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The design of functional enzymes holds promise for transformative solutions across
various domains but presents significant challenges. Inspired by the success of
language models in generating nature-like proteins, we explored the potential of an
enzyme-specific language model in designing catalytically active artificial enzymes.
Here, we introduce ZymCTRL (‘enzyme control'), a conditional language model trained
on the enzyme sequence space, capable of generating enzymes based on user-defined
specifications. Experimental validation at diverse data regimes and for different enzyme
families demonstrated ZymCTRL's ability to generate active enzymes across various
sequence identity ranges. Specifically, we describe the design of carbonic anhydrases
and lactate dehydrogenases in zero-shot, without requiring further training of the
model, and showcasing activity at sequence identities below 40% compared to natural
proteins. Biophysical analysis confirmed the globularity and well-folded nature of the
generated sequences. Furthermore, fine-tuning the model enabled the generation of
lactate dehydrogenases outside of natural sequence space but with activity
comparable to their natural counterparts. Two of the artificial lactate dehydrogenases
were selected for scale production and successfully lyophilised, maintaining activity
and demonstrating preliminary conversion in one-pot enzymatic cascades under
extreme conditions. Our findings open a new door towards the rapid and cost-effective
design of artificial proficient enzymes. The model and dataset are freely available to the
community.

Introduction

Enzymes are captivating nanomachines with the ability to accelerate chemical
transformations by several orders of magnitude. From converting atmospheric CO- into
valuable chemicals' to facilitating the production of light?, natural enzymes exhibit a diverse
array of functionalities, all achieved under mild conditions without the use of toxic solvents®.
This inherent versatility has positioned enzymes as highly sought-after materials, promising to
establish greener chemistries for myriad applications and reduce costs®. Indeed, significant
advances have been made in the past two decades, including augmenting the thermostability
and activity of enzymes like PETase® and engineering de novo enzymatic reactions, including
the Kemp elimination®, Diels-Alder’, retro-aldol®, and Morita-Baylis-Hilman®. Despite this
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enormous potential, it is evident that we still fail to design enzymes as proficient as natural
ones, with labour-intensive processes that can span several years and involve various rounds
of evolution™.

The reasons for these challenges are varied, including our incomplete understanding
of the intricate molecular processes governing biochemical interactions and catalysis, the
costly nature of the experimental assays, and the astronomical space of possible enzyme
sequences - with most variants leading to loss of stability or function'. Artificial intelligence
(Al) methods are emerging as powerful tools that outperform previous results across all
disciplines. In the protein research realm, they tackle some of the previous limitations
effectively and have unquestionably promoted a paradigm shift in the field'2. Among Al
models, Large language models (LLMs) are manifesting unprecedented performance, as
evidenced by the recent ChatGPT or Gemini agents'®. Protein language models (pLMs) have
likewise showcased impressive success, including predicting the effect of mutations™ and
protein structures’®'® by learning statistics of coevolving residues'” and allowing the step-wise
design of de novo proteins'®. In the context of enzyme design, pLMs and other generative
models have provided artificial variants for several enzyme families'®?, including artificial
TEM-1 B-lactamases?', lysozymes??, luciferases?, malate dehydrogenases?®®, superoxide
dismutases®, chorismate mutases®®, and CRISPR-Cas genome editors? in the last three
years alone?’. While these works highlight the potential of Al architectures in the protein realm,
the implementation of a model that produces highly active enzymes without the need for
further training and with high success rates remains a longstanding goal in the field.

One limitation of most autoregressive pLMs is that these exert limited control over the
properties of generated sequences in zero-shot scenarios, i.e. when generating sequences
without additional training. Techniques such as fine-tuning on specific families??, prompt
engineering®®, or high-throughput sequence generation followed by property filtering have
been employed to address this limitation'?. Nevertheless, the ideal solution would be an end-
to-end model capable of generating sequences based on user-defined prompts. This concept
has been realised in models like CTRL?, which utilises control tags to guide text generation,
and Progen®, a pLM trained with the potential to generate upon labels defining biological
processes, cellular components, function, or taxonomy, recently resulting in the production of
active lysosomes after fine-tuning?.

Here, we hypothesised that a conditional, autoregressive pLM trained on the known
enzyme sequence space could learn an internal grammar of enzymatic activity and generate
active enzymes upon user-defined requests. To test this hypothesis, we developed ZymCTRL
(short for enzyme control), a conditional pLM trained to generate enzymes based on specific
catalytic reactions. ZymCTRL was trained on the publicly available Uniprot database,
comprising 37M enzyme sequences annotated with enzyme commission (EC) numbers at the
time of training®'. Each sequence was linked to its associated EC class during training,
enabling the model to learn sequence features specific to each catalytic reaction. To address
the known issue of lack of representativeness in certain families, we tokenised EC classes,
allowing the model to transfer learned insights across catalytic reactions.

We experimentally test the performance of the model under different scenarios. First,
we examine 20 beta carbonic anhydrases generated in zero-shot, with identities below 50%
to the natural space. Carbonic anhydrases are the fastest enzymes known in nature, with
catalytic efficiencies approaching the diffusion limit*>. Therefore, this enzyme family
constitutes a very astringent test of ZymCTRL capabilities. Seven of the artificial carbonic
anhydrases showed activities, with two close to natural ones, with sequence identities in the
range of 35 - 50%. Second, in order to address potential biases in pLMs due to unequal
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sequence sampling across the tree of life in public databases*®, we fine-tuned ZymCTRL on
a diverse set of metagenomic lactate dehydrogenase (LDH) sequences derived from
Basecamp Research’s internal graph database. We show that LDH sequences generated
after fine-tuning are more likely to pass in silico quality metrics than zero-shot generated
sequences. 20 generated sequences were selected for testing (ten zero-shot and ten fine-
tuned), all of which expressed and a majority of which showed activity in line with the natural
controls. Two were selected for further studies, scaled up and lyophilised, retaining activity
and showing mild conversion in one-pot enzymatic cascades even at extreme pH and
temperature conditions, highlighting the usability of the generated sequences in industrial
contexts. Given the ability of enzymes to catalyse industrial processes in an environmentally
friendly manner, we believe that ZymCTRL represents a timely advancement toward
conditional, cost-effective enzyme design. To benefit the scientific community, we have made
this model freely available at https://huggingface.co/Al4PD/ZymCTRL.

Training ZymCTRL: A model conditioned on enzyme classes

We have trained ZymCTRL, a conditional pLM capable of generating enzyme
sequences that fulfil a user-defined catalytic reaction (Fig. 1a, b). Our objective was to train a
foundation model that can generate high-quality enzymes conditioned on a specific enzyme
class without needing further training, providing complete control to the end users. To this end,
we used the Transformer architecture’s decoder module®* and trained it with an autoregressive
objective on the Uniprot database®’ to give a 738 M parameter-sized model (Methods). During
training, each sequence was passed along with its corresponding EC class, ensuring that
ZymCTRL learned a joint distribution of sequence-function relationships.

EC numbers feature a four-level hierarchy, with each successive number defining the
catalytic activity more precisely. For example, enzymes classified as EC: 2.1.1.13 are
transferases (first level), transferring one-carbon groups (second level), such as methyl (third
level), to specifically regenerate methionine from homocysteine (fourth level). The annotated
enzymes, however, feature large imbalances among classes, with some being significantly
more populated than others: while the top 100 most populated classes encompass 37% of the
sequences in the dataset, 9% of the classes only include one sequence (Fig. 1c).

There are a few possibilities to partly alleviate representation bias during training. One
strategy would be to ensure an equivalent number of members per class. While this approach
would deplete biases, it would also not exploit a significant proportion of this valuable
annotated data. In contrast, we envisioned a training strategy where the model could transfer
knowledge from populated to underrepresented classes. In particular, we tokenised the EC
labels by subclasses (Methods) to promote that the model infers patterns within the same
group (e.g., EC classes 2.7.1.9 and 2.7.1.2) and to understand the minimal requisites for good-
quality per class generation (Fig. 1a, b).

