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Deep learning uncovers histological
patterns of YAP1/TEAD activity related
to disease aggressiveness in cancer
patients.
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Summary

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing
pathway. Its dysregulation is associated with abnormal expression of YAP71 and
TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in
several cancers and its potential therapeutic implications. Therefore, identifying
patients with a dysregulated Hippo pathway is key to enhancing treatment impact.
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Although recent studies have derived RNAseq-based signatures, there remains a
need for a reproducible and cost-effective method to measure the pathway activation.
In recent years, deep learning applied to histology slides have emerged as an
effective way to predict molecular information from a data modality available in
clinical routine. Here, we trained models to predict YAP1/TEAD activity from
H&E-stained histology slides in multiple cancers. The robustness of our approach
was assessed in seven independent validation cohorts. Finally, we showed that
histological markers of disease aggressiveness were associated with dysfunctional
Hippo signaling.

Introduction

Tumorigenesis and cancer progression usually involve the dysregulation of several signaling
pathways, particularly those governing cell proliferation and survival. The Hippo pathway,
recognized as a tumor suppressor pathway, is one of the major pathways known to be
implicated in tumorigenesis, as it inhibits excess proliferation and regulates organ size and
apoptosis evasion'2. Several components of this pathway have been shown to be inhibited
in certain types of cancer’. The yes-associated protein (YAP1) and the transcriptional
coactivator with PDZ-binding motif (TAZ) are two primary effectors of the pathway*. The
shuffling of the YAP1/TAZ complex between the nucleus and the cytoplasm is controlled by
phosphorylation. When phosphorylated by the large tumor suppressor (LATS) family of
Hippo kinases®, the complex remains in the cytoplasm and is sequestered via its interaction
with 14-3-3 proteins® and/or degraded after its ubiquitylation’. Once in the nucleus, the
YAP1/TAZ complex preferentially binds to the transcriptional enhancer associate domain
(TEAD) proteins to increase their transcriptional activity?. By activating the transcription of
genes involved in cell proliferation and transformation (CTGF and CYR61, for example),
YAP1/TEAD activity promotes tumor growth and resistance to chemotherapy?.

In malignant pleural mesothelioma (MESO), a cancer of the pleura specifically associated
with asbestos exposure, genes within the Hippo pathway are frequently mutated, suggesting
a critical role for this pathway in MESO tumorigenesis®. Recently, Calvet et al.'® have
demonstrated that YAP1 downregulation induced tumor growth inhibition in xenograft models
of a Hippo deficient-mesothelioma cell line (MSTO-211H) expressing dominant-negative
TEAD genes.

Beyond mesothelioma, aberrant YAP1/TEAD activity is also associated with tumor
progression and poor prognosis of lung cancer patients. Notably, the missense mutation
R133W of the YAP1 protein has been found to be predisposing for lung adenocarcinoma™.
LATS1 and LATS2, which are responsible for the inactivation of YAP1 and TAZ through
phosphorylation, are downregulated in non-small cell lung cancer (NSCLC) compared to
healthy tissues'® (Malik et al, 2018). Moreover, abnormalities in the Hippo pathway are also
found in various malignancies, including breast cancer'®, gastric cancer', and hepatocellular
cancer'.
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These recent discoveries have spurred interest in targeting the Hippo pathway as a
therapeutic strategy in oncology, with several clinical trials currently underway'®"’. To ensure
these treatments are used in the proper indications and given to the appropriate patient
subpopulations, it is crucial to develop methods for measuring pathway activation that are
both reproducible, as well as time- and cost-effective in a clinical setting.

Activation of YAP1 and TAZ has previously been used as a biomarker of Hippo pathway
inactivation®. Recently, a comprehensive molecular characterization of 19 Hippo core genes
was performed in 9,125 tumor samples across 33 cancer types using multidimensional
"omics" data from The Cancer Genome Atlas (TCGA)'. This study characterized genetic
regulators of the Hippo pathway and identified downstream target genes associated with
Hippo pathway activity. To measure YAP1/TEAD activity in tumors and to evaluate the
pharmacodynamic effects of TEAD inhibitors, Calvet and colleagues also defined a
transcriptional signature of 500 downstream TEAD-effector genes, the expression of which
was modified by various perturbations of the Hippo pathway'®?°. This signature, referred to
as TEAD-500, was effectively modulated by knock-out or knock-down of the transcription
factors (YAP1, WWTR1 or TEAD), and its score was positively correlated with tumor growth
(diminishing with tumor regression) in a human cell line used as xenograft®.

However, since histology slides are ubiquitous in clinical practice, the identification of
image-based biomarkers could allow for a better and generalizable stratification of patients
harboring a high YAP1/TEAD activity. In recent years, machine learning approaches to digital
pathology have encountered success in several applications, including diagnosis?',
prognosis?, characterization of the immune tumor environment®, prediction of genomic
alterations®*?® and of gene expression®®. Some of these tools have already made their way
to clinical applications, as exemplified by the FDA approval of the first automatic prostate
cancer grading system, Paige Prostate?’, in 2021.

Here, we developed a deep learning approach to predict the YAP1/TEAD activity, measured
by the TEAD-500 signature, from histology slides and assessed its relevance, not only in
malignant pleural mesothelioma but in 18 different TCGA indications (Figure 1). The models
we trained rely on weakly supervised learning to identify morphological patterns predictive of
the signature value. They were then validated on no less than seven external datasets, and
histological patterns highlighted by the model were subsequently analyzed by pathologists to
better describe histological structures and underlying phenotypes related to TEAD activity.

Results

YAP1/TEAD activity across various cancer indications

We measured YAP1/TEAD activity using a published transcriptional signature of
approximately 500 downstream effectors?® (referred to herein as the TEAD-500 signature).
This signature has been derived from various genetic perturbation experiments and is used
as described in Calvet et al'® (2022) and summarized in our Methods section. The first goal
was to establish a threshold score for YAP1/TEAD activity that could be considered
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‘abnormally high’ for any given tumor indication. As expected, the YAP1/TEAD activity and
the TEAD-500 score varied widely among different types of normal tissues from The
Genotype Tissue Expression project (GTEx) and across TCGA indications (Figure 2a). We

therefore defined a distinct threshold per indication, corresponding to the 95 percentile of
the score in GTEx samples of the same healthy tissue type. As no comparable healthy
tissue collection was available in GTEx for the head and neck squamous cell carcinoma
indication (HNSC), non-tumor tissues from the CPTAC-HNSCC cohort?” were used as a
reference instead. The rationale for choosing the 95th percentile threshold was purely
statistical, to match the most common conventional level of significance.

