

1 **Early life stress-induced miR-708-5p regulates mood**
2 **disorder-associated behavioural phenotypes in mice and is**
3 **a potential diagnostic biomarker for bipolar disorder**

4

5 Carlotta Gilardi¹, Helena C. Martins¹, Alessandra Lo Bianco¹, Silvia Bicker¹, Pierre-Luc
6 Germain^{1,2,3}, Fridolin Gross^{1*}, Ayse Özge Sungur^{4,5,6,7}, Theresa M. Kisko^{4,5,6,7}, Frederike
7 Stein⁸, Susanne Meinert⁹, Rainer K. W. Schwarting⁴, Markus Wöhr^{4,5,6,7}, Udo
8 Dannlowski⁹, Tilo Kircher⁸, and Gerhard Schratt^{1§}

9

10 1 ETH Zurich, Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science
11 and Technology, 8057 Zurich, Switzerland

12 2 Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience,
13 Department of Health Science and Technology, ETH Zürich, Switzerland

14 3 Lab of Statistical Bioinformatics, IMLS, University of Zürich, Switzerland

15 4 Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology,
16 Behavioral Neuroscience, D-35032 Marburg, Germany

17 5 Center for Mind, Brain and Behavior, D-35032 Marburg, Germany

18 6 KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition,
19 Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000
20 Leuven, Belgium.

21 7 KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium

22 8 Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.

23 9 Institute for Translational Psychiatry, University of Münster, Münster, Germany.

24 *current address: CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, France

25 §: to whom correspondence should be addressed: Gerhard.schratt@hest.ethz.ch

26

27 Running title: miR-708-5p as potential biomarker for mood disorders

28

29 **Abstract**

30 Mood-disorders (MDs) are caused by a complex interplay of genetic and
31 environmental (GxE) risk factors. However, the molecular pathways engaged by GxE
32 risk factors to trigger specific MD-associated endophenotypes are still poorly
33 understood. Here, by using unbiased small RNA sequencing in peripheral blood
34 mononuclear cells (PBMCs), we identified the BD-associated miR-708-5p as one of
35 the most strongly upregulated microRNAs in peripheral blood of both healthy
36 human subjects with a high genetic or environmental (early life stress) predisposition
37 to develop MDs. miR-708 is also upregulated in the hippocampus of rats which
38 underwent juvenile social isolation, a rodent model of early life stress. Furthermore,
39 ectopic overexpression of miR-708-5p in the hippocampus of adult male mice is
40 sufficient to elicit MD-associated behavioural endophenotypes, demonstrating a
41 causal role for elevated miR-708-5p levels in MD development. We further show that
42 miR-708-5p directly targets Neuronatin (Nnat), an endoplasmic reticulum (ER)
43 resident protein involved in calcium homeostasis. Consequently, restoring Nnat
44 expression in the hippocampus of miR-708-5p overexpressing mice rescues miR-
45 708-5p dependent behavioural phenotypes. Finally, miR-708-5p is strongly
46 upregulated in PBMCs derived from patients diagnosed with MD, in particular BD
47 males. Peripheral expression of miR-708-5p, in conjunction with the previously
48 identified miR-499-5p, allows to differentiate male BD patients from patients
49 suffering from major depressive disorder (MDD) and healthy controls. In summary,
50 we describe a functional role for the miR-708-5p/Nnat pathway in MD etiology and
51 identify miR-708-5p as a potential biomarker for the differential diagnosis of MDs.

52

53

54

55 **Introduction**

56 MDs are a group of chronic psychiatric diseases affecting mood and cognition that
57 include major depressive disorder (MDD) and bipolar disorder (BD). MDD is
58 characterized by long, persistent, depressive episodes. BD has a distinct pattern of
59 mood oscillations, from depressive episodes like MDD, and (hypo)manic phases.
60 Furthermore, BD is subclassified in BD type 1 (mania and depression), and BD type 2
61 (hypomania and depression). It is known that MDs are highly heritable and share
62 common genetic signature (McGuffin *et al*, 2003). In particular, BD is characterized by
63 up to 70% heritability in monozygotic twins (Craddock & Sklar, 2013). However,
64 complex polygenetic mechanisms cannot fully explain the onset of MD, and
65 environmental factors, such as early life stress (ELS; e.g., physical and sexual abuse,
66 emotional neglect), play an important role in the etiology and outcome of MD (Aas
67 *et al*, 2020; Nemeroff, 2016; Rodriguez *et al*, 2021). Moreover, MD have a strong sex-
68 specific component (e.g., higher prevalence of MDD, but not BD in females) (Noble,
69 2005) whose underlying biological mechanisms are unknown.

