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Summary
Over the last decade, Hippo signaling has emerged as a major tumor-suppressing 
pathway. Its dysregulation is associated with abnormal expression of YAP1 and 
TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in 
several cancers and its potential therapeutic implications. Therefore, identifying 
patients with a dysregulated Hippo pathway is key to enhancing treatment impact. 
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Although recent studies have derived RNAseq-based signatures, there remains a 
need for a reproducible and cost-effective method to measure the pathway activation. 
In recent years, deep learning applied to histology slides have emerged as an 
effective way to predict molecular information from a data modality available in 
clinical routine. Here, we trained models to predict YAP1/TEAD activity from 
H&E-stained histology slides in multiple cancers. The robustness of our approach 
was assessed in seven independent validation cohorts. Finally, we showed that 
histological markers of disease aggressiveness were associated with dysfunctional 
Hippo signaling.

Introduction
Tumorigenesis and cancer progression usually involve the dysregulation of several signaling 
pathways, particularly those governing cell proliferation and survival. The Hippo pathway, 
recognized as a tumor suppressor pathway, is one of the major pathways known to be 
implicated in tumorigenesis, as it inhibits excess proliferation and regulates organ size and 
apoptosis evasion1,2. Several components of this pathway have been shown to be inhibited 
in certain types of cancer3. The yes-associated protein (YAP1) and the transcriptional 
coactivator with PDZ-binding motif (TAZ) are two primary effectors of the pathway4. The 
shuffling of the YAP1/TAZ complex between the nucleus and the cytoplasm is controlled by 
phosphorylation. When phosphorylated by the large tumor suppressor (LATS) family of 
Hippo kinases5, the complex remains in the cytoplasm and is sequestered via its interaction 
with 14-3-3 proteins6 and/or degraded after its ubiquitylation7. Once in the nucleus, the 
YAP1/TAZ complex preferentially binds to the transcriptional enhancer associate domain 
(TEAD) proteins to increase their transcriptional activity8. By activating the transcription of 
genes involved in cell proliferation and transformation (CTGF and CYR61, for example), 
YAP1/TEAD activity promotes tumor growth and resistance to chemotherapy3. 

In malignant pleural mesothelioma (MESO), a cancer of the pleura specifically associated 
with asbestos exposure, genes within the Hippo pathway are frequently mutated, suggesting 
a critical role for this pathway in MESO tumorigenesis9. Recently, Calvet et al.10 have 
demonstrated that YAP1 downregulation induced tumor growth inhibition in xenograft models 
of a Hippo deficient-mesothelioma cell line (MSTO-211H) expressing dominant-negative 
TEAD genes. 

Beyond mesothelioma, aberrant YAP1/TEAD activity is also associated with tumor 
progression and poor prognosis of lung cancer patients. Notably, the missense mutation 
R133W of the YAP1 protein has been found to be predisposing for lung adenocarcinoma11. 
LATS1 and LATS2, which are responsible for the inactivation of YAP1 and TAZ through 
phosphorylation, are downregulated in non-small cell lung cancer (NSCLC) compared to 
healthy tissues12 (Malik et al, 2018). Moreover, abnormalities in the Hippo pathway are also 
found in various malignancies, including breast cancer13, gastric cancer14, and hepatocellular 
cancer15.
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These recent discoveries have spurred interest in targeting the Hippo pathway as a 
therapeutic strategy in oncology, with several clinical trials currently underway16,17. To ensure 
these treatments are used in the proper indications and given to the appropriate patient 
subpopulations, it is crucial to develop methods for measuring pathway activation that are 
both reproducible, as well as time- and cost-effective in a clinical setting.

Activation of YAP1 and TAZ has previously been used as a biomarker of Hippo pathway 
inactivation18. Recently, a comprehensive molecular characterization of 19 Hippo core genes 
was performed in 9,125 tumor samples across 33 cancer types using multidimensional 
"omics" data from The Cancer Genome Atlas (TCGA)19. This study characterized genetic 
regulators of the Hippo pathway and identified downstream target genes associated with 
Hippo pathway activity.  To measure YAP1/TEAD activity in tumors and to evaluate the 
pharmacodynamic effects of TEAD inhibitors, Calvet and colleagues also defined a 
transcriptional signature of 500 downstream TEAD-effector genes, the expression of which 
was modified by various perturbations of the Hippo pathway10,20. This signature, referred to 
as TEAD-500, was effectively modulated by knock-out or knock-down of the transcription 
factors (YAP1, WWTR1 or TEAD), and its score was positively correlated with tumor growth 
(diminishing with tumor regression) in a human cell line used as xenograft10.

However, since histology slides are ubiquitous in clinical practice, the identification of 
image-based biomarkers could allow for a better and generalizable stratification of patients 
harboring a high YAP1/TEAD activity. In recent years, machine learning approaches to digital 
pathology have encountered success in several applications, including diagnosis21, 
prognosis22, characterization of the immune tumor environment23, prediction of genomic 
alterations24,25 and of gene expression26.  Some of these tools have already made their way 
to clinical applications, as exemplified by the FDA approval of the first automatic prostate 
cancer grading system, Paige Prostate21, in 2021.

Here, we developed a deep learning approach to predict the YAP1/TEAD activity, measured 
by the TEAD-500 signature, from histology slides and assessed its relevance, not only in 
malignant pleural mesothelioma but in 18 different TCGA indications (Figure 1). The models 
we trained rely on weakly supervised learning to identify morphological patterns predictive of 
the signature value. They were then validated on no less than seven external datasets, and 
histological patterns highlighted by the model were subsequently analyzed by pathologists to 
better describe histological structures and underlying phenotypes related to TEAD activity.

Results
YAP1/TEAD activity across various cancer indications
We measured YAP1/TEAD activity using a published transcriptional signature of 
approximately 500 downstream effectors20 (referred to herein as the TEAD-500 signature). 
This signature has been derived from various genetic perturbation experiments and is used 
as described in Calvet et al10 (2022) and summarized in our Methods section. The first goal 
was to establish a threshold score for YAP1/TEAD activity that could be considered  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.14.598991doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.14.598991
http://creativecommons.org/licenses/by-nd/4.0/


4

‘abnormally high’ for any given tumor indication. As expected, the YAP1/TEAD activity and 
the TEAD-500 score varied widely among different types of normal tissues from The 
Genotype Tissue Expression project (GTEx) and across TCGA indications (Figure 2a). We 
therefore defined a distinct threshold per indication, corresponding to the 95th percentile of 
the score in GTEx samples of the same healthy tissue type. As no comparable healthy 
tissue collection was available in GTEx for the head and neck squamous cell carcinoma 
indication (HNSC), non-tumor tissues from the CPTAC-HNSCC cohort27 were used as a 
reference instead. The rationale for choosing the 95th percentile threshold was purely 
statistical, to match the most common conventional level of significance.