After determining these indication-specific thresholds, we computed the proportion of
patients with a “high” YAP1/TEAD activity (TEAD+ patients). As depicted in Figure 2a, this
proportion ranged from 3% for prostate cancer (PRAD) to 98% for glioblastoma (GBM).
These results are consistent with previous findings suggesting no evidence of a higher
activity level in prostate cancer with respect to normal tissue?®. Additionally, higher levels of
YAP1/TAZ mRNA has been shown in glioma tissues®, in line with the high prevalence of
TEAD+ patients in GBM observed in our study (Figure 2a).

Tumor types with a high proportion of TEAD+ patients included gynecologic cancers, such
as uterine corpus endometrial carcinomas (UCEC, 53%), uterine carcinosarcomas (UCS,
91%), ovarian cancer (OV, 75%) and cervical squamous cell carcinoma (CESC, 66%). Other
indications with intermediate levels of YAP1/TEAD activity encompassed various sarcomas
(SARC, 64%), adrenocortical carcinoma (ACC, 53%) and head and neck squamous cell
carcinoma (HNSC, 51%). At the other end of the spectrum, YAP1/TEAD activity level was
very low in pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma
(PCPG), thyroid carcinoma (THCA) and kidney chromophobe cancer (KICH).

In a few indications, the signature exhibited a multimodal distribution, highlighting the
presence of subgroups of interest. This was particularly clear in breast cancer (BRCA) where
78% (N=155) of patients were classified as TEAD+ in the subgroup of basal-type tumors,
compared to the subgroups of HER2-enriched patients (20%, N=17), luminal B tumors (10%,
N=24) and luminal tumors (only 0.3%, N=2, Figure 2b). In NSCLC, 17% (N=174) of TEAD+
tumors were observed overall. This proportion increased to 23% (N=124) in squamous cell
carcinomas (LUSC) and to 52% (N=30) for patients belonging to the primitive subtype®.
These results corroborate previous studies reporting higher YAP1/TEAD activation in
squamous versus non squamous types'®, as well as heterogeneous YAP1/TEAD activation
across cancer subtypes, such as basal versus luminal A/B or HER2-enriched breast
cancers®'.

We also investigated the association between the TEAD-500 signature and patient survival.
As expected, higher activity levels were observed in cancer types with poorer prognosis™®°.
In particular, the fraction of TEAD+ patients correlated negatively with the 5-year survival
rate computed for overall survival (OS) with R = -0.41 and p-value = 0.035 in all TCGA
datasets tested (Figure 2c).
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We then assessed the prognostic value of the TEAD-500 score in each cancer type by
computing a univariate C-index®. P-values were corrected with Benjamini-Hochberg
procedure to account for multiple testings (see Table S1 in supplementary data). The score
was highly predictive of OS in MESO, with a univariate C-index of 0.72 (p = 1 x 107), higher
scores being associated with a worse prognosis. Its value was significantly associated with
poor prognosis in eleven other indications, the strongest associations being found in
Adrenocortical carcinoma (ACC; C-index = 0.79, p = 3 x 10°), KICH (C-index = 0.79; p = 7 x
10*), Kidney Renal Papillary Cell Carcinoma (KIRP; C-index = 0.74, p = 3 x 10°) and Lower
Grade Glioma (LGG; C-index = 0.73, p = 5 x 10™"?). Significant associations were also found
in Liver Hepatocellular carcinoma (LIHC; C-index = 0.60, p = 7 x 10*), SARC (C-index =
0.60, p = 0.011), Bladder Urothelial Carcinoma (BLCA; C = 0.59, p = 0.014), Lung
Adenocarcinoma (LUAD; C-index = 0.56, p = 0.014), HNSC (C-index = 0.56, p = 0.005),
Skin Cutaneous Melanoma (SKCM; C-index = 0.55, p = 0.017) and Kidney Renal Clear Cell
Carcinoma (KIRC; C-index = 0.54, p = 0.004). Only in thymoma (THYM) were higher values
associated with a better outcome (C-index = 0.67, p-value = 0.014). These results further
validate the use of the TEAD-500 signature: for comparison, the signature defined in Wang
et al.'® reached significance on eight indications, six of which are common to both signatures
(LGG, MESO, KIRP, HNSC, BLCA and PAAD).

For each indication, we also examined the stratification of the population in two subgroups,
based on the thresholds defined previously (with the exception of MESO where the median
value was used) (Figure 2d). We computed the logrank p-values between patients with high
and low YAP1/TEAD activity, and corrected the results with the Benjamini-Hochberg
procedure. The stratification reached statistical significance in 6 indications out of 29: MESO
(p =2 % 10%), LGG (p = 2 x 10°), LIHC (p = 0.016), ACC (p = 0.004), SARC (0.010) and
SKCM (p = 0.027) (Figure 2d).

Altogether, our data confirmed that YAP1/TEAD activity is both cancer type- and
subtype-specific, and that abnormally high activity is correlated with poor prognosis in certain
cancers.

Deep learning can predict YAP1/TEAD activity from histology
slides and can be used as a surrogate for pathway activity

To predict this activity signature on H&E-stained pathology slides, we developed a deep
learning model called HE2TEAD, which relies on a weakly supervised learning framework.
This approach is based on Chowder®®, a model specifically designed to analyze Whole Slide
Images (WSIs). HE2TEAD partitions the WSI into smaller patches — or tiles — measuring 112
x 112 ym each, that are first scored independently by the model. These tile-level scores are
then aggregated to generate a prediction for the entire slide (architecture in the “Methods”).
Training of the model was conducted on 18 separate cohorts from TCGA.

We first performed a five-fold cross-validation on each cohort. This involved randomly
assigning patients to five different sets, where each set was alternatively used as the
validation set, while the remaining four sets were used for training. The final results were
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expressed as a mean over all five runs (for the architecture, see “Methods”). Subsequently,
the Pearson correlation (R) between the model prediction and the signature derived from
bulk RNAseq (Figure 3a) was computed for each cohort.