70 Although recapitulating the full spectrum of MD-associated symptoms is challenging,
71 specific endophenotypes can be reliably assessed by employing dedicated
72 behavioural tests in rodents. These include for example behavioural despair (FST,
73 TST), anhedonia (sucrose preference), anxiety (OFT, EPM), cognitive impairments
74 (mazes, NOR) and compulsive/manic-like behavior (marble burying) (Hoffman, 2013).
75 Various chronic stress models have been established to mimic the impact of stress on
76 MD symptomatology. Among them, post-weaning juvenile social isolation in rats
77 represents a robust model to induce MD-associated endophenotypes, e.g., deficits
78 in social communication and cognitive abilities (Seffer *et al*, 2015; Valluy *et al*, 2015).
79 On the other hand, haploinsufficiency for the Cacna1c cross-disorder psychiatric risk
80 gene is frequently used to study gene x environment interactions relevant for MD
81 (Dedic *et al*, 2018). For example, Cacna1c (+/-) mice show decreased immobility in
82 the tail suspension test (TST) and FST, higher preference for sucrose as well as
83 decreased anxiety behavior, although the latter was a characteristic of female mice
84 only (Dao *et al*, 2010). In Cacna1c (+/-) rats, a long-term environmental impact on
85 object recognition, spatial memory and reversal learning was observed (Braun *et al*,
86 2019).

87 microRNAs (miRNAs) are a large family of small (~22nt), noncoding RNAs that act as
88 posttranscriptional regulators by binding to complementary sequences in the 3'-
89 untranslated region (UTR) of target messenger RNAs (mRNAs) (15) (Bartel, 2018).
90 Recent research has highlighted the role of miRNAs in the pathogenesis of MDs
91 (Martins & Schratt, 2021). Main pathways affected by miRNA dysregulation in the
92 context of MD animal models include serotonergic neurotransmission (e.g., miR-16,
93 miR-34), glucocorticoid signaling (e.g., miR-17-92 cluster, miR-15), neurotrophins
94 (e.g., miR-182), Wnt signaling (e.g., miR-124) and synaptic plasticity (e.g., miR-134,
95 miR-218). While these candidate studies in rodents provided important insight into
96 biological mechanisms, the translational value for MD therapeutics and diagnostics
97 is mostly limited by the lack of corresponding human data.

98 In humans, miRNAs have been associated with MD etiology in expression studies of
99 postmortem brain tissue (Moreau *et al*, 2011) and blood samples from living patients
100 (Dwivedi, 2011). Differential expression of miRNAs in peripheral blood mononuclear
101 cells (PBMCs) has been previously investigated for biomarker discovery in MD. For
102 example, miR-499-5p was significantly upregulated in female and male PBMC
103 samples of BD (Martins *et al*, 2022). miR-124-3p was found to be significantly
104 upregulated in PBMCs samples of MDD compared to healthy controls and it was
105 downregulated after eight weeks of antidepressant treatment (He *et al*, 2016).
106 However, the overlap between these studies is usually low, and therefore these
107 attempts so far have not yielded reliable miRNA biomarkers in MDs.

108 We therefore decided to undertake an unbiased, back-translational approach to
109 identify MD-associated miRNAs from a large human cohort of healthy subjects at high
110 genetic and environmental risk to develop MD. One of the identified GxE regulated
111 miRNAs, the BD-associated miR-708-5p (Forstner *et al*, 2015), was further functionally
112 characterized in rodent models and subsequently tested for its diagnostic potential
113 in MD patient subgroups.