After determining these indication-specific thresholds, we computed the proportion of 
patients with a “high” YAP1/TEAD activity (TEAD+ patients). As depicted in Figure 2a, this 
proportion ranged from 3% for prostate cancer (PRAD) to 98% for glioblastoma (GBM). 
These results are consistent with previous findings suggesting no evidence of a higher 
activity level in prostate cancer with respect to normal tissue28. Additionally, higher levels of 
YAP1/TAZ mRNA has been shown in glioma tissues29, in line with the high prevalence of 
TEAD+ patients in GBM observed in our study (Figure 2a).

Tumor types with a high proportion of TEAD+ patients included gynecologic cancers, such 
as uterine corpus endometrial carcinomas (UCEC, 53%), uterine carcinosarcomas (UCS, 
91%), ovarian cancer (OV, 75%) and cervical squamous cell carcinoma (CESC, 66%). Other 
indications with intermediate levels of YAP1/TEAD activity encompassed various sarcomas 
(SARC, 64%), adrenocortical carcinoma (ACC, 53%) and head and neck squamous cell 
carcinoma (HNSC, 51%). At the other end of the spectrum, YAP1/TEAD activity level was 
very low in pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma 
(PCPG), thyroid carcinoma (THCA) and kidney chromophobe cancer (KICH).

In a few indications, the signature exhibited a multimodal distribution, highlighting the 
presence of subgroups of interest. This was particularly clear in breast cancer (BRCA) where 
78% (N=155) of patients were classified as TEAD+ in the subgroup of basal-type tumors, 
compared to the subgroups of HER2-enriched patients (20%, N=17), luminal B tumors (10%, 
N=24) and luminal tumors (only 0.3%, N=2, Figure 2b). In NSCLC, 17% (N=174) of TEAD+ 
tumors were observed overall. This proportion increased to 23% (N=124) in squamous cell 
carcinomas (LUSC) and to 52% (N=30) for patients belonging to the primitive subtype30. 
These results corroborate previous studies reporting higher YAP1/TEAD activation in 
squamous versus non squamous types19, as well as heterogeneous YAP1/TEAD activation 
across cancer subtypes, such as basal versus luminal A/B or HER2-enriched breast 
cancers31.

We also investigated the association between the TEAD-500 signature and patient survival. 
As expected, higher activity levels were observed in cancer types with poorer prognosis19,20. 
In particular, the fraction of TEAD+ patients correlated negatively with the 5-year survival 
rate computed for overall survival (OS) with R = -0.41 and p-value = 0.035 in all TCGA 
datasets tested (Figure 2c).
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We then assessed the prognostic value of the TEAD-500 score in each cancer type by 
computing a univariate C-index32. P-values were corrected with Benjamini-Hochberg 
procedure to account for multiple testings (see Table S1 in supplementary data). The score 
was highly predictive of OS in MESO, with a univariate C-index of 0.72 (p = 1 × 10-7), higher 
scores being associated with a worse prognosis. Its value was significantly associated with 
poor prognosis in eleven other indications, the strongest associations being found in 
Adrenocortical carcinoma (ACC; C-index = 0.79, p = 3 × 10-6), KICH (C-index = 0.79; p = 7 × 
10-4), Kidney Renal Papillary Cell Carcinoma (KIRP; C-index = 0.74, p = 3 × 10-6) and Lower 
Grade Glioma (LGG; C-index = 0.73, p = 5 × 10-12). Significant associations were also found 
in Liver Hepatocellular carcinoma (LIHC; C-index = 0.60, p = 7 × 10-4), SARC (C-index = 
0.60, p = 0.011), Bladder Urothelial Carcinoma (BLCA; C = 0.59, p = 0.014), Lung 
Adenocarcinoma (LUAD; C-index = 0.56, p = 0.014), HNSC (C-index = 0.56, p = 0.005), 
Skin Cutaneous Melanoma (SKCM; C-index = 0.55, p = 0.017) and Kidney Renal Clear Cell 
Carcinoma (KIRC; C-index = 0.54, p = 0.004). Only in thymoma (THYM) were higher values 
associated with a better outcome (C-index = 0.67, p-value = 0.014). These results further 
validate the use of the TEAD-500 signature: for comparison, the signature defined in Wang 
et al.19 reached significance on eight indications, six of which are common to both signatures 
(LGG, MESO, KIRP, HNSC, BLCA and PAAD).

For each indication, we also examined the stratification of the population in two subgroups, 
based on the thresholds defined previously (with the exception of MESO where the median 
value was used) (Figure 2d). We computed the logrank p-values between patients with high 
and low YAP1/TEAD activity, and corrected the results with the Benjamini-Hochberg 
procedure. The stratification reached statistical significance in 6 indications out of 29: MESO 
(p = 2 × 10-4), LGG (p = 2 × 10-5), LIHC (p = 0.016), ACC (p = 0.004), SARC (0.010) and 
SKCM (p = 0.027) (Figure 2d).

Altogether, our data confirmed that YAP1/TEAD activity is both cancer type- and 
subtype-specific, and that abnormally high activity is correlated with poor prognosis in certain 
cancers. 

Deep learning can predict YAP1/TEAD activity from histology 
slides and can be used as a surrogate for pathway activity
To predict this activity signature on H&E-stained pathology slides, we developed a deep 
learning model called HE2TEAD, which relies on a weakly supervised learning framework. 
This approach is based on Chowder33, a model specifically designed to analyze Whole Slide 
Images (WSIs). HE2TEAD partitions the WSI into smaller patches – or tiles – measuring 112 
× 112 µm each, that are first scored independently by the model. These tile-level scores are 
then aggregated to generate a prediction for the entire slide (architecture in the “Methods”). 
Training of the model was conducted on 18 separate cohorts from TCGA. 

