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ABSTRACT

The magnitude dimensions of visual stimuli, such as their numerosity, duration, and
size, are intrinsically linked, leading to mutual interactions across them. However, it
remains debated whether such interaction across dimensions, or “magnitude
integration” effects, arise from low-level perceptual processes that are independent
from the task performed, or whether they instead arise from high-level decision-making
processes. We address this question with two experiments in which participants
watched a series of dot-array stimuli modulated in numerosity, duration, and item size.
In experiment 1 (task condition), the task required participants to either judge the
numerosity, duration, or size of each stimulus. In experiment 2 (passive condition),
instead, a separate group of participants passively watched the stimuli. The behavioral
results obtained in the task show robust magnitude integration effects across all three
dimensions. Then, we identify a neural signature of magnitude integration by showing
that event-related potentials at several latency windows (starting at ~100-200 ms after
stimulus onset) can predict the effect measured behaviorally. In the passive condition,
we demonstrate an almost identical modulation of brain responses, occurring at the
same processing stages as during the task. Importantly, using a cross-condition
multivariate decoding analysis, we demonstrate that brain responses to magnitude in
the task condition can predict the response in the passive condition at specific latency
windows. These results thus suggest that magnitude processing and integration likely
occurs via automatic perceptual processes that are engaged irrespective of the task-
relevance of the stimuli, and independently from decision making.

Keywords. Magnitude perception, magnitude integration, EEG, numerosity
perception, time perception, size perception.
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INTRODUCTION

Magnitude dimensions such as numerosity, time, and space represent fundamental
properties of the external world, as each of these dimensions provides essential
information to understand and navigate the environment. Indeed, the perception of
magnitudes organize our thoughts and experience by allowing us to appreciate how
many objects are around us, their size and their spatial relations, and the duration and
timing of the external events. While these dimensions are important in their own rights
and studied in separate lines of research, a particularly interesting phenomenon is
their integration and interaction, likely grounded on their shared computational
structure (e.g., Walsh, 2003). Different magnitude dimensions seem indeed linked in
a way that the perception of one dimension depends on the others, usually leading to
mutual biases. For instance, a large object or a numerous set of items is perceived as
lasting longer in time compared to a smaller object or fewer items (e.g., Xuan et al.,
2007). Vice versa, a longer stimulus may appear bigger or more numerous than a
shorter one (e.g., Javadi & Aichelburg, 2012; Lambrechts et al., 2013; Togoli et al.,
2021).

These mutual influences across magnitude dimensions — or “magnitude integration”
effects — represent one of the core phenomena characterizing magnitude perception,
and have inspired important theories like the “a theory of magnitude” (ATOM)
framework (Walsh, 2003). According to ATOM, the processing of different magnitudes
culminates in a generalized magnitude system encoding different dimensions with the
same neural code. This in turn would allow the interaction of magnitude information in
the service of perception and behavior. This view has been however challenged by the
idea that biases across magnitudes, and especially space and time, may stem from
the linguistic labels assigned to them, and how we conceptualize these dimensions at
a linguistic rather than at a perceptual level (“metaphoric theory;” e.g., Casasanto &
Boroditsky, 2008). While evidence has now been accumulated against a purely
linguistic/conceptual view of magnitude integration (Cai & Connell, 2015; Togoli, Bueti,
et al., 2022; Whitaker et al., 2022), other theories have proposed that magnitudes
interact at a more cognitive rather than perceptual level, as a working memory
interference (Cai et al., 2018), or as a response bias (Yates et al., 2012). Namely,
according to these ideas, the interference across magnitudes would occur either
because of different memory traces nudging each other while stored in working
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memory, or because of a bias in the response selection due to the similar response
codes of different magnitudes (i.e., “more” vs. “less”). In both these cases, the
interference would not affect how magnitudes are perceived, but only their memory
traces or the way they are judged. Finally, based on neuroimaging data, it has been
recently proposed (Hendrikx et al., 2024; Tsouli et al., 2022) that the interaction could
arise from the processing of different dimensions in partially overlapping cortical maps,
but without involving a common neural code (Fortunato et al., 2023; Harvey et al.,
2013, 2015; Hendrikx et al., 2022, 2024; Protopapa et al., 2019).

At which processing stage magnitude integration arises thus remains debated. Mixed
evidence indeed seems to support both the “low-level,” perceptual interpretation, and
the “high-level” interpretation based on memory and/or decision making. For example,
results from Cai et al. (2018) show that the duration judgements can be biased by the
length of a stimulus only when the length information is provided before the duration
judgment has started, suggesting that the bias occurs as an interference between
memory traces. Furthermore, electroencephalographic (EEG) evidence from Cui et al.
(2022) shows that the interference of length on duration is reflected by event-related
potentials (ERPs) usually associated with working memory (i.e., the P2 and P3b
component). Conversely, other results show that integration effects do not occur every
time two magnitudes are presented, as one would expect for instance from a response
bias, but only when the two dimensions are conveyed by the same stimulus (e.g., a
dot array with a given numerosity flashed to mark the onset and offset of a duration;
Togoli, Bueti, et al., 2022). Instead, when two dimensions like duration and numerosity
are conveyed by different stimuli (i.e., a texture marking the onset and offset of a
duration, flashed on top of a dot array), the effect reverses becoming repulsive (i.e.,
the more numerous the stimulus is, the shorter it is perceived to last). This suggests
that magnitude integration effects are not the result of a simple interference between

different types of information, but involve perceptual binding processes.

To further assess the nature of the magnitude integration phenomenon, here we
compare the neural (EEG) signature of magnitude integration when magnitudes are
actively judged in a task, versus when they are passively watched. In the first
experiment, the participants judged either the numerosity, the duration, or the item size
of dot-array stimuli against a reference presented before the start of each block (task
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condition). In a second experiment, a separate group of participants passively watched
a similar stream of dot-array stimuli modulated in numerosity, duration, and item size
(passive condition). Our hypothesis is that if magnitude processing and integration
entail perceptual processes, then similar magnitude-sensitive neural signatures
should be observed irrespective of whether the participants are actively judging
magnitudes or not. Conversely, if the integration effect hinges upon memory or
decision-making, then brain activity during the task should show a unique neural
signature not generalizing to the passive condition, where the magnitudes are neither
memorized nor judged. To test this hypothesis, we first identify a neural signature of
magnitude integration in the task condition, by assessing the extent to which the brain
responses could predict the integration effect measured behaviorally. We then
compare such a neural signature with brain activity evoked by the different magnitudes
in the passive condition. Finally, to achieve a quantitative measure of how similar the
brain responses in the two conditions are, we use a multivariate cross-condition
“decoding” analysis. With this analysis, we thus assess the extent to which magnitude-
sensitive brain responses during passive viewing can be predicted from the data of
the task condition. If magnitude processing and integration entail similar mechanisms
engaged irrespective of the task, then the brain responses to the magnitudes in the
passive condition should be decodable based on the task data. Otherwise, if the task
engages specific mechanisms resulting in different patterns of brain activity, no cross-
condition decoding should be observed.

MATERIALS AND METHODS

Participants

A total of 51 participants were tested in the study, with 20 participants tested in the
task condition (13 females; age + SD = 24.95 + 4.21) and 31 separate participants
tested in the passive condition (19 females; age + SD = 23.96 + 3.73). Two participants
were excluded from data analysis in the passive condition due to corrupted EEG data
files, leaving 29 participants included in the final analysis. Subjects were compensated
for their participation in the study with 20 Euros. All participants read and signed a
written informed consent form before the start of the session. All participants had

normal or corrected-to-normal vision, and reported no history of neurological,
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psychiatric, or developmental disorder. The study was approved by the ethics
committee of the International School for Advanced Studies (Protocol 10035-111/13),
and was designed to be in line with the Declaration of Helsinki. The sample size tested
in the task condition was determined a priori based on the expected magnitude
integration effect as observed in previous studies. Specifically, we took the average of
the lowest effect sizes of the magnitude integration effects observed in Togoli et al.
(2021) (i.e., average of effects at the smallest magnitude levels in the time and
numerosity task of Exp. 1a; d = 0.87), the effect size observed in Togoli, Bueti, et al.,
(2022) (average of effects in Exp. 2; d = 0.74), and in Togoli, Fornaciai, et al. (2022)
(i.e., average of effects at the intermediate magnitude levels in the time and numerosity
task; d = 1.21). The resulting average effect size was d = 0.94. Considering a power
of 95% and a two-tailed distribution, a power analysis indicated a total estimated
sample size of 17 participants, which we rounded up to 20.

