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Abstract

Interactions between biological systems and engineered nanomaterials have become

an important area of study due to the application of nanomaterials in medicine. In

particular, the application of nanomaterials for cancer diagnosis or treatment presents

a challenging opportunity due to the complex biology of this disease spanning multiple

time and spatial scales. A system-level analysis would benefit from mathematical

modeling and computational simulation to explore the interactions between anticancer

drug-loaded nanoparticles (NPs), cells, and tissues, and the associated parameters

driving this system and a patient’s overall response. Although a number of models

have explored these interactions in the past, few have focused on simulating individual

cell-NP interactions. This study develops a multicellular agent-based model of cancer

nanotherapy that simulates NP internalization, drug release within the cell cytoplasm,

“inheritance” of NPs by daughter cells at cell division, cell pharmacodynamic response

to the intracellular drug, and overall drug effect on tumor dynamics. A large-scale

parallel computational framework is used to investigate the impact of pharmacokinetic

design parameters (NP internalization rate, NP decay rate, anticancer drug release rate)

and therapeutic strategies (NP doses and injection frequency) on the tumor dynamics.

In particular, through the exploration of NP “inheritance” at cell division, the results

indicate that cancer treatment may be improved when NPs are inherited at cell division

for cytotoxic chemotherapy. Moreover, smaller dosage of cytostatic chemotherapy may

also improve inhibition of tumor growth when cell division is not completely inhibited.
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This work suggests that slow delivery by “heritable” NPs can drive new dimensions of

nanotherapy design for more sustained therapeutic response.

Keywords: agent-based modeling, anticancer drug-loaded nanoparticles, cancer

nanotherapy, nanoparticle inheritance

1. Introduction

There is an enormous interest in the application of nanomaterials in medicine for

therapy and diagnosis, and understanding the associated nanomaterial-biological sys-

tem interactions. Engineered nanomaterials have received particular attention due to

the opportunities they offer with tailorable functionalities (e.g., desired shape, size,5

and surface compositions) to enable target-specific drug delivery with high efficiency

and low side-effects [1, 2]. Sun et al. gave a detailed review of engineered nanoparticles

for drug delivery in cancer therapy, covering different anticancer drugs, methods of

controlled release, nanoparticles and drugs delivery, as well as study cases [3]. Shi et

al. summarized recent work on cancer nanomedicine and novel engineering methods10

used to improve the understanding of tumor biology and nano-biological interactions

to develop more effective nanotherapeutics for cancer treatment [4]. There are several

advantages for nanoparticles working as therapeutic agents carriers in cancer therapy:

(1) nanoparticles can increase therapeutic agents’ solubility and circulation half-life,

and improve bio-distribution and permeability [3, 4]; (2) nanoparticles can increase15

targeting to tumor cells through selective binding to receptors overexpressed on the

cells’ surface, by adding some targeting ligands (e.g., peptides, antibodies, and nucleic

acids) on the NP surface, which would reduce collateral damage to healthy cells [5];

(3) multiple types of therapeutic agents can be delivered within the same NP, po-

tentially reducing cancer drug-resistance by adjusting the ratio of different types of20

agents [6, 7]; (4) nanoparticles may improve cancer immunotherapy through devel-

opment of synthetic vaccines by incorporating other molecules such as DNA, small

interfering RNA (siRNA), messenger RNA (mRNA) and protein [4, 8]; (5) nanoparti-

cles can be engineered to allow controlled release of encapsulated therapeutic agents

based on particular physiological or external stimulus, e.g., pH, enzymes, temperature,25

or electromagnetic radiation [9].

Despite these advantages, NPs face a formidable journey from injection to effective
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intracellular action, including circulation in blood vasculature, uptake by immune cells,

extravasation from capillaries, accumulation at the desired location, diffusion through

extracellular space, endocytosis by cells, endosomal escape, intracellular localization30

and final action [10, 11], navigating abnormal physical and physiological properties

that present delivery barriers [12]. Dogra et al. [9] and Stillman et al. [11] discussed

three broad phases of NP transport from injection site to action site (tumor cells):

vascular, transvascular, and interstitial, and NP-receptor binding, endocytosis as well

as intracellular NP delivery. See recent reviews [13, 12, 14] for further background35

biology.

Mathematical modeling of cancer nanotherapy could be beneficial for exploring NP-

loaded anti-cancer treatments affected by cell and tissue interactions. Simulations could

help efficiently investigate nanomedicine design parameters to maximize cytotoxic effect

while reducing systemic toxicity. Prior mathematical models of NPs traveling from40

injection site to action site have investigated NP transport through the vasculature

[15], extravasation [16], tissue penetration [17, 18], endocytosis [19, 20, 21, 22] and

intracellular trafficking. NPs may travel through different intracellular compartments,

such as the cytoplasm, mitochondria, nucleus and lysosomes after internalization [14].

There is limited prior in silico modeling that addresses intracellular transport at this45

scale [11]. A detailed review of in silico modeling of cancer nanomedicine, across scales

and transport barriers was presented in Stillman et al. [11].

