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ABSTRACT:

Directed evolution (DE) is a powerful tool to optimize protein fitness for a specific application.
However, DE can be inefficient when mutations exhibit non-additive, or epistatic, behavior. Here,
we present Active Learning-assisted Directed Evolution (ALDE), an iterative machine learning-
assisted DE workflow that leverages uncertainty quantification to explore the search space of
proteins more efficiently than current DE methods. We apply ALDE to an engineering landscape
that is challenging for DE: optimization of five epistatic residues in the active site of an enzyme.
In three rounds of wet-lab experimentation, we improve the yield of a desired product of a non-
native cyclopropanation reaction from 12% to 93%. We also perform computational simulations
on existing protein sequence-fitness datasets to support our argument that ALDE can be more
effective than DE. Overall, ALDE is a practical and broadly applicable strategy to unlock improved
protein engineering outcomes.
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INTRODUCTION

Protein engineering is an optimization problem, where the goal is to find the amino acid
sequence that maximizes "fitness," a quantitative measurement of the efficacy or functionality for
a desired application, from chemical synthesis to bioremediation and therapeutics. Protein fitness
optimization can be thought of as navigating a protein fitness landscape, a mapping of amino acid
sequences to fitness values, to find higher-fitness variants.! However, since protein sequence space
is vast, as a protein of length N can take on 20" distinct sequences and functional proteins are
vanishingly rare, finding an optimal sequence is hard. Because functional proteins are surrounded
by other functional proteins one mutation away,” protein engineers often use directed evolution
(DE) to optimize protein fitness.>*

In its simplest form, DE involves accumulating beneficial mutations by searching through
sequences near one that exhibits some level of desired function for variants that exhibit enhanced
performance on a target fitness metric (Fig. 1a). This approach can be thought of as greedy hill
climbing optimization across the protein fitness landscape (Fig. 1b). DE is limited because
screening for performance can only explore a small, local region of sequence space. Additionally,
taking one mutational step at a time can cause the experiment to become stuck at a local optimum,
especially on rugged protein fitness landscapes where mutation effects exhibit epistasis.> Machine
learning (ML) techniques offer a pathway to circumvent these obstacles, providing strategies to
more efficiently navigate these complex landscapes.51°

While supervised ML has been used to propose ideal combinations of mutations—such as in
ML-assisted DE (MLDE)!!-'2—these approaches are often limited to small design spaces as they do
not take advantage of the fundamentally iterative manner in which protein engineering can take

place in real-world applications. By contrast, active learning is an ML paradigm that gathers data
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iteratively using a supervised model which is, in turn, updated as new data are acquired (Fig. 1¢).
By leveraging uncertainty quantification to choose which variants should be tested at each step,
active learning has the potential to unlock improved engineering outcomes (Fig. 1d).!*~!7
Approaches related to active learning have been used in the wet lab to optimize artificial
metalloenzymes, nucleases, and other proteins.!®2° Past work has also explored the use of
Bayesian optimization (BO), a particular class of active learning algorithms, to experimentally

improve the thermostability of protein chimeras?!-*

and to optimize proteins with one to several
mutations.!>? However, few studies have explored the utility of active learning methods in

comparison to DE, especially where epistatic effects are prevalent.!®?* In addition, understanding

of the practical role of uncertainty quantification in the context of deep learning??7 and high-

128 29,30

dimensional*® representations learned from protein language models="" is limited.

To address the limitations of existing methods, we introduce Active Learning-Assisted
Directed Evolution (ALDE), a computationally assisted workflow for protein engineering that
employs batch Bayesian optimization. ALDE alternates between collecting sequence-fitness data
using a wet-lab assay and training an ML model to prioritize new sequences to screen in the wet
lab (Fig. 1C); it resembles existing wet-lab mutagenesis and screening workflows for DE and is
generally applicable to any protein engineering objective. In this study, we use ALDE to find the
ideal combination of five mutations in the active site of a biocatalyst based on a protoglobin from
Pyrobaculum arsenaticum (ParPgb) for performing a non-native cyclopropanation reaction with
high yield and stereoselectivity. We chose this model system because the residues of interest are
in close structural proximity and there is evidence of negative epistasis, which hinders DE. After

performing three rounds of ALDE (exploring only ~0.01% of the design space), the optimal variant

has 99% total yield and 14:1 selectivity for the desired diastereomer of the cyclopropane product.
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The mutations present in the final variant are not expected from the initial screen of single
mutations at these positions, demonstrating that the consideration of epistasis through ML-based
modeling is important. We solidify our argument that ALDE is more effective than DE by
computationally simulating ALDE on two combinatorially complete protein fitness landscapes.
We also provide an extensive analysis of the effects of protein sequence encodings, models,
acquisition functions, and uncertainty quantification for protein fitness optimization, to determine
best practices for real-world engineering campaigns. In short, we find that frequentist uncertainty
quantification works more consistently than typical Bayesian approaches, and incorporating deep
learning does not always boost performance. Ultimately, we demonstrate that ALDE is a practical
and effective tool for navigating protein fitness landscapes and provide experimental and

computational tools (https://github.com/jsunn-y/ALDE) so that the method is easy to use and

broadly applicable.
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Fig. 1. Conceptual differences between DE and ALDE. (A) A common workflow for DE, where a starting protein
is mutated and fitnesses of variants are measured (screened). The best variant is used as the starting point for the
next round of mutation and screening, until desired fitness is achieved. (B) Conceptualization of DE as greedy hill
climbing optimization on a hypothetical protein fitness landscape. (C) Workflow for ALDE. An initial training
library is generated, where k residues are mutated simultaneously (for example £=5). A small subset of this library
is randomly picked, after which the variants are sequenced and their fitnesses are screened. A supervised ML model
with uncertainty quantification is trained to learn a mapping from sequence to fitness. An acquisition function is
used to propose new variants to test, balancing exploration (high uncertainty) and exploitation (high predicted
fitness). The process is repeated until desired fitness is achieved. (D) Conceptualization of active learning on a
hypothetical protein fitness landscape. Active learning is often more effective than DE for finding optimal
combinations of mutations. In these conceptualizations, a single sequence is queried in each round, but in practical
settings, active learning operates in batch where multiple sequences are tested in each round.

