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ABSTRACT 
The magnitude dimensions of visual stimuli, such as their numerosity, duration, and 

size, are intrinsically linked, leading to mutual interactions across them. However, it 

remains debated whether such interaction across dimensions, or “magnitude 

integration” effects, arise from low-level perceptual processes that are independent 

from the task performed, or whether they instead arise from high-level decision-making 

processes. We address this question with two experiments in which participants 

watched a series of dot-array stimuli modulated in numerosity, duration, and item size. 

In experiment 1 (task condition), the task required participants to either judge the 

numerosity, duration, or size of each stimulus. In experiment 2 (passive condition), 

instead, a separate group of participants passively watched the stimuli. The behavioral 

results obtained in the task show robust magnitude integration effects across all three 

dimensions. Then, we identify a neural signature of magnitude integration by showing 

that event-related potentials at several latency windows (starting at ~100-200 ms after 

stimulus onset) can predict the effect measured behaviorally. In the passive condition, 

we demonstrate an almost identical modulation of brain responses, occurring at the 

same processing stages as during the task. Importantly, using a cross-condition 

multivariate decoding analysis, we demonstrate that brain responses to magnitude in 

the task condition can predict the response in the passive condition at specific latency 

windows. These results thus suggest that magnitude processing and integration likely 

occurs via automatic perceptual processes that are engaged irrespective of the task-

relevance of the stimuli, and independently from decision making. 

 

Keywords. Magnitude perception, magnitude integration, EEG, numerosity 

perception, time perception, size perception. 
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INTRODUCTION 
Magnitude dimensions such as numerosity, time, and space represent fundamental 

properties of the external world, as each of these dimensions provides essential 

information to understand and navigate the environment. Indeed, the perception of 

magnitudes organize our thoughts and experience by allowing us to appreciate how 

many objects are around us, their size and their spatial relations, and the duration and 

timing of the external events. While these dimensions are important in their own rights 

and studied in separate lines of research, a particularly interesting phenomenon is 

their integration and interaction, likely grounded on their shared computational 

structure (e.g., Walsh, 2003). Different magnitude dimensions seem indeed linked in 

a way that the perception of one dimension depends on the others, usually leading to 

mutual biases. For instance, a large object or a numerous set of items is perceived as 

lasting longer in time compared to a smaller object or fewer items (e.g., Xuan et al., 

2007). Vice versa, a longer stimulus may appear bigger or more numerous than a 

shorter one (e.g., Javadi & Aichelburg, 2012; Lambrechts et al., 2013; Togoli et al., 

2021). 

 

These mutual influences across magnitude dimensions – or “magnitude integration” 

effects – represent one of the core phenomena characterizing magnitude perception, 

and have inspired important theories like the “a theory of magnitude” (ATOM) 

framework (Walsh, 2003). According to ATOM, the processing of different magnitudes 

culminates in a generalized magnitude system encoding different dimensions with the 

same neural code. This in turn would allow the interaction of magnitude information in 

the service of perception and behavior. This view has been however challenged by the 

idea that biases across magnitudes, and especially space and time, may stem from 

the linguistic labels assigned to them, and how we conceptualize these dimensions at 

a linguistic rather than at a perceptual level (“metaphoric theory;” e.g., Casasanto & 

Boroditsky, 2008). While evidence has now been accumulated against a purely 

linguistic/conceptual view of magnitude integration (Cai & Connell, 2015; Togoli, Bueti, 

et al., 2022; Whitaker et al., 2022), other theories have proposed that magnitudes 

interact at a more cognitive rather than perceptual level, as a working memory 

interference (Cai et al., 2018), or as a response bias (Yates et al., 2012). Namely, 

according to these ideas, the interference across magnitudes would occur either 

because of different memory traces nudging each other while stored in working 
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memory, or because of a bias in the response selection due to the similar response 

codes of different magnitudes (i.e., “more” vs. “less”). In both these cases, the 

interference would not affect how magnitudes are perceived, but only their memory 

traces or the way they are judged. Finally, based on neuroimaging data, it has been 

recently proposed (Hendrikx et al., 2024; Tsouli et al., 2022) that the interaction could 

arise from the processing of different dimensions in partially overlapping cortical maps, 

but without involving a common neural code (Fortunato et al., 2023; Harvey et al., 

2013, 2015; Hendrikx et al., 2022, 2024; Protopapa et al., 2019). 

 

At which processing stage magnitude integration arises thus remains debated. Mixed 

evidence indeed seems to support both the “low-level,” perceptual interpretation, and 

the “high-level” interpretation based on memory and/or decision making. For example, 

results from Cai et al. (2018) show that the duration judgements can be biased by the 

length of a stimulus only when the length information is provided before the duration 

judgment has started, suggesting that the bias occurs as an interference between 

memory traces. Furthermore, electroencephalographic (EEG) evidence from Cui et al. 

(2022) shows that the interference of length on duration is reflected by event-related 

potentials (ERPs) usually associated with working memory (i.e., the P2 and P3b 

component). Conversely, other results show that integration effects do not occur every 

time two magnitudes are presented, as one would expect for instance from a response 

bias, but only when the two dimensions are conveyed by the same stimulus (e.g., a 

dot array with a given numerosity flashed to mark the onset and offset of a duration; 

Togoli, Bueti, et al., 2022). Instead, when two dimensions like duration and numerosity 

are conveyed by different stimuli (i.e., a texture marking the onset and offset of a 

duration, flashed on top of a dot array), the effect reverses becoming repulsive (i.e., 

the more numerous the stimulus is, the shorter it is perceived to last). This suggests 

that magnitude integration effects are not the result of a simple interference between 

different types of information, but involve perceptual binding processes. 

 

To further assess the nature of the magnitude integration phenomenon, here we 

compare the neural (EEG) signature of magnitude integration when magnitudes are 

actively judged in a task, versus when they are passively watched. In the first 

experiment, the participants judged either the numerosity, the duration, or the item size 

of dot-array stimuli against a reference presented before the start of each block (task 
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condition). In a second experiment, a separate group of participants passively watched 

a similar stream of dot-array stimuli modulated in numerosity, duration, and item size 

(passive condition). Our hypothesis is that if magnitude processing and integration 

entail perceptual processes, then similar magnitude-sensitive neural signatures 

should be observed irrespective of whether the participants are actively judging 

magnitudes or not. Conversely, if the integration effect hinges upon memory or 

decision-making, then brain activity during the task should show a unique neural 

signature not generalizing to the passive condition, where the magnitudes are neither 

memorized nor judged. To test this hypothesis, we first identify a neural signature of 

magnitude integration in the task condition, by assessing the extent to which the brain 

responses could predict the integration effect measured behaviorally. We then 

compare such a neural signature with brain activity evoked by the different magnitudes 

in the passive condition. Finally, to achieve a quantitative measure of how similar the 

brain responses in the two conditions are, we use a multivariate cross-condition 

“decoding” analysis. With this analysis, we thus assess the extent to which magnitude-

sensitive brain responses during passive viewing can be predicted from the data of 

the task condition. If magnitude processing and integration entail similar mechanisms 

engaged irrespective of the task, then the brain responses to the magnitudes in the 

passive condition should be decodable based on the task data. Otherwise, if the task 

engages specific mechanisms resulting in different patterns of brain activity, no cross-

condition decoding should be observed. 

 

 

MATERIALS AND METHODS 
Participants 
A total of 51 participants were tested in the study, with 20 participants tested in the 

task condition (13 females; age ± SD = 24.95 ± 4.21) and 31 separate participants 

tested in the passive condition (19 females; age ± SD = 23.96 ± 3.73). Two participants 

were excluded from data analysis in the passive condition due to corrupted EEG data 

files, leaving 29 participants included in the final analysis. Subjects were compensated 

for their participation in the study with 20 Euros. All participants read and signed a 

written informed consent form before the start of the session. All participants had 

normal or corrected-to-normal vision, and reported no history of neurological, 
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psychiatric, or developmental disorder. The study was approved by the ethics 

committee of the International School for Advanced Studies (Protocol 10035-III/13), 

and was designed to be in line with the Declaration of Helsinki. The sample size tested 

in the task condition was determined a priori based on the expected magnitude 

integration effect as observed in previous studies. Specifically, we took the average of 

the lowest effect sizes of the magnitude integration effects observed in Togoli et al. 

(2021) (i.e., average of effects at the smallest magnitude levels in the time and 

numerosity task of Exp. 1a; d = 0.87), the effect size observed in Togoli, Bueti, et al., 

(2022) (average of effects in Exp. 2; d = 0.74), and in Togoli, Fornaciai, et al. (2022) 

(i.e., average of effects at the intermediate magnitude levels in the time and numerosity 

task; d = 1.21). The resulting average effect size was d = 0.94. Considering a power 

of 95% and a two-tailed distribution, a power analysis indicated a total estimated 

sample size of 17 participants, which we rounded up to 20.  

