

1 **Two opposing roles for Bmp signalling in the development of** 2 **electrosensory lateral line organs**

4 Alexander S. Campbell¹, Martin Minařík¹, Roman Franěk², Michaela Vazačová²,
5 Miloš Havelka², David Gela², Martin Pšenička² and Clare V. H. Baker^{1*}

6 ***Affiliations:***

7 ¹Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK

8 ²Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology,

9 University of South Bohemia in České Budějovice, Vodňany, Czech Republic

10 *For correspondence: cvhb1@cam.ac.uk

11 **Abstract**

12 The lateral line system enables all fishes and aquatic-stage amphibians to detect local water
13 movement via mechanosensory hair cells in neuromasts, and many species to detect weak
14 electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts
15 and ampullary organs develop from lateral line placodes. However, the molecular mechanisms
16 underpinning ampullary organ formation are understudied relative to neuromasts, as the
17 ancestral lineages of zebrafish (teleosts) and *Xenopus* (frogs) independently lost
18 electroreception. We identified *Bmp5* as a promising candidate via differential RNA-seq in an
19 electroreceptive ray-finned fish, the Mississippi paddlefish (*Polyodon spathula*; Modrell et al.,
20 2017, *eLife* 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (*Acipenser*
21 *ruthenus*), we found that *Bmp5* and four other Bmp pathway genes are expressed in the
22 developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-
23 mediated mutagenesis targeting *Bmp5* in G0-injected sterlet embryos resulted in fewer
24 ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly
25 before the formation of ampullary organ primordia, supernumerary ampullary organs
26 developed. These data suggest that *Bmp5* promotes ampullary organ development, whereas
27 Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this
28 demonstrates two opposing roles for Bmp signalling during ampullary organ formation.

34 **Introduction**

35
36 The lateral line system is an evolutionarily ancient sensory system found in all fishes and
37 aquatic-stage amphibians (Bullock et al., 1983; Northcutt, 1997; Mogdans, 2021). There are
38 two distinct types of lateral line organs in the skin. Neuromasts, arranged in characteristic lines
39 across the head and trunk, detect local water movement via mechanosensory hair cells
40 ("touch at a distance") whose apical surfaces are embedded in a gelatinous cupula (Cernuda-
41 Cernuda and García-Fernández, 1996; Montgomery et al., 2014; Pickett and Raible, 2019;
42 Mogdans, 2021). In non-teleost electroreceptive fishes and amphibians, fields of
43 electrosensory ampullary organs flank some or all of the neuromast lines on the head (Bullock
44 et al., 1983; Baker et al., 2013; Crampton, 2019). The electrosensory division of the lateral
45 line system was independently lost in several lineages, for example, those leading to
46 frogs/toads and to teleost fishes (although electroreception with physiologically distinct
47 electroreceptors independently evolved multiple times in a few groups of teleost fishes)
48 (Bullock et al., 1983; Baker et al., 2013; Crampton, 2019). Although salamanders (for example,
49 the axolotl) are electroreceptive, the primary anamniote lab models, *Xenopus* and zebrafish,
50 as well as other lab model teleosts such as medaka and cavefish, only have the
51 mechanosensory division.

52 Non-teleost ampullary organs have a 'flask-shaped' chamber with a sensory epithelium
53 at the base, connected to a pore in the epidermis via a canal filled with an electrically
54 conductive jelly (Jørgensen, 2011; Josberger et al., 2016; Zhang et al., 2018). Ampullary
55 electroreceptor cells are modified hair cells (Jørgensen, 2005; Baker and Modrell, 2018;
56 Baker, 2019) that respond to weak cathodal (exterior-negative) electric fields, primarily for
57 detecting prey or avoiding predators (Bodznick and Montgomery, 2005; Crampton, 2019;
58 Leitch and Julius, 2019; Chagnaud et al., 2021). Both neuromasts and ampullary organs
59 contain several types of support cells that flank the sensory receptor cells: these have a range
60 of support functions including secretion (see, for example, Cernuda-Cernuda and García-
61 Fernández, 1996; Camacho et al., 2007; Russell et al., 2022). In zebrafish neuromasts, both
62 active and quiescent stem cell populations have been identified amongst the various support
63 cell populations, which differentiate into hair cells during homeostasis and after injury (see
64 Lush and Piotrowski, 2014; Lush et al., 2019; Undurraga et al., 2019).

65 Neuromasts, ampullary organs and their afferent neurons all develop from a series of
66 lateral line placodes (thickened patches of neurogenic ectoderm) on the head (Northcutt,
67 1997; Piotrowski and Baker, 2014; Baker, 2019). There are six bilateral pairs of lateral line
68 placodes: the anterodorsal, anteroventral and otic lateral line placodes form rostral to the otic
69 vesicle, whereas the middle, supratemporal and posterior lateral line placodes form caudal to
70 the otic vesicle (Northcutt, 1997; Piotrowski and Baker, 2014; Baker, 2019). Neuroblasts

71 delaminate from the pole of each placode lying closest to the otic vesicle; they form afferent
72 bipolar neurons (which coalesce in lateral line ganglia) whose peripheral axons accompany
73 the placode as it continues to develop and form sensory organs (see Piotrowski and Baker,
74 2014; McGraw et al., 2017; Chitnis, 2021).

75 Neuromasts on the trunk originate from the posterior lateral line placode, whose
76 development has been most intensively studied in the teleost zebrafish (see, for example,
77 Piotrowski and Baker, 2014; McGraw et al., 2017; Chitnis, 2021). Initially it gives rise to an
78 early-migrating primordium (primI) that migrates as a cell-collective along the trunk, depositing
79 neuromasts and a line of interneuromast cells that act as progenitors for later-forming
80 neuromasts (reviewed by Piotrowski and Baker, 2014). A day later, another placode develops
81 in the same position, which gives rise to two primordia: primD migrates dorsally to give rise to
82 a dorsal line of neuromasts; the other (primII) migrates along the same pathway as primI,
83 depositing secondary neuromasts in between the primary neuromasts left behind by primI
84 (reviewed by Piotrowski and Baker, 2014). The migrating posterior lateral line primordium is
85 closely followed by the growth cones of afferent lateral line axons and their associated
86 Schwann cells (Metcalfe, 1985; Gilmour et al., 2002; Gilmour et al., 2004).

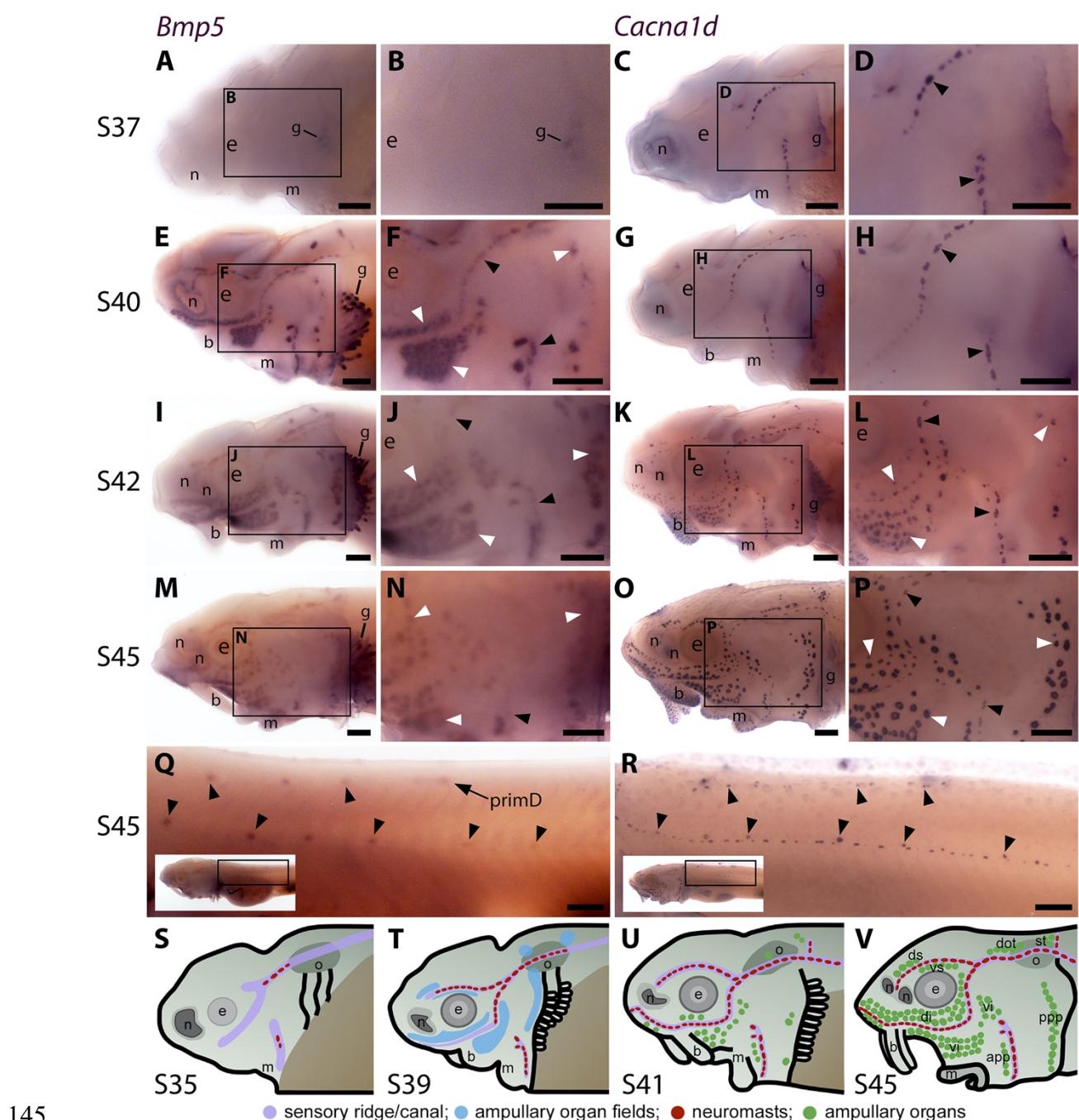
87 In non-teleosts, the other lateral line placodes do not migrate, but rather elongate over
88 the head to form sensory ridges that eventually fragment, leaving a line of neuromasts along
89 the centre of the ridge (see Winklbauer, 1989; Piotrowski and Baker, 2014). In electroreceptive
90 species, ampullary organs form later than neuromasts, in fields flanking the line of neuromasts
91 (Northcutt, 2005; Baker et al., 2013; Piotrowski and Baker, 2014). Just as in the migrating
92 posterior lateral line primordium, afferent axons and associated Schwann cells accompany
93 the elongating primordia (Winklbauer, 1989; Northcutt, 2005; Piotrowski and Baker, 2014).

94 Given the loss of electroreception in the lineages leading to frogs/toads and teleosts,
95 we used a chondrostean ray-finned fish, the Mississippi paddlefish (*Polyodon spathula*, which
96 has more ampullary organs than any other species (Chagnaud et al., 2021), as a model to
97 study ampullary organ development (Modrell et al., 2011a; Modrell et al., 2011b; Modrell et
98 al., 2017a; Modrell et al., 2017b; Minařík et al., 2024a). To identify candidate genes potentially
99 involved in ampullary organ development, we performed a differential bulk RNA-seq screen at
100 late-larval stages, comparing gene expression in fin tissue (which lacks lateral line organs)
101 versus operculum tissue (which has many ampullary organs and some neuromasts). This
102 resulted in a lateral line-enriched gene-set containing almost 500 candidate genes enriched
103 by at least two-fold in paddlefish opercular versus fin tissue (Modrell et al., 2017a). Expression
104 analysis of a range of candidate genes from this dataset and other candidates important for
105 hair cell development (Modrell et al., 2017a; Modrell et al., 2017b; Minařík et al., 2024a),
106 together with small-molecule manipulation of the Fgf and Notch signalling pathways (Modrell
107 et al., 2017b), suggested that electoreceptors are closely related to hair cells and that the

108 mechanisms underlying their development are highly conserved. To enable further
109 investigation of gene function in ampullary organ and electroreceptor development, we moved
110 to a more experimentally tractable chondrostean with a much longer spawning season: a small
111 sturgeon, the sterlet (*Acipenser ruthenus*). Investigation of additional candidate genes from
112 the paddlefish lateral line-enriched dataset in paddlefish and sterlet identified both
113 mechanosensory-restricted and electrosensory-restricted transcription factor gene expression
114 (Modrell et al., 2017a; Minařík et al., 2024a). We recently used CRISPR/Cas9-mediated
115 mutagenesis in G0-injected sterlet embryos to identify a conserved requirement for the 'hair
116 cell' transcription factor *Atoh1* in electroreceptor formation and identified a role for
117 mechanosensory-restricted *Foxg1* in blocking ampullary organ formation within neuromast
118 lines (preprint, Minařík et al., 2024b).

119 One gene present in the paddlefish lateral line-enriched gene set was the Bmp ligand
120 gene *Bmp5* (2.5-fold enriched in late-larval paddlefish operculum versus fin tissue; Modrell et
121 al., 2017a). Here, we aimed to investigate the expression and function of *Bmp5* and Bmp
122 signalling in the formation of sterlet lateral line organs. This led to our uncovering two opposing
123 roles for Bmp signalling in ampullary organ formation.

124


125 **Results**

126

127 ***Bmp5* is expressed early in developing ampullary organs and later in neuromasts**

128 The only Bmp ligand gene in the paddlefish lateral line organ-enriched gene-set was *Bmp5*
129 (2.5-fold enriched in late-larval paddlefish operculum versus fin tissue; Modrell et al., 2017a).
130 Wholomount *in situ* hybridisation (ISH) in sterlet yolk-sac larvae from stage 37 (hatching
131 occurs at stage 36) to the onset of independent feeding at stage 45 (staging according to
132 Dettlaff et al., 1993), revealed the time-course of *Bmp5* expression relative to the maturation
133 of neuromasts and ampullary organs. The latter was shown by ISH for *Cacna1d*, encoding a
134 voltage-gated calcium channel (Ca_v1.3) expressed by differentiated hair cells and
135 electroreceptors (and taste-buds, for example on the barbels) (Modrell et al., 2017a; Minařík
136 et al., 2024a). Within each lateral line primordium, neuromasts form before ampullary organs
137 and hair cells differentiate much earlier than electroreceptors (Minařík et al., 2024a).

138 At stage 37, faint *Bmp5* expression was seen within developing gill filaments but there
139 was no detectable lateral line expression (Figure 1A,B), despite the presence of some
140 differentiated neuromasts (i.e., with *Cacna1d*-expressing hair cells; Figure 1C,D). By stage
141 40, strong *Bmp5* expression was visible in mature neuromasts as well as ampullary organ
142 primordia (Figure 1E,F; compare with *Cacna1d* expression in Figure 1G,H, which shows that
143 few electroreceptors have differentiated at this stage). At stage 42, *Bmp5* expression was
144 seen in mature ampullary organs but seemed weaker in neuromasts (Figure 1I,J; compare

Figure 1. Sterlet *Bmp5* is expressed early in developing ampullary organs and transiently in mature neuromasts. (A-R) *In situ* hybridisation in sterlet for *Bmp5* or the hair cell and electroreceptor marker *Cacna1d*, which labels mature neuromasts and ampullary organs (also expressed in taste buds on the barbels). Black arrowheads indicate examples of developing neuromasts; white arrowheads indicate examples of developing ampullary organs. **(A-D)** At stage 37, *Bmp5* expression is only detectable in developing gill filaments (A,B) although *Cacna1d*-positive neuromasts are present (C,D). **(E-H)** At stage 40, *Bmp5* is expressed in neuromasts and ampullary organ primordia (E,F); only a few *Cacna1d*-positive ampullary organs are present at this stage (G,H). **(I-L)** At stage 42, *Bmp5* is expressed in mature ampullary organs and more weakly in neuromasts (I,J); compare with *Cacna1d* expression (K,L). **(M-P)** At stage 45 (onset of independent feeding), *Bmp5* expression is weaker in ampullary organs and no longer detectable in most neuromasts (M,N); compare with *Cacna1d* expression (O,P). **(Q,R)** At stage 45 on the trunk, *Bmp5* expression is visible in primll-deposited secondary neuromasts (more strongly in more rostral neuromasts) as well as in primD and neuromasts of the dorsal line (Q). Compare with *Cacna1d* expression in all neuromasts (R): arrowheads indicate

160 examples of dorsal-line neuromasts and primll-deposited secondary neuromasts (offset a little dorsal
161 to the line of priml-deposited primary neuromasts). Low-power insets show the location of these trunk
162 regions. (S-V) Schematic depictions of sterlet lateral line organ development at similar stages (stages
163 35, 39, 41, 45), previously published in Minařík et al. (2024a). Abbreviations: app, anterior preopercular
164 ampullary organ field; b, barbel; di, dorsal infraorbital ampullary organ field; dot, dorsal otic ampullary
165 organ field; ds, dorsal supraorbital ampullary organ field; e, eye; gf, gill filaments; m, mouth; n, naris; o,
166 otic vesicle; ppp, posterior preopercular ampullary organ field; prim, migrating lateral line primordium
167 (priml, primary; primll, secondary; primD, dorsal); S, stage; st, supratemporal ampullary organ field; vi,
168 ventral infraorbital ampullary organ field; vs, ventral supraorbital ampullary organ field. Scale bar: 250
169 μm .