RESULTS
Practical implementation of ALDE

Broadly, ALDE alternates between library synthesis/screening in the wet lab to collect
sequence-fitness labels and computationally training an ML model to learn a mapping from
sequence to fitness in order to suggest a new batch of sequences to test (Fig. 1¢), resembling batch

BO. Before beginning ALDE, a combinatorial design space on & residues is defined, corresponding
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to 20X possible variants. The choice of k will vary depending on the system, as larger values of k
can consider a greater extent of epistatic effects (allowing for better possible outcomes) but will
likely require collecting more data to find an optimal variant. First, those k residues are
simultaneously mutated, and an initial round of sequence-fitness data is collected in the wet lab.
ALDE is compatible with low-N, batch protein engineering settings where tens to hundreds of
sequences are screened in each round. The collected sequence-fitness data are then used to
computationally train a supervised ML model that can predict sequence from fitness. Different
ways to encode protein sequence numerically and different types of models which can provide
uncertainty quantification are analyzed in this study. Afterward, an acquisition function is applied
to the trained model to rank all sequences in the design space, from most to least likely to have
high fitness. Several acquisition functions are evaluated in this study, to balance exploration of
new areas of protein space with exploitation of variants that are predicted to have high fitness (Fig.
1d). The computational component of ALDE can be performed using the codebase at

https://github.com/jsunn-y/ALDE. For the next round of ALDE, the top N variants from the

ranking are then assayed in the wet-lab to provide additional sequence-fitness data, and the cycle

is repeated until fitness is sufficiently optimized.

The active site of ParPgb is a challenging design space for standard DE

To initiate wet lab studies with ALDE, we identified a target enzymatic activity on a protein
design space that would be difficult to engineer with simple DE methods. Enzyme-catalyzed
carbene transfer reactions have the potential to be useful in many synthetic chemistry applications,
and thus we decided to focus on the cyclopropanation of 4-vinylanisole (1a) using ethyl

diazoacetate (EDA) as a carbene precursor to afford the 1,2-disubstituted cyclopropanes trans-2a
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and cis-2a (Fig. 2a). Enzyme engineering for styrenyl cyclopropanation poses a stimulating
challenge for evolution toward two properties, higher yield and improved selectivity toward one
of the diastereomers of the cyclopropane product. While this non-native chemistry has been
demonstrated with cytochromes P411,*! we decided to engineer this activity in a protoglobin.
Protoglobins are archaeal hemoproteins, which are attractive engineering targets due to their high
thermostability (Tso ~ 60°C), small size (~200 amino acids),*? and ability to perform novel carbene
and nitrene transfer chemistries.’*=% After screening a diverse set of protoglobins, including wild-
types and engineered homologs, for cyclopropanation activity (Fig. S31 of Supplementary
Information), we decided to proceed with ParPgb W59L Y60Q (ParLQ) as a starting point
(parent) for ALDE. The ParL.Q variant demonstrates only moderate cyclopropanation yield (~40%
yield) and stereoselectivity (3:1 preferring trans-2a) under screening conditions. Because our goal
was to arrive at a variant with high yield and high selectivity for the cis-product, we defined the
objective to be explicitly optimized as the difference between the yield of cis-2a and the yield of
trans-2a.

Based on previous engineering studies using protoglobin scaffolds, we selected five active-site
residues (W56, Y57, L59, Q60, and F89; WYLQF) positioned above the distal face of the heme
cofactor, which display epistatic effects and are known to impact non-native activity (Fig. 2b).343
Single-site saturation mutagenesis (SSM) was performed at these sites, and variants were screened
by gas chromatography for their cyclopropanation products. None of the screened mutants
demonstrated a significant, desirable shift in the value of the objective (Fig. 2¢) or related metrics
such as cis yield and cis/trans selectivity (Extended Data Fig. 1). Given these data, a protein
engineer might opt to perform a simple recombination of all positive variants to exploit the

typically additive character of mutations.?” However, in our recombination studies of the single-
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site mutants with the highest fold-change in cis yield (DAYFW), the objective (DGMDW), or the
selectivity (DHMVW), respectively, we did not observe a variant which generated cis-2a with

high yield and selectivity (Fig. 2d). Overall, these findings suggest that our design problem is quite

challenging for standard DE approaches.
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Fig. 2: A challenging, epistatic protein design space: optimization of five active site residues in ParPgb. (A)
Our objective was to optimize an enzyme to catalyze the formation of the cis product of a cyclopropanatiom reaction
with high yield and high selectivity, which we quantify in a single value as cis — trans Yield. (B) The parent protein
ParLQ is two mutations (W59L and V60Q) away from the wild-type ParPgb sequence. Five residues in the active
site of ParLQ which were likely to exhibit epistasis were targeted: W56, Y57, L59, Q60, and F89. (C) The single
mutations from parent at the five targeted sites do not offer significant improvements to the objective of cis — trans
Yield. Very few single-mutation variants have the desired selectivity (positive cis — trans Yield), and it would not
be obvious which variant to take forward in a DE campaign. Parent yields vary between runs but consistently show
moderate yield and selectivity for the trans product. (D) Various recombinations of ideal single mutations are not
effective proteins for the desired objective (cis — trans Yield), and related metrics such as cis Yield and cis/trans
Selectivity. DAYFW, DGMDW, and DHMVW are the ideal combinations of single mutations naively predicted to
have the highest cis Yield, cis — trans Yield (objective), and cis/trans Selectivity, respectively. Overall, these results
suggest an optimization problem that is challenging for standard DE methods.