In this sense, we analysed the perplexities for sequences in rare EC classes, i.e., EC
classes with only one sequence in the training set. Perplexity is a measure of the model's
understanding of a given sequence and is mathematically defined as the exponential of the
negative log-likelihood of the sequence (Methods). More intuitively, lower values indicate
sequences for which the model has higher confidence. While sequences generated from EC
classes with abundant data points exhibit lower perplexities, sequences from rare EC classes
produce average perplexities lower than those from holdout and implausible (random) EC
labels (Fig. 1d, Table S1). We indeed observe several sequences with very low perplexities
in the case of EC classes with less than ten sequences, suggesting data transfer among
classes (Fig. 1e). We wondered whether lower perplexity values correlate with other
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assessments, and observed a strong correlation with ESMFold' pLDDT values (Fig. 1f).
Taken together, the results point out that the model confidently generates sequences with high
pLDDTs at all data regimes, even for highly unrepresented families with a single member.
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Figure 1: Training and generation process and sequences in the training database. (a) During pre-training,
a decoder-only Transformer (T) model learns the relationship among sequences and their tokenised labels in an
iterative process. The EC classes are also tokenised at the character level, allowing the model to infer relationships
among the EC groups. (b) At inference time, users can specify a target catalytic reaction as a condition for the
model’'s generation, such as ‘2.7.1.2": ‘glucokinases’. (c) Sequences in the database classified by EC number,
labelled are the ten largest classes. (d) Perplexity for different groups of generated sequences. (e) Perplexity as
a function of the number of sequences per EC class in the training set. (f) pLDDT values obtained with ESMFold
as a function of perplexity, suggesting low-perplexity sequences are more prone to lead to ordered structures.

The generated enzymes are novel yet predicted ordered and functional

One critical property of language models is that they can generalise on the training set
and infer novel, unseen, yet coherent texts. This is a particularly interesting property for protein
design since it provides the means to explore novel distant regions in sequence space,
enabling the potential to design new functionalities and enhancing our understanding of
protein function. To understand the extent to which ZymCTRL explores novel sequences, we
ran MMseqs2* searches on generated sequences versus the training set (Methods, Fig. S1,
Fig. 2a).

The sequences are distant from the training set, with alignments that show average
identities and lengths of 53.1 + 23.2% and 337.9 + 151.2 amino acids. BLASTP?® searches
against the non-redundant protein sequence database provided similar values, with 54.2 +
22.2% sequence identities (Fig. S2). Nevertheless, we observe a non-negligible set of
sequences with identities over 90%, with 12.5% of the sequences in the set above that
threshold (Fig. 2a).
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Figure 2: Distance of the generated sequences to the training set. a) Identities and lengths for the alignment
with the lowest E-value found with MMsegs. Depicted six labels in different regions of the identity plot. b)
Frequency of generated identities for each of the selected EC classes in a). ¢) Scatter plot between the identities

to training set groups for generated sequences and the average number of sequences per cluster for 100 EC
classes.

We wondered what are the determinants for these differences in redundancy during
generation. Indeed, the model generates sequences distant from the natural space for some
classes (1.1.1.391, 1.1.1.308), whereas, for others, they are remarkably close (2.7.7.48) or
dispersed (1.1.1.22) (Fig. 2b). These sequences span all major enzymatic classes and belong
to groups with diverse numbers of members (Fig. $3). We thus hypothesised that the
differences in these cases may be due to varying degrees of internal redundancy within EC
classes. Interestingly, there is a relationship (p-value = 6.04 - 10", R = 0.54) between the
generated sequence identities and the number of clusters per EC class in the training set (Fig.
2c¢), but not so with the total number of sequences per EC class or the total number of clusters
(Fig. S4). These findings have implications for protein design since specific user cases may
require closer (i.e. 90%) or more distant (i.e. <40%) sequences to the natural ones, a property
that can be adjusted by fine-tuning the model on specifically clustered datasets.

We then analyzed the predicted globularity, order and functionality of the generated
sequences by comparing two crafted datasets of natural and generated sequences (Methods,
Fig. S5). IUPRED3* revealed that the two datasets show similar globularity levels, with 97.7%
and 99.3% of the sequences predicted to be globular (Table 1). Average pLDDT values
obtained using ESMFold' and Omegafold® also yielded comparable results, with set-
averaged pLDDT values of 60 and 85 for the generated and natural datasets, respectively
(Table 1). To assess the predicted catalytic activity of the generated enzymes, we used HiFi-
NN3*¢ and CLEAN®®, state-of-the-art methods for functional annotation from sequence-alone
inputs. Both methods accurately annotated a significant proportion of generated sequences,
even at the complete EC levels (Table 1, 4th EC level), which are more challenging to predict
due to the increasing specificity of the described chemical reactions. Specifically, 72% and
34% of the sequences were correctly annotated to the 4th EC level with HiFi-NN, while 56%
and 27% achieved correct annotations with CLEAN for the natural and generated datasets,
respectively. Given that these generated sequences had not been subjected to prefiltering,
the results suggest that the model generates sequences with the potential to catalyse their
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intended reactions, providing a first solid evidence before proceeding to experimental
assessments.

Table 1: In silico structural and functional assessment of ZymCTRL-generated sequences.

Natural dataset Generated dataset
Structural Assessment
IUPRED3 (%) 99.3 97.7
ESMFold (pLDDT) 84.8 60.0
OmegaFold (pLDDT) 84.9 61.0
Functional Assessment
HiFi-NN (%) CLEAN (%) HiFi-NN (%) CLEAN (%)
1st EC level 90 88.2 58.9 65.5
2nd EC level 87.4 81.1 56.6 51.8
3rd EC level 84.4 75.9 54.8 46.9
4th EC level 72.2 55.8 34.5 26.9
Non-annotated 6.3 - 37.2 -

Experimental results
ZymCTRL generates highly functional carbonic anhydrases

Carbonic anhydrases (EC: 4.2.1.1) represent a group of ubiquitously expressed
metalloenzymes that play a crucial role in the rapid conversion of carbon dioxide and water
into carbonic acid, protons and bicarbonate ions. From an evolutionary perspective, carbonic
anhydrases are remarkably diverse, with eight distinct subtypes (a, B, v, 6, ¢, n, 6, and 1),
exhibiting no similarities in sequence or structure, yet arriving at the same catalytic reaction
due to convergent evolution*. Kinetically, they have reached catalytic perfection, with a single
carbonic anhydrase capable of hydrating one million CO, molecules per second. Beyond their
intriguing evolution and chemistry, carbonic anhydrases are attracting significant attention for
their potential as biocatalysts in industrial processes. The ever-growing anthropogenic CO-
emissions are emphasising the urgency for greener carbon capture and sequestration (CCS)
methods to mitigate global warming, with carbonic anhydrases offering a sustainable, cost-
effective alternative for CO; fixation*'.

Given their potential as greener alternatives to CCS processes and being Nature's
fastest enzymes, we decided to focus on carbonic anhydrases, as they confer a stringent yet
attractive test for ZymCTRL's capabilities. To this end, we generated 37,500 sequences with
ZymCTRL conditioned on the label ‘4.2.1.1" (carbonic anhydrases) (Fig. 3a). These
sequences were generated in zero-shot, i.e., without training or conditioning the model in any
way with additional data. We then clustered the sequences to 90% using MMseqs2*?, ran a
BLAST search®, selecting those below 60% identity to any hit and filtered by ESMFold’s
pLDDT (>70) (Methods). The EC class 4.2.1.1 contains representatives of all carbonic
anhydrase subtypes, and thus ZymCTRL generates sequences that span from the a to 6
classes following that distribution. For this reason, we ran TMalign*® against the crystal
structure of an alpha (PDB 1CA2) and beta carbonic anhydrase (PDB 1DDZ*) (Fig. 3b),
ensuring we could classify each generated sequence with their subtypes. We then individually
inspected all hits to ensure they featured the conserved Zn?*-binding sites. Ten beta (CA1-
CA5, CA13-CA17) and five alpha (CA6-CA10) carbonic anhydrase were selected for the first
round of experimental testing (Methods, Table S2, Table S5). Only two of the alpha carbonic
anhydrases expressed, but they did it mostly in the insoluble fraction. Conversely, nine of the
beta carbonic anhydrases expressed, three were soluble, and one showed mild catalytic
activity (Methods, Table S3, and Fig. S6-S7). While beta carbonic anhydrases are most
commonly found in prokaryotes*®, alpha-carbonic anhydrases are found in mammals. We
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hypothesised that the observed differences in performance could be due to our choice of the
host system (E. coli) and the problems that could arise when trying to overexpress sequences
that resemble their eukaryotic counterparts in the training set. We therefore focused on
designing beta carbonic anhydrases for a second testing round.