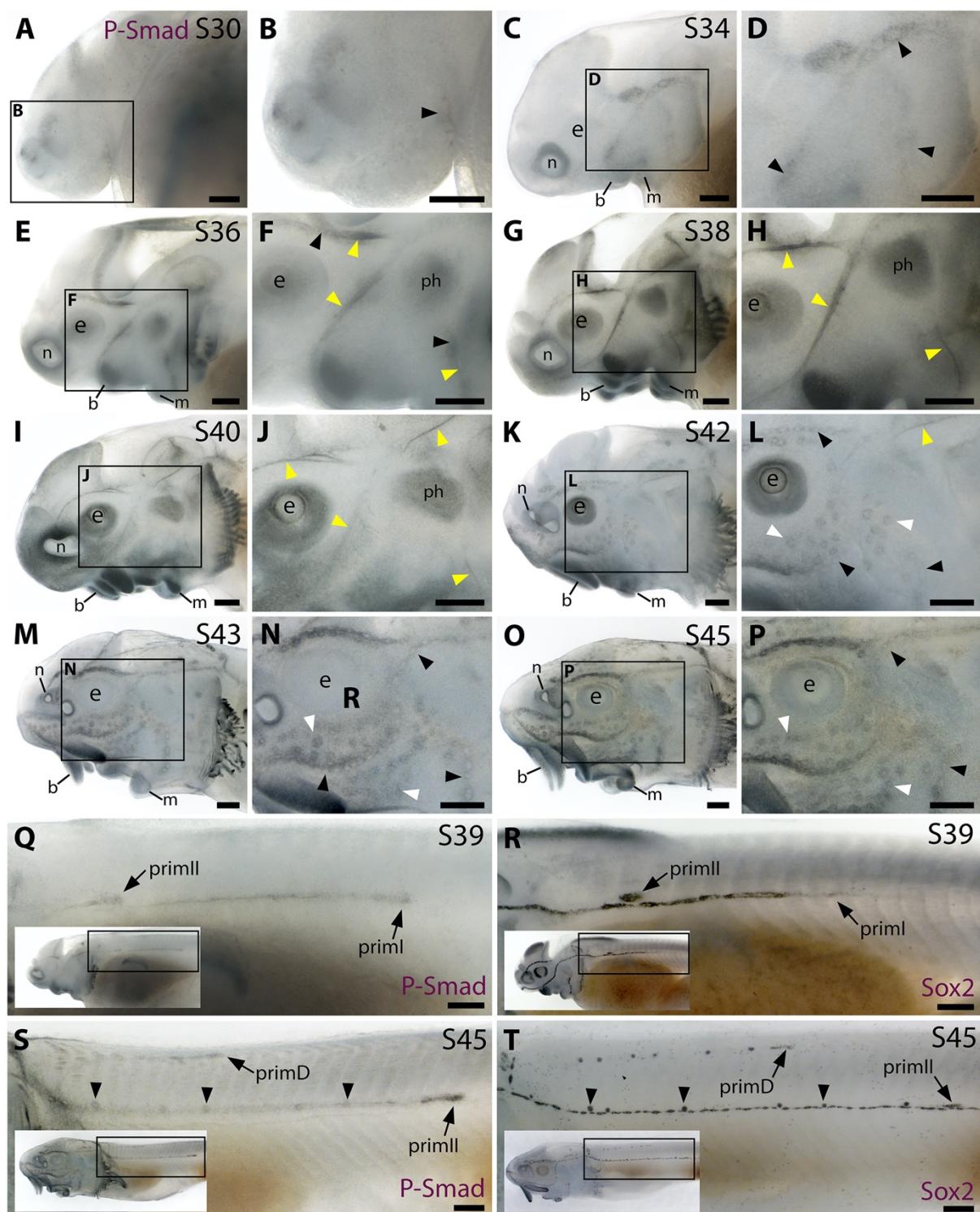
170

171 with *Cacna1d* expression in Figure 1K,L). By stage 45, *Bmp5* expression persisted in
172 ampullary organs, although this seemed weaker than at stage 40, and was no longer seen in
173 most neuromasts on the head (Figure 1M,N; compare with *Cacna1d* expression in Figure
174 1O,P). On the trunk, *Bmp5* expression was seen in a subset of regularly spaced neuromasts
175 in the main body line, as well as the dorsal line deposited by primD, with stronger expression
176 in more rostral (i.e., earlier-deposited) neuromasts (Figure 1Q; compare with *Cacna1d*
177 expression in all trunk neuromasts in Figure 1R). The *Bmp5*-expressing neuromasts in the
178 main body line are secondary neuromasts deposited by the later-migrating primll, which are
179 offset slightly dorsally to those deposited earlier by priml, which are *Bmp5*-negative (compare
180 with *Cacna1d* expression in Figure 1R; examples of primll-deposited neuromasts are
181 highlighted). Figure 1S-V show schematic summaries of cranial neuromast and ampullary
182 organ development at similar stages (from Minařík et al., 2024a).

183 Overall, these results suggest that *Bmp5* is expressed early within ampullary organ
184 primordia and maintained in mature ampullary organs at least through to the onset of
185 independent feeding at stage 45. In contrast, *Bmp5* only seems to be expressed in mature
186 neuromasts, after the onset of hair cell differentiation, and then only transiently.

187

188 **The Bmp signalling pathway is active throughout the developing sterlet lateral line 189 system**


190 To investigate where and when the Bmp signalling pathway is active during sterlet lateral line
191 organ development, we performed wholemount immunohistochemistry using an antibody
192 raised against human phospho-SMAD1/5/9 (pSMAD1/5/9; SMAD9 was formerly known as
193 SMAD8), as a proxy for Bmp signalling (Schmierer and Hill, 2007).

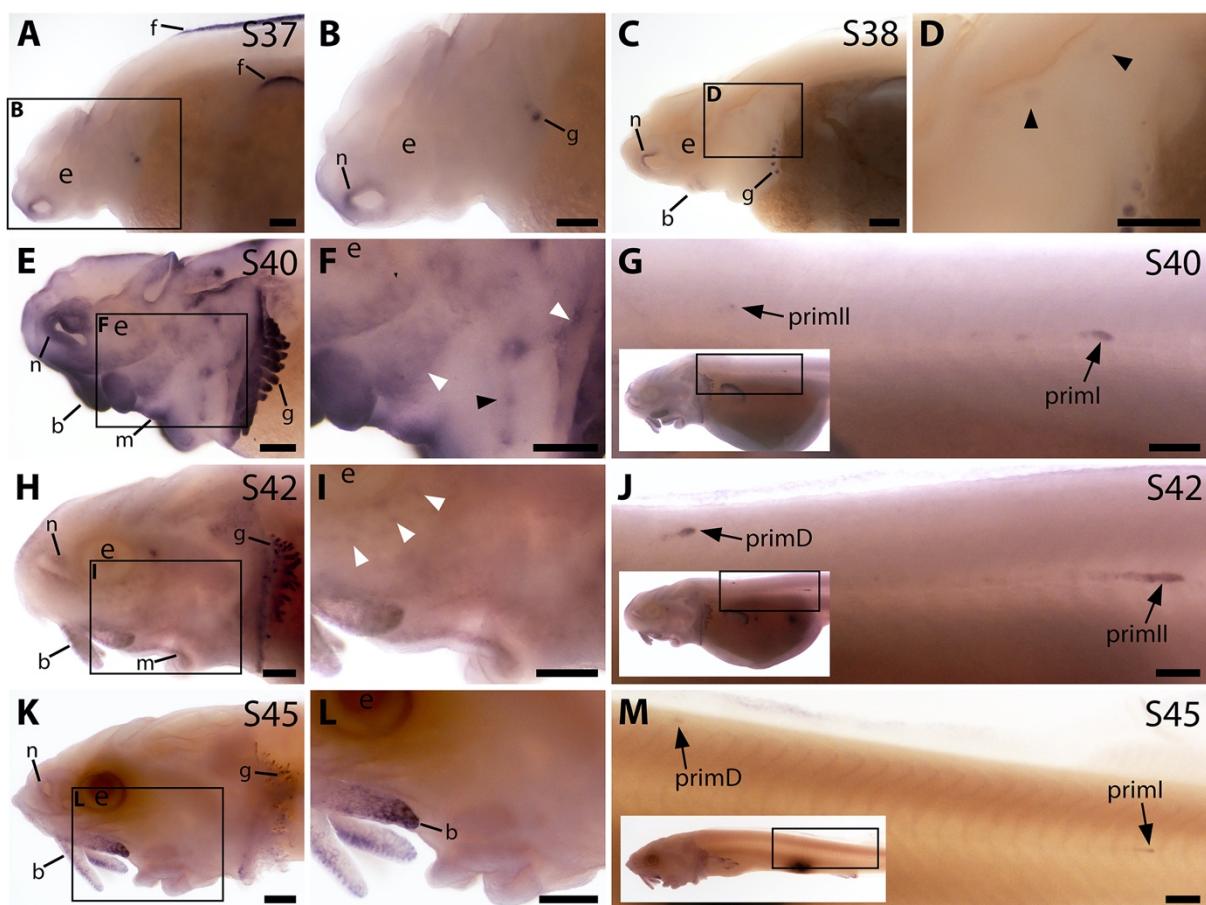
194 At stage 30 (the earliest stage examined), faint pSMAD1/5/9 immunoreactivity was
195 seen in the region of the anteroventral lateral line primordium (Figure 2A,B; compare with Sox2
196 immunoreactivity at stage 32 in Supplementary Figure S1A,B; Sox2 is expressed in lateral line
197 primordia and maintained in supporting cells; Hernández et al., 2007; Modrell et al., 2017a;
198 Minařík et al., 2024a). By stage 34, pSMAD1/5/9 immunoreactivity was detectable in lateral
199 line primordia, with a ring pattern around developing neuromast primordia in the

200 otic/anterodorsal and anteroventral primordia (Figure 2C,D; compare with stage 35 Sox2
201 expression in Supplementary Figure S1C,D). (The first *Cacna1d*-positive differentiated hair
202 cells are seen in this region at stage 35; Minařík et al., 2024a.) At stage 36 (Figure 2E,F),
203 weak pSMAD1/5/9 immunoreactivity was still seen around developing neuromasts (compare
204 with stage 37 *Cacna1d* expression in Figure 1C,D; stage 37 Sox2 immunoreactivity in
205 Supplementary Figure S1E,F), but we were intrigued to see more prominent immunoreactivity
206 in a filamentous pattern that seemed most likely to correspond to lateral line nerves (Figure
207 2E,F). This pattern continued at stages 38 and 40 (Figure 2G-J); indeed pSMAD1/5/9
208 immunoreactive collaterals seemed to be developing from the infraorbital nerve between
209 stages 38 and 40 (Figure 2G-J). At stage 40, diffuse immunoreactivity was also seen in regions
210 flanking the nerves where ampullary organ primordia are forming (Figure 2I,J; compare with
211 stage 40 *Bmp5* expression in Figure 1E,F). (Strong pSMAD1/5/9 immunoreactivity was also
212 seen in the barbel primordia, around the nares and mouth, in gill filaments, and between
213 stages 36 and 40 in a patch between the barbels and the otic vesicle that likely represents a
214 muscle, the *m. protractor hyomandibulae*; Warth et al., 2018.)

215 By stage 42, pSMAD1/5/9 immunoreactivity was visible in ampullary organs and much
216 less prominent in lateral line nerves (Figure 2K,L; compare with stage 42 Sox2 expression in
217 Supplementary Figure S1I,J). At stages 43 and 45, pSMAD1/5/9 immunoreactivity was more
218 clearly visible in neuromasts as well as ampullary organs, in all cases at the periphery rather
219 than centre of each organ (Figure 2M-P; compare with the hair cell/electroreceptor marker
220 *Cacna1d* at stage 42 in Figure 1K,L and at stage 45 in Figure 1O,P, and the supporting cell
221 marker Sox2 at stages 42 and 45 in Supplementary Figure S1I-L). This peripheral pattern of
222 pSMAD1/5/9 immunoreactivity suggests that Bmp signalling is active in supporting cells rather
223 than receptor cells. Also at stages 43 and 45, we noted that pSMAD1/5/9 immunoreactivity on
224 the head seemed to be particularly strong in the supraorbital and infraorbital neuromast lines
225 (compare with Sox2 expression at stages 42 and 45 in Supplementary Figure S1I-L).

226 pSMAD1/5/9 immunoreactivity was also prominent in the migrating lateral line
227 primordia on the trunk. At stage 39, pSMAD1/5/9 immunoreactivity was seen in primI and a
228 diffuse but somewhat continuous line trailing behind it, as well as in primII, which is located
229 much further rostrally and a little dorsal to the main line (Figure 2Q; compare with Sox2
230 expression in Figure 2R). At stage 45, strong pSMAD1/5/9 immunoreactivity was seen in primII
231 and primD, and more weakly along the path taken by primII, with increased intensity at the
232 periphery of the primII-deposited neuromasts (Figure 2S; compare with Sox2 expression in all
233 neuromasts in Figure 2T and with *Bmp5* expression in primII-deposited neuromasts in Figure
234 1Q). (For further comparison, Supplementary Figure S1M-P show the positions of the different
235 migrating primordia on the trunk via Sox2 expression at stages 38, 40, 42 and 45.)

236
237 **Figure 2. The Bmp signalling pathway is active throughout the developing lateral line system in**
238 **sterlet.** Immunostaining in sterlet. Black arrowheads indicate examples of developing neuromasts;
239 white arrowheads indicate examples of developing ampullary organs; yellow arrowheads indicate lateral
240 line nerves. (A-P) Immunoreactivity on the head for phospho-SMAD1/5/9 (P-Smad) as a proxy for Bmp
241 signalling activity. At stage 30 (A,B), weak immunoreactivity is seen in the region of the anteroventral
242 lateral line primordium and by stage 34 (C,D) in lateral line primordia, with a ring pattern around
243 developing neuromast primordia. At stages 36-40 (E-J), immunoreactivity is weak around developing
244 neuromasts and prominent in lateral line nerves (yellow arrowheads). At stage 40 (I,J), diffuse
245 immunoreactivity is also seen in regions flanking the nerves where ampullary organ primordia are
246 forming. Non-lateral line immunoreactivity is present around the mouth and nares, in barbel primordia,


247 gill filaments, and a patch that is most likely the developing muscle *m. protractor hyomandibulae*.
248 Between stages 42 and 45 (K-P), immunoreactivity disappears in lateral line nerves and is increasingly
249 detected at the periphery of ampullary organs and neuromasts (strongly in supraorbital and infraorbital
250 neuromast lines). (Q-T) Immunostaining on the trunk (boxes on low-power insets indicate the location
251 of the trunk regions shown). At stage 39 (Q,R), pSMAD1/5/9 immunoreactivity is seen in primI and a
252 diffuse trail behind it, and in primII (Q). For comparison, Sox2 is expressed weakly in primI and strongly
253 in primI-deposited neuromasts and interneuromast cells, plus primII (R). At stage 45 (S,T), pSMAD1/5/9
254 immunoreactivity is seen in primD and primII plus a weak trail behind it, with greater intensity at the
255 periphery of primII-deposited neuromasts (S). For comparison, Sox2 expression is strong in primII,
256 primD and all neuromasts; arrowheads indicate examples of primII-deposited neuromasts (T).
257 Abbreviations: b, barbel; e, eye; f, fin; g, gill filaments; m, mouth; n, naris; ph, *m. protractor*
258 *hyomandibulae*; prim, migrating lateral line primordium (primI, primary; primII, secondary; primD,
259 dorsal); S, stage. Scale bar: 250 μ m.
260

261 Overall, these data suggest that Bmp signalling is active throughout lateral line
262 development in the sterlet, including lateral line organ primordia and even lateral line nerves,
263 and later at the periphery of maturing ampullary organs and neuromasts, suggesting activity
264 in supporting cells rather than receptor cells.
265

266 ***Bmp4* is also expressed during sterlet lateral line organ development**

267 *Bmp5* was the only gene encoding a Bmp ligand or receptor in the late-larval paddlefish lateral
268 line-enriched gene-set (Modrell et al., 2017a). However, the timecourse and pattern of
269 pSMAD1/5/9 immunoreactivity in the developing sterlet lateral line system was more extensive
270 than *Bmp5* expression (compare Figures 1 and 2), suggesting other Bmp ligands must be
271 expressed that were not enriched in the transcriptome of late-larval paddlefish operculum
272 versus fin tissue (Modrell et al., 2017a). We therefore searched the pooled larval sterlet
273 transcriptome that was available to us at the time, for additional Bmp pathway ligand and
274 receptor genes for cloning and ISH. This enabled us to examine the expression of the ligand
275 gene *Bmp4* and the type II receptor gene *Acvr2a*. Indeed, after these experiments were
276 underway, a lateral line organ-enriched gene-set from stage 45 Siberian sturgeon (*Acipenser*
277 *baerii*) was published that included *Bmp4* as well as *Bmp5* (Wang et al., 2020).