Since a measure of the behavioral effect cannot be obtained in the passive viewing 

paradigm, the sample size in the passive condition was set to be similar to a series of 

previous EEG studies in numerosity perception, which included on average 25-30 

participants (Fornaciai et al., 2017; Fornaciai & Park, 2017, 2018, 2020, 2021). 
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FIGURE 1. Experimental procedure. (A) Procedure of the task condition. While 

participants kept their gaze at the center of the screen (on a “X” that served as fixation 

cross), a stimulus was presented in each trial. The stimulus was modulated in 

numerosity (8-32 dots), duration (100-400 ms), and item size (i.e., the size of each 

item in the array; 3-10 pixels). After an interval of 600 ms from the offset of the stimulus, 

a cue appeared at the center of the screen indicating which stimulus dimension the 

participant had to judge. Namely, the cue could be a “N” (numerosity judgment), a “T” 

(i.e., duration judgement), or a “S” (size judgement). The cue remained on the screen 

for 600 ms, after which the fixation cross turned red indicating to provide a response. 

The participants were then asked to report whether the magnitude dimension indicated 

by the cue was bigger or smaller compared to a reference corresponding to the middle 

of the magnitude ranges (presented before the session and before each block of 

trials). After providing a response, the next trial started after a variable inter-trial 

interval (500 ± 50 ms). (B) Passive viewing condition. In the passive condition, 

participants watched a stream of dot-array stimuli modulated in numerosity (12-24 

dots), duration (140-280 ms), and item size (4-8 pixels), while keeping their gaze on a 
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central fixation cross. To ensure that participants watched the stimuli, they were asked 

to detect an occasional oddball stimulus (i.e., a dot array with reduced contrast) 

presented on 3.7% of the trials. Each stimulus was separated by a variable inter-

stimulus interval of 980 ± 50 ms. Stimuli are not depicted in scale. 

 

 

Apparatus and stimuli 
The stimuli used in both conditions were arrays of black and white dots (50%/50% 

proportion), presented on a grey background at maximum contrast. The stimuli were 

generated using the routines of the Psychophysics Toolbox (v.3; Kleiner M et al., 2007; 

Pelli, 1997) in Matlab (r2021b, The Mathworks, Inc.), and presented on a 1920×1080 

LCD monitor running at 120 Hz, which encompassed a visual angle of 48×30 deg from 

a viewing distance of 57 cm. The dot-array stimuli were generated online in each trial, 

with the dots scattered pseudo-randomly within a circular aperture with a variable 

radius spanning from 200 to 400 pixels (pseudo-randomly determined in each trial). In 

the task condition, the dot-array stimuli could have a numerosity of 8, 12, 16, 24, or 32 

dots, a duration of 100, 140, 200, 280, or 400 ms, and item size (i.e., the radius of 

each item in the array) of 3, 4, 6, 8, or 10 pixels, for a total of 125 unique combinations 

of the three magnitudes. The different ranges were designed to be approximately 

spaced in a Log2 scale. The reference stimulus that the participants used as a 

comparison (presented at the beginning of the session and before each block) had the 

middle value of the three ranges (16 dots, 200 ms, 6 pixels). The stimuli in the passive 

condition had smaller magnitude ranges to make the modulation of magnitudes subtler 

and less obvious, in order better mask the true aim of the experiment. Namely, the 

stimuli could have a numerosity of 12, 16, or 24 dots, a duration of 140, 200, or 280 

ms, and item size of 4, 6, or 8 pixels. Again, these ranges were designed to be 

approximately spaced in a Log2 scale. In both conditions, the stimuli were presented 

at the center of the screen. 

 

Procedure 
Task condition. In the task condition, participants performed a magnitude classification 

task, with the dimension judged in each trial determined by a retrospective cue (i.e., 

presented after the offset of the stimulus). First, participants watched a reference 
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stimulus representing the middle of the magnitude ranges used in the experiment and 

were instructed to remember it and judge the stimuli in main sequence based on it. 

The reference was presented 10 times (randomizing the positions of the dots) before 

the start of the session and repeated 5 more time before the start of each block of 

trials. In the session, participants were instructed to keep their gaze on a central 

fixation point. Each trial started with the presentation of the fixation cross (a “X” at the 

center of the screen). After 750 ms, the dot-array stimulus was presented replacing 

the fixation cross, and was displayed for 100-400 ms according to the duration 

selected in the trial. After an interval of 600 ms from the offset of the stimulus, the 

retrospective cue was presented at center of the screen. The cue could be either “N,” 

“T,” or “S,” respectively instructing the participant to judge the numerosity, duration 

(i.e., time), or item size of the stimulus. The cue remained on the screen for 600 ms. 

After that, the cue was replaced by a red X (fixation cross), instructing the participant 

to provide a response. According to the cue, the participant was asked to indicate 

whether the stimulus had a higher or lower numerosity, a longer or shorter duration, or 

a bigger or smaller item size compared to the reference. The response was provided 

by pressing either the down arrow (lower/shorter/smaller) or the up arrow 

(higher/longer/bigger) on a standard computer keyboard. After providing a response, 

the next trial started after a variable inter-trial interval of 500 ± 50 ms. Each participant 

completed a total of 1,250 trials (10 blocks of 125 trials), corresponding to a total of 10 

repetition of each unique combination of numerosity, duration, and dot size. The three 

tasks were randomly intermixed within the same blocks. No feedback was provided to 

participants about their response. 

 

Passive condition. In the passive condition, the participants watched a series of stimuli 

modulated in numerosity, duration, and size. Each stimulus was presented centrally 

on the screen, and successive stimuli were separated by an inter-stimulus interval of 

980 ± 50 ms. In order to make participants attend the stream of stimuli, they were 

asked to detect occasional oddball stimuli defined by a reduced contrast compared to 

the rest of the stimuli (oddball detection task). The oddball stimuli represented 3.7% 

of the total stimuli presented. Participants were thus instructed to press the space bar 

on the keyboard as fast as they could once they detected an oddball stimulus. This 

occasional simple detection task was designed to avoid drawing attention to any of the 
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magnitude dimensions of the stimuli, while encouraging the participants to watch the 

stimuli. On average, the detection rates (± SD) of the oddball were 93% ± 1.3%, and 

the average reaction time was 313 ± 11 ms. In the passive condition, participants 

completed a total of 2,160 trials (8 blocks of 270 trials), for a total of 80 repetitions of 

each combination of stimulus magnitudes. The higher number of trials tested in the 

passive condition compared to the task condition was chosen to compensate for the 

smaller magnitude ranges used, i.e., in order to ensure that we could measure robust 

brain responses to the magnitudes also in this condition. Overall, participants were 

only instructed to watch the stream of stimuli and respond to the oddball, and the 

magnitudes were never mentioned in the instructions and recruiting materials. 

 

Behavioral data analysis 
In the task condition, the magnitude judgement performance and the integration effect 

were assessed by first computing the point of subjective equality (PSE). The PSE 

reflects the accuracy in the task, and the perceived magnitude of the stimuli compared 

to the reference magnitude. Data reflecting each specific task (i.e., all the trials in which 

a specific cue was presented) were used to compute the proportion of “more” 

(numerosity task), “longer” (duration task), or “bigger” (size task) responses as a 

function of both the task-relevant magnitude and the other (interfering) magnitudes. A 

psychometric (cumulative Gaussian) function was then fitted to the distribution of 

proportion of response, according to the maximum likelihood method (Watson, 1979). 

Specifically, within each task, the psychometric function was fitted separately for each 

level of each of the other “interfering” magnitudes, in order to assess the difference in 

PSE due to the task-irrelevant magnitudes. For example, when analyzing the 

performance in the numerosity task, the fit was performed separately for each level of 

duration and each level of item size. To account for errors unrelated to the magnitude 

of the stimuli and lapses of attention, a finger-error rate correction of 2.5% (Wichmann 

& Hill, 2001) was applied. This correction reduces the asymptotic levels of the fit by a 

proportion corresponding to the rate, in order to account for the random errors 

preventing the proportion of responses to converge to 0% and 100% at the lower and 

higher end of the range, respectively. The PSE was computed as the 

numerosity/duration/size level corresponding to chance level (50%) responses (i.e., 

the median of the psychometric curve). This procedure allowed us to compute 

individual measures of PSE for the different combinations of task relevant and 
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interfering dimensions (e.g., numerosity PSE when duration was 100 ms, 140 ms, 200 

ms, 280 ms, and 400 ms, and the same for size, and similarly for the other tasks). 