At the time of our analysis, relevant work was published using different filtering
methods'®. We adopted a similar pipeline and selected ten more beta carbonic anhydrases
for a second round of testing. In particular, we ensured that the selected sequences had
predicted net charges distant to neutrality and that hydrophobic solvent accessible surface
areas were below previously reported thresholds' (Methods). In this round, eight of the
sequences expressed, and six of them were soluble (Table 2, Fig. 3c, Figs. S8). We analyzed
the activity of these and the previously analyzed sequences with a biochemical assay,
additionally including positive and negative controls, namely, the wild-type sequence from E.
coli (Uniprot ID POABE9) and the buffer solution without any target enzyme. In particular, we
follow a modified Wilbur-Anderson assay, which measures the time the enzyme requires to
decrease the pH of a COz-saturated solution from 7.5 to 6.5 at 0 °C using a colourimetric
indicator*®**® (Methods). Overall, seven of the carbonic anhydrases show activities above a
threshold defined by the non-catalysed reaction, with two of them considerably close to the
levels obtained by the reference enzyme from E. coli. This is a remarkable feat, considering
the enzymes are significantly distant from the natural space (non-redundant database,
BLAST), with all of them being below 50% sequence identity and the two most active
sequences with 39% and 41% sequence identities (Table 2).

We further interrogated the enzymes using different biophysical methods. In particular,
we analysed CA1, CA21, and CA22 by circular dichroism (CD) and observed that they feature
spectra typical of aB-proteins, as expected from their AlphaFold*® predictions (Fig. 3d). The
analysed sequences appeared to be monomers by size exclusion chromatography (SEC)
(Fig. S9), and to further confirm these results we subjected most designs to size exclusion
chromatography with multi-angle light scattering (SEC-MALS). The results reveal that CA1,
CA21, CA22 (Fig. 3e), CA25, and CA28 are monomers (Fig. S10). Beta carbonic anhydrases
exhibit diverse oligomeric states®, with the dimer comprising the most common basic unit,
although evidence has been presented for monomeric active forms®'®2. To determine the
stability of such monomers, we measured melting temperature (Tn) for CA22 by Differential
Scanning Fluorimetry (DSF). The obtained T, was 47 °C, and the topology of the melting curve
agreed with the monomeric state since only one maximum was detected (Fig. S11). Due to
their higher expressing yields, we further analysed CA1 and CA22 using Small-angle X-ray
scattering (SAXS), to further analyse their state in solution (Fig. $12, Fig. 3f). CA1 and CA22
radius of gyration (Ry) were 28.23 +0.68 A and 28.45 +0.22 A, respectively, indicating the two
proteins exhibit similar sizes. The molecular weight (MW) for the designs was estimated to be
within 22.1 - 28.5 kDa, while for CA22, the MW gap was 22.8 - 29.3 kDa, confirming the
species behave as monomers in solution. The maximum diameter (Dmax) resulted in 139 A for
both designs. To inspect the putative nature of their folding, we examined the dimensionless
Kratky plot (Fig. 3f). Such profiles presented the standardised Gaussian bell shape of globular
species. Overall, these results confirm that ZymCTRL generates active sequences without the
need for additional training in remote regions of the protein space.
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Table 2: Summary of results for the carbonic anhydrase enzymatic assay along with their sequence
identity to the non-redundant database and BLAST. Sequences ordered by increasing activity.

Carbonic Anhydrase Sequence identity (%) WAU/mg
CA1 45.97% 333115
CA24 37.34% 416 £ 20
CA21 42.97% 437 + 27
CA26 49.28% 522 + 58
CA22 46.86% 725 £ 62
CA25 41.01% 1219 + 28
CA28 39.24% 1310 £ 37
Reference (Escherichia coli) - 1414 + 40
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Figure 3: Summary of results for the generated carbonic anhydrases. a) Filtering pipeline to obtain the
selected hits. Sequences were generated in zero-shot and filtered based on several properties before being
assessed for overexpression and purification. b) TM align analysis against PDB 1DDZ (beta carbonic anhydrase).
The generated enzymes belong to different carbonic anhydrase subtypes. Selected sequences belong to the beta
and alpha subtypes. ¢) Spectrophotometric assay measuring the decrease in pH via the indicator phenol red over
the course of the reaction. d) Circular dichroism spectra and the ESMFold structural predictions for CA1, CA21,
and CA22. e) Molar mass (g/mol) during SEC-MALS for CA22 and the corresponding absolute molecular weights.
f) Guinier plot and dimensionless Kratky plot analysis. NC= Negative control; EC = Escherichia Coli.

Lactate Dehydrogenases

Lactate dehydrogenases (LDH) (EC: 1.1.1.27) are a well-studied class of enzymes that
play a pivotal role in the biotechnology sector, primarily in lactic acid production®***. Their
enzymatic role is crucial in the reversible conversion of pyruvate to lactate, with the
interconversion of the coenzymes NAD* and NADH>**°, The ability of LDH to mediate this
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conversion underpins the microbial synthesis of lactic acid, an important precursor for the
synthesis of chiral compounds such as drugs and pesticides and, more importantly, in the
production of bioplastics such as Poly-L-lactic Acid (PLA)**®¢. PLA is recognised as a
biodegradable, eco-friendly alternative to conventional petroleum-based plastics, aligning with
the goal of a more circular economy by reducing waste®” 8. However, its production demands
lactic acid of the highest optical and chemical purity. This coupled with the role LDHs play in
the food industry, specifically in the development of lactate biosensors for accurate
fermentation monitoring and spoilage detection in fermented foods, highlights the importance
of efficient enzyme design to enhance lactic acid production®,

The ability of ZymCTRL to generate functional enzymes in a zero-shot manner made
us wonder to what extent the model would benefit from fine-tuning in a saturated sequence
space. Recent work highlighted the uneven sampling of the tree of life in public sequence
databases and the impact this can have on the performance of pLMs trained on these
datasets®®. For the purpose of fine-tuning ZymCTRL with sequences sampled from sections
of the tree of life absent from public databases, expanding into sequence space beyond the
public databases (Fig. 1b), we leveraged a proprietary metagenomic graph database
(BaseGraph), derived from environmental probes sampled across 5 continents and a 110 °C
temperature range.

In particular, we fine-tuned ZymCTRL with a subset of sequences annotated as LDHs
from the BaseGraph database, with the majority of these sequences originating from
extremophilic organisms extracted from environments with temperatures ranging from -1 °C
to 81 °C (Fig. 4a). We generated around one million sequences from both the fine-tuned and
the original pre-trained model (Methods). In line with the notion that language models can
benefit from greater protein sequence diversity we observed that, compared to the zero-shot
generated sequences, the fine-tuned sequences exhibited higher predicted pLDDT scores
and lower sequence identities to the training set (t-test: p < 0.0001 and p < 0.00001,
respectively, Fig. 4b).