278 *Bmp4* expression was not evident in the developing sterlet lateral line at stage 37 or
279 stage 38 (Figure 3A-D); the very faint expression in two widely spaced dorsal patches at stage
280 38 may be sensory patches in the otic vesicle (Figure 3C,D), or may represent early-forming
281 neuromast primordia in the otic and supratemporal lines (see Gibbs and Northcutt, 2004).
282 Stronger expression was also seen in fin, barbel and gill filament primordia, and around the
283 nares (Figure 3A-D). By stage 40, diffuse *Bmp4* expression was observed in neuromast
284 regions and fields of ampullary organ primordia on the head (Figure 3E,F; compare with *Bmp5*
285 and *Cacna1d* expression in Figure 1E-H). Stronger expression was also seen on the trunk in
286 primI, with much weaker expression in the most recently deposited neuromasts near to the
287 primordium, plus a spot that most likely represents primII (Figure 3G; compare with stage 40

288
289 **Figure 3. *Bmp4* is expressed transiently during sterlet lateral line organ development.** *In situ*
290 hybridisation in sterlet for *Bmp4*. Black arrowheads indicate examples of neuromast regions; white
291 arrowheads indicate examples of ampullary organ regions. For images of the trunk, boxes on low-power
292 insets delineate the location of the trunk regions shown. (A,B) At stage 37, *Bmp4* is not expressed in
293 lateral line regions, although it is present around the nares and in fins and gill-filament primordia. (C,D)
294 At stage 38, two dorsal spots of weak *Bmp4* expression may represent sensory patches in the otic
295 vesicle or early-forming neuromast primordia in the otic and supratemporal lines. Expression is also
296 present in the gills, nares and barbel primordia. (E-G) At stage 40, expression is seen on the head in
297 neuromast regions and fields of ampullary organ primordia (E,F; compare with *Bmp5* and *Cacna1d*
298 expression in Figure 1E-H). On the trunk, *Bmp4* is expressed in priml and the most recently deposited
299 neuromasts behind it, and in primll (G). (H-J) At stage 42, *Bmp4* expression on the head has largely
300 disappeared (H,I), apart from weak expression in the dorsal infraorbital field (arrowheads in I), although
301 expression is still seen in gill filaments and barbels. On the trunk, expression is seen in primD and primll
302 (J). (K-M) At stage 45, no lateral line expression is seen on the head (K,L), though weak expression
303 persists in primD and primll on the trunk (M). Abbreviations: b, barbel; e, eye; f, fin; g, gill filaments; m,
304 mouth; n, nariss; prim, migrating lateral line primordium (priml, primary; primll, secondary; primD, dorsal);
305 S, stage. Scale bar: 250 μ m.

306
307 Sox2 expression on the trunk in Supplementary Figure S1N). At stage 42, *Bmp4* expression
308 in lateral line regions on the head was almost gone, with only faint expression remaining in
309 the dorsal infraorbital ampullary organ field, just below the eye (Figure 3H,I). However, strong
310 expression was seen in primll and primD on the trunk (Figure 3J; compare with stage 42 Sox2
311 expression in Supplementary Figure S1O). By stage 45, *Bmp4* was no longer expressed in
312 lateral line regions on the head, although expression remained in the barbels and gills (Figure

313 3K-L). As at stages 40 and 42, the migrating lateral line primordia on the trunk still expressed
314 *Bmp4* at stage 45 (Figure 3M; compare with stage 45 *Sox2* expression in Supplementary
315 Figure S1P).

316 These data suggest that *Bmp4* likely plays a more transient role than *Bmp5* in lateral
317 line organ development. Furthermore, most likely an as-yet unidentified Bmp ligand gene is
318 expressed in lateral line primordia before either *Bmp5* or *Bmp4*, given that pSMAD1/5/9
319 immunoreactivity was detectable in lateral line primordia at stage 34 (Figure 2C,D).

320 The only Bmp receptor gene we examined was *Acvr2a*, encoding ActRIIA (activin A
321 receptor type 2A), a type II Bmp receptor that promiscuously binds multiple ligands including
322 *Bmp5* and *Bmp4* (Yadin et al., 2016). *Acvr2a* was not expressed at stage 37 (Supplementary
323 Figure S2A,B), so other receptors must be involved in mediating Bmp signalling in lateral line
324 primordia at this and earlier stages (see, for example, pSMAD1/5/9 immunoreactivity at stage
325 34 and stage 36; Figure 2C-F). By stage 38, although background levels were high, *Acvr2a*
326 expression was detectable in developing neuromast regions (Supplementary Figure S2C,D).
327 By stage 40, *Acvr2a* was expressed at the periphery of ampullary organ primordia and
328 neuromasts on the head (Supplementary Figure S2E,F; compare with stage 40 *Bmp5* and
329 *Cacna1d* expression in Figure 1E-H, and with stage 39 *Sox2* expression in Supplementary
330 Figure S1G,H). Also at stage 40, *Acvr2a* was expressed in primI and a trailing line of cells
331 behind it, plus a spot most likely representing primII (Supplementary Figure S2G). This pattern
332 persisted in both the head and trunk at stage 42, with expression now also seen primD and in
333 the rostral trunk neuromasts deposited by primII (Supplementary Figure S2H-J). By stage 45,
334 *Acvr2a* expression appeared to be fading on the head, with only faint expression at the
335 periphery of ampullary organs in a few areas (Supplementary Figure S2K,L). However,
336 expression continued in the trunk neuromast lines (Supplementary Figure S2M). Overall, the
337 *Acvr2a* expression pattern does not fully complement either *Bmp5* or *Bmp4* expression
338 (compare with Figures 1 and 3, respectively), or pSMAD1/5/9 immunoreactivity (Figure 2).
339 Hence, other type II receptor(s), as well of course as type I receptors, must be involved.
340

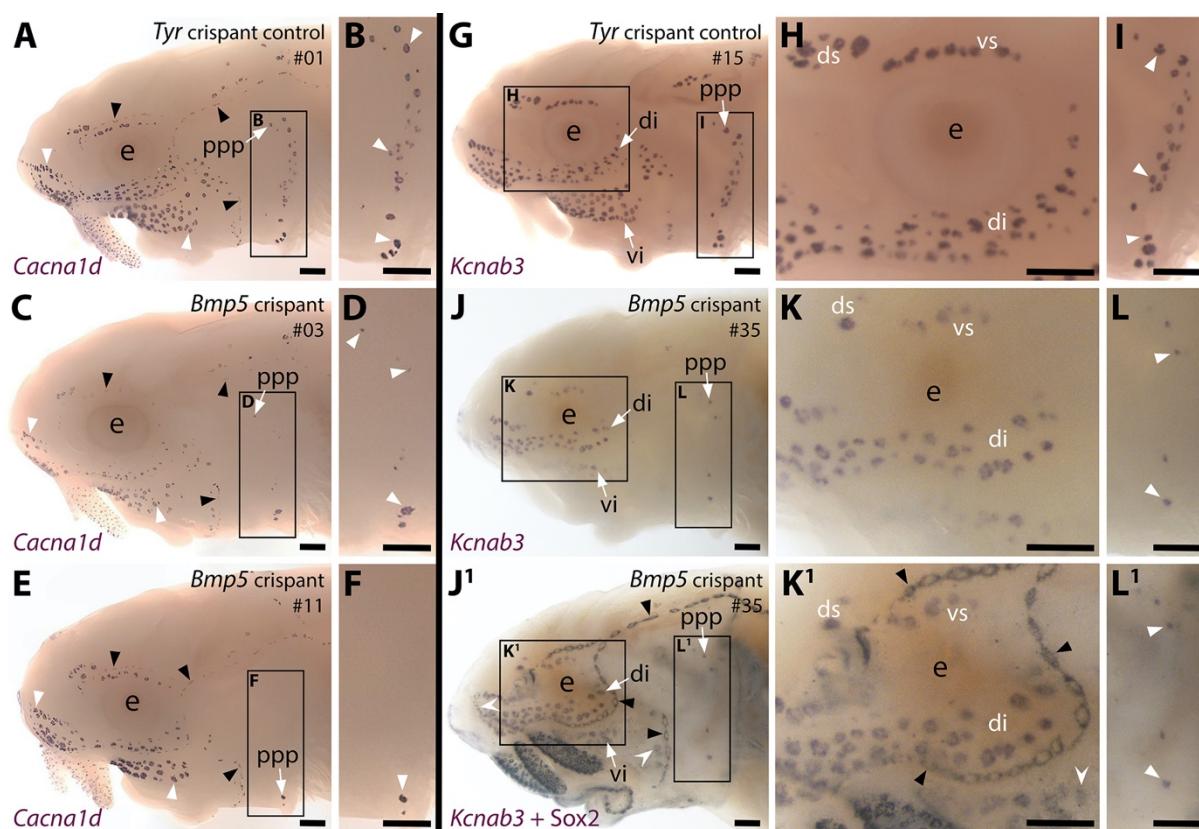
341 ***Sostdc1* and *Apcdd1*, encoding secreted dual Bmp/Wnt inhibitors, are expressed
342 during sterlet lateral line organ development**

343 Three genes encoding secreted Bmp inhibitors were present in the late-larval paddlefish
344 lateral line-enriched gene-set (Modrell et al., 2017a): *Sostdc1*, *Apcdd1* and *Vwr2*. *Vwc2* was
345 4.5-fold lateral line-enriched (Modrell et al., 2017a), but ISH for this gene in sterlet was
346 unsuccessful so it is not considered further.

347 *Sostdc1* (sclerostin domain-containing 1; also known as Wise, Ectodin) is a secreted
348 antagonist of both the Bmp and Wnt pathways (Tong et al., 2022). *Sostdc1* was 4.2-fold
349 enriched in late-larval paddlefish operculum versus fin tissue (Modrell et al., 2017a). From

350 stage 36 onwards, *Sostdc1* expression was seen in lines of differentiated neuromasts (and in
351 gill filament primordia) on the head, and from stage 40 onwards, in the migrating primordia
352 and neuromasts on the trunk (Supplementary Figure S3A-M; compare with *Cacna1d*
353 expression in Figure 1 and *Sox2* expression in Supplementary Figure 1E-P). At stage 42,
354 *Sostdc1* expression was also detected in ampullary organs (Supplementary Figure S3H,I), but
355 this had already disappeared by stage 45 (Supplementary Figure S3K,L). These data suggest
356 *Sostdc1* plays a persistent role within neuromasts, but any function in ampullary organ
357 development is likely to be transient.

358 *Apcdd1* (adenomatosis polyposis coli down-regulated 1) is also a secreted inhibitor of
359 both the Bmp and Wnt pathways (Vonica et al., 2020). *Apcdd1* was 2.2-fold enriched in late-
360 larval paddlefish operculum versus fin tissue (Modrell et al., 2017a). At stage 36, *Apcdd1* was
361 not expressed in differentiated neuromast lines (Supplementary Figure S4A,B), in contrast to
362 *Sostdc1* at the same stage (Supplementary Figure S3A,B). However, there was some *Apcdd1*
363 expression in the region of the preopercular neuromast line, as well as outside the lateral line
364 system: at the edge of the operculum, near the future barbel region and around the mouth
365 (Supplementary Figure S4A,B). At stage 38, more diffuse *Apcdd1* expression was seen in
366 broader regions (Supplementary Figure S4C,D). By stage 40, expression was visible around
367 ampullary organ primordia and some neuromasts on the head (Supplementary Figure S4E,F),
368 as well as primI and primII on the trunk and a relatively short line of trailing cells behind primI
369 (Supplementary Figure S4G). By stage 42, *Apcdd1* expression on the head had largely
370 resolved to the periphery of ampullary organs and neuromasts (Supplementary Figure S4H,I;
371 compare with stage 42 *Sox2* expression in Supplementary Figure S1I,J) and continued in the
372 migrating primordia on the trunk and the short line of trailing cells behind primI (Supplementary
373 Figure S4J). At stage 45, this expression pattern largely persisted, although it seemed to be
374 fading in the ventral infraorbital field (Supplementary Figure S4K,L) and faint expression was
375 also now seen along the main body line, potentially at the periphery of trunk neuromasts
376 (Supplementary Figure S4M; compare with stage 45 *Sox2* expression on the trunk in
377 Supplementary Figure S1P).


378 These data, especially the early, broad expression within ampullary organ fields and
379 seemingly very late upregulation in neuromasts, suggest that *Apcdd1* may be more important
380 for ampullary organ development. In contrast, the pattern of *Sostdc1* expression
381 (Supplementary Figure S3) suggests its role may be more prominent during neuromast
382 development. However, given the ability of *Apcdd1* and *Sostdc1* to inhibit both the Bmp and
383 Wnt pathways (Tong et al., 2022; Veronica et al., 2020), we cannot be sure which of these
384 pathway(s) either of these proteins may be antagonising during sterlet lateral line organ
385 development.

386

387 **CRISPR/Cas9-mediated targeting of *Bmp5* results in fewer ampullary organs forming**
388 Having established that the Bmp signalling pathway is active throughout lateral line organ
389 development and that genes encoding two Bmp ligands, a type II receptor and two secreted
390 dual Bmp/Wnt antagonists are expressed, we wanted to explore the role of Bmp signalling in
391 lateral line development. *Bmp5* was chosen as a target for CRISPR/Cas9-mediated
392 mutagenesis in G0-injected sterlet embryos owing to its earlier expression in ampullary organ
393 primordia. We recently published our approach to CRISPR/Cas9 in sterlet (preprint, Minařík
394 et al., 2024b). The experiments reported here were undertaken at the same time as those
395 reported in Minařík et al. (2024b, preprint). Different 1-2 cell embryos from some of the same
396 batches were injected with Cas9 protein complexed with different combinations of single-guide
397 (sg) RNAs targeting *Bmp5*. Embryos targeted for the melanin-producing enzyme gene
398 *tyrosinase* (*Tyr*) were used as negative controls: this yields a visible phenotype (i.e., defects
399 in pigmentation), but should not affect other developmental processes (preprint, Minařík et al.,
400 2024b).

401 Our *Bmp5* sgRNAs (Table 1; Figure 4A) were designed before the first chromosome-
402 level sterlet genome was published (Du et al., 2020). Analysis of this genome showed that,
403 rather than being functionally diploid as previously thought (from microsatellite data; Ludwig
404 et al., 2001), the sterlet genome has retained a high level of tetraploidy, including around 70%
405 of ohnologs (i.e., gene paralogs resulting from the independent whole-genome duplication in
406 the sterlet lineage) (Du et al., 2020). Searching the reference genome (Vertebrate Genomes
407 Project NCBI RefSeq assembly GCF_902713425.1) for *Bmp5* showed that both *Bmp5*
408 ohnologs have been retained, on chromosomes 5 and 6, with 88.87% nucleotide identity in
409 the coding sequence (and 95.60% amino acid identity). All of our *Bmp5* sgRNAs fully match
410 the ohnolog on chromosome 6. Relative to the ohnolog on chromosome 5, sgRNAs 2 and 4
411 (Table 1; Figure 4A) each have a single-base mismatch, respectively, in positions 7 and 4 of
412 the target sequence (PAM-distal), which should be tolerated (Guo et al., 2014; Rabinowitz and
413 Offen, 2021). However, our sgRNA 1 (Table 1; Figure 4A) has two mismatched bases (at
414 positions 3 and 12 of the target sequence) and sgRNA 3 (Table 1; Figure 4A) has a single-
415 base mismatch at position 20, adjacent to the PAM. Therefore, although we expect all our
416 sgRNAs to target the chromosome 6 ohnolog, it is possible that only sgRNAs 2 and 4
417 successfully target the chromosome 5 ohnolog (Guo et al., 2014; Rabinowitz and Offen, 2021).
418 Nevertheless, given that all combinations of injected sgRNAs contained either sgRNA 2 or
419 sgRNA 4 (Table 1; Supplementary Table S1) we expect all mixtures to have targeted both
420 *Bmp5* ohnologs.

421 We targeted *Bmp5* using four different sgRNAs targeting exon 1 (Table 1;
422 Supplementary Figure S5A), injected in three different combinations of 2-3 different sgRNAs
423 across two independent batches of 1-2 cell-stage embryos (Supplementary Table S1). The

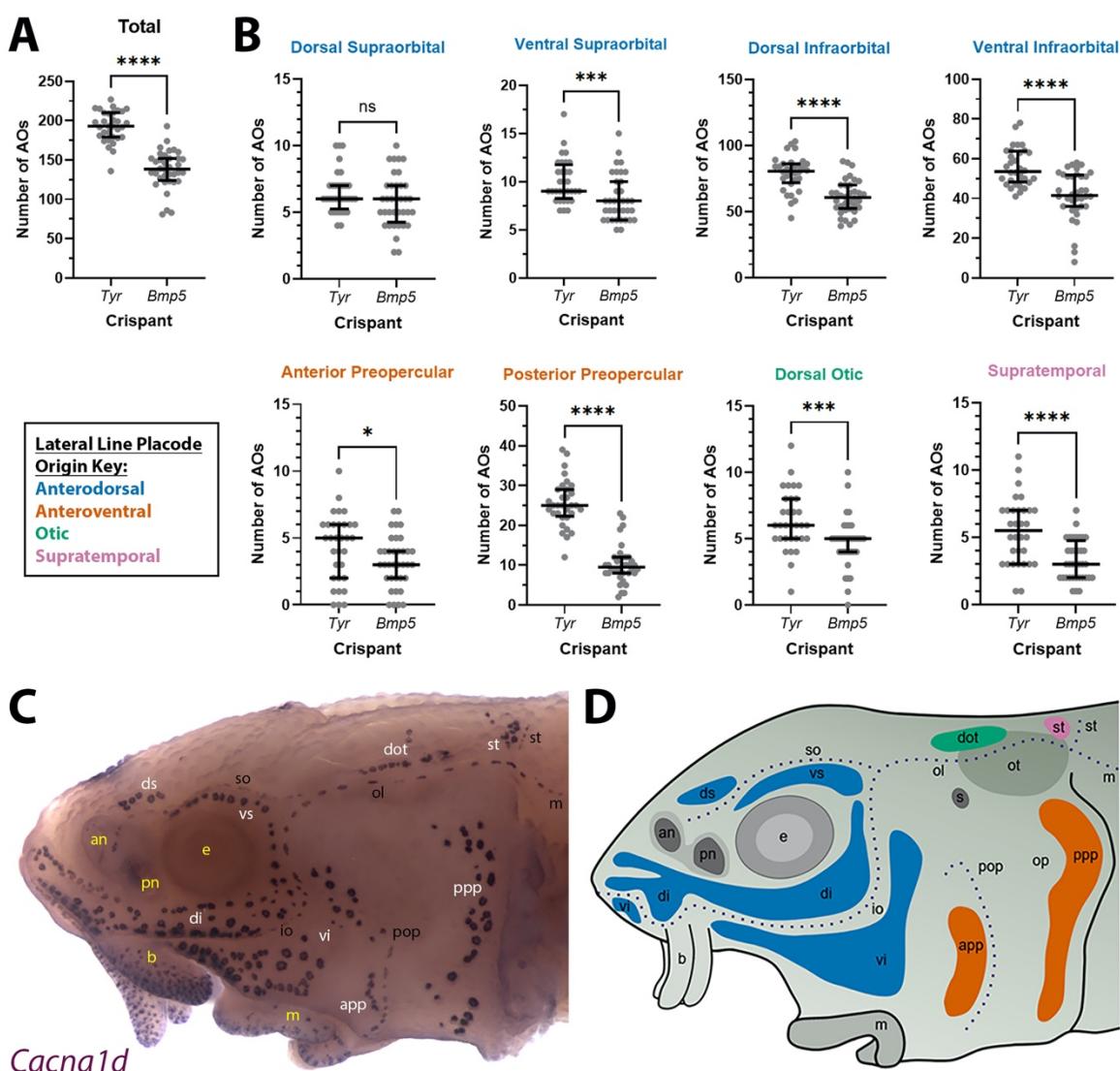
Figure 4. CRISPR/Cas9-mediated targeting of *Bmp5* leads to fewer ampullary organs developing.