114

115 Materials and Methods

116 Human study

117 Recruitment of Participants

118 The study involved participants with BD (26 females, 37 males), MDD (18 females,
119 24 males), and healthy individuals (26 females, 31 males), including psychiatrically
120 healthy subjects that had a history of childhood maltreatment (17) or a genetic
121 predisposition to MDs (18) or no risk (18). These participants were recruited from the
122 University of Marburg and the University of Münster in Germany, as part of the
123 FOR2107 cohort (39) (Kircher *et al*, 2019). Diagnoses were made using the SCID-I
124 interview (Wittchen, 1997), and adapted to DSM-IV criteria, excluding those with
125 substance abuse, severe neurological, or other significant medical conditions.
126 Healthy controls were screened similarly, with inclusion in the maltreatment study if
127 at least one of the subclasses of the Childhood Trauma Questionnaire (CTQ) reached
128 the maltreatment threshold (Emotional Abuse \geq 10, Physical Abuse \geq 8, Sexual
129 Abuse \geq 8, Emotional Neglect \geq 15, and Physical Neglect \geq 8) (Walker *et al*, 1999).
130 All participants underwent a comprehensive neuropsychological test battery,
131 including the d2 test of attention (Brickenkamp, 2002). All necessary ethical
132 approvals were obtained (ethics committees of the Medical Faculties of the
133 Universities of Münster (2014-422-b-S) and Marburg (AZ: 07/14)), and participants
134 consented to the study, which complied with the Declaration of Helsinki and the
135 Belmont Report. Demographic and clinical data are outlined in Table 1 and in
136 Supplementary Table 1.

137 Human peripheral blood mononuclear cell (PBMC) sample processing.

138 PBMCs were obtained from 10 ml of whole blood using the LeukoLOCK technology
139 (Thermo Scientific) at the Biomaterialbank Marburg, Germany. After sample
140 randomization, total RNA extraction from PBMCs was carried out using the
141 mirVanaTM kit (Thermo Fisher) or TRIzolTM Reagent (Thermo Fisher) following the
142 manufacturer's protocol.

143 **PBMCs processing for small RNA-sequencing**
144 For the Small RNA-sequencing, RNA was extracted with *mirVana*™ kit (Thermo
145 Fisher) and DNase treated, and it was carried out at Functional Genomic Center
146 Zurich (FGCZ, <https://fgcz.ch/>).

147 **Small RNA-analysis**
148 Short RNA reads were processed using the ncPro 1.6.4 pipeline (Chen *et al*, 2012)
149 using the hg19 annotated (based on miRBase version 21). Only mature miRNA reads
150 (accepting +2bp on either end) were considered for downstream analysis.
151 Differential expression analysis was then performed using limma/voom 3.46.0
152 (Ritchie *et al*, 2015), with a model including a covariate to correct for the two
153 technical batches.

154 ***Rat primary neuron culture***
155 Cultures of primary hippocampal and cortical neurons from rat hippocampus were
156 established using E18 Sprague-Dawley rats obtained from Janvier Laboratories, as
157 described previously (Martins *et al.*, 2022).

158 **Transfection**
159 Primary hippocampal neurons were transfected with Lipofectamine™ 2000 Reagent
160 and plasmid DNA constructs as previously described (Martins & Schratt, 2021).

161 **Virus infection**
162 Primary hippocampal neurons were infected with recombinant adeno-associated
163 virus (rAAV) containing hpCTL or hp708 constructs on *days in vitro* (DIV) 2 by adding
164 300µl of a mixture of the virus with 300µl of NBP+ per well of a 24-well plate. Cells
165 were used for downstream analysis on DIV19-20.

166 **Luciferase Assay**
167 DIV6 hippocampal neurons were transfected with 100ng of the Nnat-3'UTR
168 luciferase reporters and 500ng of hpCTL-p or hp708-p, spCTL-p or sp708-p. After
169 seven days from transfection, the cells were lysed, luciferase assay was conducted
170 using a GloMax R96 Microplate Luminometer (Promega), as previously described
171 (Martins *et al.*, 2022). The relative luciferase activity was determined by calculating
172 the ratio of the Firefly signal to the Renilla signal.

173 ***In Situ* Hybridization**

174 Single-molecule fluorescence *in situ* hybridization (smFISH) for miRNA detection in
175 hippocampal neuron cultures was conducted using the QuantiGene ViewRNA
176 miRNA Cell Assay Kit (Thermo Fisher, QVCM0001) following the manufacturer
177 protocol with minor adjustments. Probes for has-miR-708-5p (Alexa Fluor 546,
178 Thermo Fisher), Nnat (Alexa Fluor 546), CamK2 (Alexa Fluor 488) and Gad2 (Alexa
179 Fluor 488) were used for the assay.