Given this large pool of fine-tuned and zero-shot generated LDH sequences, filtered
and obtained 20 sequences (10 zero-shot and 10 generated) for experimental characterization
(Methods). Experimentally, all the sequences were expressed in E. coli and showed different
degrees of solubility (Fig. S13 - S16 and Table S5, S6, S7). Notably, fourteen of these
sequences displayed measurable enzymatic activity when assayed wusing a
spectrophotometric assay in crude lysates (Table 3, Fig. 4c, Table S4, S5 and S7, Methods).
As positive controls, three wild-type sequences were used, including L. casei and two
sequences from the BaseGraph database. Negative control consisted of the lysate of an
empty pET28a vector (Methods). Remarkably, the active sequences demonstrated significant
enzymatic activity at a high temperature of 45 °C and across a broad pH range of 4.5 to 9.5
(Table S7), offering significant industrial advantages over naturally occurring LDHs, which
typically display maximal activity in the narrower, slightly acidic to neutral pH range of 5.5 to
7.0. This exceptional pH tolerance enables robust and versatile biocatalytic processes by
allowing the utilisation of a single enzyme across multiple applications with varying pH
conditions (Table S7). The broad pH optima of these enzymes suggest their robustness in
industrial settings, which often encounter pH fluctuations, thereby improving operational
stability in large-scale and continuous processes® 2. Regarding their activity levels, all three
groups (controls, zero-shot, fine-tuned) have comparable performance, with no significant
difference observed between either of them (ANOVA f-statistic = 1.99, p = 0.17, n.s., Fig. 4c).

A critical goal of enzyme engineering is to be able to design materials that can be
readily used as biocatalysts in industrial settings. To ascertain whether our designs exhibit
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such potential, we selected LDH18 and LDH19 for further investigation. We scaled up the
production of enzymes LDH18 and LDH19 and proceeded to lyophilisation and integration in
enzymatic cascades. Lyophilisation or freeze-drying is a technique for the long preservation
of enzymes, bacteria, or other biological products®®. Main advantages are the preservation of
the product and the possibility of rehydration while preserving its activity. While useful,
lyophilisation has been shown to often promote molecular changes to the lyophilised proteins,
sometimes leading to a complete loss of activity®. Interestingly, LDH18 and LDH19 retained
activity after Iyophilisation (Fig. 4d, Methods). Following these results, we integrated the
enzymes into two different one-pot enzymatic cascades, the first cascade coupled LDH with
glucose dehydrogenase (GDH) for cofactor recycling, while the second cascade incorporated
a transaminase (TA) to drive the equilibrium toward the desired amine product by removing
the pyruvate byproduct mediated by LDH (Fig. 4e, Table S10, Methods). Aiming at testing
the enzymes in particularly extreme scenarios, the cascades were assayed at pH 5 and 9.5,
with a temperature of 45 °C. Both cascades exhibited mild conversion, with the cascades
including LDH18 presenting conversions of 7% and 4% to products, respectively (Table S8,
Fig. S17, Fig. S18). While these results indicate that the enzymes require further
optimisations, they showcase that enzymes generated without further optimization can be
successfully lyophilised and integrated into one-pot enzymatic cascades, displaying initial
activities in harsh conditions.

Table 3: Summary of results for the Lactate dehydrogenase enzymatic assay at pH 4.5.
@This value corresponds to pH 9.5 (see Table S7).

Lactate Group Sequence Identity Activity (U/mL)
dehydrogenase
LDH1 Fine-tuned 66.01 0.27 £ 0.16
LDH2 Fine-tuned 56.06 0.26 £0.19
LDH6 Fine-tuned 65.27 0.55+£0.05
LDH7 Fine-tuned 57.74 0.61+0.19
LDH8 Fine-tuned 60.70 1.56 £ 0.60
LDH9 Fine-tuned 58.76 0.24 +£0.19
LDH10 Fine-tuned 70.09 0.36 £0.16
LDH16 Zero-shot 74.68 0.42+0.10
LDH18 Zero-shot 88.32 1.50 £ 0.43°
LDH19 Zero-shot No hits found 1.91+£0.25
LDH20 Zero-shot 94.04 0.61+0.11
LDH21 Zero-shot 62.02 1.85+0.31
LDH23 Zero-shot 96.95 0.32+0.14
LDH24 Zero-shot 86.23 1.52+£0.30
LDH25 Zero-shot 55.81 0.49 £ 0.06
Control1 Lactobacillus casei - 0.42 £ 0.30
Control2 BaseGraph_LDH1 - 0.62 £0.29
Control3 BaseGraph_LDH2 - 0.24 £0.23
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Figure 4: Computational design and functional characterisation of the Lactate dehydrogenases. (a) UMAP
of ESM-2 embeddings of Lactate dehydrogenases in the training set, BaseGraph and the sequences selected for
fine-tuning ZymCRTL (b) pLDDT scores against sequence identities (compared to training data) for 756,983 zero-
shot (orange) and 1,138,955 fine-tuned (teal) sequences. (¢) Comparative functional activity of zero-shot and fine-
tuned sequences alongside control sequences: Lactate dehydrogenase from Lacticaseibacillus casei and two
natural sequences from BaseGraph, used in the fine-tuning process. (d) Enzymatic activity of LDH18 and LDH19
pre and post lyophilisation (e) One-pot enzymatic cascades, cascade 1: pyruvate is reduced by LDH using NADH
as cofactor, while glucose dehydrogenase (GDH) is used to recycle the NADH cofactor forming gluconic acid from
glucose. Cascade 2: alanine is employed as the amino donor (coupled to the co-substrate, the ketone
acetophenone) for TA and the pyruvate which is generated (together with the co-product (R/S)-a
methylbenzylamine, MBA) is reduced by LDH to lactate. Removing the pyruvate serves the dual purpose of driving
the reaction and also eliminating pyruvate inhibition of the TA.

ZymCTRL embedding space distinguishes enzyme functional classes

We investigated whether the model is capable of discerning the seven EC classes
within its internal space. Several techniques are available for reducing the high dimensionality
of protein sequences to more manageable, human-understandable dimensions. Recently,
manifold learning techniques such as tSNE and UMAP have emerged as powerful
dimensionality reduction and visualisation tools'®. Other studies have focused on hierarchical
characterisations'’, cartesian representations®, or similarity networks'®. Here, we attempted
to visualise the model's embedding space, aiming to understand whether the internal
representations of different enzyme classes occupy distinct regions. To this end, we generated
ZymCTRL internal representations of natural and generated sequences and constructed a
similarity network based on their cosine similarities. The cosine similarity between two
vectors—or two enzyme embeddings—measures the similarity between two non-zero vectors
defined in an inner product space. Intuitively, two sequences deemed similar by the model will
produce larger cosine similarities.

Figure 3 showcases a network containing a total of 700 natural and generated
sequences (circled in black), which group together when their cosine similarities surpass the
cutoff of 0.9. The enzymes populate well-defined regions, indicating that the model defines
sequences belonging to the same class as most similar. Interestingly, there are also inter-
class connections, such as oxidoreductases (EC: 1) being linked only to transferases (EC: 2)
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or translocases (EC: 7) being linked to ligases (EC: 4). These findings reveal that the model
has learned an internal space of the enzymatic classes, being able to differentiate the different
enzymatic reactions correctly.
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Figure 5: Similarity network of ZymCTRL internal representations defined by cosine similarities. Each
node represents a protein sequence either natural or generated (circled in black) from the seven EC classes
(EC:1, purple; EC:2: magenta; EC:3, dark orange; EC:4, green-yellow; EC:5, yellow; EC:6, orange; EC:7: green).
Nodes are linked whenever their corresponding internal embeddings give a cosine similarity over 0.9.