We first performed a five-fold cross-validation on each cohort. This involved randomly 
assigning patients to five different sets, where each set was alternatively used as the 
validation set, while the remaining four sets were used for training. The final results were 
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expressed as a mean over all five runs (for the architecture, see “Methods”). Subsequently, 
the Pearson correlation (R) between the model prediction and the signature derived from 
bulk RNAseq (Figure 3a) was computed for each cohort.

As presented in table 1, the models achieved high performances, with correlations 
exceeding 0.6, in BLCA (R = 0.603, std = 0.080), LUAD (R = 0.675, std = 0.050) and BRCA 
(R = 0.649, std = 0.047). The latter result is not surprising since the activation of the pathway 
strongly discriminates between two distinct subtypes of breast cancer, as mentioned 
previously (Figure 2b). The model was highly predictive of the BRCA subtypes, as indicated 
by the area under the curve (AUC) in distinguishing the basal subgroup from the other 
subtypes, namely luminal A and B and HER2-enriched subtypes (AUC = 0.88, std = 0.028). 
Despite the small size of the training dataset, HE2TEAD performed relatively well in 
Mesothelioma (R = 0.425, std = 0.153, with N = 95 samples). Conversely, the model’s 
performance was suboptimal in indications where the activation values were uniformly high 
(with most samples exceeding the threshold determined from healthy tissue), such as GBM, 
UCS and OV.

Since the TEAD-500 signature was associated with OS in several cancers, we checked 
whether the HE2TEAD prediction from the H&E slides retained this association with survival. 
We computed the concordance index on each cross-validation fold and averaged the results. 
In several indications such as ACC (C-index = 0.77, std = 0.12), KIRP (C-index = 0.68, std = 
0.10), LGG (C-index = 0.66, std = 0.058), UCEC (C-index = 0.64, std = 0.047), BLCA 
(C-index = 0.56, std = 0.049) and LUAD (C-index = 0.57, std = 0.055), the prognostic power 
of the histology-based model was close to that of the TEAD-500 signature. Overall, the 
C-index obtained with the histology-based predictions was strongly correlated with the one 
obtained from the RNAseq signature (Pearson R = 0.78, p-value = 3 × 10-5).

Next, we searched for similarities in histological patterns between various cancer types. Our 
hypothesis was that if histological patterns associated with the TEAD+ phenotype were 
conserved in two indications, a model trained on one of those indications should transfer 
robustly to the other. To assess this, a model trained on a given cohort, was then applied to 
every other cancer type, each treated as an external validation dataset. We computed 
Pearson correlation and p-values, which were corrected for multiple hypothesis testing with 
the Benjamini-Hochberg method, thus obtaining a transfer table where rows represented the 
training indications and columns the test indications (Figure 3c).

The transfer matrix revealed significant off-diagonal values, highlighting similarities in the 
morphological patterns associated with YAP1/TEAD activity across several cancer 
indications. LUAD and BRCA appeared to be pivotal indications, since models trained on 
those cohorts transferred well to several other diseases: for instance, the BRCA-trained 
model achieved correlations as high as 0.58 on LUAD (p = 2 × 10-47), 0.47 on BLCA (p = 5 × 
10-25) and 0.50 on TGCT (p = 5 × 10-14). BRCA and LUAD resided at the intersection of two 
groups of indications sharing a high similarity: one including MESO and SARC - in line with 
the known histological resemblance between mesothelioma and sarcoma34, and a second 
group with numerous cancers, including LUSC, ACC and UCEC, that could be extended to 
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include all adenocarcinomas and squamous cell carcinomas. Among this extended group, 
BLCA and CESC formed a distinct subgroup (CESC to BLCA: R = 0.51, p = 10-29, BLCA to 
CESC: R = 0.37, p = 6 × 10-10). There was also a relatively good model transferability from 
UCEC to other gynecologic cancers (R = 0.33, p = 0.004 on UCS; R = 0.29, p = 0.014 on 
OV), and among brain cancers (LGG to GBM: R = 0.28, p = 3 × 10-5).

Several factors may explain those results. As an example, good transfer was observed 
among cancers affecting the same tissue or organ (LUSC and LUAD, UCEC and UCS, LGG 
and GBM) or with histological resemblance (MESO and SARC). Another potential 
contributing factor is the similarity in the underlying mechanisms of Hippo pathway 
inactivation. For instance, BLCA and CESC share a high frequency of mutations among the 
Hippo pathway genes (in particular NF2), as well as frequent amplification of YAP1 and 
deletion of LATS119. Based on this, we sought to investigate the efficacy of pancancer 
training of our models.

We retrained three models by grouping several TCGA cohorts together. Cross-validation 
was conducted on the resulting aggregated dataset. However, the performances were still 
evaluated separately on each cancer. We initially developed a model for the most closely 
related cancer types identified by the  previous analysis: LUSC, LUAD, BRCA, UCEC and 
ACC, collectively referred to as the NSCLC model. Its average performance on these 
cohorts (R = 0.60) was significantly superior to that of single-cancer trained models (R = 
0.55 , p = 2 × 105; Figure 3d). To further optimize the performance on HNSC and MESO, we 
considered several combinations based on the transfer matrix and selected the one giving 
the best performance on those cohorts (see Methods for further details). We trained a model 
on HNSC, SKCM and BLCA (adding the two indications giving the best transfer 
performances on HNSC), in addition to the five previously mentioned  indications. This 
model achieved a significant improvement (p = 0.001) with a correlation of 0.44 (std = 0.08) 
on TCGA-HNSC compared to 0.31 (std = 0.12) for the single-cancer trained model. Similarly, 
to enhance the performance on MESO, we trained a model jointly on LUAD and MESO. The 
resulting model exhibited a correlation of 0.48 (std = 0.16) on TCGA-MESO, higher, although 
not significantly so (p = 0.23), compared to the model solely trained on TCGA-MESO.

Finally, we applied these models on seven validation cohorts outside of TCGA, 
encompassing a total of 793 samples from patients with NSCLC (N= 419), HNSC (N=260), 
and MESO (N=114), as described in the Methods section (Figure 4).

