that can stimulate
phytoplankton blooms (87). Though not widespread in the GOM, diatoms were most relatively
abundant in the photic zone near the Mississippi River (Fig. 3D), which may have contributed to
higher relative abundance of copiotrophs like Flavobacteriales that often associate with blooms
and can rapidly consume DOM (&7).
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Current predictions also revealed insights into the biogeography of a HAB species in the GOM.
Though prevalent through most of the GOM, including in the open ocean, relative abundance of
Dinophyceae was predicted to be highest directly off the coast of Tampa, Florida (Fig. 6G). This
was caused by a likely bloom event of the mixotrophic dinoflagellate, Karenia brevis, captured
in our DNA samples (fig. S11) and confirmed to be highly abundant through manual counts
(10°-10° cells I"") estimated around the same time and location via the Florida Fish and Wildlife
Conservation Commission (https://myfwc.com/research/redtide/monitoring). HABs formed by
K. brevis are common in the GOM in the summer—fall, particularly along the West Florida Shelf,
and can negatively impact marine ecosystems and local economies (32, 33, 35). There is
evidence that warming may increase toxin production, growth rates, bloom frequency, and range
expansion of some HAB species (88). Temperature had negative effects on Dinophyceae in our
models (Fig. SA-B), but responses were not explored to genus level. In culture, K. brevis has
shown increased growth rates with increasing pCO2, though changes in toxin production were
not recorded (89). It remains important to monitor HABs and their drivers (90), combining
traditional monitoring and molecular methods to better predict pervasive blooms in the GOM
and elsewhere.

Indicator analysis reveals candidate microbial indicator taxa of OA

It is also important to determine specific microorganisms below the order to class level that may
be indicative of different OA conditions in natural waters (9, 10, 23). To this end, we grouped
samples in the photic zone (Cluster 1) based on TA:DIC ratios and examined microbial indicator
taxa at the ASV level. The TA:DIC ratio is a well-used proxy for carbonate chemistry in the
ocean, determining the buffering capacity against acidification (79, 97). In general, lower
TA:DIC ratios indicate poorly buffered waters, and so in our case, microbes that were more
prevalent in lower TA:DIC samples may be candidate indicators of more acidic conditions in the
GOM. TA:DIC ratios ranged from 1.1-1.2 in the photic zone, were not influenced by sampling
transect, and were positively correlated with pH (Pearson R = 0.71; P < 0.01) in surface waters
(Fig. 7A-B). TA:DIC ratios were manually grouped into low (< 1.16) vs. high (> 1.16)
categories to explore microbial indicators (Fig. 7A-B).

Overall, we found that 146 and 117 protist ASVs were significant indicators (P < 0.001) of low
or high TA:DIC ratios, respectively (table S2). Protist indicators spanned a range of taxonomic
groups, though several ASVs stood out (Fig. 7C). For instance, protists with the highest indicator
values (> 0.35) in samples with low TA:DIC ratios included Ostreococcus sp., which was the
most relatively abundant indicator ASV on average in the photic zone (~6%), as well as other
ASVs assigned to Emiliania huxleyi (now Gephyrocapsa huxleyi), Cryptomonadales,
Euduboscquella (Syndiniales), and Dino-Group I Clade 1 (Syndiniales). In comparison, ASVs
with high indicator values (> 0.55) in samples with high TA:DIC ratios consisted of ASVs
assigned to heterotrophic flagellates like MAST 3-B (and 4-B) and Kathablepharidida, as well as
parasites in Dino-Group III and V (Fig. 7D). For 16S samples, a total of 228 and 136 ASVs were
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significant indicators (P < 0.001) of low vs. high TA:DIC ratios (table S2), dominated by
Proteobacteria (fig. S12). 16S ASVs with the highest indicator values (> 0.45) in low TA:DIC
samples included an ASV assigned to SAR11 clade Ia, which accounted for 10% of reads on
average in Cluster 1, as well as other ASVs assigned to SAR11 (clade I and Ia), SAR406, and
AEGEAN-169 (fig. S12). The 16S ASVs that were most indicative of high TA:DIC were
assigned to SAR116, SAR86, AEGEAN-169, and Rickettsiales (family S25-593; fig. S12).

Pico- and nanoeukaryotes dominate warm and oligotrophic regions like the open GOM (27, 53,
64) and are sensitive to changing ocean conditions (3, 23). Two of arguably the most well
studied taxa in the field of phytoplankton OA research, Ostreococcus sp. and Emiliania huxleyi,
were associated with less buffered (and more acidic) waters in the GOM (Fig. 7C). Both species
are widespread and impact global biogeochemical cycles (92), with E. huxleyi being a major
calcifier and contributor to CaCO3 flux (93). In a prior 18S rRNA metabarcoding survey in the
southern GOM, Ostreococcus was the only genus with significantly different relative abundance
between upwelling and downwelling conditions in the DCM and when comparing the DCM to
mixed layer (38), which authors suggest may make this species an indicator of vertical nitrate
flux. Our findings imply Ostreococcus may also be a candidate indicator of acidic conditions in
GOM surface waters. Calcifying plankton, like E. huxleyi, are thought to be strongly impacted by
OA, with increased pCO2 and/or lower pH having detrimental effects on growth and calcification
rates (15, 16). However, contrasting effects have been observed and may reflect considerable
strain and ecotype variability (/8, 23). Indeed, several culture-based studies with E. huxleyi (and
Ostreococcus) have revealed adaptive mechanisms of cells to elevated pCO2 over hundreds of
generations (94, 95). Though E. huxleyi was not prevalent overall in our samples (fig. S8), this
species has been measured in high concentrations (~10* cells 1) in the southern GOM in spring
(96). Together with model results at the class level (positive temperature effects on
Prymnesiophyceae), our findings highlight the potential sensitivity of haptophytes to changing
conditions in the GOM that should be further explored.

Indicator analysis also revealed SAR11, specifically ASVs assigned to clades 1 and 1a, as being
possible indicators of less buffered waters in the GOM in summer—fall (fig. S12). SAR11 is the
most abundant bacterial group in the oceans, playing an important role in global carbon cycling
(97). Though diverse, members of the SAR11 clade Ia ecotype tend to be most prevalent in
surface oceans (52), adapted to nutrient-poor conditions via small cell sizes and streamlined
genomes (98). Though direct effects of OA on SAR11 remain unclear and are likely to be less
important compared to shifts in DOM (27), SAR11 exhibits known seasonality in the surface
oceans and is sensitive to temperature (48, 65). Such temperature sensitivity was supported in
our model analysis (Fig. 4A-B). Given the ubiquity of SAR11 and its role in global carbon
cycles, it remains critical to confirm and further investigate the potential of this group as an
indicator of ocean change.
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Future sampling to characterize microbes in changing oceans

Efforts to characterize microbial communities over natural physicochemical gradients are
essential to inform how these communities may shift in the face of changing ocean conditions
(10). In the GOM, there is evidence of increased pCO2 in many parts of the open ocean that are
on par with rates of change in other oligotrophic regions (99), like those measured in the Pacific
Ocean via the Hawaiian Ocean Time-series (1.72 patm yr™ ') and in the Atlantic Ocean via the
Bermuda Atlantic Time-series Study (1.69 patm yr™?). Yet, knowledge on the effects of OA and
warming on biological organisms is limited in the GOM, particularly for microbes. Here, we
performed the first basin-scale DNA metabarcoding survey in the GOM and paired this with
extensive hydrographic, nutrient, and carbonate chemistry measurements to investigate diverse
prokaryotes and protists and their specific environmental drivers (Fig. 1). In line with prior
physiological and modeling-based observations, our GOM model analyses suggest that more
acidic and warmer conditions in the GOM may favor heterotrophic bacteria (SAR11 and SAR86)
and smaller phytoplankton (e.g., Prymnesiophyceae), with groups like Dinophyceae potentially
being less favored in future conditions (Fig. 4; Fig. 5). Warming and OA in the GOM may have
contrasting effects on major plankton parasites (Syndiniales) and grazers (Sagenista) that are
seldom considered with respect to climate change and underscores the importance to measure
multiple stressors simultaneously (Fig. 5). We also defined microbial indicator taxa at the ASV
level (Fig. 7), which resulted in several ubiquitous (and environmentally sensitive) microbes, like
Ostreococcus sp., Emiliania huxleyi, and SAR11 clade Ia, being associated with more acidic
waters in the GOM. Model inference and the utility of identified ASVs to act as indicator species
of OA will need to be further tested, including at different times of the year to reflect seasonal
turnover of the microbial community.

Though still unclear, empirical and predictive work suggests that changes in our ocean systems
will likely have profound impacts on microbial composition, biogeography, and physiology (8§,
100), with consequences for trophic transfer, nutrient cycling, and carbon export. Global models
and experimental evidence predict increased stratification with warming, shifting communities to
smaller picophytoplankton that can better exploit nutrients and other resources (12, 14).
Warming-induced stratification may also result in an overall net reduction in carbon export that
may threaten to decrease the amount of organic carbon that reaches the seafloor (/01). Yet,
predicted shifts in carbon export in global ecosystem models remains uncertain, ranging from a
41% decrease to 8% increase in carbon export flux in future oceans (/02). Strong selection
imposed by climate change may also drive rapid adaptation, competition, or the emergence of
new species (e.g., with higher thermal tolerance), all restructuring microbial communities (8, 13,
85). In culture, some microbes demonstrate the ability to adapt to warmer or more acidic
conditions (94, 95), though this does not necessarily mean they will remain competitive and it
remains an open question on how this will apply to natural systems with mixed assemblages (/9,
85). Further, current models do not fully account for trophic interactions, like grazing or
parasitism, the rates of which will likely vary in future oceans and offset direct physiological
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effects of OA or warming on certain microbes. It remains important to measure microbial
interactions, plankton mortality rates, and carbon export rates over time and in space (10, 102),
which will support a more mechanistic approach to model predictions.