Prior computational modeling of cancer nanotherapy typically used ordinary dif-

ferential equations (ODEs), partial differential equations (PDEs) and/or coupled mod-

els of PDEs, and agent-based models (ABMs). For example, Dogra et al. used an50

ODE-based physiologically based pharmacokinetic (PBPK) model to investigate the

whole-body NP pharmacokinetics and the impact of key parameters on delivery effi-

ciency, such as NP degradation rate, NP size and tumor blood viscosity [23]. More

recently, Dogra et al. developed an ODE-based pharmacokinetic/pharmacodynamic

(PK/PD) model to perform translational modeling (from preclinical to clinical) for55

NP-mediated miRNA-22 therapy in triple negative breast cancer (TNBC) [24]. Such

ODE-based PBPK, PK/PD and more complicated quantitative systems pharmacology

(QSP) models have been widely used to quantitatively explore NP transport, delivery

into tumor cells, and drug effects, allowing investigation of dose-response relation-
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ships and optimization of treatment frequency, important for evaluations of preclini-60

cal/clinical trails. These models generally cannot account for tumor cell heterogeneity

and spatial interactions. Beyond ODE approaches, PDEs and/or hybrid PDE/ABM

approaches have also been employed in cancer nanotherapy research. For example,

Frieboes and co-workers evaluated cancer nanotherapy that included multiscale effects

in a continuum tumor tissue representation, including NP transport, drug release and65

effects on vascularized tumor growth dynamics [25, 26, 27, 28, 29, 30]. These PDE and

hybrid ABM/PDE models have advanced the modeling of tumor cell heterogeneity

and spatial interactions (e.g., NPs and released-drug distribution within tumor tissue

as well as tumor cell response to the microenvironments). However, since these prior

models used PDEs to model the tumors, they could not track NP internalization and70

drug release for individual cells. In addition, because PDEs average space to smooth

regions, they cannot consider the heterogeneity of cellular and subcellular/intracellular

compartments, nor integrate cell-specific genetic or epigenetic effects [31]. PDE-based

models generally neglect other key cell-cell interactions (e.g., physical pressure and

biochemical signaling) and cell-extracellular matrix interactions, which are important75

determinants of cell phenotype that can affect therapeutic response.

In this work to model cancer nanotherapy, we develop an ABM framework and

use it to investigate internalized NPs in individual cells, heterogeneity of tumor cells,

and spatial interactions at the cell-NP, cell-cell, and cell-tissue scales. For the first

time, we model in each individual cell a population of internalized NPs in a spectrum80

of drug release states. This allows us to more accurately track which NPs have been

recently endocytosed by a cell (and thus have more bound drug to release), thereby

giving a more nuanced view on drug release in the cytoplasm. In another aspect of this

modeling, these NPs are “heritable”: when a cell divides, each daughter cell inherits

half of the parent cell’s NP population. As we show in our model exploration below,85

heritable NPs admit new classes of therapeutic approaches, where drug-loaded NPs can

persist through multiple cancer cell generations, potentially enabling long-term cancer

control.
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2. Methods

We use a hybrid discrete-continuum approach [32]: discrete cell agents model in-90

dividual cancer cells, coupled with PDE representations of extracellular oxygen and

NP concentration fields. In addition, each cell agent contains a system of ODEs to

represent the population of internalized NPs across their drug release states, as well as

the total amount of released drug.

2.1. Physicell: a multicellular simulation framework95

In [33], Macklin and coworkers developed PhysiCell a framework for off-lattice

agent-based simulations in multicellular systems biology, with a particular focus on

cancer. In the framework, each cell agent has a phenotype with a hierarchically struc-

tured set of properties including state and rate parameters for cell cycling, cell death

(apoptosis and necrosis), volume regulation (fluid and solid biomass, nuclear and cy-100

toplasmic sub-volumes), motility, cell-cell mechanical interactions, secretion/uptake,

and intracellular pathway reactions. More recent additions to PhysiCell’s built-in phe-

notype include cell transformations, phagocytosis, and effector cell attacks. Each cell

agent can sample the microenvironment (through BioFVM [34], PhysiCell’s coupled

diffusion solver), which is useful for modeling microenvironment-dependent triggers of105

standard cell processes. Each cell agent can have custom C++ rules assigned to model

novel hypotheses (e.g., through rules of interpretable cell behavior [35]), which we use

here to model NP internalization dynamics, NP drug release, anticancer drug effect

on cancer cell growth dynamics, and distribution of NPs to daughter cells at cell divi-

sion. See [33] for full algorithmic detail, numerical testing, and a variety of examples.110

PhysiCell has been applied to a broad variety of multicellular system problems, such as

oncolytic virus therapy, cancer immunology, tissue mechanics, infection dynamics and

tissue damage, cancer mRNA vaccine treatments, cancer cell migration, extracellular

matrix remodeling, and cellular fusion, among others [36, 37, 38, 39, 40, 41, 42, 43, 44].

