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ABSTRACT: 
Directed evolution (DE) is a powerful tool to optimize protein fitness for a specific application. 
However, DE can be inefficient when mutations exhibit non-additive, or epistatic, behavior. Here, 
we present Active Learning-assisted Directed Evolution (ALDE), an iterative machine learning-
assisted DE workflow that leverages uncertainty quantification to explore the search space of 
proteins more efficiently than current DE methods. We apply ALDE to an engineering landscape 
that is challenging for DE: optimization of five epistatic residues in the active site of an enzyme. 
In three rounds of wet-lab experimentation, we improve the yield of a desired product of a non-
native cyclopropanation reaction from 12% to 93%. We also perform computational simulations 
on existing protein sequence-fitness datasets to support our argument that ALDE can be more 
effective than DE. Overall, ALDE is a practical and broadly applicable strategy to unlock improved 
protein engineering outcomes. 
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INTRODUCTION 

Protein engineering is an optimization problem, where the goal is to find the amino acid 

sequence that maximizes "fitness," a quantitative measurement of the efficacy or functionality for 

a desired application, from chemical synthesis to bioremediation and therapeutics. Protein fitness 

optimization can be thought of as navigating a protein fitness landscape, a mapping of amino acid 

sequences to fitness values, to find higher-fitness variants.1 However, since protein sequence space 

is vast, as a protein of length N can take on 20N distinct sequences and functional proteins are 

vanishingly rare, finding an optimal sequence is hard. Because functional proteins are surrounded 

by other functional proteins one mutation away,2 protein engineers often use directed evolution 

(DE) to optimize protein fitness.3,4   

In its simplest form, DE involves accumulating beneficial mutations by searching through 

sequences near one that exhibits some level of desired function for variants that exhibit enhanced 

performance on a target fitness metric (Fig. 1a). This approach can be thought of as greedy hill 

climbing optimization across the protein fitness landscape (Fig. 1b). DE is limited because 

screening for performance can only explore a small, local region of sequence space. Additionally, 

taking one mutational step at a time can cause  the experiment to become stuck at a local optimum, 

especially on rugged protein fitness landscapes where mutation effects exhibit epistasis.5 Machine 

learning (ML) techniques offer a pathway to circumvent these obstacles, providing strategies to 

more efficiently navigate these complex landscapes.6–10 

While supervised ML has been used to propose ideal combinations of mutations–such as in 

ML-assisted DE (MLDE)11,12–these approaches are often limited to small design spaces as they do 

not take advantage of the fundamentally iterative manner in which protein engineering can take 

place in real-world applications. By contrast, active learning is an ML paradigm that gathers data 
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iteratively using a supervised model which is, in turn, updated as new data are acquired (Fig. 1c). 

By leveraging uncertainty quantification to choose which variants should be tested at each step, 

active learning has the potential to unlock improved engineering outcomes (Fig. 1d).13–17 

Approaches related to active learning have been used in the wet lab to optimize artificial 

metalloenzymes, nucleases, and other proteins.18–20 Past work has also explored the use of 

Bayesian optimization (BO), a particular class of active learning algorithms, to experimentally 

improve the thermostability of protein chimeras21,22 and to optimize proteins with one to several 

mutations.13,23 However, few studies have explored the utility of active learning methods in 

comparison to DE, especially where epistatic effects are prevalent.19,24 In addition, understanding 

of the practical role of uncertainty quantification in the context of deep learning25–27 and high-

dimensional28 representations learned from protein language models29,30 is limited.  

To address the limitations of existing methods, we introduce Active Learning-Assisted 

Directed Evolution (ALDE), a computationally assisted workflow for protein engineering that 

employs batch Bayesian optimization. ALDE alternates between collecting sequence-fitness data 

using a wet-lab assay and training an ML model to prioritize new sequences to screen in the wet 

lab (Fig. 1C); it resembles existing wet-lab mutagenesis and screening workflows for DE and is 

generally applicable to any protein engineering objective. In this study, we use ALDE to find the 

ideal combination of five mutations in the active site of a biocatalyst based on a protoglobin from 

Pyrobaculum arsenaticum (ParPgb) for performing a non-native cyclopropanation reaction with 

high yield and stereoselectivity. We chose this model system because the residues of interest are 

in close structural proximity and there is evidence of negative epistasis, which hinders DE. After 

performing three rounds of ALDE (exploring only ~0.01% of the design space), the optimal variant 

has 99% total yield and 14:1 selectivity for the desired diastereomer of the cyclopropane product. 
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The mutations present in the final variant are not expected from the initial screen of single 

mutations at these positions, demonstrating that the consideration of epistasis through ML-based 

modeling is important. We solidify our argument that ALDE is more effective than DE by 

computationally simulating ALDE on two combinatorially complete protein fitness landscapes. 

We also provide an extensive analysis of the effects of protein sequence encodings, models, 

acquisition functions, and uncertainty quantification for protein fitness optimization, to determine 

best practices for real-world engineering campaigns. In short, we find that frequentist uncertainty 

quantification works more consistently than typical Bayesian approaches, and incorporating deep 

learning does not always boost performance. Ultimately, we demonstrate that ALDE is a practical 

and effective tool for navigating protein fitness landscapes and provide experimental and 

computational tools (https://github.com/jsunn-y/ALDE) so that the method is easy to use and 

broadly applicable.   
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RESULTS 

Practical implementation of ALDE  

 Broadly, ALDE alternates between library synthesis/screening in the wet lab to collect 

sequence-fitness labels and computationally training an ML model to learn a mapping from 

sequence to fitness in order to suggest a new batch of sequences to test (Fig. 1c), resembling batch 

BO. Before beginning ALDE, a combinatorial design space on k residues is defined, corresponding 