When performing the fit according to a given task-relevant and interfering magnitude, 

the other dimension was collapsed. Doing so, each data point in the fitting procedure 

represented the average of 25 repetitions of the specific combination of task-relevant 

and interfering dimension. Additionally, we assessed the precision in the task in terms 

of the Weber fraction (WF). The WF was computed as the ratio between the just 

noticeable difference (JND; the slope of the psychometric curve) and the PSE. To 

assess the difference in the average WF across the three types of tasks, we used a 

one-way repeated measures ANOVA.  

 

In order to better define the effect of the interfering magnitudes in each task, we then 

used the PSE to compute a “magnitude integration effect” index according to the 

following formula: 

 

Magnitude Integration Effect = -1 x ((PSEj - PSEref) / PSEref) x 100; 

 

Where PSEref correspond to the PSE obtained when the interfering magnitude 

considered was the same as the reference, and PSEj to the PSE corresponding to 

each other level of the interfering magnitude (either lower or higher than the 

reference). The change in sign (-1) was added in order to make the interpretation of 

the index easier. Namely, doing so a positive index means that the task-relevant 

magnitude is overestimated, while a negative index means that the magnitude is 

underestimated. To assess the significance of magnitude integration effects, we 

performed a series of linear mixed-effect model tests, assessing the integration biases 

on each type of judgement. Namely, we entered the magnitude integration effect as 

dependent variable, the ratio of each level of the interfering magnitude with the 

reference value and the magnitude itself (i.e., “numerosity,” “duration,” or “size”) as 

predictors, and the subject as the random effect (Magnitude integration effect ~ Ratio 

x Magnitude + (1|subj.)). Interactions found between ratio and magnitude were 

followed up with additional LME tests within each interfering magnitude dimension. 

The LME models were chosen in this case (i.e., instead of ANOVAs) as the ratio is a 

continuous variable. 
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Finally, in order to assess the relationship between ERPs and the behavioral effect, 

we computed a measure of DPSE. This measure reflected the difference in PSE 

between each level of the interfering dimension and the middle magnitude level 

corresponding to the reference. This was done to have a similar measure that can be 

related to the neural effect of different magnitudes (see below for more information 

about the ERP analysis). All the analyses and statistical tests on behavioral data were 

performed in Matlab (version r2021b). 

 

Electrophysiological recording and pre-processing 
In both the task and passive condition, the EEG was recorded throughout the 

experimental session. EEG recording was performed by using the Biosemi ActiveTwo 

system (at 2048 Hz sampling rate), and a 32-channel cap based on the 10-20 system 

layout. To better monitor artifacts due to eye blinks and movements, we recorded the 

electro-oculogram (EOG) by means of a channel attached below the left eye of the 

subject. During the recording, we made sure to keep the electrode offsets as low as 

possible. Usually, electrode offset values were kept below 20 µV, but occasionally 

values up to 30 µV were tolerated. 

 

The pre-processing of EEG data was performed offline in Matlab (version R2021b), 

using the functions of the EEGLAB (Delorme & Makeig, 2004) and ERPlab (Lopez-

Calderon & Luck, 2014) toolboxes. In both conditions, the pre-processing involved the 

binning and epoching of data according to each unique combination of the different 

magnitudes. In the task condition, the binning was also performed separately for the 

three cues determining the specific task in each trial. In both conditions, epochs 

spanned from -200 to 700 ms, time-locked to the onset of each stimulus. In the case 

of duration, ERPs were later re-aligned to the offset of the stimuli. This was done as 

we expected an effect of duration only after the presentation of the stimuli had fully 

unfolded. 

 

In both conditions, after the epoching, the EEG data was band-pass filtered with cut-

offs at 0.1 and 40 Hz. Moreover, to clean up the data as much as possible from artifacts 

such as eye movements and blinks, we performed an independent component 

analysis (ICA) aimed at removing identifiable artifacts and other potential sources of 
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systematic noise. After the ICA, we additionally applied a step-like artifact rejection 

procedure, with an amplitude threshold of 40 μV, a window of 400 ms, and a step size 

of 20 ms. This was done in order to further remove any remaining large artifact from 

the EEG data. On average, this led to the exclusion of 2.26% ± 1.73% of the trials in 

the task condition, and 0.6% ± 1.2% in the passive condition. Finally, we computed the 

event-related potentials (ERPs) by averaging EEG epochs within each bin, and further 

low-pass filtered the signal with a 30-Hz cut-off. 

 

Event-related potentials analysis  

In both conditions, the ERP analysis was performed by considering the average of the 

same set of three occipito-parietal target channels, selected a priori based on previous 

studies (Fornaciai et al., 2017; Fornaciai et al., 2023; Tonoyan et al., 2022). The 

chosen target channels were Oz, O1 and O2.  

 

First, we plotted the ERPs corresponding to each magnitude and computed the linear 

contrast of ERPs. The weights of the linear contrast computation were [-2 -1 0 -1 -2] 

in the task condition, and [-1 0 1] in the passive condition, based on the number of 

levels of each magnitude tested in the two conditions. Moreover, we computed an 

additional measure of contrast by computing the difference in ERP amplitude for each 

level of each magnitude and the two extreme levels of the other two interfering 

dimensions. For example, for each level of numerosity we computed the difference in 

amplitude between the extreme levels of duration and size, and so on for the other 

dimensions. We then averaged this measure across the different levels of each 

magnitude. To assess the significance of the magnitude contrasts, we performed a 

series of one-sample t-tests against zero. To control for multiple comparisons, we 

applied a false discovery rate correction with q = 0.05. Finally, we computed a measure 

of DERP as the difference in amplitude between the ERPs corresponding to the middle 

level of the range (corresponding to the reference in the task condition) and each other 

level of the magnitude ranges. In the task condition, the DERP was computed 

separately according to the task. Doing so, we thus computed a measure of the effect 

of numerosity in the size and duration task, and so on for the other magnitudes. This 

measure was computed to have an index of the effect of magnitudes on ERPs similar 

to the DPSE computed from the behavioral results, in order to more easily relate the 
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ERP and behavioral measures of the effect in the analysis of the task condition. To 

assess the significance of the DERP, in the task condition we performed a series of 

LME tests, entering DERP as the dependent variable, the ratio of each magnitude level 

and the middle level as predictor, and the subjects as the random effect (DERP ~ Ratio 

+ (1|subj)). In the passive condition, we instead performed a series of paired t-tests 

(i.e., due to the smaller number of levels of each magnitude range). In both cases, the 

tests were performed on small 10-ms (step = 5 ms) windows in a sliding-window 

fashion, and the significance was corrected with FDR (q = 0.05). Additionally, we 

considered significant only clusters of consecutive significant time-points larger than 

10 ms (i.e., three consecutive significant tests or more).  

 

Only in the task condition, we further assessed the relationship between DERP (i.e., 

neural effect of magnitude) and DPSE (i.e., behavioral effect of magnitude) via a series 

of LME tests. In this case, we entered the DPSE as the dependent variable, the DERP 

as the predictor, and the subjects as the random effect (DPSE ~ DERP + (1|subj)). This 

analysis was performed again across a series of 10-ms windows with step = 5 ms. 

Finally, the analysis was restricted to the latency windows showing a significant 

modulation of DERP by the magnitudes (see above), and we considered statistically 

significant only clusters of at least three consecutive significant windows. This analysis 

was aimed at assessing the extent to which magnitude-sensitive brain responses can 

predict the effect measured behaviorally.  

 

Multivariate analysis 
We relied on a multivariate approach in order to more directly compare the brain 

activity related to magnitude processing in the two conditions. Namely, we assessed 

the extent to which training a classifier on the data (DERP) from the task condition 

allows to decode magnitude-sensitive activity in the passive condition. First, to create 

the training dataset, we computed for each participant an average measure of DERP 

in the task condition, based on the difference between the amplitude relative to lower 

(8, 12 dots; 100, 140 ms; 3, 4 pixel) and higher (24, 32 dots; 280, 400 ms; 8, 10 pixel) 

magnitude levels and the amplitude of the middle magnitude level (16 dots, 200 ms, 6 

pixel). Thus, the training dataset was composed by a number of data points 

corresponding to the number of participants in the task condition (N = 20), with each 
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data point corresponding to the average data of a single participant (i.e., one data 

point for each specific class entered into the analysis). The same was done for each 

participant in the passive condition group to create the test dataset, based on the 

specific levels of the magnitudes used in this condition (12 and 24 dots, 140 and 280 

ms, 4 and 8 pixels; respectively for the magnitudes lower and higher than the middle 

value). Again, this procedure resulted in a set of data points (N = 29) each 

corresponding to the average data of each participant, one for each of the two classes 

entered into the analysis (i.e., magnitudes “lower” or “higher” than the middle value, 

with different dimensions tested separately in different iterations of the procedure). In 

the decoding procedure, a linear classifier (support vector machine, C = 1) was trained 

on the task condition dataset, according to a leave-two-out cross-validation procedure. 