Using ALDE to efficiently optimize ParPgb for a non-native carbene transfer reaction

With the design space confined to five residues and a well-defined objective, we began an
ALDE engineering campaign. First, we synthesized an initial library of ParLQ variants which were
mutated at all five positions under study (Fig. 3a). Mutants in this library were generated through

sequential rounds of PCR-based mutagenesis methods utilizing NNK degenerate codons. We
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elected to use random selection from this library because we did not know if any zero-shot
predictors might enrich the starting library with useful variants.”!? In fact, retrospective analysis
of the initial library revealed that our objective is not strongly correlated with conventional zero-
shot predictors,'>3 likely because the objective involves non-native chemistry, for which fitness
is not sufficiently captured by evolutionary or stability-based metrics alone (Extended Data Fig.
2). Four 96-well plates of these random variants were picked and sequenced using the LevSeq
long-read pooled sequencing method (Fig. S7-10 of Supplementary Information),*® yielding
216 unique variants without stop codons. Screening revealed that nearly all of the variants had
higher cyclopropanation activity than free-heme background activity, likely because ParLQ was
moderately active to begin with, and its high thermostability allows it to tolerate multiple
mutations. The majority of variants displaying improved cyclopropanation yield strongly favored
formation of trans-2a; however, several of the randomly selected sequences were capable of
forming cis-2a in much higher yield than any previously tested ParLQ variant (Fig. 3b). Notably,
the F89Y mutation was particularly important for inverting selectivity to favor the cis-2a, but only
in the context of certain mutations at positions 56, 57, 59, and 60.

The ALDE computational package was used to train a predictive model on sequences and
labels in the initial 216-member library and to suggest sequences for testing based on our
acquisition function. Based on our extensive computational simulations (described in the following
section), we decided to use the DNN ensemble with one-hot encoding of the five targeted residues
for model training and Thompson sampling as the acquisition function. Genes encoding the top 90
amino acid sequences, optimized for expression in E. coli, were prepared by exact DNA synthesis
for screening (Round 1, Fig. 3b). Details regarding DNA sequence design are described in the

included supplementary materials. Subsequent activity screening showed that nearly a third of
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Round 1 sequences met the objective better than the best variant in the initial, randomly selected
set (Fig. 3b). The best variant in the Round 1 library, MKFNY (W56M Y 57K L59F Q60N F89Y),
demonstrated a total cyclopropanation yield of 93% and a cis:trans selectivity ratio of 12:1.

We then gave the newly collected data back to the ALDE computational algorithm for a
second round of active learning. The top 90 predicted sequences were again synthesized and tested
exactly as before (Round 2, Fig. 3¢). Interestingly, the model explored the sequence space more
in this round, as reflected in the expanded mutational diversity present in Round 2 and the
increased variance in the activities of these sequences (both reaction yield and diastereoselectivity)
(Fig. 3d—f). Impressively, the top-performing variant among these sequences (MPFDY) displayed
a total cyclopropane yield of 99% and a 14:1 cis:trans selectivity ratio. None of the mutations in
MPFDY obviously optimized the objective in the single-site mutagenesis studies (Fig. 2¢); they
work together, however, to deliver an optimal variant. Furthermore, after screening the reaction
products of all predicted variants with chiral gas chromatography methods, we found that all of
these sequences were generally capable of generating cis-2a in high enantiopurity (Extended Data
Fig. 3).

Having concluded the ALDE-based evolutionary campaign with substrate 1a, we sought
to understand the substrate scope of the sequences explored in this project. We screened eight
styrene derivatives (1b—1i) for cyclopropanation using the sequences from Round 2 of ALDE
(Extended Data Fig. 4). The variants show different yields for each of the substrates, even though
some of these substrates differed from 1a only by a single atom. Nevertheless, for every substrate,
nearly all of the Round 2 variants were higher yielding and more selective for their respective cis-

diastereomers than the parent protein, ParLQ (Fig. S51-66 of Supplementary Information).

10
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Interestingly, the top-performing variants for each substrate differed in sequence from MPFDY,

the top enzyme for 1a cyclopropanation.
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Fig. 3. ALDE optimization trajectory on the ParPgb active site. The optimization campaign started with (A)
constructing an initial library with mutations at all five sites under study using NNK degenerate codons, randomly
selecting 384 for screening for product formation, and mapping to sequences using LevSeq. This was followed by
two rounds of ALDE—(B) Round 1 and (C) Round 2. In Round 1 and Round2, exact genes were ordered as
ENFINIA DNA produced by Elegen Corp. and screened for product formation. For each round, we present the
distribution of amino acids sampled at each site and the distribution of yields for the cis and #rans products, with a
few of the top-performing variants labeled. Overall improvement in (D) cis — trans Yield, (E) Total Yield, and (F)
cis/trans Selectivity over several rounds of ALDE for the best variant in each round and the mean across variants
in each round. The best variant in each round, defined by the obejctive of cis — trans Yield is labeled. Error bars
indicate the standard deviation across variants in the round.

Computational simulations on combinatorial protein datasets support the utility of ALDE

The design choices used for the wet-lab ALDE campaign were determined by performing
computational simulations on two combinatorial landscape datasets for GB1%° and TrpB*!. On
these landscapes, fitnesses have been measured experimentally for nearly all of the 20* = 160,000
variants in a library where four amino acid residues were mutated to all possible amino acids. GB1
refers to the B1 domain of protein G, an immunoglobin binding protein where fitness is measured
by binding affinity-based sequence enrichment. The fitness of TrpB, the B-subunit of tryptophan
synthase, was measured by coupling growth to the rate of tryptophan formation. Our baseline was

DE greedy walk, where one residue was mutated to all possible amino acids, the best mutation was

11
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fixed, and the process was repeated at each of the residues under study (Fig. 4A). DE simulations
were performed from all active variants as starting points, using all 24 possible orders to enumerate
the residues under interest.