 
Fig. 1. Conceptual differences between DE and ALDE. (A) A common workflow for DE, where a starting protein 
is mutated and fitnesses of variants are measured (screened). The best variant is used as the starting point for the 
next round of mutation and screening, until desired fitness is achieved. (B) Conceptualization of DE as greedy hill 
climbing optimization on a hypothetical protein fitness landscape. (C) Workflow for ALDE. An initial training 
library is generated, where k residues are mutated simultaneously (for example k=5). A small subset of this library 
is randomly picked, after which the variants are sequenced and their fitnesses are screened. A supervised ML model 
with uncertainty quantification is trained to learn a mapping from sequence to fitness. An acquisition function is 
used to propose new variants to test, balancing exploration (high uncertainty) and exploitation (high predicted 
fitness). The process is repeated until desired fitness is achieved. (D)  Conceptualization of active learning on a 
hypothetical protein fitness landscape. Active learning is often more effective than DE for finding optimal 
combinations of mutations. In these conceptualizations, a single sequence is queried in each round, but in practical 
settings, active learning operates in batch where multiple sequences are tested in each round. 
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to 20k possible variants. The choice of k will vary depending on the system, as larger values of k 

can consider a greater extent of epistatic effects (allowing for better possible outcomes) but will 

likely require collecting more data to find an optimal variant. First, those k residues are 

simultaneously mutated, and an initial round of sequence-fitness data is collected in the wet lab. 

ALDE is compatible with low-N, batch protein engineering settings where tens to hundreds of 

sequences are screened in each round. The collected sequence-fitness data are then used to 

computationally train a supervised ML model that can predict sequence from fitness. Different 

ways to encode protein sequence numerically and different types of models which can provide 

uncertainty quantification are analyzed in this study. Afterward, an acquisition function is applied 

to the trained model to rank all sequences in the design space, from most to least likely to have 

high fitness. Several acquisition functions are evaluated in this study, to balance exploration of 

new areas of protein space with exploitation of variants that are predicted to have high fitness (Fig. 

1d). The computational component of ALDE can be performed using the codebase at 

https://github.com/jsunn-y/ALDE. For the next round of ALDE, the top N variants from the 

ranking are then assayed in the wet-lab to provide additional sequence-fitness data, and the cycle 

is repeated until fitness is sufficiently optimized.  

 

The active site of ParPgb is a challenging design space for standard DE  

To initiate wet lab studies with ALDE, we identified a target enzymatic activity on a protein 

design space that would be difficult to engineer with simple DE methods. Enzyme-catalyzed 

carbene transfer reactions have the potential to be useful in many synthetic chemistry applications, 

and thus we decided to focus on the cyclopropanation of 4-vinylanisole (1a) using ethyl 

diazoacetate (EDA) as a carbene precursor to afford the 1,2-disubstituted cyclopropanes trans-2a 
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and cis-2a (Fig. 2a). Enzyme engineering for styrenyl cyclopropanation poses a stimulating 

challenge for evolution toward two properties, higher yield and improved selectivity toward one 

of the diastereomers of the cyclopropane product. While this non-native chemistry has been 

demonstrated with cytochromes P411,31 we decided to engineer this activity in a protoglobin. 

Protoglobins are archaeal hemoproteins, which are attractive engineering targets due to their high 

thermostability (T50 ~ 60°C), small size (~200 amino acids),32 and ability to perform novel carbene 

and nitrene transfer chemistries.33–36  After screening a diverse set of protoglobins, including wild-

types and engineered homologs, for cyclopropanation activity (Fig. S31 of Supplementary 

Information), we decided to proceed with ParPgb W59L Y60Q (ParLQ) as a starting point 

(parent) for ALDE. The ParLQ variant demonstrates only moderate cyclopropanation yield (~40% 

yield) and stereoselectivity (3:1 preferring trans-2a) under screening conditions. Because our goal 

was to arrive at a variant with high yield and high selectivity for the cis-product, we defined the 

objective to be explicitly optimized as the difference between the yield of cis-2a and the yield of 

trans-2a. 

Based on previous engineering studies using protoglobin scaffolds, we selected five active-site 

residues (W56, Y57, L59, Q60, and F89; WYLQF) positioned above the distal face of the heme 

cofactor, which display epistatic effects and are known to impact non-native activity (Fig. 2b).34,35 

Single-site saturation mutagenesis (SSM) was performed at these sites, and variants were screened 

by gas chromatography for their cyclopropanation products. None of the screened mutants 

demonstrated a significant, desirable shift in the value of the objective (Fig. 2c) or related metrics 

such as cis yield and cis/trans selectivity (Extended Data Fig. 1). Given these data, a protein 

engineer might opt to perform a simple recombination of all positive variants to exploit the 

typically additive character of mutations.37 However, in our recombination studies of the single-
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site mutants with the highest fold-change in cis yield (DAYFW), the objective (DGMDW), or the 

selectivity (DHMVW), respectively, we did not observe a variant which generated cis-2a with 

high yield and selectivity (Fig. 2d). Overall, these findings suggest that our design problem is quite 

challenging for standard DE approaches. 

 

Using ALDE to efficiently optimize ParPgb for a non-native carbene transfer reaction 

With the design space confined to five residues and a well-defined objective, we began an 

ALDE engineering campaign. First, we synthesized an initial library of ParLQ variants which were 

mutated at all five positions under study (Fig. 3a). Mutants in this library were generated through 

sequential rounds of PCR-based mutagenesis methods utilizing NNK degenerate codons. We 

 
 
Fig. 2: A challenging, epistatic protein design space: optimization of five active site residues in ParPgb. (A) 
Our objective was to optimize an enzyme to catalyze the formation of the cis product of a cyclopropanatiom reaction 
with high yield and high selectivity, which we quantify in a single value as cis – trans Yield. (B) The parent protein 
ParLQ is two mutations (W59L and V60Q) away from the wild-type ParPgb sequence. Five residues in the active 
site of ParLQ which were likely to exhibit epistasis were targeted: W56, Y57, L59, Q60, and F89. (C) The single 
mutations from parent at the five targeted sites do not offer significant improvements to the objective of cis – trans 
Yield. Very few single-mutation variants have the desired selectivity (positive cis – trans Yield), and it would not 
be obvious which variant to take forward in a DE campaign. Parent yields vary between runs but consistently show 
moderate yield and selectivity for the trans product. (D) Various recombinations of ideal single mutations are not 
effective proteins for the desired objective (cis – trans Yield), and related metrics such as cis Yield and cis/trans 
Selectivity. DAYFW, DGMDW, and DHMVW are the ideal combinations of single mutations naively predicted to 
have the highest cis Yield, cis – trans Yield (objective),  and cis/trans Selectivity, respectively. Overall, these results 
suggest an optimization problem that is challenging for standard DE methods. 
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elected to use random selection from this library because we did not know if any zero-shot 

predictors might enrich the starting library with useful variants.7,12 In fact, retrospective analysis 

of the initial library revealed that our objective is not strongly correlated with conventional zero-

shot predictors,12,38 likely because the objective involves non-native chemistry, for which fitness 

is not sufficiently captured by evolutionary or stability-based metrics alone (Extended Data Fig. 