Discussion

The landscape of protein design is undergoing a significant transformation''%%°, While
structure prediction tools such as AlphaFold, and numerous studies®**% have demonstrated
the ability to design tailored protein structures with remarkable accuracy, the next frontier lies
in designing proteins with customized functions. Recent years have seen Al methods emerge
as powerful tools for enzyme design, with already several successes in creating enzymes with
catalytic efficiencies?2*%®. Inspired by the versatility of language models in fulfilling user-
defined requests, we trained ZymCTRL, a protein language model tailored for designing
enzymes that catalyze user-specified reactions. ZymCTRL can generate high-quality enzymes
even for reactions with limited known examples without further training, a property that will
allow the augmentation of isolated enzyme families in a cost-effective fashion. Additionally,
fine-tuning on curated datasets allows for control over the properties of the generated
sequences.
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We tested ZymCTRL's robustness for two different enzyme families. Firstly, we
generated carbonic anhydrases in zero-shot, without additional conditioning of the pre-trained
model with external data. Of the 20 generated beta carbonic anhydrases, seven displayed
activity following purification, with two close to the wild-type positive control. Biophysical
analyses confirmed well-folded, globular designs. These results are particularly noteworthy
considering the challenging nature of carbonic anhydrases as a test for the model, the
sequences' significant divergence from natural sequences (<45%), and the fact that the
sequences were generated in zero-shot, with a filtering pipeline executable on a standard
GPU within hours. Furthermore, we also generated lactate dehydrogenases in zero-shot,
attractive enzymes for lactic acid production. Many of the generated sequences surpassed
the controls, and two were successfully scaled up, lyophilised, and integrated into enzymatic
cascades, retaining activity and exhibiting conversion.

Motivated by these promising results and recognizing the imbalance in training data
across labels and the tree of life, we fine-tuned the model on a diverse set of lactate
dehydrogenases from BaseGraph. Compared to their zero-shot counterparts, we observed
that post-fine-tuning, generated sequences were more likely to explore novel sequence space
and exhibited higher average pLDDT scores. These findings further demonstrate the potential
of enhancing the model's knowledge with user-curated datasets, thereby enabling control over
various properties such as distance to the training set (Fig. 2c) and other attributes like
thermostability.

Despite the success demonstrated in experimental settings, there are potential
challenges to address in the future. Here, we have shown that conditional generation works
for enzyme classes with narrow substrate scopes. However, certain EC classes encompass
multiple substrates (such as hexokinases, EC: 2.7.1.1), posing a current challenge in
generating sequences tailored to individual substrates within these classes. Future efforts will
involve encoding substrate information during fine-tuning of sequences for individual
substrates or training models capable of generating sequences with control at the substrate
level. Moreover, an aspect that requires further investigation is the variability in solubility and
activity among the sequences. For example, the lactate dehydrogenases show similar results
regardless of whether they were subjected to a filtering process or randomly generated (Table
3, Methods). Understanding these differences, possibly by using explainable artificial
intelligence techniques, will be crucial for further improving the efficiency of these models and
expanding our limited understanding of sequence-function relationships.

While there are a few challenges ahead, our findings highlight the potential of
conditional language models as potent tools for the controllable design of enzymes, paving
the way for a myriad of applications. To the benefit of the community, we make code, model
weights and training data publicly available.
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Methods

Dataset preparation and vocabulary encoding

We downloaded sequences in the Uniprot database which had an EC number annotation
through the UniProt web interface (July 2022, version 2022.1) giving a total of 37,624,812
sequences. To avoid multi-chain sequences with multiple EC assignments, we removed
sequences with several EC labels, giving a total of 36,276,604 sequences. We split the
database into training (90%) and evaluation (10%) datasets. We used a block size of 1024,
separated control tags and sequences with a separator token, and further specified the
boundaries of sequences below 1024 amino acids with start and end tokens. We fit as many
complete sequences as possible in the 1024 window, provided that sequences are not split
across blocks. The sequences will follow this schema if their length fits in the 1024 window:
<control tag><sep><start><ENZYME SEQUENCE><end><|endoftext|>, and the following
scheme otherwise: <control tag><sep><ENZYME SEQUENCE><|endoftext|>. Sequences
over 1024 amino acids (~3%) were truncated to the N-terminal part.

Vocabulary encoding

We train our model with an associated label (control tag) per sequence. Following recent
studies’?', we tokenised our enzyme sequences using amino acid encoding. We further
tokenised the labels in the dataset, to account for similarities among sub-classes in the same
classes and help the model generalise in lower-populated catalytic reactions. This way, the
control tag “1.1.1.1 is split into its categories (1’ + . + ‘1" + " + 1" + .’ + '1’) and shares 6
tokens with ‘1.1.1.2’.
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Model pre-training

We use a Transformer decoder model as architecture for our training. The model uses the
original dot-scale self-attention?. The architecture uses that of the CTRL/GPT2 Transformer,
which was downloaded from HuggingFace?. ZymCTRL consists of 36 layers, a model
dimensionality of 1260, and 16 attention heads. The model was optimised using Adam (B1 =
0.9, B2 = 0.999) with a learning rate of 0.8e-04, following previous works®*. A batch size of 4
per device was used accumulating 4 gradient steps, resulting in a total batch size of 768. We
trained for 179,000 steps on 48 NVIDIA A100s 80GB in 15,000 GPU hours. Parallelism of the
model was handled with DeepSpeed?.

Perplexity evaluation

We evaluate the perplexity as the exponentiated average negative log-likelihood of a
sequence. Because ZymCTRL is a fixed-width causal language model, we evaluate the
perplexity using a previously described sliding-window strategy
(https://huggingface.co/docs/transformers/en/perplexity). In particular, for a tokenised
sequence (X = Xo, X1, X2, X3... Xn), the perplexity of x is evaluated as:

1 t
PPL(x) =exp{?2 logpe (xilx<:) }

i

where logpg (x;|x<;) is the log-likelihood of the i-th token conditioned on the x_; token.

Dataset creation

We randomly sampled two sequences per EC number for multi-sequence classes and one
sequence otherwise. For the generated dataset, we then generated 20 sequences per EC
number and selected the best or two best perplexity-scoring sequences depending on the
number of sequences in the equivalent natural dataset’s class. Each dataset contained 11,438
sequences. We ensured that the generated sequences followed the natural dataset length
distribution (Fig. $2), by applying a length limit of 600 to all labels, except when no sequence
could be generated at that length, hence the limit was extended to 1024. In all cases, the
sequences were only selected if they had been finished and not truncated by the model by
ensuring the generation of the end-of-sentence token.

Functional prediction analyses

CLEAN

We ran CLEAN®® on the generated and natural datasets, each comprising 11,438 sequences,
using the maximum separation inference method. This method, chosen for its consistent
precision and recall performance, employs a greedy algorithm that preferentially selects EC
numbers exhibiting the greatest pairwise distance from other EC numbers relative to the query
sequence®. To assess label accuracy, we compared the predictions made by CLEAN against
the labels of the generated and natural sequences across the EC hierarchy.

HiFi-NN

We annotate both the generated and natural datasets using HiFi-NN* with the set of
sequences in Swissprot which have an EC as the lookup set. By default, HiFi-NN assigns
annotations to every sequence in the set. To remove potentially spurious annotations, we use
a cosine distance (1 - cosine similarity) cutoff of 0.3%. As before, we check if the desired EC
exists in the set of annotations assigned by HiFi-NN. This is performed across each level of
the EC hierarchy.
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Amino acid propensities

We computed the natural amino acid propensities by taking sequences from the ten most
populated EC classes in the training dataset. We generated sequences from the same EC
numbers (Fig. 1b), with 20 sequences per parameter set. We tested a sampling generative
procedure?®, with a temperature of 1, max_length of 1024, top_p of 1, repetition penalty 1.2
and 1.3, and top_k for the values from 5 to 20, and 30, 50, 100, 200, and 458. Accuracy to
match the natural distribution was computed as the sum of the absolute differences between
all amino acid pairs. Repetition penalty of 1.2 provided better results in all cases. Top_k=9
gave the closest distribution to the target propensities (Fig. S1).

