

¹ Quantifying ‘just-right’ APC inactivation for ² colorectal cancer initiation

³

⁴ Meritxell Brunet Guasch¹, Nathalie Feeley², Ignacio Soriano³, Steve Thorn³, Ian Tomlinson^{3,*},
⁵ Michael D. Nicholson^{2,*#}, Tibor Antal^{1,*}

⁶ ¹ School of Mathematics and Maxwell Institute for Mathematical Sciences, University of
⁷ Edinburgh, Edinburgh, United Kingdom

⁸ ² CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh,
⁹ Edinburgh, United Kingdom

¹⁰ ³ Department of Oncology, University of Oxford, Oxford, United Kingdom

¹¹ * joint senior authors

¹² #M for correspondence: michael.nicholson@ed.ac.uk

¹³

¹⁴ Abstract

¹⁵ Dysregulation of the tumour suppressor gene Adenomatous Polyposis Coli (APC) is a
¹⁶ canonical step in colorectal cancer development. Curiously, most colorectal tumours carry
¹⁷ biallelic mutations that result in only partial loss of APC function, suggesting that a ‘just-right’
¹⁸ level of APC inactivation, and hence Wnt signalling, provides the optimal conditions for
¹⁹ tumorigenesis. Mutational processes act variably across the APC gene, which could
²⁰ contribute to the bias against complete APC inactivation. Thus the selective consequences
²¹ of partial APC loss are unclear. Here we propose a mathematical model to quantify the
²² tumorigenic effect of biallelic APC genotypes, controlling for somatic mutational processes.
²³ Analysing sequence data from >2500 colorectal cancers, we find that APC genotypes
²⁴ resulting in partial protein function confer about 50 times higher probability of progressing to
²⁵ cancer compared to complete APC inactivation. The optimal inactivation level varies with
²⁶ anatomical location and additional mutations of Wnt pathway regulators. We use this context
²⁷ dependency to assess the regulatory effect of secondary Wnt drivers in combination with
²⁸ APC *in vivo*, and provide evidence that mutant AMER1 combines with APC genotypes that
²⁹ lead to relatively low Wnt. The fitness landscape of APC inactivation is consistent across
³⁰ microsatellite unstable and POLE-deficient colorectal cancers and tumours in patients with
³¹ Familial Adenomatous Polyposis suggesting a general ‘just-right’ optimum, and pointing to
³² Wnt hyperactivation as a potential cancer vulnerability.

³³

³⁴ Introduction

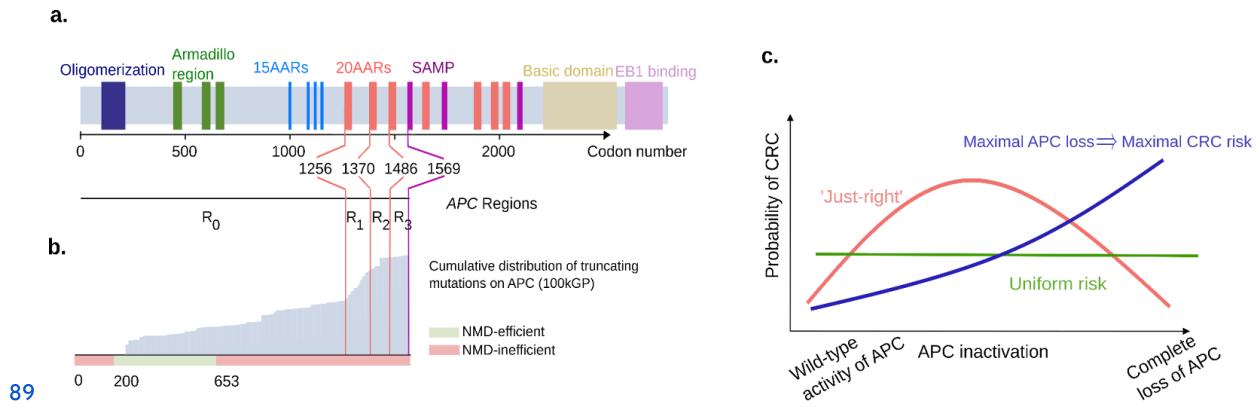
³⁵

³⁶ Colorectal cancer (CRC) is one of the most common and deadly cancers, with 1.9 million
³⁷ new cases diagnosed and 935,000 associated deaths in 2020 worldwide ¹. The
³⁸ Adenomatous Polyposis Coli (APC) gene is a canonical tumour suppressor, with
³⁹ loss-of-function mutations present in over 80% of sporadic CRCs ²⁻⁵. APC mutations are one
⁴⁰ of the earliest, if not the earliest, genetic events in the development of CRC ⁶. By
⁴¹ dysregulating the Wnt signalling pathway, biallelic inactivation of APC in healthy colonic cells
⁴² leads to the formation of adenomatous polyps, which can progress to carcinoma ⁷⁻⁹.

⁴³

⁴⁴ Wild type APC acts as a scaffold protein for the β-catenin destruction complex, functioning
⁴⁵ as a tumour suppressor via regulation of the Wnt pathway ^{10,11}. This activity involves several

46 protein domains, including: short repeat sequences known as 20 amino-acid-repeats
47 (20AARs), which bind to β -catenin; the β -Catenin Inhibitory Domain (CID); and the first
48 SAMP domain, which acts as a binding site for AXIN (Figure 1a). APC is a classical tumour
49 suppressor gene, requiring both alleles to be mutated for loss of function. Upon biallelic
50 inactivation, APC loss leads to the stabilisation and accumulation of β -catenin in the
51 cytoplasm, which, upon translocation to the nucleus, upregulates the Wnt pathway and feeds
52 the affected cells with a permanent mitogenic signal^{9,12}.


53

54 Most sporadic CRCs carry mutations occurring upstream of the first SAMP repeat (codon
55 1569), but retain some of the 20AARs^{13,14}. A similar pattern has been observed in tumours
56 of patients with familial adenomatous polyposis (FAP), where germline mutations removing
57 all 20AARs are typically followed by somatic second-hit mutations that retain at least one
58 20AAR¹⁵⁻¹⁷. The 20AAR domains are within the large final translated exon of APC (codons
59 653-2843), in which stop-gained or frameshift mutations evade nonsense mediated decay
60 (NMD)¹⁸, resulting in the synthesis of truncated proteins with attenuated β -catenin binding
61 activity¹⁹ (Figure 1b). Progressive retention of APC regulatory repeat sequences has been
62 associated with a successive decrease in Wnt signalling in various experimental model
63 systems²⁰⁻²³. In particular, mutations upstream of the first 20AAR (codons 0-1256) result in
64 maximal constitutive Wnt activity^{24,25}, but are rarely observed in colorectal tumours. Though
65 the naive expectation is that complete loss of a tumour suppressor gene's function should be
66 optimal for tumorigenesis, in most lesions APC is not fully inactivated.

67

68 These observations have led to the 'just-right' signalling hypothesis (Figure 1c), which states
69 that both APC alleles are selected to retain sufficient β -catenin regulatory activity to generate
70 an optimal Wnt signalling level for tumour growth^{16,17}. In this work, we quantify this effect by
71 analysing large cohorts of CRCs with biallelic APC inactivation, including the UK 100,000
72 Genomes Project³, hereafter 100kGP, and cBioPortal cohorts (n=1,366 and n=1,305,
73 respectively, Supplementary Tables 1 and 2). Although the genetic data is compatible with
74 the 'just-right' hypothesis, the associations could be partly driven by mutational processes
75 rather than selection for optimal Wnt activity. For example, genomic regions with
76 mononucleotide repeats are particularly susceptible to insertions and deletions²⁶, thus the
77 7-base thymine repeat starting at codon 1554 in APC might largely explain the
78 preponderance for partially truncated proteins. To resolve this, we propose a mathematical
79 approach that allows us to quantify the probability of CRC progression of colonic stem cells
80 with different APC genotypes, controlling for the underlying mutational processes in the
81 colon. We quantitatively test 'just-right' against competing hypotheses, namely the 'uniform
82 CRC risk', in which all APC genotypes provide the same selective advantage, and the
83 'maximal APC loss implies maximal risk' (Figure 1b). Furthermore, we investigate tumour
84 heterogeneity in relation to Wnt activity based on the anatomical site of the lesion and the
85 presence of additional mutations of secondary Wnt regulators. Finally, the generality of the
86 'just-right' effect is examined by comparison with hypermutant CRCs and tumours from FAP
87 patients.

88

90 Figure 1. Evidence for 'just-right' in sporadic CRC.

91 (a) Schematic showing the functional domains and regions of interest of APC, and their corresponding
92 codon position. (b) In grey, the cumulative distribution of truncating mutations of APC in the 100kGP
93 cohort of CRCs. Below, classification of codons by efficiency of NMD. Truncating mutations affecting
94 codons in red are expected to evade Nonsense Mediated Decay as they occur either between the
95 start codon and upstream of the 200th nucleotide or downstream of the last exon-exon junction ¹⁸.
96 Notably, most truncating mutations occur downstream codon 653, which are expected to evade NMD.
97 (c) Schematic of the 'just-right' hypothesis which posits that an intermediate level of APC inactivation
98 maximises CRC risk, in contrast with all genotypes conferring equal risk ('uniform risk') and maximal
99 APC loss conferring the maximal CRC risk.

100

101

102 Results

103

104 Mathematical framework to test the 'just-right' hypothesis

105

106 We firstly profiled the distribution of mutations across the two alleles of *APC* in primary CRCs
107 in the cohorts under study which revealed a two-dimensional mutational hotspot (Figure 2a).
108 The hotspot suggested interdependence between the first and second hit, with most tumours
109 retaining at least one 20AAR across both alleles. However, as discussed, the signal could be
110 driven by mutational processes. To test and quantify the 'just-right' hypothesis for *APC*
111 inactivation, and disentangle selection and mutation, we propose a mathematical framework
112 characterising the initial stages of colorectal tumorigenesis. We first outline our mutation
113 classification system, before detailing the mathematical model.

114

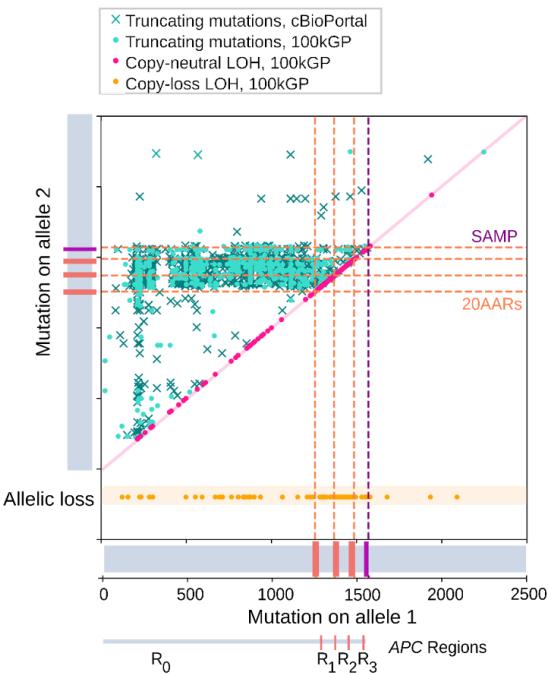
115 The *APC* genotype of colonic cells is defined by the position and class of the mutations in
116 the two alleles. We consider all major mutation classes underlying *APC* inactivation:
117 stop-gained mutations, frameshifts, and copy number alterations separated into copy-loss of
118 heterozygosity CL-LOH, caused by the loss of the wild-type allele, and copy-neutral loss of
119 heterozygosity, CN-LOH, where the wild-type allele is lost and the mutated is duplicated.
120 Since the level of *APC* inactivation is associated with the number of 20AAR repeat
121 sequences retained ^{24,27}, we classify stop-gained and frameshift mutations by regions relative
122 to these domains and ignore somatic mutations downstream of the first SAMP repeat as
123 they are generally not considered pathogenic, and rarely occur in tumours (Figure 1a and
124 Figure 2a, Methods), ²⁸. In particular, a single truncating mutation in region R_i leaves i intact
125 20AAR repeats, where i can be 0,1,2 or 3. *APC* genotypes are then denoted by (M,N) ,
126 where M denotes a truncating mutation in region R_M in one allele, and N either refers to a

127 truncating mutation in region R_N in the other allele, or it denotes a copy-loss LOH if $N=\{-\}$ or a
128 copy-neutral LOH if $N=\{x2\}$ (Figure 2b, Methods). When there are several clonal truncating
129 mutations, we first predict the diploid genotype of the ancestral tumour initiating cell, and
130 then order the mutations in increasing order ($M \leq N$) and only consider the two most upstream
131 mutations. For example, genotype (1,2) refers to an *APC* genotype with two truncating
132 mutations such that proteins synthesised from one allele will carry a single 20AAR, while
133 proteins stemming from the other allele carry two 20AARs (see Figure 2b).

134

135 In our model, we consider how mutation accumulation in the large bowel leads to biallelic
136 *APC* mutated cells which, in turn, can progress to cancer (Figure 2c). To disentangle
137 mutation and selection, we first estimate the probability $m_{(M,N)}$ that a biallelic *APC* mutant cell
138 appears with genotype (M,N) in the absence of selection, using mutational signature data
139 specific to the context under consideration, e.g. signatures active in healthy colonic crypts
140 (Methods, Table M2). We then suppose that a cell which acquired *APC* genotype (M,N)
141 progresses into CRC during the patient's lifetime with probability $p_{(M,N)}$. We neglect the
142 accumulation of further mutations in *APC* after double allelic inactivation, so-called 'third hits'
143 ²⁹, as these are rare in the cohorts of study (Supplementary Figure 4). Under this framework,
144 we show (Methods) that the expected frequency of *APC* genotype (M,N) in colorectal
145 cancers is given by

146
$$f_{(M,N)} = C m_{(M,N)} p_{(M,N)}$$

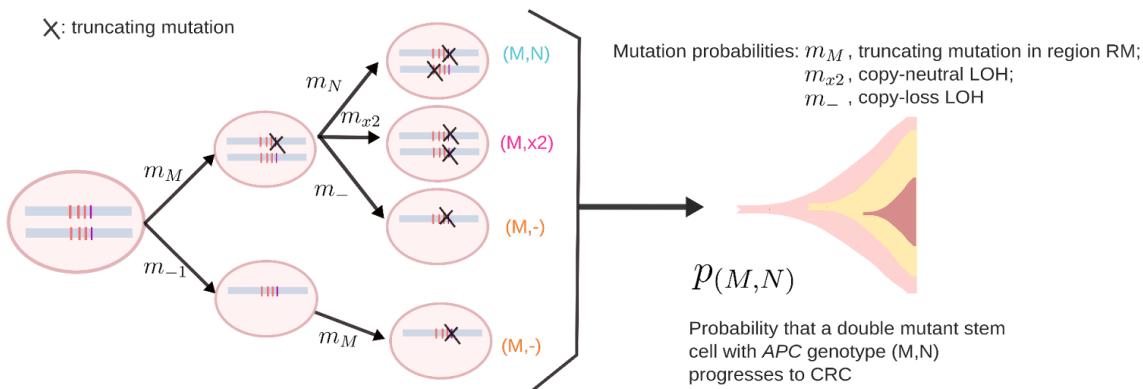

147 with C a positive constant independent of *APC* genotype (Figure 2c). We estimate $f_{(M,N)}$
148 from cohort data of sequenced primary CRCs, providing access to the *relative progression*
149 *probabilities*

150
$$\tilde{p}_{(M,N)} = \frac{p_{(M,N)}}{\sum_{i,j} p_{(i,j)}} = \frac{f_{(M,N)}/m_{(M,N)}}{\sum_{i,j} f_{(i,j)}/m_{(i,j)}} \text{ (Equation 1),}$$

151 which enable assessment of the tumorigenic effect of different *APC* genotypes, while
152 controlling for mutational processes (Figure 2d). Note that we only focus on the relative
153 probabilities as we were unable to estimate the constant C , which conveniently cancels out
154 in Equation 1. To relate genotypes to a measure of residual *APC* activity, we determine the
155 total number X of 20AARs retained across the two alleles for each genotype (Figure 2b) and
156 estimate the relative progression probability of genotypes with X retained 20AARs, \tilde{p}_X .

157

a.


b.

Allele 1	Allele 2	APC genotype	Total retained 20AARs
Truncating mutation in region RM	Truncating mutation in region RN	(M,N)	M+N
Truncating mutation in region RM	Copy-neutral LOH	(M,x2)	2xM
Truncating mutation in region RM	Copy-loss LOH	(M,-)	M

d.

c.