2). Four 96-well plates of these random variants were picked and sequenced using the LevSeq 

long-read pooled sequencing method (Fig. S7–10 of Supplementary Information),39 yielding 

216 unique variants without stop codons. Screening revealed that nearly all of the variants had 

higher cyclopropanation activity than free-heme background activity, likely because ParLQ was 

moderately active to begin with, and its high thermostability allows it to tolerate multiple 

mutations. The majority of variants displaying improved cyclopropanation yield strongly favored 

formation of trans-2a; however, several of the randomly selected sequences were capable of 

forming cis-2a in much higher yield than any previously tested ParLQ variant (Fig. 3b). Notably, 

the F89Y mutation was particularly important for inverting selectivity to favor the cis-2a, but only 

in the context of certain mutations at positions 56, 57, 59, and 60. 

The ALDE computational package was used to train a predictive model on sequences and 

labels in the initial 216-member library and to suggest sequences for testing based on our 

acquisition function. Based on our extensive computational simulations (described in the following 

section), we decided to use the DNN ensemble with one-hot encoding of the five targeted residues 

for model training and Thompson sampling as the acquisition function. Genes encoding the top 90 

amino acid sequences, optimized for expression in E. coli, were prepared by exact DNA synthesis 

for screening (Round 1, Fig. 3b). Details regarding DNA sequence design are described in the 

included supplementary materials. Subsequent activity screening showed that nearly a third of 
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Round 1 sequences met the objective better than the best variant in the initial, randomly selected 

set (Fig. 3b). The best variant in the Round 1 library, MKFNY (W56M Y57K L59F Q60N F89Y), 

demonstrated a total cyclopropanation yield of 93% and a cis:trans selectivity ratio of 12:1. 

We then gave the newly collected data back to the ALDE computational algorithm for a 

second round of active learning. The top 90 predicted sequences were again synthesized and tested 

exactly as before (Round 2, Fig. 3c). Interestingly, the model explored the sequence space more 

in this round, as reflected in the expanded mutational diversity present in Round 2 and the 

increased variance in the activities of these sequences (both reaction yield and diastereoselectivity) 

(Fig. 3d–f). Impressively, the top-performing variant among these sequences (MPFDY) displayed 

a total cyclopropane yield of 99% and a 14:1 cis:trans selectivity ratio.  None of the mutations in 

MPFDY obviously optimized the objective in the single-site mutagenesis studies (Fig. 2c); they 

work together, however, to deliver an optimal variant. Furthermore, after screening the reaction 

products of all predicted variants with chiral gas chromatography methods, we found that all of 

these sequences were generally capable of generating cis-2a in high enantiopurity (Extended Data 

Fig. 3).  

Having concluded the ALDE-based evolutionary campaign with substrate 1a, we sought 

to understand the substrate scope of the sequences explored in this project. We screened eight 

styrene derivatives (1b–1i) for cyclopropanation using the sequences from Round 2 of ALDE 

(Extended Data Fig. 4). The variants show different yields for each of the substrates, even though 

some of these substrates differed from 1a only by a single atom. Nevertheless, for every substrate, 

nearly all of the Round 2 variants were higher yielding and more selective for their respective cis- 

diastereomers than the parent protein, ParLQ (Fig. S51–66 of Supplementary Information). 
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Interestingly, the top-performing variants for each substrate differed in sequence from MPFDY, 

the top enzyme for 1a cyclopropanation. 

Computational simulations on combinatorial protein datasets support the utility of ALDE 

The design choices used for the wet-lab ALDE campaign were determined by performing 

computational simulations on two combinatorial landscape datasets for GB140 and TrpB41. On 

these landscapes, fitnesses have been measured experimentally for nearly all of the 204 = 160,000 

variants in a library where four amino acid residues were mutated to all possible amino acids. GB1 

refers to the B1 domain of protein G, an immunoglobin binding protein where fitness is measured 

by binding affinity-based sequence enrichment. The fitness of TrpB, the b-subunit of tryptophan 

synthase, was measured by coupling growth to the rate of tryptophan formation. Our baseline was 

DE greedy walk, where one residue was mutated to all possible amino acids, the best mutation was 

 
 
Fig. 3. ALDE optimization trajectory on the ParPgb active site. The optimization campaign started with (A) 
constructing an initial library with mutations at all five sites under study using NNK degenerate codons, randomly 
selecting 384 for screening for product formation, and mapping to sequences using LevSeq. This was followed by 
two rounds of ALDE–(B) Round 1 and (C) Round 2. In Round 1 and Round2, exact genes were ordered as 
ENFINIA DNA produced by Elegen Corp. and screened for product formation. For each round, we present the 
distribution of amino acids sampled at each site and the distribution of yields for the cis and trans products, with a 
few of the top-performing variants labeled. Overall improvement in (D) cis – trans Yield, (E) Total Yield, and (F) 
cis/trans Selectivity over several rounds of ALDE for the best variant in each round and the mean across variants 
in each round. The best variant in each round, defined by the obejctive of cis – trans Yield is labeled. Error bars 
indicate the standard deviation across variants in the round. 
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fixed, and the process was repeated at each of the residues under study (Fig. 4A). DE simulations 

were performed from all active variants as starting points, using all 24 possible orders to enumerate 

the residues under interest. 