Since a measure of the behavioral effect cannot be obtained in the passive viewing
paradigm, the sample size in the passive condition was set to be similar to a series of
previous EEG studies in numerosity perception, which included on average 25-30
participants (Fornaciai et al., 2017; Fornaciai & Park, 2017, 2018, 2020, 2021).


https://doi.org/10.1101/2024.04.29.591641
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.29.591641; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

A TASK CONDITION
...... Fixation
stimulus
X ) e
o %o se
] espO"
*at N ?Aore or less”
P X
so'hs e ™ . ation
6‘\0\"‘\ Fixatio
o"’s . IS, : S
stimulu
609 ," " X
~~~~ P cue
00\.\\ o 00
:{S ‘~.\\ [ onse
B PASSIVE CONDITION g
..... Fixation T
stimulus
Fixation
L)
. :‘..
2 . o
® - Fixation
el StirﬂUluS
' +
~~~~ . ixation
980\"“ : Fixa
1‘50
m,

FIGURE 1. Experimental procedure. (A) Procedure of the task condition. While
participants kept their gaze at the center of the screen (on a “X” that served as fixation
cross), a stimulus was presented in each trial. The stimulus was modulated in
numerosity (8-32 dots), duration (100-400 ms), and item size (i.e., the size of each
item in the array; 3-10 pixels). After an interval of 600 ms from the offset of the stimulus,
a cue appeared at the center of the screen indicating which stimulus dimension the
participant had to judge. Namely, the cue could be a “N” (numerosity judgment), a “T”
(i.e., duration judgement), or a “S” (size judgement). The cue remained on the screen
for 600 ms, after which the fixation cross turned red indicating to provide a response.
The participants were then asked to report whether the magnitude dimension indicated
by the cue was bigger or smaller compared to a reference corresponding to the middle
of the magnitude ranges (presented before the session and before each block of
trials). After providing a response, the next trial started after a variable inter-trial
interval (600 + 50 ms). (B) Passive viewing condition. In the passive condition,
participants watched a stream of dot-array stimuli modulated in numerosity (12-24

dots), duration (140-280 ms), and item size (4-8 pixels), while keeping their gaze on a
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central fixation cross. To ensure that participants watched the stimuli, they were asked
to detect an occasional oddball stimulus (i.e., a dot array with reduced contrast)
presented on 3.7% of the trials. Each stimulus was separated by a variable inter-

stimulus interval of 980 + 50 ms. Stimuli are not depicted in scale.

Apparatus and stimuli

The stimuli used in both conditions were arrays of black and white dots (50%/50%
proportion), presented on a grey background at maximum contrast. The stimuli were
generated using the routines of the Psychophysics Toolbox (v.3; Kleiner M et al., 2007;
Pelli, 1997) in Matlab (r2021b, The Mathworks, Inc.), and presented on a 19201080
LCD monitor running at 120 Hz, which encompassed a visual angle of 48x30 deg from
a viewing distance of 57 cm. The dot-array stimuli were generated online in each trial,
with the dots scattered pseudo-randomly within a circular aperture with a variable
radius spanning from 200 to 400 pixels (pseudo-randomly determined in each trial). In
the task condition, the dot-array stimuli could have a numerosity of 8, 12, 16, 24, or 32
dots, a duration of 100, 140, 200, 280, or 400 ms, and item size (i.e., the radius of
each item in the array) of 3, 4, 6, 8, or 10 pixels, for a total of 125 unique combinations
of the three magnitudes. The different ranges were designed to be approximately
spaced in a Log2 scale. The reference stimulus that the participants used as a
comparison (presented at the beginning of the session and before each block) had the
middle value of the three ranges (16 dots, 200 ms, 6 pixels). The stimuli in the passive
condition had smaller magnitude ranges to make the modulation of magnitudes subtler
and less obvious, in order better mask the true aim of the experiment. Namely, the
stimuli could have a numerosity of 12, 16, or 24 dots, a duration of 140, 200, or 280
ms, and item size of 4, 6, or 8 pixels. Again, these ranges were designed to be
approximately spaced in a Log2 scale. In both conditions, the stimuli were presented
at the center of the screen.

Procedure

Task condition. In the task condition, participants performed a magnitude classification
task, with the dimension judged in each trial determined by a retrospective cue (i.e.,
presented after the offset of the stimulus). First, participants watched a reference
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stimulus representing the middle of the magnitude ranges used in the experiment and
were instructed to remember it and judge the stimuli in main sequence based on it.
The reference was presented 10 times (randomizing the positions of the dots) before
the start of the session and repeated 5 more time before the start of each block of
trials. In the session, participants were instructed to keep their gaze on a central
fixation point. Each trial started with the presentation of the fixation cross (a “X” at the
center of the screen). After 750 ms, the dot-array stimulus was presented replacing
the fixation cross, and was displayed for 100-400 ms according to the duration
selected in the trial. After an interval of 600 ms from the offset of the stimulus, the
retrospective cue was presented at center of the screen. The cue could be either “N,”
“T,” or “S,” respectively instructing the participant to judge the numerosity, duration
(i.e., time), or item size of the stimulus. The cue remained on the screen for 600 ms.
After that, the cue was replaced by a red X (fixation cross), instructing the participant
to provide a response. According to the cue, the participant was asked to indicate
whether the stimulus had a higher or lower numerosity, a longer or shorter duration, or
a bigger or smaller item size compared to the reference. The response was provided
by pressing either the down arrow (lower/shorter/smaller) or the up arrow
(higher/longer/bigger) on a standard computer keyboard. After providing a response,
the next trial started after a variable inter-trial interval of 500 + 50 ms. Each participant
completed a total of 1,250 trials (10 blocks of 125 trials), corresponding to a total of 10
repetition of each unique combination of numerosity, duration, and dot size. The three
tasks were randomly intermixed within the same blocks. No feedback was provided to
participants about their response.

Passive condition. In the passive condition, the participants watched a series of stimuli
modulated in numerosity, duration, and size. Each stimulus was presented centrally
on the screen, and successive stimuli were separated by an inter-stimulus interval of
980 + 50 ms. In order to make participants attend the stream of stimuli, they were
asked to detect occasional oddball stimuli defined by a reduced contrast compared to
the rest of the stimuli (oddball detection task). The oddball stimuli represented 3.7%
of the total stimuli presented. Participants were thus instructed to press the space bar
on the keyboard as fast as they could once they detected an oddball stimulus. This
occasional simple detection task was designed to avoid drawing attention to any of the
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magnitude dimensions of the stimuli, while encouraging the participants to watch the
stimuli. On average, the detection rates (x SD) of the oddball were 93% + 1.3%, and
the average reaction time was 313 + 11 ms. In the passive condition, participants
completed a total of 2,160 trials (8 blocks of 270 trials), for a total of 80 repetitions of
each combination of stimulus magnitudes. The higher number of trials tested in the
passive condition compared to the task condition was chosen to compensate for the
smaller magnitude ranges used, i.e., in order to ensure that we could measure robust
brain responses to the magnitudes also in this condition. Overall, participants were
only instructed to watch the stream of stimuli and respond to the oddball, and the

magnitudes were never mentioned in the instructions and recruiting materials.