We validated the NSCLC model on four external cohorts, from Institut Curie (Curie), Centre 
Léon Bérard (CLB), Centre Georges-François Leclerc (CGFL) and Erlangen. Due to the 
limited number of patients with squamous cell carcinoma in each cohort, all histological 
subtypes were collectively analyzed. The model demonstrated predictive power on all 
external cohorts, with correlations ranging from 0.21 [0.03 - 0.39] (Erlangen, p-value = 0.032) 
to 0.49 [0.17 - 0.71] (Curie, p-value = 3 × 10-4). However, we observed a significant drop in 
performances compared to the cross-validation on TCGA (R = 0.58, std = 0.06 on 
TCGA-LUAD and TCGA-LUSC together) (Table 2).
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We hypothesized that this gap between TCGA cross-validation and external validation could 
be primarily attributed to differences in the patient populations. In particular, the external 
cohorts included large proportions of advanced-stage and metastatic cancers, whereas 
TCGA-NSCLC cohorts (LUAD and LUSC) were predominantly composed of primary tumors 
from patients with early-stage disease. To validate this hypothesis, we retrained a model on 
the same TCGA cohorts, exclusively selecting patients with an American Joint Commission 
on Cancer (AJCC) stage IV. This drastically reduced the size of the training dataset from 
2,966 samples (1,034 NSCLC samples) to a mere 95 samples (33 NSCLC cases). The 
performances of this retrained model - referred to as TCGA-advanced - on external cohorts 
were improved on all cohorts, and particularly so on Erlangen (R = 0.32 [0.14 - 0.47], p-value 
= 0.001) (Table 2), although statistical significance was not reached (p = 0.08 for Erlangen, p 
= 0.27 across cohorts, Fisher test). It should be noted that the Curie and CLB cohort were 
stained with Haematoxylin, Eosin and Saffron (HES) while the training cohort (TCGA) only 
contained Haematoxylin and Eosin (H&E). The fact that good performances were achieved 
on those cohorts highlights the model’s robustness to staining variations.

The MESO model was validated on two external cohorts, from Stanford and NYU. In the 
Stanford cohort, the model was predictive of YAP1/TEAD activity with a correlation of 0.68 
[0.51 - 0.81] (p-value = 7 × 10-6), while in the NYU cohort it achieved a correlation of 0.49 
[0.29 - 0.64] (p-value = 5 × 10-6).

The HNSC model was validated on the CPTAC-HNSCC cohort23. Multiple RNAseq 
measurements were available for some patients, in which cases the replicate YAP1/TEAD 
activity scores were averaged across samples. The model achieved a correlation of 0.38 
[0.27 - 0.48] (p-value = 2 × 10-10). These performances were comparable to those obtained 
in cross-validation.

Altogether, these results demonstrate that our models trained on TCGA are robust and can 
generalize to several external cohorts in different indications. This paves the way for 
potential clinical applications of our HE2TEAD models.

YAP1/TEAD activity is associated with necrosis, poorly 
differentiated tumor and inflammation
Building upon the robustness of our models, we aimed to further characterize the histological 
patterns associated with YAP1/TEAD activity across cancer types. We selected the most 
predictive tiles of each model in several cohorts (TCGA-NSCLC, Erlangen-NSCLC and 
CLB-NSCLC, TCGA-HNSC and CPTAC-HNSCC, TCGA-MESO and Stanford-MESO). For 
each considered cohort, we extracted 100 tiles associated with a prediction of a high level of 
YAP1/TEAD activity, 100 associated with a low prediction and 100 random tiles for 
comparison. Those tiles were subsequently reviewed by pathologists to systematically 
assess the histological patterns associated with YAP1/TEAD activity (see Methods sections). 
For NSCLC, we selected the model trained on advanced-stage patients from TCGA, as it 
generalized better to external cohorts. Also, since late stage tumors have had more time to 
evolve either due to the expected evolutionary course of disease progression35 or to cell 
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plasticity in response to treatment36, this model was expected to pick up more diverse 
features.

In all three TCGA cohorts (NSCLC-advanced, MESO and HNSC), the presence of necrosis 
was strongly associated with high levels of YAP1/TEAD activity. This association was also 
found in external cohorts, albeit to a  lesser extent in the CLB and Erlangen NSCLC cohort 
(15% of tiles with positive predictivity in CLB, 22% in Erlangen, up to 69% in TCGA-HNSC). 
In Erlangen, the model also preferentially focused on poorly differentiated tumor areas (NOS 
tumor,  p = 0.0001), which the pathologists could not explicitly classify as adenocarcinoma or 
squamous cell carcinoma by looking at the tile area only (Figure 5). Differences in 
pathological patterns associated with YAP1/TEAD activity between the NSCLC cohorts may 
be attributable to different sampling procedures and sample selection criteria. Indeed, TCGA 
only contains resection slides, whereas the CLB and Erlangen cohorts are mostly composed 
of biopsy specimens. The latter tend to contain less necrosis, as they are intended to 
primarily focus on viable tumor cell nests. We noticed a significant presence of hemorrhages 
in tiles from the Erlangen cohort (present in 27% of tiles randomly sampled from this cohort), 
which contrasts with observations from the other NSCLC datasets (only 2% and 1% of tiles 
randomly sampled from TCGA and CLB respectively). This difference is a likely 
consequence of the sampling technique, as most samples from Erlangen were obtained by 
endobronchial ultrasound scan and biopsy (EBUS), and might also explain why the models 
have lower performances on this particular cohort. 

Furthermore, the presence of immune cells (exceeding  20% of the tile cell composition) was 
also associated with high YAP1/TEAD activity across most cohorts. Lymphocytes were found 
in predictive tiles from all NSCLC cohorts, with a very strong association in CLB (p = 2 × 
10-7) and Erlangen (p = 1 × 10-4), while other immune cells (excluding lymphocytes) were 
predictive in all cohorts except TCGA-HNSC (Figure 5).

Altogether our findings are consistent with the known biological impact of the YAP1/TEAD 
signaling pathway in oncogenesis. Wang et al. recently established a strong association 
between hypoxia and the activation of the YAP/TAZ pathway. Their team also described 
immune cell abundance, such as dendritic cells in HNSC, MESO, and NSCLC, CD4 T cells 
and neutrophils in HNSC and NSCLC, macrophages in NSCLC, or B cells in MESO, to be 
associated with YAP/TAZ activity. Furthermore, several studies37,38,39,40,41 have pointed to the 
role of YAP1 and TAZ in promoting ferroptosis – an iron-dependent form of regulated 
necrosis – via the regulation of the SKP2 gene37, one of the positive effectors of the 
TEAD-500 signature. Overall, this may be consistent with the preponderance of necrosis 
observed  in all of the studied cohorts.