As presented in table 1, the models achieved high performances, with correlations
exceeding 0.6, in BLCA (R = 0.603, std = 0.080), LUAD (R = 0.675, std = 0.050) and BRCA
(R = 0.649, std = 0.047). The latter result is not surprising since the activation of the pathway
strongly discriminates between two distinct subtypes of breast cancer, as mentioned
previously (Figure 2b). The model was highly predictive of the BRCA subtypes, as indicated
by the area under the curve (AUC) in distinguishing the basal subgroup from the other
subtypes, namely luminal A and B and HER2-enriched subtypes (AUC = 0.88, std = 0.028).
Despite the small size of the training dataset, HE2TEAD performed relatively well in
Mesothelioma (R = 0.425, std = 0.153, with N = 95 samples). Conversely, the model’s
performance was suboptimal in indications where the activation values were uniformly high
(with most samples exceeding the threshold determined from healthy tissue), such as GBM,
UCS and OV.

Since the TEAD-500 signature was associated with OS in several cancers, we checked
whether the HE2TEAD prediction from the H&E slides retained this association with survival.
We computed the concordance index on each cross-validation fold and averaged the results.
In several indications such as ACC (C-index = 0.77, std = 0.12), KIRP (C-index = 0.68, std =
0.10), LGG (C-index = 0.66, std = 0.058), UCEC (C-index = 0.64, std = 0.047), BLCA
(C-index = 0.56, std = 0.049) and LUAD (C-index = 0.57, std = 0.055), the prognostic power
of the histology-based model was close to that of the TEAD-500 signature. Overall, the
C-index obtained with the histology-based predictions was strongly correlated with the one
obtained from the RNAseq signature (Pearson R = 0.78, p-value = 3 x 107°).

Next, we searched for similarities in histological patterns between various cancer types. Our
hypothesis was that if histological patterns associated with the TEAD+ phenotype were
conserved in two indications, a model trained on one of those indications should transfer
robustly to the other. To assess this, a model trained on a given cohort, was then applied to
every other cancer type, each treated as an external validation dataset. We computed
Pearson correlation and p-values, which were corrected for multiple hypothesis testing with
the Benjamini-Hochberg method, thus obtaining a transfer table where rows represented the
training indications and columns the test indications (Figure 3c).

The transfer matrix revealed significant off-diagonal values, highlighting similarities in the
morphological patterns associated with YAP1/TEAD activity across several cancer
indications. LUAD and BRCA appeared to be pivotal indications, since models trained on
those cohorts transferred well to several other diseases: for instance, the BRCA-trained
model achieved correlations as high as 0.58 on LUAD (p =2 x 10*7), 0.47 on BLCA (p =5 x
10%) and 0.50 on TGCT (p = 5 x 10™). BRCA and LUAD resided at the intersection of two
groups of indications sharing a high similarity: one including MESO and SARC - in line with
the known histological resemblance between mesothelioma and sarcoma*, and a second
group with numerous cancers, including LUSC, ACC and UCEC, that could be extended to
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include all adenocarcinomas and squamous cell carcinomas. Among this extended group,
BLCA and CESC formed a distinct subgroup (CESC to BLCA: R = 0.51, p = 10?%°, BLCA to
CESC: R =0.37, p = 6 x 10). There was also a relatively good model transferability from
UCEC to other gynecologic cancers (R = 0.33, p = 0.004 on UCS; R =0.29, p = 0.014 on
OV), and among brain cancers (LGG to GBM: R =0.28, p = 3 x 107).

Several factors may explain those results. As an example, good transfer was observed
among cancers affecting the same tissue or organ (LUSC and LUAD, UCEC and UCS, LGG
and GBM) or with histological resemblance (MESO and SARC). Another potential
contributing factor is the similarity in the underlying mechanisms of Hippo pathway
inactivation. For instance, BLCA and CESC share a high frequency of mutations among the
Hippo pathway genes (in particular NF2), as well as frequent amplification of YAP1 and
deletion of LATS1'. Based on this, we sought to investigate the efficacy of pancancer
training of our models.

We retrained three models by grouping several TCGA cohorts together. Cross-validation
was conducted on the resulting aggregated dataset. However, the performances were still
evaluated separately on each cancer. We initially developed a model for the most closely
related cancer types identified by the previous analysis: LUSC, LUAD, BRCA, UCEC and
ACC, collectively referred to as the NSCLC model. Its average performance on these
cohorts (R = 0.60) was significantly superior to that of single-cancer trained models (R =
0.55, p = 2 x 10°; Figure 3d). To further optimize the performance on HNSC and MESO, we
considered several combinations based on the transfer matrix and selected the one giving
the best performance on those cohorts (see Methods for further details). We trained a model
on HNSC, SKCM and BLCA (adding the two indications giving the best transfer
performances on HNSC), in addition to the five previously mentioned indications. This
model achieved a significant improvement (p = 0.001) with a correlation of 0.44 (std = 0.08)
on TCGA-HNSC compared to 0.31 (std = 0.12) for the single-cancer trained model. Similarly,
to enhance the performance on MESO, we trained a model jointly on LUAD and MESO. The
resulting model exhibited a correlation of 0.48 (std = 0.16) on TCGA-MESO, higher, although
not significantly so (p = 0.23), compared to the model solely trained on TCGA-MESO.

Finallyy, we applied these models on seven validation cohorts outside of TCGA,
encompassing a total of 793 samples from patients with NSCLC (N= 419), HNSC (N=260),
and MESO (N=114), as described in the Methods section (Figure 4).

We validated the NSCLC model on four external cohorts, from Institut Curie (Curie), Centre
Léon Bérard (CLB), Centre Georges-Frangois Leclerc (CGFL) and Erlangen. Due to the
limited number of patients with squamous cell carcinoma in each cohort, all histological
subtypes were collectively analyzed. The model demonstrated predictive power on all
external cohorts, with correlations ranging from 0.21 [0.03 - 0.39] (Erlangen, p-value = 0.032)
to 0.49 [0.17 - 0.71] (Curie, p-value = 3 x 10*). However, we observed a significant drop in
performances compared to the cross-validation on TCGA (R = 0.58, std = 0.06 on
TCGA-LUAD and TCGA-LUSC together) (Table 2).
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We hypothesized that this gap between TCGA cross-validation and external validation could
be primarily attributed to differences in the patient populations. In particular, the external
cohorts included large proportions of advanced-stage and metastatic cancers, whereas
TCGA-NSCLC cohorts (LUAD and LUSC) were predominantly composed of primary tumors
from patients with early-stage disease. To validate this hypothesis, we retrained a model on
the same TCGA cohorts, exclusively selecting patients with an American Joint Commission
on Cancer (AJCC) stage IV. This drastically reduced the size of the training dataset from
2,966 samples (1,034 NSCLC samples) to a mere 95 samples (33 NSCLC cases). The
performances of this retrained model - referred to as TCGA-advanced - on external cohorts
were improved on all cohorts, and particularly so on Erlangen (R = 0.32 [0.14 - 0.47], p-value
= 0.001) (Table 2), although statistical significance was not reached (p = 0.08 for Erlangen, p
= 0.27 across cohorts, Fisher test). It should be noted that the Curie and CLB cohort were
stained with Haematoxylin, Eosin and Saffron (HES) while the training cohort (TCGA) only
contained Haematoxylin and Eosin (H&E). The fact that good performances were achieved
on those cohorts highlights the model’s robustness to staining variations.