158

159 Figure 2. Mathematical approach to testing the 'just-right' hypothesis.

160 (a) Location of APC truncating mutations across cBioPortal (crosses, n=1,305) and 100kGP (dots, n=1,366) CRCs with biallelic APC loss. Mutation closest to 5' gene end denoted as on Allele 1 with the other mutation denoted as being on Allele 2. For cBioPortal, only tumours without copy number alterations in APC were considered. For 100kGP, tumours with loss of heterozygosity of APC via copy-neutral alteration and copy-loss of an allele, are plotted in pink and orange, respectively. The location of 20AARs and SAMP repeats is marked in dashed lines. The data displays a two-dimensional hotspot: tumours with mutations in region R_0 of allele 1 tend to have mutations between regions R_1 and R_2 of allele 2, and points to the 20AARs limiting the regions of interest. (b) Classification of biallelic APC mutant cells by the position and class of the two hits, and the corresponding total number X of 20AARs retained across the two alleles. (c) Mathematical model of CRC initiation, in which cells accumulate truncating mutations of APC in region R_M with probability m_M , copy-loss LOH with probability m_- or copy-neutral LOH with probability m_{x2} . Once a stem cell has lost both copies of APC, the cell progresses into cancer with a probability that depends on the APC genotype, $p_{(M,N)}$. From the model, the expected frequency of cancers with a given genotype, $f_{(M,N)}$, can be derived, which is comparable to cancer sequencing data. (d) Schematic of the strategy developed

175 to infer the relative probability of progression of genotype (M,N) , $\tilde{p}_{(M,N)}$, by combining mathematical
176 modelling with sequence data from sporadic and familial APC-driven CRC.

177

178

179 'Just-right' APC inactivation for CRC initiation

180

181 To test and quantify the effect of different APC inactivation levels for cancer initiation, we
182 applied our mathematical model to the 100kGP cohort ³. Initially, we considered
183 microsatellite-stable (MSS) primary tumours with double allelic inactivation of APC, and
184 without pathogenic mutations of DNA polymerase epsilon (*POLE*) (n=1,037, filtering details
185 are in Methods).

186

187 First, we parametrized the model using mutational signatures active in healthy colonic crypts
188 ³⁰ to estimate the probabilities of truncating mutations in different regions of APC under
189 neutral evolution (Figure 3a-c). Primarily due to R_0 being the longest region, the majority of
190 variants are expected to occur within R_0 (Figure 3a). However frameshift mutations are
191 relatively biased to R_3 , due to the activity of indel signature ID2 acting on a 7-base thymine
192 mononucleotide repeat starting at codon 1554 (Figure 3b). Assuming that genotypes
193 retaining 0 copies of 20AARs are equally tumorigenic, the proportion of those that have
194 copy-number alterations is informative of the relative rates of CL-LOH and CN-LOH
195 compared to single base substitutions (SBS). By using a SBS rate in healthy colonic crypts
196 of 1.45×10^{-8} ³⁰, and noting that CN-LOH can only occur as a second hit, we find rates of
197 4.72×10^{-6} /cell/year for APC CL-LOH and 7.18×10^{-6} /cell/year for APC CN-LOH (Methods).

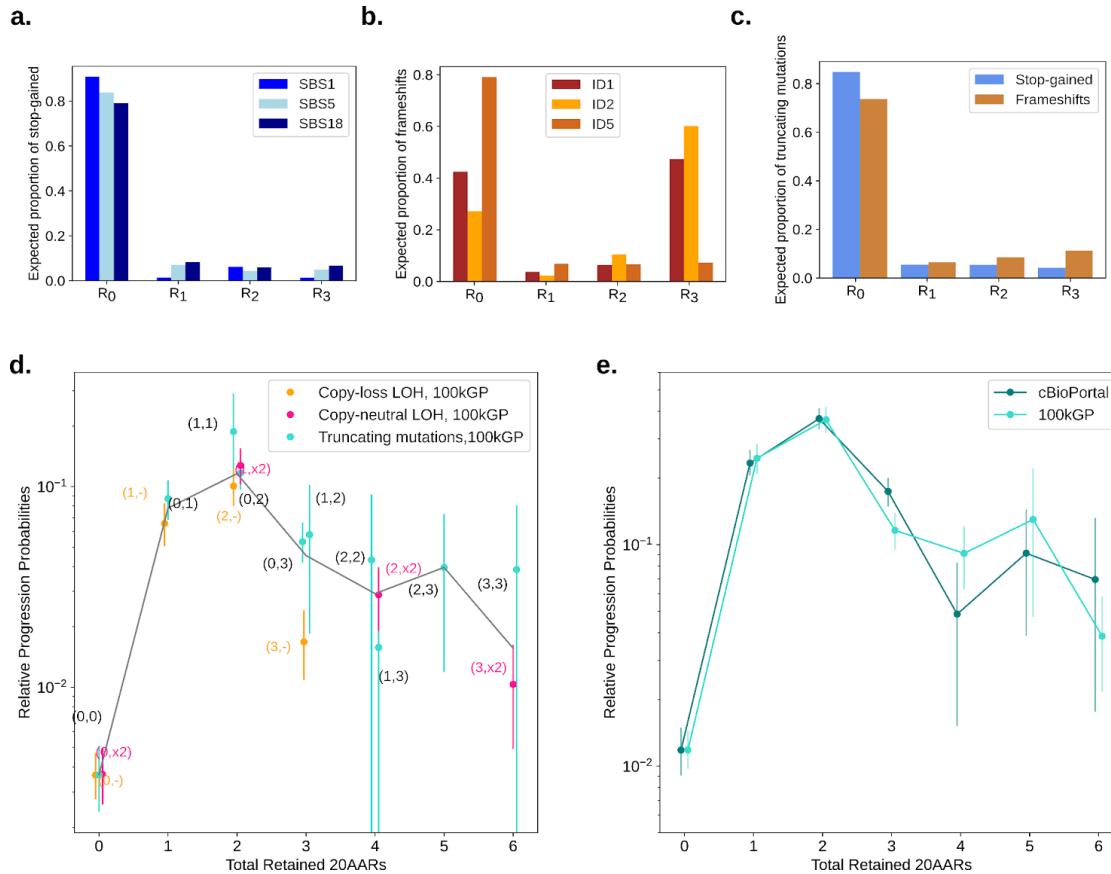
198

199 Combining the mutation probability estimates of different APC genotypes with the
200 corresponding frequencies in MSS CRCs in the 100kGP cohort, we estimated the relative
201 progression probabilities of APC genotypes, $\tilde{p}_{(M,N)}$. Remarkably, we found that genotypes
202 (1,1), (1,x2), (0, 2) and (2,-) have around 50 times higher progression probabilities than
203 genotype (0,0) (Figure 3d, Supplementary Table 7). Thus, we rejected the 'uniform CRC risk'
204 hypothesis that all genotypes have the same cancer progression risk, showing that selective
205 pressures shape the APC genotype distribution (non-overlapping 95% CIs).

206

207 The total number of 20AARs explains a considerable degree of variability in the relative
208 progression probabilities between genotypes ($R^2=0.82$), supporting a model in which the
209 total number of 20AARs across both alleles determines APC activity. This can be directly
210 observed in Figure 3d, which shows a striking concordance in the relative progression
211 probabilities amongst genotypes that result in the same total 20AARs. We reject the
212 hypothesis that maximal loss of APC provides maximal CRC risk (0 not in 95% CI of mode),
213 instead finding that an intermediate level of APC loss with a total of 2 copies of 20AARs
214 results in maximal tumorigenic effect. Remarkably, the relative progression probability of 0
215 copies of 20AARs, which corresponds to maximal APC loss, is similar to that of retaining 6
216 copies of 20AARs, which is thought to retain most APC activity.

217


218 Similar results were found when analysing primary MSS CRCs in the cBioPortal cohort ^{4,5},
219 where we considered biallelic diploid APC mutant samples ^{4,5}. We again reject both the
220 'uniform CRC risk' and the 'max-loss implies max-risk' hypotheses (95% CI, bootstrapping),

221 and find that the total number of 20AARs explains variability between genotypes ($R^2=0.89$,
 222 Supplementary Figure 1). In Figure 3e, we plot the relative progression probabilities by the
 223 number of 20AARs in the 100kGP and cBioPortal cohort, showing almost identical curves
 224 across the two independent cohorts when classifying tumours by the total number of
 225 retained 20AARs. Since our analysis indicates that the total number of 20AARs explains
 226 most genotypic variability, in the rest of this work, we focus on the progression probabilities
 227 of cells with different total numbers of 20AARs retained.

228

229 Given the correlation between APC inactivation and Wnt activity^{20-23,31}, the above findings
 230 support the hypothesis that a just-right level of Wnt dysregulation leads to maximal cancer
 231 risk. However, a considerable proportion of tumours develop through ‘non-optimal’ APC
 232 inactivation levels (e.g. 14.5% of tumours in 100kGP retain 0 copies of 20AARs). Next, we
 233 study other factors that influence Wnt activity to understand the variability in CRC
 234 progression risk amongst lesions with the same APC genotypes.

235

236

237 Figure 3. Optimal number of 20AARs for CRC progression .

238 (a, b) The proportion of stop-gained and indels, respectively, expected to fall in different regions of
 239 APC, estimated by considering the ubiquitous mutational signatures found in healthy colon crypts³⁰.
 240 (c) The expected proportion of truncating mutations in each region which is used to estimate the rates
 241 of truncating mutations in each region. (d) The relative progression probability of different APC
 242 biallelic genotypes, $p_{(M,N)}$, is plotted against the total number of 20AARs retained across both alleles.

243 The frequencies of genotypes were calculated from sequence data of MSS primary CRCs in the
 244 100kGP cohort (n=1,037, Methods). Whiskers represent 95% confidence intervals (bootstrapping).

245 The grey line is the average of the progression probability over all genotypes resulting in a given

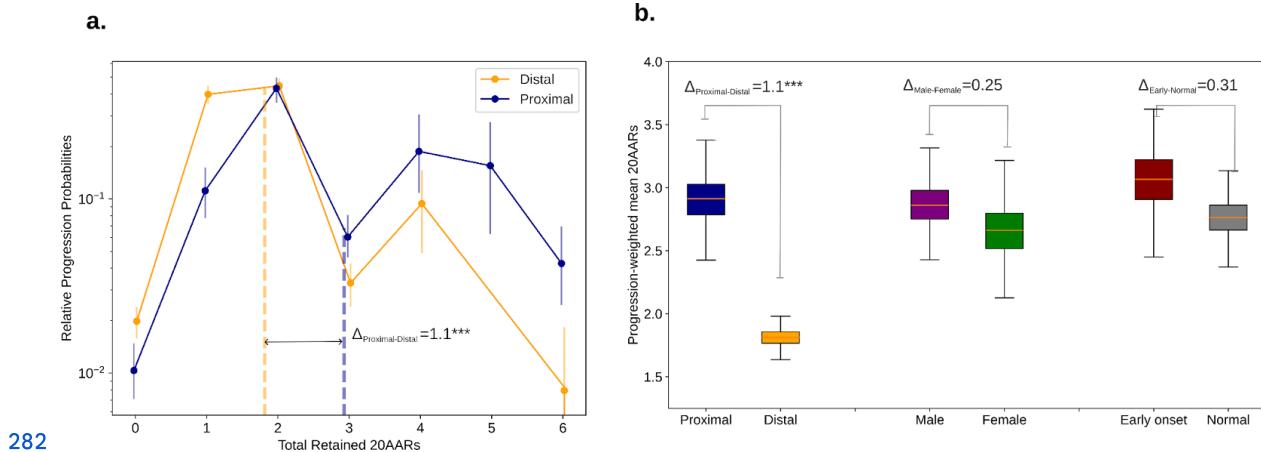
246 number of retained 20AARs, weighted by the number of samples. (e) The relative progression
247 probability of different total number X of 20AARs retained across both alleles of APC , \tilde{p}_X , with
248 frequencies calculated from sequence data of MSS primary CRCs in 100kGP (n=1,037, Methods) and
249 cBioPortal (n=1,041, Methods).

250

251 **APC inactivation varies across anatomical sites**

252

253 Molecular differences between lesions in different colonic sites have been identified^{27,32},
254 which could contribute to variability in ‘just-right’ Wnt levels. Mutational signature burden
255 differs significantly across anatomical locations in both healthy crypts³⁰ and CRCs^{3,27}.
256 However, we found that the difference in signature proportion was relatively minor in healthy
257 crypts (Supplementary Figure 2, Supplementary Table 5), hinting that site-specific mutational
258 processes are unlikely to play a major role in location-specific APC genotype patterns. To
259 isolate-out variability in selection, we accounted for site-specific mutational processes, and
260 calculated the relative progression probability curves separately for both proximal and distal
261 (including rectum) CRCs, finding significant differences between anatomical sites (Figure
262 4a).


263

264 To quantify differences in selection and relate them to Wnt activity, we computed the
265 progression-weighted mean 20AARs number, defined as the average number of 20AARs
266 weighted by the corresponding progression probabilities (Methods, Equation M5). This can
267 be interpreted as a proxy for the optimal level of Wnt activation contributed by APC loss. We
268 can then compare two subtypes of cancers A and B by calculating the difference Δ_{A-B}
269 between their respective progression-weighted mean 20AAR number (Methods, Equation
270 M6). If $\Delta_{A-B} > 0$, the shift suggests that tumours in subtype A “prefer” to retain a higher
271 number of 20AARs and thus require lower Wnt activity, and vice versa for $\Delta_{A-B} < 0$.

272

273 Using the Δ measure, we found a significant difference when stratifying tumours by
274 anatomical site, with the progression-weighted mean 20AARs number being higher amongst
275 proximal tumours compared to distal ($\Delta_{\text{Proximal-Distal}} = 1.1$, $p < 0.001$, permutation test) (Figure
276 4b). This suggests that tumours in the proximal colon benefit from lower Wnt activation due
277 to APC loss. We considered other clinical features reported in the 100kGP cohort that could
278 underlie variability of APC genotypes, but found no significant differences (permutation test,
279 $p > 0.05$) upon stratifying by sex or early onset cancers, defined as <50 years old at resection
280 (Figure 4B, Supplementary Figure 3).

281

283 Figure 4. 'Just-right' APC inactivation is higher in the distal colon.

284 (a) The relative progression probability versus total number of 20AARs retained over both alleles,
285 controlling for site-specific mutational processes, for proximal (blue) and distal (orange) cancers, with
286 genotype frequencies calculated from bulk sequence data of MSS primary CRCs in the 100kGP
287 cohort (n=313 proximal, n=574 distal/rectum). Whiskers on points indicate 95% confidence intervals
288 (bootstrapping). Thick dashed vertical lines indicate the progression-weighted mean 20AARs number
289 retained, representing the optimal level of Wnt activation contributed by APC loss. Proximal tumours
290 are under selection for a higher number of 20AARs. (b) The progression-weighted mean 20AARs
291 number retained in different tumour stratifications, whiskers on points indicate 95% confidence
292 intervals (bootstrapping). We find a significant difference of $\Delta_{P-D}=1.1$ between proximal and distal
293 tumours ($p<0.001$, permutation test), but no statistically significant differences between tumours in
294 male versus female patients ($p=0.25$, permutation test), nor in patients with early onset (<50 years old
295 at resection) versus normal onset (>50 years old at resection) ($p=0.31$, permutation test).