Our findings provide an important baseline for microbial OA research in the GOM; however,
sampling on GOMECC-4 only reflected a single time of the year and did not consider known
seasonal variability in carbonate chemistry parameters or hydrography (79, 80), which are likely
to influence microbes and their drivers (36). In response, there is a need for sustained biological
measurements in the GOM, either by establishing long-term monitoring programs or continuing
to leverage existing oceanographic surveys, like GOMECC. Long term microbial sampling in the
GOM will be essential to accurately predict future changes in microbial groups that may be
expected with continued OA or warming. For example, increased DNA collection would support
ecosystem modeling of microbes in the GOM, integrating climate model scenarios (e.g., via the
Coupled Model Intercomparison Project) to predict shifts in microbial abundance by the end of
the century. Ultimately, our ability to predict the response of marine microbes to climate change
will depend on sustained and coordinated sampling efforts across a range of dynamic marine
ecosystems.

Materials and Methods

Seawater collection, DNA filtration, and environmental metadata

Seawater was collected on board the NOAA Ship Ronald H. Brown as part of GOMECC-4 from
September 13 to October 21, 2021. Sampling for GOMECC-4 occurred along 16 inshore—
offshore transects across the entire GOM and an additional line at 27°N latitude in the Atlantic
Ocean (Fig. 1A). Sampling started at the 27°N line and continued counterclockwise across the
GOM, ending at Florida Straits and Cape Coral. We also collected DNA samples near Padre
Island National Seashore (U.S. National Parks Service), a barrier island located off the coast of
south Texas (Fig. 1A). Vertical CTD sampling was employed at each site to measure discrete
physical, chemical, and biological properties. Water sampling for DNA filtration was conducted
at 51 out of 141 total sites and three depths per site, representing the surface, deep chlorophyll
maximum (DCM), and near bottom (fig. S1).

At each respective site and depth, seawater was collected from pre-designated Niskin bottles on a
CTD rosette. To ensure adequate amounts of water were filtered for DNA analysis, samples for
chemical parameters were taken at the same depths but with different discrete Niskin bottles.
Following a CTD cast, which varied in duration from 30 min to 3 h depending on water depth,
whole seawater was transferred from Niskin bottles to triplicate Whirl-Pak bags (3 depths x 3
replicates = 9 bags per site). Within an hour, whole seawater (~2 L per replicate) was filtered
through 0.22-um Sterivex filters (Millipore; CAT# SVGP01050) via a peristaltic pump (100-150
rpm) and run dry. Filters were capped and outlets were sealed with parafilm. Filters were stored
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559  at—80 °C on the ship and kept at the same temperature in the laboratory for longer-term storage.
560 Filter lines were sterilized with 2% bleach and rinsed with Milli-Q after every site. Milli-Q

561  Dblanks were also filtered randomly throughout the duration of the cruise. Accounting for blanks
562  and replication, a total of 481 Sterivex filters were collected on GOMECC-4.

563
564  Discrete samples for water column hydrography and chemistry were taken at each site and depth

565  during GOMECC-4, including sites sampled for DNA. Temperature, salinity, pressure, and
566  chlorophyll fluorescence were obtained from the CTD. Vertical CTD profiles on the downcast
567  were used to estimate the position of the DCM at each site. Blanks and quality control samples
568  were considered for each discrete chemical parameter. Dissolved oxygen concentration was
569  estimated from water samples (125 ml) using an automated oxygen titrator with amperometric
570  end-point detection (/03). Nutrient samples were collected from Niskin bottles into 50-ml acid
571  washed bottles. Dissolved nutrients (NO3, NO2, NH4, PO4, and SiO4) were measured on board
572  using an automated continuous flow analytical system with colorimetric detection ((/04); SEAL
573  Analytical). Samples for DIC were collected from Niskin bottles into 294-ml borosilicate glass
574  bottles, sealed with glass stoppers, and stored for 12 h at room temperature. DIC samples were
575  analyzed on the ship using two analytical systems, each consisting of a coulometer (CM5017,
576  UIC Inc.) coupled with a Dissolved Inorganic Carbon Extractor (105).

577
578  Samples for total alkalinity (TA) were collected from Niskin bottles into 500-ml collection

579  Dottles, preserved with a mercuric chloride solution, and kept in a water bath at 22 °C for 1 h
580  prior to analysis. TA measurements were made using a two-titration system, consisting of a

581  Metrohm 765 or 665 Dosimat Titrator and Orion 720A or 2-Star pH meter (/06). Samples for
582  pCO:2 were drawn from Niskin bottles into 500-ml glass bottles, preserved with mercuric

583  chloride, and stored at room temperature for 8 h before analysis. Details on the system used to
584  measure pCO» are described in (/07) and include equilibrating each sample with a constantly
585 circulating gas phase. Lastly, for pH analysis, samples were collected from Niskin bottles into
586  10-cm (~30 ml) glass cylindrical optical cells and analyzed on an Agilent 8453

587  spectrophotometer with a custom-made temperature-controlled cell holder (/08). Aragonite

588  saturation state was calculated at each site and depth based on temperature, salinity, pressure,
589 DIC, and TA using the CO2SY'S program for CO2 System Calculations (/09). Measurements of
590 pCO2(20°C) and pH (25 °C) were re-calculated to in situ conditions using pressure, temperature,
591  salinity, DIC, and TA in CO2SYS (/09). Environmental metadata associated with DNA samples
592  are provided in table S3.

593

594  DNA extractions, PCRs, and library preparations

595

596  Sterivex filters were extracted in-house at NOAA’s Atlantic Oceanographic and Meteorological

597  Laboratory (AOML) using the ZymoBIOMICS 96 DNA/RNA MagBead kit (Zymo; CAT#
598 D4308), with modifications for in-cartridge bead beating as described in (/10). Filters were
599  thawed, the inlet caps were removed, and excess water was dried from the inlet using kimwipes
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to allow for dispensing of beads into the cartridge. Premade mixtures of 0.1 mm and 0.5 mm
beads were directly added into the filters to ensure adequate lysis and recovery of hard-to-lyse
phytoplankton groups (//0). This was followed by the addition of a lysis buffer (1 ml). Sterivex
filters were vortexed for 40 min on a Vortex-Genie at maximum speed (~3200 rpm). DNA
lysates were transferred to 2-ml LoBind tubes (Eppendorf) via syringe and centrifuged for 1 min
at 10,000 g. Supernatant (750 ul per sample) was split across three KingFisher 96-well plates
(250 pl per plate). Zymo MagBinding buffer (600 ul) and magnetic beads (25 ul) were added to
each well in each of the three plates. With this setup, 96 samples were extracted at the same time
on the automated KingFisher Flex (Thermo Fisher). Each run included three wash plates with
500-900 pl per well of MagWash and an elution plate with 150 ul per well of molecular-grade
water. DNA was eluted into a single well from the same discrete sample across replicate plates.
Concentrations of eluted DNA were measured using a Varioskan LUX plate reader and the
Quant-IT dsDNA Assay (Thermo Fisher) and corrected per replicate sample based on volume of
seawater filtered (ng I''; fig. S13). Filters were processed randomly. Extraction blanks (clean
Sterivex filters) were also included and processed similarly. A bacterial mock community
(Zymo) was included as a positive control.

Metabarcoding libraries were initially prepared at AOML, amplifying DNA of target organisms
with universal primers, including 16S (Bacteria and Archaea) and 18S rRNA (protists). Primers
from (/11) were used to target the 16S V4-V5 region: forward (515f; 5°-
GTGYCAGCMGCCGCGGTAA-3’) and reverse (926r; 5’>-CCGYCAATTYMTTTRAGTTT-
3’). Primers from (//2) and the Earth Microbiome Project
(http://www.earthmicrobiome.org/emp-standard-protocols/18s/) targeted the 18S V9 region:
forward (1391f; 5’>-GTACACACCGCCCGTC-3’) and reverse (EukBr; 5°-
TGATCCTTCTGCAGGTTCACCTAC-3’). Primers were constructed with Fluidigm common
oligos CS1 forward (CS1-TS-F: 5>~ ACACTGACGACATGGTTCTACA-3") and CS2 reverse
(CS2-TS-R: 5’-TACGGTAGCAGAGACTTGGTCT-3") fused to their 5’ ends, to enable two-
step library preparation at the Michigan State University Research Technology Support Facility
(RTSF).

PCR reactions were run in triplicate (12.5 pl per sample), with 1 pl of DNA per sample. 16S
PCR reactions consisted of 5 ul of AmpliTaq Gold, 6.25 ul of water, and 0.375 ul of each primer
(10 uM); PCR conditions included denaturation at 95 °C for 2 min, 25 cycles of 95 °C for 45 s,
50 °C for 45 s, and 68 °C for 90 s, followed by a final elongation step of 68 °C for 5 min (//1).
18S PCR reactions consisted of 5 pl of AmpliTaq Gold, 6.5 ul of water, and 0.25 ul of each
primer (10 uM); PCR reactions involved denaturation at 94 °C for 3 min, 35 cycles of 94 °C for
45s, 65 °C for 15s, 57 °C for 30 s, and 72 °C for 90 s, followed by a final elongation step of 72
°C for 10 min (//2). PCR products were pooled and run on a 2% agarose gel to confirm
amplification of target bands. Sample plates were submitted to the Michigan State University
RTSF Genomics Core for secondary PCR and sequencing.
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Secondary PCR used dual-indexed, Illumina-compatible primers, targeting the Fluidigm
CS1/CS2 oligomers at the ends of the PCR products. PCR conditions for the secondary run
included an initial denaturation step at 95 °C for 3 min, 11 cycles of 95 °C for 15 s, 60 °C for 30
s, and 72 °C for 60 s, followed by elongation at 72 °C for 3 min. Amplicons were batch
normalized using Invitrogen SequalPrep DNA Normalization plates and the recovered product
was pooled. The pool was QC’d and quantified using a combination of Qubit dsSDNA HS,
Agilent 4200 TapeStation HS DNA1000, and Invitrogen Collibri Library Quantification gPCR
assays. The RTSF Core included a sequencing blank for each sample plate. Separate sequencing
runs were performed using an Illumina MiSeq (2 % 250 bp) for 18S and 16S samples. Custom
sequencing and index primers complementary to the Fluidigm CS1 and CS2 oligomers were
added to appropriate wells of the reagent cartridge. Base calling was done by Illumina Real Time
Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and converted to FASTQ
format with Illumina Bcl2fastq v2.20.0.