The ALDE simulation consisted of batch BO, as shown in Fig. 4b. In each simulation, a
random batch of 96 initial samples was selected, followed by four rounds of 96 samples each, with
the surrogate model retrained and proposing new samples (via the acquisition function) in each
round. This simulation setup was chosen to closely imitate a real wet-lab active learning campaign.
The different parameters explored for ALDE, including encodings, models, and acquisition
functions, are summarized in Table 1. We expanded the analysis beyond Gaussian process (GP)
models, which are the typical surrogate models for BO, to deep kernel learning (DKL) models?>-
and frequentist models based on boosting and deep neural network (DNN) ensembles. This was
motivated by the rise of high dimensional encodings of protein sequences, such as those from
protein language models (i.e. ESM2%°), which have shown utility in certain property prediction
tasks.*>*} Visualizations of the acquisition functions (greedy, upper confidence bound (UCB), and
Thompson sampling (TS)) on hypothetical models are given in Fig. 4¢, with more details in

Methods.

Table 1. Summary of encodings of protein sequences, models, and acquisition functions tested in this work.

Encoding Dimension per Residue Description

AAlndex 4 Continuous fixed amino acid descriptors

Georgiev* 19 Continuous fixed amino acid descriptors
Onehot 20 Categorical (which amino acid)
ESM22 1280 Learned embedding from a protein language model

(ESM2 with 650 million parameters)
Model Bayesian? Deep Description
Learning?
Boosting Ensemble N N An ensemble of 5 boosting models
Gaussian Process Y N A collection of continuous functions described by a
(GP) posterior

12


https://doi.org/10.1101/2024.07.27.605457
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.27.605457; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

DNN Ensemble N Y An ensemble of 5 multilayer perceptrons (deep neural
networks, DNNis)
Deep Kernel Learning Y Y A GP on the last layer of a deep neural network
(DKL)®
Acquisition Function Deterministic? Description
Y Acquires the maximum value of the mean from the
Greedy .
posterior
Upper Confidence Y Acquires the maximum value of a certain confidence
Bound (UCB) interval from the posterior (tuned by a hyperparameter)
Thompson Sampling N Acquires the maximum value of a random function
(TS) sampled from the posterior

The performance of each simulated ALDE campaign was quantified as the maximum fitness
achieved at the end of the campaign, normalized to the variant with maximum fitness in the design
space (Fig. 4d). Full optimization trajectories at each iteration of the campaign are provided in
Extended Data Fig. 5. We conclude that active learning can significantly outperform the average
performance of DE and random sampling, and results are consistent across the two different
protein datasets. ALDE also outperforms a single round of MLDE (Extended Data Fig. 6). Higher
dimensional encodings (Onehot and ESM2) generally work better with deep learning-based
models (DNN Ensemble and DKL), while non-deep learning models might learn better from low
dimensional AAIndex and Georgiev parameters. The simulations further suggest that encodings
from protein language models may not offer much benefit, which corroborates previous findings'?
but stands in contrast to other protein properties that can be predicted more effectively by transfer
learning from protein language models.?%*?>43 ESM2 encodings cannot be used by GPs, likely
because they are too high dimensional. In our acquisition functions, samples in the batch were
sampled independently of each other. We also explored batch expected improvement,* but this
ran extremely slowly without noticeable improvement in performance. Overall, the frequentist

ensemble models perform the most consistently across different encodings.
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Fig. 4. Performance of simulated ALDE campaigns on two combinatorially complete protein datasets, GB1
and TrpB. (A) Each DE simulation as a greedy single-step walk on four residues, where each residue is fixed to
the optimal mutation until all four residues have been iterated across. DE simulations start from every variant that
has some measurable function, with all 24 possible orderings of four residues simulated. (B) Each ALDE simulation
starts from a random sample of 96 variants on the 4-site landscape, with four rounds of learning and proposing new
sequences to test, each with 96 protein variants. (C) Hypothetical visualization of the three acquisition functions
explored in this work: greedy, upper confidence bound (UCB), and Thompson sampling (TS). (D) ALDE for four
encodings, four models, and three acquisition functions generally outperforms the average DE simulation and
random sampling on the GB1 and TrpB datasets. Performance is quantified as the normalized maximum fitness
achieved by the end of the ALDE campaign. Error bars indicate standard deviation across 70 random initializations.

To better understand which models are the most advantageous, we assessed how well
calibrated their uncertainties were (Fig. SA). For a calibrated model, an n% confidence interval
should contain n% of true labels across different values of n, which can be evaluated and visualized
based on a calibration curve. Hypothetical calibrated, underconfident, and overconfident models
are visualized in Fig. 5B, with their associated calibration curves. The calibration curves for
different encodings and models are given in Extended Data Fig. 7. The area between a calibration
curve and perfect calibration (dashed line) is defined as its miscalibration area, which should be

low. Another way to measure uncertainty calibration is by measuring the Spearman correlation
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between uncertainty from the model () and the mean absolute error from the model (MAE), which
should be high.

Overall, the Boosting and DNN Ensembles have the lowest MAEs, which suggests that they
are the most accurate models (Fig. SA). DNN ensembles have the lowest miscalibration areas,
suggesting that they are the most calibrated and best models overall. These results are generally
consistent across encodings and datasets, with a few outliers. In general, calibrated uncertainty is
desirable,**7 and it is thought that it is important to understand how calibration shifts when
extrapolating beyond the training set.***° However, in this study, we find that performance in
ALDE simulations (by max fitness achieved) is not necessarily correlated to how calibrated the
uncertainties are for each model. For example, DKL performs the best for the ESM2 encoding, but
these models have the least calibrated uncertainties and the highest MAEs. Because calibration is
measured on the entire combinatorial design space, it may not directly correspond to the ability to

find an optimal variant.