296

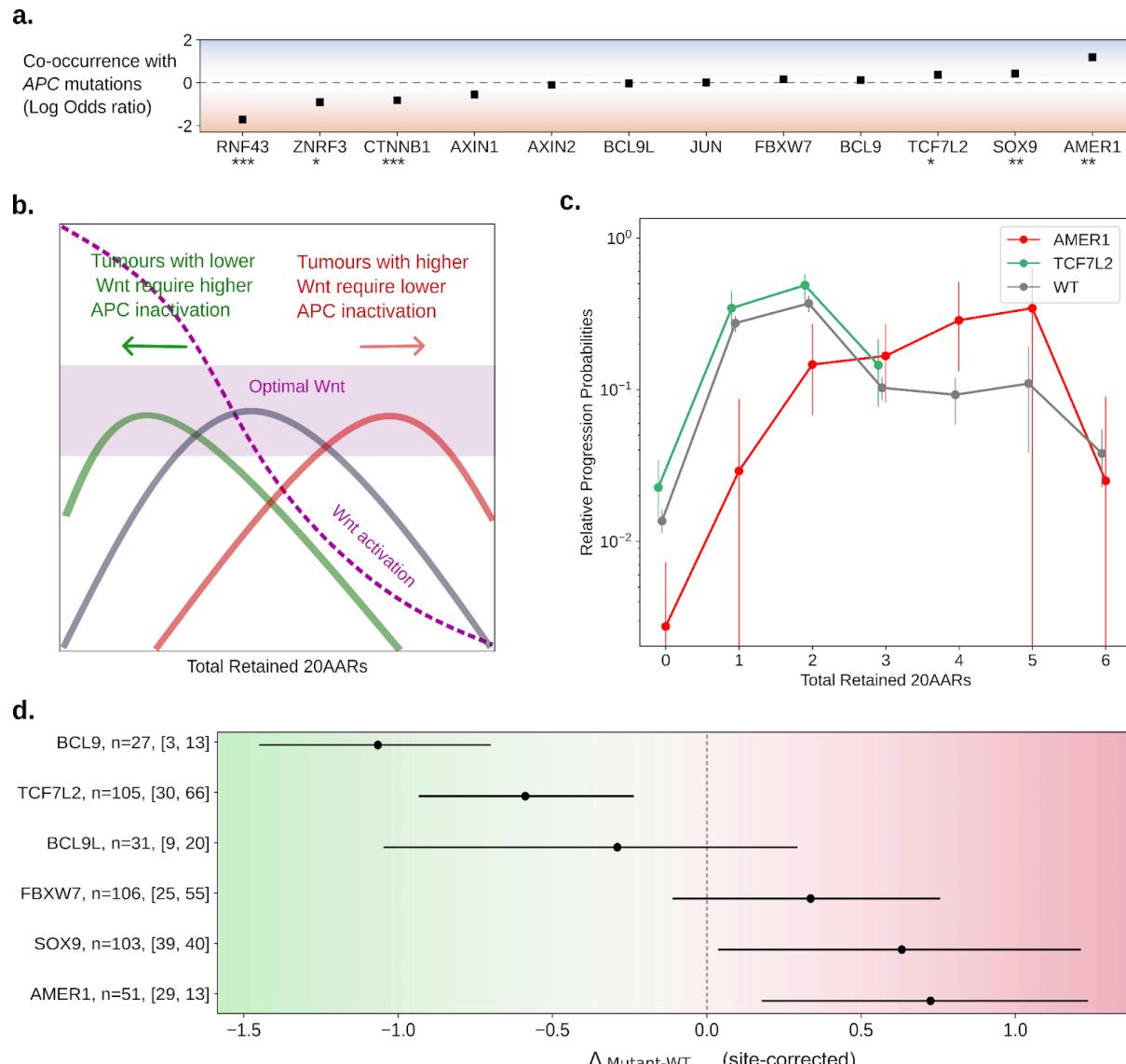
297

298

299 Secondary Wnt drivers can combine with APC inactivation to achieve 300 'just-right' Wnt signalling

301

302 While *APC* is the main Wnt driver in CRC, other genes are also thought to dysregulate the
303 Wnt pathway when mutated^{33,34}. Thus, we next investigated tumours with additional
304 mutations in Wnt drivers to study the 'just-right' hypothesis at the pathway level. Primary Wnt
305 drivers, such as inactivation of *RNF43*, activation of *CTNNB1*, or *RSPO* fusions, have
306 similarly drastic effects as *APC* inactivation on Wnt³⁵⁻³⁷. In the 100kGP cohort, alterations of
307 *RNF43* or *CTNNB1* are found in a minority of sporadic CRCs, mostly microsatellite unstable
308 (MSI), and are mutually exclusive with *APC* inactivation in MSS tumours (OR=0.019, $p=3.94$
309 10^{-24} and OR=0.15, $p=1.46 \cdot 10^{-5}$ respectively, Figure 5a, Supplementary Table 8), suggesting
310 an upper bound on Wnt activity. Other Wnt drivers with smaller effects on Wnt activity can
311 co-occur with primary Wnt drivers - these are referred to as secondary Wnt drivers^{38,39}. In
312 100kGP, driver mutations of *AMER1*, *SOX9* and *TCF7L2* co-occur with *APC* in MSS tumours
313 (OR=15.53, $p=2.34 \cdot 10^{-5}$; OR=2.62, $p=7.20 \cdot 10^{-4}$ and OR=2.35, $p=1.47 \cdot 10^{-3}$, respectively,
314 Figure 5A, Supplementary Table 8). However, their directional effect, that is whether they
315 increase or decrease Wnt activity, and their role in 'just-right' signalling, remain unclear.


316

317 By comparing MSS CRCs with and without secondary Wnt driver mutations, we reasoned
318 that the effect of the secondary Wnt drivers could be measured under the following rationale.
319 Assuming the 'just-right' model for Wnt activity, secondary Wnt driver mutations that cause
320 increased Wnt are expected to be more frequent in combination with *APC* genotypes that
321 lead to relatively low Wnt, i.e. those that retain more 20AARs, resulting in a rightward shift in
322 the relative progression probability curve, $\Delta_{\text{mutant-WT}} > 0$ (Figure 5b). Similarly, secondary
323 drivers that cause reduced Wnt would be more common with Wnt high *APC* genotypes,
324 which retain fewer 20AARs, hence a left-ward shift in the relative risk curve is expected, with
325 $\Delta_{\text{mutant-WT}} < 0$ (Figure 5b).

326

327 In agreement with the theoretical expectation, a clear shift to the right was observed in
328 tumours with driver (loss of function) mutations in *AMER1* (Figure 5c). This shift indicates
329 that *AMER1* mutations tend to occur in tumours with lower than average *APC* inactivation,
330 potentially increasing Wnt activity to the 'just-right' window, in accordance with both *in vitro*
331 and *in vivo* experiments showing that wild type *AMER1* reduces Wnt signalling⁴⁰⁻⁴².
332 Conversely, a shift to the left was observed in tumours with driver mutations in *TCF7L2*
333 (Figure 5c), which all retain 0-3 copies of 20AARs. To quantitatively classify genes into Wnt
334 up or down-regulators, we computed $\Delta_{\text{mutant-WT}}$ weighted by the proportion of mutations
335 occurring in proximal or distal tumours, thus obtaining a metric that is independent of
336 site-specific biases (Methods). Using this measure, we predicted mutated *AMER1* and *SOX9*
337 as Wnt up-regulators ($\Delta_{\text{mutant-WT}} > 0$, 95% CI, bootstrapping), and mutations of *TCF7L2* and
338 *BCL9L*, as Wnt downregulators ($\Delta_{\text{mutant-WT}} < 0$, 95% CI, bootstrapping) in tumours with *APC*
339 inactivation, relative to the wild type protein. Considering that most driver mutations in the
340 genes above result in loss of function³ (Supplementary Table 9), the findings are consistent
341 with current understanding of the wild-type proteins functions, e.g. *AMER1* and *SOX9*
342 promote *APC* activity, acting as Wnt repressors in healthy tissue, whilst *TCF7L2* and *BCL9L*
343 promote β -catenin transcription⁴³. Mutations of *FBXW7* and *BCL9* were consistent with no
344 effect on the cancer progression risk of *APC* genotypes, although this may be due to low
345 sample size, and variant-specific functional consequences. For *AXIN1*, *AXIN2* and *JUN*,
346 site-correction was not possible due to the limited number of samples.

347

348

349 Figure 5. 'Just-right' Wnt activity at the pathway level.

350 (a) Odds-ratio between APC inactivation and pathogenic mutations in other Wnt related genes, in the
 351 100kGP MSS cohort (n=1,639, Supplementary Table 8, Fisher's test, * p<0.05, ** p<0.01, *** p<0.001).
 352 (b) Schematic of the effect of additional mutations in Wnt pathway regulators. Assuming that the
 353 cancer progression probabilities of APC mutant cells are due to the corresponding level of Wnt
 354 pathway activation, tumours with Wnt upregulating mutations will require a smaller Wnt contribution
 355 from APC mutations, and so will have relative progression probability curves shifted to the right, and
 356 vice-versa. (c) Relative progression probabilities as a function of the total number of retained 20AARs,
 357 using sequence data of MSS primary CRCs with pathogenic *AMER1* mutations (n=51, red), with
 358 *TCF7L2* mutations (n=105, green), and tumors without mutations in non-APC Wnt regulators (n=825
 359 grey). Whiskers for 95% CI (bootstrapping), thick dashed vertical lines indicate the
 360 progression-weighted mean 20AARs number retained. (d) Difference in progression-weighted mean
 361 20AARs number for tumours with pathogenic mutations in different Wnt genes, $\Delta_{\text{mutant-WT}}$, corrected
 362 by the effect of anatomical site (Methods). Horizontal bars for 95% confidence intervals
 363 (bootstrapping). Numbers next to the gene labels indicate the total number of tumours with mutations
 364 in the Wnt driver, and the number of which were classified as proximal and distal colon, respectively.

365

366

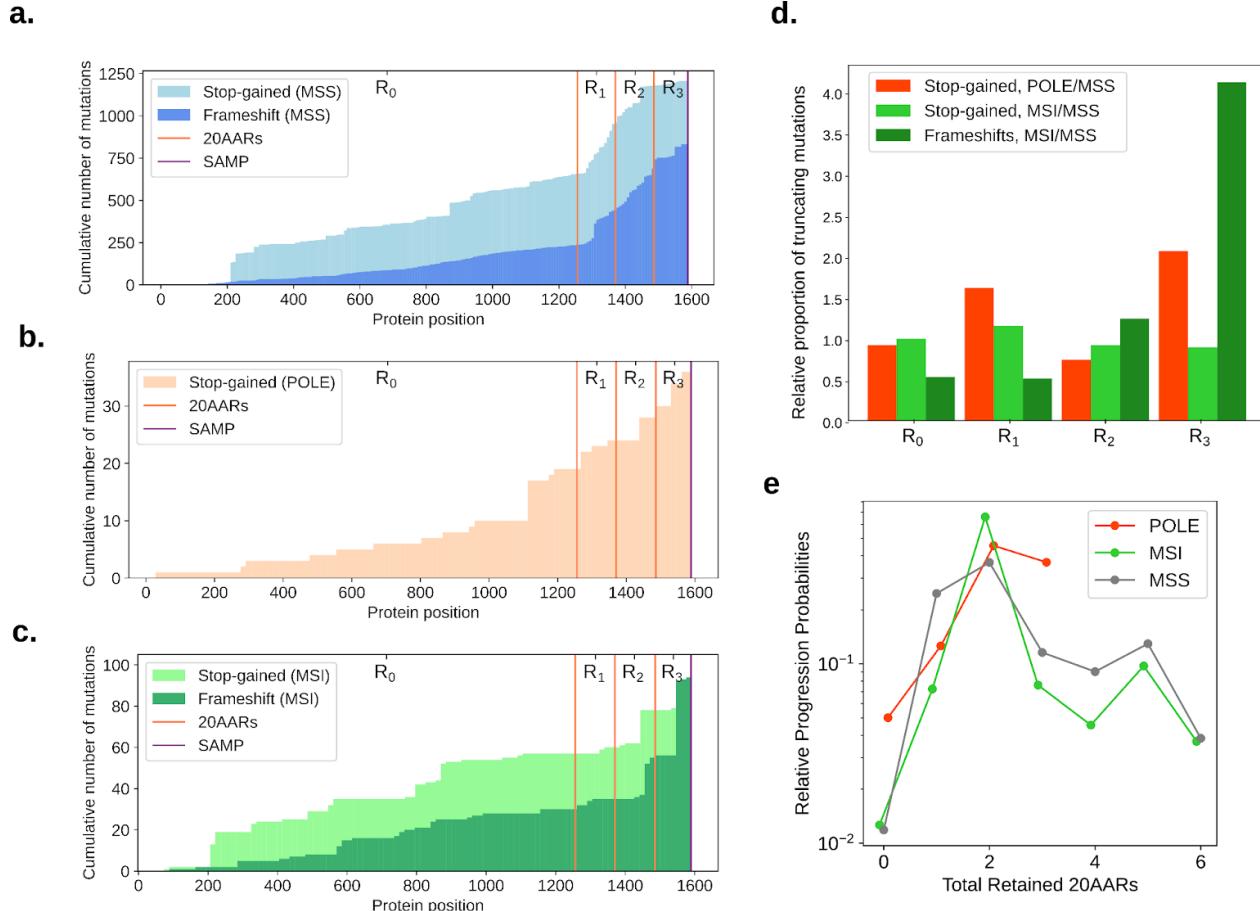
367 APC inactivation in hypermutant tumours

368

369 Thus far we have focused our analysis on MSS CRCs, and excluded hypermutant CRCs -
370 that is CRCs with mutations affecting the proofreading capability of DNA polymerase epsilon
371 (*POLE*), and microsatellite unstable (MSI) CRCs. These tumours not only have an increased
372 mutational burden, but are also characterised by distinct mutational processes^{44,45}. Thus, it
373 is not surprising that the landscape of *APC* mutations in *POLE* and MSI CRCs in the
374 100kGP cohort differs from MSS CRCs (Figure 6a-c). To assess whether hypermutant CRCs
375 comply with the 'just-right' distribution observed for MSS cancers (Figure 4), we first studied
376 how the intrinsic mutational processes active in hypermutant cancers affect the distribution
377 of *APC* genotypes, assuming that *POLE* mutations and mismatch repair deficiency precedes
378 *APC* inactivation^{46 47}.

379

380 Integrating data on *POLE* mutational signatures⁴⁸ with the sequence context of *APC*
381 (Methods), we found that *POLE*-mutant associated signatures result in an expected
382 increased proportion of stop-gained mutations in *APC* regions R_1 and R_3 compared to
383 healthy crypts (Figure 6d, Supplementary Table 5). Since no frameshifts in *APC* were
384 observed in the *POLE* CRCs in 100kGP (Figure 6b), we omitted the indel analysis for these
385 tumours. To analyse the distribution of *APC* genotypes in lesions with microsatellite
386 instability (MSI), we used the genome-wide mutational signatures found in >85% of MSI
387 CRCs in the 100kGP cohort³, n=364). Notably, the combined MSI indel signature results in a
388 5-fold bias for frameshifts in region R_3 compared to MSS (Figure 6d, Supplementary Table
389 5). This bias can be observed in Figure 6c, which displays a sharp increase in the number of
390 frameshift mutations in region R_3 , and should lead to more retained 20AARs in MSI
391 compared to MSS. As we have shown that proximal lesions are more likely to progress if
392 they retain more 20AARs, the bias could explain, in part, why *APC*-driven MSI lesions tend
393 to occur relatively often in the proximal colon compared to MSS (63:22 and 313:574
394 proximal:distal ratios in the 100kGP cohort, respectively).


395

396 We analysed the distribution of *APC* mutations in CRCs in 100kGP with pathogenic *POLE*
397 mutations or MSI, mirroring the analysis carried out for MSS CRCs (Methods). We excluded
398 lesions with copy-number alterations, resulting in n=17 *POLE* samples and n=64 MSI CRCs.
399 While subtle differences in the relative progression probability curves were observed (Figure
400 6e, Supplementary Figure 5), we again reject the hypothesis that complete *APC* loss
401 provides maximal CRC risk, with 2 copies of 20AARs providing maximal risk in both in
402 *POLE*-deficient and MSI CRCs (2 20AARs in the 95% CI, bootstrapping). Notably, we found
403 no significant differences in the progression-weighted mean 20AARs number compared to
404 MSS tumours ($\Delta_{\text{MSS-POLE}} = -0.22$, 95% CI=[-0.62, 0.15], $\Delta_{\text{MSS-MSI}} = -0.29$, 95% CI=[-0.67, 0.08],
405 bootstrapping), whilst, without adequately correcting for the characteristic mutational
406 signatures of *POLE* and MSI, the differences were larger, and statistically significant in the
407 case of MSI tumours ($\Delta_{\text{MSS-POLE,nc}} = -0.31$, 95% CI=[-0.78, 0.2], $\Delta_{\text{MSS-MSI,nc}} = -1.87$, 95%
408 CI=[-2.51, -0.81], Supplementary Figure 6). This finding emphasises the importance of
409 mutational bias analysis, and suggests that repair deficiencies are indeed required prior to
410 *APC* inactivation.