Bioinformatics and functional assignments

Primers were removed from demultiplexed FASTQ sequences using Cutadapt (//3). Trimmed
reads were processed in Tourmaline, which implements QIIME 2 (and DADA?2 plugins) in a
Snakemake workflow (/74). Paired-end DADA?2 was used to infer 16S and 18S amplicon
sequence variants or ASVs (/15). Taxonomic assignments were also performed in Tourmaline
using reference files from SILVA (Version 138.1; (/76)) and the Protistan Ribosomal Reference
or PR2 (Version 5.0.1; (/17)) databases for 16S and 18S ASVs, respectively. In both cases,
taxonomy was assigned using a Naive Bayes classifier trained to the respective databases and
trimmed to the primer regions (//8). Output files (taxonomy, count, and metadata) were
imported separately into R (Version 4.3.1) using qiime2R (Version 0.99.6;
https://github.com/jbisanz/qiime2R) and merged with phyloseq (Version 1.44.0; (119)). Several
groups were removed from the 18S dataset: Metazoa, Streptophyta, Rhodophyta, and unassigned
reads at the Subdivision level. 18S reads assigned to non-marine taxa, e.g., Insecta, Archosauria,
and Ascomycota were also filtered out. For 16S, reads assigned to Chloroplast, Mitochondria,
and Eukaryota were removed. Samples with less than 3,000 reads counts were filtered out for

18S (5,000 reads for 16S), along with ASVs only observed once in each respective dataset.
Species accumulation curves were generated for 18S and 16S samples using the R package
ranacapa (Version 0.1.0; (/20)). The number of reads vs. ASVs was saturated with respect to
categorial depth and position of samples on the shelf vs. open GOM, indicating that an
appropriate sequencing depth was reached (fig. S14). Samples were rarefied to the minimum
read count to normalize for differences in library size.

Protist ASVs were manually assigned to functional groups based on 18S V9 functional
annotations (https://doi.org/10.5281/zenodo.3768950) that were previously applied to Tara
Ocean communities (57). Additional databases (e.g., World Register of Marine Species) and
literature searches were also used. The following functional groups were included for 18S
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protists: autotrophic protists, heterotrophic protists, mixotrophic protists, parasites,
photosymbionts, and other protists. Mixotrophic protists were further categorized as being
constitutive mixotrophs (CM) that inherently have chloroplasts and endosymbiotic specialist
non-constitutive mixotrophs (eSNCM) that harbor endosymbionts to support growth (/27). We
recognize that many protists likely exhibit mixotrophy in some capacity, and so, our functional
annotation of this group may be underrepresented. Other protists represented higher level
taxonomic groups (domain or supergroup) that were unassigned at lower levels. Bacteria and
Archaea were categorized functionally as being heterotrophic or autotrophic.

Statistical analyses

Prior to ordination, ASV count tables were transformed to Aitchison distances, which is
estimated by transforming read counts via centered log-ratio normalization and computing
Euclidean distances. The resulting Aitchison distance matrices were used to observe microbial
composition and aimed to minimize compositional bias inherent with amplicon data (83).
Principal coordinate analysis (PCoA) of Aitchison distances was used to visualize 16S and 18S
community composition. Permutational multivariate analysis of variance (PERMANOVA) tests
were employed with the adonis2 function in vegan (9999 permutations) to estimate the impact of
spatial factors on community composition. This included categorical depth (surface, DCM, and
near bottom), sampling transect, and location of samples on the continental shelf vs. in open
ocean regions of the GOM designated by the 200 m isobath (Fig. 1A).

Samples were also grouped into clusters via hierarchical clustering (Ward’s method) based on
Aitchison distances using the hclust function in vegan (Version 2.6-6.1; (1/22)). The optimal
number of clusters was determined based on average silhouette widths using the factoextra
package (Version 1.0.7; (123)). Silhouette widths offer an estimate on the quality of sample
clustering, with higher width coefficients indicating optimal clustering (/24). Three clusters were
found to be optimal for both 16S and 18S (fig. S15), which largely reflected depth in the water
column (Fig. 1B; fig. S1). Cluster 1 consisted of samples collected at all depths on the shelf and
offshore in the surface layer, all confined to the photic zone (2-99 m). Cluster 2 consisted of
samples mainly from offshore and more stratified waters in the DCM (2—124 m), while Cluster 3
represented samples collected offshore in meso- to bathypelagic waters (135-3,326 m). The
photic zone extends to 200 m in many deeper regions of the GOM, and so, samples in Cluster 2
(and a handful in Cluster 3) were also technically collected within the photic zone. However, we
distinguish communities in Clusters 2—3 from Cluster 1 based on the large proportion of samples
confined to the open ocean DCM (Cluster 2; 80%) and mesopelagic (Cluster 3; 98%) that reflect
disparate habitats in the GOM.

Mean Shannon diversity index and richness (# of ASVs) were determined for each cluster using
the estimate richness function in phyloseq (//9) and compared against other clusters with
Wilcoxon tests (P < 0.05). Mean diversity and richness were also estimated along transects,
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applying local regression (loess) curves to visualize trends using the geom_smooth function in
ggplot2 (Version 3.5.1; (125)). Stacked bar plots displaying mean relative abundance were
observed at the class level for 18S and order level for 16S for each sampling transect and cluster
using the microeco package in R (Version 1.7.1; (/26)). Taxonomic profiles were also observed
using the treemap package in R (Version 2.4-4; (127)), a tiered approach to visualize relative
abundance across multiple taxonomic levels.

Indicator taxa that were more abundant and representative of high (or low) TA:DIC ratios were
statistically inferred using the indicspecies package in R (Version 1.7.14; (128)). The TA:DIC
ratio was chosen because it is a good proxy to determine the ocean’s capacity to absorb
anthropogenic CO:z by influencing its buffering capacity (97). Higher ratios indicate strong
buffering capacity (i.e., the capacity of seawater to buffer against acidification). Based on
histograms of TA:DIC, samples were grouped a priori into high (> 1.16) or low categories (<
1.16) that reflect different OA conditions (Fig. 7A-B). We focused on DNA samples collected
from the photic zone (Cluster 1) to mitigate natural depth effects and to provide additional
context to models (see next section). Indicator analysis was run separately on rarefied 16S or 18S
samples that were agglomerated to the species level using the function multipatt with 999
permutations (/28). Significant ASVs (P < 0.001) were retained and summarized for high (or
low) TA:DIC and plotted against their mean relative abundance in the photic zone.

Generalized linear models

Generalized linear models (GLMs) were used to examine relationships between environmental
factors (predictor variables) and the relative abundance of major microbial groups (response
variables). GLMs focused on DNA samples collected in the photic zone (Cluster 1), in large part
to mitigate collinearity of factors that was prevalent in Clusters 2—3 (table S1). Separate GLMs
were performed for the top four most relatively abundant order level 16S and class level 18S
groups (Table 2). Separate models were constructed for Synechococcus and Prochlorococcus to
resolve differences between major cyanobacteria genera. Only variables that met requirements of
low collinearity (Spearman 7s < 0.7 or > —0.7) and a variance inflation factor (VIF) < 10 were
considered (/29). Zurr et al. (2010) suggest using a more stringent VIF cutoff (< 3). However,
we aimed to retain as many variables in the dataset as possible, which meant a few variables
(e.g., DIC and salinity) approached VIF = 10. To select the best model for each 18S or 16S
group, variables were further selected in a stepwise manner based on Akaike Information Criteria
(AIC) values using the stepAIC function in the MASS package in R (Version 7.3-60; (130)).
Only significant variables (P < 0.05) were used in the final model.

Final models were constructed with either Poisson or negative binomial error distributions.
Initial model type was chosen by comparing standardized residuals and other model indices (e.g.,
AIC) with the compare performance function in the performance package in R (Version 0.11.0;
(131)). GLMs were implemented with the glm.nb function for negative binomial models in the

19


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

764  MASS package or the glm function for Poisson models (family = Poisson) in the stats package in
765  base R (Version 4.3.1). We observed overdispersion in relative abundance data for several

766  Poisson models (Syndiniales, Dinophyceae, Synechococcus, and Prochlorococcus), in which
767  case negative binomial models were applied (Table 2). Model quality and fit was estimated for
768  each group using the check model function in the performance package (/31), which included
769  plots of posterior predictive checks (model simulations), standardized residuals (Q—Q plots),
770  homogeneity of variance, and collinearity of selected predictor variables. The goodness of fit
771  was assessed with a pseudo R* (Nagelkerke’s), though standardized residual checks of the final
772  models were also carried out (62) to assess model fit and uniformity of the residuals

773  (Kolmogorov—Smirnov, P > 0.05). As an additional validation, relative abundance data for each
774  group was randomly split and trained with respective models using 80% of the data to predict a
775  test set that was left out (20%). Pearson correlations were performed between model-trained and
776  test data.

777
778  Model coefficients were scaled and visualized for each 18S and 16S group using the multiplot

779  function in the coefplot package in R (Version 1.2.8; (/32)). Individual factors were plotted

780 against predicted relative abundance using the plot_model function in the sjPlot package in R
781  (Version 2.8.16; (133)). We focused predictive plots on temperature and carbonate chemistry
782  parameters (DIC and pH). Group-specific GLMs were used to predict relative abundance at all
783  GOMECC-4 sites where surface layer (< 10 m) variables were collected (135 out of 141 sites).
784  Six stations did not have representative CTD data available at the surface layer and were

785  excluded. Predicted relative abundance for all surface GOMECC-4 sites were observed in Ocean
786  Data View using Data-Interpolating Variational Analysis (DIVA) interpolation (/34).

787

20


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

788

789
790

791
792
793
794

795
796
797

798
799
800
801
802
803

804
805
806

807
808
809
810

811
812
813

814
815

816
817

818
819
820

821
822

823
824

available under aCC-BY-NC-ND 4.0 International license.

References

1.

10.

1.

12.

S. Diaz, J. Fargione, F. S. Chapin 3rd, D. Tilman, Biodiversity loss threatens human well-
being. PLoS Biol. 4, €277 (2006).