_________________________
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Fig. 5. Analysis of uncertainty quantification on simulated ALDE campaigns. (A) Metrics used to evaluate
how well calibrated each of the four models are for four encodings. Metrics for evaluation are the mean absolute
error (MAE), the miscalibration area for the calibration curve, and the Spearman correlation between uncertainty
and error. All metrics are calculated based on all measured points in the combinatorial design space. All results are
based on the campaigns using UCB as the acquisition function, during the final round of the campaign. Error bars
indicate standard deviation across 70 random initializations. (B) Visualizations of three hypothetical models with
underconfident, calibrated, and overconfident uncertainties, and their respective calibration curves. (C)
Visualization of how the Spearman correlation between uncertainty and error is calculated.
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DISCUSSION

Overall, ALDE is an effective method for navigating protein fitness landscapes, and it
offers several advantages compared to DE. First, ALDE can unlock engineering outcomes not
possible with simple DE. By considering multiple interacting positions, ALDE can search for

3051 and reduce the

combinations of mutations which may demonstrate desirable epistatic effects
risk of getting trapped at a local optimum. By combining mutations, it can also optimize multiple
properties simultaneously. We demonstrated the advantage of ALDE on ParPgb as a particular
wet-lab case study — though proof'is not possible without testing every DE greedy single-step walk
(which is experimentally intractable in the wet lab). Computational simulations of ALDE support
this conclusion, as ALDE consistently outperforms MLDE and DE baselines. Interestingly, we
found that frequentist ensembles work the best in terms of performance and uncertainty

26,52

quantification,*®>= rather than Bayesian approaches such as typical GP models used in BO. Other

ways to quantify uncertainty and improve overall performance could be explored in the future.!>2°
Overall, classical notions of uncertainty quantification seem to play a more limited role than
expected in these real-world applications.

In the wet-lab engineering campaign, we were pleased to find that ALDE enabled access
to a broader enzyme substrate scope, whereas using DE often “locks” one into high yield for only
a single substrate or closely related ones. Here, we observe an emergent advantage inherent to
ALDE: since sequences that balance exploration and exploitation for a given task are proposed,
they can be serendipitously proficient at related tasks.

ALDE is enabled by several recent advancements in biotechnology. For the initial library
constructed using degenerate codons, high-throughput sequencing was necessary to identify the

39,53

sequences of variants in each well. For this work we utilized LevSeq,””> a method that leverages
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real-time nanopore sequencing. Furthermore, rapid and reliable access to directly synthesized
DNA (Elegen Corp.) was instrumental to the speed with which evolution was performed. The
ALDE workflow was significantly enhanced with (1) the delivery of exact genes in one week,
which shortened time between rounds of evolution, (2) the high fidelity of the delivered gene
products meant that no sequencing was required for Rounds 1 and 2 of ALDE, and (3) no over-
screening was needed because the exact sequences were arrayed individually. Overall, the time
and screening cost of the wet-lab engineering campaign with ALDE was lower than for a greedy
walk strategy with DE. A total of six 96-well plates were screened before arriving at a final variant:
four plates of random variants, and two plates of predicted sequences within three rounds. By
comparison, a greedy walk with DE would have required around five rounds of evolution with
increased screening in the later rounds, which would require greater experimental resources such
as chemical reagents and analysis time. We expect that exact gene synthesis will be increasingly
important for powering active learning workflows in protein engineering.

In this work, we illustrated ALDE’s power for simultaneously increasing the activity and
selectivity of an enzyme for a non-natural reaction, but ALDE is a general workflow that can be
used for a broad range of protein engineering applications. Additionally, ALDE could be integrated
into robotic systems for automated and efficient protein engineering workflows, and library design
could utilize tools such as DeCOIL.>* While we only engineered on five residues in this study,
ALDE should naturally extend to even larger design spaces on more residues, as long as assay-
labeled data is collected on variants with mutations spread across those residues. This will require
some initial domain knowledge or screening to identify sites that will be useful for increasing
fitness; library design could also benefit from limiting the number of simultaneous mutations or

12,18

using zero-shot scores. Future work here may also involve generative modeling if it is not
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possible to enumerate the acquisition function on the entire design space. Overall, accompanied
by a user-friendly codebase, ALDE is a broadly applicable tool that can unlock more efficient and

effective protein engineering.
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Cloning for Single Site-Saturation Mutagenesis. Chemically competent Escherichia coli (E.
coli) cells (T7 Express Competent E. coli) were purchased from New England Biolabs (NEB,
Ipswich, MA). Phusion polymerase and Dpnl were purchased from NEB. SSM experiments were
performed using primers bearing degenerate codons (NNK) using a modified QuikChange™
protocol.” The PCR conditions were (final concentrations): Phusion HF Buffer 1x, 0.2 mM dNTPs
each, 0.5 uM of forward primers, 0.5 uM reverse primer, and 0.02 U/uL of Phusion polymerase.
The standard Phusion PCR protocol was used. Upon completion of PCRs, the remaining template
was digested with Dpnl. Gel purification was performed with a Zymoclean Gel DNA Recovery
Kit (Zymo Research Corp, Irvine, CA). The purified PCR product was then assembled using the
Gibson assembly protocol.>®

Transformation of Single Site Mutants. 96-well deep-well plates are shaken in an INFORS HT
Multitron Shaker in all instances. The assembly products obtained were used to transform T7
Express Competent E. coli (High Efficency) cells (NEB, Ipswich, MA) following the
recommended protocol. Upon heat-shock transformation, mixtures were recovered in 0.4 mL
Luria-Bertani medium (LB) (Research Products Int.), after which the cells were incubated at 37
°C with shaking at 220 rpm for 30 minutes before being plated on LB-agar plates with 100 png/mL
ampicillin (LB-amp agar plates). Single colonies from LB-agar plates were picked using sterilized
toothpicks, which were used to individually inoculate 400 pL of LB containing 100 pg/mL of
ampicillin (LB-amp) in 2 mL 96-well deep-well plates. The plates were incubated at 37 °C and
shaken at 220 rpm for 16-18 hours. The following morning 50 pL of preculture from each well
were added to the wells of a 96-well flat-bottom tissue culture plate (ThermoFisher) preloaded

with 50 pL of 50% glycerol solution. These glycerol stocks were stored at -80°C for future
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inoculation. Additionally, the sequences of protoglobin genes contained in every well were
sequenced using the evSeq protocol.>?