180 ***Plasmid design and rAAVs preparation***

181 For rAAV-mediated overexpression of miR-708-5p, the chimeric miR-708 hairpin was
182 generated by polynucleotide cloning. A detailed description and characterization of
183 this system have been published (Christensen *et al*, 2010). To knockdown miR-708-
184 5p, a sponge plasmid was constructed by inserting six TDMD sites predicted to bind
185 miR-708-5p in the 3'UTR of eGFP on rAAV-hSyn-EGFP. To perform luciferase activity
186 analysis, the wild type and mutated Nnat 3'UTR was inserted into a pmirGLO dual-
187 luciferase expression vector (Promega). Detailed description of the design of these
188 constructs and of the rescue constructs are listed in the supplementary material
189 section. Viral vectors were produced by the Viral Vector Facility (VVF) of the
190 Neuroscience Center Zurich (<https://www.vvf.uzh.ch>).

191 ***Animal studies***

192 ***Mouse experiments***

193

194 ***Husbandry, housing, and behavioral testing***

195 All animal experiments on mice were conducted in accordance with Switzerland's
196 animal protection laws and received approval from local cantonal authorities
197 (Approval ID: ZH194/21). Mice were housed collectively in cages designed for 2 to
198 4 individuals, with unrestricted access to food and water. The animal facility
199 maintained an inverted light-dark cycle of 12 hours, with behavioral assessments
200 conducted during the dark phase. Prior to experimentation, mice underwent daily
201 handling lasting 5 minutes each over one week. Details about general behavioral
202 procedures can be found in the supplementary materials and methods section.

203 *Stereotactic surgeries and post-operative care*

204 Stereotactic brain injections were conducted on 2-month-old C57BL/6JRj wild-type
205 mice. The mice were anesthetized with 5% isoflurane in oxygen (1 L/min) and
206 positioned on a stereotactic frame. Viral injections were carried out bilaterally. For
207 dorsal hippocampus, the coordinates used were AP: -2.1mm; ML: \pm 1.5mm. For
208 ventral hippocampus, the coordinates used were AP: -3.3mm; ML: \pm 2.7mm.
209 Detailed description of the procedure and post-operative care can be found in the
210 supplementary materials and methods section.

211 *Open Field Test*

212 Mice were placed in an open field box (size: L 45 x W 45 x H 40 cm, TSE System, Bad
213 Homburg, Germany) with a 60-minute exploration window. Dim, yellow light was
214 used in the Open field test of Fig. S2H and I, and Fig. S4C, D, E. 30 lux, white light
215 was used for the Open Field in Fig. S2J. The experiment was recorded, and the TSE
216 VideoMot2 analyzer software (TSE Systems, Bad Homburg, Germany) was used for
217 the automated assessment.

218 *Elevated Plus Maze Test*

219 The mouse was placed on the center of the elevated plus maze, a cross-shaped
220 apparatus with two open arms and two closed arms, each arm measuring L 65 x W
221 5.5 cm and elevated 62 cm from the ground. 20 lux white light was used. Behavior
222 was recorded on video for five minutes. The videos were automatically analyzed
223 using TSE VideoMot2 analyzer software (TSE Systems, Bad Homburg, Germany)

224 *Saccharin Preference Test*

225 Mice were habituated in their standard group housing to the presence of two bottles
226 for 48 hours before the test. The test was performed by single housing the test
227 animals, and two bottles of tap water or 0.1% Saccharin solution were given to them
228 for 48 hours. The weight of the bottles was recorded at the beginning of the test and
229 every 12 hours around the light change (09:00-09:15 am/pm). The position of the
230 bottle was exchanged each time to avoid side preference. The animals were re-
231 grouped after the test ended.

232 *Novel Object Recognition (NOR) Test*

233 The test was performed as previously described (Daswani *et al*, 2022), with slight
234 modifications: 1. Twenty-four hours prior to testing, the animals were habituated to

235 the arena used for the test; 2. The break between familiarization and novelty
236 introduction rounds was extended to five minutes or 24 hours.