411

412

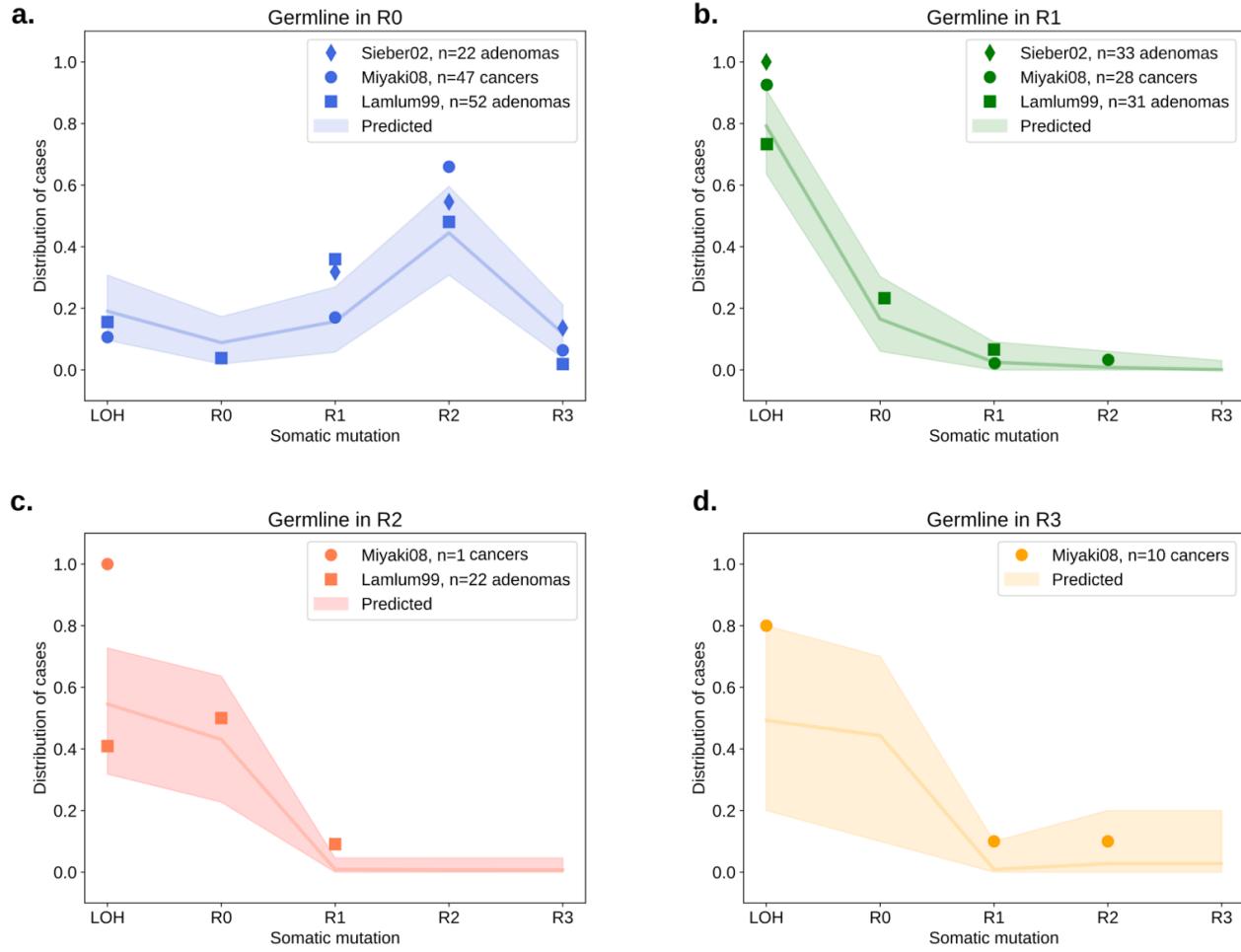
413

414

415 Figure 6. 'Just-right' APC inactivation in POLE and MSI CRCs .

416 (a-c) Cumulative number of stop-gained and frameshift mutations detected per codon position of APC
 417 in MSS (a), POLE-mutant (b) and MSI (c) primary CRCs in the 100kGP cohort. Vertical lines indicate
 418 the locations of the 20AAR domains and the SAMP repeat. (d) Expected proportion of mutations of
 419 different regions of APC in POLE-mutant and MSI relative to MSS, calculated using the mutational
 420 signatures detected in healthy colonic crypts ³⁰, POLE-mutant crypts ⁴⁸, and MSI colorectal cancers ³
 421 (Supplementary Tables 3-5). (e) The relative progression probabilities by total number of 20AARs
 422 retained in MSS, POLE-mutant and MSI CRCs in the 100kGP cohort.

423


424 'Just-right' APC mutations in FAP

425

426 Evidence for the 'just-right' hypothesis for APC mutations initially came from familial
427 adenomatous polyposis (FAP) patients, carrying germline mutations of APC. FAP patients
428 present with large numbers of polyps at early ages, and in most cases develop CRC unless
429 treated. In agreement with the 'just-right' hypothesis, the somatic hit depends on the
430 germline APC mutation, with most lesions retaining 1-3 copies of 20AARs^{16,17,49}. Moreover,
431 FAP patients show variable polyp burdens and time of cancer onset depending on the
432 specific germline mutation^{16,17,49}.

433

434 We used the progression probabilities inferred from the analysis of sporadic MSS CRC to
435 assess the concordance between sporadic and FAP tumours. In Figure 7, the expected
436 distribution of the somatic APC hit is compared to the observed distribution in FAP patients
437 from public datasets¹⁵, 86 CRCs from 23 FAP patients;¹⁶, 92 adenomas from 5 FAP
438 patients). For FAP patients with germline mutations in regions R_1 , R_2 and R_3 , the FAP data is
439 consistent with the expected distribution, with most adenomas and CRCs developing via
440 LOH or mutations of region R_0 , (Figure 7b-d). However, for patients with germline mutations
441 in R_0 , the sporadic CRC distribution underestimates the proportion of lesions that develop via
442 mutations in R_2 , whilst the proportion of tumours with LOH is underestimated in patients with
443 germline in R_1 or R_2 . The discordance might exist for several reasons, including: polyclonality
444 of some polyps in FAP; unmeasured factors in the FAP data including anatomical site of the
445 lesion or mutations in secondary Wnt drivers, which both affect optimal APC genotypes as
446 discussed above; different selective pressures might exist in FAP patients further enhancing
447 the selective pressure for 1-2 retained 20AARs, e.g. due to intercrypt competition. Broadly,
448 the concordance between the predicted and observed distribution of the somatic hit
449 suggests similar selection for intermediate APC inactivation in FAP tumours.

450

451 Figure 7. 'Just-right' in FAP patients.

452 (a-d) The distribution of the APC somatic hit on tumours in FAP patients with germline mutations in
 453 different regions. Points indicate the observed distribution in FAP patients from different studies ^{15,16}.
 454 The line indicates the expected distribution calculated using the mutation and cancer progression
 455 probabilities estimated from healthy crypts and sporadic CRC data, with shaded regions for a
 456 conservative 95% CI, obtained by performing multinomial simulations with number of trials given by
 457 the maximal number of patients across the studies in each germline group.

458

459

460

461 Discussion

462

463 Repression of APC function is the canonical tumorigenic event in colorectal cancer, resulting
464 in the Wnt pathway dysregulation that is a pervasive feature of this cancer type. The tumour
465 suppressor activity of APC relies crucially on its 20 amino acid repeat domains (20AARs),
466 which bind to β -catenin. By integrating somatic and cancer datasets with mathematical
467 modelling, correcting for mutational bias, we find a quantitatively consistent signal that
468 biallelic APC genotypes that retain intermediate β -catenin binding activity confer maximal
469 tumorigenic effect in MSS and hypermutant sporadic CRCs, as well as tumours in FAP
470 patients. While a degree of variability in the fitness conferred by specific mutations of
471 oncogenes is expected, e.g. G12D variants compared to A146T in KRAS⁵⁰, that complete
472 loss of the β -catenin-binding 20AARs in tumour suppressive APC does not lead to maximal
473 cancer risk is remarkable.

474

475 Although previous experimental work suggests differential β -catenin binding strengths
476 amongst the different 20AAR domains²⁴, our findings indicate that genotypes with the same
477 total number of 20AARs retained have similar CRC progression risks, independent of the
478 mutational pathways. For MSS CRCs, we found that cells with biallelic APC genotypes
479 resulting in 2 retained 20AARs are at 50 times higher probability of progressing to CRC than
480 those in which all binding domains are lost. As the number of repeats retained is inversely
481 correlated with Wnt activation (Kohler et al. 2008; Kohler et al. 2009), this suggests that APC
482 mutations are selected to result in intermediate Wnt activity, pointing to hyperactivation of
483 Wnt signalling as toxic for tumour development, in concordance with recent experimental
484 studies⁵¹. However, we note that variability amongst genotypes could also be related to
485 non-Wnt related essential functions of APC (Zhang and Shay 2017; Hankey, Franke, and
486 Groden 2018).

487

488 By assuming equivalent tumorigenic effect between point mutation and copy number driven
489 biallelic loss of all 20AARs, we estimated the rates of CL-LOH and CN-LOH driving APC
490 inactivation in the healthy colon as 4.72×10^{-6} and 7.18×10^{-6} /cell/year, respectively. These are
491 around an order of magnitude lower than previous estimates⁵², (Supplementary
492 Information), yet in better agreement with the ratio of LOH at the APC locus in CRCs in the
493 100kGP cohort and the FAP patients analysed (Figure 7).

494

495 Quantitatively strengthening prior observations²⁷, we found that proximal and distal tumours
496 are under selection for different levels of APC inactivation, with an effect independent of
497 site-specific mutational processes. Proximal tumours retain a higher number of 20AARs, and
498 thus appear to require lower activation of the Wnt pathway, agreeing with prior murine
499 studies³². This might be partly explained by a higher baseline expression of Wnt genes in
500 the proximal colon, as reported in expression assays in murine and human colonocytes^{32,53}.
501 In addition, it might indicate that the ‘just-right’ window varies across the colon, with lesions
502 in the distal under selection for higher Wnt, e.g. due to enhanced immune surveillance⁵⁴.

503

504 We found significant differences in the APC relative progression curves in tumours with
505 mutations in secondary Wnt drivers. In particular, we found that pathogenic mutations of
506 AMER1, which are thought to upregulate the Wnt pathway⁴⁰⁻⁴², are associated with APC

507 mutations that result in lower Wnt activation. In line with the mini-driver model ^{39,55}, our
508 findings suggest that secondary Wnt drivers combine with different biallelic *APC* genotypes
509 to achieve ‘just-right’ Wnt. Moreover, our analysis provides a framework to estimate the
510 effect on Wnt activity of secondary Wnt drivers that co-occur with *APC* inactivation,
511 indicating that, on aggregate, mutations in *SOX9* and *AMER1* are Wnt-upregulators, while
512 mutations in *TCF7L2* and *BCL9L* down regulate Wnt.

513

514 Despite its name, motivated by the initial discoveries ^{16,56}, the ‘just-right’ model should not be
515 interpreted entirely deterministically, in the sense that only specific *APC* mutations can drive
516 tumorigenesis. Instead, we suggest that ‘not-right’ mutations might still lead to cancer
517 progression, albeit with a much lower probability. Isolating precisely when the ‘just-right’
518 selective pressure acts during oncogenesis, e.g. enabling dysplastic polyp formation versus
519 progression from adenoma to carcinoma, will require comparative analyses with mutation
520 data from pre-cancerous tissues. Beyond fundamental understanding, recent efforts to
521 exploit hyperactivation of cancer pathways for therapeutics ⁵¹ motivate the need to quantify
522 the mutation-specific levels of pathway dysregulation. Exemplified by our analysis of *APC*
523 genotypes within the context of secondary Wnt driver mutations, cancer genotypes should
524 be assessed within the context of their associated signalling pathways to incorporate
525 epistatic effects, as opposed to adopting solely a mutation-centric lens. With a growing
526 amount of available data on somatic mutational processes and tumour mutational
527 landscapes, pathway informed computational approaches as proposed in this work are
528 necessary to quantify how the forces of selection and mutation combine to shape cancer
529 evolution.

530

531

532

533

534 Methods

535

536 M1. Classification of APC-driven CRC tumours

537 1.1 Genomics England

538 We used cohort data of version 5 of the UK 100,000 Genomes Project, which performed
539 whole genome sequencing on 2,023 paired cancer (~100x average depth) and normal
540 (blood, 33x) samples from 2,017 CRC patients (median age at sampling 69 years, range
541 23-94; 59.4% male). This is the same cohort used by Cornish *et al.*³.

542

543 We considered primary cancers with somatic pathogenic mutations in *APC* (n=1,376,
544 84.22%), and excluded patients that had received radiotherapy prior or other treatment to
545 surgery, or had any germline pathogenic mutations in *APC* or Lynch Syndrome genes.
546 Unless otherwise stated, the analysis was performed on cancers with MSS status and no
547 pathogenic *POLE* mutations (n=1,263). Splicing mutations were excluded, as well as any
548 missense mutations, and stop-gained and frameshift mutations occurring downstream of the
549 SAMP repeat (amino acid position 1569). We also excluded samples with a single *APC*
550 mutation and no evidence for copy number alterations (n=140).

551

552 In order to determine the *APC* genotype in terms of 20AARs of each sample, we first
553 identified the position of stop-gained and frameshift mutations. In particular, we classified
554 stop-gained and frameshift mutations in four regions of interest, relative to the 20AARs
555 domain:

556

Region	Amino acid position
R_0	[0, 1256]
R_1	(256, 1370]
R_2	(1370, 1486]
R_3	(1486, 1569]

Table M1. Classification of *APC* into regions.

557

558

559 **Mapping to *APC* genotype at initiation.** In order to classify samples by the copy-number of
560 *APC* at tumour initiation, we used the allele-specific copy number alteration calls of Cornish
561 *et al.*³ at the *APC* site of chromosome 5 (5q22.1–q22.3), as well as whole genome
562 duplication (WGD) status estimated by Cornish *et al.*³. We denote the allele-specific
563 copy-number of a sample by [a, b], where 'a' gives the relative contribution to sequence
564 reads coming from the major allele, and 'b' from the minor allele. In keeping with prior
565 observations⁵⁷ whole-genome duplications were assumed to occur after *APC* inactivation.
566 Thus, for tumours with negative WGD status, we classified them as normal diploid if the copy

567 number was [1, 1]; as CL-LOH if they were [1, 0] and CN-LOH if [a, 0] for $a \geq 2$ (assuming a
568 CN-LOH event was followed by amplification for $a > 2$). For tumours with positive WGD
569 status, we classified [a, b] as normal diploid at initiation with $a, b > 0$, whilst [a, 0] was
570 classified as CL-LOH for $a = 1, 2$, and CN-LOH for $a > 2$. Samples with other copy-number
571 alterations were excluded, as well as samples with a single truncating mutation upstream
572 SAMP and no copy-number alterations. Supplementary Table 6 summarises the mapping to
573 APC genotype at initiation for all considered combinations of copy number, WGD and
574 annotated variants.

575

576 **Classification by number of retained 20AARs.** Given the APC genotype of a sample, we
577 determined the total number of 20AARs retained across both alleles at tumour initiation.
578 Truncating mutations in regions R_1 , R_2 and R_3 are downstream of the last exon-exon junction
579 of APC and therefore evade nonsense-mediated decay (NMD)¹⁸. Thus, we assume that
580 frameshift and stop-gained mutations in regions R_1 , R_2 and R_3 result in a translated protein
581 with 1, 2 and 3 copies of 20AARs retained, respectively. Even though some stop-gained
582 mutations of region R_0 are potentially targeted for NMD¹⁸ (Figure 1b) these would result in 0
583 copies of 20AARs translated, hence we assume that truncating mutations in region R_0 result
584 in 0 copies of 20AARs. Finally, under the assumption that whole-genome duplications occur
585 after APC inactivation, the total number X of 20AARs expressed at initiation is independent
586 of the WGD status. All together, we determined the total number X of 20AARs retained at the
587 protein level using the mutation and copy-number status of the sample as follows:

588

589 - If a sample has a mutation in region R_M in one allele and a mutation in region R_N in
590 the other allele, a total of $X = M + N$ 20AARs are translated across both alleles.
591 - If upon a mutation in region R_M the second hit is a copy-loss LOH, then the total
592 number of 20AARs translated is $X = M$.
593 - If upon a mutation in region R_M the second hit is a copy-neutral LOH, then the total
594 number of 20AARs translated is $X = 2M$.

595

596 **Classification by site.** The anatomical site of the tumour was defined corresponding to the
597 position of the tumour at sampling. We classified samples occurring in the proximal colon
598 ($n=359$) and those in the distal or rectum colon ($n=620$). The rest of samples were excluded
599 from the site-specific analysis.

600

601 **Mutations in additional genes.** We considered additional the Wnt driver genes highlighted
602 in van Ginkel *et al.*⁵⁵. Presence of clonal driver mutations in other Wnt genes (AMER1,
603 AXIN1, AXIN2, BCL9, BCL9L, CTNNB1, FBXW7, JUN, RNF43, SOX9, TCF7L2, ZNRF3,
604 RSPO) as previously determined by Cornish *et al.*³.