See [32] for detailed review of cell-based computational modeling in cancer biology.115

We used PhysiCell [33] (version 1.7.1) to develop a multiscale ABM of cancer nan-

otherapy, and used it to investigate tumor cell growth and interactions with NPs en-

capsulating anti-cancer drugs. The model includes modules of NP internalization dy-

namics, drug release, NP “inheritance” and anti-cancer drugs effect on tumor cell phe-
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notype. The overall approach is summarized in Fig. 1. The source code hosted on the120

GitHub repository is made public at: https://github.com/MathCancer/PhysiCell-nanobio.

NP endocytosis 

drug release

Figure 1: Schematic diagram of the overall mathematical modeling approach. A 2D tumor is numer-

ically built, where NPs are released from domain boundary (“blood vessels”). Extracellular NPs are

modeled as a continuum using PDEs to simulate diffusion through the microenvironment. After NPs

are internalized inside of tumor cells via endocytosis, they start to release anticancer agents. Tumor

cell phenotype (e.g., cycling, apoptosis, motility, mechanics and secretions) is impacted by the drug

effects following rules defined in the model.

2.2. Cell-based model implementation details

We use the Live cell cycle model of PhysiCell [33, 45], where live cells can divide

into two live cells with birth rate b. Each cell can divide, apoptose, or necrose based

upon user-defined functions. We use the default built-in cell mechanics model (based on125

interaction potentials), and the built-in oxygen-dependent proliferation and necrosis:

notably, the “Live” cell cycle transition rate (b) increases with oxygen availability

above a minimal hypoxic threshold, and the necrotic death rate (rnec) increases below

the threshold. See equations 1 and 2.

b (σ) = b̄ ·min

{
1, max

{(
σ − σ1

σ2 − σ1

)
, 0

}}
(1)

rnec (σ) = r̄nec ·min

{
1, max

{(
σ3 − σ

σ3 − σ4

)
, 0

}}
(2)

In equations 1 and 2:130

• b̄: reference proliferation rate;

• σ1: oxygen proliferation threshold. Oxygen below which the proliferation ceases;

• σ2: oxygen proliferation saturation. Oxygen above which the proliferation rate

is maximized;
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• r̄nec: maximum necrosis rate;135

• σ3: oxygen necrosis threshold. Oxygen value at which necrosis starts;

• σ4: oxygen necrosis maximum. Oxygen value at which necrosis rate reaches its

maximum.

See PhysiCell [33] for further details and default parameter values, as well as recent

experimentally-validated modeling [42] that used this functional form.140

2.3. Oxygen and nanoparticle diffusion

We use BioFVM [34] to simulate diffusion of substrates in our model including

oxygen, NPs, and cell-regulated signals. See equation 3. Specifically, if ρ is a vector

of diffusible substrates with diffusion coefficients D, decay rates λ, bulk source rates

S (which saturate at target densities ρ∗), and bulk uptake rates U , then problems of145

the following form are solved:

∂ρ

∂t
= D∇2ρ− λρ+ S(ρ∗ − ρ)−Uρ (3)

+
∑

{cells i}

δ(x− xi)Wi[Si(ρ
∗
i − ρ)−Uiρ].

with Neumann (zero flux) boundary conditions. Here, for a collection of cells (indexed

by i), with centers xi and volumes Wi, their secretion rates are Si (with saturation

densities ρ∗
i ) and their uptake rates are Ui.

See [34] for full details on the numerical method, implementation, and convergence150

testing. In [33], BioFVM was used as the default biotransport solver, which resulted

in accurate and stable simulations, including for systems of moving cells.

In the model, oxygen and NPs are diffused from the boundary (to model a vascu-

larized far-field condition) to the tumor center. Note that NP diffusion is slower than

oxygen diffusion. Fig. 2 shows oxygen and NP diffusion contours.155

2.4. Nanopaticle internalization dynamics

For the cell-level model, we propose a mathematical model of internalization dy-

namics based on experimental results reported in the literature. Based on observations

in [46], the number of internalized NPs in a cell (nI) has a maximum, “saturated” value

n∗, and the rate of internalization decreases as nI → n∗. In addition, it was noted that
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Figure 2: Oxygen (a) and NP diffusion (b) example results at time as of 24 hours (note that tumor

cells have no cycling and death in the case)

the rate of internalization increases with the tissue concentration ρ of NPs (near and

surrounding the cell). Accordingly:

dnI

dt
= rI

(
1− nI

n∗

)
V ρ (4)

where rI is NP internalization rate, and V is cell volume.

For the tissue-level model, we adapt the conservation-based reaction-diffusion model

from [34] the governing equation of NP transport:

∂ρ

∂t
= D∇2ρ− λρ−

∑
cells i

UiViδ (x− xi) ρ (5)

where D is NP diffusion coefficient, λ is NP decay rate, Ui is the NP uptake rate for

cell i, Vi is cell i volume, δ (x− xi) is Dirac delta function (equal to 1 inside cell i and

0 otherwise), and xi is the cell i center.160

The secretion of NPs is not simulated (or equivalently, only net uptake is modeled).