The MESO model was validated on two external cohorts, from Stanford and NYU. In the
Stanford cohort, the model was predictive of YAP1/TEAD activity with a correlation of 0.68
[0.51 - 0.81] (p-value = 7 x 10%), while in the NYU cohort it achieved a correlation of 0.49
[0.29 - 0.64] (p-value =5 x 10F).

The HNSC model was validated on the CPTAC-HNSCC cohort®. Multiple RNAseq
measurements were available for some patients, in which cases the replicate YAP1/TEAD
activity scores were averaged across samples. The model achieved a correlation of 0.38
[0.27 - 0.48] (p-value = 2 x 10"%). These performances were comparable to those obtained
in cross-validation.

Altogether, these results demonstrate that our models trained on TCGA are robust and can
generalize to several external cohorts in different indications. This paves the way for
potential clinical applications of our HE2TEAD models.

YAP1/TEAD activity is associated with necrosis, poorly
differentiated tumor and inflammation

Building upon the robustness of our models, we aimed to further characterize the histological
patterns associated with YAP1/TEAD activity across cancer types. We selected the most
predictive tiles of each model in several cohorts (TCGA-NSCLC, Erlangen-NSCLC and
CLB-NSCLC, TCGA-HNSC and CPTAC-HNSCC, TCGA-MESO and Stanford-MESO). For
each considered cohort, we extracted 100 tiles associated with a prediction of a high level of
YAP1/TEAD activity, 100 associated with a low prediction and 100 random tiles for
comparison. Those tiles were subsequently reviewed by pathologists to systematically
assess the histological patterns associated with YAP1/TEAD activity (see Methods sections).
For NSCLC, we selected the model trained on advanced-stage patients from TCGA, as it
generalized better to external cohorts. Also, since late stage tumors have had more time to
evolve either due to the expected evolutionary course of disease progression® or to cell
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plasticity in response to treatment®, this model was expected to pick up more diverse
features.

In all three TCGA cohorts (NSCLC-advanced, MESO and HNSC), the presence of necrosis
was strongly associated with high levels of YAP1/TEAD activity. This association was also
found in external cohorts, albeit to a lesser extent in the CLB and Erlangen NSCLC cohort
(15% of tiles with positive predictivity in CLB, 22% in Erlangen, up to 69% in TCGA-HNSC).
In Erlangen, the model also preferentially focused on poorly differentiated tumor areas (NOS
tumor, p =0.0001), which the pathologists could not explicitly classify as adenocarcinoma or
squamous cell carcinoma by looking at the tile area only (Figure 5). Differences in
pathological patterns associated with YAP1/TEAD activity between the NSCLC cohorts may
be attributable to different sampling procedures and sample selection criteria. Indeed, TCGA
only contains resection slides, whereas the CLB and Erlangen cohorts are mostly composed
of biopsy specimens. The latter tend to contain less necrosis, as they are intended to
primarily focus on viable tumor cell nests. We noticed a significant presence of hemorrhages
in tiles from the Erlangen cohort (present in 27% of tiles randomly sampled from this cohort),
which contrasts with observations from the other NSCLC datasets (only 2% and 1% of tiles
randomly sampled from TCGA and CLB respectively). This difference is a likely
consequence of the sampling technique, as most samples from Erlangen were obtained by
endobronchial ultrasound scan and biopsy (EBUS), and might also explain why the models
have lower performances on this particular cohort.

Furthermore, the presence of immune cells (exceeding 20% of the tile cell composition) was
also associated with high YAP1/TEAD activity across most cohorts. Lymphocytes were found
in predictive tiles from all NSCLC cohorts, with a very strong association in CLB (p = 2 x
107) and Erlangen (p = 1 x 10*), while other immune cells (excluding lymphocytes) were
predictive in all cohorts except TCGA-HNSC (Figure 5).

Altogether our findings are consistent with the known biological impact of the YAP1/TEAD
signaling pathway in oncogenesis. Wang et al. recently established a strong association
between hypoxia and the activation of the YAP/TAZ pathway. Their team also described
immune cell abundance, such as dendritic cells in HNSC, MESO, and NSCLC, CD4 T cells
and neutrophils in HNSC and NSCLC, macrophages in NSCLC, or B cells in MESO, to be
associated with YAP/TAZ activity. Furthermore, several studies®*33%441 have pointed to the
role of YAP1 and TAZ in promoting ferroptosis — an iron-dependent form of regulated
necrosis — via the regulation of the SKP2 gene®, one of the positive effectors of the
TEAD-500 signature. Overall, this may be consistent with the preponderance of necrosis
observed in all of the studied cohorts.

Presence of fibrosis or normal epithelium was predictive of low YAP1/TEAD activity. Up to
20% of the negatively predictive tiles presented fibrotic patterns in TCGA-NSCLC and this
percentage reached almost 60% in TCGA-MESO. Additionally, normal epithelium was
significantly correlated with low TEAD activity in 50% of the tiles in TCGA HNSC. Given that
fibrotic tissues and normal epithelium are in essence non-tumoral, they are therefore
expected to present lower YAP1/TEAD activity compared to the adjacent tumoral tissues.
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All the above histological associations with YAP1/TEAD activity are consistent with well
known roles of the Hippo pathway and its effectors in oncogenesis, namely the regulation of
apoptosis and cell proliferation. Of particular pharmacological interest is the increased
immune infiltration in tiles predicted to have a high YAP1/TEAD activity. This observation
corroborates previous findings suggesting that an activated YAP/TAZ signaling promotes
immune cell recruitment**°,

Discussion

Dysregulation of the Hippo pathway has been implicated in the oncogenesis of several
cancers, as well as in resistance to therapies, which opens the way to translational research
for the development of therapeutic agents targeting this pathway. Recently, numerous
approaches have been developed across multiple modalities to disrupt the YAP1/TAZ-TEAD
interaction*®, resulting in several phase 1 clinical trials, primarily focusing on
mesothelioma?**454647,