Cloning for Multisite-Saturation Mutagenesis. Mutations were simultaneously incorporated as
with single SSM using the ParLQ quadNNK primers (Table S4). The library transformation was
recovered in 0.4 mL LB. 50 pL of transformation mixture were used to inoculate 6 mL of LB-Amp
in a 15 mL plastic culture tube. This culture was allowed to shake overnight at 37°C. The following
morning, this library preculture was miniprepped using a QIAprep Spin Miniprep Kit (Qiagen,
Hilden, Germany). This miniprep sample was used as the new template for mutagenesis with the
primers for SSM of site 89. The Gibson products for the new five-site library were transformed
using the recommended protocol into T7 Express Competent E. coli. Upon heat-shock
transformation, mixtures were recovered in 0.4 mL Luria-Bertani medium (LB) (Research
Products Int.), after which the cells were incubated at 37 °C with shaking at 220 rpm for 30 minutes
before being plated on LB-agar plates with 100 pug/mL ampicillin (LB-amp agar plates). Single
colonies from LB-agar plates were picked using sterilized toothpicks, which were used to
individually inoculate 400 puL of LB containing 100 pg/mL of ampicillin (LB-amp) in 2 mL 96-
well deep-well plates across 4 separate plates. The plates were incubated at 37 °C and shaken at
220 rpm for 16-18 hours. The following morning 50 pL of preculture from each well were added
to the wells of a 96-well flat-bottom tissue culture plate (ThermoFisher) preloaded with 50 puL of
50% glycerol solution. These glycerol stocks were stored at -80°C for future inoculation.
Additionally, the sequences of protoglobin genes contained in every well were sequenced using

LevSeq sequencing.®

Cloning of ParPgb Predicted Sequences
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96-Well Plate Gibson Protocol. Exact genes encoding ParLQ mutants predicted by Active
Learning-Assisted Directed Evolution (ALDE) were synthesized and delivered by Elegen Corp.
(San Carlos, CA). DNA fragments were received as dry residues in 96-well PCR plates in 2-4 pg
quantities. These DNA samples were dissolved in 100 pL of double-distilled H2O (ddH20),
yielding concentrations between 20-40 ng/uL. 0.7 puL of these gene solutions were added to the
wells of a 96-well PCR plate (Globe Scientific Inc., Mahwah, NJ). 1.0 uL of an aqueous solution
containing 60 ng/uL of linearized pET-22b(+) backbone with overhangs designed for Gibson
ligation with the ordered DNA sequences was added to each of the wells of this plate. Finally, to
each well was added 5 pL of Gibson assembly mix. The 96-well plate was then incubated at 50°C
for 60 minutes, after which the Gibson products were placed on ice. These Gibson products could
then either be directly used for transformation or stored at -20°C for later use.

96-Well Plate Transformation Protocol. To each well of the previously described Gibson
assembly plate was added 5 puL of T7 Express Competent E. coli. The cell solutions were allowed
to incubate on ice for 20 minutes, after which they were heat-shocked at 42°C for 10 seconds in a
water bath. The cells were then recovered with the addition of 100 puL of LB. Without outgrowth
at 37°C, 10 pL of each transformation mixture was used to inoculate the wells of a 2 mL 96-well
deep-well plate in which the wells had been preloaded with 400 pL LB-Amp. This plate was
incubated at 37 °C and shaken at 220 rpm for 16-18 hours. The following morning the plate was
removed from shaking and allowed to sit at room temperature for 8-10 hours. After this rest phase,
1 puL from each well was used to reinoculated yet another 96-well deep-well plate preloaded with
400 pL LB-Amp. This cell passage plate was incubated at 37 °C and shaken at 220 rpm for 16-18

hours. The following morning 50 pL of preculture from each well was added to the wells of a 96-
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well flat-bottom tissue culture plate (ThermoFisher) preloaded with 50 pL of 50% glycerol

solution. These glycerol stocks were stored at -80°C for future inoculation.

Protocols for the Screening of ParPgb Variants

96-Well Plate Library Expression. The wells of a 2 mL 96-well deep-well plates were filled with
400 puL LB-Amp. Previously generated 96-well plate glycerol stocks were removed from -80°C
storage and placed on dry ice. Multichannel pipet tips were used to scratch the frozen glycerol
stock surface and used to inoculate the aforementioned deep-well plate. These pre-expression
cultures were incubated at 37 °C and shaken at 220 rpm for 16-18 hours. For expression cultures,
the following morning 50 pL of these precultures were used to inoculate 900 pL of Terrific Broth
(TB) (Research Products Int.) with 100 ug/mL of ampicillin (TB-amp) per well in 96-well deep-
well plates. These expression cultures were initially incubated at 37 °C and 220 rpm for 2.5 hours,
at which point they were allowed to sit at room temperature for 30 minutes. Expression of proteins
was induced with isopropyl-B-D-thiogalactoside (IPTG) and cellular heme production was
increased with 5-aminolevulinic acid (ALA). An induction mixture containing IPTG and ALA in
TB-amp (50 pL) was added to each well such that the final concentrations of IPTG and ALA were
0.5 mM and 1.0 mM, respectively. The total culture volumes were 1 mL. The plates were then
incubated at 22 °C and 220 rpm overnight.