Presence of fibrosis or normal epithelium was predictive of low YAP1/TEAD activity. Up to 
20% of the negatively predictive tiles presented fibrotic patterns in TCGA-NSCLC and this 
percentage reached almost 60% in TCGA-MESO. Additionally, normal epithelium was 
significantly correlated with low TEAD activity in 50% of the tiles in TCGA HNSC. Given that 
fibrotic tissues and normal epithelium are in essence non-tumoral, they are therefore 
expected to present lower YAP1/TEAD activity compared to the adjacent tumoral tissues.
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All the above histological associations with YAP1/TEAD activity are consistent with well 
known roles of the Hippo pathway and its effectors in oncogenesis, namely the regulation of 
apoptosis and cell proliferation. Of particular pharmacological interest is the increased 
immune infiltration in tiles predicted to have a high YAP1/TEAD activity. This observation 
corroborates previous findings suggesting that an activated YAP/TAZ signaling promotes 
immune cell recruitment42,19.

Discussion
Dysregulation of the Hippo pathway has been implicated in the oncogenesis of several 
cancers, as well as in resistance to therapies, which opens the way to translational research 
for the development of therapeutic agents targeting this pathway. Recently, numerous 
approaches have been developed across multiple modalities to disrupt the YAP1/TAZ–TEAD 
interaction43, resulting in several phase 1 clinical trials, primarily focusing on 
mesothelioma44,45,46,47.

However, extending this kind of therapeutic approach to other cancer indications requires 
tools to identify patient subpopulations that may benefit from the inhibition of YAP1/TAZ or 
TEAD. Here, we applied the RNAseq-based YAP1/TEAD activity signature defined in a 
recent study10,20 to every TCGA cancer type. Our analysis showed that the level of 
YAP1/TEAD activity is not only heterogeneous between different cancers, as previously 
documented in the literature, but can also display intra-indication variability, as evidenced for 
instance in breast cancer or in lung squamous cell carcinoma. In breast cancer in particular, 
the higher activity observed in the basal subtype is consistent with the role of hypoxia in this 
subtype48 and with the known association between hypoxia and Hippo pathway 
inactivation49. Moreover, our study confirms recent work indicating a correlation between 
Hippo pathway expression and hormone receptor status, notably estrogen receptor (ER) 
expression31.

The prognostic value of the signature was significant in 13 cancers out of the 33 TCGA 
indications, 12 of which showed a detrimental association with patient outcomes. This is also 
in agreement with previous findings10,19,31 and highlights the role of TEAD in cancer 
dynamics.

Although omics data have been used as the gold standard to identify abnormalities in the 
Hippo pathway, H&E-based prediction may offer broader applicability, given that histology 
slides are routinely available in clinical practice. In particular, this approach does not require 
any additional resource-consuming analyses. We designed deep learning models capable of 
predicting the signature directly from WSIs at the time of diagnosis for several cancer types. 
By training the models on several TCGA cohorts separately and testing on other cohorts, we 
highlighted groups of indications that shared common patterns. Our approach was 
extensively validated on multiple cohorts of mesothelioma, NSCLC and HNSCC outside of 
TCGA, demonstrating its robustness with respect to various acquisition protocols and batch 
effects.
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Our image-based models further revealed morphological changes associated with abnormal 
YAP1/TEAD activity. In particular, necrosis emerged as an important cross-disease marker, 
at least in the 3 cancer types considered in the present work. Further analyzes would be 
needed to reach a finer comprehension of disease-specific and subgroup-specific 
biomarkers. Overall, our results present high clinical relevance, as these interpretable 
biomarkers associated with YAP1/TEAD activity could help clinicians by facilitating patient 
diagnosis and by defining treatment inclusion criteria. Moreover, they can be more easily 
presented and explained to patients.

These results open the way to potential applications in clinical practice. For instance, 
image-based biomarkers may facilitate the recruitment of patients for clinical trials involving 
treatments based on TEAD inhibitors. By leveraging the H&E slides routinely generated 
during the patient treatment pathway, this approach is much more cost-effective than relying 
on the generation of RNA-based biomarkers. Moreover, it could accelerate diagnosis and 
treatment decision-making by clinicians as these analyses can be performed using the H&E 
slides obtained at the time of diagnosis. However, such applications would require additional 
developments that are beyond the scope of the present work.
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Figures