605

606 **MSI and POLE analysis.** For the hypermutant tumour analysis, we considered tumours with
607 high microsatellite instability (MSI), as classified by³. The 100kGP CRC cohort includes 360
608 MSI tumours, out of which 110 had biallelic APC mutations (30.55%). Out of the 110, 15
609 samples were excluded because the mutations were not truncating mutations upstream
610 SAMP. We also identified 18 samples with POLE mutations established as pathogenic⁵⁸.
611 These were further checked for hyper and ultra mutant (>100 mutations/megabase). All
612 POLE samples had biallelic APC mutations (100%).

613

614 **Mutational signature of MSI samples.** The mean exposure vectors for single-base
615 substitution and indel signatures in MSI samples was calculated using the signature analysis
616 performed by Cornish *et al.*³.

617

618 **Data accessibility.** Genomics England data is available for users of regecip. Summary
619 tables including the number of samples with each *APC* genotype for different cohorts and
620 the scripts required to perform the main analysis are available at
621 https://github.com/xellbrunet/APC_Analysis_Public.

622

623 1.2 *cBioPortal* and *GENIE*

624 The same analysis outlined above was performed to classify *APC*-mutant tumours in an
625 independent cohort combining public data accessed through cGenieBioPortal^{4,5}
626 (Supplementary Table 1). Primary tumours with two pathogenic mutations in *APC* and no
627 copy-number alterations at *APC* locus other than WGD were considered, resulting in
628 n=1,305 samples. The data and scripts used are available at
629 https://github.com/xellbrunet/APC_Analysis_Public.

630

631 1.3 *FAP Patients*

632 To compare the distribution of the somatic hit on tumours in FAP patients, we used three
633 published data-sets: ⁵⁹ and ^{15,16} collected 93 adenomas, 55 adenomas and 86 cancer
634 samples from 53, 18 and 23 FAP patients, respectively, and recorded the position and type
635 of the germline mutation as well as any other mutations or loss of heterozygosity on *APC*.
636 We further classified samples by *APC* genotype as outlined in section M1.1. As we could not
637 distinguish between CN-LOH and CL-LOH, these were both classified as LOH.
638 Characteristics of the cohorts can be found in the source publications. The data and scripts
639 used are available at https://github.com/xellbrunet/APC_Analysis_Public.

640

641

642 M2. Mathematical model of CRC initiation

643

644 We propose a mathematical model of *APC*-driven CRC initiation to estimate the relative
645 probability of a given *APC* genotype resulting in tumour progression, where we define the
646 *APC* genotype of a cell according to the type of the two inactivating alterations. We first
647 outline the model, before detailing how it is parameterised and used for inference.

648

649 2.1 Defining the CRC progression probability of *APC* genotypes

650

651 We model the accumulation of *APC* mutations in colonic stem cells, with the following
652 mutation types considered: SNV, small indels, copy-neutral LOH, and copy-loss LOH. All
653 colonic stem cells acquire *APC* inactivating mutations at estimable, low mutation rates per
654 year (estimates given below). Once a stem cell acquires a first *APC* mutation, we assume
655 that the lineage of this cell fixes within the colon crypt by drift with a given probability which is
656 constant over all mono-allelic *APC* mutant cells. Stem cells in single mutant crypts continue
657 to accumulate *APC* mutations, leading to bi-allelic *APC* inactivation. We separate our
658 explanation of the model into those pertaining to mutation, and selection.

659

660 **Mutation.** To model the mutational paths to bi-allelic APC inactivation, and to track the
661 number of intact 20AAR domains, we introduce the following labelling, let: $[W, W]$ be stem
662 cells without an *APC* mutation on either allele; types $\{0, 1, 2, 3\}$ denote truncating mutations
663 in regions R_0, R_1, R_2 or R_3 , respectively; type $-$, which denote copy loss of an allele
664 (CL-LOH); and type $x2$, which denotes copy neutral loss of an allele (CN-LOH). Let m_i be the
665 probability that when a mutation occurs on an allele is of type i , where $i \in \{0, 1, 2, 3, -, x2\}$.
666 Thus, given that a double wild type colonic cell gets a first *APC* mutation, it becomes of type
667 i with probability m_i . Our inference procedure to estimate the numerical values of m_i is
668 detailed below in 'Mutation and genotype probabilities'. We label the cell with a single
669 mutation of type i by $[i, W]$. Cells with a single *APC* mutation can acquire a mutation on the
670 remaining wild type allele. If this mutation occurs, it is of type j with probability m_j , where
671 again $j \in \{0, 1, 2, 3, -, x2\}$. Hence, given that a cell has accumulated two *APC* mutations,
672 these are of type i and type j respectively, with probability $m_i m_j$. We label the biallelic mutant
673 cell by $[i, j]$. This two-step process can be illustrated by

674

$$[W, W] \xrightarrow{m_i} [i, W] \xrightarrow{m_j} [i, j]$$

675

676 where the probability of the path is $m_i m_j$. In principle, arbitrarily long mutation paths leading
677 to *APC* inactivation exist. However, due to the mutation rates being small ($\mu_{APC} =$
678 $6.22 \cdot 10^{-6}$, Methods), long paths are unlikely, and so we consider only mutation paths of
679 length 2. Moreover, we disregard: CN-LOH as the first mutation event; CN-LOH following
680 CL-LOH; and, double CL-LOH, i.e. $[-, -]$ as this genotype is unobserved in cancer data.

681

682 We were unable to distinguish the temporal order of mutations in sequence data, apart from
683 genotypes resulting from CN-LOH. Thus, we introduce the further the genotype label (M, N)
684 where $M \in \{0, 1, 2, 3\}$ is the region containing the furthest upstream truncating mutation, and
685 $N \in \{0, 1, 2, 3, -, x2\}$ is either: the region containing the other truncating mutation; $"-"$ for
686 CL-LOH; or $"x2"$ for CN-LOH. Thus, e.g., both $[1, 2]$ and $[2, 1]$ map to $(1, 2)$. The probability of
687 any (M, N) genotype can be written in terms of $m_i m_j$, and we normalise these probabilities
688 such that they sum to one. Specifically, the probability that that a cell with bi-allelic
689 inactivation of *APC* has genotype (M, N) is:

$$m_{(M, N)} \propto K m_M m_N, \text{ (Equation M1)}$$

690 where $K=1$ if $N \in \{M, x2\}$ and $K=2$ otherwise due to genotype labelling and the proportionality
691 is due to normalising. Details concerning inferring the numerical values of $m_{(M, N)}$ using
692 mutational signatures are given in methods 2.2.

693

694 **Selection.** We suppose that cells with biallelic *APC* inactivation can stochastically progress
695 to CRC, with a cancer progression probability that depends on the *APC* genotype (M, N) ,
696 which we denote $p_{(M, N)}$. Hence, combining the mutational probabilities of acquiring *APC*
697 genotypes with the progression probabilities, each CRC has genotype (M, N) with probability

$$700 f_{(M, N)} = \frac{m_{(M, N)} p_{(M, N)}}{\sum_{(i, j)} m_{(i, j)} p_{(i, j)}}.$$

701 Therefore, the progression probability of genotype (M, N) is

702

703
$$p_{(M,N)} = C \frac{f_{(M,N)}}{m_{(M,N)}}, \text{ (Equation M2)}$$

704 where $C = \sum_{i,j} m_{(i,j)} p_{(i,j)}$ is a constant that does not depend on the type. As we aim to assess

705 the relative oncogenic effect of different APC genotypes, we primarily focus on the relative
706 progression probability of different APC genotypes

707

708
$$\tilde{p}_{(M,N)} = \frac{p_{(M,N)}}{\sum_{i,j} p_{(i,j)}} = \frac{f_{(M,N)}/m_{(M,N)}}{\sum_{i,j} f_{(i,j)}/m_{(i,j)}}, \text{ (Equation M3)}$$

709 $f_{(M,N)}$ can be estimated from the frequency of CRCs with genotype (M,N) in cohorts of
710 APC-mutant CRCs, whilst the probability of biallelic APC inactivation being of a given
711 genotype $m_{(M,N)}$ is estimated by integrating mutational signature data with the genomic
712 sequence of APC (see 'Mutation and genotype probabilities' section below).

713

714 In both 100kGP and cBioPortal cohorts, we found that the total number of 20AARs explains
715 a considerable degree of variability in the relative progression probabilities between
716 genotypes (Figure 3), supporting a model in which the total number of 20AARs across both
717 alleles determines APC activity. This motivated classifying samples by the total number of
718 20AARs. The progression probabilities of cells with a given total number of 20AARs can be
719 similarly calculated. Let X denote the number of 20AARs retained in a cell with genotype
720 (M, N) with $M \in \{0, 1, 2, 3\}$, where $X = M + N$ if $N \in \{0, 1, 2, 3\}$, $X = 2M$ if $N = "x2"$ and
721 $X = M$ if $N = " - "$. To estimate the probability of a genotype occurring neutrally retaining X
722 copies of 20AARs, we sum of the probabilities of genotypes that result in X retained
723 20AARs,

724
$$m_X = \sum_{(i,j):X} m_{(i,j)},$$

725 and similarly for the probability of a CRC with X retained 20AARs,

726
$$f_X = \sum_{(i,j):X} f_{(i,j)}$$

727 which is estimated from the frequency of CRCs with X 20AARs in the cohort of interest, as
728 outlined in 1.1. The relative progression probability of X retained 20AARs is given by

729
$$\tilde{p}_X = \frac{p_X}{\sum_{y=0}^6 p_y} = \frac{f_X/m_X}{\sum_{y=0}^6 f_y/m_y} \text{ (Equation M4)}$$

730

731 **Comparing tumour subtypes.** We are interested in comparing different types of tumours,
732 e.g. tumours in the distal or proximal colon or tumours with additional driver mutations. Let
733 $\tilde{p}_{x,A}$ denote the relative progression probability of X retained 20AARs calculated using the

734 mutational processes and genotype frequencies of a subset A of tumours. We define the
735 'progression-weighted mean 20AARs number' of subset A as

736
$$\sum_{x=0}^6 x \tilde{p}_{x,A} \text{ (Equation M5)}$$

737 and compare disjoint subtypes of tumours A and B by computing the difference in the mean
738 number of 20AARs,

739
$$\Delta_{A-B} := \sum_{x=0}^6 x \tilde{p}_{x,A} - \sum_{x=0}^6 x \tilde{p}_{x,B}. \quad (\text{Equation M6})$$

740 **Progression probabilities in FAP patients.** FAP patients have germline mutations in APC,
741 hence tumour progression only requires a somatic mutation on the non-mutated allele. Thus,
742 under the model outlined above, for patients with germline mutation in region R_M , the
743 probability that, given that they develop CRC, this has APC genotype (M,N) is

744
$$m_N p_{(M,L)} / \left(\sum_{i=0,1,2,3} m_i p_{(M,i)} + m_{-} p_{(M,-)} + m_{x2} p_{(M,x2)} \right). \quad (\text{Equation M7})$$

745

746 2.2 Estimating mutation and genotype probabilities

747

748 In this section we estimate the probability that cells with bi-allelic APC inactivation have
749 genotype (M,N) under mutational processes alone, $m_{(M,N)}$. As the common factor of m_0
750 cancels in Eq. (!!! eqn for $m_{(M,N)}$) it is enough to estimate m_i/m_0 for $i \in \{0, 1, 2, 3, -, x2\}$. The
751 data and scripts used are available at https://github.com/xellbrunet/APC_Analysis_Public.

752

753 **Truncating mutations.** We first estimate the probability a truncating mutation falls in a given
754 region, that is $m_i/(\sum_j m_j)$. Let $p_{\text{stop-gain}}$ be the probability a new truncating mutation is a
755 stop-gain, and $p_{\text{frameshift}}$ be defined analogously for frameshifts. To estimate these, we note the
756 ratio of SBS to indels in healthy crypts was found to be 24:1³⁰. So by considering the
757 number of single-base substitutions that can result in a stop codon upstream the SAMP
758 repeat, we find that $(737)/(3*4717) \sim 5.2\%$ of SBS result in a stop-gained mutation whilst, by
759 finding the total exposure of indel classes called in mutational signature analysis from
760 healthy colon crypts³⁰ that disrupt the reading frame, we estimate that $\approx 88\%$ of indels result
761 in a frameshift. Therefore, we estimate that the ratio of stop-gained to frameshifts in APC in
762 healthy tissue is approximately 4:3, which is similar to the observed ratio in APC in the
763 100kGP MSS cohort, $1194/712 \sim 1.67$. Thus we estimate $p_{\text{stop-gain}} = 4/7$, with and $p_{\text{frameshift}} =$
764 $3/7$.

765

766 We integrated SBS and indel mutational signature data with the genomic sequence of APC
767 to estimate the probability that, when a stop-gain, or frameshift, mutation occurs, that it falls
768 in region i , considering only mutational processes. We adopted the COSMIC V3⁶⁰ mutation
769 classes for SBS and indels but we omitted micro-homology ID classes, which account for
770 <5% of IDs observed in healthy colonic crypts³⁰. Separately for SBS and ID, we estimated
771 $P(\text{new mutation is of class } x \text{ and occurs at loci } i \text{ in APC}) = P(\text{mutation occurs at loci } i |$
772 $\text{mutation class } x) * P(\text{mutation class } x)$. The term $P(\text{mutation occurs at loci } i | \text{mutation class } x)$
773 is equal to 0 if loci i is not compliant with mutation class x ; else it is equal to the number of
774 x -compliant loci within APC (considering both complementary strands).

775

776 We estimate $P(\text{mutation class } x)$ separately for both SBS and ID, but with a common
777 procedure: We used signature data reported from sequencing healthy colonic crypts³⁰, and
778 included only the ubiquitously observed SBS and ID signatures that were present in over
779 85% of crypts, which for SBS were SBS1, SBS5, SBS18, and for indels were ID1, ID2 and
780 ID5. For SBS and ID separately: the relevant exposure vectors for each crypt were

781 normalised such that the contributions from the ubiquitous signatures summed to 1; before
782 averaging over crypt samples to create an average normalised exposure vector. The
783 average normalised exposure vectors were used to weight the ubiquitously observed
784 signatures, offering representative location-specific combined signatures for both SBS, and
785 ID, which provided an estimate of $P(\text{mutation class } x)$.

786

787 We summed $P(\text{new mutation is of class } x \text{ and occurs at loci } i \text{ in } APC)$ for each stop-gained
788 SBS in each region, and normalised to give the probability a new stop-gained occurs in a
789 given region, and carried out the analogous procedure for frameshifts. Weighting these
790 region probabilities by $p_{\text{stop-gain}}$ and $p_{\text{frameshift}}$ and summing ultimately provided the probability
791 that, when a truncating mutation occurs within *APC*, it falls in each region. Taking the ratios
792 of the i th region to region 0 we get m_i/m_0 for $i \in \{0, 1, 2, 3\}$.

793

794 **Copy number alterations.** To estimate the probability of copy number alterations relative to
795 m_0 we assumed that genotypes (0,0), (0,-) and (0,x2) have the same progression probability,
796 since they all result in complete loss of *APC* function. Then, using Equation M2, we have
797 that

$$798 \quad p_{(0,0)} = C \frac{f_{(0,0)}}{m_{(0,0)}} = C \frac{f_{(0,-)}}{m_{(0,-)}} = C \frac{f_{(0,x2)}}{m_{(0,x2)}}$$

799 Hence, the probabilities $m_{(0,-)}$, $m_{(0,x2)}$ can be obtained from the ratios of the probabilities of
800 CRCs with the corresponding genotypes, which we estimate as the frequencies of cancers
801 with the given genotype from cohort sequence data to obtain

$$802 \quad \frac{m_{(0,-)}}{m_{(0,0)}} = \frac{2m_-}{m_0} = \frac{f_{(0,-)}}{f_{(0,0)}} = 1.86 \quad \text{and} \quad \frac{m_{(0,x2)}}{m_{(0,0)}} = \frac{m_{x2}}{m_0} = \frac{f_{(0,x2)}}{f_{(0,0)}} = 1.43, \text{ (Equation M8-9)}$$

803 where we used Eq. M1 to relate the $m_{(M,N)}$ and m_i terms. Thus, we again obtain m_i/m_0 for
804 $i \in \{-, x2\}$. With cohort-specific estimates for m_i/m_0 for $i \in \{0, 1, 2, 3, -, x2\}$, we can calculate
805 the mutation probabilities $m_{(M,N)}$ for all *APC* genotypes.