We integrate over the domain Ω and simplify the result as follows (neglecting the effect

of decay and diffusion by assuming short times):

dnE

dt
=

∂

∂t

∫
Ω

ρdV = −
∑
cells i

UiVi

∫
Ω

δ (x− xi) ρdV

= −
∑
cells i

UiViρ (xi) (6)

where nE is the total number of (non-internalized) nanoparticles within a tissue domain

Ω.165
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Matching the tissue-level and cell-level models : Suppose we have a single cell, and

match the tissue-level equation to the cell-level equation, neglecting the effect of decay

by assuming short times. To maintain conservation of NPs, we require:

−dnE

dt
=

dnI

dt
(7)

⇒ UiViρ (xi) = rI

(
1− nI

n∗

)
Viρ (xi) (8)

⇒ Ui = rI

(
1− nI

n∗

)
(9)

Because we can relate changes in the extracellular NP concentration (via uptake) to

changes in intracellular number of NPs, we can track NP internalization for individual170

cells.

2.5. Nanopaticle drug release

Each NP arriving in a cell individually releases drug, leading to a population of

internalized NPs with heterogeneous drug relase states. Therefore, we propose an

“age”-structured model for drug release to model NP drug release states:

nI =
m−1∑
j=0

nj (10)

In Equation 10, nI is the total NPs (saturation) inside of each cell, m is the number

of NP states, and nj is NP population in the jth state, with
(
1− j

m

)
fraction of drug

remaining in the NPs of in the nj compartment. We define the remaining drug in the

NPs as follows: (
1− j + 1

m

)
C∗ ≤ Cj <

(
1− j

m

)
C∗. (11)

In Equation 11, Cj is the remaining drug in the NPs within jth state, C∗ is the initial

drug in one NP. We can obtain the total released drug inside of individual cells:

Crelease =
m−1∑
j=0

C∗
(
1− j + 1/2

m

)
nj. (12)

We assume the release rate in each state rj depends on the fraction of remaining

drug in NPs (Cr) and ratio of drug concentration over saturation inside of the cell:

rj =

(
γ1Cr − γ2

c

csaturation

)+

=

(
γ1Cr − γ2

Crelease

Ctotal

)+

(13)
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In Equation 13, rm−1 = 0 (in case of leak). Cr = 1 − j
m
, Ctotal = nIC

∗. The function

“(x)+” means non-negative part of x, i.e., (x)+ = max(x, 0). The ODE for drug release

across the NP population is:

dC

dt
=

m−1∑
j=0

rjnj (14)

And the number of NPs in jth release state C∗/m is given by:175

1

m
C∗ = rjτj

⇒ τj =
C∗

mrj
(15)

where τj is the transit time of NPs in jth state. We summarize the population dynamics

for NPs in jth state as following:

dnj

dt
=

1

τj−1

nj−1 −
1

τj
nj

=
m

C∗ (rj−1nj−1 − rjnj) (16)

The boundary conditions for population dynamics in the first and last states (Equation

16) are:

dn0

dt
= ruptake −

m

C∗ r0n0 (17)

dnm−1

dt
=

m

C∗ rm−2 nm−2 (18)

where ruptake is NP endocytosed rate. We also assume all the drug would be released180

as long as NPs reached the last state.

See Fig. 3 for overall diagram of drug release. With the proposed model, we can

track anti-cancer drug concentration and NP states inside individual cells. Fig. 4(b-d)

present results of NP states in different time for the orange box area of Fig. 4(a).

Tumor heterogeneity in NP internalization and drug release can be clearly observed.185

2.6. Nanopaticle “inheritance”

When a cell divides, conservation of mass dictates that the number of NPs in the

daughter cells should equal those that were present in the parent cell; nonetheless, to

the best knowledge of our knowledge, no other study to date has modeled and explored

cancer nanotherapy where NPs are divided among the daughter cells at cell division,190
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Figure 3: Schematic diagram of NP population dynamics in various states of drug release. In the

model, each NP has m states (from 100% to 0), which means how much of drug remains in the NP.
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Figure 4: Distribution of NP drug release states, as tracked in individual cells. In (a), we plot the early

intracellular drug concentration across the whole tumor, early in treatment. The orange box area of

(a) (400 µm× 150 µm) labels tumor cells analyzed in (b-d). In (b-d), we visualize the distribution of

drug release states across the NNN labeled cells, (from 0 to 100%).
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Figure 5: Schematic diagram of NP inheritance at cell division. In the model, tumor cells can divide,

apoptose, or necrose. Two daughter cells can receive x% (0 ≤ x ≤ 50) of NPs from parent cell at cell

division.

just as the cytoplasm containing the NPs. In order to simulate this effect, we aim

to investigate how “inherited” NPs impact the treatment’s response. See Fig. 5 for

model diagram. We will investigate in detail how NP “inheritance” impacts cancer

treatments in Section 3.

2.7. Anti-cancer drug effect on cell phenotype pharmacodynamics195

We calculate drug effect based on intracellular drug concentration using sigmoidal

(Hill) response functions. See applications of Hill functions in pharmacological mod-

elling and multicellular system modeling in [47, 35]. Tumor cell phenotype (cycling or

apoptosis rate, depending on the type of chemotherapeutic) is updated in the model

by linearly interpolating the “base” phenotype (in the absence of drug) and maximal200

change in the phenotype under therapy, using the nonlinear drug effect E as the inter-

polating parameter. We use two common models for the drug effect E: Hill response

functions, and area-under-the-curve (AUC) models.