237 *Marble Burying Test*

238 The test was conducted as previously described (Levone *et al*, 2021).

239 *Passive Avoidance Test*

240 The test was conducted using the Passive Avoidance 2-Compartment light-dark
241 arena of the TSE System. The white light was set to 500 lux. On day one, the animal
242 was placed into the light compartment while the door to the dark one was open and
243 it was allowed to explore; once it passed to the dark compartment, the door closed,
244 and the animal received a 2-seconds foot shock of 0.3 mA after three seconds. On
245 day two, the animal was placed again into the light compartment and, after 15
246 seconds, the door was automatically opened. The latency to enter the dark
247 compartment was measured.

248 *Tail Suspension Test*

249 The mouse was hung by its tail for a duration of six minutes using a piece of tape
250 affixed to the suspension metal bar, elevated approximately 50 cm from the ground.
251 Before initiating the experiment, a climb-stopper, following a published procedure
252 (Can *et al*, 2012), was placed at the mouse tail base to prevent climbing. The sessions
253 were recorded on video, and the duration of immobility was subsequently
254 quantified.

255 *Tissue collection*

256 Animals were sacrificed by cervical dislocation and the hippocampus was collected
257 on an ice-cold glass plate and subsequently snap-frozen for RNA extraction (Trizol
258 protocol) and gene expression analysis or for histological assessments after 4%
259 paraformaldehyde fixation, cryoprotection through 30% sucrose solution, and
260 coronal sectioning at the cryostat. Further details can be found in the supplementary
261 materials and methods section.

262 *Rat experiments*

263 All animal experiments on rats were conducted in accordance with the National
264 Institutes of Health Guidelines for the Care and Use of Laboratory Animals and were
265 subject to prior authorization by the local government (MR 20/35 Nr. 19/2014 and

266 G48/2019; Tierschutzbehörde, Regierungspräsidium Giessen, Germany).
267 Constitutive heterozygous *Cacna1c⁺⁻* animal breeding and the juvenile social
268 isolation paradigm were conducted as described (Martins *et al.*, 2022).

269

270 ***RT-qPCR***

271 Total RNA extraction from mouse brain tissue, PBMC samples, and primary
272 hippocampal cultures was performed using TRIzol™ Reagent (Thermo Fisher,
273 15596026), and total RNA was subsequently extracted following the manufacturer's
274 guidelines. Further details can be found in the supplementary materials and
275 methods section.

276 ***PolyA RNA sequencing sample preparation***

277 Total RNA extraction from mouse hippocampus was extracted TRIzol™ Reagent
278 (Thermo Fisher, 15596026). The RNA was then treated with Turbo DNase enzyme.
279 600 ng of DNase-treated RNA was used for High Throughput Transcriptome
280 sequencing. Libraries were prepared with Illumina TrueSeq mRNA protocol and the
281 transcriptome sequencing was run on Illumina Novaseq 6000. The transcriptome
282 sequencing was carried out by the Functional Genomic Center Zurich (FGCZ,
283 hyperlink: <https://fgcz.ch/>).

284 ***PolyA RNA sequencing analysis***

285 Reads were mapped to the GRCm39 genome with STAR 2.7.8a (Dobin *et al*, 2013)
286 using the GENCODE M26 annotation as reference and quantified at the gene-level
287 using featureCounts 1.6.4 (Liao *et al*, 2014). Genes were filtered using edgeR's
288 filterByExpr function before differential expression analysis with edgeR 3.32.1
289 (Robinson *et al*, 2010) using likelihood ratio tests with 3 surrogate variables
290 estimated using sva 3.38.0 (Leek *et al*, 2012). TargetScan 7 (Agarwal *et al*, 2015) was
291 used to predict miRNA targets. For gene expression across different brain cell types
292 (Figure 4B), the Allen 10X+smartSeq taxonomy and per-cluster expression was used,
293 aggregating non-neuronal cell types into broader classes.