The ALDE simulation consisted of batch BO, as shown in Fig. 4b. In each simulation, a 

random batch of 96 initial samples was selected, followed by four rounds of 96 samples each, with 

the surrogate model retrained and proposing new samples (via the acquisition function) in each 

round. This simulation setup was chosen to closely imitate a real wet-lab active learning campaign. 

The different parameters explored for ALDE, including encodings, models, and acquisition 

functions, are summarized in Table 1. We expanded the analysis beyond Gaussian process (GP) 

models, which are the typical surrogate models for BO, to deep kernel learning (DKL) models25,27 

and frequentist models based on boosting and deep neural network (DNN) ensembles. This was 

motivated by the rise of high dimensional encodings of protein sequences, such as those from 

protein language models (i.e. ESM229), which have shown utility in certain property prediction 

tasks.42,43 Visualizations of the acquisition functions (greedy, upper confidence bound (UCB), and 

Thompson sampling (TS)) on hypothetical models are given in Fig. 4c, with more details in 

Methods. 

Table 1. Summary of encodings of protein sequences, models, and acquisition functions tested in this work. 
Encoding Dimension per Residue Description 

AAIndex 4 Continuous fixed amino acid descriptors 
Georgiev44 19 Continuous fixed amino acid descriptors 

Onehot 20 Categorical (which amino acid) 

ESM229 1280 Learned embedding from a protein language model 
(ESM2 with 650 million parameters) 

Model Bayesian? Deep 
Learning? 

Description 

Boosting Ensemble N N An ensemble of 5 boosting models 

Gaussian Process 
(GP) 

Y N A collection of continuous functions described by a 
posterior 
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The performance of each simulated ALDE campaign was quantified as the maximum fitness 

achieved at the end of the campaign, normalized to the variant with maximum fitness in the design 

space (Fig. 4d). Full optimization trajectories at each iteration of the campaign are provided in 

Extended Data Fig. 5. We conclude that active learning can significantly outperform the average 

performance of DE and random sampling, and results are consistent across the two different 

protein datasets. ALDE also outperforms a single round of MLDE (Extended Data Fig. 6). Higher 

dimensional encodings (Onehot and ESM2) generally work better with deep learning-based 

models (DNN Ensemble and DKL), while non-deep learning models might learn better from low 

dimensional AAIndex and Georgiev parameters. The simulations further suggest that encodings 

from protein language models may not offer much benefit, which corroborates previous findings12 

but stands in contrast to other protein properties that can be predicted more effectively by transfer 

learning from protein language models.20,42,43 ESM2 encodings cannot be used by GPs, likely 

because they are too high dimensional. In our acquisition functions, samples in the batch were 

sampled independently of each other. We also explored batch expected improvement,45 but this 

ran extremely slowly without noticeable improvement in performance. Overall, the frequentist 

ensemble models perform the most consistently across different encodings. 

DNN Ensemble N Y An ensemble of 5 multilayer perceptrons (deep neural 
networks, DNNs) 

Deep Kernel Learning 
(DKL)25 

Y Y A GP on the last layer of a deep neural network 

Acquisition Function Deterministic? Description 

Greedy Y Acquires the maximum value of the mean from the 
posterior 

Upper Confidence 
Bound (UCB) 

Y Acquires the maximum value of a certain confidence 
interval from the posterior (tuned by a hyperparameter) 

Thompson Sampling 
(TS) 

N Acquires the maximum value of a random function 
sampled from the posterior 
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To better understand which models are the most advantageous, we assessed how well 

calibrated their uncertainties were (Fig. 5A). For a calibrated model, an n% confidence interval 

should contain n% of true labels across different values of n, which can be evaluated and visualized 

based on a calibration curve. Hypothetical calibrated, underconfident, and overconfident models 

are visualized in Fig. 5B, with their associated calibration curves. The calibration curves for 

different encodings and models are given in Extended Data Fig. 7. The area between a calibration 

curve and perfect calibration (dashed line) is defined as its miscalibration area, which should be 

low. Another way to measure uncertainty calibration is by measuring the Spearman correlation 

 
Fig. 4.  Performance of simulated ALDE campaigns on two combinatorially complete protein datasets, GB1 
and TrpB. (A) Each DE simulation as a greedy single-step walk on four residues, where each residue is fixed to 
the optimal mutation until all four residues have been iterated across. DE simulations start from every variant that 
has some measurable function, with all 24 possible orderings of four residues simulated. (B) Each ALDE simulation 
starts from a random sample of 96 variants on the 4-site landscape, with four rounds of learning and proposing new 
sequences to test, each with 96 protein variants. (C) Hypothetical visualization of the three acquisition functions 
explored in this work: greedy, upper confidence bound (UCB), and Thompson sampling (TS). (D) ALDE for four 
encodings, four models, and three acquisition functions generally outperforms the average DE simulation and 
random sampling on the GB1 and TrpB datasets. Performance is quantified as the normalized maximum fitness 
achieved by the end of the ALDE campaign. Error bars indicate standard deviation across 70 random initializations. 
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between uncertainty from the model (s) and the mean absolute error from the model (MAE), which 

should be high.  

Overall, the Boosting and DNN Ensembles have the lowest MAEs, which suggests that they 

are the most accurate models (Fig. 5A). DNN ensembles have the lowest miscalibration areas, 

suggesting that they are the most calibrated and best models overall. These results are generally 

consistent across encodings and datasets, with a few outliers. In general, calibrated uncertainty is 

desirable,46,47 and it is thought that it is important to understand how calibration shifts when 

extrapolating beyond the training set.48,49 However, in this study, we find that performance in 

ALDE simulations (by max fitness achieved) is not necessarily correlated to how calibrated the 

uncertainties are for each model. For example, DKL performs the best for the ESM2 encoding, but 

these models have the least calibrated uncertainties and the highest MAEs. Because calibration is 

measured on the entire combinatorial design space, it may not directly correspond to the ability to 

find an optimal variant. 