Hill functions model : This “S-shaped” curve is given by

E = Emax
cn

ECn
50 + cn

(19)

where EC50 represents that drug yields 50% of max effect; Emax means the maximum

drug effect; n is Hill power.205

AUC model: The drug concentration c may be replaced by an integration of time-
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AUC (Area Under the Curve) for some damage:

AUC(t) =

∫ t

0

c dt (20)

E = Emax
AUCn

ECn
50 +AUCn (21)

The drug may change cell phenotype (e.g., cycle, apoptosis, motility, mechanics,

secretion) from a background rate (r0) to a max rate (rmax):

rphenotype = r0 + (rmax − r0)
E

Emax

(22)

The model framework can also model other drug effects such as impact on cellular

uptake rate, secretion rate, mechanics, or motility. Refer to our cloud-hosted app for

full model demonstration.210

2.8. Computing and cloud-hosted model app

Because the simulation model is stochastic, we ran 10 simulation replicates (each

with a different random seed) for each parameter set. All simulation images are chosen

from one representative replicate, and unless noted otherwise, all aggregate dynamical

curves (e.g., viable cells) are reported as the mean and confidence interval (defined215

as ± one standard deviation) over all replicates. Simulations were performed on the

Big Red 3 supercomputer at Indiana University. See Fig. 6 for schematic diagram of

large-scale parameters exploration for ABM framework). Each simulation was run on

a single node using 24 threads. All jobs were submitted as a batch.

We used xml2jupyter [48] to create a cloud-hosted version of this model: pc4nanobio;220

the model can be run interactively in a web browser at: https://nanohub.org/

resources/pc4nanobio [49]. Fig. 7 gives representative snapshots of the online model.

3. Results

After we developed the ABM-based nanotherapy model, we wished to explore how

the model could be used to investigate interaction dynamics between anticancer drug-225

loaded NPs and cancer cells. We started by investigating how NP pharmacokinetic

design parameters (internalization rate, drug release rate and decay rate) impact tumor

growth dynamics. Next, we used the framework to simulate tumor response with

different therapeutic schedules (NP injection dose and frequency). Then, we focused

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.04.09.588498doi: bioRxiv preprint 

https://nanohub.org/resources/pc4nanobio
https://nanohub.org/resources/pc4nanobio
https://nanohub.org/resources/pc4nanobio
https://doi.org/10.1101/2024.04.09.588498
http://creativecommons.org/licenses/by/4.0/


internaliz
ation  rate

NP decay 
rate

drug 
release 

rate

injection 
dose

NP pass 
ratio 

injection 
frequency

Set parameter spaces and send jobs to HPC resources

drug 
mechanis

m 

Computer 
node

Computer 
node

Computer 
node

Computer 
node

Computer 
node

Computer 
node

Analyze simulation results and set new simulation as needed

Computer 
node

NP design parameters therapeutic strategies  NP multi-gen treat

batch jobs batch jobs batch jobs

Figure 6: Schematic diagram of large-scale parameter exploration. In the investigation, parameter

spaces are set and batch jobs are submitted to HPC for computing, collecting data and analyzing

results.

the investigation on NP “inheritance” across cell generations. To ensure that our230

results can generalize, we investigated cytostatic drugs (those that slow cycle entry)

and cytotoxic drugs (those that induce cell death).

3.1. Large-scale NP pharmacokinetic design space parameter exploration

In this exploration, a single NP dose was injected at the beginning of simulation.

For the NP decay, we only considered intracellular NP decay. NP “inheritance” was235

also ignored in this section, so daughter cells receive zero nanoparticles from their par-

ent after division. Fig. 8 shows that the model is sensitive to the NP internalization

rate and drug release rate, while it is relatively insensitive to the intracellular NP de-

cay rate, especially in the case of faster drug release, because NPs would release the

majority of their drug before they decay. We observed that slow drug release may240

improve treatments compared to fast release. This is consistent with “adaptive ther-

apy” theory [50], where containment treatment with a limited dose may control cancer

growth better than aggressive treatment. To explore how intracellular and extracellu-

lar NP decay influence treatment results, we performed another 9-parameter settings

exploration, where we varied both the intracellular and extracellular NP decay rates.245

Fig. 9 shows that increasing both decay rates would significantly reduce cancer treat-

ment efficacy even when drug is immediately released. This occurs because tumor cells

would endocytose fewer nanoparticles due to quick decay of extracellular nanoparticles
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Figure 7: Cloud-hosted interactive model-pc4nanobio (version 1.0.0). User can freely access the online

App to set up config parameters (e.g., domain size, substrates diffusion coefficients, custom data etc),

simulate, and then plot simulation results. Interested readers can interactively run the model in a

web browser at: https://nanohub.org/resources/pc4nanobio.
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in the microenvironment. See Fig. 10 for tumor population dynamics for the two

different scenarios simulated in Fig. 9. The tumor population dynamics show similar250

tendencies after about 12 days in Fig. 10(b) because only one NP dose was injected

at the beginning of simulation. The majority of NPs had already been cleared from

the tissue (e.g., by the renal system), modeled here as decaying boundary conditions)

after several days, leaving very few NPs in the microenvironment.