Namely, a datapoint for each of the two levels of magnitude (“lower” and “higher”) was 

left out from the training set. To test the classifier, we used the two data points from a 

single participant in the passive condition group. Thus, in each iteration of the analysis, 

the training was performed on 19 + 19 data points (corresponding to the two classes 

being decoded) based on the task condition data, and the testing on 1 + 1 data points 

(again corresponding to the two classes) from the passive condition dataset. This 

procedure was repeated to include all the combinations of training data, iteratively 

leaving out each data point from the training set and testing the classifier again with 

the same test data points, and averaging the classification accuracies obtained in the 

different cross-validation steps. The analysis was repeated considering each set of 

test data (i.e., the data from each participant in the passive condition) separately. This 

in turn resulted in a distribution of classification accuracy values corresponding to the 

number of participants in the passive condition group. Moreover, the analysis was 

performed independently across a series of small time windows (15 ms width, 5 ms 

step; i.e., to increase the signal-to-noise ratio), throughout the epoch. Finally, the 

training and testing procedure was performed by considering a set of five occipital and 

parieto-occipital channels (PO3, O1, Oz, O2, PO4). To test for the significance of the 

distribution of classification accuracies obtained at each time window, we used a 

permutation (sign flipping) procedure. Namely, at each time window, we subtracted 0.5 

from the classification accuracies (i.e., the chance level), and swapped the sign of half 

the values. This procedure was repeated 10,000 times taking random splits of the 

data, and we assessed the number of times that the classification accuracy of the sign-

swapped data was equal or higher than the actual average classification accuracy 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.04.29.591641doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591641
http://creativecommons.org/licenses/by/4.0/


 16 

observed. The proportion of times in which the simulated accuracy equaled or 

exceeded the actual value was considered the p-value of the test. The alpha level 

applied to these tests was 0.05. After the tests, we also applied a threshold of at least 

three consecutive time windows (i.e., only clusters of at least three consecutive time 

windows were considered significant). Note that we chose to use the passive condition 

data as the testing dataset in order to have a larger distribution of classification 

accuracy values to test with permutations, with the rationale of achieving more robust 

and stable results. We did not perform the analysis in the opposite direction (training 

with the passive data and testing with the task data) since the two sets of results would 

be difficult to average. Namely, due to the nature of this procedure, analyses in 

different directions would results in different distributions of classification accuracy 

values (29 when testing with the passive data, 20 when testing with the task data), 

making it difficult to combine them. All the analyses and statistical tests involving EEG 

data were performed in Matlab (version r2021b). 

 

 

RESULTS 
In this study we measured the neural (EEG) signature of magnitude processing and 

integration with subjects either engaged in actively judging the magnitude of the 

stimuli, or passively watching the stimuli. Doing so, we aimed at comparing such 

signatures to better understand the nature of the magnitude integration phenomenon. 

Specifically, if magnitude integration depends on post-perceptual cognitive processes, 

we predicted to observe a unique signature of magnitude processing only when 

performing a magnitude task. Conversely, if the integration effect arises from automatic 

perceptual processes, then similar signatures of magnitude processing should be 

observed in both the task and during passive viewing. 

 

Task condition 
In the task condition, participants performed a magnitude classification task of the 

numerosity, duration, and item size of dot-array stimuli. Which dimension to judge was 

indicated to the participants via a retrospective cue (in a trial-by-trial fashion), thus 

forcing them to attend the stimulus as a whole rather than focusing on a single 

dimension. The procedure of the task condition is depicted in Fig. 1A. 
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FIGURE 2. Behavioral effects of magnitude integration. (A) Magnitude integration 

effects of duration and size on numerosity judgements. The values of the two 

interfering dimensions are reported on the upper and lower x axes. (B) Magnitude 

integration effects on duration judgements. (C) Magnitude integration effect on size 

judgements. The data points are slightly jittered for the ease of visualization. (D) 

Average Weber fraction in the three tasks. Error bars are SEM. 

 

 

First, we assessed the behavioral effects of magnitude integration, which are shown 

in Fig. 2A-C. To assess the mutual biases across the different dimensions, we first 

computed the point of subjective equality (PSE; see Behavioral data analysis) as a 

measure of accuracy in the task. Then, we derived a magnitude integration effect index 

based on the difference in PSE caused by each level of the interfering magnitudes 

compared to the reference magnitudes (i.e., the middle levels of numerosity, duration, 

and size). To assess the significance of magnitude integration, we performed a series 

of linear mixed-effect (LME) regression models within each type of task. In the model, 

we entered the magnitude integration effects as the dependent variable, the ratio of 

each interfering magnitude level with the reference level, and the magnitude itself 

(e.g., “duration” and “size” in the numerosity task), as predictors, and the subjects as 

the random effect. The ratio (instead of the magnitude) was chosen as a predictor to 

test the effect of both interfering dimensions on each type of judgment within the same 

test. 

 

In the numerosity task (Fig. 2A), we observed robust effects of both duration and size, 

although in opposite directions. While duration had a congruent effect (i.e., the longer 

the duration, the higher the perceived numerosity), size had an opposite, repulsive 

effect: the bigger the size of the dots, the lower the perceived numerosity. The LME 
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test (adjusted-R2 = 0.22) indeed showed a significant interaction between ratio and 

magnitude (b = 20.96, t = 5.90, p < 0.001). This interaction was followed up with 

simpler LME tests considering each interfering dimension separately. The results of 

these additional tests showed that both duration (adj-R2 = 0.56, b = 5.47, t = 3.23, p = 

0.002) and size (adj-R2 = 0.47, b = -15.50, t = -6.16, p < 0.001) induced significant 

biases on numerosity judgements. In the duration task (Fig. 2B), we observed again a 

significant interaction between ratio and magnitude (adj-R2 = 0.37, b = -12.02, t = -

2.48, p = 0.019), this time suggesting that size had a stronger influence on duration 

compared to the effect of numerosity on duration. Two follow-up LME tests however 

showed significant congruent biases induced by both numerosity (adj-R2 = 0.33, b = 

7.47, t = 2.75, p = 0.007) and size (adj-R2 = 0.46, b = 19.30, t = 4.88, p < 0.001). 

Finally, looking at Fig. 2C it is clear that size was the magnitude most resistant to 

biases from other dimensions. Although weaker, the LME test (adj-R2 = 0.27) showed 

a significant main effect of ratio (b = 3.99, t = 3.02, p = 0.003), no main effect of 

magnitude (b = -1.31, t = -0.53, p = 0.59), and no interaction (b = 0.41, t = 0.22, p = 

0.82). Overall, the behavioral results of the classification task showed systematic 

mutual biases across all the dimensions tested, albeit with some partial asymmetries. 

 

To assess the participants’ precision in the task, we considered the Weber fraction 

(WF; computed as the ratio of the just noticeable difference and the PSE), which is 

shown in Fig. 2D. On average, size showed the lowest WF (0.18 ± 0.08), suggesting 

the highest precision in the task, followed by numerosity (0.24 ± 0.10), and finally 

duration (0.52 ± 0.32), which was the most difficult dimension to judge. A one-way 

repeated measure ANOVA (with factor “task”) confirmed that the WFs across the three 

types of task are significantly different (F(2,38) = 18.59, p < 0.001), in line with previous 

studies (Fornaciai et al., 2023). 
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FIGURE 3. Event-related potentials (ERPs) evoked by each magnitude in the two 
experimental conditions. Panels A-C: data from the task condition. Panels D-F: data 

from the passive condition. (A) ERPs evoked by the stimulus numerosity in the task 

condition. (B) ERPs evoked by the stimulus duration in the task condition. (C) ERPs 

evoked by item size in the task condition. (D) ERPs evoked by the stimulus numerosity 

in the passive condition. (E) ERPs evoked by the stimulus duration in the passive 

condition. (F) ERPs evoked by item size in the passive condition. In all panels, the 

green wave indicates the linear contrast of the ERPs. Note that while numerosity and 

size ERPs were time-locked to the onset of the stimuli, ERPs corresponding to 

duration were re-aligned to the offset. The zero in panel B and E thus indicates the 

offset of the stimuli. The vertical dashed line indicates the onset or offset of the stimuli. 