Behavioral data analysis

In the task condition, the magnitude judgement performance and the integration effect
were assessed by first computing the point of subjective equality (PSE). The PSE
reflects the accuracy in the task, and the perceived magnitude of the stimuli compared
to the reference magnitude. Data reflecting each specific task (i.e., all the trials in which
a specific cue was presented) were used to compute the proportion of “more”
(numerosity task), “longer” (duration task), or “bigger” (size task) responses as a
function of both the task-relevant magnitude and the other (interfering) magnitudes. A
psychometric (cumulative Gaussian) function was then fitted to the distribution of
proportion of response, according to the maximum likelihood method (Watson, 1979).
Specifically, within each task, the psychometric function was fitted separately for each
level of each of the other “interfering” magnitudes, in order to assess the difference in
PSE due to the task-irrelevant magnitudes. For example, when analyzing the
performance in the numerosity task, the fit was performed separately for each level of
duration and each level of item size. To account for errors unrelated to the magnitude
of the stimuli and lapses of attention, a finger-error rate correction of 2.5% (Wichmann
& Hill, 2001) was applied. This correction reduces the asymptotic levels of the fit by a
proportion corresponding to the rate, in order to account for the random errors
preventing the proportion of responses to converge to 0% and 100% at the lower and
higher end of the range, respectively. The PSE was computed as the
numerosity/duration/size level corresponding to chance level (50%) responses (i.e.,
the median of the psychometric curve). This procedure allowed us to compute
individual measures of PSE for the different combinations of task relevant and
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interfering dimensions (e.g., numerosity PSE when duration was 100 ms, 140 ms, 200
ms, 280 ms, and 400 ms, and the same for size, and similarly for the other tasks).
When performing the fit according to a given task-relevant and interfering magnitude,
the other dimension was collapsed. Doing so, each data point in the fitting procedure
represented the average of 25 repetitions of the specific combination of task-relevant
and interfering dimension. Additionally, we assessed the precision in the task in terms
of the Weber fraction (WF). The WF was computed as the ratio between the just
noticeable difference (JND; the slope of the psychometric curve) and the PSE. To
assess the difference in the average WF across the three types of tasks, we used a
one-way repeated measures ANOVA.

In order to better define the effect of the interfering magnitudes in each task, we then
used the PSE to compute a “magnitude integration effect” index according to the

following formula:

Magnitude Integration Effect = -1 x ((PSE; - PSEer) / PSErer) x 100;

Where PSEf correspond to the PSE obtained when the interfering magnitude
considered was the same as the reference, and PSE; to the PSE corresponding to
each other level of the interfering magnitude (either lower or higher than the
reference). The change in sign (-1) was added in order to make the interpretation of
the index easier. Namely, doing so a positive index means that the task-relevant
magnitude is overestimated, while a negative index means that the magnitude is
underestimated. To assess the significance of magnitude integration effects, we
performed a series of linear mixed-effect model tests, assessing the integration biases
on each type of judgement. Namely, we entered the magnitude integration effect as
dependent variable, the ratio of each level of the interfering magnitude with the

reference value and the magnitude itself (i.e., “numerosity,” “duration,” or “size”) as
predictors, and the subject as the random effect (Magnitude integration effect ~ Ratio
x Magnitude + (1|subj.)). Interactions found between ratio and magnitude were
followed up with additional LME tests within each interfering magnitude dimension.
The LME models were chosen in this case (i.e., instead of ANOVAS) as the ratio is a

continuous variable.

11
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Finally, in order to assess the relationship between ERPs and the behavioral effect,
we computed a measure of APSE. This measure reflected the difference in PSE
between each level of the interfering dimension and the middle magnitude level
corresponding to the reference. This was done to have a similar measure that can be
related to the neural effect of different magnitudes (see below for more information
about the ERP analysis). All the analyses and statistical tests on behavioral data were
performed in Matlab (version r2021b).

Electrophysiological recording and pre-processing

In both the task and passive condition, the EEG was recorded throughout the
experimental session. EEG recording was performed by using the Biosemi ActiveTwo
system (at 2048 Hz sampling rate), and a 32-channel cap based on the 10-20 system
layout. To better monitor artifacts due to eye blinks and movements, we recorded the
electro-oculogram (EOG) by means of a channel attached below the left eye of the
subject. During the recording, we made sure to keep the electrode offsets as low as
possible. Usually, electrode offset values were kept below 20 pV, but occasionally

values up to 30 yV were tolerated.

The pre-processing of EEG data was performed offline in Matlab (version R2021b),
using the functions of the EEGLAB (Delorme & Makeig, 2004) and ERPlab (Lopez-
Calderon & Luck, 2014) toolboxes. In both conditions, the pre-processing involved the
binning and epoching of data according to each unique combination of the different
magnitudes. In the task condition, the binning was also performed separately for the
three cues determining the specific task in each trial. In both conditions, epochs
spanned from -200 to 700 ms, time-locked to the onset of each stimulus. In the case
of duration, ERPs were later re-aligned to the offset of the stimuli. This was done as
we expected an effect of duration only after the presentation of the stimuli had fully
unfolded.

In both conditions, after the epoching, the EEG data was band-pass filtered with cut-
offs at 0.1 and 40 Hz. Moreover, to clean up the data as much as possible from artifacts
such as eye movements and blinks, we performed an independent component

analysis (ICA) aimed at removing identifiable artifacts and other potential sources of
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systematic noise. After the ICA, we additionally applied a step-like artifact rejection
procedure, with an amplitude threshold of 40 uV, a window of 400 ms, and a step size
of 20 ms. This was done in order to further remove any remaining large artifact from
the EEG data. On average, this led to the exclusion of 2.26% * 1.73% of the trials in
the task condition, and 0.6% % 1.2% in the passive condition. Finally, we computed the
event-related potentials (ERPs) by averaging EEG epochs within each bin, and further
low-pass filtered the signal with a 30-Hz cut-off.

Event-related potentials analysis

In both conditions, the ERP analysis was performed by considering the average of the
same set of three occipito-parietal target channels, selected a priori based on previous
studies (Fornaciai et al., 2017; Fornaciai et al., 2023; Tonoyan et al., 2022). The
chosen target channels were Oz, O1 and O2.

First, we plotted the ERPs corresponding to each magnitude and computed the linear
contrast of ERPs. The weights of the linear contrast computation were [-2 -1 0 -1 -2]
in the task condition, and [-1 0 1] in the passive condition, based on the number of
levels of each magnitude tested in the two conditions. Moreover, we computed an
additional measure of contrast by computing the difference in ERP amplitude for each
level of each magnitude and the two extreme levels of the other two interfering
dimensions. For example, for each level of numerosity we computed the difference in
amplitude between the extreme levels of duration and size, and so on for the other
dimensions. We then averaged this measure across the different levels of each
magnitude. To assess the significance of the magnitude contrasts, we performed a
series of one-sample t-tests against zero. To control for multiple comparisons, we
applied a false discovery rate correction with g = 0.05. Finally, we computed a measure
of AERP as the difference in amplitude between the ERPs corresponding to the middle
level of the range (corresponding to the reference in the task condition) and each other
level of the magnitude ranges. In the task condition, the AERP was computed
separately according to the task. Doing so, we thus computed a measure of the effect
of numerosity in the size and duration task, and so on for the other magnitudes. This
measure was computed to have an index of the effect of magnitudes on ERPs similar

to the APSE computed from the behavioral results, in order to more easily relate the

13


https://doi.org/10.1101/2024.04.29.591641
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.29.591641; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

ERP and behavioral measures of the effect in the analysis of the task condition. To
assess the significance of the AERP, in the task condition we performed a series of
LME tests, entering AERP as the dependent variable, the ratio of each magnitude level
and the middle level as predictor, and the subjects as the random effect (AERP ~ Ratio
+ (1|subj)). In the passive condition, we instead performed a series of paired t-tests
(i.e., due to the smaller number of levels of each magnitude range). In both cases, the
tests were performed on small 10-ms (step = 5 ms) windows in a sliding-window
fashion, and the significance was corrected with FDR (g = 0.05). Additionally, we
considered significant only clusters of consecutive significant time-points larger than
10 ms (i.e., three consecutive significant tests or more).

Only in the task condition, we further assessed the relationship between AERP (i.e.,
neural effect of magnitude) and APSE (i.e., behavioral effect of magnitude) via a series
of LME tests. In this case, we entered the APSE as the dependent variable, the AERP
as the predictor, and the subjects as the random effect (APSE ~ AERP + (1|subj)). This
analysis was performed again across a series of 10-ms windows with step = 5 ms.
Finally, the analysis was restricted to the latency windows showing a significant
modulation of AERP by the magnitudes (see above), and we considered statistically
significant only clusters of at least three consecutive significant windows. This analysis
was aimed at assessing the extent to which magnitude-sensitive brain responses can

predict the effect measured behaviorally.