 
Fig. 5. Analysis of uncertainty quantification on simulated ALDE campaigns. (A) Metrics used to evaluate 
how well calibrated each of the four models are for four encodings. Metrics for evaluation are the mean absolute 
error (MAE), the miscalibration area for the calibration curve, and the Spearman correlation between uncertainty 
and error. All metrics are calculated based on all measured points in the combinatorial design space. All results are 
based on the campaigns using UCB as the acquisition function, during the final round of the campaign. Error bars 
indicate standard deviation across 70 random initializations. (B) Visualizations of three hypothetical models with 
underconfident, calibrated, and overconfident uncertainties, and their respective calibration curves. (C) 
Visualization of how the Spearman correlation between uncertainty and error is calculated. 
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DISCUSSION 

Overall, ALDE is an effective method for navigating protein fitness landscapes, and it 

offers several advantages compared to DE. First, ALDE can unlock engineering outcomes not 

possible with simple DE. By considering multiple interacting positions, ALDE can search for 

combinations of mutations which may demonstrate desirable epistatic effects50,51 and reduce the 

risk of getting trapped at a local optimum. By combining mutations, it can also optimize multiple 

properties simultaneously. We demonstrated the advantage of ALDE on ParPgb as a particular 

wet-lab case study – though proof is not possible without testing every DE greedy single-step walk 

(which is experimentally intractable in the wet lab). Computational simulations of ALDE support 

this conclusion, as ALDE consistently outperforms MLDE and DE baselines. Interestingly, we 

found that frequentist ensembles work the best in terms of performance and uncertainty 

quantification,26,52 rather than Bayesian approaches such as typical GP models used in BO. Other 

ways to quantify uncertainty and improve overall performance could be explored in the future.15,26 

Overall, classical notions of uncertainty quantification seem to play a more limited role than 

expected in these real-world applications. 

In the wet-lab engineering campaign, we were pleased to find that ALDE enabled access 

to a broader enzyme substrate scope, whereas using DE often “locks” one into high yield for only 

a single substrate or closely related ones. Here, we observe an emergent advantage inherent to 

ALDE: since sequences that balance exploration and exploitation for a given task are proposed, 

they can be serendipitously proficient at related tasks.  

ALDE is enabled by several recent advancements in biotechnology. For the initial library 

constructed using degenerate codons, high-throughput sequencing was necessary to identify the 

sequences of variants in each well. For this work we utilized LevSeq,39,53 a method that leverages 
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real-time nanopore sequencing. Furthermore, rapid and reliable access to directly synthesized 

DNA (Elegen Corp.) was instrumental to the speed with which evolution was performed. The 

ALDE workflow was significantly enhanced with (1) the delivery of exact genes in one week, 

which shortened time between rounds of evolution, (2) the high fidelity of the delivered gene 

products meant that no sequencing was required for Rounds 1 and 2 of ALDE, and (3) no over-

screening was needed because the exact sequences were arrayed individually. Overall, the time 

and screening cost of the wet-lab engineering campaign with ALDE was lower than for a greedy 

walk strategy with DE. A total of six 96-well plates were screened before arriving at a final variant: 

four plates of random variants, and two plates of predicted sequences within three rounds. By 

comparison, a greedy walk with DE would have required around five rounds of evolution with 

increased screening in the later rounds, which would require greater experimental resources such 

as chemical reagents and analysis time. We expect that exact gene synthesis will be increasingly 

important for powering active learning workflows in protein engineering. 

 In this work, we illustrated ALDE’s power for simultaneously increasing the activity and 

selectivity of an enzyme for a non-natural reaction, but ALDE is a general workflow that can be 

used for a broad range of protein engineering applications. Additionally, ALDE could be integrated 

into robotic systems for automated and efficient protein engineering workflows, and library design 

could utilize tools such as DeCOIL.54 While we only engineered on five residues in this study, 

ALDE should naturally extend to even larger design spaces on more residues, as long as assay-

labeled data is collected on variants with mutations spread across those residues. This will require 

some initial domain knowledge or screening to identify sites that will be useful for increasing 

fitness; library design could also benefit from limiting the number of simultaneous mutations or 

using zero-shot scores.12,18 Future work here may also involve generative modeling if it is not 
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possible to enumerate the acquisition function on the entire design space. Overall, accompanied 

by a user-friendly codebase, ALDE is a broadly applicable tool that can unlock more efficient and 

effective protein engineering. 
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METHODS & PROTOCOLS 

Cloning of Random ParPgb Variants 
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Cloning for Single Site-Saturation Mutagenesis. Chemically competent Escherichia coli (E. 

coli) cells (T7 Express Competent E. coli) were purchased from New England Biolabs (NEB, 

Ipswich, MA). Phusion polymerase and DpnI were purchased from NEB. SSM experiments were 

performed using primers bearing degenerate codons (NNK) using a modified QuikChange™ 

protocol.55 The PCR conditions were (final concentrations): Phusion HF Buffer 1x, 0.2 mM dNTPs 

each, 0.5 μM of forward primers, 0.5 μM reverse primer, and 0.02 U/μL of Phusion polymerase. 

The standard Phusion PCR protocol was used. Upon completion of PCRs, the remaining template 

was digested with DpnI. Gel purification was performed with a Zymoclean Gel DNA Recovery 

Kit (Zymo Research Corp, Irvine, CA). The purified PCR product was then assembled using the 

Gibson assembly protocol.56 

Transformation of Single Site Mutants. 96-well deep-well plates are shaken in an INFORS HT 

Multitron Shaker in all instances. The assembly products obtained were used to transform T7 

Express Competent E. coli (High Efficency) cells (NEB, Ipswich, MA) following the 

recommended protocol. Upon heat-shock transformation, mixtures were recovered in 0.4 mL 

Luria-Bertani medium (LB) (Research Products Int.), after which the cells were incubated at 37 