Model finetuning

Additional metagenomic sequences for fine-tuning were derived from Basecamp Research’s
graph database. Environmental samples subjected to metagenomic sequencing & chemical
analysis were collected after receiving landowner’s permission and entering access-benefit-
sharing agreements with the relevant local or national authority, following Nagoya protocol
guidelines. All samples were sequenced with both long-read (Oxford Nanopore GridlION) and
short-read (lllumina NovaSeq 6000) sequencing methods applied to each sample after
extraction. Following standard sequencing QC, an assembly-based approach was followed,
generating de novo assemblies that were subjected to polishing and open-reading frame
annotation. All open reading frames were annotated functionally in silico with a custom
annotation pipeline. Translated protein sequences alongside functional, genomic and sample
information were inserted into Basecamp Research’s graph database. For fine-tuning, we first
extracted all sequences from the graph database that were annotated with ‘EC:1.1.1.27’
(lactate dehydrogenases). We then clustered these sequences at a 50% identity threshold
using the MMSeqs2 algorithm applying a length filter of 240-380 amino acids. A subset of 973
sequences were randomly selected for fine-tuning. For fine-tuning, we started from the pre-
trained ZymCTRL model, adjusted the learning rate to 0.8e-06 and continued training the
model for an additional 100 epochs, at which point the training had plateaued. The final model
weights obtained at the end of this fine-tuning process were saved and used for inference.

Selection of carbonic anhydrases

2000 generations were performed each producing 20 sequences, which is the maximum
number of sequences that fit into a single NVIDIA A40 per generation call. Sequences that did
not produce an end-of-sentence token were discarded, along with duplicates. This produced
37,503 sequences. BLAST searches and subsequent filtering at <60% vyielded 1,464
sequences of interest. We further filtered those sequences based on ESMFold pLDDT values
(>70), producing 479 sequences and then ranked the sequences using TM-align against the
alpha and beta carbonic anhydrases template PDBs 1CA2 and 1DDZ, respectively. For the
first ranking we selected five alpha and ten beta carbonic anhydrases following the order of
the ranking and ensuring the designs had the necessary catalytic pockets and the correct
Protelnfer®” and Interproscan® predictions. For the second filtering process, we added 130
extra sequences with higher BLAST identities to the original 479 sequences. From this set,
we discarded sequences with net charges in the interval (-2,+2) and whose hydrophobic
solvent accessible surface area calculation yielded values higher than those expected from
an idealised monomer. In particular, we followed previous work'® and discarded sequences
whose hydrophobic SASA was 1.7 times the “ideal surface” computed using the ideal sphere
for the same length protein. The ideal surface was computed as in Dill et al.?®, by defining the
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idealised radius of a protein based on its number of residues as 2.24*(no. residues”0.392).
We computed pl values using biopython’ and removed variants which had values too close
to a pH of 7. Sequences were further manually inspected to ensure they contained the catalytic
residues. Ten extra sequences proceeded for experimental testing.

Expression of carbonic anhydrases

Carbonic anhydrases sequences cloned in pET-28a(+) downstream the six-histidine tag were
expressed in BL21(DE3) E. coli strain, previously transformed with the pGro7 chaperone-
encoding plasmid from the TaKaRa Chaperone Plasmid Set (Cat. #3340, Takara Bio Inc.).
Cells were grown in LB medium supplemented with kanamycin sulphate (50 pg/mL),
chloramphenicol (34 ug/mL) and L-arabinose (500 ug/mL) at 37 °C and 200 rpm of agitation
until the optical density at 600 nm (ODsoo) reached 0.6. Isopropyl B-D-thiogalactoside (IPTG)
and ZnSO4 were added at a final concentration of 0.1 mM and 0.5 mM, respectively, and
protein expression was carried out at 30 °C for four hours. Finally, cells were harvested by
centrifugation at 4000 g for 30 minutes at 4 °C and flash-frozen in liquid nitrogen for storage
at -80 °C. Such an expression protocol was established after a thorough screening of protein
production conditions. In particular, various growth temperatures (30 °C, 37 °C), ODsoo before
induction (0.5, 0.6), IPTG concentrations (0.1 mM, 1 mM), and incubation temperatures and
times (30 °C for 4h, 23 °C for 4h, 18 °C for 4h, 16 °C overnight, 13 °C overnight, 13 °C for 4h,
13°C for 4h) were screened. Cell pellets were resuspended in one fifth of the initial culture
volume using 20 mM Tris equilibration buffer (containing 20 mM Tris, 150 mM sodium
chloride, and 20 mM imidazole, pH 8.8) and subjected to sonication using a QSonica 4-
probe horn. Sonication parameters were set to 5 minutes at 50% amplitude with
alternating cycles of 10 seconds on and 10 seconds off. The lysates were then clarified
by centrifugation at 3900 g for 30 minutes at 4 °C. Subsequently, the soluble fractions
were carefully transferred to 15 mL centrifuge tubes, while the no pellets were retained for
analysis of the target protein in the insoluble fractions. The successfulness of the protein
overexpression trials was checked in mMPAGE® 12% Bis-Tris Precast Gels.

Purification of carbonic anhydrases

To assess the activity of carbonic anhydrases, a small-scale production and purification were
carried out. For protein purification, a His60 Ni Gravity disposable polypropylene column
loaded with 1 mL HisPur™ Ni-NTA Resin (ThermoScientific™) and all buffers were
equilibrated to the working temperature. The column was washed with 10 column volumes of
Equilibration Buffer (20 mM Tris, 150 mM sodium chloride, 20 mM imidazole, pH 8.8), then 2
mL of clarified lysate was added. The column was sealed and gently inverted for 1 hour at 4°C
to allow binding of the target protein. After repositioning the column vertically to settle the resin,
a stand with clean empty tubes was placed under the outlet for fraction collection. The flow
was initiated by removing the stoppers and collecting 1 mL fractions. The column was washed
with 10 column volumes each of Equilibration and Wash Buffer (20 mM Tris, 150 mM sodium
chloride, 40 mM imidazole pH 8.8), followed by elution of the target protein with 10 column
volumes of Elution Buffer (20 mM Tris, 150 mM sodium chloride, 300 mM imidazole, pH 8.8),
with fractions collected and analysed by SDS-PAGE and Bradford protein assay to monitor
protein concentration. Excess imidazole was removed from the required fractions using a PD-
10 desalting column packed with Sephadex G-25 resin (Cytiva®) for downstream applications
and stored in Storage buffer (20 mM Tris and 150 mM sodium chloride at pH 8.8).
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For biochemical and structural characterisation, a high-scale production and purification took
place. Cell pellet from a 2 L culture was resuspended in 80 mL of lysis buffer (50 mM TRIS-
HCI pH 8, 150 mM NaCl, 1 mM DTT, 20 mM imidazole, 1X cOmplete™ EDTA-free protease
inhibitor cocktail, 20 ug/mL DNAse) and sonicated on ice with a Branson 250 Digital Sonifier
TM (MarshallScientific) bearing a 1.5 mm tip at 25% amplitude in 10 seconds pulse alternated
with gaps of 10 seconds for a total of 8 minutes. Then, complete lysis was achieved in a CF-
1 cell disruptor (Constant System Ltd.) at a pressure of 1.36 kbar at 4 °C. The protein
suspension was clarified by centrifugation at 48000 g for 1 hour at 4 °C and the supernatant
filtered with a 0.22 uym pore limit. The purification of carbonic anhydrases CA22, CA25 and
CA28 was performed in an AKTA pure™ 25 (Cytiva®) following a standardised protocol which
consisted of a first immobilised metal affinity chromatography (IMAC) in a HisTrap HP 5 mL
(Cytiva®) by an imidazole gradient in 20 column volumes (CV), an anion exchange
chromatography (AEx) in a Capto HiResQ 5 50 (Cytiva®) by a NaCl gradient in 40 CV, and a
final size-exclusion chromatography (SEC) using a Superdex 200 Increase 10/300 GL
(Cytiva®). In the case of the IMAC, buffers A and B had 50 mM TRIS-HCI pH 8, 150 mM NaCl,
1 mM DTT, and imidazole, whose concentration was 20 mM and 400 mM for buffers A and B,
respectively. AEx buffers C and D harboured 20 mM TRIS-HCI pH 8, 2 mM DTT; buffer C had
no NaCl whereas buffer D presented 1 M NaCl. The SEC buffer solution was 10 mM TRIS-
HCI pH 8, 500 mM NaCl, 2 mM DTT. Carbonic anhydrase CA1 was subjected to a similar
protocol, but excluding the AEx step and switching TRIS pH 8 by HEPES pH 7 since its
theoretical pl is 8.3. To ensure carbonic anhydrases had been isolated, gel bands were cut
and analysed by nLC-MS/MS at the Service of Genomics and Proteomics from the Center for
Biological Research (CIB-CSIC, Madrid, Spain). Once pure, the selected fractions of carbonic
anhydrases were concentrated in a Vivaspin® Turbo 10 MWCO (Sartorius), 10% glycerol was
added, and proteins were flash-frozen in liquid nitrogen for storage at -80 °C.