However, extending this kind of therapeutic approach to other cancer indications requires
tools to identify patient subpopulations that may benefit from the inhibition of YAP1/TAZ or
TEAD. Here, we applied the RNAseqg-based YAP1/TEAD activity signature defined in a
recent study'®?® to every TCGA cancer type. Our analysis showed that the level of
YAP1/TEAD activity is not only heterogeneous between different cancers, as previously
documented in the literature, but can also display intra-indication variability, as evidenced for
instance in breast cancer or in lung squamous cell carcinoma. In breast cancer in particular,
the higher activity observed in the basal subtype is consistent with the role of hypoxia in this
subtype® and with the known association between hypoxia and Hippo pathway
inactivation*. Moreover, our study confirms recent work indicating a correlation between
Hippo pathway expression and hormone receptor status, notably estrogen receptor (ER)
expression®'.

The prognostic value of the signature was significant in 13 cancers out of the 33 TCGA
indications, 12 of which showed a detrimental association with patient outcomes. This is also
in agreement with previous findings'®'®3' and highlights the role of TEAD in cancer
dynamics.

Although omics data have been used as the gold standard to identify abnormalities in the
Hippo pathway, H&E-based prediction may offer broader applicability, given that histology
slides are routinely available in clinical practice. In particular, this approach does not require
any additional resource-consuming analyses. We designed deep learning models capable of
predicting the signature directly from WSIs at the time of diagnosis for several cancer types.
By training the models on several TCGA cohorts separately and testing on other cohorts, we
highlighted groups of indications that shared common patterns. Our approach was
extensively validated on multiple cohorts of mesothelioma, NSCLC and HNSCC outside of
TCGA, demonstrating its robustness with respect to various acquisition protocols and batch
effects.
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Our image-based models further revealed morphological changes associated with abnormal
YAP1/TEAD activity. In particular, necrosis emerged as an important cross-disease marker,
at least in the 3 cancer types considered in the present work. Further analyzes would be
needed to reach a finer comprehension of disease-specific and subgroup-specific
biomarkers. Overall, our results present high clinical relevance, as these interpretable
biomarkers associated with YAP1/TEAD activity could help clinicians by facilitating patient
diagnosis and by defining treatment inclusion criteria. Moreover, they can be more easily
presented and explained to patients.

These results open the way to potential applications in clinical practice. For instance,
image-based biomarkers may facilitate the recruitment of patients for clinical trials involving
treatments based on TEAD inhibitors. By leveraging the H&E slides routinely generated
during the patient treatment pathway, this approach is much more cost-effective than relying
on the generation of RNA-based biomarkers. Moreover, it could accelerate diagnosis and
treatment decision-making by clinicians as these analyses can be performed using the H&E
slides obtained at the time of diagnosis. However, such applications would require additional
developments that are beyond the scope of the present work.
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Figure 1 - Graphical summary.

Graphical abstract. (1) RNAseq and clinical data from 32 cancer types from The Cancer
Genome Atlas (TCGA) were collected. TEAD-500 signature was computed from RNAseq
data. General statistics and association with prognosis were evaluated. (2) Models were
trained to predict the signature from Hematoxylin & eosin (H&E)-stained histology slides.
Cross-validation was run on TCGA, and the best models were further validated on seven
external cohorts of Non-Small Cell Lung Cancer (NSCLC), mesothelioma and Head and
Neck Squamous Cell carcinoma (HNSC), demonstrating the robustness of our approach. (3)
The most predictive tiles were extracted from the model and reviewed by trained
pathologists to highlight histological biomarkers associated with YAP1/TEAD activity.


https://doi.org/10.1101/2024.06.14.598991
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598991; this version posted June 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

14
0.2+ ) GTEX
= TCGA
= threshold
2 01+
®
>
g
2 00/ <-
c
;
[a]
&-01
=
-0.2
= 2 @Y 9 2 3 999 T QLI BV Y E YLt s Y oy
g o S
sEtefzgripgecegogeggieigie
cohort
b - i 100%{ g -
| 3 luminal A P
T @3 luminal B BRCA
80 BB HER2-enriched 80% . . °
@ basal @ b UCEC
] @© Tl @
60 = 60% f' ;
E — £ LUSC .'; e SKCM
o = T
© A g0% AP @ e HNSC S
40 s ®
g -
) . + 100 patients .
20% 500 patients ov
20 1000 patients
Cox p-value < 0.05 .
0%1 @ Coxp-value > 0.05 GBM
0 -0.10 —-0.05 0.00 0.05 0% 20% 40% 60% 80% 100%

TEAD signature value

Fraction of TEAD+ patients

d * p=005
. st s e e 0 e 00000000 . p = 0.0001
—— — p < 0.05
0 [a ] au= < UOJdagdogaouvn JuuuITua i ivity - i
g%%qmangE Eggm%gﬁgégqégggggxug Eﬁg *  High activity -> worse survival
£E0g83 HEE IR PUGERNEEEEa2ne2aN zd *  High activity -> better survival
MESO, p-value = 0.0002 LGG, p-value = 0.0000 _SARC, p-value = 0.0102
e 100 —— high score 1007 —— high score 100 —— high score
- —— low score - — low score - — low score
# 80 # 80 & 80
E 4 - -
n 0 n
= = S
2 60 = 60+ & 60
5 5 5
(=]
5 40 S 40! T 40
H z E
a
& 20 2 20 & 20
0 0
L] 20 40 60 80 100 1] 50 100 150 200 250 o 0 25 50 75 100 125 150 175 200
Time (months) Time (months) Time (months)
LIHC, p-value = 0.0161 ACC, p-value = 0.0040 SKCM, p-value = 0.0267
. 100+ . .