Figure 1 - Graphical summary.
Graphical abstract. (1) RNAseq and clinical data from 32 cancer types from The Cancer 
Genome Atlas (TCGA) were collected. TEAD-500 signature was computed from RNAseq 
data. General statistics and association with prognosis were evaluated. (2) Models were 
trained to predict the signature from Hematoxylin & eosin (H&E)-stained histology slides. 
Cross-validation was run on TCGA, and the best models were further validated on seven 
external cohorts of Non-Small Cell Lung Cancer (NSCLC), mesothelioma and Head and 
Neck Squamous Cell carcinoma (HNSC), demonstrating the robustness of our approach. (3) 
The most predictive tiles were extracted from the model and reviewed by trained 
pathologists to highlight histological biomarkers associated with YAP1/TEAD activity.
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Figure 2 - YAP1/TEAD activity is associated with poor prognosis across cancer.
a. Distribution of TEAD-500 signature values on TCGA cohorts and on matched healthy 
tissues from the GTEx database. Bars indicate the 95th percentile value on healthy tissue. b. 
Distribution of TEAD-500 signature values in subtypes of BReast CAncer (BRCA). c. 
Correlation between the fraction of patients with a signature value above the GTEx-inferred 
threshold, and Overall Survival (OS). In orange, cohorts where the Cox p-value of the 
signature is significant. d. Kaplan-Meier curves of OS per cohort, stratified with respect to 
the GTEx threshold (high score: activity above threshold, low score: activity below 
threshold). For mesothelioma, since no GTEx data could be matched with cancer data, the 
threshold is the median value. P-values were obtained with a log rank-test and corrected 
with Benjamini-Hochberg method to account for multiple-hypothesis testing.
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Figure 3 - Deep learning can predict YAP1/TEAD activity from histology slides.
a. Boxplot of the Pearson correlation values obtained in cross-validation on TCGA cohorts 
(box: interquartile range (IQR); horizontal line: median; whiskers: 1.5 times IQR, triangle: 
mean; circles: individual fold values). b. Correlation between the prognostic power of the 
RNAseq signature and that of the histology-based predictions. c. Table of the Pearson 
correlation obtained by applying a model trained on a given indication to any other indication. 
Diagonal values are the averages obtained in cross-validation. For readability, negative 
values were clipped to 0. The blue square indicates indications that were grouped for 
training the final NSCLC model d. Boxplot (defined as in panel a) of the Pearson correlation 
values obtained in cross-validation on LUSC, UCEC, ACC, BRCA and LUAD, with models 
trained individually on each cancer (blue) or with a single model trained simultaneously on 
the five cohorts (red). P-values were obtained from a Z-test, as described in the method 
section (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).
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Figure 4 - The HE2TEAD model transfers robustly to external validation cohorts.
a. RNAseq signature values vs histology-based prediction on external NSCLC validation 
cohorts. Predictions were obtained from a model trained on advanced-stage patients (AJCC 
stage IV) from five TCGA cohorts: LUAD, LUSC, ACC, UCEC and BRCA. 2-sided p-values 
are reported. The scale is different on both axes because the model was trained to predict 
the normalized signature value (zero mean and unit standard deviation) b. Same as a, on 
external mesothelioma cohorts from Stanford and NYU. The model was trained on 
TCGA-MESO and TCGA-LUAD. c. Id., on the CPTAC-HNSCC cohort (head and neck 
squamous cell carcinoma). The model was trained on 7 TCGA cohorts: HNSC, SKCM, 
BLCA, ACC, BRCA, LUAD, LUSC, UCEC.
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Figure 5 - HE2TEAD identifies areas associated with a high YAP1/TEAD activity.
a. Heatmap of the model on an NSCLC sample from TCGA. Red indicates regions 
associated with a high YAP1/TEAD activity value, while blue indicates areas associated with 
a low activity. b. Top positively predictive (red square) and negatively predictive tiles (blue 
square) from the TCGA-NSCLC cohort (advanced-stage patients). c. Heatmap of the model 
on an HNSC sample from TCGA. d. Top positively predictive and negatively predictive tiles 
from the TCGA-HNSC cohort.
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Figure 6 - YAP1/TEAD activity is associated with necrosis and inflammation.
Distribution of some of the histological patterns in positively and negatively predictive tiles 
from seven cohorts, as well as in randomly chosen tiles for comparison. P-values were 
obtained with a chi-square test of contingency between positive and negative tiles, and 
corrected for multiple-hypothesis testing with the Benjamini-Hochberg method. No tiles were 
annotated with normal epithelium in the mesothelioma cohorts, and similarly for fibrosis in 
the head and neck squamous cell carcinoma cohorts.
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Tables
Single-cancer 

performance (Pearson R) 

average standard 
deviation

LUAD (Lung Adenocarcinoma) 0.675 0.050

BRCA (Breast Cancer) 0.649 0.047

BLCA (Bladder Cancer) 0.603 0.080

TGCT (Testicular Germ Cell Tumors) 0.588 0.064

ACC (Adrenocortical Carcinoma) 0.522 0.225

UCEC (Uterine Corpus Endometrial Carcinoma) 0.485 0.103

MESO (Mesothelioma) 0.425 0.153

LUSC (Lung Squamous Cell Carcinoma) 0.421 0.125

CESC (Cervical Squamous Cell Carcinoma) 0.392 0.133

LGG (Lower Grade Glioma) 0.380 0.053

KIRC (Kidney Renal Clear Cell Carcinoma) 0.368 0.074

KIRP (Kidney Renal Papillary) 0.363 0.107

SARC (Sarcoma) 0.323 0.102

HNSC (Head and Neck Squamous Cell Carcinoma) 0.309 0.119

SKCM (Skin Cutaneous Melanoma) 0.239 0.088

UCS (Uterine Carcinosarcoma) 0.175 0.265

GBM (Glioblastoma) -0.001 0.307

OV (Ovarian Cancer) -0.037 0.259
Table 1: Pearson correlation between the model’s predictions and the RNAseq-based 
signature 
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Cohort

Model trained on TCGA (LUSC, 
LUAD, BRCA, UCEC and ACC) - all 

stages

Model trained on TCGA (LUSC, 
LUAD, BRCA, UCEC and ACC) - 

advanced stages

Pearson R 95% CI p-value Pearson R 95% CI p-value

Curie 0.49 0.17 - 0.71 3 × 10-4 0.51 0.17 - 0.72 2 × 10-4

CLB 0.37 0.23 - 0.51 9 × 10-8 0.40 0.27 - 0.52 1 × 10-8

CGFL 0.29 0.11 - 0.45 0.011 0.30 0.11 - 0.46 0.010

Erlangen 0.21 0.03 - 0.39 0.032 0.32 0.14 - 0.47 0.001

Average 0.34 0.24 - 0.43 7 × 10-11 0.38 0.27 - 0.47 2 × 10-13

Table 2: Pearson correlations and p-values of the trained models on the 4 available external 
cohorts of NSCLC. 95% Confidence Intervals (CI) were obtained by bootstrapping the cohort 
10,000 times with replacement.
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Methods

Data

This study was based on publicly available data from TCGA (https://portal.gdc.cancer.gov/). 
We selected samples from primary tumors only, for which both RNA-Seq and WSI data were 
available. Transcriptomic data (FPKM-UQ) were extracted from frozen tissues, and the 
slides analyzed were digitized H&E-stained formalin-fixed, paraffin-embedded (FFPE) 
histology slides, referred to here as whole-slide images (WSIs).

RNA-Seq samples from healthy tissue were obtained from the public database GTEx 
(https://gtexportal.org/home/datasets).

For external validation of our models, we had access to 4 NSCLC cohorts, 2 mesothelioma 
cohorts and one cohort of head and neck squamous cell carcinoma. The HNSCC validation 
cohort is publicly available from the CPTAC database 
(https://proteomics.cancer.gov/programs/cptac). All validation cohorts are described in table 
3.