Multivariate analysis

We relied on a multivariate approach in order to more directly compare the brain
activity related to magnitude processing in the two conditions. Namely, we assessed
the extent to which training a classifier on the data (AERP) from the task condition
allows to decode magnitude-sensitive activity in the passive condition. First, to create
the training dataset, we computed for each participant an average measure of AERP
in the task condition, based on the difference between the amplitude relative to lower
(8, 12 dots; 100, 140 ms; 3, 4 pixel) and higher (24, 32 dots; 280, 400 ms; 8, 10 pixel)
magnitude levels and the amplitude of the middle magnitude level (16 dots, 200 ms, 6
pixel). Thus, the training dataset was composed by a number of data points
corresponding to the number of participants in the task condition (N = 20), with each
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data point corresponding to the average data of a single participant (i.e., one data
point for each specific class entered into the analysis). The same was done for each
participant in the passive condition group to create the test dataset, based on the
specific levels of the magnitudes used in this condition (12 and 24 dots, 140 and 280
ms, 4 and 8 pixels; respectively for the magnitudes lower and higher than the middle
value). Again, this procedure resulted in a set of data points (N = 29) each
corresponding to the average data of each participant, one for each of the two classes
entered into the analysis (i.e., magnitudes “lower” or “higher” than the middle value,
with different dimensions tested separately in different iterations of the procedure). In
the decoding procedure, a linear classifier (support vector machine, C = 1) was trained
on the task condition dataset, according to a leave-two-out cross-validation procedure.
Namely, a datapoint for each of the two levels of magnitude (“lower” and “higher”) was
left out from the training set. To test the classifier, we used the two data points from a
single participant in the passive condition group. Thus, in each iteration of the analysis,
the training was performed on 19 + 19 data points (corresponding to the two classes
being decoded) based on the task condition data, and the testing on 1 + 1 data points
(again corresponding to the two classes) from the passive condition dataset. This
procedure was repeated to include all the combinations of training data, iteratively
leaving out each data point from the training set and testing the classifier again with
the same test data points, and averaging the classification accuracies obtained in the
different cross-validation steps. The analysis was repeated considering each set of
test data (i.e., the data from each participant in the passive condition) separately. This
in turn resulted in a distribution of classification accuracy values corresponding to the
number of participants in the passive condition group. Moreover, the analysis was
performed independently across a series of small time windows (15 ms width, 5 ms
step; i.e., to increase the signal-to-noise ratio), throughout the epoch. Finally, the
training and testing procedure was performed by considering a set of five occipital and
parieto-occipital channels (PO3, O1, Oz, 02, PO4). To test for the significance of the
distribution of classification accuracies obtained at each time window, we used a
permutation (sign flipping) procedure. Namely, at each time window, we subtracted 0.5
from the classification accuracies (i.e., the chance level), and swapped the sign of half
the values. This procedure was repeated 10,000 times taking random splits of the
data, and we assessed the number of times that the classification accuracy of the sign-
swapped data was equal or higher than the actual average classification accuracy
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observed. The proportion of times in which the simulated accuracy equaled or
exceeded the actual value was considered the p-value of the test. The alpha level
applied to these tests was 0.05. After the tests, we also applied a threshold of at least
three consecutive time windows (i.e., only clusters of at least three consecutive time
windows were considered significant). Note that we chose to use the passive condition
data as the testing dataset in order to have a larger distribution of classification
accuracy values to test with permutations, with the rationale of achieving more robust
and stable results. We did not perform the analysis in the opposite direction (training
with the passive data and testing with the task data) since the two sets of results would
be difficult to average. Namely, due to the nature of this procedure, analyses in
different directions would results in different distributions of classification accuracy
values (29 when testing with the passive data, 20 when testing with the task data),
making it difficult to combine them. All the analyses and statistical tests involving EEG
data were performed in Matlab (version r2021b).

RESULTS

In this study we measured the neural (EEG) signature of magnitude processing and
integration with subjects either engaged in actively judging the magnitude of the
stimuli, or passively watching the stimuli. Doing so, we aimed at comparing such
signatures to better understand the nature of the magnitude integration phenomenon.
Specifically, if magnitude integration depends on post-perceptual cognitive processes,
we predicted to observe a unique signature of magnitude processing only when
performing a magnitude task. Conversely, if the integration effect arises from automatic
perceptual processes, then similar signatures of magnitude processing should be
observed in both the task and during passive viewing.

Task condition

In the task condition, participants performed a magnitude classification task of the
numerosity, duration, and item size of dot-array stimuli. Which dimension to judge was
indicated to the participants via a retrospective cue (in a trial-by-trial fashion), thus
forcing them to attend the stimulus as a whole rather than focusing on a single
dimension. The procedure of the task condition is depicted in Fig. 1A.
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FIGURE 2. Behavioral effects of magnitude integration. (A) Magnitude integration
effects of duration and size on numerosity judgements. The values of the two
interfering dimensions are reported on the upper and lower x axes. (B) Magnitude
integration effects on duration judgements. (C) Magnitude integration effect on size
Jjudgements. The data points are slightly jittered for the ease of visualization. (D)
Average Weber fraction in the three tasks. Error bars are SEM.

First, we assessed the behavioral effects of magnitude integration, which are shown
in Fig. 2A-C. To assess the mutual biases across the different dimensions, we first
computed the point of subjective equality (PSE; see Behavioral data analysis) as a
measure of accuracy in the task. Then, we derived a magnitude integration effect index
based on the difference in PSE caused by each level of the interfering magnitudes
compared to the reference magnitudes (i.e., the middle levels of numerosity, duration,
and size). To assess the significance of magnitude integration, we performed a series
of linear mixed-effect (LME) regression models within each type of task. In the model,
we entered the magnitude integration effects as the dependent variable, the ratio of
each interfering magnitude level with the reference level, and the magnitude itself
(e.g., “duration” and “size” in the numerosity task), as predictors, and the subjects as
the random effect. The ratio (instead of the magnitude) was chosen as a predictor to
test the effect of both interfering dimensions on each type of judgment within the same

test.

In the numerosity task (Fig. 2A), we observed robust effects of both duration and size,
although in opposite directions. While duration had a congruent effect (i.e., the longer
the duration, the higher the perceived numerosity), size had an opposite, repulsive
effect: the bigger the size of the dots, the lower the perceived numerosity. The LME
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test (adjusted-R? = 0.22) indeed showed a significant interaction between ratio and
magnitude (B = 20.96, t = 5.90, p < 0.001). This interaction was followed up with
simpler LME tests considering each interfering dimension separately. The results of
these additional tests showed that both duration (adj-R? = 0.56, p =5.47,t=3.23,p =
0.002) and size (adj-R? = 0.47, B = -15.50, t = -6.16, p < 0.001) induced significant
biases on numerosity judgements. In the duration task (Fig. 2B), we observed again a
significant interaction between ratio and magnitude (adj-R? = 0.37, p = -12.02, t = -
2.48, p = 0.019), this time suggesting that size had a stronger influence on duration
compared to the effect of numerosity on duration. Two follow-up LME tests however
showed significant congruent biases induced by both numerosity (adj-R? = 0.33, p =
7.47,t =275, p = 0.007) and size (adj-R? = 0.46, B = 19.30, t = 4.88, p < 0.001).
Finally, looking at Fig. 2C it is clear that size was the magnitude most resistant to
biases from other dimensions. Although weaker, the LME test (adj-R? = 0.27) showed
a significant main effect of ratio (B = 3.99, t = 3.02, p = 0.003), no main effect of
magnitude (f =-1.31, t =-0.53, p = 0.59), and no interaction (3 = 0.41,t=0.22, p =
0.82). Overall, the behavioral results of the classification task showed systematic
mutual biases across all the dimensions tested, albeit with some partial asymmetries.