806

807 **Proximal-distal comparison.** To estimate the mutation probabilities of *APC* genotypes in
808 proximal versus distal MSS cancers, we performed the analysis outlined above,
809 parametrizing the model using site-specific signature exposure vectors of healthy crypts.
810 Signature data were stratified by proximal colon (reported as 'right') and distal colon
811 (reported as 'left') to calculate anatomical-site specific mutation probabilities m_i for $i=0,1,2,3$.
812 The rest of the parameters were kept the same.

813

814 **Hypermutant cancers.** The same analysis was performed to estimate the mutation
815 probabilities of *APC* genotypes in POLE-deficient and MSI tumours. To obtain a combined
816 signature exposure vector for POLE, we used signature data from individuals with germline
817 POLE mutations ⁴⁸. For MSI, we used the signatures present in >85% of CRCs of the
818 100kGP (Supplementary Tables 3 and 4), determined by ³. For *POLE*, since none of the
819 *POLE*-deficient CRCs in our cohort had frameshift mutations in *APC*, we set $p_{\text{frameshift}} = 0$. In
820 the case of MSI tumours, the ratio of SBS to indels is 10:1 in the 100kGP cohort, hence we
821 estimate the ratio of stop-gained to frameshifts in *APC* is 5:9, and so $p_{\text{stop-gain}} = 4/14$, and
822 $p_{\text{frameshift}} = 9/14$. We also excluded samples with copy-number alterations, which are much
823 less frequent in hypermutant tumours, thus in Equation M1, $m_{x2}=m_-=0$.

824

825 **Mutation rates per year.** We use the analysis above to estimate per year mutation rates,
826 assuming that mutations occur at a constant rate in cells. Lee-Six et al (2019) estimate an

827 average of 43.6 SBSs per year in healthy colonic stem cells, which corresponds to a rate of
828 $\mu_{sbs} \approx 1.45 \cdot 10^{-8}$ substitutions per base-pair per year. The four considered *APC* regions
829 comprise 4717 bases, and, as outlined above, only ~5.2% of possible SBSs within these
830 regions are expected to be stop-gained mutations. Further, we expect a ratio of stop-gained
831 to frameshifts of approximately 4:3. Hence, truncating mutations occur within the *APC*
832 regions at a per-year rate of $\mu_{APC} = 4717 \cdot \mu_{sbs} \cdot 0.052 \cdot (1 + \frac{3}{4}) = 6.22 \cdot 10^{-6}$. We can
833 obtain the rate of truncating mutations at region R_0 , $\mu_0 = \mu_{APC} m_0 = 5.28 \cdot 10^{-6}$. The
834 frequencies of tumours with complete *APC* loss with genotypes (0,0), (0,-) and (0,x2) in the
835 100kGP cohort are $f_{(0,-)} = 0.44$, $f_{(0,x2)} = 0.33$. Finally, from equations M7-8, the per year
836 rates of copy-loss LOH and copy-neutral LOH in *APC* in healthy crypts are given by

837
$$\mu_{-} = \frac{f_{(0,-)}}{f_{(0,0)}} \cdot \frac{\mu_0}{2} = 4.72 \cdot 10^{-6}$$
 and $\mu_{x2} = \frac{f_{(0,x2)}}{f_{(0,0)}} \cdot \mu_0 = 7.18 \cdot 10^{-6}$, respectively.

838 **M3. Statistical analysis**

839 Statistical analysis was performed using Python. Standard statistical tests were performed
840 and are described in the main text and figure legends, with confidence level 95% unless
841 otherwise stated. Bootstrapping was performed using 1,000 iterations.

842

843 The following tests were designed to test the competing models for *APC* inactivation. For the
844 'Uniform risk' model, we reject the hypothesis that all genotypes have the same progression
845 probability if the 95% confidence intervals of the progression probabilities are
846 non-overlapping. For the 'Maximal *APC* loss implies maximal CRC risk model' and the
847 'Just-right model', we calculate the 95% confidence intervals of the mode of the distribution
848 of relative progression probabilities using bootstrapping. We reject the hypothesis that
849 maximal *APC* loss provides maximal CRC risk if '0' 20AARs is not in the confidence interval.

850

851 • To determine if there were statistically significant differences in the progression
852 probabilities between tumours with additional Wnt mutators correcting for the effect of
853 anatomical site, we took the weighted average of the difference in
854 progression-weighted mean 20AARs, $\Delta_{mutant - WT}$, conditioned on the anatomical site
855 of the tumours. If the 95% confidence intervals of the estimator (obtained using
856 bootstrapping) contains 0, we conclude that there was no statistically significant
857 effect. We excluded AXIN1, AXIN2 and JUN as there were not enough samples to
858 perform the site-correction (Supplementary Figure 2).

859

860

861 **Data availability.**

862

863 All data required to reproduce the mutation signature analysis, the main analysis using
864 cBioPortal data and the FAP Analysis are available on GitHub
865 https://github.com/xellbrunet/APC_Analysis_Public.

866 For 100kGP data, summary tables are provided on
867 https://github.com/xellbrunet/APC_Analysis_Public. Full data is available to users of the
868 100kGP Genomics England portal and is found under
869 re_gecip/cancer_colorectal/xellbrunet/APC_Analysis_Public. A csv file containing all data

870 needed to reproduce the analysis of 100kGP data can be found in
871 [re_gecip/cancer_colorectal/xellbrunet/APC_Analysis_Public/all_data/APC_merged.csv](https://re.gecip/cancer_colorectal/xellbrunet/APC_Analysis_Public/all_data/APC_merged.csv). This
872 combines summary information obtained by ³, as well as analysis performed for this study in
873 particular. The following information can be found for each sample included:

874

- 875 - Origin files paths: the paths to the original tumour and germline bam files
876 (filename_germline_bam, filename_snv_indel, filename_tumour_bam) and
877 copy-number (cna) files (filename_can, filename_sv), which were generated by ³
878 from the bam files using the Battenberg Algorithm.
- 879 - APC information: the total number and position of stop-gained and frameshift
880 mutations in APC (obtained from bam files), the copy number (obtained from cna
881 files), and the APC genotype and expected total number of 20AARs, determined as
882 outlined above. The scripts used to recover the extract information from the bam and
883 cna files can be found in
884 [re_gecip/cancer_colorectal/xellbrunet/APC_paper/scripts/APC_information](https://re.gecip/cancer_colorectal/xellbrunet/APC_paper/scripts/APC_information).
- 885 - Wnt drivers: mutation status of Wnt pathway-related genes (AMER1, AXIN1, AXIN2,
886 BCL9, BCL9L, CTNNB1, FBXW7, JUN, RNF43, SOX9, TCF7L2, ZNRF3, RSPO
887 (fusions)), determined by ³ from the bam and cna files using IntOGen.
- 888 - Tumour subtype: subtype (MSS/MSI/POL), whole-genome duplications, purity and
889 ploidy, determined by ³ from the bam and cna files.
- 890 - Signature data information: number of variants attributed to single-base substitution
891 signatures and indel signatures, determined by Cornish from the bam files.
- 892 - Clinical information: age at sampling, sex, tumour type, tumour anatomical site, any
893 therapy prior sampling, ethnicity, death status, accessible via the LabKey participant
894 information platform of the 100kGP Genomics England.

895

896 **Code availability**

897

898 Code is available on GitHub https://github.com/xellbrunet/APC_Analysis_Publication and
899 can be run to reproduce the analysis for which open access data is provided. The scripts
900 used for analysis within the Genomics England environment are available on GitHub but can
901 only be run within the environment.

902

903 **Acknowledgements**

904 We thank Sjoerd V. Beentjes for helpful discussions. M.D.N. is a cross-disciplinary
905 postdoctoral fellow supported by funding from CRUK Brain Tumour Centre of Excellence
906 Award (C157/A27589).

907 **Author contributions**

908 M.B.G., M.D.N., T.A., I.T. designed the research; M.B.G., M.D.N., T.A. developed the
909 mathematical model; M.B.G. and M.D.N. performed the analysis; I.S., N.F. provided
910 biological insight. S.T. provided bioinformatic support; M.D.N., T.A., I.T. supervised the
911 research; M.B.G., M.D.N., T.A., I.T. wrote the manuscript. All authors approved the final
912 manuscript.

913 Competing Interests

914 The authors declare no competing interests.

915

916

917 References

- 918 1. Sung, H. *et al.* Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality
919 Worldwide for 36 Cancers in 185 Countries. *CA Cancer J. Clin.* **71**, 209–249 (2021).
- 920 2. Yaeger, R. *et al.* Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal
921 Cancer. *Cancer Cell* **33**, 125–136.e3 (2018).
- 922 3. Cornish, A. J. *et al.* Whole genome sequencing of 2,023 colorectal cancers reveals mutational
923 landscapes, new driver genes and immune interactions. *bioRxiv* 2022.11.16.515599 (2022)
924 doi:10.1101/2022.11.16.515599.
- 925 4. Gao, J. *et al.* Integrative analysis of complex cancer genomics and clinical profiles using the
926 cBioPortal. *Sci. Signal.* **6**, l1 (2013).
- 927 5. de Bruijn, I. *et al.* Analysis and Visualization of Longitudinal Genomic and Clinical Data from the
928 AACR Project GENIE Biopharma Collaborative in cBioPortal. *Cancer Res.* (2023)
929 doi:10.1158/0008-5472.CAN-23-0816.
- 930 6. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. *Cell* **61**, 759–767
931 (1990).
- 932 7. Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway.
933 *Oncogene* **25**, 7531–7537 (2006).
- 934 8. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. *Nature* **434**, 843–850 (2005).
- 935 9. Rim, E. Y., Clevers, H. & Nusse, R. The Wnt Pathway: From Signaling Mechanisms to Synthetic
936 Modulators. *Annu. Rev. Biochem.* **91**, 571–598 (2022).
- 937 10. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of
938 beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and
939 GSK3 beta. *Curr. Biol.* **8**, 573–581 (1998).
- 940 11. Fearnhead, N. S., Britton, M. P. & Bodmer, W. F. The ABC of APC. *Hum. Mol. Genet.* **10**,
941 721–733 (2001).
- 942 12. Nusse, R. & Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic
943 Modalities. *Cell* **169**, 985–999 (2017).

944 13. Bugter, J. M., Fenderico, N. & Maurice, M. M. Mutations and mechanisms of WNT pathway
945 tumour suppressors in cancer. *Nat. Rev. Cancer* **21**, 5–21 (2021).

946 14. Chandra, S. H. V., Behrens, J. & Schneikert, J. β -Catenin degradation mediated by the CID
947 domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and
948 duodenal tumours. *Hum. Mol. Genet.* (2009).

949 15. Miyaki, M. *et al.* Difference in characteristics of APC mutations between colonic and extracolonic
950 tumors of FAP patients: variations with phenotype. *Int. J. Cancer* **122**, 2491–2497 (2008).

951 16. Lamlum, H. *et al.* The type of somatic mutation at APC in familial adenomatous polyposis is
952 determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis.
953 *Nat. Med.* **5**, 1071–1075 (1999).

954 17. Albuquerque, C. *et al.* The 'just-right'signaling model: APC somatic mutations are selected based
955 on a specific level of activation of the β -catenin signaling cascade. *Hum. Mol. Genet.* **11**,
956 1549–1560 (2002).

957 18. Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA
958 decay in human cancers. *Nat. Genet.* **48**, 1112–1118 (2016).

959 19. Polakis, P. Mutations in the APC gene and their implications for protein structure and function.
960 *Curr. Opin. Genet. Dev.* **5**, 66–71 (1995).

961 20. Kohler, E. M., Chandra, S. H. V., Behrens, J. & Schneikert, J. Beta-catenin degradation mediated
962 by the CID domain of APC provides a model for the selection of APC mutations in colorectal,
963 desmoid and duodenal tumours. *Hum. Mol. Genet.* **18**, 213–226 (2009).

964 21. Pollard, P. *et al.* The Apc1322T Mouse Develops Severe Polyposis Associated With Submaximal
965 Nuclear β -Catenin Expression. *Gastroenterology* **136**, 2204–2213.e13 (2009).

966 22. Lewis, A. *et al.* Severe polyposis in Apc(1322T) mice is associated with submaximal Wnt
967 signalling and increased expression of the stem cell marker Lgr5. *Gut* **59**, 1680–1686 (2010).

968 23. de Boer, J. *et al.* Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem
969 cells. *Bone* **34**, 818–826 (2004).

970 24. Kohler, E. M., Derungs, A., Daum, G., Behrens, J. & Schneikert, J. Functional definition of the
971 mutation cluster region of adenomatous polyposis coli in colorectal tumours. *Hum. Mol. Genet.*
972 **17**, 1978–1987 (2008).

973 25. Schneikert, J., Grohmann, A. & Behrens, J. Truncated APC regulates the transcriptional activity

974 of β -catenin in a cell cycle dependent manner. *Hum. Mol. Genet.* **16**, 199–209 (2006).

975 26. Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature* **578**,
976 94–101 (2020).

977 27. Christie, M. *et al.* Different APC genotypes in proximal and distal sporadic colorectal cancers
978 suggest distinct WNT/ β -catenin signalling thresholds for tumourigenesis. *Oncogene* **32**,
979 4675–4682 (2013).

980 28. Schneikert, J., Ruppert, J. G., Behrens, J. & Wenzel, E. M. different Roles for the axin
981 interactions with the SAMP versus the second twenty amino acid repeat of adenomatous
982 polyposis coli. *PLoS One* **9**, e94413 (2014).

983 29. Segditsas, S. *et al.* APC and the three-hit hypothesis. *Oncogene* **28**, 146–155 (2009).

984 30. Lee-Six, H., Olafsson, S., Ellis, P. & Osborne, R. J. The landscape of somatic mutation in normal
985 colorectal epithelial cells. *Nature* (2019).

986 31. Yamulla, R. J. *et al.* Testing models of the APC tumor suppressor/ β -catenin interaction reshapes
987 our view of the destruction complex in Wnt signaling. *Genetics* **197**, 1285–1302 (2014).

988 32. Leedham, S. J. *et al.* A basal gradient of Wnt and stem-cell number influences regional tumour
989 distribution in human and mouse intestinal tracts. *Gut* **62**, 83–93 (2013).

990 33. Zhao, H. *et al.* Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. *Mol.*
991 *Cancer* **21**, 144 (2022).

992 34. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. *Oncogene* **36**, 1461–1473 (2017).

993 35. Giannakis, M. *et al.* RNF43 is frequently mutated in colorectal and endometrial cancers. *Nat.*
994 *Genet.* **46**, 1264–1266 (2014).

995 36. Morin, P. J. *et al.* Activation of beta-catenin-Tcf signaling in colon cancer by mutations in
996 beta-catenin or APC. *Science* **275**, 1787–1790 (1997).

997 37. de Lau, W., Peng, W. C., Gros, P. & Clevers, H. The R-spondin/Lgr5/Rnf43 module: regulator of
998 Wnt signal strength. *Genes Dev.* **28**, 305–316 (2014).

999 38. van Ginkel, J., Tomlinson, I. & Soriano, I. The Evolutionary Landscape of Colorectal
1000 Tumorigenesis: Recent Paradigms, Models, and Hypotheses. *Gastroenterology* **164**, 841–846
1001 (2023).

1002 39. Castro-Giner, F., Ratcliffe, P. & Tomlinson, I. The mini-driver model of polygenic cancer evolution.
1003 *Nat. Rev. Cancer* **15**, 680–685 (2015).

1004 40. Grohmann, A., Tanneberger, K., Alzner, A., Schneikert, J. & Behrens, J. AMER1 regulates the
1005 distribution of the tumor suppressor APC between microtubules and the plasma membrane. *J.*
1006 *Cell Sci.* **120**, 3738–3747 (2007).

1007 41. Tanneberger, K. *et al.* Structural and functional characterization of the Wnt inhibitor APC
1008 membrane recruitment 1 (Amer1). *J. Biol. Chem.* **286**, 19204–19214 (2011).

1009 42. Sanz-Pamplona, R. *et al.* Exome Sequencing Reveals AMER1 as a Frequently Mutated Gene in
1010 Colorectal Cancer. *Clin. Cancer Res.* **21**, 4709–4718 (2015).

1011 43. Stelzer, G. *et al.* The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence
1012 Analyses. *Curr. Protoc. Bioinformatics* **54**, 1.30.1–1.30.33 (2016).

1013 44. Schrock, A. B. *et al.* Tumor mutational burden is predictive of response to immune checkpoint
1014 inhibitors in MSI-high metastatic colorectal cancer. *Ann. Oncol.* **30**, 1096–1103 (2019).