NP internalization rate

NP decay rate

dr
ug

 re
le

as
e 

ra
te

Figure 8: Simulation results of 27 parameter sets: heatmap of viable tumor cells population at 30 days

with different NP design parameters (internalization rate, decay rate, drug release rate) (heatmap value

is average of 10 runs for each parameter set). Dark blue squares denote the most effective treatments

(fewest remaining tumor cells). We can observe that the model is sensitive to the internalization rate

and drug release rate, while it is relatively insensitive to the intracellular decay rate, especially in the

case of faster drug release, because NPs would release most of the loaded drug before their decay. See

Fig. 9 for the exploration of intracellular and extracellular NP decay.

3.2. NP therapeutic schedules255

We next explored NP therapeutic schedules with different NP injection doses and

frequencies. From Fig. 11(a), we can find that multiple smaller doses may be better

than single larger doses even though the total amount of injected NPs is the same.

There are several factors that may contribute to this result. (1) From considering the

boundary condition as a model of blood vessels connecting broadly the circulating,260

renal, and hepatic systems, larger doses do not necessarily ensure that all NPs would

enter the tumor site from blood vessels, as some of the dose is cleared by the renal

system. (2) Tumor cells need time to endocytose NPs from the microenvironment

before they decay. (3) Due to slow NP diffusion in solid tumor tissue, a large dose may

not penetrate the tumor from the periphery to the center in a short time, so tumor265
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(a) (b)Intracellular NP decay Intra & Extracellular NP decay

Figure 9: Heatmap of viable tumor cells population at 30 days in different NP decay scenarios (inter-

nalization rate is 0.0058 1/min). Dark blue squares denote most effective treatments (fewest remaining

tumor cells). Treatment efficacy was most impacted by the drug release rate in all scenarios, but rapid

extracellular NP decay could substantially reduce treatment efficacy, due to the reduction in NPs en-

docytosed by cells.
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Figure 10: Tumor population dynamics of different NP decay rates for the simulations in Fig. 9

(when drug is immediately released by internalized NPs); (a) varying only intracellular NP decay; (b)

varying both extra- and intracellular NP decay. Compared with only intracellular decay, increasing

both decay rates could significantly reduce cancer treatment efficacy even when drug is immediately

released. This is because tumor cells would endocytose fewer nanoparticles due to quick decay of

extracellular nanoparticles in the microenvironment.

cells which are far away from periphery would not have access to sufficient NPs for a

therapeutic response. (4) From an “adaptive therapy” perspective [50], higher doses

may have decreased efficacy in containing tumor growth compared with lower doses. In

Fig. 11(b), the second injection does not take effect immediately due to the time delay

of NP internalization and drug release. Therefore, optimizing the NP pharmacokinetic270

design parameters and therapeutic schedule is vital for improving treatment. Fig. 12
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gives simulation snapshots of four different therapeutic strategies.
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Figure 11: Simulation results of NP injection schedules. (a) Viable tumor cells population heatmap

at day 30 (NP internalization rate: 0.0058 1/min; drug release time: 2 days; NP half-time: 5 days);

(b) Tumor population dynamics of different therapeutic strategies, including a single regular dose

(green), a single triple dose (blue), two regular doses (orange), and two half doses (red). Note that

C is the default NP injection dose in the simulation. We can observe that multiple lower doses may

have better performance that single larger doses to control the tumor (e.g., inject twice (0.5C) versus

control case (C)).

3.3. NP “inheritance” may improve cytotoxic chemotherapy

Experimental work has shown that NPs are potentially inherited by daughter cells

during cell division [51, 52]; see Fig. 13 for experimental results of NPs inherited dur-275

ing mitotic process [51]. Lijster et al. recently used statistical modeling to investigate

the impact of coefficient of variation (standard deviation over mean) of the number

of nanoparticles per cell over the cell population for NP inheritance [53], finding that

coefficient of variation is sensitive to the degree of asymmetry of nanoparticle inheri-

tance.280

To the best of our knowledge, no mechanistic modeling study has explored cancer

nanotherapies where NPs can be “inherited” at cell division. Fig. 14(a-b) presents

hypothesis simulation results of cellular NP internalization (with and without NP in-

heritance). From Fig. 14(c), we can observe that more tumor cells contain internalized

NPs after 2.5 days of simulation if daughter cells inherit NPs at cell division, which285

raises the possibility of multi-generation treatments during nanotherapy. In this sec-
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Figure 12: Snapshot of tumor patterns of different therapeutic strategies for the simulation in Fig.

11(b). Legend: blue (without drug effect), yellow (colored by drug effect), brown (necrotic), red

(apoptotic). We can observe that the treatment of inject twice (0.5C) is better than control case (C)

even the total dosage of two scenarios is the same. Additionally, inject twice (0.5C) works better than

a single large dose (3C) because there are few NPs left in circulation at later stages for a single larger

dose.