To assess the participants’ precision in the task, we considered the Weber fraction
(WF; computed as the ratio of the just noticeable difference and the PSE), which is
shown in Fig. 2D. On average, size showed the lowest WF (0.18 + 0.08), suggesting
the highest precision in the task, followed by numerosity (0.24 + 0.10), and finally
duration (0.52 + 0.32), which was the most difficult dimension to judge. A one-way
repeated measure ANOVA (with factor “task”) confirmed that the WFs across the three
types of task are significantly different (F(2,38) = 18.59, p <0.001), in line with previous
studies (Fornaciai et al., 2023).
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FIGURE 3. Event-related potentials (ERPs) evoked by each magnitude in the two
experimental conditions. Panels A-C: data from the task condition. Panels D-F: data
from the passive condition. (A) ERPs evoked by the stimulus numerosity in the task
condition. (B) ERPs evoked by the stimulus duration in the task condition. (C) ERPs
evoked by item size in the task condition. (D) ERPs evoked by the stimulus numerosity
in the passive condition. (E) ERPs evoked by the stimulus duration in the passive
condition. (F) ERPs evoked by item size in the passive condition. In all panels, the
green wave indicates the linear contrast of the ERPs. Note that while numerosity and
size ERPs were time-locked to the onset of the stimuli, ERPs corresponding to
duration were re-aligned to the offset. The zero in panel B and E thus indicates the
offset of the stimuli. The vertical dashed line indicates the onset or offset of the stimuli.
The horizontal dashed line indicates the zero of the amplitude scale. All the ERPs are
the average of signals from channels Oz, O1, and O2. The shaded area around the

green contrast wave represents the SEM.
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After assessing the behavioral effects, we went on and addressed the neural signature
of magnitude integration. First, we plotted the event-related potentials (ERPs) evoked
by the different levels of each magnitude, irrespective of the task performed. The ERPs
are shown in Fig. 3A-D. In the case of numerosity (Fig. 3A), we observed a first
negative peak of numerosity-sensitive responses at 150-200 ms after stimulus onset,
followed by weaker but more sustained responses throughout the epoch. In the case
of duration, aligning the waves to the offset of the stimuli created a misalignment of
the onset responses, which introduced a few spurious effects. In other words, a
seemingly large deflection in the contrast amplitude is actually driven by a peak in
amplitude of a single level of duration, rather than a consistent peak present at all
levels of duration. However, we also observed a large modulation at around 300 ms
after stimulus offset, that seems to genuinely reflect duration, as it involves a deflection
evident at all three levels of duration. Finally, brain responses sensitive to item size
showed the main peak at around 250 ms, with a large positive deflection.
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FIGURE 4. Average contrast amplitude reflecting the neural effects of the three
magnitudes. Panels A-C: data from the task condition. Panels D-F: data from the

passive condition. The contrast amplitude in this case was computed as the difference
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between the extreme levels of each ‘interfering” magnitude, separately for each level
of each magnitude. For instance, the effect of numerosity on duration was computed
as the difference between ERPs corresponding to 100 ms/32 dots and 100 ms/8 dots,
and so on for the other levels of duration. The same was done for the effect of
numerosity on size, and the resulting contrasts were averaged together to increase
the signal-to-noise ratio. A similar procedure was then used to compute the effect of
duration and the effect of size. (A) Contrast amplitude reflecting the effect of
numerosity in the task condition. (B) Contrast amplitude reflecting the effect of duration
in the task condition. (C) Contrast amplitude reflecting the effect of size in the task
condition. (D) Contrast amplitude reflecting the effect of numerosity in the passive
condition. (E) Contrast amplitude reflecting the effect of duration in the passive
condition. (F) Contrast amplitude reflecting the effect of size in the passive condition.
The black lines at the bottom of the plots mark the significant latency windows
assessed with a series of FDR-corrected one-sample t-tests. The vertical dashed line
indicates the onset or offset of the stimuli. The horizontal dashed line indicates the
zero of the amplitude scale. The shaded area around the wave represents the SEM.
The topographic plots besides each panel show the distribution of scalp activity in a
50-ms window around the main peak of each wave. All waves shown in the figure
reflect the average of signals from channels Oz, O1, and O2.

To better address the significance of magnitude-sensitive brain responses, we
computed a measure of ERP contrast based on the difference between the extreme
levels of the interfering dimensions’ ranges. Namely, for each level of each magnitude,
we contrasted the ERPs as a function of the extreme levels of the interfering
dimensions. For example, to compute the effect of numerosity, we subtracted the ERP
corresponding to the combination of 100 ms and the two extreme levels of numerosity
(8 and 32 dots). The same subtraction was performed for the combination of 140, 200,
280, and 400 ms and the extreme levels of numerosity. The same was done for the
combination of each level of size and the extreme levels of numerosity. The effect of
duration and size were computed in the same way by switching the dimension. The
average of this contrast measure, reflecting the effect of the different magnitudes in
driving ERPs, is shown in Fig. 4. Additionally, Fig. 4 shows the topographic distribution
of contrast amplitude in a 50-ms window around the main peak of each corresponding

21


https://doi.org/10.1101/2024.04.29.591641
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.29.591641; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

contrast wave. To assess the significance of the contrast amplitude, we performed a
series of one-sample t-tests against zero, corrected for multiple comparisons with false
discovery rate (FDR; q = 0.05). When reporting the results below, we indicate the

range of t-values and FDR-adjusted p-values as [min max].

The numerosity-sensitive brain responses (Fig. 4A) showed four significant latency
windows. The strongest effect was observed at a negative deflection at 120-175 ms (t
= [-6.97, -2.41], p = [<0.001, 0.049]) after stimulus onset, which was around the peak
of contrast amplitude (-2.7 uV) observed at 145 ms after stimulus onset. This peak
was followed by additional significant windows at 200-240 ms (t = [2.45, 3.62], p =
[<0.001, 0.046]), 355-390 ms (t = [-3.18, -2.41], p = [0.012, 0.048]), and 425-700 ms
(t = [-5.61, -2.47], p = [0.001, 0.044]) after stimulus onset. Regarding the effect of
duration on ERPs, we observed four significant latency windows. The first one was
observed before stimulus offset, spanning from -170 to -85 ms (t = [-6.55, -2.58], p =
[<0.001, 0.049]). Then we observed two relatively early windows at 30-70 ms (t = [-
3.66, -2.58], p = [0.007, 0.049]) and 145-195 ms (t = [2.58, 4.50], p = [0.003, 0.049]).
Looking at the ERPs shown in Fig. 3B, these three latency windows however appear
to be driven each by a single duration level, due to the onset responses (i.e., only one
wave shows a deflection while the others are flat). Such responses cannot thus be
considered as genuine correlates of duration, but are spurious effects due to the re-
alignment of brain waves to the offset of the stimuli. A more genuine peak of activity
driven by duration was instead observed at 270 ms after the offset (-3.2 uV), and we
observed a significant latency window around this peak, spanning 240-440 ms (t = [-
5.99, -2.60], p =[<0.001, 0.048]). In the case of size, the peak of activity was observed
at 240 ms (2.4 pV). The largest significant latency window was observed around this
peak, spanning 190-320 ms (t = [3.14, 8.44], p = [<0.001, 0.049]). Two additional,
smaller significant windows were observed at very early latencies (30-45 ms; t = [-
4.04, -3.23], p = [0.009, 0.042]), and at later latencies (600-615 ms; t = [-3.59, -3.16],
p = [0.022, 0.048]). In all cases, the topographic distribution of scalp activity around
the peaks (plotted besides each panel, Fig. 4A-C) showed a posterior distribution
consistent with activity in the occipital cortex.
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FIGURE 5. AERP measures and relationship with the behavioral effect. Panels A-
F: data from the task condition. Panels G-I: data from the passive condition. (A) AERP
measures reflecting the effect of numerosity in the duration task. (B) Effect of
numerosity in the size task. (C) Effect of duration in the numerosity task. (D) Effect of
duration in the size task. (E) Effect of size in the numerosity task. (F) Effect of size in
the duration task. (G) AERP measures reflecting the effect of numerosity in the passive
condition. (H) Effect of duration in the passive condition. () Effect of size in the passive
condition. The black lines at the bottom of the plots mark the latency window where
we observed a significant difference in AERP as a function of the different levels of the
magnitude. The vertical dashed line indicates the onset or offset of the stimuli. The
horizontal dashed line indicates the zero of the amplitude scale. The grey shaded
areas marked with stars indicate the latency windows where we observed a significant
relationship between AERP and the behavioral effect (APSE). The dotted boxes in
panels G-I (passive condition) show the main latency windows whereby the brain
responses in the task condition predicted the behavioral effect. All waves shown in the

figure reflect the average of signals from channels Oz, O1, and O2.

Our main goal in the task condition was however to identify the latency windows
whereby the modulation of brain activity predicts the magnitude integration bias
observed behaviorally. We then further computed two measures of the effect that could

be related to each other in data analysis: APSE, reflecting the behavioral effect, and
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AERRP, reflecting the neural effect of magnitudes. These measures were computed by
subtracting either the PSE or the ERP amplitude of each level of the interfering
magnitudes from the PSE/ERP corresponding to the middle, reference level. For the
AERP, this measure was computed at each time point throughout the epochs, and
separately for the different types of task (see Fig. 5). Doing so, we thus computed the
effect of numerosity in the duration and size task (Fig. 5A-B), the effect of duration in
the numerosity and size task (Fig. 5C-D), and the effect of size in the numerosity and
duration task (Fig. SE-F).