1015 45. Díaz-Gay, M. & Alexandrov, L. B. Unraveling the genomic landscape of colorectal cancer through
1016 mutational signatures. *Adv. Cancer Res.* **151**, 385–424 (2021).

1017 46. Temko, D. *et al.* Somatic POLE exonuclease domain mutations are early events in sporadic
1018 endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal
1019 neoantigen burden and immune response. *J. Pathol.* **245**, 283–296 (2018).

1020 47. Chen, B. *et al.* Differential pre-malignant programs and microenvironment chart distinct paths to
1021 malignancy in human colorectal polyps. *Cell* **184**, 6262–6280.e26 (2021).

1022 48. Robinson, P. S. *et al.* Increased somatic mutation burdens in normal human cells due to defective
1023 DNA polymerases. *Nat. Genet.* **53**, 1434–1442 (2021).

1024 49. Nagase, H. *et al.* Correlation between the location of germ-line mutations in the APC gene and
1025 the number of colorectal polyps in familial adenomatous polyposis patients. *Cancer Res.* **52**,
1026 4055–4057 (1992).

1027 50. Haigis, K. M. KRAS Alleles: The Devil Is in the Detail. *Trends Cancer Res.* **3**, 686–697 (2017).

1028 51. Chang, L. *et al.* Systematic profiling of conditional pathway activation identifies
1029 context-dependent synthetic lethaliies. *Nat. Genet.* **55**, 1709–1720 (2023).

1030 52. Paterson, C., Clevers, H. & Bozic, I. Mathematical model of colorectal cancer initiation. *Proc.*
1031 *Natl. Acad. Sci. U. S. A.* **117**, 20681–20688 (2020).

1032 53. Neumann, P.-A. *et al.* Gut commensal bacteria and regional Wnt gene expression in the proximal
1033 versus distal colon. *Am. J. Pathol.* **184**, 592–599 (2014).

1034 54. Wallace, K. *et al.* Immune Responses Vary in Preinvasive Colorectal Lesions by Tumor Location
1035 and Histology. *Cancer Prev. Res.* **14**, 885–892 (2021).

1036 55. van Ginkel, J., Tomlinson, I. & Soriano, I. The Evolutionary Landscape of Colorectal
1037 Tumorigenesis: Recent Paradigms, Models, and Hypotheses. *Gastroenterology* **164**, 841–846
1038 (2023).

1039 56. Rowan, A. J. *et al.* APC mutations in sporadic colorectal tumors: A mutational ‘hotspot’ and
1040 interdependence of the ‘two hits’. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 3352–3357 (2000).

1041 57. Gerstung, M. *et al.* The evolutionary history of 2,658 cancers. *Nature* **578**, 122–128 (2020).

1042 58. León-Castillo, A. *et al.* Interpretation of somatic POLE mutations in endometrial carcinoma. *J.
1043 Pathol.* **250**, 323–335 (2020).

1044 59. Sieber, O. M. *et al.* Analysis of chromosomal instability in human colorectal adenomas with two
1045 mutational hits at APC. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 16910–16915 (2002).

1046 60. Tate, J. G. *et al.* COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res.* **47**,
1047 D941–D947 (2019).

1048

Figures in *Quantifying 'just-right' APC inactivation for colorectal cancer initiation*

Figure 1. Evidence for 'just-right' in sporadic CRC.....	1
Figure 2. Mathematical approach to testing the 'just-right' hypothesis.....	3
Figure 3. Optimal number of 20AARs for CRC progression	4
Figure 4. 'Just-right' APC inactivation is higher in the distal colon.....	5
Figure 5. 'Just-right' Wnt activity at the pathway level.....	6
Figure 6. 'Just-right' APC inactivation in POLE and MSI CRCs	7
Figure 7. 'Just-right' in FAP patients.....	8

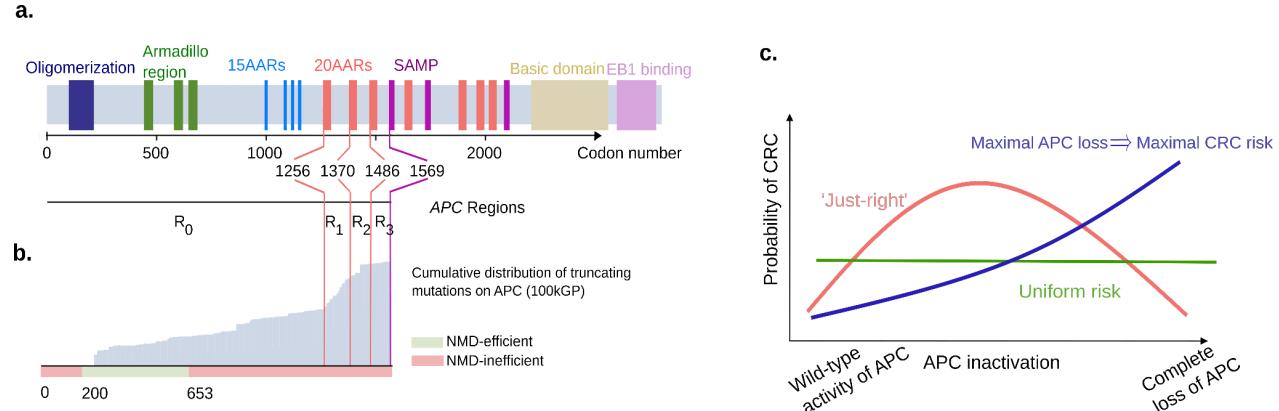
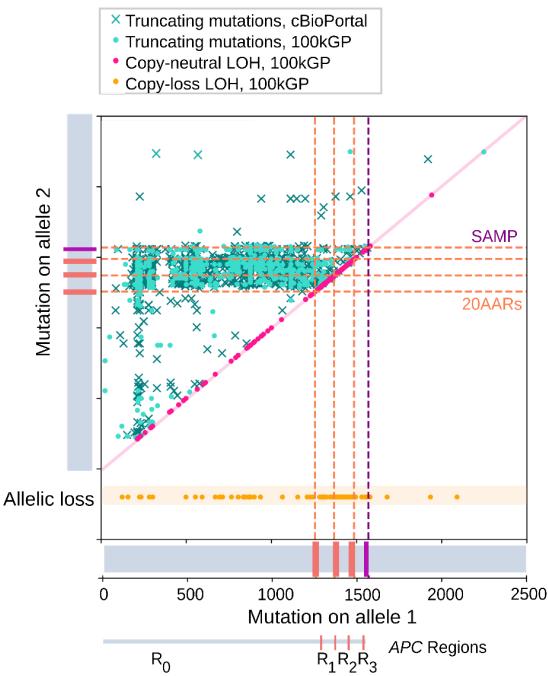
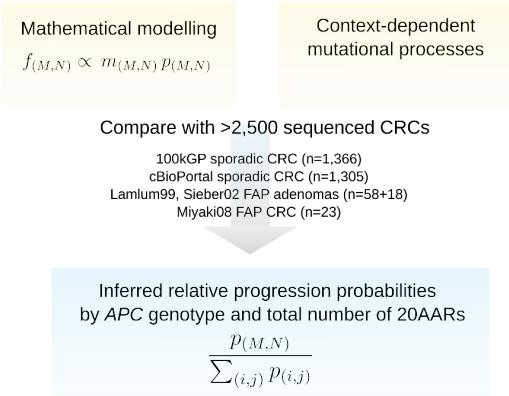



Figure 1. Evidence for 'just-right' in sporadic CRC.

(a) Schematic showing the functional domains and regions of interest of APC, and their corresponding codon position. (b) In grey, the cumulative distribution of truncating mutations of APC in the 100kGP cohort of CRCs. Below, classification of codons by efficiency of NMD. Truncating mutations affecting codons in red are expected to evade Nonsense Mediated Decay as they occur either between the start codon and upstream of the 200th nucleotide or downstream of the last exon-exon junction ¹⁸. Notably, most truncating mutations occur downstream codon 653, which are expected to evade NMD. (c) Schematic of the 'just-right' hypothesis which posits that an intermediate level of APC inactivation maximises CRC risk, in contrast with all genotypes conferring equal risk ('uniform risk') and maximal APC loss conferring the maximal CRC risk.


a.

b.

Allele 1	Allele 2	APC genotype	Total retained 20AARs
Truncating mutation in region RM	Truncating mutation in region RN	(M,N)	M+N
Truncating mutation in region RM	Copy-neutral LOH	(M,x2)	2xM
Truncating mutation in region RM	Copy-loss LOH	(M,-)	M

d.

c.

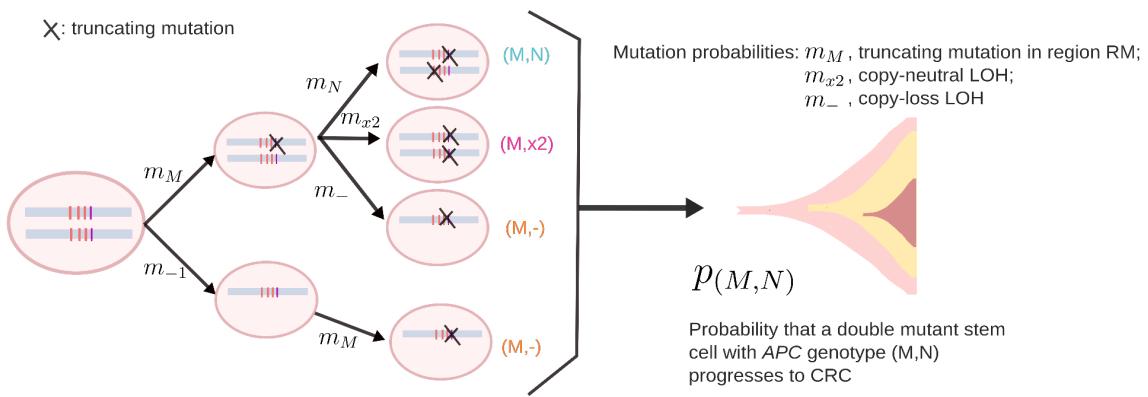


Figure 2. Mathematical approach to testing the 'just-right' hypothesis.

(a) Location of *APC* truncating mutations across cBioPortal (crosses, $n=1,305$) and 100kGP (dots, $n=1,366$) CRCs with biallelic *APC* loss. Mutation closest to 5' gene end denoted as on Allele 1 with the other mutation denoted as being on Allele 2. For cBioPortal, only tumours without copy number alterations in *APC* were considered. For 100kGP, tumours with loss of heterozygosity of *APC* via copy-neutral alteration and copy-loss of an allele, are plotted in pink and orange, respectively. The location of 20AARs and SAMP repeats is marked in dashed lines. The data displays a two-dimensional hotspot: tumours with mutations in region R_0 of allele 1 tend to have mutations between regions R_1 and R_2 of allele 2, and points to the 20AARs limiting the regions of interest. (b) Classification of biallelic *APC* mutant cells by the position and class of the two hits, and the corresponding total number X of 20AARs retained across the two alleles. (c) Mathematical model of CRC initiation, in which cells accumulate truncating mutations of *APC* in region R_M with probability m_M , copy-loss LOH with probability m_- or copy-neutral LOH with probability m_{x2} . Once a stem cell has lost both copies of *APC*, the cell progresses into cancer with a probability that depends on the *APC* genotype, $p_{(M,N)}$. From the model, the expected frequency of cancers with a given genotype, $f_{(M,N)}$, can be derived, which is comparable to cancer sequencing data. (d) Schematic of the strategy developed

to infer the relative probability of progression of genotype (M,N) , $\tilde{p}_{(M,N)}$, by combining mathematical modelling with sequence data from sporadic and familial APC-driven CRC.

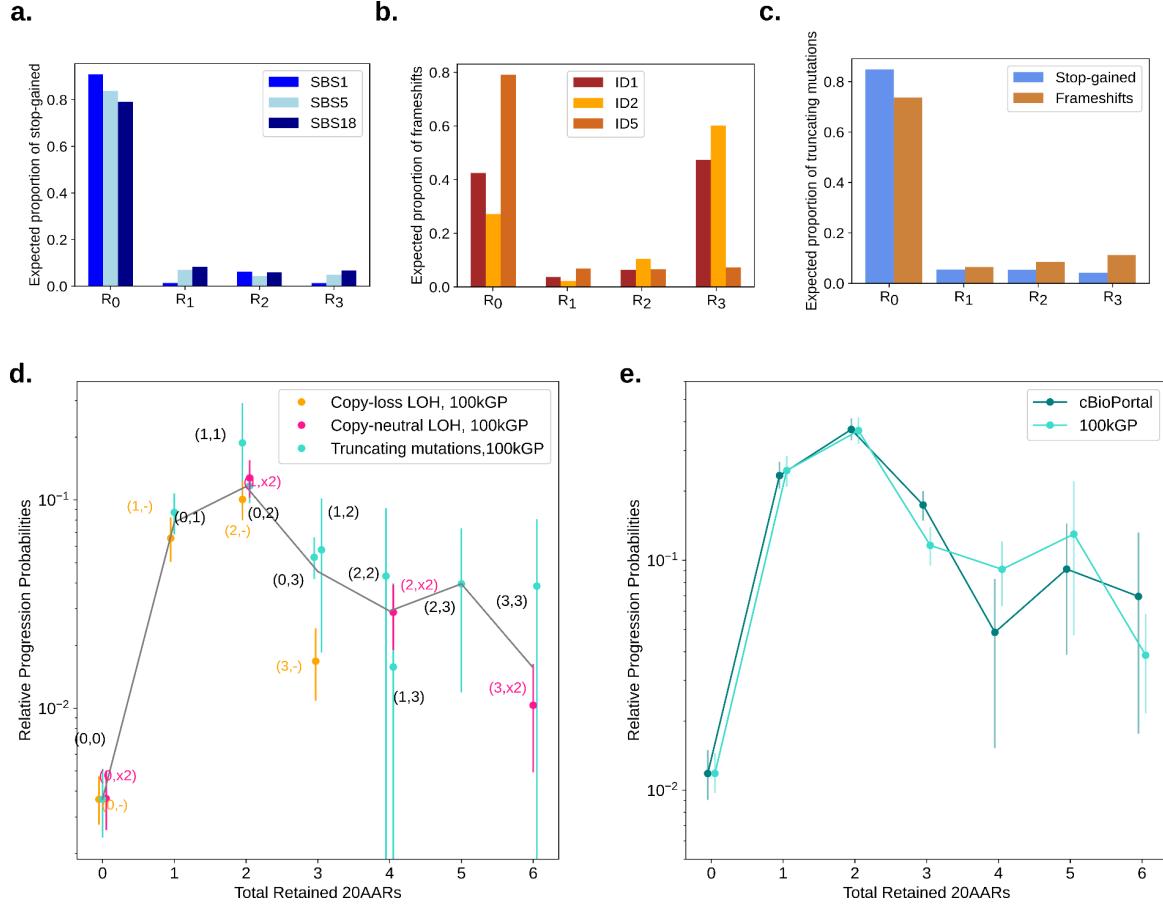


Figure 3. Optimal number of 20AARs for CRC progression .

(a, b) The proportion of stop-gained and indels, respectively, expected to fall in different regions of *APC*, estimated by considering the ubiquitous mutational signatures found in healthy colon crypts ³⁰.

(c) The expected proportion of truncating mutations in each region which is used to estimate the rates of truncating mutations in each region. (d) The relative progression probability of different APC biallelic genotypes, $\tilde{p}_{(M,N)}$, is plotted against the total number of 20AARs retained across both alleles.

The frequencies of genotypes were calculated from sequence data of MSS primary CRCs in the 100kGP cohort (n=1,037, Methods). Whiskers represent 95% confidence intervals (bootstrapping). The grey line is the average of the progression probability over all genotypes resulting in a given number of retained 20AARs, weighted by the number of samples. (e) The relative progression probability of different total number X of 20AARs retained across both alleles of *APC*, \tilde{p}_X , with frequencies calculated from sequence data of MSS primary CRCs in 100kGP (n=1,037, Methods) and cBioPortal (n=1,041, Methods).