Cohort Disease Staining Number of 
samples M at diagnosis

Erlangen NSCLC H&E 103

0 14

1 87

Unknown 2

Curie NSCLC HES 50

0 15

1 19

Unknown 16

CLB NSCLC HES 191

0 23

1 143

Unknown 25

CGFL NSCLC H&E 75

0 12

1 54

Unknown 9

Stanford mesothelioma H&E 35 _
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NYU mesothelioma H&E 79 _

CPTAC
head and neck 
squamous cell 

carcinoma
H&E 260 _

Table 3: Description of the external cohorts used for validation of our models. For cohorts 
where the information was available, we report the metastatic status (M at diagnosis). 

YAP1/TEAD activity score
There is no unique way of defining the activity score of a pathway from the transcriptome. 
Wang et al. compared 9 different measures of the YAP1/TAZ activity, derived either from the 
transcriptome or from protein assays, on the basis of their prognostic power of patient 
survival across cancer types. The authors reasoned that dysregulation of the Hippo pathway 
should be detrimental to the patient’s survival, and chose the score that was most 
consistently and extensively correlated with patient survival, a manually curated signature of 
22 downstream genes of YAP1/TAZ significantly associated with survival in 8 TCGA 
indications.

In our study, we used Calvet et al’s YAP1-TEAD activity score, TEAD-500 signature, based 
on a list of 500 downstream effector genes derived from genetic perturbation experiments 
data instead of relying on prior knowledge. Even though it was not optimized for this task, it 
was shown to be even more associated with survival (13 indications including 12 where the 
signature is associated with poor outcomes).

To compute this score, the expression levels of the effector genes were ranked, and the 
difference of effector ranks (deR) score was defined as Rp – Rn, where Rp is the mean 
fractional rank of the positive effectors, and Rn, that of the negative ones.

Preprocessing of RNAseq data
We used a reproducible in-house preprocessing pipeline to produce TPM count matrices 
from raw FASTQ files, as outlined below.

The preprocessing pipeline was developed as a Snakemake workflow50. First, FASTQ file 
trimming (if required) is performed using Cutadapt (v4.1). The reads were aligned on the 
GRCh38 reference genome assembly (downloaded from the “Broad References” dataset) 
using the STAR aligner (v2.7.9a). The read quantification was also performed by STAR, 
which is equivalent to HTSeq-count. Raw read counts were then normalized to TPM counts 
using known exonic gene sizes. TPM counts can be computed more precisely taking into 
account the proportion of different exons for each gene, but comparison shows almost no 
difference regarding the Calvet score (>99% correlation, same range of values).
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Quality control (QC) was performed before (FASTQC) and after (RSeQC v4.0) alignment, 
and outliers were identified by performing PCA on raw counts, TPM, and 
DESeq2-normalized counts. Samples with less than 5 million reads and outliers were 
removed before proceeding to TEAD-500’s score computation using the TPM counts.

Mesothelioma samples are generally expected to be of lower quality compared to other 
tumoral samples due to the difficulty of the biopsy and the (usually) longer conservation of 
samples. Since the Calvet et al’s formula is quite robust to low quality samples, we used less 
stringent QC filters on MESO samples, with the following results:

- NYU: out of 93 total samples we removed 11 samples with less than 1M reads total. 
No outliers were detected.

- Stanford: out of 42 samples we removed 3 samples with less than 5M reads total. No 
outliers were detected.

For public datasets (TCGA, GTEx and CPTAC), we used the raw counts directly rather than 
the FASTQ files and the preprocessing step was limited to the generation of TPMs using 
known exonic gene lengths, in order to be consistent with the in-house preprocessing 
pipeline.

Preprocessing of histology data
Since whole-slide images (WSIs) can have very large dimensions (up to 100,000 x 100,000 
pixels), they need to be processed with specialized techniques. We applied three 
preprocessing steps to reduce dimensionality and remove potential artifacts.

We first detected the part of the image that contains matter. This segmentation was 
performed using a UNet neural network51. The UNet’s encoder is a VGG11, pretrained on the 
ImageNet dataset, while the decoder is trained from scratch. The architecture was fine-tuned 
on an internal dataset of 470 manually segmented slides, with various stainings and 
acquisition conditions. All pixels were separated between two classes: tissue, and 
background or artifacts (such as pen marks for instance).

We divided the regions of the slides for which matter was detected into smaller images, 
called ‘tiles’, of fixed size (224 × 224 pixels at a resolution of 0.5 micron per pixel). At least 
60% of the area of a tile had to be detected as foreground by the UNet to be considered as 
containing tissue. The number of tiles ntiles depended on the total area of tissue detected and 
varied from a few thousands to almost a hundred thousand tiles for each slide.

Features were extracted from each tile image using a pretrained convolutional neural 
network (the “extractor”), that encoded each tile image into a numerical feature vector. Here, 
we used the self-supervised algorithm MoCo v252,53 to train a feature extractor without 
supervision on unlabeled histology images. The training procedure generated multiple views 
of a specific tile and tried to extract mutual information between those views. It also 
generated an embedding from negative examples (other tiles in the dataset) as different as 
possible from the embedding of the positive example. To achieve this dual task, the model 
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needed to learn the semantic meaning inside each of these views, thus creating a feature 
extractor that was tailored for histology. The extractor we used was trained on the 
TCGA-COAD cohort, as recent works54,55 have shown that a network pretrained on this 
cohort had good generalization capabilities. At the end of this step, each slide was 
represented by a matrix of ntiles × 2,048 features.

WSI models
WSI models were based on the Chowder architecture33. The model was applied directly to 
the feature vectors extracted at the previous stage. It consisted essentially of two steps:

- Top and negative instances: We used a convolutional one-dimensional (1D) layer to 
compute a score for each tile. This convolutional layer performed a weighted sum 
between all 2,048 features of the tile to obtain this score (weights of this sum were 
learned by the model). We then picked the 25 highest and the 25 lowest scores and 
used them as input for our last step. This architecture specifies which tiles are used 
to make the predictions and, therefore, how our algorithm predicts the result. In 
particular, this method allowed us to interpret high-score tiles as areas indicative of a 
positive prediction (i.e., in our case high TEAD activity) and low-score tiles as areas 
indicative of a negative prediction.

- Multi-layer perceptron (MLP) classifier: This step consisted of an MLP with two fully 
connected layers of 200 and 100 neurons with sigmoid activation. This is the core of 
the predictive algorithm that transformed the scores from the tiles into a prediction.