Purification of carbonic anhydrases CA21, CA24 and CA26 took place at the Protein
Technologies Unit from the Centre for Genomic Regulation in Barcelona, Spain. Once the cell
lysate was centrifuged and the supernatant filtered, for each protein a HisTrap HP 5 mL
(Cytiva®) was loaded. Then, the column was washed with 15 CV at 100% A, and elution took
place in two steps at 10% B (10 CV) and 100% B (5 CV). Fractions with the highest CA
concentration were directly used for SEC-MALS characterization in the same facility.

Circular dichroism

CD results were acquired from 150 yL of sample volume in a 1 mm quartz cuvette with a
Jasco-815 (Jasco Analitica Spain) spectropolarimeter from the Scientific and Technological
Centers of the University of Barcelona (CCiTUB). Several sample concentrations were tested,
including 1, 3, and 6 mg/mL; and the buffer of choice was 1X PBS pH 8, 1mM TCEP. The
blank sample was taken from the ultrafiltrate of the protein concentrator. The selected
wavelength range was 190-300 nm in 1 nm bandwidth. Spectrum Measurements software
was used for data acquisition, Spectra Analysis software for data processing and BestSel”’
online server for estimation of secondary structure content. Figures represent mean residue
molar ellipticity after buffer subtraction ([@]), with [©] = ©/I-c-Nr, where O is the ellipticity signal
in millidegrees, is the cell path in mm (1mm), c the molar protein concentration, and Nris the
number of amino acids per protein including histidine tags and thrombin cleavage site’.

Melting temperature
Differential Scanning Fluorimetry (DSF) was performed in a iCycler iQTM Real-Time PCR
Detection System (Bio-Rad) with opaque white plates of 96-conical wells and a transparent
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film cover, using SYPRO™ Orange as a fluorophore at a final concentration of 5X in a total
volume of 25 (L. Before setting the reaction, the plate was preheated at 95 °C for 30 minutes
to minimise background signal. The DSF protocol started equilibrating the plate with the
samples at 20 °C for 5 minutes, then temperature was increased by 1 °C, and the plate was
incubated for 45 seconds at each temperature until 95 °C were reached, with a final incubation
of 5 minutes. For acquisition, the excitation wavelength chosen was 495 nm and emission was
recorded at 519 nm.

SEC-MALS

SEC-MALS measurements for CA1, CA22, CA25 and CA28 were performed at the Automated
Crystallisation Platform (PAC) from the Scientific Parc of Barcelona (Spain) in a Superdex 200
Increase 10/300 GL column (Cytiva®) mounted on a FPLC system (Shimadzu Prominence)
coupled to a scattering DAWN-HELEOS-II-detector (Wyatt Technology®), followed by a
Optilab T-rEX dRI (Wyatt Technology ® ) refractometer. The injected sample volume for each
carbonic anhydrase was 100 uL, and the running buffer of choice was the same as for the
SEC purification step. Data treatment and the corresponding calculations were done within
the ASTRA software.

Carbonic anhydrase enzymatic assay

A spectrophotometric assay was developed to monitor consumption of CO- using the following
downstream enzyme cascade (modified Wilbur-Anderson assay’®). During CO, hydration,
protons are released causing a decrease in the pH of the solution which is measured using a
pH indicator (phenol red). In this assay, 1 uM for each target protein was incubated with 100
ul reaction buffer (20 mM TRIS containing 200 uM phenol red and 1 mM ZnSOs, pH 8.8) on
ice. Subsequently, 100 ul of CO.-saturated water were added into the solution, and transferred
quickly into a well of a 96 well plate. Change in absorbance was monitored at 558 nm and
recorded every 2 seconds from second 8 (CO2 mixing time) using BioTek Epoch™ microplate
spectrophotometer. As the pH change was indirectly measured via the absorbance change,
the absorbance values corresponding to pH 7.5 and pH 6.5 were required for the calculation.
These values were predetermined by measuring the absorbance of a mixture of 100 pL of
reaction buffer and 120 pL of deionised water with the pH adjusted to 7.5 or 6.5 using HCI.
The absorbance values corresponding to pH 7.5 and pH 6.5 were 1.3 and 0.4, respectively
(Fig. 4d). Enzyme activity is expressed in Wilbur-Anderson units (WAU), i.e., one WAU
measures the pH to drop from 7.5 to 6.5 at 0 °C. The obtained times for the enzyme sample
and blank were designated t and to, respectively. In our experiments, the t, value was
determined to be 30.5 s when TRIS buffer was used as the blank buffer. The Wilbur Anderson
units (WAU) were calculated as follows:

WAU = (to - t)/t
Specific activity was expressed as WAU/mg of enzyme.

Western blots

Proteins resolved via SDS-PAGE were electro-transferred to nitrocellulose membranes using
a Bio-Rad Trans-Blot SD semi-dry apparatus, set at 11 V and 200 mA for 35 minutes, using
Towbin buffer as the transferring medium. Post-transfer, membranes were blocked in PBST-
milk for 1 hour with gentle agitation, then probed with 30 mL of PBST-milk containing 3 pL of
anti-His-Tag primary antibody (His-Tag Mouse anti-Tag, 1B7G5, Proteintech) for 1 hour.
Following primary antibody binding, membranes were washed three times with PBST-milk for
5 minutes each. Subsequently, membranes were incubated with 30 mL of PBST-milk
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supplemented with 6 pL of secondary antibody (Goat Anti-Mouse 1IgG H&L (HRP), ab205719,
Abcam) for 1 hour, followed by three 5-minute washes in PBS. Detection was performed using
a substrate mixture consisting of 1 mL Bio-Rad Opti-4CM diluent, 0.2 mL Bio-Rad Opti-4CM
substrate, and 9 mL deionised water, with a 20-minute incubation to allow band development.

SAXS

Small Angle X-ray Scattering (SAXS) data for CA1 and CA22 were obtained at the beamline
BM29 from the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. SAXS
profiles were processed with BioXTAS RAW 2.2.2 software, and size and shape parameters
were calculated with the ATSAS 3.2.1 package.

Selection of Lactate dehydrogenases

For the sequence selection of the fine-tuned sequences for testing, we applied a length filter
of 240-380 amino acids, aligning with the length distribution of naturally occurring LDHSs, to
reduce the number of sequences for selection. Subsequently, we used MMSeqs2 to cluster
the sequences at 90% similarity and 80% coverage. The sequences were further filtered by
applying a perplexity threshold of 1.5, followed by re-clustering at a 50% identity threshold
using MMSeqs2, to further reduce the number of sequences for selection resulting in a total
of 385,817 sequences. For the final selection of LDH sequences to be experimentally tested,
the same criteria that was used for the carbonic anhydrases was applied. Thresholds for net
charge, solvent-accessible surface area, and isoelectric point were determined from the
distribution observed in 100 natural LDH sequences. In addition to passing these
physicochemical property filters, sequences were further filtered based on log likelihood
scores from the ProteinMPNN model, selecting sequences that had to meet a minimum log
likelihood score threshold of 1.2 to 2.0. Additional structural criteria filters included the use
ESMFold’s pLDDT (>70) and a TMalign score (>0.85) when compared to the crystal structure
of the thermophilic Bacillus stearothermophilus LDH (PDB:1LDB). The final selection of
sequences were randomly chosen from the top 100 sequences that passed all the filters. For
zero-shot generation, we used ZymCTRL to generate 756,983 sequences. Two of the
sequences were subjected to the same filters as the fine-tuned subset (LDH17 and LDH20),
while another seven were selected randomly from the entire set. This gave a total of 10
sequences.