Sterlet crispants at stage 45 after *in situ* hybridisation (ISH) for the hair cell and electroreceptor marker *Cacna1d* (also expressed in taste buds on the barbels) or the electroreceptor-specific marker *Kcnab3*. All crispants shown are from the same batch of siblings/half-siblings (*in vitro* fertilisation used a mix of sperm from three different males). Black arrowheads indicate examples of neuromasts; white arrowheads indicate examples of ampullary organs. Crispants are numbered for cross-referencing with data provided for each crispant in Supplementary Table S2. (A,B) In a control *Tyr* crispant, *Cacna1d* expression shows the normal pattern of neuromast lines flanked by fields of ampullary organs. The higher power view shows the posterior preopercular ampullary organ field. (C-F) In *Bmp5* crispants, *Cacna1d* expression reveals fewer ampullary organs (compare C,E with A); this phenotype is particularly prominent in the posterior preopercular ampullary organ field (compare D,F with B). (G-I) In a control *Tyr* crispant, electroreceptor-specific *Kcnab3* expression shows the normal distribution of ampullary organs. (J-L1) In a *Bmp5* crispant, *Kcnab3* expression shows fewer ampullary organs (compare J-L with G-I). Post-ISH *Sox2* immunostaining for supporting cells (J¹,K¹,L¹) demonstrates that neuromasts have formed normally. Very few "additional" ampullary organs appeared (i.e., *Sox2*-positive, *Kcnab3*-negative ampullary organs: compare J¹,K¹,L¹ with I,J,K); examples are indicated with indented white arrowheads. (Non-lateral line *Sox2* expression is also seen in gill filaments and in taste buds on the barbels and around the mouth.) Abbreviations: di, dorsal infraorbital ampullary organ field; ds, dorsal supraorbital ampullary organ field; e, eye; ppp, posterior preopercular ampullary organ field; S, stage; vi, ventral infraorbital ampullary organ field; vs, ventral supraorbital ampullary organ field. Scale bar: 250 μ m.

Bmp5-targeted embryos (hereafter 'crispants') were raised to stage 45 (the onset of independent feeding, approximately 14 days post-fertilisation, dpf). ISH for the hair cell/electroreceptor marker *Cacna1d* (Modrell et al., 2017a; Minařík et al., 2024a) was used to visualise mature neuromasts and ampullary organs (i.e., differentiated hair cells and electroreceptors). Ampullary organ numbers in different fields vary considerably across

452 individual larvae even in wild-types, but relative to *Tyr* crispants (n=0/30; Figure 4A,B;
453 Supplementary Table S1), we observed a mosaic reduction in *Cacna1d* expression in
454 ampullary organ fields in 46% of *Bmp5* crispants (n=53/116; Figure 4C-F; Supplementary
455 Table S1). The efficacy of different sgRNA combinations varied significantly: injecting sgRNAs
456 2,3 led to fewer ampullary organs in 78% of cases (n=28/36; Supplementary Table S1) versus
457 39% for sgRNAs 1,2,3 (n=16/41) and 23% for sgRNAs 1,4 (n=9/39; Supplementary Table S1).

458 To confirm that our sgRNAs targeted the *Bmp5* locus, we genotyped 43 of the
459 phenotypic *Bmp5* crispants by amplifying the sgRNA-targeted region from trunk/tail genomic
460 DNA by PCR for direct Sanger sequencing. The nature and frequency of edits were analysed
461 by subjecting the Sanger sequence data to *in silico* analysis using Synthego's online 'Inference
462 of CRISPR Edits' (ICE) tool (Conant et al., 2022; also see, for example, Uribe-Salazar et al.,
463 2022). Supplementary Figure S5B shows a control *Tyr* crispant after ISH for *Cacna1d*, for
464 comparison with two of the genotyped *Bmp5* crispants (Supplementary Figure S5C,D).
465 Supplementary Figure S5E-I show examples of ICE output data revealing successful
466 disruption of *Bmp5*; Supplementary Table S2 shows the ICE scores for each crispant
467 analysed. Of the 43 genotyped crispants, 33 had a positive "knock-out" score, confirming
468 successful disruption of the targeted gene (Supplementary Table S2). Our genotyping primers
469 were designed before chromosome-level sterlet genomes were available; comparison with the
470 reference genome (NCBI RefSeq assembly GCF_902713425.1) showed that only the
471 chromosome 6 ohnolog can be amplified, owing to mismatches with the chromosome 5
472 ohnolog (primarily because the reverse primer targeted an intron). This, combined with
473 crispant mosaicism, may explain why the ICE knock-out score was zero for ten *Bmp5* crispants
474 that nevertheless displayed the phenotype of reduced number of ampullary organs.


475 To examine the disruption in ampullary organ formation further, 15 control *Tyr* crispants
476 and 13 *Bmp5* crispants (six injected with sgRNAs 2,3 and seven injected with sgRNAs 1,4;
477 Supplementary Table S1) were subjected to ISH for the electroreceptor-specific marker
478 *Kcnab3* (Modrell et al., 2017a; Minařík et al., 2024a). Relative to control *Tyr* crispants (Figure
479 4G-I), this confirmed the reduction in ampullary organ number when there was no possibility
480 of confusing the two sensory organ types (Figure 4J-L). The same crispants were then
481 immunostained post-ISH for the supporting cell marker *Sox2* (Hernández et al., 2007; Modrell
482 et al., 2017a), which labels neuromasts more strongly than ampullary organs (Modrell et al.,
483 2017a; Minařík et al., 2024a) and revealed no obvious phenotype in the number and
484 morphology of neuromasts (Figure 4J¹,K¹,L¹; compare with Figure 4J,K,L). Furthermore, very
485 few "additional" ampullary organs appeared after *Sox2* immunostaining (Figure J¹,K¹,L¹;
486 compare with Figure 4J,K,L), suggesting that disrupting the *Bmp5* gene prevented ampullary
487 organ formation, rather than blocking the later differentiation of *Kcnab3*-positive
488 electroreceptors within ampullary organs.

489 Given the normal variation seen in ampullary organ number in different fields across
490 individual larvae, we wished to test whether the qualitative phenotype of reduced ampullary
491 organ number was statistically significant. We counted all the ampullary organs in each of the
492 eight different fields on one side of the head of 36 phenotypic *Bmp5* crispants after ISH for
493 *Cacna1d* or *Kcnab3*, and 32 control *Tyr* crispants after ISH for *Cacna1d*. The raw counting
494 data are provided in Supplementary Table S2. Statistical analysis using a two-tailed Mann-
495 Whitney (Wilcoxon rank sum) test revealed that *Bmp5* crispants had significantly fewer
496 ampullary organs overall than *Tyr* control crispants ($P<0.0001$; Figure 5A). Indeed, all
497 ampullary organ fields except for the dorsal supraorbital field (one of the smaller fields) had
498 significantly fewer ampullary organs in *Bmp5* crispants versus control *Tyr* crispants (Figure
499 5B). Figure 5C,D show the location of each of the ampullary organ fields; the colour-coded
500 schematic in Figure 5D also identifies their different lateral line placode origins (based on
501 Gibbs and Northcutt, 2004). The dorsal supraorbital field originates from the anterodorsal
502 lateral line placode, which also gives rise to the ventral supraorbital and the dorsal and ventral
503 infraorbital fields, all of which had significantly fewer ampullary organs in *Bmp5* crispants
504 versus control *Tyr* crispants ($P=0.0008$, $P<0.0001$ and $P<0.0001$, respectively; two-tailed
505 Mann-Whitney test; Figure 5B). Thus, the lack of effect in the dorsal supraorbital field may
506 simply reflect the relatively small number of ampullary organs (although this is not the smallest
507 field).

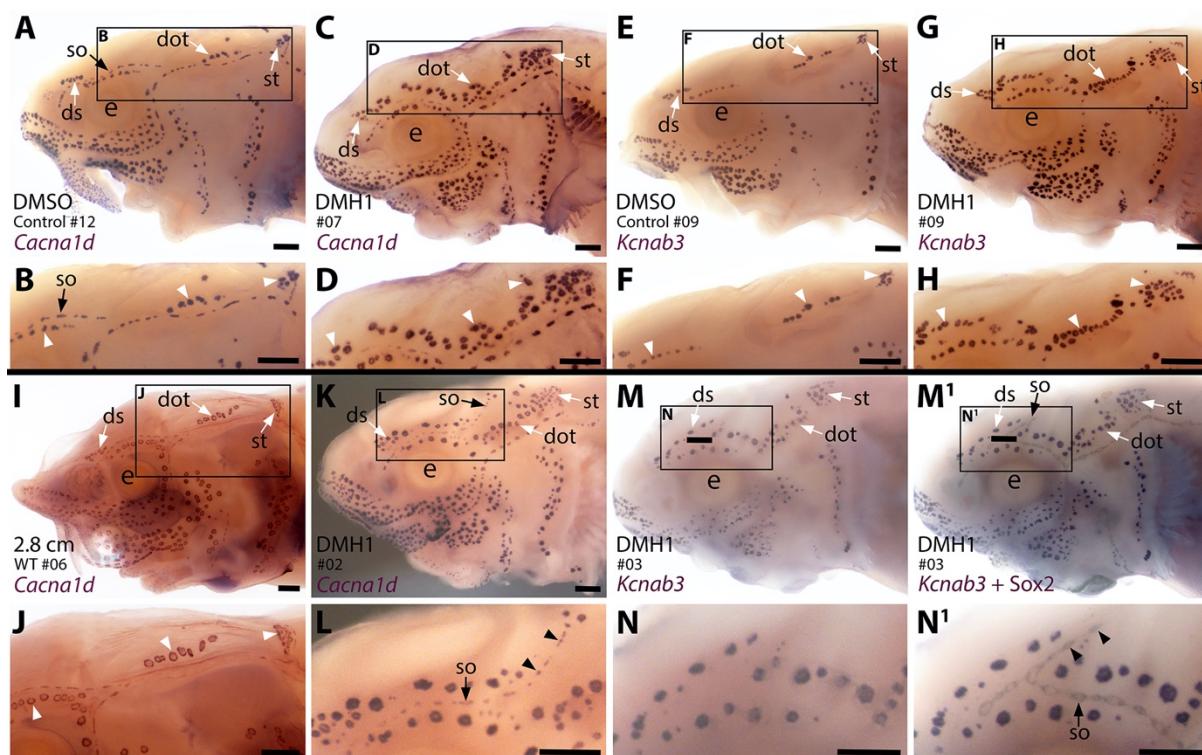
508 Overall, these data show that CRISPR/Cas9-mediated targeting of *Bmp5* in G0-
509 injected embryos led to significantly fewer ampullary organs developing in almost all fields.
510 This suggests that *Bmp5*, which is expressed in ampullary organ primordia as well as in
511 mature ampullary organs (Figure 1), normally acts to promote ampullary organ formation.
512

513 **Blocking Bmp signalling prior to ampullary organ formation results in supernumerary 514 and ectopic ampullary organs**

515 To explore the effect on ampullary organ development of blocking the Bmp pathway more
516 generally than disrupting a specific ligand gene, we used a highly selective small-molecule
517 Bmp inhibitor, DMH1 (dorsomorphin homolog 1) (Hao et al., 2010; Cross et al., 2011). We
518 treated stage 36 (newly hatched) sterlet yolk sac larvae with DMH1 for 20 hours, by which point
519 (at 16 °C) they will have reached approximately stage 38, i.e., just prior to the onset of
520 ampullary organ development (ISH for *Eya4* showed that ampullary organ primordia are
521 present in all the main fields by stage 39; Minařík et al., 2024a). In comparison to DMSO
522 controls ($n=12$), more ampullary organs had formed by stage 45 in all DMH1-treated larvae
523 ($n=17/17$), as visualised by ISH for the hair cell/electroreceptor marker *Cacna1d* (Figure 6A-
524 D; $n=8$) or for electroreceptor-specific *Kcnab3* (Figure 6E-H; $n=9$).

525
526 **Figure 5. Bmp5 crispants have significantly fewer ampullary organs than control Tyr crispants.**
527 (A) Scatter plot showing median and interquartile range for the total number of ampullary organs on
528 one side of the head at stage 45 in *Bmp5* sterlet crispants (counted after *in situ* hybridisation [ISH] for
529 *Cacna1d* or *Kcnab3*; n=36) versus control *Tyr* crispants (counted after ISH for *Cacna1d*; n=32). *Bmp5*
530 crispants have significantly fewer ampullary organs overall than control *Tyr* crispants ($P<0.0001$; two-
531 tailed Mann-Whitney test). Supplementary Table S2 provides the sgRNA combination, injection batch
532 and raw counts for each crispant. All the *Bmp5* crispants and 20 of the *Tyr* crispants used for statistical
533 analysis were from the same batch. (B) Scatter plots showing median and interquartile range for the
534 number of ampullary organs in each individual ampullary organ field on one side of the head at stage
535 45 in *Bmp5* crispants (n=36) versus control *Tyr* crispants (n=32). The raw counts are provided in
536 Supplementary Table S2. For the location of each field, see panel C (*Cacna1d* expression) and panel
537 D (schematic). Scatter plots are grouped with differently coloured titles according to lateral line placode
538 (LLp) origin, following Gibbs and Northcutt (2004): blue, anterodorsal LLp (supraorbital and infraorbital
539 fields); orange, anteroventral LLp (preopercular fields); green, otic LLp (dorsal otic field); pink,
540 supratemporal LLp (supratemporal field). All fields except the dorsal supraorbital field have significantly
541 fewer ampullary organs in *Bmp5* crispants versus control *Tyr* crispants (two-tailed Mann-Whitney tests).
542 Symbols on plots represent P values: ns, not significant, $P>0.05$; *, $P\leq 0.05$; **, $P\leq 0.001$; ***, $P\leq 0.0001$.
543 Dorsal supraorbital: not significant, $P=0.1207$. Ventral supraorbital: $P=0.0008$. Dorsal infraorbital:
544 $P<0.0001$. Ventral infraorbital: $P<0.0001$. Anterior preopercular: $P=0.0466$. Posterior preopercular:
545 $P<0.0001$. Dorsal otic: $P=0.0008$. Supratemporal: $P<0.0001$. (C) Stage 45 sterlet head after ISH for the

546 hair cell and electroreceptor marker *Cacna1d* (also expressed in taste buds on the barbels). Labels are
547 white for ampullary organ fields; black for neuromast lines; yellow for anatomical landmarks. (D)
548 Schematic of a stage 45 sterlet larval head. Ampullary organ fields are represented by coloured patches
549 flanking the neuromast lines, which are represented as dotted lines. The different field colours indicate
550 their lateral line placode origin (consistent with scatter plot titles in B). Abbreviations for ampullary organ
551 fields: app, anterior preopercular; di, dorsal infraorbital; dot, dorsal otic; ds, dorsal supraorbital; ppp,
552 posterior preopercular; st, supratemporal; vi, ventral infraorbital; vs, ventral supraorbital. Abbreviations
553 for neuromast lines: io, infraorbital; m, middle; ol, otic; pop, preopercular; so, supraorbital; st,
554 supratemporal. Abbreviations for anatomical landmarks: an, anterior naris; b, barbel; e, eye; m, mouth;
555 op, operculum; ot, otic vesicle; pn, posterior naris; s, spiracle (first gill cleft).
556

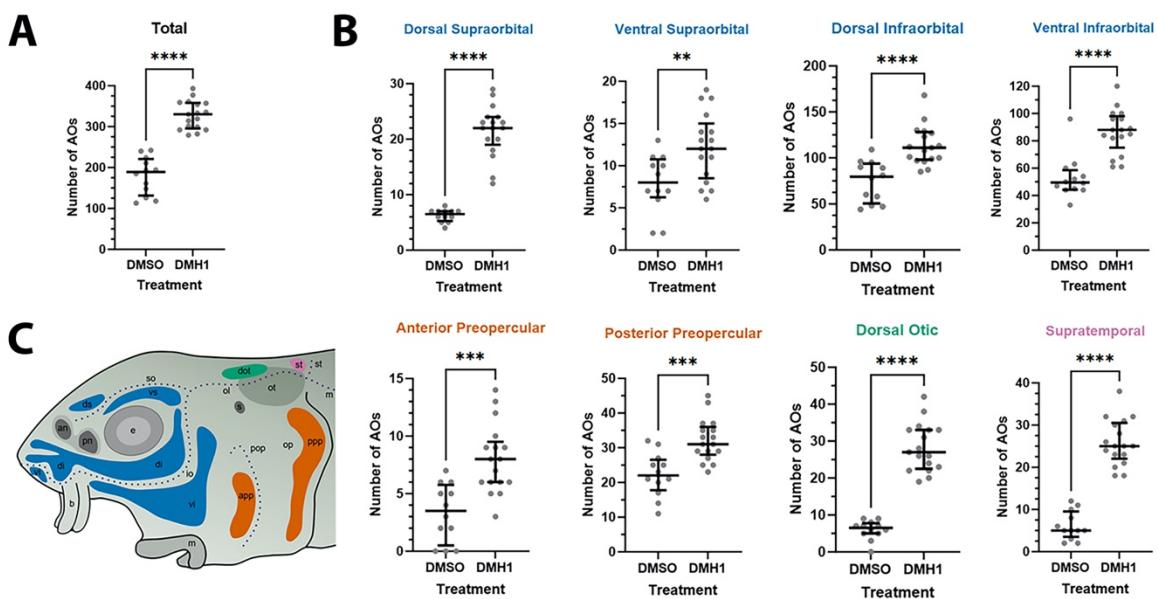

557 The increase in ampullary organ number seemed to be general but was most striking
558 in the dorsalmost ampullary organ fields, i.e., the dorsal supraorbital, dorsal otic and
559 supratemporal fields. These fields were clearly separate in the DMSO control larvae (Figure
560 6A,B,E,F). However, in the DMH1-treated larvae, there were so many ampullary organs that
561 the fields appeared to fuse together in a line (Figure 6C,D,G,H). ISH for *Cacna1d* showed that
562 the three dorsal ampullary organ fields were still clearly separate even in much older larvae
563 (Figure 6I,J), suggesting that the supernumerary ampullary organs in this region of DMH1-
564 treated larvae at stage 45 were ectopic, rather than precocious.