N. Gruber, D. Clement, B. R. Carter, R. A. Feely, S. van Heuven, M. Hoppema, M. Ishii,
R. M. Key, A. Kozyr, S. K. Lauvset, C. Lo Monaco, J. T. Mathis, A. Murata, A. Olsen, F.
F. Perez, C. L. Sabine, T. Tanhua, R. Wanninkhof, The oceanic sink for anthropogenic
CO2 from 1994 to 2007. Science 363, 1193—1199 (2019).

S. C. Doney, D. S. Busch, S. R. Cooley, K. J. Kroeker, The Impacts of Ocean
Acidification on Marine Ecosystems and Reliant Human Communities. Annu. Rev.
Environ. Resour. 45, 1-30 (2020).

J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan,
N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P.
Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L.
Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, M.-F. Weirig, Y. Yamanaka, A.
Yool, Anthropogenic ocean acidification over the twenty-first century and its impact on
calcifying organisms. Nature 437, 681-686 (2005).

M. M. White, D. C. McCorkle, L. S. Mullineaux, A. L. Cohen, Early exposure of bay
scallops (Argopecten irradians) to high CO: causes a decrease in larval shell growth.
PLoS One 8, 61065 (2013).

R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A.
Church, L. Clarke, Q. Dahe, P. Dasgupta, N. K. Dubash, Climate Change 2014: Synthesis
Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC, 2014).

A.Z. Worden, M. J. Follows, S. J. Giovannoni, S. Wilken, A. E. Zimmerman, P. J.
Keeling, Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of
microbes. Science 347, 127594 (2015).

D. A. Hutchins, F. Fu, Microorganisms and ocean global change. Nat Microbiol 2, 17058
(2017).

P. W. Boyd, D. A. Hutchins, Understanding the responses of ocean biota to a complex
matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125-135 (2012).

D. A. Caron, D. A. Hutchins, The effects of changing climate on microzooplankton

grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton
Res. 35,235-252 (2012).

D. G. Boyce, M. R. Lewis, B. Worm, Global phytoplankton decline over the past century.
Nature 466, 591—- 596 (07 2010).

L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C.
Heinze, T. Ilyina, R. Séférian, J. Tjiputra, M. Vichi, Multiple stressors of ocean

21


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

825 ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10,

826 62256245 (2013).

827 13. S. Dutkiewicz, J. J. Morris, M. J. Follows, J. Scott, O. Levitan, S. T. Dyhrman, I.

828 Berman-Frank, Impact of ocean acidification on the structure of future phytoplankton
829 communities. Nat. Clim. Chang. 5, 1002—1006 (2015).

830 14.  S. A. Henson, B. B. Cael, S. R. Allen, S. Dutkiewicz, Future phytoplankton diversity in a
831 changing climate. Nat. Commun. 12, 5372 (2021).

832 15. K.R.M. Mackey, J. J. Morris, F. M. M. Morel, S. A. Kranz, Response of Photosynthesis
833 to Ocean Acidification. Oceanography 28, 74-91 (2015).

834 16. M. Segovia, M. R. Lorenzo, C. Iiiiguez, C. Garcia-Gomez, Physiological stress response
835 associated with elevated CO2 and dissolved iron in a phytoplankton community

836 dominated by the coccolithophore Emiliania huxleyi. Mar. Ecol. Prog. Ser. 586, 73—89
837 (2018).

838 17. V. Vazquez, P. Leon, F. J. L. Gordillo, C. Jiménez, I. Concepcion, K. Mackenzie, E.

839 Bresnan, M. Segovia, High-CO2 Levels Rather than Acidification Restrict Emiliania
840 huxleyi Growth and Performance. Microb. Ecol. 86, 127-143 (2023).

841 18. M. D. Iglesias-Rodriguez, P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-
842 Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, P. von Dassow, E. Rehm,
843 E. V. Armbrust, K. P. Boessenkool, Phytoplankton calcification in a high-CO2 world.
844 Science 320, 336-340 (2008).

845 19. A. C. Martiny, G. 1. Hagstrom, T. DeVries, R. T. Letscher, G. L. Britten, C. A. Garcia, E.
846 Galbraith, D. Karl, S. A. Levin, M. W. Lomas, A. R. Moreno, D. Talmy, W. Wang, K.
847 Matsumoto, Marine phytoplankton resilience may moderate oligotrophic ecosystem

848 responses and biogeochemical feedbacks to climate change. Limnol. Oceanogr. 67,

849 S378-S389 (2022).

850 20. H. Sarmento, J. M. Montoya, E. Vazquez-Dominguez, D. Vaqué, J. M. Gasol, Warming
851 effects on marine microbial food web processes: how far can we go when it comes to
852 predictions? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2137-2149 (2010).

853 21. X.A.G. Moran, F. Baltar, C. Carreira, C. Lenborg, Responses of physiological groups of
854 tropical heterotrophic bacteria to temperature and dissolved organic matter additions:
855 food matters more than warming. Environ. Microbiol. 22, 1930—1943 (2020).

856 22. T. E. Berry, B. J. Saunders, M. L. Coghlan, M. Stat, S. Jarman, A. J. Richardson, C. H.
857 Davies, O. Berry, E. S. Harvey, M. Bunce, Marine environmental DNA biomonitoring
858 reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous
859 climatic events. PLoS Genet. 15, ¢1007943 (2019).

860 23. R. Gallego, E. Jacobs-Palmer, K. Cribari, R. P. Kelly, Environmental DNA

861 metabarcoding reveals winners and losers of global change in coastal waters.

862 Proceedings of the Royal Society B 287, 20202424 (2020).

22


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

863
864
865
866
867

868
869

870
871

872
873
874
875
876

877
878
879
880
881
882

883
884
885

886
887
888
889

890
891
892

893
894

895
896
897

898
899
900

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

available under aCC-BY-NC-ND 4.0 International license.

E. Osborne, X. Hu, E. R. Hall, K. Yates, J. Vreeland-Dawson, K. Shamberger, L.
Barbero, J. Martin Hernandez-Ayon, F. A. Gomez, T. Hicks, Y.-Y. Xu, M. R.
McCutcheon, M. Acquafredda, C. Chapa-Balcorta, O. Norzagaray, D. Pierrot, A. Munoz-
Caravaca, K. L. Dobson, N. Williams, N. Rabalais, P. Dash, Ocean acidification in the
Gulf of Mexico: Drivers, impacts, and unknowns. Prog. Oceanogr. 209, 102882 (2022).

N. N. Rabalais, R. E. Turner, W. J. Wiseman Jr, Hypoxia in the Gulf of Mexico. J.
Environ. Qual. 30, 320-329 (2001).

W. Sturges, R. Leben, Frequency of Ring Separations from the Loop Current in the Gulf
of Mexico: A Revised Estimate. J. Phys. Oceanogr. 30, 1814—1819 (2000).

L. Linacre, R. Durazo, V. F. Camacho-Ibar, K. E. Selph, J. R. Lara-Lara, U. Mirabal-

Gomez, C. Bazdn-Guzman, A. Lago-Leston, E. M. Fernandez-Martin, K. Sidon-Cesefia,
Picoplankton carbon biomass assessments and distribution of Prochlorococcus ecotypes
linked to loop current eddies during summer in the southern gulf of Mexico. J. Geophys.

Res. C: Oceans 124, 8342-8359 (2019).

T. T. Sutton, M. R. Clark, D. C. Dunn, P. N. Halpin, A. D. Rogers, J. Guinotte, S. J.
Bograd, M. V. Angel, J. A. A. Perez, K. Wishner, R. L. Haedrich, D. J. Lindsay, J. C.
Drazen, A. Vereshchaka, U. Piatkowski, T. Morato, K. Blachowiak-Samotyk, B. H.
Robison, K. M. Gjerde, A. Pierrot-Bults, P. Bernal, G. Reygondeau, M. Heino, A global
biogeographic classification of the mesopelagic zone. Deep Sea Res. Part 1 Oceanogr.
Res. Pap. 126, 85-102 (2017).

M. R. Stukel, T. B. Kelly, M. R. Landry, K. E. Selph, R. Swalethorp, Sinking carbon,
nitrogen, and pigment flux within and beneath the euphotic zone in the oligotrophic,
open-ocean Gulf of Mexico. J. Plankton Res. 44, 711-727 (2022).

W.-J. Cai, X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou,
W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, G.-C.
Gong, Acidification of subsurface coastal waters enhanced by eutrophication. Nat.
Geosci. 4, 766-770 (2011).

R. Wanninkhof, L. Barbero, R. Byrne, W.-J. Cai, W.-J. Huang, J.-Z. Zhang, M. Baringer,
C. Langdon, Ocean acidification along the Gulf Coast and East Coast of the USA. Cont.
Shelf Res. 98, 54-71 (2015).

R. H. Weisberg, L. Zheng, Y. Liu, West Florida shelf upwelling: Origins and pathways.
J. Geophys. Res. C: Oceans 121, 5672-5681 (2016).

E. R. Hall, K. K. Yates, K. A. Hubbard, M. J. Garrett, J. D. Frankle, Nutrient and
carbonate chemistry patterns associated with Karenia brevis blooms in three West
Florida Shelf estuaries 2020-2023. Frontiers in Marine Science 11 (2024).

M. J. Ulloa, P. Alvarez-Torres, K. P. Horak-Romo, R. Ortega-Izaguirre, Harmful algal
blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine
ecosystem. Environmental Development 22, 120—128 (2017).

23


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

901
902
903

904
905
906

907
908
909

910
911
912
913

914
915

916
917

918
919
920
921

922
923
924
925
926
927
928
929
930
931

932
933
934
935
936
937
938
939
940

35.

36.

37.

38.

39.

40.

41.

42.

43.

available under aCC-BY-NC-ND 4.0 International license.

C. A. Heil, A. L. Muni-Morgan, Florida’s Harmful Algal Bloom (HAB) Problem:
Escalating Risks to Human, Environmental and Economic Health With Climate Change.
Frontiers in Ecology and Evolution 9 (2021).