(a) (b) (c)

Figure 13: NP inheritance at cell division: Representative deconvolution microscopy images of cells

undergoing cytokinesis. Microtubules are stained green, nuclei are labeled blue, and particles are

shown in red. Scale bars: 10 µm. Adapted with permission from [51]. This is an unofficial adaptation

of an article that appeared in an ACS publication. ACS has not endorsed the content of this adaptation

or the context of its use.

tion, we explore how this “inheritance” would affect treatment response, in particular

for cytostatic and cytotoxic anti-cancer drugs.
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Figure 14: NP inheritance visualization. (a) Cellular NP internalization (without NP inheritance)

after 2.5 days of simulation; (b) Cellular NP internalization (with NP inheritance); (c) Comparison

of histograms of cellular NP of internalization in (a) and (b). We find that tumor cells would contain

more NPs if NPs can be inherited at cell division, which raises the possibility of multi-generation

treatments with nanotherapy. (Note that there are only cycling for tumor cells in (a) and (b)).

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.04.09.588498doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588498
http://creativecommons.org/licenses/by/4.0/


We first investigated the scenario of injecting a regular dose (C) once at t = 0. In

Fig. 15, we find that cytotoxic treatment is moderately improved as more NPs are290

inherited, while there is no clear improvement for cytostatic chemotherapy. Cytostatic

drugs inhibit cell cycling, making it difficult to transfer NPs to daughter cells. For

cytotoxic drugs, the apoptosis rate is increased, but it has no effect on the cell cycling

rate. Thus, when surviving cells can pass on their NPs to daughter cells at division,

allowing the therapy to continue and cause additional apoptosis events that slow tumor295

growth. See Fig. 16.
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Figure 15: Comparison of cytostastic and cytotoxic drugs treatments with different NP “inheritance”

ratio (inject once (C)). Note that 0 means daughter cells receive zero NPs from parent cell, and 50%

means that each daughter cell gets 50% NPs (maximum). ErrorBar represents one standard deviation

of 10 runs. We can observe that the cytotoxic treatment improves as more NPs are inherited, while

there is no clear improvement for cytostatic chemotherapy.

3.4. Cytostatic chemotherapy may be improved by NP “inheritance” when cell division

is not completely inhibited

We explored another scenario: injecting a half dose twice (0.5C, 0.5C) at t = 0, 15

days respectively. In this case, we found that both chemotherapies have better response300

if NPs are allowed to be inherited at cell division. See Fig. 17 and Fig. 18. Because

smaller cytostatic drug doses cannot inhibit cell division in a short time (before entering

into cycling phase) due to delay of NP internalization, some tumor cells still divide and

transfer NPs to daughter cells.
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Figure 16: Tumor dynamics of cytostastic and cytotoxic effect treatments at 0 and maximum NP

“inheritance” (inject once (C)). Cytostatic drugs inhibit cell cycling, making it difficult to transfer

NPs to daughter cells. For cytotoxic drugs, the apoptosis rate is increased, but without an effect on

the cell cycling rate, daughter cells can still receive inherited NPs from their parent cell before entering

apoptosis.
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Figure 17: Comparison of cytostastic and cytotoxic drugs treatments with different NP “inheritance”

ratio (inject twice (0.5C, 0.5C)). Error bar represents one standard deviation of 10 runs. Compared

with Fig. 15, we can observe both chemotherapies have better response if NPs are allowed to be

inherited at cell division under twice injections.

4. Discussion305

NPs offer attractive features for delivery of therapeutic agents to tumor cells, such as

improved bio-distribution, protecting therapeutic agents from fast degradation in harsh

microenvironments, improved binding rate via functionalized ligands that uniquely in-

teract with receptors on tumor cell membranes, controlled intracellular drug release (via

22

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.04.09.588498doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588498
http://creativecommons.org/licenses/by/4.0/


0 5 10 15 20 25 30
Time (days)

2500

3000

3500

4000

# 
of

 v
ia

bl
e 

ce
lls

(a) cytostatic effect
no NP inheritance
max NP inheritance

0 5 10 15 20 25 30
Time (days)

1000

1500

2000

2500

3000

3500
(b) cytotoxic effect

no NP inheritance
max NP inheritance

NP multi-generation treatments-inject twice (0.5C)

Figure 18: Tumor dynamics of cytostastic and cytotoxic effect treatments at 0 and 50% NP (maxi-

mum) “inheritance” (inject twice (0.5C, 0.5C)). We observe that two smaller doses lead to better

treatments for both classes of anticancer drugs. Because smaller cytostatic drug doses cannot fully

inhibit cell division in a short time (before entering into cycling phase) due to delay of NP internal-

ization, some tumor cells still divide and transfer NPs to daughter cells.

external stimuli, e.g., pH, enzymes, temperature), and enabling cancer immunotherapy310

through development of synthetic vaccines (e.g., incorporating DNA, siRNA, mRNA

and protein) [3, 4, 9]. In this study, we developed a multicellular framework to evaluate

cancer nanotherapy at the single-cell level. The ABM framework includes simulation

modules of NP internalization (tracking how many NPs have been endocytosed by each

cell); drug release (tracking the drug-release states for each cell as well as how much315

total drug is retained in individual cells; see Fig. 4); NP “inheritance” at cell division

(see Fig. 14); and pharmacodynamic effects of anti-cancer drug effects on tumor cell

phenotype (e.g., cycling, apoptosis).