ºC with shaking at 220 rpm for 30 minutes before being plated on LB-agar plates with 100 μg/mL 

ampicillin (LB-amp agar plates). Single colonies from LB-agar plates were picked using sterilized 

toothpicks, which were used to individually inoculate 400 μL of LB containing 100 μg/mL of 

ampicillin (LB-amp) in 2 mL 96-well deep-well plates. The plates were incubated at 37 ºC and 

shaken at 220 rpm for 16-18 hours. The following morning 50 μL of preculture from each well 

were added to the wells of a 96-well flat-bottom tissue culture plate (ThermoFisher) preloaded 

with 50 μL of 50% glycerol solution. These glycerol stocks were stored at -80°C for future 
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inoculation. Additionally, the sequences of protoglobin genes contained in every well were 

sequenced using the evSeq protocol.53 

Cloning for Multisite-Saturation Mutagenesis. Mutations were simultaneously incorporated as 

with single SSM using the ParLQ_quadNNK primers (Table S4). The library transformation was 

recovered in 0.4 mL LB. 50 μL of transformation mixture were used to inoculate 6 mL of LB-Amp 

in a 15 mL plastic culture tube. This culture was allowed to shake overnight at 37°C. The following 

morning, this library preculture was miniprepped using a QIAprep Spin Miniprep Kit (Qiagen, 

Hilden, Germany). This miniprep sample was used as the new template for mutagenesis with the 

primers for SSM of site 89. The Gibson products for the new five-site library were transformed 

using the recommended protocol into T7 Express Competent E. coli. Upon heat-shock 

transformation, mixtures were recovered in 0.4 mL Luria-Bertani medium (LB) (Research 

Products Int.), after which the cells were incubated at 37 ºC with shaking at 220 rpm for 30 minutes 

before being plated on LB-agar plates with 100 μg/mL ampicillin (LB-amp agar plates). Single 

colonies from LB-agar plates were picked using sterilized toothpicks, which were used to 

individually inoculate 400 μL of LB containing 100 μg/mL of ampicillin (LB-amp) in 2 mL 96-

well deep-well plates across 4 separate plates. The plates were incubated at 37 ºC and shaken at 

220 rpm for 16-18 hours. The following morning 50 μL of preculture from each well were added 

to the wells of a 96-well flat-bottom tissue culture plate (ThermoFisher) preloaded with 50 μL of 

50% glycerol solution. These glycerol stocks were stored at -80°C for future inoculation. 

Additionally, the sequences of protoglobin genes contained in every well were sequenced using 

LevSeq sequencing.39 

 

Cloning of ParPgb Predicted Sequences 
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96-Well Plate Gibson Protocol. Exact genes encoding ParLQ mutants predicted by Active 

Learning-Assisted Directed Evolution (ALDE) were synthesized and delivered by Elegen Corp. 

(San Carlos, CA). DNA fragments were received as dry residues in 96-well PCR plates in 2-4 μg 

quantities. These DNA samples were dissolved in 100 μL of double-distilled H2O (ddH2O), 

yielding concentrations between 20-40 ng/μL. 0.7 μL of these gene solutions were added to the 

wells of a 96-well PCR plate (Globe Scientific Inc., Mahwah, NJ). 1.0 μL of an aqueous solution 

containing 60 ng/μL of linearized pET-22b(+) backbone with overhangs designed for Gibson 

ligation with the ordered DNA sequences was added to each of the wells of this plate. Finally, to 

each well was added 5	µL of Gibson assembly mix. The 96-well plate was then incubated at 50°C 

for 60 minutes, after which the Gibson products were placed on ice. These Gibson products could 

then either be directly used for transformation or stored at -20°C for later use. 

96-Well Plate Transformation Protocol. To each well of the previously described Gibson 

assembly plate was added 5 μL of T7 Express Competent E. coli. The cell solutions were allowed 

to incubate on ice for 20 minutes, after which they were heat-shocked at 42°C for 10 seconds in a 

water bath. The cells were then recovered with the addition of 100 μL of LB. Without outgrowth 

at 37°C, 10 μL of each transformation mixture was used to inoculate the wells of a 2 mL 96-well 

deep-well plate in which the wells had been preloaded with 400 μL LB-Amp. This plate was 

incubated at 37 ºC and shaken at 220 rpm for 16-18 hours. The following morning the plate was 

removed from shaking and allowed to sit at room temperature for 8-10 hours. After this rest phase, 

1 μL from each well was used to reinoculated yet another 96-well deep-well plate preloaded with 

400 μL LB-Amp. This cell passage plate was incubated at 37 ºC and shaken at 220 rpm for 16-18 

hours. The following morning 50 μL of preculture from each well was added to the wells of a 96-
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well flat-bottom tissue culture plate (ThermoFisher) preloaded with 50 μL of 50% glycerol 

solution. These glycerol stocks were stored at -80°C for future inoculation. 

 

Protocols for the Screening of ParPgb Variants 

96-Well Plate Library Expression. The wells of a 2 mL 96-well deep-well plates were filled with 

400 μL LB-Amp. Previously generated 96-well plate glycerol stocks were removed from -80°C 

storage and placed on dry ice. Multichannel pipet tips were used to scratch the frozen glycerol 

stock surface and used to inoculate the aforementioned deep-well plate. These pre-expression 

cultures were incubated at 37 ºC and shaken at 220 rpm for 16-18 hours. For expression cultures, 

the following morning 50 μL of these precultures were used to inoculate 900 μL of Terrific Broth 

(TB) (Research Products Int.) with 100 μg/mL of ampicillin (TB-amp) per well in 96-well deep-

well plates. These expression cultures were initially incubated at 37 ºC and 220 rpm for 2.5 hours, 

at which point they were allowed to sit at room temperature for 30 minutes. Expression of proteins 

was induced with isopropyl-β-D-thiogalactoside (IPTG) and cellular heme production was 

increased with 5-aminolevulinic acid (ALA). An induction mixture containing IPTG and ALA in 

TB-amp (50 μL) was added to each well such that the final concentrations of IPTG and ALA were 

0.5 mM and 1.0 mM, respectively. The total culture volumes were 1 mL. The plates were then 

incubated at 22 ºC and 220 rpm overnight. 