To address the relationship between neural and behavioral measures of magnitude
effects, we first looked for latency windows showing a significant modulation of AERP
as a function of the different levels of the magnitudes. To do so, we performed a series
of LME tests individually for the effect of each magnitude in each task. In the LME
model, we entered the AERP as the dependent variable, the ratio of each magnitude
level with the middle level as the predictor, and the subjects as the random effect. The
LME tests were performed across a series of 10-ms windows with a 5-ms step, in a
sliding-window average fashion. To control for multiple comparisons, we again applied
a FDR procedure with g = 0.05. Clusters of less than three consecutive significant
tests (after FDR) were not considered. The results of these tests are shown with black
lines at the bottom of each plot in Fig. 5, marking the significant latency windows.

After identifying the latencies showing a significant modulation of AERP, we looked for
a relationship between AERP and APSE within these windows. We thus performed a
series of LME tests (10-ms windows with 5-ms step) including APSE as the dependent
variable, AERP as the predictor, and the subjects as the random effect. The effect of
numerosity on duration (Fig. 5A) showed three windows whereby the modulation of
AERP could predict the behavioral effect (marked with grey shaded areas in the
figure), a larger early window at 110-170 ms, followed by two smaller windows at 440-
450 ms and 665-695 ms (3 = [0.006, 0.009], t = [2.02, 3.69], p = [<0.001, 0.047], adj-
R? = [0.31, 0.43]). The effect of numerosity on size (Fig. 5B) showed again three
significant windows, but clustered at later latencies: 370-390 ms, 440-585 ms, and
605-695 ms (B = [0.085, 0.180], t = [2.06, 4.12], p = [<0.001, 0.047], adj-R? = [0.25,

0.36]). The effect of duration on numerosity showed a single large significant window,
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spanning 225-415 ms (B = [0.233, 0.597], t = [2.20, 3.77], p = [<0.001, 0.31], adj-R? =
[0.47, 0.54]). The effect of duration on size, showed three smaller windows, with the
first at earlier latencies spanning 150-180 ms, and the following two at latencies more
consistent with the effect on numerosity: 265-285 ms and 375-415 ms (B = [-0.043,
0.088], t = [-2.67, 2.78], p = [0.006, 0.047], adj-R? = [0.56, 0.59]). Finally, the effect of
size on numerosity showed a single, large significant window at 180-325 ms (p =
[0.707, 1.171], t = [2.65, 6.50], p = [<0.001, 0.009], adj-R? = [0.18, 0.48]), while the
effect of size on duration showed two significant windows at 215-290 ms and 515-530
ms (B = [-0.012, 0.013], t = [-3.19, 2.12], p = [0.002, 0.041], adj-R? = [0.13, 0.26]).
These results show that the behavioral effect of magnitude integration could be reliably
predicted by the modulation of magnitude-sensitive responses in the different task
types, providing a neural signature of the effect.

Passive condition

In the passive-viewing condition, participants watched a stream of dot-array stimuli
modulated in numerosity, duration, and item size, and responded to occasional oddball
stimuli defined by a lower contrast. No instruction suggested the participants to
explicitly attend the magnitudes of the stimuli. This passive-viewing protocol thus
provides a cleaner index of the responses to the different magnitudes, not confounded
by decision making or other task-related processes. If magnitude integration arises
from automatic perceptual processes, then we expected to observe a similar
modulation of brain responses consistent with the timing observed in the task condition
(see Fig. 5). Instead, if magnitude-related decision making is necessary for magnitude
integration to occur, the modulation of brain responses linked to the behavioral effect

should not occur during passive viewing.

First, we assessed the ERPs corresponding to the different levels of the three
magnitudes (Fig. 3D-F). The overall pattern was largely consistent with what observed
in the task condition (see Fig. 3A-C), with however some differences. Numerosity (Fig.
3D) showed an early positive deflection that we did not observe in the task condition,
with the magnitude of the stimuli however modulating the stimuli negatively (i.e., the
smaller the numerosity, the higher the positive deflection in response amplitude).
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Additionally, ERPs at later latencies showed a weaker modulation compared to the
task condition. Duration (Fig. 3E) showed a similar deflection compared to the task
condition, but the modulation of amplitude was in the opposite direction (i.e., see
topographic plots besides the panels). Finally, size (Fig. 3F) showed instead ERPs
consistent with the task condition.

To better assess the significance of the magnitude-sensitive brain responses, we
computed again a measure of contrast based on the difference between the extreme
levels of each magnitude (Fig. 4D-F), as in the task condition. The contrast amplitude
was then tested with a series of one-sample t-tests against zero, corrected with FDR
(g =0.05). In the case of numerosity (Fig. 4D), we observed a significant early window
(130-150 ms; t = [-4.34, -3.64], p = [0.026, 0.047]), showing a negative deflection
consistent with the task condition (see Fig. 4A). The peak of activity in this window (-
0.62 puV) was at 140 ms. Differently from the task condition, we did not observe
significant latency windows later on in the epoch. The effect of duration (Fig. 4E)
showed three significant windows. The first one at 20-60 ms (t = [-3.99, -2.68], p =
[0.003, 0.049)), the second at 160-210 ms (t = [2.68, 4.34], p = [0.002, 0.049]), and
the third at 270-360 ms (t = [2.71, 4.76], p = [0.002, 0.043]). Note however that similarly
to the task condition, the first two significant windows appear to be mostly driven by
the onset responses of individual durations, while the last window shows a consistent
deflection in responses corresponding to all the different levels of duration (see Fig.
3E). The topographic plot showing the distribution of peak activity (Fig. 4E) thus
reflects this last latency window (peak at 290 ms, 1.05 pV). Differently from the task
condition, however, the contrast amplitude here showed a positive, rather than
negative, deflection. Finally, size (Fig. 4F) showed a large main window at 155-380 ms
(t=12.62,10.88], p =[<0.001, 0.048]), with a peak at 245 ms (1.62 uV) consistent with
the effect of size in the task condition. In addition, we observed two additional, smaller
windows at 60-75 ms and 400-410 ms (t = [2.62, 3.63], p = [0.005, 0.049]). Similarly
to the task condition, the topography of peak amplitude over the scalp showed a
posterior distribution consistent with occipital cortex (see plots beside panel D-F).

In order to better compare the modulation of brain responses in the task and in the

passive condition, we also computed the AERP measure (Fig. 5G-l). The AERPs were
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assessed with a series of paired t-tests, performed considering 10-ms windows (step
= 5 ms) as in the task condition, corrected with FDR (q = 0.05). The overall timing of
the significant windows was consistent with the contrast measure (see Fig. 4D-F).
AERRPs reflecting the effect of numerosity (Fig. 5G) showed a significant modulation at
130-150 ms (t = [3.64, 4.33], p = [0.025, 0.047]). The effect of duration (Fig. 5H)
showed a modulation at 225-285 ms (t = [-6.91, -2.78], p = [<0.001, 0.049]), and at
380-420 ms (t = [-3.68, -2.79], p = [0.016, 0.049)) after stimulus offset. Finally, in the
case of size (Fig. 51), we observed the main modulation in a large window spanning
160-380 ms (t = [-10.87, -2.62], p = [<0.001, 0.049]). We again observed two smaller
significant windows at 60-75 ms (t = [-3.63, -2.65], p = [0.005, 0.046]) and 400-410 ms
(t =[-2.85, -2.62], p = [0.032, 0.049]). As a comparison, Fig. 5G-I shows with dotted
boxes the latency windows where we observed a significant relationship between
neural and behavioral measures of magnitude integration in the task condition (Fig.
5A-F). In all cases, we observed an overlap between the significant windows in the

passive and task condition.