294 ***Western blot***

295 Proteins from primary hippocampal neurons were isolated using ice cold RIPA lysis
296 buffer. 20ug of protein was mixed with 4xLaemmli Sample Buffer (Biorad) and were

297 run on a 4-20% Mini-PROTEAN® TGX™ Precast Protein Gels (Biorad). Proteins were
298 transferred on a nitrocellulose membrane and blocked for two hours at room
299 temperature in blocking solution and incubated in primary antibody solution for 48
300 hours at 4°C. Membranes were washed and incubated with secondary antibody for
301 1h. Membranes were washed five times in TBS-T, developed with the Clarity™
302 Western ECL Substrate (Bio-Rad) and visualized with the ChemiDocTM MP, Imaging
303 System (BioRad). Further details can be found in the supplementary materials and
304 methods section.

305 ***Statistical analysis***

306 Details regarding the statistical analysis are listed in the Supplementary Materials
307 and methods section.

308 **Results**

309

310 *miR-708-5p is upregulated in the peripheral blood of human*
311 *healthy subjects harboring an elevated genetic and*
312 *environmental risk for MD.*

313
314 We hypothesized that miRNAs whose expression correlates with environmental (ER)
315 and genetic risk (GR) for MD in human subjects might represent strong candidates
316 for miRNAs causally involved in MD etiology. Furthermore, by starting from a human
317 cohort, we hoped to identify miRNA candidates with high translational potential,
318 meaning that they could serve as targets for miRNA therapeutics and/or diagnostics
319 in MD.

320 To identify candidate miRNAs in an unbiased manner, we performed small-RNA
321 sequencing with total RNA obtained from peripheral blood mononuclear cells
322 (PBMCs) of healthy subjects (n=52) from the FOR2107 cohort (39)(Kircher et al.,
323 2019) characterized by a high genetic (at least one first degree relative diagnosed
324 with a mood disorder; GR group; n=14) or environmental (ER group; childhood
325 trauma based on childhood trauma questionnaire (CTQ) score; n=16) predisposition
326 to develop MDs (Fig. 1A; Table 1). For this initial analysis, we selected females since

327 we were able to form more homogeneous GR and ER groups with females
328 compared to males. We then focused on miRNAs that were differentially expressed
329 in both ER and GR compared to healthy control subjects (CTL group; no known
330 genetic or environmental risk factors; n=18). We found that a total of six miRNAs
331 (miR-412-5p, miR-100-5p, miR-501-3p, miR-642a-5p, miR-4999-5p, miR-708-5p)
332 fulfilled this criterium (Fig. 1B and C). Among them miR-708-5p was of specific
333 interest, since it was the most strongly upregulated miRNA. Furthermore, it was
334 previously shown to be induced by various forms of cellular stress (26-30) (Behrman
335 et al, 2011; Lin et al, 2015; McIlwraith et al, 2022; Rodriguez-Comas et al, 2017; Yang
336 et al, 2015) and had been associated with BD in the past (21)(Forstner et al., 2015).
337 We could confirm that miR-708-5p is significantly upregulated in the GR and ER
338 groups using qPCR (Fig. 1D). Thus, we decided to focus on miR-708-5p for our
339 further studies.

340

341 *342 **343 miR-708-5p is expressed in rat hippocampal neurons and
upregulated in the hippocampus of rat models of environmental
or genetic risk for MDs.***
344

345 To further study the functional role of miR-708-5p in MDs, we considered rodents
346 given their extensive use in modelling psychiatric conditions. As a first step, we
347 investigated whether miR-708-5p was expressed in different regions of the rat brain
348 (Fig. 2A). We observed robust expression in regions classically implicated in MDs
349 and cognitive function, such as the amygdala, frontal cortex, and hippocampus (Fig.
350 2A). Next, we assessed miR-708-5p expression in rat hippocampal primary neurons.
351 Single-molecule fluorescence *in situ* hybridization (sm-FISH) showed that miR-708-
352 5p is expressed in both CamK2a+ excitatory and GAD2+ inhibitory neurons in rat
353 hippocampal cultures, illustrating its widespread neuronal distribution (Fig. 2B and
354 2C). miR-708-5p expression in rat hippocampal cultures decreased over time during
355 *in vitro* development, indicating a role for miR-708-5p at early stages of neuronal
356 development (Fig. 2D). Motivated by the findings of miR-708-5p elevation in
357 peripheral blood of humans at risk to develop MDs (Fig. 1B-D), we asked whether