96-Well Plate Library Reactions and Screening. Expression cultures containing E. coli 

expressing hemoproteins of interest were centrifuged at 4000 × g for 10 minutes at 4 ºC. The 

supernatant was discarded, and nitrogen-free M9 minimal medium (M9-N, 380 μL) was added to 

each well. The pellets were resuspended in this medium via shaking at room temperature for 30 

minutes. The plates were then transferred into a vinyl Coy anaerobic chamber (0 – 30 ppm O2). To 
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each well was added 20 μL of a MeCN solution with 200 mM of the desired styrene substrate and 

300 mM of ethyl diazoacetate (EDA). The final reaction volume was 400 μL, and the final 

concentrations of the styrene and EDA were 10 mM and 15 mM, respectively. The plates were 

then sealed carefully with a foil cover and shaken at room temperature for 16 hours in the Coy 

chamber. Once complete, plates were worked up for processing by adding 600 μL of a 1:1 solution 

of ethyl acetate:cyclohexane containing 1,3,5-trimethoxybenzene as an internal standard (1.0 mM 

concentration). A silicone sealing mat (AWSM1003S, ArcticWhite) was used to cover the plate 

and the two layers were thoroughly mixed by rapid inversion of the plate. The plate was then 

centrifuged (5000 × g for 5 minutes at room temperature) to separate the phases. Afterwards, a 200 

μL aliquot of the organic layer was transferred to a GC vial insert in a GC vial, and the samples 

were analyzed by GC-FID.  

 

Machine Learning Details 

The initial training data for the ParPgb campaign was obtained by merging sequencing data 

with screening yield data. Measured yields were averaged for sequences with the same amino acid 

combination and normalized to the yield of the cis product formation of the parent variants 

(WYLQF) on each plate. These normalized values were used for model training and acquiring new 

points, which followed the same protocol as the computational simulations on GB1 and TrpB. For 

the wet-lab campaign, we trained the model with onehot encodings, the DNN ensemble with 5 

models and bootstrapping using 90% of the available training data for each model, and Thompson 

sampling as the acquisition function. These design choices correspond to the most consistent 

strategy based on the computational simulations. Detailed instructions on how to reproduce our 
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results and run ALDE for other engineering campaigns are provided at https://github.com/jsunn-

y/ALDE.   

Most Bayesian optimization algorithms consist of two main components: (1) a probabilistic 

surrogate model of the objective function and (2) an acquisition function. The surrogate model 

predicts the objective function values at unobserved inputs, while the acquisition function 

quantifies the potential benefit of evaluating any given batch of inputs based on these predictions. 

In each iteration of the Bayesian optimization loop, a new batch of inputs is selected by 

maximizing the acquisition function. After evaluating the objective function at these new inputs, 

the surrogate model is updated, and the process repeats. Below, we describe in detail the 

probabilistic models and acquisition functions explored in this work, which were implemented 

using BoTorch57 and GPyTorch.58 

 

Probabilistic Models for Bayesian Optimization 

Let 𝑿 denote the input space (i.e., the space of feasible protein sequences) and let 𝑓: 𝑿 → 𝑹 denote 

the objective function (i.e., the metric we wish to optimize). In this work, we explore four classes 

of probabilistic surrogate models of the objective function: regular Gaussian processes (GP), deep 

kernel Gaussian processes (DKL), deep ensembles (DNN ensemble), and boosting ensembles. 

Gaussian Processes. A Gaussian process model is defined in terms of a prior mean 

function µ!: 𝑿 → 𝑹 and a prior covariance function K!: 𝑿 × 𝑿 → 𝑹  and it encodes a Bayesian 

prior distribution over 𝑓. Given a dataset of 𝑛 evaluations of the objective function, denoted as 

𝒟𝓃 = {(𝑥# , 𝑦#)}#$%& , one can derive the posterior distribution of 𝑓 given 𝒟𝓃. If these evaluations 

are corrupted by i.i.d. additive Gaussian noise, i.e., 𝑦# = 𝑓(𝑥#) + ϵ#, where ϵ%, … , ϵ& are i.i.d. 

Gaussian with mean zero and variance σ',  the posterior is again a Gaussian process characterized 
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by a posterior mean function µ&: 𝑿 → 𝑹 and a posterior covariance function K&: 𝑿 × 𝑿 → 𝑹. 

These functions can be computed in closed form in terms of the prior mean and covariance 

functions as well as the data using the classical Gaussian process regression formulas. 59 The noise 

variance σ'  and other hyperparameters of the model (such as the lengthscale parameters) can be 

estimated by maximizing the log marginal likelihood. 

Deep Kernel Learning. Gaussian process models with classical covariance functions, 

such as the Matern or squared exponential covariance functions, are known to perform poorly in 

high-dimensional input spaces.28 To address this limitation, Wilson et al. (2015) proposed deep 

kernel learning.25 Succinctly, this approach uses a covariance function of the form K(𝑥, 𝑥() =

𝑘9ϕ)(𝑥), ϕ)(𝑥();, where 𝑘 is a regular covariance function (e.g., squared exponential) and ϕ) 

is a deep neural network with weights 𝑤. These weights are treated like hyperparameters of the 

model, which can also be estimated by maximizing the log marginal likelihood. 

Boosting Ensembles. Boosting models leverage a sequential training strategy where each 

new model is trained to correct the errors of the previously combined models.60 The final prediction 

is often a weighted sum of the predictions made by earlier models, where the weights reflect each 

model's accuracy. Unlike methods such as bagging, which train models independently and in 

parallel, boosting specifically designs each new model to address the weaknesses of the existing 

ensemble, thereby creating a strong predictive model from a sequence of weaker ones. While 

boosting does not inherently offer a probabilistic interpretation like Bayesian methods, it is highly 

effective for reducing bias and variance in predictive modeling tasks. Here, we train the boosting 

ensembles with bootstrapping; each ensemble consists of 5 models where 90% of the total training 

data is randomly seen during training. 
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Deep Ensembles. Deep neural network (DNN) ensemble models are constructed by 

training identical deep neural network architectures multiple times, each with different random 

initializations of the weight parameters. Here, we train the deep ensembles with bootstrapping; 

each ensemble consists of 5 models where 90% of the total training data is randomly seen during 

training. These independently trained networks are then collectively used as if they were samples 

from a Bayesian posterior distribution over the objective function 𝑓. Unlike Gaussian processes, 

deep ensembles lack a proper Bayesian interpretation. However, Izmailov and Wilson argue it is 

possible to see these models as a form of approximate Bayesian inference.52 We adopt this view 

in our work. 