100 —— high score —— high score 100 —— high score
. —— |ow score . —— |ow score - —— low score
2 80 F- § 80
- o 4
a0 0 o
Z 60 = 60- = 60
© L} ©
5 s <
Z 40 S 40 = 40
=] =] ]

a a =3
£ 20 € 20! S 20
0 0 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100120140160180

Time (maonths)

Time (months)

0 50 100 150 200 250 300 350 400
Time (months)


https://doi.org/10.1101/2024.06.14.598991
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598991; this version posted June 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

15

Figure 2 - YAP1/TEAD activity is associated with poor prognosis across cancer.

a. Distribution of TEAD-500 signature values on TCGA cohorts and on matched healthy
tissues from the GTEx database. Bars indicate the 95th percentile value on healthy tissue. b.
Distribution of TEAD-500 signature values in subtypes of BReast CAncer (BRCA). c.
Correlation between the fraction of patients with a signature value above the GTEx-inferred
threshold, and Overall Survival (OS). In orange, cohorts where the Cox p-value of the
signature is significant. d. Kaplan-Meier curves of OS per cohort, stratified with respect to
the GTEx threshold (high score: activity above threshold, low score: activity below
threshold). For mesothelioma, since no GTEx data could be matched with cancer data, the
threshold is the median value. P-values were obtained with a log rank-test and corrected
with Benjamini-Hochberg method to account for multiple-hypothesis testing.
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Figure 3 - Deep learning can predict YAP1/TEAD activity from histology slides.

a. Boxplot of the Pearson correlation values obtained in cross-validation on TCGA cohorts
(box: interquartile range (IQR); horizontal line: median; whiskers: 1.5 times IQR, triangle:
mean; circles: individual fold values). b. Correlation between the prognostic power of the
RNAseq signature and that of the histology-based predictions. c¢. Table of the Pearson
correlation obtained by applying a model trained on a given indication to any other indication.
Diagonal values are the averages obtained in cross-validation. For readability, negative
values were clipped to 0. The blue square indicates indications that were grouped for
training the final NSCLC model d. Boxplot (defined as in panel a) of the Pearson correlation
values obtained in cross-validation on LUSC, UCEC, ACC, BRCA and LUAD, with models
trained individually on each cancer (blue) or with a single model trained simultaneously on
the five cohorts (red). P-values were obtained from a Z-test, as described in the method
section (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).
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Figure 4 - The HE2TEAD model transfers robustly to external validation cohorts.

a. RNAseq signature values vs histology-based prediction on external NSCLC validation
cohorts. Predictions were obtained from a model trained on advanced-stage patients (AJCC
stage V) from five TCGA cohorts: LUAD, LUSC, ACC, UCEC and BRCA. 2-sided p-values
are reported. The scale is different on both axes because the model was trained to predict
the normalized signature value (zero mean and unit standard deviation) b. Same as a, on
external mesothelioma cohorts from Stanford and NYU. The model was trained on
TCGA-MESO and TCGA-LUAD. c¢. Id., on the CPTAC-HNSCC cohort (head and neck
squamous cell carcinoma). The model was trained on 7 TCGA cohorts: HNSC, SKCM,
BLCA, ACC, BRCA, LUAD, LUSC, UCEC.
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Figure 5 - HE2TEAD identifies areas associated with a high YAP1/TEAD activity.

a. Heatmap of the model on an NSCLC sample from TCGA. Red indicates regions
associated with a high YAP1/TEAD activity value, while blue indicates areas associated with
a low activity. b. Top positively predictive (red square) and negatively predictive tiles (blue
square) from the TCGA-NSCLC cohort (advanced-stage patients). ¢. Heatmap of the model
on an HNSC sample from TCGA. d. Top positively predictive and negatively predictive tiles
from the TCGA-HNSC cohort.
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Figure 6 - YAP1/TEAD activity is associated with necrosis and inflammation.
Distribution of some of the histological patterns in positively and negatively predictive tiles
from seven cohorts, as well as in randomly chosen tiles for comparison. P-values were
obtained with a chi-square test of contingency between positive and negative tiles, and
corrected for multiple-hypothesis testing with the Benjamini-Hochberg method. No tiles were
annotated with normal epithelium in the mesothelioma cohorts, and similarly for fibrosis in
the head and neck squamous cell carcinoma cohorts.
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20
Tables
Single-cancer
performance (Pearson R)
average starjdzf\rd
deviation
LUAD (Lung Adenocarcinoma) 0.675 0.050
BRCA (Breast Cancer) 0.649 0.047
BLCA (Bladder Cancer) 0.603 0.080
TGCT (Testicular Germ Cell Tumors) 0.588 0.064
ACC (Adrenocortical Carcinoma) 0.522 0.225
UCEC (Uterine Corpus Endometrial Carcinoma) 0.485 0.103
MESO (Mesothelioma) 0.425 0.153
LUSC (Lung Squamous Cell Carcinoma) 0.421 0.125
CESC (Cervical Squamous Cell Carcinoma) 0.392 0.133
LGG (Lower Grade Glioma) 0.380 0.053
KIRC (Kidney Renal Clear Cell Carcinoma) 0.368 0.074
KIRP (Kidney Renal Papillary) 0.363 0.107
SARC (Sarcoma) 0.323 0.102
HNSC (Head and Neck Squamous Cell Carcinoma) 0.309 0.119
SKCM (Skin Cutaneous Melanoma) 0.239 0.088
UCS (Uterine Carcinosarcoma) 0.175 0.265
GBM (Glioblastoma) -0.001 0.307
OV (Ovarian Cancer) -0.037 0.259

Table 1: Pearson correlation between the model’s predictions and the RNAseg-based
signature
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Model trained on TCGA (LUSC, Model trained on TCGA (LUSC,
LUAD, BRCA, UCEC and ACC) - all LUAD, BRCA, UCEC and ACC) -
Cohort stages advanced stages
Pearson R 95% ClI p-value Pearson R 95% ClI p-value
Curie 0.49 0.17-0.71 3x10* 0.51 0.17-0.72 | 2x10*
CLB 0.37 0.23-0.51 9x10® 0.40 0.27 - 0.52 1x 1078
CGFL 0.29 0.11-0.45 0.011 0.30 0.11-0.46 0.010
Erlangen 0.21 0.03-0.39 0.032 0.32 0.14 - 0.47 0.001
Average 0.34 0.24-043 | 7x10™ 0.38 0.27-047 | 2x107

Table 2: Pearson correlations and p-values of the trained models on the 4 available external
cohorts of NSCLC. 95% Confidence Intervals (Cl) were obtained by bootstrapping the cohort
10,000 times with replacement.
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Methods

Data

This study was based on publicly available data from TCGA (https://portal.gdc.cancer.gov/).
We selected samples from primary tumors only, for which both RNA-Seq and WSI data were
available. Transcriptomic data (FPKM-UQ) were extracted from frozen tissues, and the
slides analyzed were digitized H&E-stained formalin-fixed, paraffin-embedded (FFPE)
histology slides, referred to here as whole-slide images (WSIs).