The horizontal dashed line indicates the zero of the amplitude scale. All the ERPs are 

the average of signals from channels Oz, O1, and O2. The shaded area around the 

green contrast wave represents the SEM. 
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After assessing the behavioral effects, we went on and addressed the neural signature 

of magnitude integration. First, we plotted the event-related potentials (ERPs) evoked 

by the different levels of each magnitude, irrespective of the task performed. The ERPs 

are shown in Fig. 3A-D. In the case of numerosity (Fig. 3A), we observed a first 

negative peak of numerosity-sensitive responses at 150-200 ms after stimulus onset, 

followed by weaker but more sustained responses throughout the epoch. In the case 

of duration, aligning the waves to the offset of the stimuli created a misalignment of 

the onset responses, which introduced a few spurious effects. In other words, a 

seemingly large deflection in the contrast amplitude is actually driven by a peak in 

amplitude of a single level of duration, rather than a consistent peak present at all 

levels of duration.  However, we also observed a large modulation at around 300 ms 

after stimulus offset, that seems to genuinely reflect duration, as it involves a deflection 

evident at all three levels of duration. Finally, brain responses sensitive to item size 

showed the main peak at around 250 ms, with a large positive deflection.  

 

 
FIGURE 4. Average contrast amplitude reflecting the neural effects of the three 
magnitudes. Panels A-C: data from the task condition. Panels D-F: data from the 

passive condition. The contrast amplitude in this case was computed as the difference 
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between the extreme levels of each “interfering” magnitude, separately for each level 

of each magnitude. For instance, the effect of numerosity on duration was computed 

as the difference between ERPs corresponding to 100 ms/32 dots and 100 ms/8 dots, 

and so on for the other levels of duration. The same was done for the effect of 

numerosity on size, and the resulting contrasts were averaged together to increase 

the signal-to-noise ratio. A similar procedure was then used to compute the effect of 

duration and the effect of size. (A) Contrast amplitude reflecting the effect of 

numerosity in the task condition. (B) Contrast amplitude reflecting the effect of duration 

in the task condition. (C) Contrast amplitude reflecting the effect of size in the task 

condition. (D) Contrast amplitude reflecting the effect of numerosity in the passive 

condition. (E) Contrast amplitude reflecting the effect of duration in the passive 

condition. (F) Contrast amplitude reflecting the effect of size in the passive condition. 

The black lines at the bottom of the plots mark the significant latency windows 

assessed with a series of FDR-corrected one-sample t-tests. The vertical dashed line 

indicates the onset or offset of the stimuli. The horizontal dashed line indicates the 

zero of the amplitude scale. The shaded area around the wave represents the SEM. 

The topographic plots besides each panel show the distribution of scalp activity in a 

50-ms window around the main peak of each wave. All waves shown in the figure 

reflect the average of signals from channels Oz, O1, and O2. 

 

 

To better address the significance of magnitude-sensitive brain responses, we 

computed a measure of ERP contrast based on the difference between the extreme 

levels of the interfering dimensions’ ranges. Namely, for each level of each magnitude, 

we contrasted the ERPs as a function of the extreme levels of the interfering 

dimensions. For example, to compute the effect of numerosity, we subtracted the ERP 

corresponding to the combination of 100 ms and the two extreme levels of numerosity 

(8 and 32 dots). The same subtraction was performed for the combination of 140, 200, 

280, and 400 ms and the extreme levels of numerosity. The same was done for the 

combination of each level of size and the extreme levels of numerosity. The effect of 

duration and size were computed in the same way by switching the dimension. The 

average of this contrast measure, reflecting the effect of the different magnitudes in 

driving ERPs, is shown in Fig. 4. Additionally, Fig. 4 shows the topographic distribution 

of contrast amplitude in a 50-ms window around the main peak of each corresponding 
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contrast wave. To assess the significance of the contrast amplitude, we performed a 

series of one-sample t-tests against zero, corrected for multiple comparisons with false 

discovery rate (FDR; q = 0.05). When reporting the results below, we indicate the 

range of t-values and FDR-adjusted p-values as [min max]. 

 

The numerosity-sensitive brain responses (Fig. 4A) showed four significant latency 

windows. The strongest effect was observed at a negative deflection at 120-175 ms (t 

= [-6.97, -2.41], p = [<0.001, 0.049]) after stimulus onset, which was around the peak 

of contrast amplitude (-2.7 µV) observed at 145 ms after stimulus onset. This peak 

was followed by additional significant windows at 200-240 ms (t = [2.45, 3.62], p = 

[<0.001, 0.046]), 355-390 ms (t = [-3.18, -2.41], p = [0.012, 0.048]), and 425-700 ms 

(t = [-5.61, -2.47], p = [0.001, 0.044]) after stimulus onset. Regarding the effect of 

duration on ERPs, we observed four significant latency windows. The first one was 

observed before stimulus offset, spanning from -170 to -85 ms (t = [-6.55, -2.58], p = 

[<0.001, 0.049]). Then we observed two relatively early windows at 30-70 ms (t = [-

3.66, -2.58], p = [0.007, 0.049]) and 145-195 ms (t = [2.58, 4.50], p = [0.003, 0.049]). 

Looking at the ERPs shown in Fig. 3B, these three latency windows however appear 

to be driven each by a single duration level, due to the onset responses (i.e., only one 

wave shows a deflection while the others are flat). Such responses cannot thus be 

considered as genuine correlates of duration, but are spurious effects due to the re-

alignment of brain waves to the offset of the stimuli.  A more genuine peak of activity 

driven by duration was instead observed at 270 ms after the offset (-3.2 µV), and we 

observed a significant latency window around this peak, spanning 240-440 ms (t = [-

5.99, -2.60], p = [<0.001, 0.048]). In the case of size, the peak of activity was observed 

at 240 ms (2.4 µV). The largest significant latency window was observed around this 

peak, spanning 190-320 ms (t = [3.14, 8.44], p = [<0.001, 0.049]). Two additional, 

smaller significant windows were observed at very early latencies (30-45 ms; t = [-

4.04, -3.23], p = [0.009, 0.042]), and at later latencies (600-615 ms; t = [-3.59, -3.16], 

p = [0.022, 0.048]). In all cases, the topographic distribution of scalp activity around 

the peaks (plotted besides each panel, Fig. 4A-C) showed a posterior distribution 

consistent with activity in the occipital cortex. 
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FIGURE 5. DERP measures and relationship with the behavioral effect. Panels A-

F: data from the task condition. Panels G-I: data from the passive condition. (A) DERP 

measures reflecting the effect of numerosity in the duration task. (B) Effect of 

numerosity in the size task. (C) Effect of duration in the numerosity task. (D) Effect of 

duration in the size task. (E) Effect of size in the numerosity task. (F) Effect of size in 

the duration task. (G) DERP measures reflecting the effect of numerosity in the passive 

condition. (H) Effect of duration in the passive condition. (I) Effect of size in the passive 

condition. The black lines at the bottom of the plots mark the latency window where 

we observed a significant difference in DERP as a function of the different levels of the 

magnitude. The vertical dashed line indicates the onset or offset of the stimuli. The 

horizontal dashed line indicates the zero of the amplitude scale. The grey shaded 

areas marked with stars indicate the latency windows where we observed a significant 

relationship between DERP and the behavioral effect (DPSE). The dotted boxes in 

panels G-I (passive condition) show the main latency windows whereby the brain 

responses in the task condition predicted the behavioral effect. All waves shown in the 

figure reflect the average of signals from channels Oz, O1, and O2. 

 

 

Our main goal in the task condition was however to identify the latency windows 

whereby the modulation of brain activity predicts the magnitude integration bias 

observed behaviorally. We then further computed two measures of the effect that could 

be related to each other in data analysis: DPSE, reflecting the behavioral effect, and 
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DERP, reflecting the neural effect of magnitudes. These measures were computed by 

subtracting either the PSE or the ERP amplitude of each level of the interfering 

magnitudes from the PSE/ERP corresponding to the middle, reference level. For the 

DERP, this measure was computed at each time point throughout the epochs, and 

separately for the different types of task (see Fig. 5). Doing so, we thus computed the 

effect of numerosity in the duration and size task (Fig. 5A-B), the effect of duration in 

the numerosity and size task (Fig. 5C-D), and the effect of size in the numerosity and 

duration task (Fig. 5E-F).  