 

Acquisition Functions for Bayesian Optimization 

Expected Improvement. The expected improvement (EI) acquisition function is given by 

α&(𝑥) = 𝐸&[{𝑓(𝑥) − 𝑓&∗}+], where 𝑓&∗ = 𝑚𝑎𝑥
#$%,…,&

𝑓(𝑥#) and the expectation is computed with 

respect to the posterior distribution given 𝒟𝓃.45 For Gaussian posterior distributions and noise-free 

observations (where 𝑓&∗ is a constant rather than a random variable), the EI can be expressed in a 

closed form using the posterior mean and variance. In scenarios where these conditions do not 

hold, computing the EI often requires approximate calculation, typically through Monte Carlo 

sampling techniques. When extending the EI to the batch setting, the acquisition function becomes 

𝛼&(𝑋) = 𝐸& F{𝑚𝑎𝑥.∈0
𝑓(𝑥) − 𝑓&∗}+G, where 𝑋 = 9𝑥%, … , 𝑥1; ∈ 𝑿1 is a batch of 𝑞 inputs (qEI). 

Maximizing the batched EI poses significant computational challenges due to the requirement to 

optimize over 𝑿1. However, by exploiting the submodularity of the acquisition function, an 

efficient approximation can be achieved through a greedy optimization strategy, selecting each 
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input in the batch sequentially. In this study, we tested qEI, but it ran slowly without noticeable 

improvement, so it was not included in the final results. 

Upper Confidence Bound. The upper confidence bound (UCB) acquisition function is 

defined by α&(𝑥) = µ&(𝑥) + β&
%/'σ&(𝑥), where µ&(𝑥) and 𝜎&(𝑥) are the posterior mean and 

standard deviation, respectively, and β& is a parameter that controls the exploration-exploitation 

trade-off. In our experiments, we set 𝛽& = 4. While there are sophisticated batch extensions of the 

UCB acquisition function available in the literature,61 our approach utilizes a straightforward 

heuristic. Specifically, we form batches by selecting the 𝑞 inputs that yield the highest values of 

𝛼&(𝑥), evaluated across all discrete 𝑥 in the design space. The Greedy acquisition function can be 

thought of as a specific case of UCB with 𝛽& = 0 so the acquisition function becomes α&(𝑥) =

µ&(𝑥). For the frequentist ensemble models, we evaluate µ&(𝑥) and σ&(𝑥)  as the mean and 

standard deviation of all models in the ensemble, respectively. 

Thompson Sampling. Thompson Sampling (TS) is a randomized selection strategy where 

the next input to evaluate is obtained by drawing a sample (function) from the posterior distribution 

of 𝑓 and selecting the point that maximizes this sample. For the GP and DKL models, we 

approximate samples from the posterior using 1000 random Fourier features.62 For the frequentist 

ensemble models, the random function sample is drawn as one of the models in the ensemble. In 

the batch setting, each input in the batch is obtained as an independent sample. Unlike the EI and 

UCB, TS is inherently stochastic as opposed to deterministic. 
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EXTENDED DATA 

 

 
Extended Data Fig. 1.  Fitnesses of variants from SSM at the five positions under study, measured by various 
objectives. 
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Extended Data Fig 3. Enantioselectivity data for all ALDE predicted variants in Round 1 and Round 2 for the 
production of 2a. Enantiomeric excess (ee) values are plotted against diastereomeric ratio (dr) values for each 
variant. 
 

Extended Data Fig. 2.  Correlation between zero-shot predictors (EVMutation Rank and Triad Rank) and different 
fitness metrics (Cis, Trans, and Cis - Trans Yield) for the initial random library of variants used in the ParPgb wet-
lab campaign. EVMutation rank refers to the evolutionary likelihood of a variant (1 is the most likely), and Triad 
rank refers to the computationally predicted stability of a variant as a ∆∆G value (1 is the most stable). Orange dot 
refers to the parent sequence, WYLQF. Each title shows the spearman correlation between the zero-shot predictor 
and the fitness metric. Cis yield is weakly correlated to the zero-shot predictors, but the overall objective is not. 
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Extended Data Fig. 4. Substrate scope for ParPgb variants explored during Round 2 of the wet-lab ALDE campaign. 
All substrates were tested on each of the variants. Total yields and selectivities are shown for the top-performing 
variant for each substrate as well as MPFDY. Improvements in yield and selectivity from MPFDY are indicated with 
a shift from red to green. 
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Extended Data Fig. 5.  Optimization trajectories for ALDE  campaigns for 4 encodings, 4 models, and 3 acquisition 
functions. Simulation involved batch BO with an initial batch of 96 samples, followed by 4 batches of 96 samples 
each.  Top row is GB1 and bottom row is TrpB. Error bars indicate standard deviation across 70 random 
initializations. 

 
Extended Data Fig. 6.  Performance of MLDE baseline for 4 encodings, 4 models, and 3 acquisition functions, 
compared to the average DE simulation and to random sampling. Performance is quantified as the normalized 
maximum fitness achieved by MLDE, where the training set is 384 random samples and the test set in 96 samples 
proposed by the model using a greedy acquisition function. Top row is GB1 and bottom row is TrpB. Error bars 
indicate standard deviation across 70 random initializations. 
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Extended Data Fig. 7. Calibration curves for 4 encodings and 4 models. The x axis is the expected confidence 
from the posterior, given a certain confidence interval and the y value is the actual proportion of true labels that fall 
within the confidence interval. Calibration curve is evaluated across all sequences in the design space with labels, 
on models trained on the final batch (384 train samples) from ALDE campaigns using UCB. Top row is GB1 and 
bottom row is TrpB.  
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