P. M. Brannock, A. C. Ortmann, A. G. Moss, K. M. Halanych, Metabarcoding reveals
environmental factors influencing spatio-temporal variation in pelagic micro-eukaryotes.
Mol. Ecol. 25,3593-3604 (2016).

C. G. Easson, J. V. Lopez, Depth-Dependent Environmental Drivers of Microbial
Plankton Community Structure in the Northern Gulf of Mexico. Front. Microbiol. 9,
3175 (2018).

K. Sidon-Cesena, M. A. Martinez-Mercado, J. Chong-Robles, Y. Ortega-Saad, V. F.
Camacho-Ibar, L. Linacre, A. Lago-Leston, Response of microbial eukaryote community
to the oligotrophic waters of the Gulf of Mexico: a plausible scenario for warm and
stratified oceans, bioRxiv (2023)

M. W. Henson, J. C. Thrash, Microbial ecology of northern Gulf of Mexico estuarine
waters. mSystems, €0131823 (2024).

B. B. Tolar, G. M. King, J. T. Hollibaugh, An analysis of thaumarchaeota populations
from the northern Gulf of Mexico. Front. Microbiol. 4, 72 (2013).

Thrash J. Cameron, Seitz Kiley W., Baker Brett J., Temperton Ben, Gillies Lauren E.,
Rabalais Nancy N., Henrissat Bernard, Mason Olivia U., Metabolic Roles of
Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico “Dead Zone.”
MBio 8, 10.1128/mbio.01017-17 (2017).

C. de Vargas, S. Audic, N. Henry, J. Decelle, F. Mahe, R. Logares, E. Lara, C. Berney,
N. L. Bescot, I. Probert, M. Carmichael, J. Poulain, S. Romac, S. Colin, J.-M. Aury, L.
Bittner, S. Chaffron, M. Dunthorn, S. Engelen, O. Flegontova, L. Guidi, A. Horak, O.
Jaillon, G. Lima-Mendez, J. Luke, S. Malviya, R. Morard, M. Mulot, E. Scalco, R. Siano,
F. Vincent, A. Zingone, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, T. O.
Coordinators, S. G. Acinas, P. Bork, C. Bowler, G. Gorsky, N. Grimsley, P. Hingamp, D.
Iudicone, F. Not, H. Ogata, S. Pesant, J. Raes, M. E. Sieracki, S. Speich, L. Stemmann, S.
Sunagawa, J. Weissenbach, P. Wincker, E. Karsenti, E. Boss, M. Follows, L. Karp-Boss,
U. Krzic, E. G. Reynaud, C. Sardet, M. B. Sullivan, D. Velayoudon, Eukaryotic plankton
diversity in the sunlit ocean. Science 348, 1261605-1261605 (2015).

S. Sunagawa, L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B.
Djahanschiri, G. Zeller, D. R. Mende, A. Alberti, F. M. Cornejo-Castillo, P. 1. Costea, C.
Cruaud, F. d’Ovidio, S. Engelen, 1. Ferrera, J. M. Gasol, L. Guidi, F. Hildebrand, F.
Kokoszka, C. Lepoivre, G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-Llonch, H.
Sarmento, S. Vieira-Silva, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, T. O.
Coordinators, C. Bowler, C. de Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D.
Iudicone, O. Jaillon, F. Not, H. Ogata, S. Pesant, S. Speich, L. Stemmann, M. B.
Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, J. Raes, S. G. Acinas, P. Bork,
Structure and function of the global ocean microbiome. Science 348, 1261359— 1261359

24


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

941

942
943
944

945
946

947
948
949

950
951
952

953
954

955
956
957

958
959

960
961
962

963
964
965
966

967
968
969

970
971
972

973
974

975
976

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

available under aCC-BY-NC-ND 4.0 International license.

(05 2015).

A. Djurhuus, P. H. Boersch-Supan, S.-O. Mikalsen, A. D. Rogers, Microbe biogeography
tracks water masses in a dynamic oceanic frontal system. R Soc Open Sci 4, 170033
(2017).

J. K. Pearman, B. Jones, M. Qashgqari, S. Carvalho, Eukaryotic diversity patterns in the
Red Sea: from the surface to the deep. Frontiers in Marine Science 10 (2024).

E. A. Walsh, J. B. Kirkpatrick, S. D. Rutherford, D. C. Smith, M. Sogin, S. D’Hondt,
Bacterial diversity and community composition from seasurface to subseafloor. ISME J.
10, 979-989 (2016).

T. Pommier, P. R. Neal, J. M. Gasol, M. Coll, S. G. Acinas, C. Pedros-Ali6, Spatial
patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by
pyrosequencing of the 16S rRNA. Aquat. Microb. Ecol. 61, 221-233 (2010).

Y.-C. Yeh, J. A. Fuhrman, Contrasting diversity patterns of prokaryotes and protists over
time and depth at the San-Pedro Ocean Time series. ISME Commun 2, 36 (2022).

N. V. Patin, Z. A. Dietrich, A. Stancil, M. Quinan, J. S. Beckler, E. R. Hall, J. Culter, C.
G. Smith, M. Taillefert, F. J. Stewart, Gulf of Mexico blue hole harbors high levels of
novel microbial lineages. ISME J. 15, 2206-2232 (2021).

A. E. Santoro, C. Buchwald, M. R. Mcllvin, K. L. Casciotti, Isotopic signature of N(2)O
produced by marine ammonia-oxidizing archaea. Science 333, 1282—1285 (2011).

Z. 1. Johnson, E. R. Zinser, A. Coe, N. P. McNulty, E. M. S. Woodward, S. W. Chisholm,
Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental
gradients. Science 311, 1737— 1740 (03 2006).

D. Tsementzi, J. Wu, S. Deutsch, S. Nath, L. M. Rodriguez-R, A. S. Burns, P. Ranjan, N.
Sarode, R. R. Malmstrom, C. C. Padilla, B. K. Stone, L. A. Bristow, M. Larsen, J. B.
Glass, B. Thamdrup, T. Woyke, K. T. Konstantinidis, F. J. Stewart, SAR11 bacteria
linked to ocean anoxia and nitrogen loss. Nature 536, 179— 183 (08 2016).

K. E. Selph, R. Swalethorp, M. R. Stukel, T. B. Kelly, A. N. Knapp, K. Fleming, T.
Hernandez, M. R. Landry, Phytoplankton community composition and biomass in the
oligotrophic Gulf of Mexico. J. Plankton Res. 44, 618—637 (2022).

R. Massana, J. del Campo, M. E. Sieracki, S. Audic, R. Logares, Exploring the
uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within
stramenopiles. ISME J. 8, 854-866 (2014).

T. Biard, Diversity and ecology of Radiolaria in modern oceans. Environ. Microbiol. 24,
2179-2200 (2022).

L. Guillou, M. Viprey, A. Chambouvet, R. M. Welsh, A. R. Kirkham, R. Massana, D. J.
Scanlan, A. Z. Worden, Widespread occurrence and genetic diversity of marine

25


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

977
978

979
980
981
982
983

984
985
986

987
988
989

990
991
992

993
994
995
996
997

998
999

1000
1001
1002
1003

1004
1005
1006

1007
1008
1009

1010
1011
1012

1013
1014

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

available under aCC-BY-NC-ND 4.0 International license.

parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349-3365
(2008).

T. Cordier, I. B. Angeles, N. Henry, F. Lejzerowicz, C. Berney, R. Morard, A. Brandt,
M.-A. Cambon-Bonavita, L. Guidi, F. Lombard, P. M. Arbizu, R. Massana, C. Orejas, J.
Poulain, C. R. Smith, P. Wincker, S. Arnaud-Haond, A. J. Gooday, C. de Vargas, J.
Pawlowski, Patterns of eukaryotic diversity from the surface to the deep-ocean sediment.
Science Advances 8, eabj9309 (2022).

C. A. Durkin, I. Cetini¢, M. Estapa, Z. Ljubesi¢, M. Mucko, A. Neeley, M. Omand,
Tracing the path of carbon export in the ocean through DNA sequencing of individual
sinking particles. ISME J., 1-11 (2022).

O. Flegontova, P. Flegontov, S. Malviya, S. Audic, P. Wincker, C. de Vargas, C. Bowler,
J. Lukes, A. Hordk, Extreme Diversity of Diplonemid Eukaryotes in the Ocean. Curr.
Biol. 26, 3060-3065 (2016).

J. Saltzman, E. R. White, Determining the role of environmental covariates on
planktivorous elasmobranch population trends within an isolated marine protected area.
Mar. Ecol. Prog. Ser. 722, 107-123 (2023).

E. Bravo-Ormaza, R. Arauz, S. Bessudo, A. Hearn, A. P. Klimley, F. Ladino-Archila, J.
Lopez-Macias, T. Steiner, C. Pefiaherrera-Palma, Scalloped hammerhead shark Sphyrna
lewini relative abundance comparison in three offshore marine protected areas of the
Eastern Tropical Pacific. Environ. Biol. Fishes, doi: 10.1007/s10641-023-01454-6
(2023).

A. F. Zuur, E. N. Ieno, C. S. Elphick, A protocol for data exploration to avoid common
statistical problems. Methods Ecol. Evol. 1, 3—-14 (2010).

F. E. Muller-Karger, J. P. Smith, S. Werner, R. Chen, M. Roffer, Y. Liu, B. Muhling, D.
Lindo-Atichati, J. Lamkin, S. Cerdeira-Estrada, D. B. Enfield, Natural variability of

surface oceanographic conditions in the offshore Gulf of Mexico. Prog. Oceanogr. 134,
54-76 (2015).

N. Yingling, T. B. Kelly, T. A. Shropshire, M. R. Landry, K. E. Selph, A. N. Knapp, S.
A. Kranz, M. R. Stukel, Taxon-specific phytoplankton growth, nutrient utilization and
light limitation in the oligotrophic Gulf of Mexico. J. Plankton Res. 44, 656—676 (2022).

X. A. G. Moran, L. Alonso-Séez, E. Nogueira, H. W. Ducklow, N. Gonzélez, A. Lopez-
Urrutia, L. Diaz-Pérez, A. Calvo-Diaz, N. Arandia-Gorostidi, T. M. Huete-Stauffer,
More, smaller bacteria in response to ocean’s warming? Proc. Biol. Sci. 282 (2015).