Expression of Lactate dehydrogenases

LDH sequences cloned in pET-28a(+) were expressed in BL21 (DE3) E. coli strain. Expression
tests were performed at three temperatures: 20°C, 25°C and 30°C, to determine the optimal
conditions for expression. Expression was carried out in 2 mL cultures in 48 deep well plates
using TB medium supplemented with 0.1 M potassium phosphate buffer (KPi) and kanamycin
sulphate (50 pg/mL). After 4.5 hours of growth at 37 °C with 700 rpm shaking (ODeoo = 0.6-1),
expression was induced by adding 0.5 mM IPTG and incubated for further 18 hours at the
selected temperatures. For expression analysis, 100 uL of the induced culture was subjected
to sonication in a Polyethylene Glycol (PEG) bath (Q Sonica) set to 50% amplitude with a 2
minute 30 second total run time (10 sec on, 10 sec off pulsing). Both total and soluble protein
fractions were analysed by SDS-PAGE, loading 8 uL of a 15 uL aliquot of each fraction onto
the gel. Once the best expression temperature was determined, the remaining cultures were
centrifuged at 4000 rpm for 20 min at 4°C, the pellets of the corresponding best expression
temperature were resuspended in 0.25 mL of lysis buffer (0.1 M KPi pH 7), sonicated twice as
previously described in a PEG bath and the samples were centrifuged at 10000 rpm for 10
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min and supernatant (~200 pL) collected for further analysis. LDH18 and LDH19 were
expressed at larger scale following a similar procedure. 200 mL of TB medium supplemented
with 0.1 M KPi and kanamycin sulphate (50 ug/mL) were inoculated with 2 mL of pre-culture.
When ODggoo = 0.6-1 was reached, the expression was induced with 0.5 mM IPTG and the
flasks were moved to 25°C for 18 hours. The cells were centrifuged at 4000 rpm for 20 min at
4°C, resuspended in a lysis buffer and sonicated with a CVV18 probe for 4 min at 60% amplitude
(5 sec on, 2 sec off pulsing). The samples were centrifuged for 30 min at 10000 rpm at 4°C
and the supernatant was frozen at -80°C for 3 hours before lyophilisation, performed with an
Advantage Pro freeze dryer (SP Scientific).. 50 yL of lysate was stored as liquid to compare
the activity before and after lyophilisation. SDS-PAGE was performed as described for small
scale expression samples.

Lactate dehydrogenase enzymatic assay

One unit of activity is defined as the amount of enzyme which catalyses the conversion of 1
pumol of substrate per minute under standard conditions. The LDH activity was tested at 25 °C
in 200 pL of 0.1 M KPi pH 7, 0.15 mM NADH, 10 mM pyruvate. The reaction was initiated by
adding 5 yL of LDH lysate or 5 pL of an empty pET28a lysate for negative controls. The assay
was performed in the same manner at different temperatures (25 and 45 °C), pHs (4.5 and
9.5), cofactor (NADPH) and substrate concentration (50 mM). The consumption of NADH was

followed spectrophotometrically at 340 nm (NADH €340nm= 6220 M-' cm™1). 96-well plates and

a microplate spectrophotometer (Multiskan GO, ThermoScientific™) were used to detect the
reduction of the signal at 340 nm. For thermal denaturation, LDHs were incubated at 60 °C for
10 min, cooled on ice for 5 min, and then residual enzymatic activity toward pyruvate was
assayed as described above. To obtain the final activity values for each enzyme, the
background activity from the pET28a vector was subtracted. This approach ensures that the
reported enzyme activities reflect the true contributions of the enzymes of interest, rather than
any inherent background signal or activity present in the expression system. All activities were
performed at least in triplicate and reported values represent means * standard deviation
(s.d.).

Experimental protocol for cascade 1

The first cascade reactions were conducted in 0.5 mL volumes at 45 °C, with 0.1 M KPi buffer
at pH 5 or 9.5, containing 40 mM D-glucose, 10 mM pyruvate, 1 mM NAD", 1 mg/mL lactate
dehydrogenase (LDH), and 1 mg/mL glucose dehydrogenase (GDH). GDH-101 used for these
experiments was supplied by Johnson Matthey. The reactions were incubated for 24 hours
with shaking at 700 rpm. Triplicate reactions were performed for each condition and time point.
Prior to initiating the reactions, the pH of the reaction mixtures was adjusted to the desired
value (5 or 9.5) using the appropriate buffer. Control reactions were conducted with an empty
vector (lyophilised powder) instead of GDH. At specific time points (0, 1.5, 3.5, 6, 20, and 24
hours), the reactions were stopped by adding 20 uL of concentrated TFA to precipitate the
proteins. The samples were centrifuged at 4000 rpm for 20 minutes, and the supernatants
were collected for analysis. The analysis was performed using an Agilent 1290 Infinity Il
UHPLC system equipped with an Aminex HPX-87H column (Bio-Rad) maintained at 35 °C.
The samples were injected (20 pL) and eluted with 0.1% TFA (pH 2) at a flow rate of 0.6
mL/min for 25 minutes. The eluent was monitored by a UV detector at 210 nm. Standard
solutions of pyruvate, lactate and gluconic acid (0-10 mM) were prepared and treated
identically to the reaction samples for calibration purposes. The chromatograms were
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recorded, and data analysis was performed using OpenLab software (Agilent). The conversion
of substrates was calculated by correlating the peak areas of the respective molecules to their
concentrations using calibration curves (Fig $19).

Experimental protocol for cascade 2

The second cascade reactions were conducted in 0.5 mL volumes at 45 °C, with 0.1 M KPi
buffer at pH 5 or 9.5, containing 1 mM pyridoxal 5'-phosphate (PLP), 40 mM D-glucose, 50
mM D-alanine, 15 mM acetophenone, 1 mM NAD", 1 mg/mL lactate dehydrogenase (LDH), 1
mg/mL glucose dehydrogenase (GDH), and 10 mg/mL transaminase (TA). GDH-101, RTA-
25, RTA-57 and STA-14 used for these experiments were supplied by Johnson Matthey. The
reactions were incubated for 24 hours with shaking at 700 rpm. Triplicate reactions were
performed for each condition and each time point. Prior to initiating the reactions, the pH of
the reaction mixtures was adjusted to the desired value (5 or 9.5) using the appropriate buffer.
Control reactions were conducted with an empty vector (lyophilised powder) instead of the
transaminase enzymes. At specific time points (0, 1.5, 3.5, 6, 20, and 24 hours), the reactions
were quenched by adding 0.1 mL of 5 M NaOH and extracting twice with 0.6 mL of ethyl
acetate. After each extraction, the samples were centrifuged at 4000 rpm for 5 minutes. For
analysis, 0.7 mL of each sample was combined with 0.5 mL of ethyl acetate and 25 mM
toluene (internal standard). Blank samples were prepared by mixing 1.2 mL of ethyl acetate
and 25 mM toluene. The analysis was performed by injecting 1 pyL of the sample onto an
Agilent 7890B GC System equipped with an HP-5ms Ultra Inert GC column (15 m, 0.25 mm,
0.25 pym, 7-inch cage, 19091S-431Ul). Helium was used as the carrier gas with a flow rate of
6.5 mL/min (Table S8). Standards for acetophenone (substrate, 0-8.5 mM) and (R/S)-a
methylbenzylamine (MBA) (product, 0-15.6 mM) were prepared and treated as the reaction
samples. The chromatograms were recorded, and data analysis was performed using
OpenLab software. The conversion of substrates was calculated by correlating the peak areas
of the respective molecules to their concentrations using the calibration curves (Fig S$19).
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