565 Although the increased number of ampullary organs in the dorsal fields was the most
566 obvious and consistent phenotype, the *Cacna1d* expression pattern in several larvae
567 suggested the presence of ectopic offshoots of the supraorbital neuromast line (Figure 6K,L;
568 n=5/8). Initially, we could not determine from *Cacna1d* expression alone whether the ectopic
569 organs were neuromasts or small ampullary organs, as this gene is expressed by both hair
570 cells and electroreceptors. We therefore took six of the nine larvae that had been subjected to
571 ISH for electroreceptor-specific *Kcnab3* and immunostained them for the supporting cell
572 marker *Sox2*, which labels neuromasts more strongly than ampullary organs (also see Minařík
573 et al., 2024a). This enabled direct comparison of the same larvae with and without visible
574 neuromasts and showed that the ectopic organs were indeed neuromasts (Figure 6M-N¹;
575 n=5/6 as in one larva it was not clear whether an ectopic offshoot was indeed present).

576 Overall, therefore, ectopic offshoots of the supraorbital neuromast line (compare
577 Figure 6M¹,N¹ with wildtype *Sox2* expression at stage 45 in Supplementary Figure S1K,L)
578 were seen in a majority of larvae (n=10/14; 71%) in which Bmp signalling had been blocked
579 for 20 hours from stage 36, where this could be determined (n=5/8 after ISH for *Cacna1d*;
580 n=5/6 after ISH for *Kcnab3* followed by immunostaining for *Sox2*). At stage 36, neuromast
581 primordia are already forming in the supraorbital primordium (as shown by *Sox2* expression;
582 Supplementary Figure S1E,F). At stages 36-38, immunoreactivity for pSMAD1/5/9 suggests
583 that Bmp signalling is most prominent in this region in lateral line nerves, rather than the
584 supraorbital lateral line primordium (Figure 2E-H). This suggests the intriguing hypothesis that
585 the Bmp signalling activity during stages 36-38 (the approximate period of DMH1 treatment)

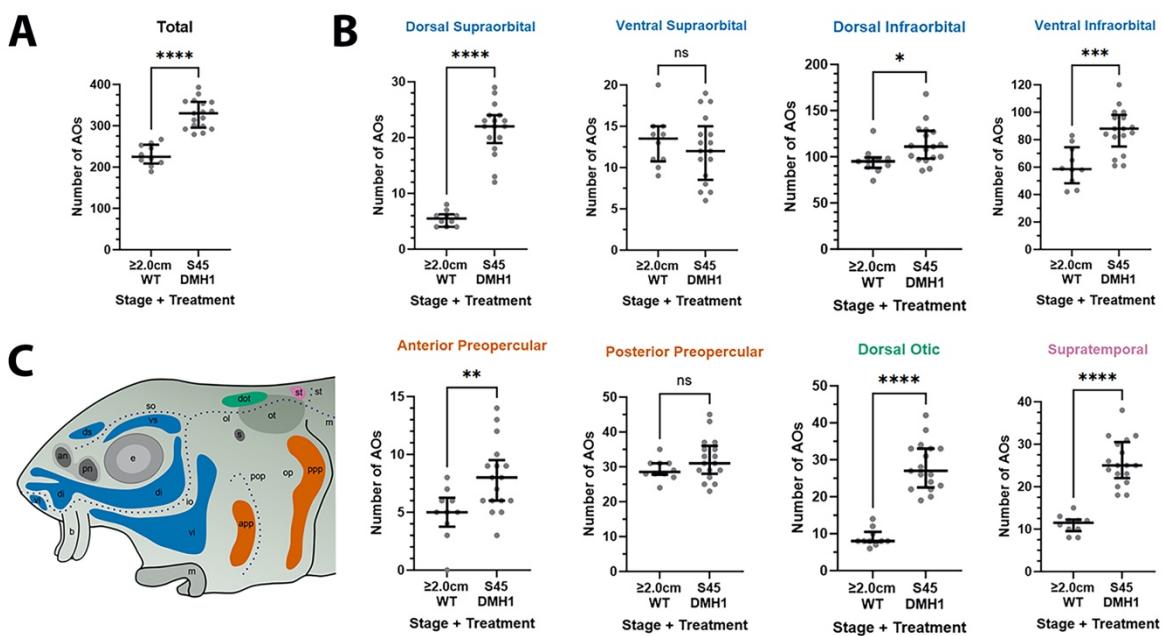
586 that is required to prevent ectopic secondary neuromast formation from the supraorbital
587 neuromast line, might be active in lateral line nerves, rather than the lateral line primordium
588 itself.

589


590
591 **Figure 6. Sterlet larvae in which Bmp signalling was blocked prior to ampillary organ formation**
592 **have supernumerary ampillary organs and ectopic supraorbital neuromasts.** Sterlet larvae after
593 *in situ* hybridisation (ISH) for the hair cell and electroreceptor marker *Cacna1d* (also expressed in taste
594 buds on barbels) or the electroreceptor-specific marker *Kcnab3*. Black arrowheads indicate examples
595 of neuromasts; white arrowheads indicate examples of ampillary organs. (A-H) Stage 45 larvae that
596 had been treated for 20 hours from stage 36 (i.e., from hatching to approximately stage 38, just prior to
597 the onset of ampillary organ development) with either DMH1 or DMSO as controls. Larvae are
598 numbered for cross-referencing with ampillary organ counts in Supplementary Table S3. ISH for
599 *Cacna1d* (A-D) or *Kcnab3* (E-H) shows that, relative to DMSO-treated controls (A,B,E,F), DMH1-treated
600 larvae have many more ampillary organs (C,D,G,H). This phenotype is particularly prominent in the
601 three dorsal-most ampillary organ fields, where the dorsal supraorbital, dorsal otic and supratemporal
602 fields - clearly separate in DMSO-treated larvae (A,B,E,F) - almost fuse together in DMH1-treated larvae
603 (C,D,G,H). (I,J) A much older wild-type larva (2.8 cm in length, ~65 dpf) after ISH for *Cacna1d*. The
604 dorsal supraorbital, dorsal otic and supratemporal ampillary organ fields are clearly separated,
605 suggesting the supernumerary ampillary organs in this region in DMH1-treated larvae (C,D,G,H) are
606 ectopic, not precocious. (K-N¹) Most DMH1-treated larvae also develop an ectopic offshoot from the
607 supraorbital neuromast line. This is visible after ISH for *Cacna1d* (K,L; compare with DMSO control in
608 A,B) and confirmed to represent neuromasts in DMH1-treated larvae via ISH for electroreceptor-specific
609 *Kcnab3* (M,N) followed by immunostaining for the supporting cell marker *Sox2* to reveal neuromasts
610 (M¹,N¹). Abbreviations: dot, dorsal otic ampillary organ field; ds, dorsal supraorbital ampillary organ
611 field; e, eye; S, stage; so, supraorbital neuromast line; st, supratemporal ampillary organ field; WT, wild
612 type. Scale bar: 250 μ m.

613

614 Finally, given the normal variation seen in ampullary organ number in different fields
615 across individual larvae, we wished to test whether the qualitative phenotype of increased
616 ampullary organ number at stage 45 in DMH1-treated versus DMSO control larvae was
617 statistically significant. This included in other ampullary organ fields besides the dorsalmost
618 fields where supernumerary, ectopic ampullary organs were obvious (Figure 6A-K). We
619 therefore counted all the ampullary organs in each of the eight different fields on one side of
620 the head of the stage 45 DMH1-treated larvae (n=17), stage 45 DMSO control larvae (n=12)
621 and older wild-type larvae (either 2.0 cm or 2.8 cm in length, i.e., approximately 50 or 65 dpf;
622 n=10). Supplementary Table S3 shows the raw counting data. Statistical analysis using a two-
623 tailed Mann-Whitney (Wilcoxon rank sum) test confirmed that DMH1-treated larvae had
624 significantly more ampullary organs overall than DMSO controls (P<0.0001; Figure 7A). This
625 was also the case for each individual ampullary organ field (Figure 7B; Supplementary Table
626 S3). The colour-coded schematic in Figure 7C shows the location of each field and their
627 different lateral line placode origins (based on Gibbs and Northcutt, 2004).


628 Furthermore, the DMH1-treated larvae (n=17) had significantly more ampullary organs
629 than older (2.0/2.8 cm) wild-type larvae (n=10), both overall (P<0.0001; Figure 8A) and in all
630 fields except the ventral supraorbital and posterior preopercular fields (Figure 8B;
631 Supplementary Table S3; the same colour-coded schematic is shown in Figure 8C). (Note:
632 the five 2.0 cm and five 2.8 cm wild-type larvae were grouped together for statistical
633 comparison with DMH1-treated larvae because using a two-tailed Mann-Whitney test showed
634 that there was no significant difference between ampullary organ numbers in 2.0 cm versus
635 2.8 cm larvae, either overall [P=0.4206] or in any individual field [P>0.05 for each field].)

636 Overall, these results show that blocking Bmp signalling for 20 hours from stage 36,
637 before the first ampullary organ primordia form, results in supernumerary ampullary organs in
638 all fields. Furthermore, ectopic ampullary organs form in the dorsalmost fields, and an ectopic
639 offshoot of the supraorbital neuromast line develops in a majority of larvae. This suggests that
640 during normal development, Bmp signalling dampens ampullary organ formation, preventing
641 the over-production of ampullary organs in each individual field and the formation of ectopic
642 ampullary organs in the most dorsal fields.

643

644 **Figure 7. DMH1-treated larvae have significantly more ampullary organs than DMSO controls.**
645 (A) Scatter plot showing median and interquartile range for the total number of ampullary organs on
646 one side of the head in stage 45 sterlet larvae that had been treated for 20 hours from stage 36 (i.e.,
647 from hatching to approximately stage 38, just prior to the onset of ampullary organ development) with
648 DMH1 (n=17) or DMSO as controls (n=12). DMH1-treated larvae have significantly more ampullary
649 organs ($P<0.0001$; two-tailed Mann-Whitney test). Ampullary organs were counted after *in situ*
650 hybridisation [ISH] for *Cacna1d* or *Kcnab3*; raw counts are provided in Supplementary Table S3. (B)
651 Scatter plots showing median and interquartile range for the number of ampullary organs in each
652 individual ampullary organ field on one side of the head in stage 45 sterlet larvae that had been treated
653 for 20 hours from stage 36 with DMH1 (n=17), versus with DMSO as controls (n=12). Raw counts are
654 provided in Supplementary Table S3. For the location of each field, see schematic in panel C
655 (reproduced from Figure 5D). Scatter plots are grouped with differently coloured titles according to
656 lateral line placode (LLp) origin, following Gibbs and Northcutt (2004): blue, anterodorsal LLp origin
657 (supraorbital and infraorbital fields); orange, anteroventral LLp origin (preopercular fields); green, otic
658 LLp origin (dorsal otic field); pink, supratemporal LLp origin (supratemporal field). All fields have
659 significantly more ampullary organs in DMH1-treated larvae (n=17) than in DMSO controls (two-tailed
660 Mann-Whitney tests). Asterisks on plots represent P values: **, $P\leq 0.01$; ***, $P\leq 0.001$; ****, $P\leq 0.0001$. P
661 values for all fields are <0.0001 except for the ventral supraorbital field ($P=0.0074$), anterior
662 preopercular field ($P=0.0002$) and posterior preopercular field ($P=0.0003$). (C) Schematic of a stage 45
663 sterlet larval head. Ampullary organ fields are represented by coloured patches flanking the neuromast
664 lines, which are represented as dotted lines. The different field colours indicate their lateral line placode
665 origin (consistent with scatter plot titles in B). Abbreviations for ampullary organ fields: app, anterior
666 preopercular; di, dorsal infraorbital; dot, dorsal otic; ds, dorsal supraorbital; ppp, posterior preopercular;
667 st, supratemporal; vi, ventral infraorbital; vs, ventral supraorbital. Abbreviations for neuromast lines: io,
668 infraorbital; m, middle; ol, otic; pop, preopercular; so, supraorbital; st, supratemporal. Abbreviations for
669 anatomical landmarks: an, anterior naris; b, barbel; e, eye; m, mouth; op, operculum; ot, otic vesicle;
670 pn, posterior naris; s, spiracle (first gill cleft).

672
673 **Figure 8. DMH1-treated larvae have significantly more ampullary organs at stage 45 than older**
674 **wild-type larvae. (A,B)** Scatter plots showing median and interquartile range for the number of
675 ampullary organs on one side of the head in stage 45 sterlet larvae that had been treated for 20 hours
676 from stage 36 with DMH1 (n=17) versus 2.0/2.8 cm wild-type larvae (~50/65 dpf; n=10). Raw counts
677 are provided in Supplementary Table S3. Two-tailed Mann-Whitney tests were used for statistical
678 analysis. DMH1-treated larvae have significantly more ampullary organs overall at stage 45 than wild-
679 type older larvae ($P<0.0001$; A). In B, scatter plots are grouped with differently coloured titles according
680 to lateral line placode (LLp) origin, following Gibbs and Northcutt (2004): blue, anterodorsal LLp
681 (supraorbital and infraorbital fields); orange, anteroventral LLp (preopercular fields); green, otic LLp
682 (dorsal otic field); pink, supratemporal LLp (supratemporal field). DMH1-treated larvae have significantly
683 more ampullary organs at stage 45 than older wild-type larvae in all fields except the ventral supraorbital
684 and posterior preopercular fields. Symbols on plots represent P values: ns, not significant, $P>0.05$; *,
685 $P\leq 0.05$; **, $P\leq 0.01$; ***, $P\leq 0.001$; ****, $P\leq 0.0001$). Dorsal supraorbital: $P<0.0001$. Ventral supraorbital:
686 not significant ($P=0.5109$). Dorsal infraorbital: $P=0.0123$. Ventral infraorbital: $P=0.0002$. Anterior
687 preopercular: $P=0.0083$. Posterior preopercular: not significant ($P=0.1789$). Dorsal otic: $P<0.0001$.
688 Supratemporal: $P<0.0001$. (C) Schematic of a stage 45 sterlet larval head. Ampullary organ fields are
689 represented by coloured patches flanking the neuromast lines, which are represented as dotted lines.
690 The different field colours indicate their lateral line placode origin (consistent with scatter plot titles in
691 B). Abbreviations for ampullary organ fields: app, anterior preopercular; di, dorsal infraorbital; dot, dorsal
692 otic; ds, dorsal supraorbital; ppp, posterior preopercular; st, supratemporal; vi, ventral infraorbital; vs,
693 ventral supraorbital. Abbreviations for neuromast lines: io, infraorbital; m, middle; ol, otic; pop,
694 preopercular; so, supraorbital; st, supratemporal. Other abbreviations: an, anterior naris; b, barbel; e,
695 eye; m, mouth; op, operculum; ot, otic vesicle; pn, posterior naris; s, spiracle (first gill cleft); WT, wild
696 type.

698 **Discussion**

699

700 In this study, we identified two opposing roles for Bmp signalling in ampullary organ
701 development in sterlet. We began by investigating *Bmp5*, the only Bmp ligand gene in our late-
702 larval paddlefish lateral line organ-enriched gene-set (Modrell et al., 2017a). In sterlet, *Bmp5*
703 proved to be expressed in ampullary organ primordia (though not neuromast primordia), as
704 well as in mature ampullary organs and neuromasts. Significantly fewer ampullary organs
705 formed when *Bmp5* was targeted for CRISPR/Cas9-mediated mutagenesis in G0-injected
706 sterlet embryos, suggesting that during normal development, *Bmp5* promotes ampullary organ
707 formation. In contrast, blocking Bmp signalling globally at stages just prior to the onset of
708 ampullary organ development led to significantly more ampullary organs forming in all fields.
709 Hence, Bmp signalling activity is required to prevent too many ampullary organs from
710 developing. Taken together, therefore, our study has uncovered dual, opposing roles for Bmp
711 signalling in ampullary organ formation.