 

To address the relationship between neural and behavioral measures of magnitude 

effects, we first looked for latency windows showing a significant modulation of DERP 

as a function of the different levels of the magnitudes. To do so, we performed a series 

of LME tests individually for the effect of each magnitude in each task. In the LME 

model, we entered the DERP as the dependent variable, the ratio of each magnitude 

level with the middle level as the predictor, and the subjects as the random effect. The 

LME tests were performed across a series of 10-ms windows with a 5-ms step, in a 

sliding-window average fashion. To control for multiple comparisons, we again applied 

a FDR procedure with q = 0.05. Clusters of less than three consecutive significant 

tests (after FDR) were not considered. The results of these tests are shown with black 

lines at the bottom of each plot in Fig. 5, marking the significant latency windows. 

 

After identifying the latencies showing a significant modulation of DERP, we looked for 

a relationship between DERP and DPSE within these windows. We thus performed a 

series of LME tests (10-ms windows with 5-ms step) including DPSE as the dependent 

variable, DERP as the predictor, and the subjects as the random effect. The effect of 

numerosity on duration (Fig. 5A) showed three windows whereby the modulation of 

DERP could predict the behavioral effect (marked with grey shaded areas in the 

figure), a larger early window at 110-170 ms, followed by two smaller windows at 440-

450 ms and 665-695 ms (b = [0.006, 0.009], t = [2.02, 3.69], p = [<0.001, 0.047], adj-

R2 = [0.31, 0.43]). The effect of numerosity on size (Fig. 5B) showed again three 

significant windows, but clustered at later latencies: 370-390 ms, 440-585 ms, and 

605-695 ms (b = [0.085, 0.180], t = [2.06, 4.12], p = [<0.001, 0.047], adj-R2 = [0.25, 

0.36]). The effect of duration on numerosity showed a single large significant window, 
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spanning 225-415 ms (b = [0.233, 0.597], t = [2.20, 3.77], p = [<0.001, 0.31], adj-R2 = 

[0.47, 0.54]). The effect of duration on size, showed three smaller windows, with the 

first at earlier latencies spanning 150-180 ms, and the following two at latencies more 

consistent with the effect on numerosity: 265-285 ms and 375-415 ms (b = [-0.043, 

0.088], t = [-2.67, 2.78], p = [0.006, 0.047], adj-R2 = [0.56, 0.59]). Finally, the effect of 

size on numerosity showed a single, large significant window at 180-325 ms (b = 

[0.707, 1.171], t = [2.65, 6.50], p = [<0.001, 0.009], adj-R2 = [0.18, 0.48]), while the 

effect of size on duration showed two significant windows at 215-290 ms and 515-530 

ms (b = [-0.012, 0.013], t = [-3.19, 2.12], p = [0.002, 0.041], adj-R2 = [0.13, 0.26]). 

These results show that the behavioral effect of magnitude integration could be reliably 

predicted by the modulation of magnitude-sensitive responses in the different task 

types, providing a neural signature of the effect. 

 

 

Passive condition 
In the passive-viewing condition, participants watched a stream of dot-array stimuli 

modulated in numerosity, duration, and item size, and responded to occasional oddball 

stimuli defined by a lower contrast. No instruction suggested the participants to 

explicitly attend the magnitudes of the stimuli. This passive-viewing protocol thus 

provides a cleaner index of the responses to the different magnitudes, not confounded 

by decision making or other task-related processes. If magnitude integration arises 

from automatic perceptual processes, then we expected to observe a similar 

modulation of brain responses consistent with the timing observed in the task condition 

(see Fig. 5). Instead, if magnitude-related decision making is necessary for magnitude 

integration to occur, the modulation of brain responses linked to the behavioral effect 

should not occur during passive viewing. 

 

First, we assessed the ERPs corresponding to the different levels of the three 

magnitudes (Fig. 3D-F). The overall pattern was largely consistent with what observed 

in the task condition (see Fig. 3A-C), with however some differences. Numerosity (Fig. 

3D) showed an early positive deflection that we did not observe in the task condition, 

with the magnitude of the stimuli however modulating the stimuli negatively (i.e., the 

smaller the numerosity, the higher the positive deflection in response amplitude). 
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Additionally, ERPs at later latencies showed a weaker modulation compared to the 

task condition. Duration (Fig. 3E) showed a similar deflection compared to the task 

condition, but the modulation of amplitude was in the opposite direction (i.e., see 

topographic plots besides the panels). Finally, size (Fig. 3F) showed instead ERPs 

consistent with the task condition. 

 

To better assess the significance of the magnitude-sensitive brain responses, we 

computed again a measure of contrast based on the difference between the extreme 

levels of each magnitude (Fig. 4D-F), as in the task condition. The contrast amplitude 

was then tested with a series of one-sample t-tests against zero, corrected with FDR 

(q = 0.05). In the case of numerosity (Fig. 4D), we observed a significant early window 

(130-150 ms; t = [-4.34, -3.64], p = [0.026, 0.047]), showing a negative deflection 

consistent with the task condition (see Fig. 4A). The peak of activity in this window (-

0.62 µV) was at 140 ms. Differently from the task condition, we did not observe 

significant latency windows later on in the epoch. The effect of duration (Fig. 4E) 

showed three significant windows. The first one at 20-60 ms (t = [-3.99, -2.68], p = 

[0.003, 0.049]), the second at 160-210 ms (t = [2.68, 4.34], p = [0.002, 0.049]), and 

the third at 270-360 ms (t = [2.71, 4.76], p = [0.002, 0.043]). Note however that similarly 

to the task condition, the first two significant windows appear to be mostly driven by 

the onset responses of individual durations, while the last window shows a consistent 

deflection in responses corresponding to all the different levels of duration (see Fig. 

3E). The topographic plot showing the distribution of peak activity (Fig. 4E) thus 

reflects this last latency window (peak at 290 ms, 1.05 µV). Differently from the task 

condition, however, the contrast amplitude here showed a positive, rather than 

negative, deflection. Finally, size (Fig. 4F) showed a large main window at 155-380 ms 

(t = [2.62, 10.88], p = [<0.001, 0.048]), with a peak at 245 ms (1.62 µV) consistent with 

the effect of size in the task condition. In addition, we observed two additional, smaller 

windows at 60-75 ms and 400-410 ms (t = [2.62, 3.63], p = [0.005, 0.049]). Similarly 

to the task condition, the topography of peak amplitude over the scalp showed a 

posterior distribution consistent with occipital cortex (see plots beside panel D-F). 

 

In order to better compare the modulation of brain responses in the task and in the 

passive condition, we also computed the DERP measure (Fig. 5G-I). The DERPs were 
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assessed with a series of paired t-tests, performed considering 10-ms windows (step 

= 5 ms) as in the task condition, corrected with FDR (q = 0.05). The overall timing of 

the significant windows was consistent with the contrast measure (see Fig. 4D-F). 

DERPs reflecting the effect of numerosity (Fig. 5G) showed a significant modulation at 

130-150 ms (t = [3.64, 4.33], p = [0.025, 0.047]). The effect of duration (Fig. 5H) 

showed a modulation at 225-285 ms (t = [-6.91, -2.78], p = [<0.001, 0.049]), and at 

380-420 ms (t = [-3.68, -2.79], p = [0.016, 0.049]) after stimulus offset. Finally, in the 

case of size (Fig. 5I), we observed the main modulation in a large window spanning 

160-380 ms (t = [-10.87, -2.62], p = [<0.001, 0.049]). We again observed two smaller 

significant windows at 60-75 ms (t = [-3.63, -2.65], p = [0.005, 0.046]) and 400-410 ms 

(t = [-2.85, -2.62], p = [0.032, 0.049]). As a comparison, Fig. 5G-I shows with dotted 

boxes the latency windows where we observed a significant relationship between 

neural and behavioral measures of magnitude integration in the task condition (Fig. 

5A-F). In all cases, we observed an overlap between the significant windows in the 

passive and task condition. 

 

 

Multivariate decoding analysis 
To achieve a more direct comparison of magnitude-sensitive brain activity during the 

task and in passive viewing, we performed a multivariate “decoding” analysis across 

the two experimental conditions. In the analysis, we trained a classifier (support vector 

machine) with data from the task condition, and tested its ability to decode magnitude-

sensitive brain activity in the passive condition. This training and testing direction was 

chosen to obtain a larger set of classification accuracy (CA) values, in order to achieve 

more robust and stable results when testing the statistical significance of the decoding. 

Indeed, the analysis was performed by training the classifier on a set of data points 

each formed by the average data of one participant. The classifier was then tested 

separately on the average data of each participant in the passive condition group, 

according to a leave-two-out procedure, i.e., two datapoints each corresponding to a 

class entered into the analysis were left out from the training set, and two independent 

datapoints from the passive conditions were used for testing. This procedure thus 

resulted in a distribution of CA values corresponding to the number of participants in 

the passive condition. We did not run the analysis in the opposite direction (i.e., training 
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with the passive data and testing with the task data) since, due to the different number 

of data points (i.e., due to the different number of participants in the two conditions), 

the results would be difficult to combine. See Methods for more information about the 

decoding procedure. According to our hypothesis, if the brain responses related to 

magnitude processing and integration are similar irrespective of the task, then the 

classifier should be able to decode magnitude information from the passive data. 