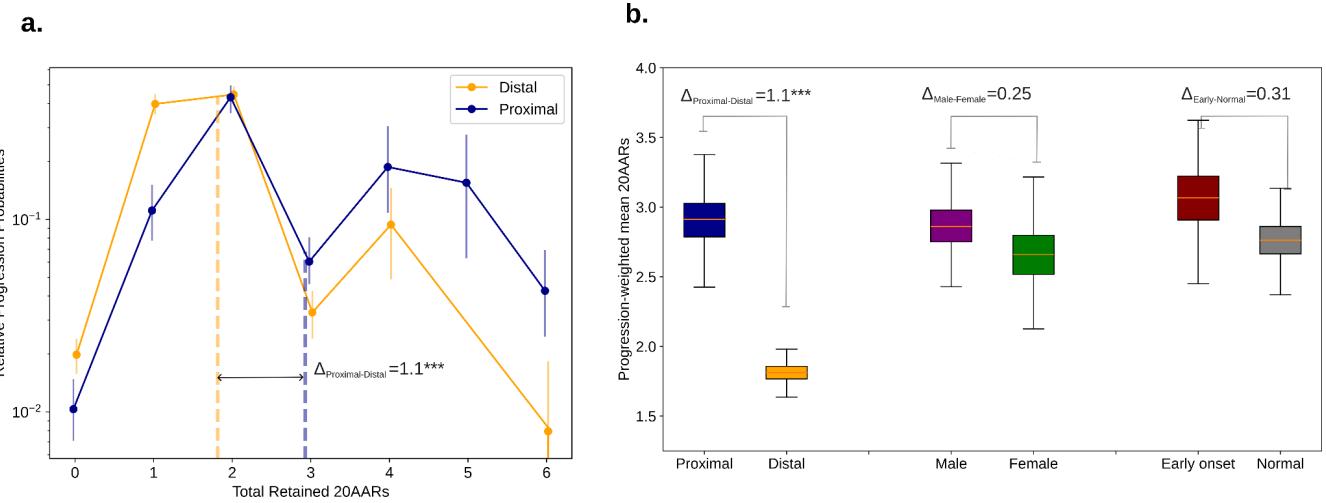


Figure 4. ‘Just-right’ APC inactivation is higher in the distal colon.

(a) The relative progression probability versus total number of 20AARs retained over both alleles, controlling for site-specific mutational processes, for proximal (blue) and distal (orange) cancers, with genotype frequencies calculated from bulk sequence data of MSS primary CRCs in the 100kGP cohort (n=313 proximal, n=574 distal/rectum). Whiskers on points indicate 95% confidence intervals (bootstrapping). Thick dashed vertical lines indicate the progression-weighted mean 20AARs number retained, representing the optimal level of Wnt activation contributed by APC loss. Proximal tumours are under selection for a higher number of 20AARs. (b) The progression-weighted mean 20AARs number retained in different tumour stratifications, whiskers on points indicate 95% confidence intervals (bootstrapping). We find a significant difference of $\Delta_{P-D}=1.1$ between proximal and distal tumours ($p<0.001$, permutation test), but no statistically significant differences between tumours in male versus female patients ($p=0.25$, permutation test), nor in patients with early onset (<50 years old at resection) versus normal onset (>50 years old at resection) ($p=0.31$, permutation test).

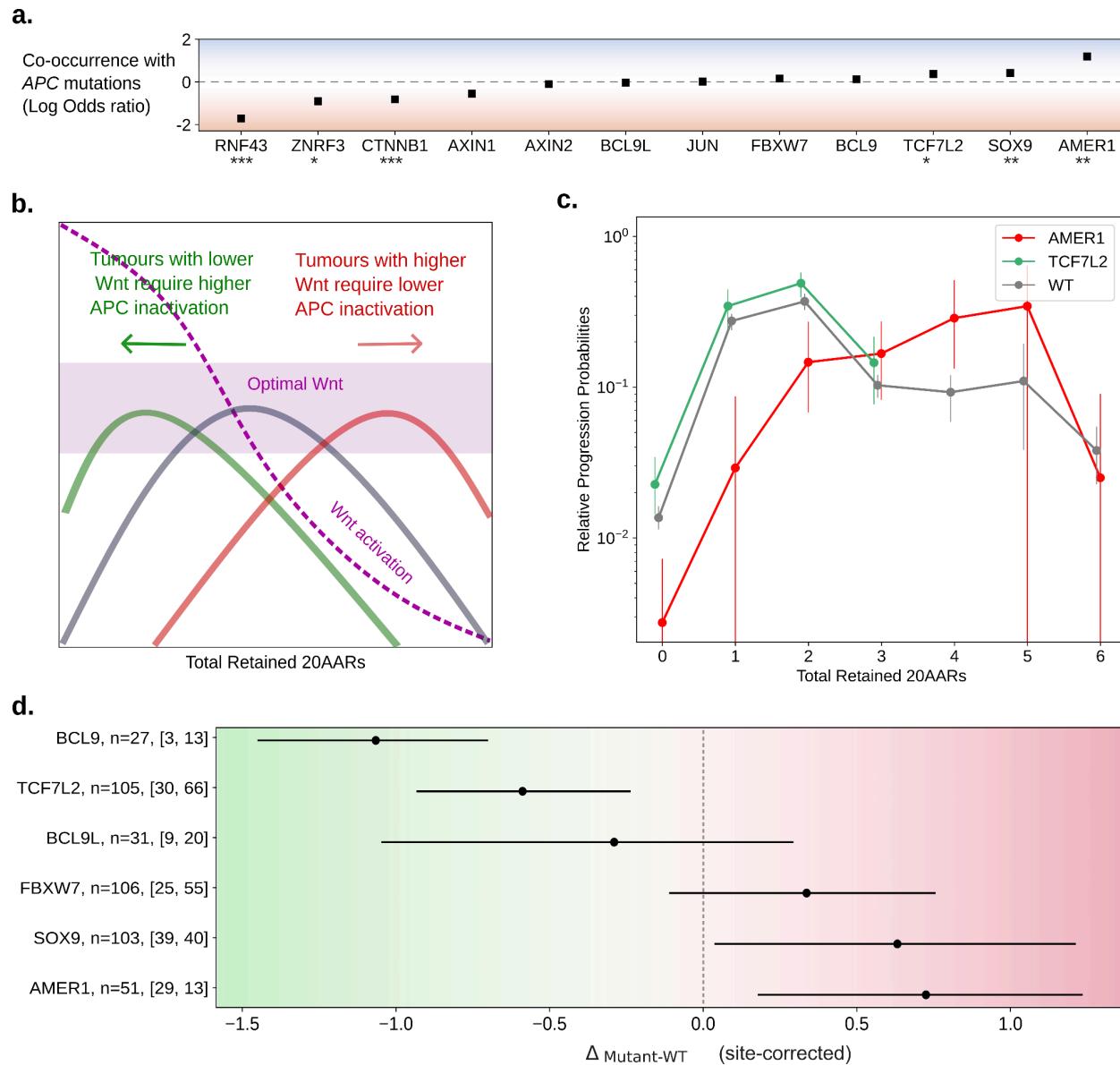


Figure 5. ‘Just-right’ Wnt activity at the pathway level.

(a) Odds-ratio between APC inactivation and pathogenic mutations in other Wnt related genes, in the 100kGP MSS cohort (n=1,639, Supplementary Table 8, Fisher’s test, * p<0.05, ** p<0.01, *** p<0.001). (b) Schematic of the effect of additional mutations in Wnt pathway regulators. Assuming that the cancer progression probabilities of APC mutant cells are due to the corresponding level of Wnt pathway activation, tumours with Wnt upregulating mutations will require a smaller Wnt contribution from APC mutations, and so will have relative progression probability curves shifted to the right, and vice-versa. (c) Relative progression probabilities as a function of the total number of retained 20AARs, using sequence data of MSS primary CRCs with pathogenic *AMER1* mutations (n=51, red), with *TCF7L2* mutations (n=105, green), and tumors without mutations in non-APC Wnt regulators (n=825 grey). Whiskers for 95% CI (bootstrapping), thick dashed vertical lines indicate the progression-weighted mean 20AARs number retained. (d) Difference in progression-weighted mean 20AARs number for tumours with pathogenic mutations in different Wnt genes, $\Delta_{\text{mutant-WT}}$, corrected by the effect of anatomical site (Methods). Horizontal bars for 95% confidence intervals (bootstrapping). Numbers next to the gene labels indicate the total number of tumours with mutations in the Wnt driver, and the number of which were classified as proximal and distal colon, respectively.

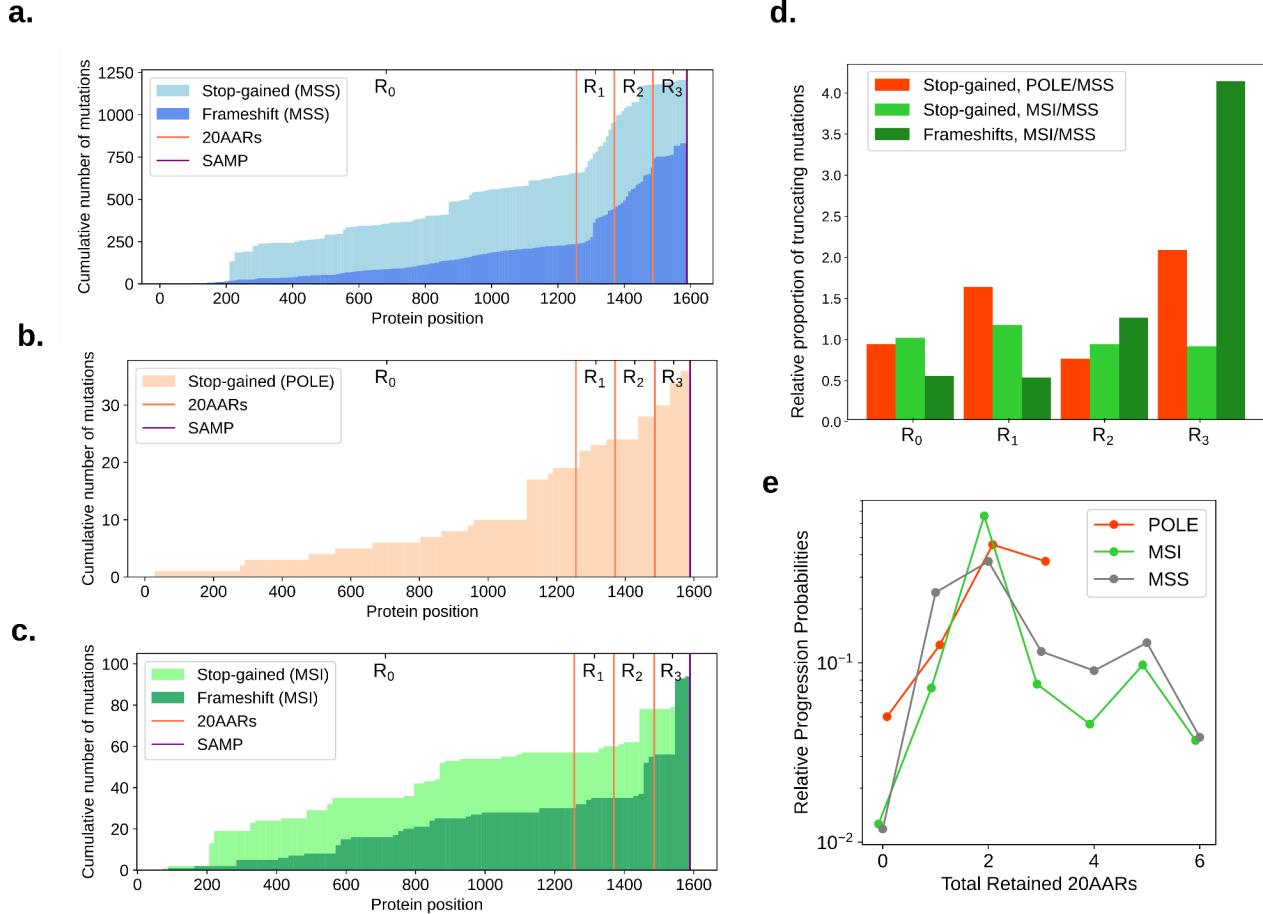


Figure 6. ‘Just-right’ APC inactivation in POLE and MSI CRCs .

(a-c) Cumulative number of stop-gained and frameshift mutations detected per codon position of *APC* in MSS (a), *POLE*-mutant (b) and MSI (c) primary CRCs in the 100kGP cohort. Vertical lines indicate the locations of the 20AAR domains and the SAMP repeat. (d) Expected proportion of mutations of different regions of *APC* in *POLE*-mutant and MSI relative to MSS, calculated using the mutational signatures detected in healthy colonic crypts ³⁰, *POLE*-mutant crypts ⁴⁸, and MSI colorectal cancers ³ (Supplementary Tables 3-5). (e) The relative progression probabilities by total number of 20AARs retained in MSS, *POLE*-mutant and MSI CRCs in the 100kGP cohort.

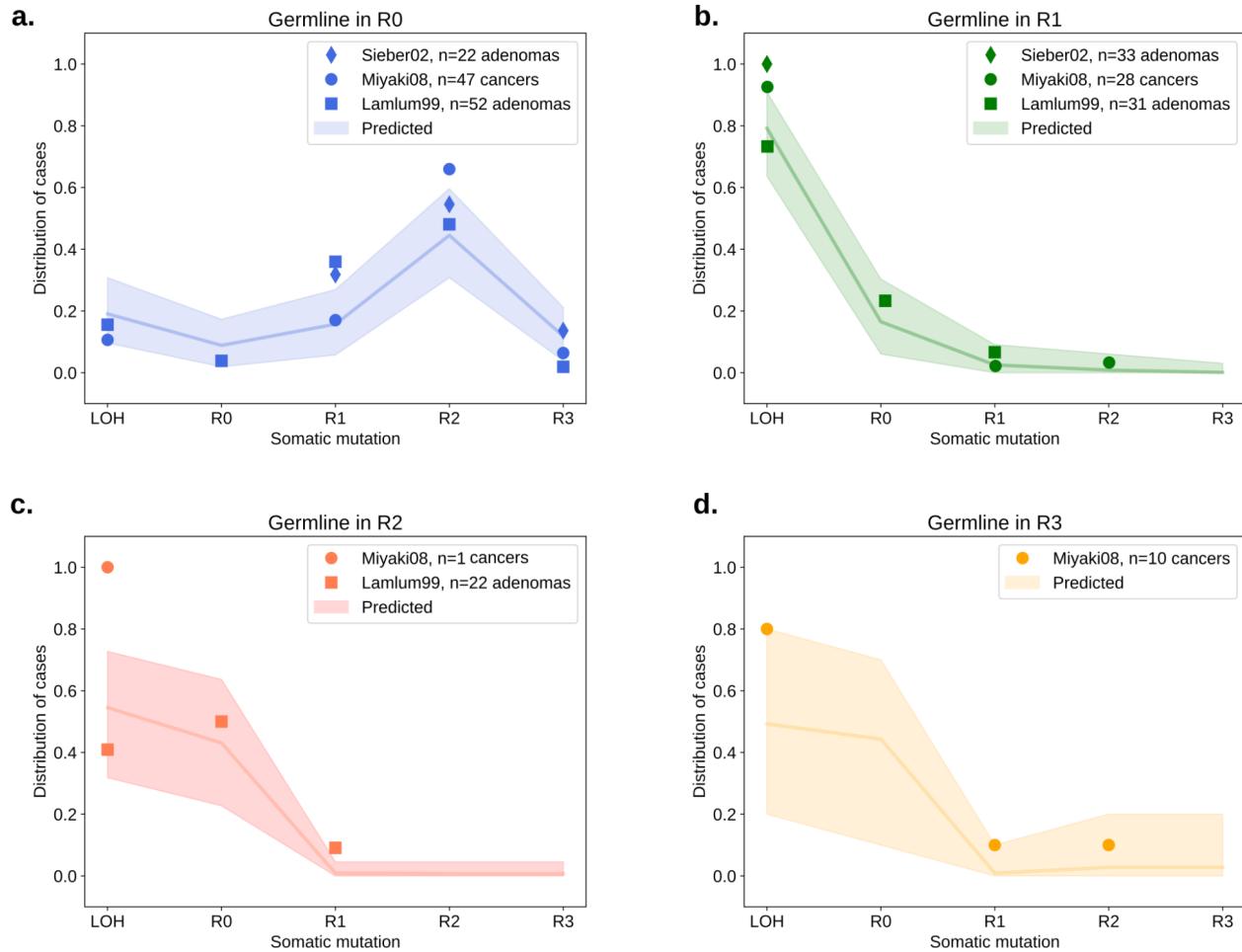


Figure 7. 'Just-right' in FAP patients.

(a-d) The distribution of the APC somatic hit on tumours in FAP patients with germline mutations in different regions. Points indicate the observed distribution in FAP patients from different studies ^{15,16}. The line indicates the expected distribution calculated using the mutation and cancer progression probabilities estimated from healthy crypts and sporadic CRC data, with shaded regions for a conservative 95% CI, obtained by performing multinomial simulations with number of trials given by the maximal number of patients across the studies in each germline group.