712

713 **Bmp5 promotes ampullary organ formation in sterlet**

714 The early expression of *Bmp5* in ampullary organ primordia, but not neuromast primordia,
715 suggested a role specifically in ampullary organ development. Indeed, targeting *Bmp5* for
716 CRISPR/Cas9-mediated mutagenesis in G0-injected sterlet embryos led to significantly fewer
717 ampullary organs forming, with no effect on neuromast formation. Its precise function in this
718 promoting ampullary organ formation remains to be determined.

719 In zebrafish, *Bmp5* expression has been reported in the migrating posterior lateral line
720 primordium (Thisse and Thisse, 2004), which also expresses *Bmp4b* and *Bmp2a* (Mowbray
721 et al., 2001). However, a role for Bmp signalling in neuromast development has not been
722 identified (see, for example, Piotrowski and Baker, 2014; Chitnis, 2021). Small-molecule
723 inhibition of Bmp signalling from late epiboly or neural plate stages led to expansion of the
724 posterior (but not pre-otic) lateral line placode, suggesting that a much earlier phase of Bmp
725 signalling restricts the posterior lateral line placode from expanding both posteriorly and
726 laterally (Nikaido et al., 2017).

727 *Bmp5* was also expressed at later stages in ampullary organs and transiently in
728 neuromasts, after electroreceptors/hair cells have differentiated. In mature neuromasts in
729 zebrafish (at 5 dpf), scRNA-seq data show that *Bmp5* is expressed in neuromast hair cell
730 progenitor populations and downregulated as hair cells differentiate (Lush et al., 2019).
731 Furthermore, *Bmp5* is among the genes upregulated in 5-dpf zebrafish neuromasts within one
732 hour after neomycin-induced hair cell death (Jiang et al., 2014; Heller et al., 2022), and in the
733 postnatal mouse cochlea after gentamycin-induced hair cell death (Bai et al., 2019). Hence,
734 *Bmp5* may be important for hair cell regeneration. Neomycin treatment at late-larval stages

735 (stages 44/45) in the Siberian sturgeon (*A. baerii*) kills electroreceptors, as well as hair cells,
736 both of which subsequently regenerate (Fan et al., 2016; Wang et al., 2020). Given the
737 expression of *Bmp5* in mature ampullary organs and neuromasts in sterlet, *Bmp5* could play
738 a role in the homeostasis (and regeneration after injury) of electroreceptors as well as hair
739 cells.

740

741 **Bmp signalling prevents supernumerary and ectopic ampullary organs from forming**

742 In addition to *Bmp5* expression in developing ampullary organ primordia (but not neuromast
743 primordia) and mature ampullary organs and neuromasts, we also identified diffuse, more
744 transient *Bmp4* expression between stages 40-42 within developing ampullary organ fields
745 and neuromast regions. Persistent expression was also seen in the migrating lateral line
746 primordia on the trunk, consistent with a report of *Bmp4b* (as well as *Bmp2a*) expression in
747 the migrating posterior lateral line primordium (priml) in zebrafish (Mowbray et al., 2001).
748 Additional unidentified Bmp ligand(s) are also likely to be expressed in sterlet, as pSMAD1/5/9
749 immunoreactivity (a proxy for Bmp signalling pathway activity; Schmierer and Hill, 2007) was
750 seen throughout lateral line development, including within elongating lateral line primordia and
751 afferent lateral line nerves (which extend together with all lateral line primordia as they
752 elongate or migrate; Winklbauer, 1989; Northcutt, 2005; Piotrowski and Baker, 2014), as well
753 as at the periphery of developing ampullary organs and neuromasts.

754 We identified a role for Bmp signalling in preventing too many ampullary organs from
755 forming, using the selective Bmp pathway inhibitor DMH1 (Hao et al., 2010). DMH1 blocks
756 signalling through the type I receptors Acvr1 (Alk2), Acvr1l (Alk1) and Bmpr1a (Alk3) (Hao et
757 al., 2010; Cross et al., 2011), all of which signal via Smad1/5/8 (Yadin et al., 2016). Acvr1
758 (Alk2) binds Bmp5/6/7/8; Acvr1l (Alk1) binds Bmp9/10, and Bmpr1a (Alk3) binds
759 Bmp2/4/5/6/7/8 and Gdf5/6/7 (also known as Bmp14/13/12) (Yadin et al., 2016). We blocked
760 Bmp signalling globally in sterlet yolksac larvae just before the onset of ampullary organ
761 development, by treating them with DMH1 for 20 hours from stage 36 (hatching) to
762 approximately stage 38. By the onset of independent feeding at stage 45, significantly more
763 ampullary organs had formed in all fields relative to DMSO controls, and ectopic ampullary
764 organs had formed in the three dorsalmost fields (the dorsal supraorbital, dorsal otic and
765 supratemporal fields), in regions where ampullary organs are not seen even in much older
766 post-feeding larvae. This suggests Bmp signalling normally prevents supernumerary and
767 ectopic ampullary organs from forming.

768 Although a role for Bmp signalling has not been identified in neuromast formation (see,
769 for example, Piotrowski and Baker, 2014; Chitnis, 2021), this pathway is important for the
770 formation of inner-ear sensory patches, within which hair cells also differentiate. *Bmp4* is an
771 early marker for all sensory patches in the chicken inner ear, and for the cristae (vestibular

772 sensory patches of the semicircular canals) in mouse (Wu and Oh, 1996; Morsli et al., 1998).
773 Conditional knockout experiments showed that *Bmp4* is required for the formation of the
774 cristae (Chang et al., 2008). *Bmp4* is also expressed in the developing cochlea, and
775 conditional knockout of the type I receptor genes *Bmpr1a* (*Alk3*) and *Bmpr1b* (*Alk6*) showed
776 that Bmp signalling is also required for the induction of the cochlear-duct prosensory domain
777 that forms the organ of Corti (Ohyama et al., 2010).

778 Treatment of cultured mouse otocysts with different concentrations of *Bmp4* revealed
779 that intermediate levels of *Bmp4* promote hair cell formation (Ohyama et al., 2010). Conflicting
780 results were reported from *Bmp4* treatment of chicken otocysts explanted at embryonic day
781 3-4: this either increased hair cell number (Li et al., 2005) or reduced the size of *Atoh1*-positive
782 sensory patches and increased cell death (Pujades et al., 2006). Ohyama et al. (2010)
783 suggested that the differences seen could reflect the concentrations of *Bmp4* used being lower
784 (hair cell-promoting; Li et al., 2005) versus higher (hair cell-inhibiting; Pujades et al., 2006). A
785 subsequent study of developing chicken cristae found that both *Bmp4* expression and
786 pSmad1/5/8 immunoreactivity (a proxy for Bmp signalling) were high in most cells of the
787 cristae except in differentiating hair cells, where both were downregulated (Kamaid et al.,
788 2010). In contrast, in the mature (post-hatching) chicken auditory epithelium (basilar papilla),
789 *Bmp4* was highly expressed in hair cells but not supporting cells, and type I receptor genes
790 (*Bmpr1a*, *Bmpr1b*) and a type II receptor gene (*Bmpr2*) were expressed in both hair cells and
791 supporting cells (Lewis et al., 2018). After killing hair cells by treating explanted basilar papilla
792 with aminoglycoside antibiotics, supporting cells differentiated into hair cells (either after
793 proliferating or directly via transdifferentiation), and *Bmp4* was also expressed in such
794 regenerated hair cells (Lewis et al., 2018). Application of *Bmp4* with the ototoxic antibiotic
795 blocked hair cell regeneration by preventing supporting cells from proliferating and
796 upregulating *Atoh1* (Lewis et al., 2018). Conversely, application of the extracellular *Bmp4/2/7*
797 antagonist Noggin (Zimmerman et al., 1996) together with the ototoxic antibiotic led to the
798 formation of significantly more hair cells per unit area than in control cultures (Lewis et al.,
799 2018). Taken together, these results suggest that in the mature auditory epithelium, *Bmp4*
800 secreted from existing hair cells prevents supporting cells from forming supernumerary hair
801 cells; after hair-cell death, *Bmp4* is lost and this inhibition is relieved, allowing hair cell
802 regeneration (Lewis et al., 2018).

803 The regeneration of supernumerary hair cells in the mature chicken auditory epithelium
804 after inhibiting Bmp signalling with Noggin (Lewis et al., 2018) was reminiscent of the formation
805 of supernumerary ampullary organs after inhibiting Bmp signalling with DMH1, prior to the
806 onset of ampullary organ development. Indeed, we also note the action of Bmps as inhibitors
807 in reaction-diffusion (Turing) systems (see Green and Sharpe, 2015) that result in the periodic
808 spacing of hair follicles (Mou et al., 2006), feather primordia (Jung et al., 1998; Noramly and

809 Morgan, 1998; Jiang et al., 1999; Michon et al., 2008) and potentially also denticles in shark
810 skin (Cooper et al., 2018). Sterlet *Bmp4* was expressed in the regions where ampullary organs
811 and neuromasts are forming on the head (and more strongly in the migrating lateral line
812 primordia on the trunk), but only weakly and transiently in developing ampullary organs and
813 neuromasts themselves. This could be consistent with a role for *Bmp4* in promoting formation
814 of the prosensory domain within which the sensory organs develop, as seen for inner ear
815 sensory patches (Chang et al., 2008; Ohyama et al., 2010). Its subsequent downregulation in
816 developing lateral line organs in sterlet differs from the expression of chicken *Bmp4* in the
817 vestibular cristae (*Bmp4*-positive supporting cells; Kamaid et al., 2010) and auditory basilar
818 papilla (*Bmp4*-positive hair cells; Lewis et al., 2018). However, *Bmp5* is expressed in mature
819 ampullary organs and neuromasts and additional as-yet unidentified *Bmp* ligand genes may
820 also be expressed, given the more extensive pattern of pSMAD1/5/9 immunoreactivity.
821 Overall, the precise mechanism by which *Bmp* signalling normally prevents supernumerary
822 and ectopic ampullary organ formation remains to be established, but the data from the
823 chicken auditory epithelium (Lewis et al., 2018) and reaction-diffusion systems patterning
824 other skin structures (see Green and Sharpe, 2015) provide potential parallels for future
825 investigation.

826 We recently reported that the transcription factor gene *Foxg1* is expressed in
827 paddlefish and sterlet in the central region of sensory ridges where neuromasts form (Minařík
828 et al., 2024a), and that targeting *Foxg1* for CRISPR/Cas9-mediated led to ampullary organs
829 forming within neuromast lines (preprint, Minařík et al., 2024b). Here, we found that *Bmp*
830 signalling is required to prevent supernumerary ampullary organ formation within ampullary
831 organ fields, including ectopic ampullary organs within the small dorsalmost fields, although
832 neuromast lines developed normally (apart from the ectopic offshoot of the supraorbital line;
833 see next section). Although these phenotypes are distinct, a common theme emerges, namely
834 the active repression of ampullary organ formation during normal development: within
835 neuromast lines by *Foxg1*, and within ampullary organ fields by *Bmp* signalling. Taken
836 together, this suggests that lateral line primordia are 'poised' to form ampullary organs (indeed
837 potentially that ampullary organs are the 'default' fate for lateral line primordia in
838 electroreceptive species; preprint, Minařík et al., 2024b), and this must be controlled to ensure
839 that ampullary organs develop in the 'correct' number and location.

840

841 **Bmp signalling activity prevents ectopic secondary neuromast formation in the 842 supraorbital neuromast line**

843 An ectopic offshoot of the supraorbital neuromast line also developed by stage 45 in a majority
844 of larvae that had been treated with DMH1 to block *Bmp* signalling for 20 hours from hatching
845 (stages 36-38). Intriguingly, pSMAD1/5/9 immunoreactivity (a proxy for *Bmp* signalling activity)

846 was particularly prominent within lateral line nerves from stages 36-40, including the
847 supraorbital nerve (nerve immunoreactivity had almost disappeared by stage 42), and was
848 also prominent in the supraorbital region at later stages. Afferent innervation is not required
849 for the formation of neuromasts deposited by lateral line primordia in zebrafish (Andermann et
850 al., 2002; Grant et al., 2005; López-Schier and Hudspeth, 2005). However, the post-embryonic
851 budding of neuromasts to form short rows ("stitches") of additional neuromasts depends on
852 Wnt signalling from afferent axons: this promotes cell proliferation within the neuromast, which
853 is required for the budding process (Wada et al., 2013; Wada and Kawakami, 2015). We
854 speculate that Bmp signalling in the lateral line nerve may act to inhibit this process during
855 embryogenesis, thus preventing precocious budding of primary neuromasts. This hypothesis
856 remains to be tested.

857

858 **Conclusion**

859 Overall, we have identified dual opposing roles for Bmp signalling during the development of
860 electrosensory ampullary organs in the sterlet. CRISPR/Cas9-mediated mutagenesis in G0-
861 injected embryos showed that *Bmp5*, which is expressed within ampullary organ primordia
862 (and later in mature ampullary organs and neuromasts), is required for ampullary organ
863 formation. Conversely, global inhibition of type I Bmp receptors via DMH1 treatment at stages
864 just prior to the onset of ampullary organ development, revealed that Bmp signalling is required
865 to prevent supernumerary and ectopic ampullary organs from forming. Future work will be
866 required to understand the respective mechanisms involved.

867

868 **Materials and Methods**

869

870 **Collection, staging and fixation of sterlet embryos and larvae**

871 Fertilised sterlet (*Acipenser ruthenus*) eggs were obtained during the annual spawning season
872 at the Research Institute of Fish Culture and Hydrobiology (RIFCH), Faculty of Fisheries and
873 Protection of Waters, University of South Bohemia in České Budějovice (Vodňany, Czech
874 Republic). Comprehensive information about sterlet husbandry, *in vitro* fertilisation and the
875 rearing of embryos and yolk-sac larvae is provided by Stundl et al. (2022). A mix of sperm
876 from three different males was used for each fertilisation, so each batch comprised siblings
877 and half-siblings. At desired stages (Dettlaff et al., 1993), embryos/larvae were euthanised by
878 anaesthetic overdose using MS-222 (Sigma-Aldrich) before fixation in modified Carnoy's
879 fixative (6 volumes 100% ethanol: 3 volumes 37% formaldehyde: 1 volume glacial acetic acid)
880 for 3 hours at room temperature and graded into ethanol for storage at -20°C.

881 All experimental procedures were approved by the Animal Research Committee of the
882 Faculty of Fisheries and Protection of Waters in Vodňany, University of South Bohemia in

883 České Budějovice, Czech Republic, and by the Ministry of Agriculture of the Czech Republic
884 (reference number: MSMT-12550/2016-3). Experimental fish were maintained according to
885 the principles of the European Union (EU) Harmonized Animal Welfare Act of the Czech
886 Republic, and Principles of Laboratory Animal Care and National Laws 246/1992 "Animal
887 Welfare" on the protection of animals.

888

889 **Gene cloning, *in situ* hybridisation and immunohistochemistry**

890 Total RNA was extracted from the heads of stage 45 sterlet larvae using Trizol (Invitrogen,
891 Thermo Fisher Scientific), treated with DNase using the Ambion Turbo DNA-free kit
892 (Invitrogen, Thermo Fisher Scientific) and cDNA synthesised using the High-Capacity cDNA
893 Reverse Transcription Kit (Applied Biosystems), following the manufacturers' instructions.
894 Genes were selected from the late-larval paddlefish (*Polyodon spathula*) lateral line organ-
895 enriched gene-set (National Center for Biotechnology Information [NCBI] Gene Expression
896 Omnibus accession code GSE92470; Modrell et al., 2017a) or via a candidate approach. The
897 relevant paddlefish transcriptome sequence was used in a command-line search of a Basic
898 Local Alignment Search Tool (BLAST) database generated from our sterlet transcriptome
899 assemblies (from pooled late-larval sterlet heads at stages 40-45; Minařík et al., 2024a), which
900 are available at DDBJ/EMBL/GenBank under the accessions GKL00000000 and
901 GKEF01000000. Sterlet sequence identity was confirmed using NCBI BLAST
902 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>; McGinnis and Madden, 2004). PCR primers
903 (Supplementary Table S4) were designed using Primer3Plus (Untergasser et al., 2012), which
904 is also integrated into Benchling's Editor program (<https://benchling.com>), and used under
905 standard PCR conditions to amplify cDNA fragments from sterlet cDNA. These were cloned
906 into Qiagen's pDrive cloning vector using the Qiagen PCR Cloning Kit (Qiagen) and clones
907 verified by sequencing (Department of Biochemistry Sequencing Facility, University of
908 Cambridge). Sequence identity was confirmed using NCBI BLAST. Alternatively, sterlet
909 transcriptome data were used to design synthetic gene fragments with added M13 forward
910 and reverse primer adaptors, which were purchased from Twist Bioscience.

911 Chromosome-level genome assemblies for sterlet (Du et al., 2020) and the 2022
912 reference genome, NCBI Refseq assembly GCF_902713425.1/ had not been published
913 when these sterlet riboprobe template sequences were designed. Both ohnologs (gene
914 paralogs resulting from whole-genome duplication) for all genes described here have been
915 retained from the independent whole-genome duplication in the sterlet lineage (Du et al.,
916 2020). Supplementary Table S4 includes each riboprobe's percentage match with each
917 ohnolog, obtained by using NCBI BLAST to perform a nucleotide BLAST search against the
918 respective genome assemblies. The percentage match with the "targeted" ohnolog ranged
919 from 99.2-100%. The percentage match with the second ohnolog ranged from 90.0-100%,

920 suggesting that our riboprobes most likely also target transcripts from the second ohnolog.
921 GenBank accession numbers for the top match for each riboprobe, and the nucleotide ranges
922 targeted, are given in Supplementary Table S4.