N. Arandia-Gorostidi, P. K. Weber, L. Alonso-Saez, X. A. G. Moran, X. Mayali,
Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and
heterotrophic bacteria through physical attachment. ISME J. 11, 641-650 (2017).

J. Taucher, J. Aristegui, L. T. Bach, W. Guan, M. F. Montero, A. Nauendorf, E. P.
Achterberg, U. Riebesell, Response of Subtropical Phytoplankton Communities to Ocean

26


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1015
1016

1017
1018
1019

1020
1021
1022

1023
1024
1025

1026
1027
1028

1029
1030
1031

1032
1033

1034
1035
1036
1037

1038
1039
1040
1041

1042
1043

1044
1045
1046

1047
1048
1049

1050
1051

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

available under aCC-BY-NC-ND 4.0 International license.

Acidification Under Oligotrophic Conditions and During Nutrient Fertilization. Frontiers
in Marine Science 5 (2018).

M. W. Lomas, B. M. Hopkinson, J. L. Losh, D. E. Ryan, D. L. Shi, Y. Xu, F. M. M.
Morel, Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic.
Vol. 66,211-222 (2012).

P. Flombaum, W.-L. Wang, F. W. Primeau, A. C. Martiny, Global picophytoplankton
niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13,
116-120 (2020).

F.-X. Fu, M. E. Warner, Y. Zhang, Y. Feng, D. A. Hutchins, Effects of increased
temperature and CO2 on photosynthesis, growth, and elemental ratios in marine
Synechococcus and Prochlorococcus (cyanobacteria). J. Phycol. 43, 485496 (2007).

L. T. Bach, S. Alvarez-Fernandez, T. Hornick, A. Stuhr, U. Riebesell, Simulated ocean
acidification reveals winners and losers in coastal phytoplankton. PLoS One 12,
e0188198 (2017).

A. Martiny, S. Kathuria, P. Berube, Widespread metabolic potential for nitrite and nitrate
assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci. U. S. A., doi:
10.1073/pnas.0902532106 (06 2009).

J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic
theory of ecology. Ecology 85, 1771-1789 (2004).

Y. Feng, F. Chai, M. L. Wells, Y. Liao, P. Li, T. Cai, T. Zhao, F. Fu, D. A. Hutchins, The
Combined Effects of Increased pCO2 and Warming on a Coastal Phytoplankton

Assemblage: From Species Composition to Sinking Rate. Frontiers in Marine Science 8
(2021).

H. G. Horn, N. Sander, A. Stuhr, M. Alguer6-Muiiiz, L. T. Bach, M. G. J. Loder, M.
Boersma, U. Riebesell, N. Aberle, Low CO2 Sensitivity of Microzooplankton
Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm
Study. PLoS One 11, 0165800 (2016).

D. K. Stoecker, P. J. Hansen, D. A. Caron, A. Mitra, Mixotrophy in the Marine Plankton.
Ann. Rev. Mar. Sci. 9, 311-335 (2017).

0. U. Mason, E. J. Canter, L. E. Gillies, T. K. Paisie, B. J. Roberts, Mississippi River
Plume Enriches Microbial Diversity in the Northern Gulf of Mexico. Front. Microbiol. 7,
1048 (2016).

F. A. Gomez, S.-K. Lee, F. J. Hernandez Jr, L. M. Chiaverano, F. E. Muller-Karger, Y.
Liu, J. T. Lamkin, ENSO-induced co-variability of Salinity, Plankton Biomass and
Coastal Currents in the Northern Gulf of Mexico. Sci. Rep. 9, 178 (2019).

F. A. Gomez, R. Wanninkhof, L. Barbero, S.-K. Lee, F. J. Hernandez Jr, Seasonal
patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from

27


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1052
1053

1054
1055
1056

1057
1058
1059

1060
1061

1062
1063

1064
1065
1066

1067
1068

1069
1070
1071

1072
1073
1074

1075
1076

1077
1078
1079

1080
1081
1082
1083

1084
1085
1086

1087

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

available under aCC-BY-NC-ND 4.0 International license.

a regional high-resolution ocean biogeochemical model. Biogeosciences 17, 1685-1700
(2020).

A. K. Williams, A. S. Mclnnes, J. R. Rooker, A. Quigg, Changes in Microbial Plankton
Assemblages Induced by Mesoscale Oceanographic Features in the Northern Gulf of
Mexico. PLoS One 10, €0138230 (2015).

S. Angles, A. Jordi, D. W. Henrichs, L. Campbell, Influence of coastal upwelling and
river discharge on the phytoplankton community composition in the northwestern Gulf of
Mexico. Prog. Oceanogr. 173, 26-36 (2019).

S. Wood, Generalized Additive Models: An Introduction with R (Chapman and
Hall/CRC, 2017).

G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome Datasets
Are Compositional: And This Is Not Optional. Front. Microbiol. 8, 2224 (2017).

W. Gong, A. Marchetti, Estimation of 18S Gene Copy Number in Marine Eukaryotic
Plankton Using a Next-Generation Sequencing Approach. Frontiers in Marine Science 6
(2019).

S. Collins, P. W. Boyd, M. A. Doblin, Evolution, Microbes, and Changing Ocean
Conditions. Ann. Rev. Mar. Sci. 12, 181-208 (2020).

F. Partensky, J. Blanchot, D. Vaulot, Differential distribution and ecology of
Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin de [’Institut
océanographique. Monaco. n° spécial, 457-475 (1999).

A. Buchan, G. R. LeCleir, C. A. Gulvik, J. M. Gonzalez, Master recyclers: features and
functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12,
686—698 (2014).

C. J. Gobler, Climate Change and Harmful Algal Blooms: Insights and perspective.
Harmful Algae 91, 101731 (2020).

R. M. Errera, S. Yvon-Lewis, J. D. Kessler, L. Campbell, Responses of the dinoflagellate
Karenia brevis to climate change: pCO2 and sea surface temperatures. Harmful Algae 37,
110-116 (2014).

B. A. Stauffer, H. A. Bowers, E. Buckley, T. W. Davis, T. H. Johengen, R. Kudela, M. A.
McManus, H. Purcell, G. J. Smith, A. Vander Woude, M. N. Tamburri, Considerations in
Harmful Algal Bloom Research and Monitoring: Perspectives From a Consensus-
Building Workshop and Technology Testing. Frontiers in Marine Science 6 (2019).

E. S. Egleston, C. L. Sabine, F. M. M. Morel, Revelle revisited: Buffer factors that
quantify the response of ocean chemistry to changes in DIC and alkalinity. Global
Biogeochem. Cycles (2010).

A.Z. Worden, J. K. Nolan, B. Palenik, Assessing the dynamics and ecology of marine

28


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1088
1089

1090
1091
1092

1093
1094

1095
1096

1097
1098

1099
1100

1101
1102

1103
1104
1105
1106

1107
1108
1109

1110
1111
1112

1113
1114
1115

1116
1117

1118
1119
1120
1121

1122
1123

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

available under aCC-BY-NC-ND 4.0 International license.

picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 49,
168-179 (2004).

P. Ziveri, B. de Bernardi, K.-H. Baumann, H. M. Stoll, P. G. Mortyn, Sinking of
coccolith carbonate and potential contribution to organic carbon ballasting in the deep
ocean. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54, 659—675 (2007).

C.-E. Schaum, B. Rost, S. Collins, Environmental stability affects phenotypic evolution
in a globally distributed marine picoplankton. ISME J. 10, 75-84 (2016).

K. T. Lohbeck, U. Riebesell, T. B. H. Reusch, Adaptive evolution of a key phytoplankton
species to ocean acidification. Nat. Geosci. 5, 346-351 (2012).

K.-H. Baumann, B. Boeckel, Spatial distribution of living coccolithophores in the
southwestern Gulf of Mexico. J. Micropalaeontol. 32, 123—-133 (2013).

S. J. Giovannoni, SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Ann.
Rev. Mar. Sci. 9, 231-255 (2017).

M. S. Rappé, S. A. Connon, K. L. Vergin, S. J. Giovannoni, Cultivation of the ubiquitous
SAR11 marine bacterioplankton clade. Nature 418, 630— 633 (08 2002).

N. R. Bates, Y. M. Astor, M. J. Church, K. Currie, J. E. Dore, M. Gonzalez-Davila, L.
Lorenzoni, F. Muller-Karger, J. Olafsson, J. M. Santana-Casiano, A Time-Series View of
Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO- and
Ocean Acidification. Oceanography 27, 126141 (2014).

S. Dutkiewicz, P. Cermeno, O. Jahn, M. J. Follows, A. E. Hickman, D. A. A. Taniguchi,
B. A. Ward, Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609-634
(2020).

E. L. Cavan, S. A. Henson, P. W. Boyd, The Sensitivity of Subsurface Microbes to Ocean

Warming Accentuates Future Declines in Particulate Carbon Export. Frontiers in
Ecology and Evolution 6 (2019).

S. A. Henson, C. Laufkétter, S. Leung, S. L. C. Giering, H. . Palevsky, E. L. Cavan,
Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci.
15, 248-254 (2022).

C. Langdon, Determination of dissolved oxygen in seawater by Winkler titration using
the amperometric technique. (2010).

J.-Z. Zhang, G. A. Berberian, Determination of dissolved silicate in estuarine and coastal
waters by gas segmented continuous flow colorimetric analysis. Methods for the
determination of chemical substances in marine and estuarine environmental matrices,

366-360 (1997).

K. M. Johnson, A. E. King, J. M. Sieburth, Coulometric TCO2 analyses for marine
studies; an introduction. Mar. Chem. 16, 61-82 (1985).

29


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1124
1125

1126
1127

1128
1129

1130
1131
1132

1133
1134
1135

1136
1137
1138

1139
1140
1141

1142
1143

1144
1145
1146

1147
1148
1149

1150
1151
1152

1153
1154
1155
1156
1157
1158
1159

1160

106.

107.

108.

109.

110.

I11.

112.