Compared with the original paper, we considered a simple modification of the model 
architecture: instead of computing only one score per tile, one can use a 1D convolution with 
several output channels. This allowed the model to capture richer patterns, as each score 
could encode a specific histological structure associated with the activation.

As noted in the original work, this architecture is highly sensitive to model initialization, and 
ensembling N copies of the same architecture with different seeds increased the robustness 
and the performances of the model.

For single-cancer models, we did not run an extensive optimisation of hyperparameters and 
used models with one convolution channel, and N = 50. The MESO model, trained on MESO 
and LUAD, has the same architecture. The NSCLC and HNSC models trained on several 
cancer types had 5 convolution channels, and N = 50.

For HNSC and MESO, we considered several possible groups of indications for training the 
models, and selected the ones that gave the highest average correlation in cross-validation 
on the cohort of interest.

training cohorts performance on HNSC (std) p-value with respect to 
single-cancer training

HNSC 0.309 (0.106) _
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+SKCM,BLCA 0.407 (0.049) 0.006

+ACC,BRCA,LUAD,LUSC,UCEC 0.444 (0.078) 0.001

+KIRC 0.420 (0.089) 0.009

training cohorts performance on MESO 
(std)

p-value with respect to 
single-cancer training

MESO 0.425 (0.137) _

+LUAD 0.484 (0.160) 0.23

+SARC,BRCA 0.354 (0.241) 0.69

Model validation
For validation on external cohorts, all models trained in cross-validations were applied, and 
their predictions were averaged for each sample.

Interpretability
As mentioned in the original paper, Chowder is interpretable by design due to the following 
two points.

- Only a small portion of the image is actually used by the model to make a prediction. 
Hence, once a model is trained, the predictive tiles can be readily accessed for 
analysis.

- Moreover, every tile obtains a score that can readily be interpreted as the local 
prediction of the model.

This is true for the baseline architecture, with a unidimensional score and no ensembling. 
However, since we used a multi-scoring approach and ensembling to increase the 
performances, interpretability becomes more challenging.

Instead, we adapted Shapley values56 to the specific case of histology models. In their 
original formulation, Shapley values addressed the distribution of gains to players in 
cooperative game theory. They have been applied in machine learning as a tool to interpret 
black box models. The application to our histology pipeline was quite straightforward. Slides 
were represented here as collections, or bags, of tiles, which is equivalent to a coalition of 
players in game theory, and we wanted to assess the contribution of each tile to the model’s 
prediction (equivalent to the gain). To do so, we considered every possible way of 
subsampling the tiles from a WSI. For each subsampling, we obtained a bag of n tiles (n 
varying from 1 to the total number of tiles in the WSI), and we computed the prediction of the 
model for this bag.
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Then, the contribution of a given tile ti was given by the difference between the average of 
the predictions obtained for bags containing ti and the average of the predictions obtained for 
bags that do not contain ti. This exact formula was intractable in practice, since a WSI can 
contain up to 50,000 tiles, which would give 250,000 possible bags. A way to overcome this 
was to randomly sample enough bags to obtain a reliable estimation. In practice, we 
sampled a maximum of 10,000 random bags and interrupted the computation in case of 
early convergence.

We checked that, when applied to the baseline architecture, Shapley values and Chowder 
scores gave consistent estimates of tile importance (in particular the most predictive tiles 
remained the same). Shapley values were a monotonously increasing function of Chowder 
scores, and tiles with intermediate scores (meaning they were not selected for the final 
prediction) had close to 0 contribution.

Pathologist review
For the blind review by a pathologist, we selected 100 tiles which were the most associated 
with a high TEAD activity from the entire cohort (with a maximum of 3 tiles coming from the 
same slide). Similarly, 100 tiles associated with a low activation were selected. We also 
selected 100 random tiles in the whole cohort, again with a maximum of 3 tiles coming from 
the same slide. Those tiles were mixed and reviewed blindly by a pathologist, who also had 
access to a larger context: each tile had dimensions 112 x 112 µm, and we provided a 
context of size 1008 x 1008 µm. The pathologist had to evaluate each tile according to a 
predefined grid.

In order to standardize practices among pathologists, it was specified that tissue-level 
patterns (tumor, stroma, fibrosis...) had to cover at least 20% on a tile to be considered 
present. For cell-level patterns, the decision threshold was 20% of the cells in the tile, except 
for normal mesothelium and red blood cells where it was set at 20 cells in total.

Cancer Histological pattern
Mesothelioma Tumor - epithelioid (more than 20% of area)

Tumor - sarcomatoid (more than 20% of area)
Normal mesothelium (more than 20 cells)

NSCLC Tumor - adenocarcinoma (more than 20% of area)
NSCLC and HNSC Tumor - squamous cell carcinoma (more than 20% of area)
All cancers Tumor - NOS (more than 20% of area)

Stroma - collagen-rich (more than 20% of area)
Stroma - immune-rich (more than 20% of area)
Stroma - NOS (more than 20% of area)
Necrosis (more than 20% of area)
Hemorrhage (more than 20% of area)
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Immune cells (mix) (more than 20% of cells)
Lymphocytes (more than 20% of cells)
Red blood cells (more than 20 cells)
Cartilage (more than 20% of area)
Fat tissue (more than 20% of area)
Muscle tissue (more than 20% of area)
Fibrosis (more than 20% of area)
Normal epithelium (more than 20% of area)
Artefact

Statistics and p-values
For cross-validation, average and standard deviation of the cross-validation metrics 
(Pearson correlation) are reported. For external validation, 95% confidence intervals were 
computed by bootstrapping, ie. drawing 10,000with-replacement samples from the dataset, 
computing the validation metrics for each bootstrap, and extracting the 2.5th and 97.5th 
percentile of the distribution thus obtained. We also reported 2-sided p-values, as 
implemented in methods stats.pearsonr of the python library scipy57. When comparing the 
performances of two models, we applied a Z-test on the average difference between the 
bootstrapped estimates. To aggregate comparison p-values on multiple independent test 
sets, we used Fisher’s method, as implemented in the python library scipy 
(scipy.stats.combine_pvalues).

To compare the proportion of tiles containing each histological pattern, we performed a 
chi-square test of proportions between positively predictive and negatively predictive tiles.
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