In the exploration of pharmacokinetic design parameters, including NP internaliza-

tion rate, NP decay rate, and NP drug release rate, we found that tumor response is320

sensitive to the NP internalization rate and drug release rate, while being relatively

insensitive to the intracellular NP decay rate, especially in the scenario of faster drug

release, because NPs would release most of the loaded drug before they decay (see

Fig. 8). The exploration found that slow drug release may improve treatment com-

pared to fast release due to containment treatment controlling cancer growth better325

than aggressive treatment with limited dose (based on “adaptive therapy” theory [50]).

Furthermore, we varied both intracellular and extracellular NP decay rates to explore

how these decays influence treatment response. We observed that increasing both rates
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would significantly reduce cancer treatment efficacy even when drug is immediately re-

leased (see Fig. 9 and Fig. 10), because tumor cells would endocytose fewer NPs due330

to fast decay of extracellular NPs in the microenvironment.

From the exploration of therapeutic schedules modifying different NP injection

doses and frequencies, we observed that multiple smaller dosing injections may lead

to better treatment outcomes than single larger doses even though the total amount

of injected NPs is the same (see Fig. 11 and Fig. 12). A closer examination of the335

simulaitons gives an explanation: because NPs diffuse slowly into the microenvironment

and tumor, a single large bolus of NPs may not reach and treat interior tumor cells,

whereas a series of smaller treatments can wait for outer (treated) cells to respond

and die, so that interior tumor cells can now be exposed to and endocytose NPs from

subsequent rounds of treatment. In addition, some of the NPs may decay before340

reaching cancer cells far away from the tumor periphery. From an “adaptive therapy”

perspective [50], larger doses may have worse efficacy in containing growth compared

to smaller doses due to resource completion among cancer cells (e.g., cancer cells far

away from oxygen sources may not have insufficient oxygen to proliferate). Therefore,

it may be beneficial to optimize dosing and frequency of cancer nanotherapy taking345

into account these considerations.

In summary, the proposed nanotherapy model provides a platform for exploring NP

design parameters, dosing regimens, and how NP “inheritance” may impact treatment

response. Future work may focus on the NP-receptor binding dynamics (e.g., similar

as virion-ACE2 binding [40, 44] and mRNA lipid nanoparticles (LNP) and receptor350

binding [41]), and mRNA vaccine-loaded LNPs for cancer immunotherapy [41, 54, 55].

With approximate preclinical and clinical data, this cancer nanotherapy framework

could be used to design and calibrate novel patient-specific cancer control strategies. If

clinical trials demonstrate that drug-loaded NPs can be safely and effectively designed

to control or eliminate tumors in individual patients, they could be a powerful for use355

in future cancer patient digital twins [56, 57].

Acknowledgements

PM, RH, and YW acknowledge funding from the National Science Foundation

(1720625). PM, RH, and HR were funded in part by the Jayne Koskinas Ted Giovanis

24

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.04.09.588498doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588498
http://creativecommons.org/licenses/by/4.0/


Foundation for Health and Policy and the National Cancer Institute (1U01CA232137).360

HF and PMwere previously funded in part by the National Cancer Institute (1R01CA180149).

VJ was funded in part by the National Science Foundation (DMR-1753182). We

also thank FutureSystems (http://futuresystems.org) at the IU Digital Science Cen-

ter, and Big Red 3 supercomputer at Indiana University Bloomington for powering

high-throughput computational work.365

25

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.04.09.588498doi: bioRxiv preprint 

http://futuresystems.org
https://doi.org/10.1101/2024.04.09.588498
http://creativecommons.org/licenses/by/4.0/


Appendix A. Code availability

Source code for this project hosted on GitHub repository is made public at: https:

//github.com/MathCancer/PhysiCell-nanobio.

Appendix B. Main parameters used in the model

Table B.1 gives the main parameters we used in the simulation. Unless mentioned370

otherwise, parameters are at default values for Physicell 1.7.1.

Table B.1: Main parameters used in the simulation

Parameter Value

Computational domain size 1600 µm by 1600 µm

Computational mesh element size 20 µm by 20 µm by 20 µm

Oxygen diffusion coefficient 100,000 µm2/min

Oxygen decay rate 0.1 1/min

Oxygen boundary condition 38 mmHg

NP diffusion coefficient 6 µm2/min ([58])

NP decay rate 1.6667e-05 1/min (Estimated)

NP clearance rate 4.8135e-04 1/min

maximum cellular NP internalization 6000 ([46])

tumor initial radius 500 µm

tumor cell maximum proliferation rate 0.00072 1/min

tumor cell maximum necrosis rate 0.002778 1/min

tumor cell apoptosis rate 5.3167e-5 1/min
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