Otherwise, if magnitude processing entails mechanisms specific to the task performed, 

no above-chance decoding should be observable. The ability of the classifier to 

decode magnitude information was evaluated based on the distribution of CA values, 

obtained across a series of small time windows (i.e., 15-ms window with 5-ms step) 

throughout the epochs. The distribution of CA values at each time window was then 

tested with a permutation (sign flipping) test to assess whether it resulted significantly 

higher than chance level (0.5; see Methods for more information). The results of this 

analysis are shown in Fig. 6. 
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FIGURE 6. Results of the multivariate decoding analysis. The decoding analysis 

was performed by training a classifier on data from the task condition, then tested on 

data from the passive condition, in order to achieve a more direct comparison of the 

magnitude-related brain processes in the two experimental conditions. (A) 

Classification accuracies obtained in the decoding of numerosity. (B) Classification 

accuracies obtained in the decoding of duration. (C) Classification accuracies obtained 

in the decoding of size. The horizontal dashed lines indicate the chance level (0.5). 

The vertical dashed lines mark either the time of stimulus onset for numerosity and 

size, or the time of stimulus offset, for duration. The shaded area around the waves 

indicates the SEM, which represents the variability across the distribution of 

classification accuracy values obtained in the decoding procedure. The black lines at 
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the bottom of the plot mark the latency windows where the decoding is significantly 

above-chance, as observed with a series of permutation tests. 

 

 

Overall, the multivariate analysis revealed several latency windows in which 

magnitude-sensitive brain responses in the passive condition could be successfully 

predicted based on the training with the task condition data. Below, the results are 

reported in terms of the range of CAs observed (CA = [min, max]) and p-values of the 

permutation tests (p = [min, max]).  In the case of numerosity, the analysis showed 

significant above-chance decoding at four latency windows. Namely, an early window 

spanning 110-145 ms after stimulus onset (CA = [0.57, 0.67], p = [<0.001, 0.010]), 

followed by later windows at 360-395 ms (CA = [0.59, 0.65], p = [<0.001, 0.049]), 475-

500 ms (CA = [0.56, 0.57], p = [0.026, 0.049]), and 585-695 ms (CA = [0.57, 0.64], p 

= [<0.001, 0.036]). In the case of duration, we observed six significant latency 

windows, at 20-60 ms after stimulus offset (CA = [0.58, 0.73], p = [<0.001, 0.013]), 95-

135 ms (CA = [0.62, 0.69], p = [<0.001, 0.017]), 185-235 ms (CA = [0.54, 0.64], p = 

[<0.001, 0.038]), 285-310 ms (CA = [0.53, 0.55], p = [0.004, 0.048]), 370-460 ms (CA 

= [0.56, 0.65], p = [<0.001, 0.039]), and 515-550 ms (CA = [0.58, 0.67], p = [<0.001, 

0.035]). Finally, in the case of size, we observed three significant latency windows, at 

270-430 ms (CA = [0.60, 0.85], p = [<0.001, 0.020]), 440-495 ms (CA = [0.58, 0.61], p 

= [0.008, 0.047]), and 630-680 ms (CA = [0.58, 0.62], p = [<0.001, 0.049]). 

 

 

 

DISCUSSION 
In the present study, we assessed and compared the signatures of magnitude 

integration in two different conditions: when participants are engaged in actively 

judging the magnitude of the stimuli, or when they passively watched the stimuli. The 

phenomenon of magnitude integration – i.e., the mutual biases usually observed 

across different dimensions – is a hallmark of magnitude perception. Indeed, stimulus 

dimensions such as numerosity, duration, and size systematically interact with each 

other, leading to biases when judging them. Such mutual interactions have played a 

pivotal role in the development of influential theories like “a theory of magnitude” 
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(ATOM; Walsh, 2003) and the “metaphor” theory (Casasanto & Boroditsky, 2008). 

However, the nature of this bias and its underlying mechanisms remain unclear. 

 

Different mechanisms have been proposed to explain the interaction of magnitude 

dimensions. On the one hand, according to ATOM, the interaction would occur in 

perceptual processing due to the encoding of different dimensions with a common 

neural code (Walsh, 2003). In support of such a perceptual account of magnitude 

integration, we have recently shown that the effect relies on a mechanism similar to 

perceptual binding, inducing a positive bias across dimensions only when they are 

conveyed by the same stimulus (i.e., as opposed to magnitudes conveyed by 

separate, superimposed stimuli; Togoli, Bueti, et al., 2022). Recent neuroimaging 

studies, however, albeit showing common neural substrates, failed to provide evidence 

for a shared neural code (Borghesani et al., 2019; Hendrikx et al., 2024; Tsouli et al., 

2022). According to the metaphor theory, on the other hand, the effect would instead 

arise at the conceptual or linguistic level, due to the use of “spatial” concepts to 

describe time (e.g., a “long” time; Bottini & Casasanto, 2013; Casasanto & Boroditsky, 

2008; but see Whitaker et al., 2022). This theory however relies on asymmetric effects 

across temporal and non-temporal dimensions, which depend on the type of stimuli 

used (Javadi & Aichelburg, 2012; Lambrechts et al., 2013; Togoli et al., 2021). 

Moreover, other authors proposed that magnitudes could interact during working 

memory maintenance, nudging each other while stored in memory (Cai et al., 2018; 

Cui et al., 2022), or bias the response selection in comparisons tasks (Yates et al., 

2012). Considering the results from these studies, whether magnitude integration 

across dimensions (e.g., numerosity, duration, and size) occurs at a perceptual or at 

a post-perceptual stage remains a debated topic. 

 

In the present study, we further addressed the nature of the magnitude integration 

effect by assessing a new prediction. Namely, a high-level effect hinging upon 

magnitudes concurrently held in memory (i.e., one magnitude biasing the memory of 

the other) or on active decision-making (i.e., one magnitude interfering with the 

response to another magnitude) should show a unique neural signature not present 

when the magnitudes are neither explicitly attended nor judged. Conversely, a 

perceptual effect is expected to occur in a more automatic fashion, independently from 
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the relevance or judgment of magnitude. Thus, similar signatures should be 

observable with or without a magnitude judgment task. 

 

Our behavioral results show systematic biases across the three magnitudes. First, 

numerosity was biased by both duration and item size. However, while duration show 

a congruent effect (the longer the duration, the higher the perceived numerosity) as in 

previous studies (Javadi & Aichelburg, 2012; Togoli et al., 2021), size induces an 

opposite bias. Although different from the relationship between other dimensions, 

previous studies indeed show that the effect of dot size on numerosity entails a 

negative effect, so that the larger the dot size, the lower the perceived numerosity 

(DeWind et al., 2015; Fornaciai et al., 2019). Duration is instead similarly affected by 

both numerosity and size in a congruent fashion, in line with previous studies (e.g., 

Lambrechts et al., 2013; Xuan et al., 2007), although the latter exerts a stronger 

influence. Finally, size seems the dimension most resistant to integration biases, and 

shows only modest, albeit significant, influences from the other magnitudes. Size is 

also the dimension that is easiest to judge (Fig. 2D), and the generally lower variability 

of responses might explain its robustness to biases. However, in a previous study from 

our group addressing trial-history effects in different magnitude dimensions (i.e., “serial 

dependence” effects; Fornaciai et al., 2023), size showed stronger biases compared 

to duration and numerosity, while again showing the highest precision. Thus, the 

perception of size does not seem intrinsically more resistant to biases, and the lower 

effect observed here might be a feature of magnitude integration effects rather than a 

general property. Considering the pattern of effects across dimensions, the results 

thus show some partial asymmetries, as some dimensions are more vulnerable to 

biases than others, in line with previous studies using similar stimuli (Togoli, Bueti, et 

al., 2022; Togoli et al., 2021).  

 

In terms of event-related potentials, in the task condition we found robust brain 

responses to the different magnitudes. Overall, our analyses identified a set of latency 

windows that show the stronger peaks of activity driven by the different dimensions. 