113.

114.

115.

116.

117.

118.

available under aCC-BY-NC-ND 4.0 International license.

A. G. Dickson, C. L. Sabine, J. R. Christian,“Guide to best practices for ocean CO2
measurements” (Report, North Pacific Marine Science Organization, 2007).

R. Wanninkhof, K. Thoning, Measurement of fugacity of CO2 in surface water using
continuous and discrete sampling methods. Mar. Chem. 44, 189-204 (1993).

R. H. Byrne, L. R. Kump, K. J. Cantrell, The influence of temperature and pH on trace
metal speciation in seawater. Mar. Chem. 25, 163—181 (1988).

S. M. A. C. van Heuven, M. Hoppema, O. Huhn, H. A. Slagter, H. J. W. de Baar, Direct
observation of increasing CO2 in the Weddell Gyre along the Prime Meridian during
1973-2008. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 58, 2613-2635 (2011).

S. R. Anderson, L. R. Thompson, Optimizing an enclosed bead beating extraction method
for microbial and fish environmental DNA. Environmental DNA, doi: 10.1002/edn3.251
(2021).

A. E. Parada, D. M. Needham, J. A. Fuhrman, Every base matters: assessing small
subunit rRNA primers for marine microbiomes with mock communities, time series and
global field samples. Environ. Microbiol. 18, 1403— 1414 (05 2016).

L. A. Amaral-Zettler, E. A. McCliment, H. W. Ducklow, S. M. Huse, A method for
studying protistan diversity using massively parallel sequencing of V9 hypervariable
regions of small-subunit ribosomal RNA Genes. PLoS One 4, €6372 (07 2009).

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal 17, 10-12 (2011).

L. R. Thompson, S. R. Anderson, P. A. Den Uyl, N. V. Patin, S. J. Lim, G. Sanderson, K.
D. Goodwin, Tourmaline: A containerized workflow for rapid and iterable amplicon
sequence analysis using QIIME 2 and Snakemake. Gigascience 11 (2022).

B. J. Callahan, P. J. Mcmurdie, S. P. Holmes, Exact sequence variants should replace
operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639-2643
(2016).

E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, F. O. Glockner,
SILVA: a comprehensive online resource for quality checked and aligned ribosomal
RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188-7196 (2007).

L. Guillou, D. Bachar, S. Audic, D. Bass, C. Berney, L. Bittner, C. Boutte, G. Burgaud,
C. De Vargas, J. Decelle, J. Del Campo, J. R. Dolan, M. Dunthorn, B. Edvardsen, M.
Holzmann, W. H. C. F. Kooistra, E. Lara, N. Le Bescot, R. Logares, F. Mah¢, R.
Massana, M. Montresor, R. Morard, F. Not, J. Pawlowski, I. Probert, A. L. Sauvadet, R.
Siano, T. Stoeck, D. Vaulot, P. Zimmermann, R. Christen, The Protist Ribosomal
Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA
sequences with curated taxonomy. Nucleic Acids Res. 41 (2013).

N. A. Bokulich, B. D. Kaehler, J. R. Rideout, M. Dillon, E. Bolyen, R. Knight, G. A.

30


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1161
1162
1163

1164
1165

1166
1167
1168
1169

1170
1171
1172
1173
1174

1175
1176
1177

1178
1179

1180
1181

1182
1183
1184
1185

1186
1187

1188
1189

1190
1191

1192
1193

1194
1195

1196

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

available under aCC-BY-NC-ND 4.0 International license.

Huttley, J. Gregory Caporaso, Optimizing taxonomic classification of marker-gene
amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90
(2018).

P.J. McMurdie, S. Holmes, Phyloseq: An R Package for Reproducible Interactive
Analysis and Graphics of Microbiome Census Data. PLoS One 8 (2013).

G. S. Kandlikar, Z. J. Gold, M. C. Cowen, R. S. Meyer, A. C. Freise, N. J. B. Kraft, J.
Moberg-Parker, J. Sprague, D. J. Kushner, E. E. Curd, ranacapa: An R package and
Shiny web app to explore environmental DNA data with exploratory statistics and
interactive visualizations. F'1000Res. 7, 1734 (2018).

A. Mitra, D. A. Caron, E. Faure, K. J. Flynn, S. G. Leles, P. J. Hansen, G. B. McManus,
F. Not, H. do Rosario Gomes, L. F. Santoferrara, D. K. Stoecker, U. Tillmann, The
Mixoplankton Database (MDB): Diversity of photo-phago-trophic plankton in form,
function, and distribution across the global ocean. J. Eukaryot. Microbiol. 70, €12972
(2023).

J. Oksanen, F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R.
Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, H.
Wagne, Vegan: Community ecology package. R package version 2.6-6.1 (2024).

A. Kassambara, Practical Guide to Cluster Analysis in R: Unsupervised Machine
Learning Vol. 1 (Sthda, 2017).

L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis (John Wiley & Sons, 2009).

H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. Francois, G.
Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K.
Miiller, J. Ooms, D. Robinson, D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke,
K. Woo, H. Yutani, Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

C. Liu, Y. Cui, X. Li, M. Yao, microeco: an R package for data mining in microbial
community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).

B. Bederson, B. Shneiderman, M. Wattenberg, Ordered and quantum treemaps: Making
effective use of 2D space to display hierarchies. ACM Trans. Graph. 21, 833-854 (2002).

M. De Caceres, P. Legendre, M. Moretti, Improving indicator species analysis by
combining groups of sites. Oikos 119, 1674—-1684 (2010).

G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning
(Springer, 2013), vol. 112.

B. Ripley, B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, D. Firth, M. B. Ripley,
Package “mass.” Cran r 538, 113—-120 (2013).

D. Liiddecke, M. Ben-Shachar, I. Patil, P. Waggoner, D. Makowski, Performance: An R

31


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1197
1198

1199
1200

1201
1202

1203

1204
1205

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

1226
1227

132.

133.

134.

available under aCC-BY-NC-ND 4.0 International license.

package for assessment, comparison and testing of statistical models. J. Open Source
Sofiw. 6,3139 (2021).

J. P. Lander, coefplot: Plots coefficients from fitted models. R package version 1.2.8
(2022).

D. Liidecke, sjPlot: Data visualization for statistics in social science. R package version
2.8.16 (2024).

R. Schlitzer, Ocean Data View. https://odv.awi.de (2023).

32


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which

1228
1229
1230

1231
1232
1233
1234
1235

1236
1237
1238
1239
1240
1241
1242
1243

1244
1245
1246
1247
1248
1249

1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

1265

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acknowledgements

We thank the captain and crew of the NOAA Ship Ronald H. Brown for logistical support for
sample collection in the Gulf. We acknowledge the efforts of many scientists at NOAA and
partnering institutions for collecting and processing oceanographic data on GOMECC-4. We
thank Easton White and Elizabeth Harvey for their helpful conversations, and Sean McAllister
for carefully reviewing the manuscript. We acknowledge the genomics services performed in the
RTSF Genomics Core at Michigan State University.

Funding: This work was funded in part through the NOAA Ocean Acidification Program (OAP)
ROR #02bfn4816 under project numbers 21392 (Thompson) and 20708 (Barbero) and by awards
NA160AR4320199 and NA21OAR4320190 to the Northern Gulf Institute from NOAA’s Office
of Oceanic and Atmospheric Research, U.S. Department of Commerce. This research was
carried out in part under the auspices of the Cooperative Institute for Marine and Atmospheric
Studies (CIMAS) and NOAA, cooperative agreement NA20OAR4320472. This work was also
supported by NSF award OCE-2019589 for the Center for Chemical Currencies of a Microbial
Planet (C-CoMP). This is C-CoMP publication #046.

Author contributions: LRT, SRA, LB, and CRK conceived the study. SRA collected DNA
samples. LB led collection of carbonate chemistry parameters. SRA and LRT processed DNA
samples. SRA performed bioinformatics and data analysis. LRT, KS, and FAG contributed to
improve data analysis. BAS and AS provided guidance on taxonomy and functional assignments.
SRA and LRT led the writing of the manuscript. All authors contributed to revising the
manuscript and approved the final version.

Competing interests: Authors declare that they have no competing interests.

Data and materials availability: Code and associated files needed to reproduce results and
figures for this study are available on GitHub (https://github.com/aomlomics/gomecc) and have
been archived on Zenodo (https://zenodo.org/records/13102580). All 18S and 16S sequence data
generated from this study have been published at the National Center for Biotechnology
Information (NCBI)’s Sequence Read Archive and BioSample database and are available with
BioProject accession number PRINA887898. Species count data generated from this study have
been published on the Ocean Biodiversity Information System (OBIS) and the Global
Biodiversity Information Facility (GBIF) at https://doi.org/10.15468/sm6fpz. Biological data has
also been submitted to the National Centers for Environmental Information (NCEI) at

https://www.ncei.noaa.gov/archive/accession/0250940/data/0-data/noaa-aoml-gomecc.

Environmental measurements from the Niskin bottles and CTD profiles are also available at
NCEI at https://doi.org/10.25921/4twi-pp50 and https://doi.org/10.25921/04h7-gv36,
respectively. A cruise report detailing all the sampling and analyzing procedures during
GOMECC-4 is available at https://doi.org/10.25923/rwx5-s713.