RNA-Seq samples from healthy tissue were obtained from the public database GTEXx
(https://atexportal.org/home/datasets).

For external validation of our models, we had access to 4 NSCLC cohorts, 2 mesothelioma
cohorts and one cohort of head and neck squamous cell carcinoma. The HNSCC validation
cohort is publicly available from the CPTAC database
(https://proteomics.cancer.gov/programs/cptac). All validation cohorts are described in table
3.

Cohort Disease Staining NSuarrr;]bp?;sf M at diagnosis
0 14
Erlangen NSCLC H&E 103 1 87
Unknown 2
0 15
Curie NSCLC HES 50 1 19
Unknown 16
0 23
CLB NSCLC HES 191 1 143
Unknown 25
0 12
CGFL NSCLC H&E 75 1 54
Unknown 9
Stanford mesothelioma H&E 35 _



https://portal.gdc.cancer.gov/
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NYU mesothelioma H&E 79 _
head and neck
CPTAC squamous cell H&E 260 _
carcinoma

Table 3: Description of the external cohorts used for validation of our models. For cohorts
where the information was available, we report the metastatic status (M at diagnosis).

YAP1/TEAD activity score

There is no unique way of defining the activity score of a pathway from the transcriptome.
Wang et al. compared 9 different measures of the YAP1/TAZ activity, derived either from the
transcriptome or from protein assays, on the basis of their prognostic power of patient
survival across cancer types. The authors reasoned that dysregulation of the Hippo pathway
should be detrimental to the patient's survival, and chose the score that was most
consistently and extensively correlated with patient survival, a manually curated signature of
22 downstream genes of YAP1/TAZ significantly associated with survival in 8 TCGA
indications.

In our study, we used Calvet et al's YAP1-TEAD activity score, TEAD-500 signature, based
on a list of 500 downstream effector genes derived from genetic perturbation experiments
data instead of relying on prior knowledge. Even though it was not optimized for this task, it
was shown to be even more associated with survival (13 indications including 12 where the
signature is associated with poor outcomes).

To compute this score, the expression levels of the effector genes were ranked, and the
difference of effector ranks (deR) score was defined as Rp — Rn, where Rp is the mean
fractional rank of the positive effectors, and Rn, that of the negative ones.

Preprocessing of RNAseq data

We used a reproducible in-house preprocessing pipeline to produce TPM count matrices
from raw FASTQ files, as outlined below.

The preprocessing pipeline was developed as a Snakemake workflow®. First, FASTQ file
trimming (if required) is performed using Cutadapt (v4.1). The reads were aligned on the
GRCh38 reference genome assembly (downloaded from the “Broad References” dataset)
using the STAR aligner (v2.7.9a). The read quantification was also performed by STAR,
which is equivalent to HTSeg-count. Raw read counts were then normalized to TPM counts
using known exonic gene sizes. TPM counts can be computed more precisely taking into
account the proportion of different exons for each gene, but comparison shows almost no
difference regarding the Calvet score (>99% correlation, same range of values).
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Quality control (QC) was performed before (FASTQC) and after (RSeQC v4.0) alignment,
and outliers were identified by performing PCA on raw counts, TPM, and
DESeqg2-normalized counts. Samples with less than 5 million reads and outliers were
removed before proceeding to TEAD-500’s score computation using the TPM counts.

Mesothelioma samples are generally expected to be of lower quality compared to other
tumoral samples due to the difficulty of the biopsy and the (usually) longer conservation of
samples. Since the Calvet et al’s formula is quite robust to low quality samples, we used less
stringent QC filters on MESO samples, with the following results:

- NYU: out of 93 total samples we removed 11 samples with less than 1M reads total.
No outliers were detected.

- Stanford: out of 42 samples we removed 3 samples with less than 5M reads total. No
outliers were detected.

For public datasets (TCGA, GTEx and CPTAC), we used the raw counts directly rather than
the FASTQ files and the preprocessing step was limited to the generation of TPMs using
known exonic gene lengths, in order to be consistent with the in-house preprocessing
pipeline.

Preprocessing of histology data

Since whole-slide images (WSIs) can have very large dimensions (up to 100,000 x 100,000
pixels), they need to be processed with specialized techniques. We applied three
preprocessing steps to reduce dimensionality and remove potential artifacts.

We first detected the part of the image that contains matter. This segmentation was
performed using a UNet neural network®'. The UNet’s encoder is a VGG11, pretrained on the
ImageNet dataset, while the decoder is trained from scratch. The architecture was fine-tuned
on an internal dataset of 470 manually segmented slides, with various stainings and
acquisition conditions. All pixels were separated between two classes: tissue, and
background or artifacts (such as pen marks for instance).

We divided the regions of the slides for which matter was detected into smaller images,
called ‘tiles’, of fixed size (224 x 224 pixels at a resolution of 0.5 micron per pixel). At least
60% of the area of a tile had to be detected as foreground by the UNet to be considered as
containing tissue. The number of tiles ny., depended on the total area of tissue detected and
varied from a few thousands to almost a hundred thousand tiles for each slide.

Features were extracted from each tile image using a pretrained convolutional neural
network (the “extractor”), that encoded each tile image into a numerical feature vector. Here,
we used the self-supervised algorithm MoCo v2°2%® to train a feature extractor without
supervision on unlabeled histology images. The training procedure generated multiple views
of a specific tile and tried to extract mutual information between those views. It also
generated an embedding from negative examples (other tiles in the dataset) as different as
possible from the embedding of the positive example. To achieve this dual task, the model
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needed to learn the semantic meaning inside each of these views, thus creating a feature
extractor that was tailored for histology. The extractor we used was trained on the
TCGA-COAD cohort, as recent works®® have shown that a network pretrained on this
cohort had good generalization capabilities. At the end of this step, each slide was
represented by a matrix of nges % 2,048 features.

WSI models

WSI models were based on the Chowder architecture®. The model was applied directly to
the feature vectors extracted at the previous stage. It consisted essentially of two steps:

- Top and negative instances: We used a convolutional one-dimensional (1D) layer to
compute a score for each tile. This convolutional layer performed a weighted sum
between all 2,048 features of the tile to obtain this score (weights of this sum were
learned by the model). We then picked the 25 highest and the 25 lowest scores and
used them as input for our last step. This architecture specifies which tiles are used
to make the predictions and, therefore, how our algorithm predicts the result. In
particular, this method allowed us to interpret high-score tiles as areas indicative of a
positive prediction (i.e., in our case high TEAD activity) and low-score tiles as areas
indicative of a negative prediction.