Multivariate decoding analysis

To achieve a more direct comparison of magnitude-sensitive brain activity during the
task and in passive viewing, we performed a multivariate “decoding” analysis across
the two experimental conditions. In the analysis, we trained a classifier (support vector
machine) with data from the task condition, and tested its ability to decode magnitude-
sensitive brain activity in the passive condition. This training and testing direction was
chosen to obtain a larger set of classification accuracy (CA) values, in order to achieve
more robust and stable results when testing the statistical significance of the decoding.
Indeed, the analysis was performed by training the classifier on a set of data points
each formed by the average data of one participant. The classifier was then tested
separately on the average data of each participant in the passive condition group,
according to a leave-two-out procedure, i.e., two datapoints each corresponding to a
class entered into the analysis were left out from the training set, and two independent
datapoints from the passive conditions were used for testing. This procedure thus
resulted in a distribution of CA values corresponding to the number of participants in
the passive condition. We did not run the analysis in the opposite direction (i.e., training
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with the passive data and testing with the task data) since, due to the different number
of data points (i.e., due to the different number of participants in the two conditions),
the results would be difficult to combine. See Methods for more information about the
decoding procedure. According to our hypothesis, if the brain responses related to
magnitude processing and integration are similar irrespective of the task, then the
classifier should be able to decode magnitude information from the passive data.
Otherwise, if magnitude processing entails mechanisms specific to the task performed,
no above-chance decoding should be observable. The ability of the classifier to
decode magnitude information was evaluated based on the distribution of CA values,
obtained across a series of small time windows (i.e., 15-ms window with 5-ms step)
throughout the epochs. The distribution of CA values at each time window was then
tested with a permutation (sign flipping) test to assess whether it resulted significantly
higher than chance level (0.5; see Methods for more information). The results of this
analysis are shown in Fig. 6.
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FIGURE 6. Results of the multivariate decoding analysis. The decoding analysis
was performed by training a classifier on data from the task condition, then tested on
data from the passive condition, in order to achieve a more direct comparison of the
magnitude-related brain processes in the two experimental conditions. (A)
Classification accuracies obtained in the decoding of numerosity. (B) Classification
accuracies obtained in the decoding of duration. (C) Classification accuracies obtained
in the decoding of size. The horizontal dashed lines indicate the chance level (0.5).
The vertical dashed lines mark either the time of stimulus onset for numerosity and
size, or the time of stimulus offset, for duration. The shaded area around the waves
indicates the SEM, which represents the variability across the distribution of
classification accuracy values obtained in the decoding procedure. The black lines at
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the bottom of the plot mark the latency windows where the decoding is significantly
above-chance, as observed with a series of permutation tests.

Overall, the multivariate analysis revealed several latency windows in which
magnitude-sensitive brain responses in the passive condition could be successfully
predicted based on the training with the task condition data. Below, the results are
reported in terms of the range of CAs observed (CA = [min, max]) and p-values of the
permutation tests (p = [min, max]). In the case of numerosity, the analysis showed
significant above-chance decoding at four latency windows. Namely, an early window
spanning 110-145 ms after stimulus onset (CA = [0.57, 0.67], p = [<0.001, 0.010]),
followed by later windows at 360-395 ms (CA =[0.59, 0.65], p = [<0.001, 0.049]), 475-
500 ms (CA =[0.56, 0.57], p = [0.026, 0.049]), and 585-695 ms (CA = [0.57, 0.64], p
= [<0.001, 0.036]). In the case of duration, we observed six significant latency
windows, at 20-60 ms after stimulus offset (CA =[0.58, 0.73], p = [<0.001, 0.013]), 95-
135 ms (CA = [0.62, 0.69], p = [<0.001, 0.017]), 185-235 ms (CA = [0.54, 0.64], p =
[<0.001, 0.038]), 285-310 ms (CA =[0.53, 0.55], p = [0.004, 0.048]), 370-460 ms (CA
= [0.56, 0.65], p = [<0.001, 0.039]), and 515-550 ms (CA = [0.58, 0.67], p = [<0.001,
0.035]). Finally, in the case of size, we observed three significant latency windows, at
270-430 ms (CA =[0.60, 0.85], p = [<0.001, 0.020]), 440-495 ms (CA=[0.58, 0.61], p
= [0.008, 0.047]), and 630-680 ms (CA =[0.58, 0.62], p = [<0.001, 0.049]).

DISCUSSION

In the present study, we assessed and compared the signatures of magnitude
integration in two different conditions: when participants are engaged in actively
judging the magnitude of the stimuli, or when they passively watched the stimuli. The
phenomenon of magnitude integration — i.e., the mutual biases usually observed
across different dimensions — is a hallmark of magnitude perception. Indeed, stimulus
dimensions such as numerosity, duration, and size systematically interact with each
other, leading to biases when judging them. Such mutual interactions have played a
pivotal role in the development of influential theories like “a theory of magnitude”
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(ATOM; Walsh, 2003) and the “metaphor” theory (Casasanto & Boroditsky, 2008).

However, the nature of this bias and its underlying mechanisms remain unclear.

Different mechanisms have been proposed to explain the interaction of magnitude
dimensions. On the one hand, according to ATOM, the interaction would occur in
perceptual processing due to the encoding of different dimensions with a common
neural code (Walsh, 2003). In support of such a perceptual account of magnitude
integration, we have recently shown that the effect relies on a mechanism similar to
perceptual binding, inducing a positive bias across dimensions only when they are
conveyed by the same stimulus (i.e., as opposed to magnitudes conveyed by
separate, superimposed stimuli; Togoli, Bueti, et al., 2022). Recent neuroimaging
studies, however, albeit showing common neural substrates, failed to provide evidence
for a shared neural code (Borghesani et al., 2019; Hendrikx et al., 2024; Tsouli et al.,
2022). According to the metaphor theory, on the other hand, the effect would instead
arise at the conceptual or linguistic level, due to the use of “spatial” concepts to
describe time (e.g., a “long” time; Bottini & Casasanto, 2013; Casasanto & Boroditsky,
2008; but see Whitaker et al., 2022). This theory however relies on asymmetric effects
across temporal and non-temporal dimensions, which depend on the type of stimuli
used (Javadi & Aichelburg, 2012; Lambrechts et al., 2013; Togoli et al., 2021).
Moreover, other authors proposed that magnitudes could interact during working
memory maintenance, nudging each other while stored in memory (Cai et al., 2018;
Cui et al., 2022), or bias the response selection in comparisons tasks (Yates et al.,
2012). Considering the results from these studies, whether magnitude integration
across dimensions (e.g., numerosity, duration, and size) occurs at a perceptual or at

a post-perceptual stage remains a debated topic.

In the present study, we further addressed the nature of the magnitude integration
effect by assessing a new prediction. Namely, a high-level effect hinging upon
magnitudes concurrently held in memory (i.e., one magnitude biasing the memory of
the other) or on active decision-making (i.e., one magnitude interfering with the
response to another magnitude) should show a unique neural signature not present
when the magnitudes are neither explicitly attended nor judged. Conversely, a
perceptual effect is expected to occur in a more automatic fashion, independently from
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the relevance or judgment of magnitude. Thus, similar signatures should be
observable with or without a magnitude judgment task.

Our behavioral results show systematic biases across the three magnitudes. First,
numerosity was biased by both duration and item size. However, while duration show
a congruent effect (the longer the duration, the higher the perceived numerosity) as in
previous studies (Javadi & Aichelburg, 2012; Togoli et al., 2021), size induces an
opposite bias. Although different from the relationship between other dimensions,
previous studies indeed show that the effect of dot size on numerosity entails a
negative effect, so that the larger the dot size, the lower the perceived numerosity
(DeWind et al., 2015; Fornaciai et al., 2019). Duration is instead similarly affected by
both numerosity and size in a congruent fashion, in line with previous studies (e.g.,
Lambrechts et al., 2013; Xuan et al., 2007), although the latter exerts a stronger
influence. Finally, size seems the dimension most resistant to integration biases, and
shows only modest, albeit significant, influences from the other magnitudes. Size is
also the dimension that is easiest to judge (Fig. 2D), and the generally lower variability
of responses might explain its robustness to biases. However, in a previous study from
our group addressing trial-history effects in different magnitude dimensions (i.e., “serial
dependence” effects; Fornaciai et al., 2023), size showed stronger biases compared
to duration and numerosity, while again showing the highest precision. Thus, the
perception of size does not seem intrinsically more resistant to biases, and the lower
effect observed here might be a feature of magnitude integration effects rather than a
general property. Considering the pattern of effects across dimensions, the results
thus show some partial asymmetries, as some dimensions are more vulnerable to
biases than others, in line with previous studies using similar stimuli (Togoli, Bueti, et
al., 2022; Togoli et al., 2021).