96-Well Plate Library Reactions and Screening. Expression cultures containing E. coli
expressing hemoproteins of interest were centrifuged at 4000 x g for 10 minutes at 4 °C. The
supernatant was discarded, and nitrogen-free M9 minimal medium (M9-N, 380 uL) was added to
each well. The pellets were resuspended in this medium via shaking at room temperature for 30

minutes. The plates were then transferred into a vinyl Coy anaerobic chamber (0 — 30 ppm Oz). To
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each well was added 20 pL of a MeCN solution with 200 mM of the desired styrene substrate and
300 mM of ethyl diazoacetate (EDA). The final reaction volume was 400 pL, and the final
concentrations of the styrene and EDA were 10 mM and 15 mM, respectively. The plates were
then sealed carefully with a foil cover and shaken at room temperature for 16 hours in the Coy
chamber. Once complete, plates were worked up for processing by adding 600 puL. of'a 1:1 solution
of ethyl acetate:cyclohexane containing 1,3,5-trimethoxybenzene as an internal standard (1.0 mM
concentration). A silicone sealing mat (AWSM1003S, ArcticWhite) was used to cover the plate
and the two layers were thoroughly mixed by rapid inversion of the plate. The plate was then
centrifuged (5000 x g for 5 minutes at room temperature) to separate the phases. Afterwards, a 200
uL aliquot of the organic layer was transferred to a GC vial insert in a GC vial, and the samples

were analyzed by GC-FID.

Machine Learning Details

The initial training data for the ParPgb campaign was obtained by merging sequencing data
with screening yield data. Measured yields were averaged for sequences with the same amino acid
combination and normalized to the yield of the cis product formation of the parent variants
(WYLQF) on each plate. These normalized values were used for model training and acquiring new
points, which followed the same protocol as the computational simulations on GB1 and TrpB. For
the wet-lab campaign, we trained the model with onehot encodings, the DNN ensemble with 5
models and bootstrapping using 90% of the available training data for each model, and Thompson
sampling as the acquisition function. These design choices correspond to the most consistent

strategy based on the computational simulations. Detailed instructions on how to reproduce our
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results and run ALDE for other engineering campaigns are provided at https://github.com/jsunn-
y/ALDE.

Most Bayesian optimization algorithms consist of two main components: (1) a probabilistic
surrogate model of the objective function and (2) an acquisition function. The surrogate model
predicts the objective function values at unobserved inputs, while the acquisition function
quantifies the potential benefit of evaluating any given batch of inputs based on these predictions.
In each iteration of the Bayesian optimization loop, a new batch of inputs is selected by
maximizing the acquisition function. After evaluating the objective function at these new inputs,
the surrogate model is updated, and the process repeats. Below, we describe in detail the
probabilistic models and acquisition functions explored in this work, which were implemented

using BoTorch®” and GPyTorch.®

Probabilistic Models for Bayesian Optimization
Let X denote the input space (i.e., the space of feasible protein sequences) and let f: X — R denote
the objective function (i.e., the metric we wish to optimize). In this work, we explore four classes
of probabilistic surrogate models of the objective function: regular Gaussian processes (GP), deep
kernel Gaussian processes (DKL), deep ensembles (DNN ensemble), and boosting ensembles.
Gaussian Processes. A Gaussian process model is defined in terms of a prior mean
function py: X — R and a prior covariance function Ky: X X X - R and it encodes a Bayesian
prior distribution over f. Given a dataset of n evaluations of the objective function, denoted as
D,, = {(x;,y))}i=,, one can derive the posterior distribution of f given D,,. If these evaluations
are corrupted by i.i.d. additive Gaussian noise, i.e., y; = f(x;) + €;, where €, ..., €, are i.i.d.

Gaussian with mean zero and variance o2, the posterior is again a Gaussian process characterized
b
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by a posterior mean function p,: X — R and a posterior covariance function K,;: X X X - R.
These functions can be computed in closed form in terms of the prior mean and covariance
functions as well as the data using the classical Gaussian process regression formulas. > The noise
variance 0 and other hyperparameters of the model (such as the lengthscale parameters) can be
estimated by maximizing the log marginal likelihood.

Deep Kernel Learning. Gaussian process models with classical covariance functions,
such as the Matern or squared exponential covariance functions, are known to perform poorly in
high-dimensional input spaces.?® To address this limitation, Wilson et al. (2015) proposed deep
kernel learning.®® Succinctly, this approach uses a covariance function of the form K(x,x") =

k(¢ (x), &y, (x")), where k is a regular covariance function (e.g., squared exponential) and ¢,

is a deep neural network with weights w. These weights are treated like hyperparameters of the
model, which can also be estimated by maximizing the log marginal likelihood.

Boosting Ensembles. Boosting models leverage a sequential training strategy where each
new model is trained to correct the errors of the previously combined models.*® The final prediction
is often a weighted sum of the predictions made by earlier models, where the weights reflect each
model's accuracy. Unlike methods such as bagging, which train models independently and in
parallel, boosting specifically designs each new model to address the weaknesses of the existing
ensemble, thereby creating a strong predictive model from a sequence of weaker ones. While
boosting does not inherently offer a probabilistic interpretation like Bayesian methods, it is highly
effective for reducing bias and variance in predictive modeling tasks. Here, we train the boosting
ensembles with bootstrapping; each ensemble consists of 5 models where 90% of the total training

data is randomly seen during training.
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Deep Ensembles. Deep neural network (DNN) ensemble models are constructed by
training identical deep neural network architectures multiple times, each with different random
initializations of the weight parameters. Here, we train the deep ensembles with bootstrapping;
each ensemble consists of 5 models where 90% of the total training data is randomly seen during
training. These independently trained networks are then collectively used as if they were samples
from a Bayesian posterior distribution over the objective function f. Unlike Gaussian processes,
deep ensembles lack a proper Bayesian interpretation. However, Izmailov and Wilson argue it is
possible to see these models as a form of approximate Bayesian inference.’? We adopt this view

in our work.