- Multi-layer perceptron (MLP) classifier: This step consisted of an MLP with two fully
connected layers of 200 and 100 neurons with sigmoid activation. This is the core of
the predictive algorithm that transformed the scores from the tiles into a prediction.

Compared with the original paper, we considered a simple modification of the model
architecture: instead of computing only one score per tile, one can use a 1D convolution with
several output channels. This allowed the model to capture richer patterns, as each score
could encode a specific histological structure associated with the activation.

As noted in the original work, this architecture is highly sensitive to model initialization, and
ensembling N copies of the same architecture with different seeds increased the robustness
and the performances of the model.

For single-cancer models, we did not run an extensive optimisation of hyperparameters and
used models with one convolution channel, and N = 50. The MESO model, trained on MESO
and LUAD, has the same architecture. The NSCLC and HNSC models trained on several
cancer types had 5 convolution channels, and N = 50.

For HNSC and MESO, we considered several possible groups of indications for training the
models, and selected the ones that gave the highest average correlation in cross-validation
on the cohort of interest.

training cohorts performance on HNSC (std) | p-value with respect to
single-cancer training

HNSC 0.309 (0.106)
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+SKCM,BLCA 0.407 (0.049) 0.006
+ACC,BRCA,LUAD,LUSC,UCEC | 0.444 (0.078) 0.001
+KIRC 0.420 (0.089) 0.009
training cohorts performance on MESO p-value with respect to

(std) single-cancer training
MESO 0.425 (0.137) _
+LUAD 0.484 (0.160) 0.23
+SARC,BRCA 0.354 (0.241) 0.69

Model validation

For validation on external cohorts, all models trained in cross-validations were applied, and
their predictions were averaged for each sample.

Interpretability

As mentioned in the original paper, Chowder is interpretable by design due to the following
two points.

- Only a small portion of the image is actually used by the model to make a prediction.
Hence, once a model is trained, the predictive tiles can be readily accessed for
analysis.

- Moreover, every tile obtains a score that can readily be interpreted as the local
prediction of the model.

This is true for the baseline architecture, with a unidimensional score and no ensembling.
However, since we used a multi-scoring approach and ensembling to increase the
performances, interpretability becomes more challenging.

Instead, we adapted Shapley values®® to the specific case of histology models. In their
original formulation, Shapley values addressed the distribution of gains to players in
cooperative game theory. They have been applied in machine learning as a tool to interpret
black box models. The application to our histology pipeline was quite straightforward. Slides
were represented here as collections, or bags, of tiles, which is equivalent to a coalition of
players in game theory, and we wanted to assess the contribution of each tile to the model’s
prediction (equivalent to the gain). To do so, we considered every possible way of
subsampling the tiles from a WSI. For each subsampling, we obtained a bag of n tiles (n
varying from 1 to the total number of tiles in the WSI), and we computed the prediction of the
model for this bag.
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Then, the contribution of a given tile t; was given by the difference between the average of
the predictions obtained for bags containing t; and the average of the predictions obtained for
bags that do not contain t. This exact formula was intractable in practice, since a WSI can
contain up to 50,000 tiles, which would give 2°°%° possible bags. A way to overcome this
was to randomly sample enough bags to obtain a reliable estimation. In practice, we
sampled a maximum of 10,000 random bags and interrupted the computation in case of
early convergence.

We checked that, when applied to the baseline architecture, Shapley values and Chowder
scores gave consistent estimates of tile importance (in particular the most predictive tiles
remained the same). Shapley values were a monotonously increasing function of Chowder
scores, and tiles with intermediate scores (meaning they were not selected for the final
prediction) had close to 0 contribution.

Pathologist review

For the blind review by a pathologist, we selected 100 tiles which were the most associated
with a high TEAD activity from the entire cohort (with a maximum of 3 tiles coming from the
same slide). Similarly, 100 tiles associated with a low activation were selected. We also
selected 100 random tiles in the whole cohort, again with a maximum of 3 tiles coming from
the same slide. Those tiles were mixed and reviewed blindly by a pathologist, who also had
access to a larger context: each tile had dimensions 112 x 112 pym, and we provided a
context of size 1008 x 1008 um. The pathologist had to evaluate each tile according to a
predefined grid.

In order to standardize practices among pathologists, it was specified that tissue-level
patterns (tumor, stroma, fibrosis...) had to cover at least 20% on a tile to be considered
present. For cell-level patterns, the decision threshold was 20% of the cells in the tile, except
for normal mesothelium and red blood cells where it was set at 20 cells in total.

Cancer Histological pattern

Mesothelioma Tumor - epithelioid (more than 20% of area)

Tumor - sarcomatoid (more than 20% of area)

Normal mesothelium (more than 20 cells)

NSCLC Tumor - adenocarcinoma (more than 20% of area)
NSCLC and HNSC Tumor - squamous cell carcinoma (more than 20% of area)
All cancers Tumor - NOS (more than 20% of area)

Stroma - collagen-rich (more than 20% of area)

Stroma - immune-rich (more than 20% of area)
Stroma - NOS (more than 20% of area)
Necrosis (more than 20% of area)

Hemorrhage (more than 20% of area)
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Immune cells (mix) (more than 20% of cells)

Lymphocytes (more than 20% of cells)

Red blood cells (more than 20 cells)

Cartilage (more than 20% of area)

Fat tissue (more than 20% of area)

Muscle tissue (more than 20% of area)

Fibrosis (more than 20% of area)

Normal epithelium (more than 20% of area)
Artefact

Statistics and p-values

For cross-validation, average and standard deviation of the cross-validation metrics
(Pearson correlation) are reported. For external validation, 95% confidence intervals were
computed by bootstrapping, ie. drawing 10,000with-replacement samples from the dataset,
computing the validation metrics for each bootstrap, and extracting the 2.5th and 97.5th
percentile of the distribution thus obtained. We also reported 2-sided p-values, as
implemented in methods stats.pearsonr of the python library scipy®’. When comparing the
performances of two models, we applied a Z-test on the average difference between the
bootstrapped estimates. To aggregate comparison p-values on multiple independent test
sets, we used Fisher's method, as implemented in the python library scipy
(scipy.stats.combine_pvalues).

To compare the proportion of tiles containing each histological pattern, we performed a
chi-square test of proportions between positively predictive and negatively predictive tiles.
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