923 Digoxigenin-labelled riboprobes were synthesised as previously described (Minařík et
924 al., 2024a). Wholemount *in situ* hybridisation (ISH) was performed as described in Modrell et
925 al. (2011a). Wholemount immunostaining was performed as described in Metscher and Müller
926 (2011). Primary antibodies (anti-Sox2: Abcam ab92494, rabbit monoclonal, 1:200; anti-
927 Phospho-SMAD1/5/9: Cell Signalling Technology D5B10, rabbit monoclonal, 1:100) were
928 applied in blocking solution for 24 hours at 4°C, as was the secondary antibody (horseradish
929 peroxidase-conjugated goat anti-rabbit IgG: Jackson ImmunoResearch, 1:500). The
930 metallographic peroxidase substrate EnzMet kit (Nanoprobes 6010) was used for the colour
931 reaction, following the manufacturer's instructions. For both ISH and immunostaining, at least
932 three embryos/larvae were used per stage.

933

934 **CRISPR guide RNA design and synthesis**

935 Prior to the publication of chromosome-level sterlet genomes (Du et al., 2020 and the 2022
936 NCBI RefSeq assembly GCF_902713425.1), *Bmp5* was identified using NCBI BLAST to
937 search draft genomic sequence data (M.H., unpublished). Exons were confirmed by
938 comparison with spotted gar (*Lepisosteus oculatus*) using Ensembl (Cunningham et al., 2022).
939 NCBI BLASTX (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>; McGinnis and Madden, 2004) was
940 used to identify conserved domains. Four CRISPR single guide RNAs (sgRNAs) were
941 designed using the CRISPR Guide RNA Design Tool from Benchling (<https://benchling.com>)
942 to target a 450-base region within exon 1 that encodes part of the TGFβ propeptide domain
943 (Table 1; Supplementary Figure S5A). The previously published guides against *tyrosinase*
944 were designed as described in Minařík et al. (2024b, preprint).

945 Plasmid pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) (Addgene, plasmid #42335;
946 Cong et al., 2013) was used to synthesize DNA templates containing the single guide (sg)RNA
947 scaffold, which was amplified using the same reverse primer for all reactions
948 (AAAAAAGCACCGACTCGGTGCC) and a specific forward primer for each sgRNA. The
949 forward primer had an overhang containing the T7 promoter and the 20-nucleotide sgRNA
950 target sequence: GATCACTAATACGACTCACTATA(20N)GTTTAGAGCTAGAAAT, where
951 the T7 promoter is underlined and "(20N)" represents the target sequence specific to each
952 sgRNA (Table 1). Where the first nucleotide of the target sequence was G, this completed the
953 T7 promoter (and became the first base of the sgRNA). Where the target sequence did not
954 start with G, an additional G was added before the target sequence to complete the T7
955 promoter and ensure efficient transcription. Alternatively, chemically modified synthetic
956 gRNAs were purchased from Synthego (CRISPRRevolution sgRNA EZ Kit).

957

958 **Embryo injections and genotyping**

959 A detailed description of sterlet embryo injection is provided in Minařík et al. (2024b, preprint).
960 Briefly, 2400 ng Cas9 protein with NLS (PNA Bio CP01) were combined with 1200 ng of
961 sgRNA in 4.5 μ l nuclease-free water on the day of injection and left at room temperature for
962 10 minutes to form ribonucleoprotein complexes, then kept on ice. For sgRNA multiplexing,
963 different Cas9-sgRNA complexes were combined 1:1 and 0.5 μ l 10% 10,000 MW rhodamine
964 dextran (Invitrogen) added to a final volume of 5 μ l. One- or 2-cell stage embryos were injected
965 with approximately 20 nl of the injection mixture (manually or using an Eppendorf FemtoJet
966 4x microinjector) and maintained at 20°C until the 64-cell stage, then transferred to 16°C.
967 Upon reaching stage 45, they were euthanised by MS-222 overdose, fixed with modified
968 Carnoy's fixative and dehydrated into ethanol as described above. Prior to ISH, fixed crispants
969 were cut in half and the tails set aside for genotyping. DNA was extracted from crispant tails
970 using the PCR BIO Rapid Extract PCR Kit (PCR Biosystems) and the target region amplified
971 using HS Taq Mix Red (PCR Biosystems) following the manufacturer's instructions.
972 Genotyping primers (Supplementary Table S1) were designed using Benchling's Editor
973 program (<https://benchling.com>) to flank the sgRNA target region with a buffer of at least 150
974 bp. PCR products were subjected to agarose gel electrophoresis, extracted using the MinElute
975 Gel Extraction Kit (Qiagen) according to the manufacturer's protocol and sequenced by
976 Genewiz (Azenta Life Sciences). The resulting Sanger trace files were uploaded for analysis
977 by Synthego's Inference of CRISPR Edits (ICE) tool (Conant et al., 2022).
978

979

979 **Small-molecule inhibition of Bmp signalling**

980 Stage 36 (post-hatching) yolk sac larvae were incubated for 20 hours in 50 μ M DMH1 (Cayman
981 Chemical) in 1% dimethyl sulfoxide (DMSO) or in 1% DMSO as a control. After treatment, the
982 larvae were rinsed thoroughly, transferred to new water and left to develop until approximately
983 stage 45, then euthanised by MS-222 overdose and fixed in modified Carnoy's solution as
984 described above.
985

986

986 **Image capture and processing**

987 Embryos/larvae were imaged using a Leica MZFLIII dissecting microscope fitted either with a
988 QImaging MicroPublisher 5.0 RTV camera using QCapture Pro 7.0 software (QImaging) or a
989 MicroPublisher 6 color CCD camera (Teledyne Photometrics) using Ocular software
990 (Teledyne Photometrics). In most cases, focus stacking was performed using Helicon Focus
991 software (Helicon Soft Limited) on image-stacks collected by manually focusing through the
992 sample. Images were processed using Adobe Photoshop (Adobe Systems Inc.).
993

994 **Statistical analysis**

995 Initial data analysis was performed using Microsoft Excel. GraphPad Prism 10 (GraphPad
996 Software, La Jolla, CA, USA) was used to compare datasets using a two-tailed Mann-Whitney
997 (Wilcoxon rank sum) test and to generate scatter plots showing the median and interquartile
998 range. The raw data are provided in Supplementary Tables S2 and S3.

999

1000 **Data availability statement**

1001 The publication and associated supplementary figures include representative example images
1002 of embryos/larvae from each experiment. Additional data underlying this publication consist of
1003 further images of these and other embryos/larvae from each experiment. Public sharing of
1004 these images is not cost-efficient, but they are available from the corresponding author upon
1005 reasonable request. Previously published sterlet transcriptome assemblies (from pooled stage
1006 40-45 sterlet heads; Minařík et al., 2024a) are available at DDBJ/EMBL/GenBank under the
1007 accessions GKL00000000 (https://www.ncbi.nlm.nih.gov/nuccore/GKL00000000) and
1008 GKEF01000000 (https://www.ncbi.nlm.nih.gov/nuccore/GKEF00000000.1). Previously
1009 published paddlefish RNA-seq data (from pooled paddlefish opercula and fin tissue at stage
1010 46; Modrell et al., 2017a) are available via the NCBI Gene Expression Omnibus (GEO)
1011 database (https://www.ncbi.nlm.nih.gov/geo/) under accession code GSE92470.

1012

1013 **Ethics statement**

1014 Sterlet animal work was reviewed and approved by The Animal Research Committee of
1015 Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of
1016 Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic and
1017 Ministry of Agriculture of the Czech Republic (MSMT-12550/2016-3). Experimental fish were
1018 maintained according to the principles of the European Union (EU) Harmonized Animal
1019 Welfare Act of the Czech Republic, and Principles of Laboratory Animal Care and National
1020 Laws 246/1992 “Animal Welfare” on the protection of animals.

1021

1022 **Author contributions**

1023 CB conceived and designed the project, provided guidance and helped to write the manuscript
1024 together with AC. AC led the project, performed most of the experiments and statistical
1025 analyses, prepared all of the manuscript figures, and wrote the first draft of the manuscript.
1026 MM and RF performed some experiments. MV provided essential support for the experiments.
1027 MH contributed draft genome sequence data. MP and DG were instrumental in enabling all
1028 work with sterlet embryos. All authors read and commented on the manuscript.

1029

1030

1031 **Funding**

1032 This work was supported by the Anatomical Society and by the Biotechnology and Biological
1033 Sciences Research Council (BBSRC: grant BB/P001947/1 to CB). AC was supported by a
1034 PhD research studentship from the Anatomical Society with additional funding from the
1035 Cambridge Philosophical Society. Additional support for MM was provided by the Cambridge
1036 Isaac Newton Trust (grant 20.07[c] to CB) and by the School of the Biological Sciences,
1037 University of Cambridge. The work of RF, MV and MP was supported by the Ministry of
1038 Education, Youth and Sports of the Czech Republic, projects CENAKVA (LM2018099),
1039 Biodiversity (CZ.02.1.01/0.0/0.0/16_025/0007370) and Czech Science Foundation (22-
1040 31141J).

1041

1042 **Rights Retention Statement**

1043 This work was funded by a grant from the Biotechnology and Biological Sciences Research
1044 Council (BBSRC: BB/P001947/1). For the purpose of open access, the author has applied a
1045 Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version
1046 arising.

1047

1048 **Acknowledgments**

1049 Thanks to Marek Rodina and Martin Kahanec for their help with sterlet spawns.

1050

1051 **Conflict of Interest:** The authors declare that the research was conducted in the absence of
1052 any commercial or financial relationships that could be construed as a potential conflict of
1053 interest.

1054

1055 **References**

1056 Andermann, P., Ungos, J., Raible, D.W., 2002. Neurogenin1 defines zebrafish cranial sensory
1057 ganglia precursors. *Dev. Biol.* 251, 45-58.

1058 Bai, H., Jiang, L., Wang, X., Gao, X., Bing, J., Xi, C., Wang, W., Zhang, M., Zhang, X., Han,
1059 Z., Xu, J., Zeng, S., 2019. Transcriptomic analysis of mouse cochleae suffering from
1060 gentamicin damage reveals the signalling pathways involved in hair cell regeneration.
1061 *Sci. Rep.* 9, 10494.

1062 Baker, C.V.H., 2019. The development and evolution of lateral line electroreceptors: insights
1063 from comparative molecular approaches., in: B.A. Carlson, J.A. Sisneros, A.N. Popper,
1064 R.R. Fay (Eds.), *Electroreception: Fundamental Insights from Comparative Approaches*.
1065 Springer, Cham, pp. 25-62.

1066 Baker, C.V.H., Modrell, M.S., 2018. Insights into electroreceptor development and evolution
1067 from molecular comparisons with hair cells. *Integr. Comp. Biol.* 58, 329-340.

1068 Baker, C.V.H., Modrell, M.S., Gillis, J.A., 2013. The evolution and development of vertebrate
1069 lateral line electroreceptors. *J. Exp. Biol.* 216, 2515-2522.

1070 Bodznick, D., Montgomery, J.C., 2005. The physiology of low-frequency electrosensory
1071 systems, in: T.H. Bullock, C.D. Hopkins, A.N. Popper, R.R. Fay (Eds.), *Electroreception*.
1072 Springer, New York, pp. 132-153.

1073 Bullock, T.H., Bodznick, D.A., Northcutt, R.G., 1983. The phylogenetic distribution of
1074 electroreception: evidence for convergent evolution of a primitive vertebrate sense
1075 modality. *Brain Res. Rev.* 287, 25-46.

1076 Camacho, S., Ostos, M.D.V., Llorente, J.I., Sanz, A., García, M., Domezain, A., Carmona, R.,
1077 2007. Structural characteristics and development of ampullary organs in *Acipenser*
1078 *naccarii*. *Anat. Rec.* 290, 1178-1189.

1079 Cernuda-Cernuda, R., García-Fernández, J.M., 1996. Structural diversity of the ordinary and
1080 specialized lateral line organs. *Microsc. Res. Tech.* 34, 302-312.

1081 Chagnaud, B.P., Wilkens, L.A., Hofmann, M., 2021. The ampullary electrosensory system – a
1082 paddlefish case study, in: B. Fritzsch (Ed.), *The Senses: A Comprehensive Reference*.
1083 Elsevier, pp. 215-227.

1084 Chang, W., Lin, Z., Kulessa, H., Hebert, J., Hogan, B.L., Wu, D.K., 2008. *Bmp4* is essential
1085 for the formation of the vestibular apparatus that detects angular head movements. *PLoS*
1086 *Genet.* 4, e1000050.

1087 Chitnis, A.B., 2021. Development of the zebrafish posterior lateral line system, in: B. Fritzsch
1088 (Ed.), *The Senses: A Comprehensive Reference*. Elsevier, pp. 66-84.

1089 Conant, D., Hsiao, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R.,
1090 Holden, K., Enzmann, B.L., Stoner, R., 2022. Inference of CRISPR edits from Sanger
1091 trace data. *CRISPR J.* 5, 123-130.

1092 Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W.,
1093 Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas
1094 systems. *Science* 339, 819-823.

1095 Cooper, R.L., Thiery, A.P., Fletcher, A.G., Delbarre, D.J., Rasch, L.J., Fraser, G.J., 2018. An
1096 ancient Turing-like patterning mechanism regulates skin denticle development in sharks.
1097 *Sci. Adv.* 4, eaau5484.

1098 Crampton, W.G.R., 2019. Electroreception, electrogenesis and electric signal evolution. *J.*
1099 *Fish Biol.* 95, 92-134.

1100 Cross, E.E., Thomason, R.T., Martinez, M., Hopkins, C.R., Hong, C.C., Bader, D.M., 2011.
1101 Application of small organic molecules reveals cooperative TGF β and BMP regulation of
1102 mesothelial cell behaviors. *ACS Chem. Biol.* 6, 952-961.

1103 Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Austine-
1104 Orimoloye, O., Azov, A.G., Barnes, I., Bennett, R., Berry, A., Bhai, J., Bignell, A., Billis,

1105 K., Boddu, S., Brooks, L., Charkhchi, M., Cummins, C., Da Rin Fioretto, L., Davidson,
1106 C., Dodiya, K., Donaldson, S., El Houdaigui, B., El Naboulsi, T., Fatima, R., Giron, C.G.,
1107 Genez, T., Martinez, J.G., Guijarro-Clarke, C., Gymer, A., Hardy, M., Hollis, Z., Hourlier,
1108 T., Hunt, T., Juettemann, T., Kaikala, V., Kay, M., Lavidas, I., Le, T., Lemos, D.,
1109 Marugán, J.C., Mohanan, S., Mushtaq, A., Naven, M., Ogeh, D.N., Parker, A., Parton,
1110 A., Perry, M., Piližota, I., Prosovetskaia, I., Sakthivel, M.P., Salam, A.I.A., Schmitt, B.M.,
1111 Schuilenburg, H., Sheppard, D., Pérez-Silva, J.G., Stark, W., Steed, E., Sutinen, K.,
1112 Sukumaran, R., Sumathipala, D., Suner, M.M., Szpak, M., Thormann, A., Tricomi, F.F.,
1113 Urbina-Gómez, D., Veidenberg, A., Walsh, T.A., Walts, B., Willhoft, N., Winterbottom,
1114 A., Wass, E., Chakiachvili, M., Flint, B., Frankish, A., Giorgetti, S., Haggerty, L., Hunt,
1115 S.E., Ilsley, G.R., Loveland, J.E., Martin, F.J., Moore, B., Mudge, J.M., Muffato, M.,
1116 Perry, E., Ruffier, M., Tate, J., Thybert, D., Trevanion, S.J., Dyer, S., Harrison, P.W.,
1117 Howe, K.L., Yates, A.D., Zerbino, D.R., Flieck, P., 2022. Ensembl 2022. Nucleic Acids
1118 Res. 50, D988-D995.

1119 Dettlaff, T.A., Ginsburg, A.S., Schmalhausen, O.I., 1993. Sturgeon Fishes: Developmental
1120 Biology and Aquaculture. Springer-Verlag, Berlin.

1121 Du, K., Stöck, M., Kneitz, S., Klopp, C., Woltering, J.M., Adolfi, M.C., Feron, R., Prokopov, D.,
1122 Makunin, A., Kichigin, I., Schmidt, C., Fischer, P., Kuhl, H., Wuertz, S., Gessner, J.,
1123 Kloas, W., Cabau, C., Iampietro, C., Parrinello, H., Tomlinson, C., Journot, L.,
1124 Postlethwait, J.H., Braasch, I., Trifonov, V., Warren, W.C., Meyer, A., Guiguen, Y.,
1125 Schartl, M., 2020. The sterlet sturgeon genome sequence and the mechanisms of
1126 segmental rediploidization. Nat. Ecol. Evol. 4, 841-852.

1127 Fan, C., Zou, S., Wang, J., Zhang, B., Song, J., 2016. Neomycin damage and regeneration of
1128 hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval
1129 Siberian sturgeon (*Acipenser baerii*). J. Comp. Neurol. 524, 1443-1456.

1130 Gibbs, M.A., Northcutt, R.G., 2004. Development of the lateral line system in the shovelnose
1131 sturgeon. Brain Behav. Evol. 64, 70-84.

1132 Gilmour, D., Knaut, H., Maischein, H.M., Nüsslein-Volhard, C., 2004. Towing of sensory axons
1133 by their migrating target cells *in vivo*. Nat. Neurosci. 7, 491-492.

1134 Gilmour, D.T., Maischein, H.M., Nüsslein-Volhard, C., 2002. Migration and function of a glial
1135 subtype in the vertebrate peripheral nervous system. Neuron 34, 577-588.