Acquisition Functions for Bayesian Optimization
Expected Improvement. The expected improvement (EI) acquisition function is given by

o, (%) = Ex[{f (x) — f}*], where f; = max f(x;) and the expectation is computed with

respect to the posterior distribution given D,,.* For Gaussian posterior distributions and noise-free
observations (where f,," is a constant rather than a random variable), the EI can be expressed in a
closed form using the posterior mean and variance. In scenarios where these conditions do not
hold, computing the EI often requires approximate calculation, typically through Monte Carlo

sampling techniques. When extending the EI to the batch setting, the acquisition function becomes
a,(X) =E, [{mg(x f(x) —f,{*}+], where X = (xy, ...,xq) € X7 is a batch of g inputs (qEI).
X

Maximizing the batched EI poses significant computational challenges due to the requirement to
optimize over X?. However, by exploiting the submodularity of the acquisition function, an

efficient approximation can be achieved through a greedy optimization strategy, selecting each
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input in the batch sequentially. In this study, we tested qEIL, but it ran slowly without noticeable
improvement, so it was not included in the final results.

Upper Confidence Bound. The upper confidence bound (UCB) acquisition function is

defined by a,(x) = p,(x) + B:l/ 26, (x), where 1, (x) and o,(x) are the posterior mean and
standard deviation, respectively, and 3,, is a parameter that controls the exploration-exploitation
trade-off. In our experiments, we set 8, = 4. While there are sophisticated batch extensions of the

UCB acquisition function available in the literature,’!

our approach utilizes a straightforward
heuristic. Specifically, we form batches by selecting the g inputs that yield the highest values of
a, (x), evaluated across all discrete x in the design space. The Greedy acquisition function can be
thought of as a specific case of UCB with f,, = 0 so the acquisition function becomes o, (x) =
U, (x). For the frequentist ensemble models, we evaluate p,(x) and 0,(x) as the mean and
standard deviation of all models in the ensemble, respectively.

Thompson Sampling. Thompson Sampling (TS) is a randomized selection strategy where
the next input to evaluate is obtained by drawing a sample (function) from the posterior distribution
of f and selecting the point that maximizes this sample. For the GP and DKL models, we
approximate samples from the posterior using 1000 random Fourier features.®? For the frequentist
ensemble models, the random function sample is drawn as one of the models in the ensemble. In

the batch setting, each input in the batch is obtained as an independent sample. Unlike the EI and

UCB, TS is inherently stochastic as opposed to deterministic.
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Extended Data Fig. 2. Correlation between zero-shot predictors (EVMutation Rank and Triad Rank) and different
fitness metrics (Cis, Trans, and Cis - Trans Yield) for the initial random library of variants used in the ParPgb wet-
lab campaign. EVMutation rank refers to the evolutionary likelihood of a variant (1 is the most likely), and Triad
rank refers to the computationally predicted stability of a variant as a AAG value (1 is the most stable). Orange dot
refers to the parent sequence, WYLQF. Each title shows the spearman correlation between the zero-shot predictor
and the fitness metric. Cis yield is weakly correlated to the zero-shot predictors, but the overall objective is not.
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Extended Data Fig 3. Enantioselectivity data for all ALDE predicted variants in Round 1 and Round 2 for the
production of 2a. Enantiomeric excess (ee) values are plotted against diastereomeric ratio (dr) values for each
variant.

35


https://doi.org/10.1101/2024.07.27.605457
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.27.605457; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Whole E. coli cells

B O~ harboring ParLQ variants .
1a-j EDA 2a-j
model __________
/” N
| 1
I COZEt : COzEt
I
' MeO :
I
: 2a | 2b
: Variant: MPFDY : Variant: MPFDY —PKMDY
' - 99% yield, ) 86%—98% yield,
N cis:trans = 14:1 J cis:trans = 7:1—16:1
Me
Me
CO,Et CO,Et CO,Et
Me
2c 2d 2e
Variant: MPFDY—-+MKFDY Variant: MPFDY +-MGFDY Variant: MPFDY - FKMAY
53%—67% yield, 51%—51% yield, 30%—55% yield,
cis:trans =8:1—11:1 cis:trans = 15:1-25:1 cis:itrans = 1:1-5:1
CO,Et CO,Et CO,Et
Cl Br F3C
2f 2g 2h
Variant: MPFDY - FKMAY Variant: MPFDY +HPFAW Variant: MPFDY - FKMAY
44%—65% yield, 28%—51% yield, 28%—43% yield,
cis:trans = 6:1—10:1 cis:itrans = 8:1—8:1 cis:itrans = 3:1—-6:1
/\
Oy
2j
Variant: MPFDY—-HKFNY
62%—62% yield,

cis:trans = 10:1—18:1
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Extended Data Fig. 6. Performance of MLDE baseline for 4 encodings, 4 models, and 3 acquisition functions,
compared to the average DE simulation and to random sampling. Performance is quantified as the normalized
maximum fitness achieved by MLDE, where the training set is 384 random samples and the test set in 96 samples
proposed by the model using a greedy acquisition function. Top row is GB1 and bottom row is TrpB. Error bars
indicate standard deviation across 70 random initializations.
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Extended Data Fig. 7. Calibration curves for 4 encodings and 4 models. The x axis is the expected confidence
from the posterior, given a certain confidence interval and the y value is the actual proportion of true labels that fall
within the confidence interval. Calibration curve is evaluated across all sequences in the design space with labels,
on models trained on the final batch (384 train samples) from ALDE campaigns using UCB. Top row is GBI and
bottom row is TrpB.
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