33


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1266  Figures and Tables

1267
A
30
26
o
°
=
®
— 22
oy E A
Bayof Nk it
\Campech ¢
\’&..\Mrfa > ik
18 ENE Veracruz e
O NoDNAsampled e
€ DNA sampled
-80
B L
T 3
T 10
L. E
33 o
8
T100 A
T 330
71000
_ 173300
18S V9
® Cluster1 ® 30 &
© Cluster 2 = 26 tg’
@ Cluster 3 o ) 22 §
(0]
-95 -90 -85 -80 ey
1268 Longitude (°)

34


https://doi.org/10.1101/2024.07.30.605667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605667; this version posted July 31, 2024. The copyright holder for this preprint (which

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1: Vertical and horizontal DNA sampling across the GOM. (A) Map of all sites
sampled on GOMECC-4. Sites are colored by transect and indicate instances where DNA was
(filled) or was not (empty) sampled. Samples at all sites were collected in triplicate.
Environmental metadata was collected from all stations. Contour lines indicate depth in the
GOM and correspond to the right y-axis in panel B. Transects are also labeled to match the color
of stations along a given transect. Samples were collected counterclockwise in the Gulf starting
at the 27°N line. (B) Map displaying depth-related position (log scale) of samples across the
GOM. Stations are colored by transect at the surface, matching transect colors in panel A.
Samples with depth are colored by their clusters (Clusters 1-3) that were determined via
hierarchical clustering of Aitchison distances and largely reflected depth in the water column.
Cluster 1 generally corresponded to shelf waters at all depths and in the open GOM at the surface
(photic zone; n = 235), Cluster 2 represented sites in the DCM in the open GOM (DCM; n =
137), and Cluster 3 was confined to open ocean sites in deep waters (aphotic zone; n = §89).
Clustering was similar between 18S (shown) and 16S samples (fig. S16).
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Figure 2: Bacterial and archaeal community dynamics in the GOM from 16S
metabarcoding. (A) Ridgeline plots showing the depth distribution of samples within each
cluster (Clusters 1-3). Clusters were determined via hierarchical clustering of Aitchison
distances: Cluster 1 (photic zone), Cluster 2 (DCM), and Cluster 3 (aphotic zone). (B) Principal
coordinates analysis of Aitchison distances, with samples colored by their respective clusters.
(C) Mean observed richness (# of ASVs) and Shannon diversity index for Clusters 1-3, with
points representing individual samples. Significant differences between clusters were determined
with Wilcoxon tests (** P <0.01, *** P <0.001, **** P <0.0001). (D) Stacked bar plots of
mean relative abundance (%) at the order level in each sampling transect and faceted by cluster.
Transects are ordered on the x-axis based on the order of sampling (counterclockwise) on
GOMECC-4, except for FL straits and Cape Coral that were sampled last but grouped spatially
with other FL lines. Bar plots display the top 12 most relatively abundant groups over all
samples (“others” in gray). Taxonomy was assigned via the SILVA database. Generalized linear
models focused on the top four most relatively abundant groups in Cluster 1 (red asterisks).
Models for Synechococcales were constructed at the genus level to discriminate between
Prochlorococcus and Synechococcus. LA = Louisiana and PAIS = Padre Island National
Seashore. Transects have the same labels in all subsequent plots.
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Figure 3: Protist community dynamics in the GOM from 18S metabarcoding. (A) Ridgeline
plots showing the depth distribution of samples within each cluster (Clusters 1-3). Clusters
reflected depth along the shelf and open GOM and closely resembled clustering of 16S samples.
(B) Principal coordinates analysis of Aitchison distances, with 18S samples colored by cluster.
(C) Mean observed richness (# of ASVs) and Shannon diversity index for Clusters 1-3, with
points representing individual samples. Significant differences between clusters were determined
with Wilcoxon tests (* P <0.05, ** P <0.01, *** P<0.001, **** P <0.0001). (D) Stacked bar
plots of mean relative abundance (%) at the class level in each sampling transect and faceted by
cluster. Transects are ordered the same as in Fig. 2. Bar plots display the top 12 most relatively
abundant groups over all samples (“others” in gray). Protist taxonomy was assigned via the PR2
database. Generalized linear models focused on the top four most relatively abundant groups in
Cluster 1 (red asterisks).
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Figure 4: Generalized linear models of major 16S taxa reveal group-specific environmental
drivers in the photic zone. (A) Scaled model coefficients (+ 2 standard deviations) of predictor
variables (environmental factors) that were significant to the final model (based on AIC values).
Models were constructed with group-specific relative abundance as the response variable. The
most relatively abundant 16S groups were modeled, which included heterotrophs and autotrophs.
Models were generated at the order level, except for cyanobacteria (Synechococcales), where
separate models were run for Prochlorococcus and Synechococcus. Only covariates that were
statistically significant to a given model were plotted. (B) Predicted response estimates (relative
abundance) and 95% confidence intervals (CIs) of major 16S groups to temperature, DIC, and in
situ pH. NS = not significant. (C) An example of a posterior predictive plot, highlighting the fit
of observed vs. model-predicted relative abundance for the final SAR11 model. The model-
predicted data was simulated with 50 bootstraps and followed a similar trend as the observed
data. (D) Pearson correlation (with 95% CI) between SAR11 test and modeled relative
abundance to estimate model fit. Predicted abundance was derived from the final SAR11 model
using a subset of the data (80%; 219 samples) and correlated to test data that was left out (20%;
48 samples). Model fit of other major 16S groups is shown in fig. S9.
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Figure 5: GLMs of major 18S taxa reveal group-specific drivers in the photic zone. (A)
Scaled model coefficients (+ 2 standard deviations) of predictor variables (environmental
factors) that were significant to the final model (based on AIC values). Models were constructed
with group-specific relative abundance as the response variable. The top four most relatively
abundant 18S groups were modeled separately, spanning constitutive mixotrophs (CM),
parasites, autotrophs, and heterotrophs. Covariates that were not statistically significant to a
given model are not shown. (B) Predicted response estimates (relative abundance) and 95%
confidence intervals (ClIs) of major 18S groups to temperature, DIC, and pH. NS = not
significant. (C) An example of a posterior predictive plot, highlighting the fit of observed vs.
model-predicted relative abundance for the final Syndiniales model. The model-predicted data
was simulated with 50 bootstraps and followed a similar trend as the observed data. (D) Pearson
correlation (with 95% CI) between Syndiniales test and modeled relative abundance. Predicted
abundance was derived from the final Syndiniales model using a subset of the data (80%; 187
samples) and correlated to test values that were left out (20%; 43 samples). Model fit of other
major 18S groups is shown in fig. S10.
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Figure 6: Expanding current microbial distributions in the GOM. Predicted relative
abundance (%) of major 16S (A—E) and 18S groups (F-I) at 135 GOMECC-4 sites modeled

with each respective GLM (from Table 2). Model results have been interpolated using DIVA

interpolation in Ocean Data View. Isobaths are shown for 200 m, 2,000 m, and 3,000 m. Scales

for predicted relative abundance vary by taxonomic group (on the right of each panel) but
display low to high relative abundance.
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1358
1359  Figure 7: Protist indicator taxa based on TA:DIC ratios in the photic zone. (A) Histogram

1360  showing the density distribution of 18S samples in the photic zone (Cluster 1) based on TA:DIC
1361 ratios. (B) Values of in situ pH vs. TA:DIC in the photic zone, with samples colored by transect.
1362  Pearson correlation between variables is shown, with 95% confidence interval. The dotted line in
1363  panels A-B indicate the manual cutoff used for indicator analysis: low TA:DIC < 1.16 vs. high
1364 TA:DIC > 1.16. (C-D) Indicator values vs. average relative abundance (%) for protist ASVs in
1365 the photic zone that were significant to the analysis (P < 0.001) in samples with either low

1366 TA:DIC (C) or high TA:DIC (D). Protist ASVs are colored by division and the top five ASVs
1367  with the highest indicator values are labeled in each panel, identified to their lowest possible
1368 taxonomic assignment (via the PR2 database). DG = Dino-Group. See table S2 for a full list of
1369  18S (and 16S) indicator ASVs. Similar plots for 16S ASVs are shown in fig. S12.
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Table 1: Environmental factors used in microbial models. Factors were grouped into
parameter type and chosen for initial GLMs based on Spearman correlations (table S1) and low
variance inflation factors (VIF < 10) to mitigate collinearity among predictor variables. VIFs
varied slightly between 16S and 18S (in parentheses) due to differences in sample size (n = 274
for 16S; n = 235 for 18S) following clustering analysis. Triplicate samples were included in
models. Datasets clustered similarly, as evidenced by a similar range in the predictor values.
Initial factors were used to construct group-specific models.

Parameter type Factor Values VIF 16S (18S)
Hydrography Temperature 20.83-30.12 (°C) 2.8(2.4)
Salinity 25.16-36.61 (psu) 7(7.5)
Oxygen 105.46-232.33 (umol kg ) 3.1(5)
Nutrients Nitrate 0-6.16 (umol kg ) 4.6 (4.2)
Phosphate 0-0.85 (umol kg) 5.7 (6.2)
Ammonium 0.12-2.37 (umol kg ) 1.6 (1.7)
Carbonate chemistry DIC 1891.67-2186.16 (umol kg) 9.1 (8.9)
pH 7.88-8.16 5.2 (6.1)
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1398 Table 2: Final models for major microbial groups in the photic zone. Protists were examined
1399  at the class level and prokaryotes at the order level. GLMs were constructed for Prochlorococcus
1400  and Synechococcus. Models were run either with negative binomial (neg bin) or Poisson

1401  distributions. Variables that were significant to the final model (P < 0.05) are shown for each
1402  group and reflect stepwise selection based on Akaike Information Criterion (AIC). See Table 1
1403  for the full list of variables considered. Pseudo R? values are shown as a proxy for model fit,
1404  though standardized residuals and validation tests confirmed model fit. Temp = temperature
1405 (°C); Sal = salinity; Oxy = oxygen (umol kg !); PO4 = phosphate (umol kg '); NO3 = nitrate
1406  (umol kg !); NH4 = ammonium (umol kg !); DIC = dissolved inorganic carbon (umol kg !).

Group Taxonomy GLM Type R?

Protists Dinophyceae Temp + Sal + Oxy + DIC NegBin 0.5

Syndiniales Temp + Sal + PO4 + NH4+pH + DIC  Neg Bin 0.57

Sagenista Temp + Oxy + PO4 + pH Poisson 0.28

Prymnesiophyceae Temp + Sal + POg4 Poisson 0.6

Prokaryotes SARI11 Temp + Oxy + NHa + DIC Poisson  0.26

Synechococcus Oxy + NOs3 + pH + DIC Neg Bin  0.38

Prochlorococcus Sal + PO4 + NOs + pH NegBin 0.8

SARS86 Temp + Oxy + NH4 + pH + DIC Poisson 0.33

Flavobacteriales Sal + DIC Poisson  0.64
1407
1408
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