In terms of event-related potentials, in the task condition we found robust brain
responses to the different magnitudes. Overall, our analyses identified a set of latency
windows that show the stronger peaks of activity driven by the different dimensions.
Namely, around 150 ms and 250 ms after stimulus onset in the case of numerosity
and size, and around 300 ms after stimulus offset for duration. Brain activity at these
latency windows appears to be modulated by the different dimensions in a parametric
fashion, according to the magnitude of the stimuli. Crucially, with just one exception
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(i.e., the effect of numerosity in the size task), brain activity at or around such peaks
can significantly predict the bias observed behaviorally: the larger the brain responses,
the stronger the magnitude integration bias. In the case of numerosity, the timing
observed here (~150 ms) is consistent with numerosity-sensitive responses measured
in previous studies. Although this timing is slightly earlier compared to the P2p
component (~200 ms), i.e., the ERP component most often associated with numerosity
(Grasso et al., 2022; Libertus et al., 2007; Park et al., 2016; Temple & Posner, 1998),
several studies also showed numerosity-sensitive responses at earlier latencies,
starting at around 75-100 ms after stimulus onset (Fornaciai et al., 2017; Fornaciai &
Park, 2018; Park et al., 2016). In the case of duration, previous studies highlight a
variety of possible EEG correlates of duration processing, like the contingent negative
variation (CNV; Damsma et al., 2021; but see Kononowicz & Penney, 2016), the N2
(Tonoyan et al., 2022), the P2 (Li et al., 2017), and the P3 (Ernst et al., 2017) ERP
components. The timing shown in our results appears to be consistent with the results
of Benau et al. (2018), showing duration sensitivity at around 350 ms after stimulus
offset. Finally, in terms of size, the timing of responses sensitive to the size of the items
appears to be roughly consistent with previous results (Park et al., 2016) showing a
peak at around 200 ms.

The timing of magnitude-sensitive brain response in passive viewing revealed similar
evoked activity in most of the cases, closely mirroring the responses observed in the
task condition. Especially in the case of numerosity and size, the peaks of magnitude-
sensitive activity (i.e., AERP; compare Fig. 5A-F with Fig. 5G-I) show indeed a one-to-
one correspondence, with similar timing and polarity. In duration perception, however,
although the timing and topography of responses is very similar, we observed ERPs
with an opposite polarity. This may additionally suggest that while the processing of
numerosity and size is largely invariant across the two conditions, the brain responses
to duration may at least partially depend on the task relevance of this dimension.
Namely, while the same duration processing stage seems to get engaged (i.e., as
suggested by brain responses at the same latency and with the same scalp
topography), actively attending the magnitudes of the stimuli may modulate how
duration information is processed. This is not completely surprising, as duration shows
different properties compared to the other dimensions (i.e., duration information needs
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to be accumulated, while the other dimensions can be processed from the onset), and
the encoding of duration information is notoriously poorer in vision compared to other
senses (e.g., Alais & Burr, 2004; Cai & Connell, 2015). Thus, the processing of duration

may be more sensitive to the modulatory effects of attention or task-relevance.

The lack of decision-making processes related to magnitude in the passive viewing
parading represents its major strength, as it allows to exclude the involvement of task-
related brain processes (e.g., working memory encoding and maintenance of
magnitude information; Cai et al., 2018; Cui et al., 2022), and response biases (Yates
et al., 2012). However, it also has the obvious weakness that magnitude integration
could not be directly measured to confirm the effect. The striking similarity in the brain
responses to the magnitudes, peaking at the same latencies where we demonstrated
a relationship with the behavioral effect and showing the same scalp topography,
nevertheless provides evidence that magnitude integration likely occurs even in the
absence of a task. While this comparison remains qualitative, the multivariate “cross-
condition” decoding analysis provides quantitative evidence that the brain activity at
several latency windows does not depend on the presence of a magnitude task.
Indeed, the ability of the classifier to successfully decode the brain responses to
magnitude across conditions shows that similar brain processes are engaged at
specific time points, resulting in similar patterns of brain activity. In all cases, the
latency windows showing above-chance decoding are largely consistent with the most
important windows highlighted in the other analyses (e.g., in terms of AERP and its
relationship with the behavioral effect). Namely, the timing of above-chance decoding
in the case of numerosity (i.e., the 110-145 ms window), duration (i.e., 370-460 ms),
and size (i.e., 270-430 ms) overlaps with similar windows showing a relationship
between ERPs and behavior (in the task condition analysis), and with the effect of the
different magnitudes in the passive condition. The analysis also highlights several
other windows showing significant cross-condition decoding, suggesting that similar
patterns of brain activity emerge at multiple processing stages across conditions, both
early and late. The decoding analysis thus provides further evidence that magnitude
processing entails patterns of brain activity largely independent from the task. In other
words, with this analysis we demonstrate that the task and passive condition not only
entail similar magnitude-sensitive responses at the same processing stages, but also
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that such responses show very similar patterns of activity likely reflecting the same
brain processes. In turn, this also suggest that the magnitude integration phenomenon
— which is reflected by activity at such latency windows — likely takes place irrespective
from the task, in an automatic and perceptually-driven fashion. According to this
interpretation, the integration of different magnitudes and the relative bias would occur
via perceptual processes affecting how we experience the different dimensions, and
not only their memory traces or how they are judged. Namely, for instance, when we
underestimate a duration because it is paired with a low numerosity we perceptually

experience a shorter duration.

Differently from the present study, previous EEG results concerning magnitude
integration (involving duration and length) suggested the involvement of working
memory interference (Cui et al., 2022). Cui et al. (2022) indeed observed effects of
duration and length after the offset of the intervals, at ERP components usually
associated with working memory maintenance, such as the P2 and P3b. While the
effect of duration in Cui et al.’s work shows a timing consistent with the present results
(~250-300 ms after stimulus offset), length has an effect at a much different timing
(~300 ms after stimulus offset) compared to our earlier peak of responses to the size
dimension (~250 ms after stimulus onset). Additionally, the scalp topography of the
magnitude effects had a much more anterior distribution, peaking at parieto-frontal
locations, as opposed to our results showing a posterior, occipital distribution.
However, Cui et al. also employed much different stimuli: longer intervals (800-1,200
ms) and quite large lengths up to 15 degrees of visual angle. Considering the relatively
long durations and the fact that the stimuli were marked only at the beginning (onset)
and end (offset) point, it is not surprising that they engaged memory processes (e.g.,
see for instance Rammsayer & Lima, 1991). Both magnitudes in such a task indeed
rely on the memory trace of the first marker presented rather than on sustained
sensory stimulation, making it more likely that any interference would involve higher-
level memory processes. Our results however do not conflict with such an
interpretation. Perceptual and mnemonic interferences are indeed not mutually
exclusive processes, and can both occur depending on the nature of the stimuli and
paradigm used. Our results however show that magnitude interactions can be
perceptual in nature when based on stimuli relying on sensory/perceptual processing
rather than memory.
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How would this perceptual interaction occur in the brain? Interestingly, our results
show that the effects across the different magnitudes do not occur at a unique,
generalized stage, but show different timings consistent with different brain processing
stages. The interference between magnitudes thus depends on the specific
processing dynamics of the different dimensions (see also Togoli et al., 2021), rather
than a common processing stage. Our results are thus not fully consistent with the
idea of a generalized magnitude processing system, as proposed by the ATOM
framework (e.g., Walsh, 2003). Instead, the results seem more in line with recent
findings of separate topographical cortical maps of different magnitudes, partially
overlapping with each other (Fortunato et al., 2023; Harvey et al., 2013, 2015; Harvey
& Dumoulin, 2017; Hendrikx et al., 2024; Protopapa et al., 2019). Recently, it has
indeed been proposed that the interaction between different magnitudes could arise
from the overlap of neural populations sensitive to different dimensions but without
neural alignments across dimensions (Hendrikx et al., 2024; Tsouli et al., 2022),
therefore arguing against the existence of a centralized mechanism or a common

magnitude neural code (Walsh, 2003).

To conclude, our results show that the neural signatures of magnitude processing and
integration are very similar whether participants explicitly attend and judge magnitude
information or passively watch the stimuli. This in turn suggests that similar brain
processing stages are engaged irrespective of the task, and thus that magnitude
integration likely occur even in the absence of magnitude decision-making. Overall,
our results thus provide new evidence supporting the idea that magnitude integration
is an automatic perceptual phenomenon independent from the task performed,
affecting the phenomenological appearance of the stimuli rather than their memory or
the way they are judged.
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