Namely, around 150 ms and 250 ms after stimulus onset in the case of numerosity 

and size, and around 300 ms after stimulus offset for duration. Brain activity at these 

latency windows appears to be modulated by the different dimensions in a parametric 

fashion, according to the magnitude of the stimuli. Crucially, with just one exception 
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(i.e., the effect of numerosity in the size task), brain activity at or around such peaks 

can significantly predict the bias observed behaviorally: the larger the brain responses, 

the stronger the magnitude integration bias. In the case of numerosity, the timing 

observed here (~150 ms) is consistent with numerosity-sensitive responses measured 

in previous studies. Although this timing is slightly earlier compared to the P2p 

component (~200 ms), i.e., the ERP component most often associated with numerosity 

(Grasso et al., 2022; Libertus et al., 2007; Park et al., 2016; Temple & Posner, 1998), 

several studies also showed numerosity-sensitive responses at earlier latencies, 

starting at around 75-100 ms after stimulus onset (Fornaciai et al., 2017; Fornaciai & 

Park, 2018; Park et al., 2016). In the case of duration, previous studies highlight a 

variety of possible EEG correlates of duration processing, like the contingent negative 

variation (CNV;  Damsma et al., 2021; but see Kononowicz & Penney, 2016), the N2 

(Tonoyan et al., 2022), the P2 (Li et al., 2017), and the P3 (Ernst et al., 2017) ERP 

components. The timing shown in our results appears to be consistent with the results 

of Benau et al. (2018), showing duration sensitivity at around 350 ms after stimulus 

offset. Finally, in terms of size, the timing of responses sensitive to the size of the items 

appears to be roughly consistent with previous results (Park et al., 2016) showing a 

peak at around 200 ms. 

 

The timing of magnitude-sensitive brain response in passive viewing revealed similar 

evoked activity in most of the cases, closely mirroring the responses observed in the 

task condition. Especially in the case of numerosity and size, the peaks of magnitude-

sensitive activity (i.e., DERP; compare Fig. 5A-F with Fig. 5G-I) show indeed a one-to-

one correspondence, with similar timing and polarity. In duration perception, however, 

although the timing and topography of responses is very similar, we observed ERPs 

with an opposite polarity. This may additionally suggest that while the processing of 

numerosity and size is largely invariant across the two conditions, the brain responses 

to duration may at least partially depend on the task relevance of this dimension. 

Namely, while the same duration processing stage seems to get engaged (i.e., as 

suggested by brain responses at the same latency and with the same scalp 

topography), actively attending the magnitudes of the stimuli may modulate how 

duration information is processed. This is not completely surprising, as duration shows 

different properties compared to the other dimensions (i.e., duration information needs 
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to be accumulated, while the other dimensions can be processed from the onset), and 

the encoding of duration information is notoriously poorer in vision compared to other 

senses (e.g., Alais & Burr, 2004; Cai & Connell, 2015). Thus, the processing of duration 

may be more sensitive to the modulatory effects of attention or task-relevance.  

 

The lack of decision-making processes related to magnitude in the passive viewing 

parading represents its major strength, as it allows to exclude the involvement of task-

related brain processes (e.g., working memory encoding and maintenance of 

magnitude information; Cai et al., 2018; Cui et al., 2022), and response biases (Yates 

et al., 2012). However, it also has the obvious weakness that magnitude integration 

could not be directly measured to confirm the effect. The striking similarity in the brain 

responses to the magnitudes, peaking at the same latencies where we demonstrated 

a relationship with the behavioral effect and showing the same scalp topography, 

nevertheless provides evidence that magnitude integration likely occurs even in the 

absence of a task. While this comparison remains qualitative, the multivariate “cross-

condition” decoding analysis provides quantitative evidence that the brain activity at 

several latency windows does not depend on the presence of a magnitude task. 

Indeed, the ability of the classifier to successfully decode the brain responses to 

magnitude across conditions shows that similar brain processes are engaged at 

specific time points, resulting in similar patterns of brain activity. In all cases, the 

latency windows showing above-chance decoding are largely consistent with the most 

important windows highlighted in the other analyses (e.g., in terms of DERP and its 

relationship with the behavioral effect). Namely, the timing of above-chance decoding 

in the case of numerosity (i.e., the 110-145 ms window), duration (i.e., 370-460 ms), 

and size (i.e., 270-430 ms) overlaps with similar windows showing a relationship 

between ERPs and behavior (in the task condition analysis), and with the effect of the 

different magnitudes in the passive condition. The analysis also highlights several 

other windows showing significant cross-condition decoding, suggesting that similar 

patterns of brain activity emerge at multiple processing stages across conditions, both 

early and late. The decoding analysis thus provides further evidence that magnitude 

processing entails patterns of brain activity largely independent from the task. In other 

words, with this analysis we demonstrate that the task and passive condition not only 

entail similar magnitude-sensitive responses at the same processing stages, but also 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.04.29.591641doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591641
http://creativecommons.org/licenses/by/4.0/


 35 

that such responses show very similar patterns of activity likely reflecting the same 

brain processes. In turn, this also suggest that the magnitude integration phenomenon 

– which is reflected by activity at such latency windows – likely takes place irrespective 

from the task, in an automatic and perceptually-driven fashion. According to this 

interpretation, the integration of different magnitudes and the relative bias would occur 

via perceptual processes affecting how we experience the different dimensions, and 

not only their memory traces or how they are judged. Namely, for instance, when we 

underestimate a duration because it is paired with a low numerosity we perceptually 

experience a shorter duration. 

 

Differently from the present study, previous EEG results concerning magnitude 

integration (involving duration and length) suggested the involvement of working 

memory interference (Cui et al., 2022). Cui et al. (2022) indeed observed effects of 

duration and length after the offset of the intervals, at ERP components usually 

associated with working memory maintenance, such as the P2 and P3b. While the 

effect of duration in Cui et al.’s work shows a timing consistent with the present results 

(~250-300 ms after stimulus offset), length has an effect at a much different timing 

(~300 ms after stimulus offset) compared to our earlier peak of responses to the size 

dimension (~250 ms after stimulus onset). Additionally, the scalp topography of the 

magnitude effects had a much more anterior distribution, peaking at parieto-frontal 

locations, as opposed to our results showing a posterior, occipital distribution. 

However, Cui et al. also employed much different stimuli: longer intervals (800-1,200 

ms) and quite large lengths up to 15 degrees of visual angle. Considering the relatively 

long durations and the fact that the stimuli were marked only at the beginning (onset) 

and end (offset) point, it is not surprising that they engaged memory processes (e.g., 

see for instance Rammsayer & Lima, 1991). Both magnitudes in such a task indeed 

rely on the memory trace of the first marker presented rather than on sustained 

sensory stimulation, making it more likely that any interference would involve higher-

level memory processes. Our results however do not conflict with such an 

interpretation. Perceptual and mnemonic interferences are indeed not mutually 

exclusive processes, and can both occur depending on the nature of the stimuli and 

paradigm used. Our results however show that magnitude interactions can be 

perceptual in nature when based on stimuli relying on sensory/perceptual processing 

rather than memory. 
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How would this perceptual interaction occur in the brain? Interestingly, our results 

show that the effects across the different magnitudes do not occur at a unique, 

generalized stage, but show different timings consistent with different brain processing 

stages. The interference between magnitudes thus depends on the specific 

processing dynamics of the different dimensions (see also Togoli et al., 2021), rather 

than a common processing stage. Our results are thus not fully consistent with the 

idea of a generalized magnitude processing system, as proposed by the ATOM 

framework (e.g., Walsh, 2003). Instead, the results seem more in line with recent 

findings of separate topographical cortical maps of different magnitudes, partially 

overlapping with each other (Fortunato et al., 2023; Harvey et al., 2013, 2015; Harvey 

& Dumoulin, 2017; Hendrikx et al., 2024; Protopapa et al., 2019). Recently, it has 

indeed been proposed that the interaction between different magnitudes could arise 

from the overlap of neural populations sensitive to different dimensions but without 

neural alignments across dimensions (Hendrikx et al., 2024; Tsouli et al., 2022), 

therefore arguing against the existence of a centralized mechanism or a common 

magnitude neural code (Walsh, 2003).  

 

To conclude, our results show that the neural signatures of magnitude processing and 

integration are very similar whether participants explicitly attend and judge magnitude 

information or passively watch the stimuli. This in turn suggests that similar brain 

processing stages are engaged irrespective of the task, and thus that magnitude 

integration likely occur even in the absence of magnitude decision-making. Overall, 

our results thus provide new evidence supporting the idea that magnitude integration 

is an automatic perceptual phenomenon independent from the task performed, 

affecting the phenomenological appearance of the stimuli rather than their memory or 

the way they are judged. 
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Data and code availability. All the data generated in the experiments described in 

this manuscript and the experimental code are available on Open Science Framework, 

at this link: https://osf.io/sn9h8/ 
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