1136 Grant, K.A., Raible, D.W., Piotrowski, T., 2005. Regulation of latent sensory hair cell
1137 precursors by glia in the zebrafish lateral line. Neuron 45, 69-80.

1138 Green, J.B.A., Sharpe, J., 2015. Positional information and reaction-diffusion: two big ideas in
1139 developmental biology combine. Development 142, 1203-1211.

1140 Guo, X., Zhang, T., Hu, Z., Zhang, Y., Shi, Z., Wang, Q., Cui, Y., Wang, F., Zhao, H., Chen,
1141 Y., 2014. Efficient RNA/Cas9-mediated genome editing in *Xenopus tropicalis*.
1142 Development 141, 707-714.

1143 Hao, J., Ho, J.N., Lewis, J.A., Karim, K.A., Daniels, R.N., Gentry, P.R., Hopkins, C.R.,
1144 Lindsley, C.W., Hong, C.C., 2010. *In vivo* structure-activity relationship study of
1145 dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem. Biol.
1146 5, 245-253.

1147 Heller, I.S., Guenther, C.A., Meireles, A.M., Talbot, W.S., Kingsley, D.M., 2022.
1148 Characterization of mouse *Bmp5* regulatory injury element in zebrafish wound models.
1149 Bone 155, 116263.

1150 Hernández, P.P., Olivari, F.A., Sarrazin, A.F., Sandoval, P.C., Allende, M.L., 2007.
1151 Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor
1152 cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell
1153 renewal. Dev. Neurobiol. 67, 637-654.

1154 Jiang, L., Romero-Carvajal, A., Haug, J.S., Seidel, C.W., Piotrowski, T., 2014. Gene-
1155 expression analysis of hair cell regeneration in the zebrafish lateral line. Proc. Natl. Acad.
1156 Sci. U.S.A. 111, E1383-92.

1157 Jiang, T.-X., Jung, H.-S., Widelitz, R.B., Chuong, C.-M., 1999. Self-organization of periodic
1158 patterns by dissociated feather mesenchymal cells and the regulation of size, number
1159 and spacing of primordia. Development 126, 4997-5009.

1160 Jørgensen, J.M., 2005. Morphology of electroreceptive sensory organs, in: T.H. Bullock, C.D.
1161 Hopkins, A.N. Popper, R.R. Fay (Eds.), *Electroreception*. Springer, New York, pp. 47-
1162 67.

1163 Jørgensen, J.M., 2011. Morphology of electroreceptive sensory organs, in: A.P. Farrell (Ed.),
1164 *Encyclopedia of Fish Physiology: From Genome to Environment*. Academic Press, San
1165 Diego, pp. 350-358.

1166 Josberger, E.E., Hassanzadeh, P., Deng, Y., Sohn, J., Rego, M.J., Amemiya, C.T., Rolandi,
1167 M., 2016. Proton conductivity in ampullae of Lorenzini jelly. Sci. Adv. 2, e1600112.

1168 Jung, H.-S., Francis-West, P.H., Widelitz, R.B., Jiang, T.-X., Ting-Berreth, S., Tickle, C.,
1169 Wolpert, L., Chuong, C.M., 1998. Local inhibitory action of BMPs and their relationships
1170 with activators in feather formation: implications for periodic patterning. Dev. Biol. 196,
1171 11-23.

1172 Kamaid, A., Neves, J., Giráldez, F., 2010. *Id* gene regulation and function in the prosensory
1173 domains of the chicken inner ear: a link between Bmp signaling and *Atoh1*. J. Neurosci.
1174 30, 11426-11434.

1175 Leitch, D.B., Julius, D., 2019. Electrosensory transduction: comparisons across structure,
1176 afferent response properties, and cellular physiology., in: B.A. Carlson, J.A. Sisneros,

1177 A.N. Popper, R.R. Fay (Eds.), *Electroreception: Fundamental Insights from Comparative*
1178 *Approaches*. Springer, Cham, pp. 63-90.

1179 Lewis, R.M., Keller, J.J., Wan, L., Stone, J.S., 2018. Bone morphogenetic protein 4
1180 antagonizes hair cell regeneration in the avian auditory epithelium. *Hear. Res.* 364, 1-
1181 11.

1182 Li, H., Corrales, C.E., Wang, Z., Zhao, Y., Wang, Y., Liu, H., Heller, S., 2005. BMP4 signaling
1183 is involved in the generation of inner ear sensory epithelia. *BMC Dev. Biol.* 5, 16.

1184 López-Schier, H., Hudspeth, A.J., 2005. Supernumerary neuromasts in the posterior lateral
1185 line of zebrafish lacking peripheral glia. *Proc. Natl. Acad. Sci. U.S.A.* 102, 1496-1501.

1186 Ludwig, A., Belfiore, N.M., Pitra, C., Svirsky, V., Jenneckens, I., 2001. Genome duplication
1187 events and functional reduction of ploidy levels in sturgeon (*Acipenser*, *Huso* and
1188 *Scaphirhynchus*). *Genetics* 158, 1203-1215.

1189 Lush, M.E., Diaz, D.C., Koenecke, N., Baek, S., Boldt, H., St Peter, M.K., Gaitan-Escudero,
1190 T., Romero-Carvajal, A., Busch-Nentwich, E.M., Perera, A.G., Hall, K.E., Peak, A., Haug,
1191 J.S., Piotrowski, T., 2019. scRNA-Seq reveals distinct stem cell populations that drive
1192 hair cell regeneration after loss of Fgf and Notch signaling. *eLife* 8, e44431.

1193 Lush, M.E., Piotrowski, T., 2014. Sensory hair cell regeneration in the zebrafish lateral line.
1194 *Dev. Dyn.* 243, 1187-1202.

1195 McGinnis, S., Madden, T.L., 2004. BLAST: at the core of a powerful and diverse set of
1196 sequence analysis tools. *Nucleic Acids Res.* 32, W20-5.

1197 McGraw, H.F., Drerup, C.M., Nicolson, T., Nechiporuk, A.V., 2017. The molecular and cellular
1198 mechanisms of zebrafish lateral line development, in: K.S. Cramer, A.B. Coffin, R.R.
1199 Fay, A.N. Popper (Eds.), *Auditory Development and Plasticity*. New York, pp. 49-73.

1200 Metcalfe, W.K., 1985. Sensory neuron growth cones comigrate with posterior lateral line
1201 primordial cells in zebrafish. *J. Comp. Neurol.* 238, 218-224.

1202 Metscher, B.D., Müller, G.B., 2011. MicroCT for molecular imaging: quantitative visualization
1203 of complete three-dimensional distributions of gene products in embryonic limbs. *Dev.*
1204 *Dyn.* 240, 2301-2308.

1205 Michon, F., Forest, L., Collomb, E., Demongeot, J., Dhouailly, D., 2008. BMP2 and BMP7 play
1206 antagonistic roles in feather induction. *Development* 135, 2797-2805.

1207 Minařík, M., Modrell, M.S., Gillis, J.A., Campbell, A.S., Fuller, I., Lyne, R., Micklem, G., Gela,
1208 D., Pšenička, M., Baker, C.V.H., 2024a. Identification of multiple transcription factor
1209 genes potentially involved in the development of electrosensory versus mechanosensory
1210 lateral line organs. *Front. Cell Dev. Biol.* 12, 1327924.

1211 Minařík, M., Campbell, A.S., Franěk, R., Vazačová, M., Havelka, M., Gela, D., Pšenička, M.,
1212 Baker, C.V.H., 2024b. Atoh1 is required for the formation of lateral line electroreceptors

1213 and hair cells, whereas *Foxg1* represses an electrosensory fate. bioRxiv doi:
1214 <https://doi.org/10.1101/2023.04.15.537030>.

1215 Modrell, M.S., Bemis, W.E., Northcutt, R.G., Davis, M.C., Baker, C.V.H., 2011a.
1216 Electrosensory ampullary organs are derived from lateral line placodes in bony fishes.
1217 *Nat. Commun.* 2, 496.

1218 Modrell, M.S., Buckley, D., Baker, C.V.H., 2011b. Molecular analysis of neurogenic placode
1219 development in a basal ray-finned fish. *genesis* 49, 278-294.

1220 Modrell, M.S., Lyne, M., Carr, A.R., Zakon, H.H., Buckley, D., Campbell, A.S., Davis, M.C.,
1221 Micklem, G., Baker, C.V.H., 2017a. Insights into electrosensory organ development,
1222 physiology and evolution from a lateral line-enriched transcriptome. *eLife* 6, e24197.

1223 Modrell, M.S., Tidswell, O.R.A., Baker, C.V.H., 2017b. Notch and Fgf signaling during
1224 electrosensory versus mechanosensory lateral line organ development in a non-teleost
1225 ray-finned fish. *Dev. Biol.* 431, 48-58.

1226 Mogdans, J., 2021. Physiology of the peripheral lateral line system, in: B. Fritzsch (Ed.), *The
1227 Senses: A Comprehensive Reference*. Elsevier, pp. 143-162.

1228 Montgomery, J., Bleckmann, H., Coombs, S., 2014. Sensory ecology and neuroethology of
1229 the lateral line, in: S.C. Coombs, H. Bleckmann, R.R. Fay, A.N. Popper (Eds.), *The
1230 Lateral Line System*. Springer, New York, pp. 121-150.

1231 Morsli, H., Choo, D., Ryan, A., Johnson, R., Wu, D.K., 1998. Development of the mouse inner
1232 ear and origin of its sensory organs. *J. Neurosci.* 18, 3327-3335.

1233 Mou, C., Jackson, B., Schneider, P., Overbeek, P.A., Headon, D.J., 2006. Generation of the
1234 primary hair follicle pattern. *Proc. Natl. Acad. Sci. U.S.A.* 103, 9075-9080.

1235 Mowbray, C., Hammerschmidt, M., Whitfield, T.T., 2001. Expression of BMP signalling
1236 pathway members in the developing zebrafish inner ear and lateral line. *Mech. Dev.* 108,
1237 179-184.

1238 Nikaido, M., Acedo, J.N., Hatta, K., Piotrowski, T., 2017. Retinoic acid is required and Fgf,
1239 Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. *Dev.
1240 Biol.* 431, 215-225.

1241 Noramly, S., Morgan, B.A., 1998. BMPs mediate lateral inhibition at successive stages in
1242 feather tract development. *Development* 125, 3775-3787.

1243 Northcutt, R.G., 1997. Evolution of gnathostome lateral line ontogenies. *Brain Behav. Evol.*
1244 50, 25-37.

1245 Northcutt, R.G., 2005. Ontogeny of electroreceptors and their neural circuitry, in: T.H. Bullock,
1246 C.D. Hopkins, A.N. Popper, R.R. Fay (Eds.), *Electroreception*. Springer, New York, pp.
1247 112-131.

1248 Ohyama, T., Basch, M.L., Mishina, Y., Lyons, K.M., Segil, N., Groves, A.K., 2010. BMP
1249 signaling is necessary for patterning the sensory and nonsensory regions of the
1250 developing mammalian cochlea. *J. Neurosci.* 30, 15044-15051.

1251 Pickett, S.B., Raible, D.W., 2019. Water waves to sound waves: using zebrafish to explore
1252 hair cell biology. *J. Assoc. Res. Otolaryngol.* 20, 1-19.

1253 Piotrowski, T., Baker, C.V.H., 2014. The development of lateral line placodes: Taking a
1254 broader view. *Dev. Biol.* 389, 68-81.

1255 Pujades, C., Kamaid, A., Alsina, B., Giraldez, F., 2006. BMP-signaling regulates the
1256 generation of hair-cells. *Dev. Biol.* 292, 55-67.

1257 Rabinowitz, R., Offen, D., 2021. Single-base resolution: increasing the specificity of the
1258 CRISPR-Cas system in gene editing. *Mol. Ther.* 29, 937-948.

1259 Russell, D.F., Zhang, W., Warnock, T.C., Neiman, L.L., 2022. Lectin binding and gel secretion
1260 within Lorenzinian electroreceptors of *Polyodon*. *PLoS One* 17, e0276854.

1261 Schmierer, B., Hill, C.S., 2007. TGFbeta-SMAD signal transduction: molecular specificity and
1262 functional flexibility. *Nat Rev Mol Cell Biol* 8, 970-982.

1263 Stundl, J., Soukup, V., Franěk, R., Pospisilova, A., Psutkova, V., Pšenička, M., Černy, R.,
1264 Bronner, M.E., Medeiros, D.M., Jandzik, D., 2022. Efficient CRISPR mutagenesis in
1265 sturgeon demonstrates its utility in large, slow-maturing vertebrates. *Front. Cell Dev.*
1266 *Biol.* 10, 750833.

1267 Thisse, B., Thisse, C., 2004. Fast release clones: a high throughput expression analysis. *ZFIN*
1268 Direct Data Submission (<http://zfin.org>).

1269 Tong, X., Zhu, C., Liu, L., Huang, M., Xu, J., Chen, X., Zou, J., 2022. Role of Sostdc1 in
1270 skeletal biology and cancer. *Front. Physiol.* 13, 1029646.

1271 Undurraga, C.A., Gou, Y., Sandoval, P.C., Nuñez, V.A., Allende, M.L., Riley, B.B., Hernández,
1272 P.P., Sarrazin, A.F., 2019. Sox2 and Sox3 are essential for development and
1273 regeneration of the zebrafish lateral line. *bioRxiv* 856088; doi:
1274 <https://doi.org/10.1101/856088>.

1275 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G.,
1276 2012. Primer3 - new capabilities and interfaces. *Nucl. Acids Res.* 40, e115.

1277 Uribe-Salazar, J.M., Kaya, G., Sekar, A., Weyenberg, K., Ingamells, C., Dennis, M.Y., 2022.
1278 Evaluation of CRISPR gene-editing tools in zebrafish. *BMC Genomics* 23, 12.

1279 Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J.A., Karger, A., Cain, J.W., Wang,
1280 E.C.E., DeStefano, G.M., O'Donnell-Luria, A.H., Christiano, A.M., Riley, B., Butler, S.J.,
1281 Luria, V., 2020. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system
1282 and skin. *Dev. Biol.* 464, 71-87.

1283 Wada, H., Dambly-Chaudière, C., Kawakami, K., Ghysen, A., 2013. Innervation is required for
1284 sense organ development in the lateral line system of adult zebrafish. Proc. Natl. Acad.
1285 Sc. U.S.A. 110, 5659-5664.

1286 Wada, H., Kawakami, K., 2015. Size control during organogenesis: Development of the lateral
1287 line organs in zebrafish. Dev. Growth Differ. 57, 169-178.

1288 Wang, J., Lu, C., Zhao, Y., Tang, Z., Song, J., Fan, C., 2020. Transcriptome profiles of
1289 sturgeon lateral line electroreceptor and mechanoreceptor during regeneration. BMC
1290 Genomics 21, 875.

1291 Warth, P., Hilton, E.J., Naumann, B., Olsson, L., Konstantinidis, P., 2018. Development of the
1292 muscles associated with the mandibular and hyoid arches in the Siberian sturgeon,
1293 *Acipenser baerii* (Acipenseriformes: Acipenseridae). J. Morphol. 279, 163-175.

1294 Winklbauer, R., 1989. Development of the lateral line system in *Xenopus*. Prog. Neurobiol. 32,
1295 181-206.

1296 Wu, D.K., Oh, S.-H., 1996. Sensory organ generation in the chick inner ear. J. Neurosci. 16,
1297 6454-6462.

1298 Yadin, D., Knaus, P., Mueller, T.D., 2016. Structural insights into BMP receptors: Specificity,
1299 activation and inhibition. Cytokine Growth Factor Rev. 27, 13-34.

1300 Zhang, X., Xia, K., Lin, L., Zhang, F., Yu, Y., St Ange, K., Han, X., Edsinger, E., Sohn, J.,
1301 Linhardt, R.J., 2018. Structural and functional components of the skate sensory organ
1302 ampullae of Lorenzini. ACS Chem. Biol. 13, 1677-1685.

1303 Zimmerman, L.B., De Jesús-Escobar, J.M., Harland, R.M., 1996. The Spemann organizer
1304 signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599-606.

1305

Target Gene	sgRNA	Target Sequence	PAM	Combinations Used
Bmp5	1	TCACGCAGAAAAGCACAGGG	AGG	1+2+3, 1+4
	2	AGATGATGCCCTGTTGCCAG	GGG	1+2+3, 2+3
	3	GGCAAACGAGGAGGAAAACG	GGG	1+2+3, 2+3
	4	GTACAATGCCATGGCAAACG	AGG	1+4
Tyr	1	GGTGCCAAGGCAAAAACGCT	GGG	1+2, 1+2+3+4
	2	GATATCCCTCCATACATTAT	TGG	1+2, 1+2+3+4
	3	GATGTTCTAACACATTGGGG	TGG	1+2+3+4
	4	GCTATGAATTTATTTTTTC	AGG	1+2+3+4
	5	GCAAGGTATACGAAAGTTGA	CGG	5+6
	6	GATTGCAAGTTCGGCTTCTT	AGG	5+6
	7*	GGTTAGAGACTTATGTAAC	GGG	7+8
	8*	GGCTCCATGTCTCAAGTCCA	AGG	7+8

1306

1307 **Table 1. sgRNAs used in this study.** The target sequences and sgRNA combinations used
1308 in this study are shown. The *Tyr* sgRNAs were previously published (preprint, Minařík et al.,
1309 2024b); the asterisk against *Tyr* sgRNAs 7 and 8 indicates that these sgRNAs were
1310 originally designed and published by Stundl et al. (2022) as their *tyr* sgRNAs 3 and 4,
1311 respectively.