358 miR-708-5p was similarly dysregulated in rat genetic and environmental models of
359 MDs. As a genetic model, we chose rats heterozygous for *Cacna1c* (*Cacna1c*^{+/−}), a
360 repeatedly validated cross-disorder psychiatric risk gene (60–65) (Bhat *et al.*, 2012;
361 Dao *et al.*, 2010; Dedic *et al.*, 2018; Harrison *et al.*, 2022). Environmental risk was
362 modelled by juvenile social isolation, a widely recognized model for early life
363 trauma, e.g., childhood maltreatment (66) (Seffer *et al.*, 2015) (Fig. 2E). miR-708-5p
364 was significantly upregulated by social isolation in the hippocampus of juvenile wild-
365 type rats compared to their group-housed counterparts (Fig. 2F), indicating parallels
366 between the early life stress-related modulation of miR-708-5p expression in human
367 peripheral blood and rat brain. Furthermore, *Cacna1c* heterozygosity led to an
368 upregulation of miR-708-5p in the rat hippocampus independent of social housing
369 conditions, suggesting that, like our human PBMC data (Fig. 1C–D), a *genetic*
370 predisposition for MDs is sufficient to induce miR-708-5p expression in the rat brain
371 (Fig. 2F). Our comprehensive analysis across various experimental paradigms
372 revealed that miR-708-5p expression is linked to both environmental stressors and
373 genetic factors associated with MDs in both humans and rodents. Therefore,
374 manipulation of miR-708-5p in the rodent brain represents a viable strategy to study
375 the involvement of miR-708-5p in the development of mood disorder-associated
376 endophenotypes as well as the underlying molecular mechanisms.

377

378 *379 miR-708-5p overexpression in the mouse hippocampus is
380 sufficient to induce MD-associated endophenotypes.*

381 We next investigated whether stress-induced upregulation of miR-708-5p in the
382 rodent hippocampus is causally involved in the development of MD-associated
383 behavioral endophenotypes. Towards this end, miR-708-5p was ectopically
384 overexpressed in the mouse hippocampus using stereotactic injection of a
385 recombinant rAAV expressing a miR-708-5p hairpin (hp) under the control of the
386 human synapsin (hSYN) promoter (Fig. S1A). We chose mice for our studies since
387 we our animal facilities are not set up for experiments with rats. The hippocampus
388 was chosen for functional manipulation since it represents a key brain structure for

389 cognitive and emotional processing, and our previous data indicates strong effects
390 of juvenile social isolation on hippocampal miRNA expression (Martins *et al.*, 2022;
391 Valluy *et al.*, 2015) (Fig. 2F). To ensure the functionality of the overexpressing
392 construct, we performed luciferase assay upon transfection of miR-708-5p
393 overexpressing plasmid (hp708-p) together with a luciferase sensor harboring two
394 perfect binding sites for miR-708-5p. Thereby, we detected a significant decrease in
395 luciferase activity upon miR-708-5p overexpression compared to the control (hpCTL-
396 p) (Fig. S1B), demonstrating efficient repression of the reporter gene by the
397 overexpressed miR-708-5p. We went on to perform stereotactic surgeries on seven
398 to eight-week-old mice, which then underwent a four-week recovery period before
399 behavioral assessments were conducted (Fig. 3A). Our approach led to a
400 widespread infection of both the dorsal and ventral hippocampus (Fig. 3B), as well
401 as to a robust miR-708-5p overexpression compared to control infected mice (Fig.
402 3C; Fig. S1C-E). Male mice overexpressing miR-708-5p in the hippocampus
403 exhibited a significant decrease in immobility during the tail suspension test (TST),
404 indicative of reduced behavioral despair, while this effect was not observed in
405 female mice (Fig. 3D-E). Interestingly, neither male nor female mice with miR-708-5p
406 overexpression showed significant differences in saccharin preference compared to
407 control groups, suggesting no alteration in anhedonia-like behavior (Fig. S1F-G).
408 Furthermore, we observed a strong, although non-significant trend, for elevated
409 anxiety-related compulsive behavior, as assessed by the marble burying test (MBT),
410 in miR-708-5p overexpressing male mice (Fig. S1H). However, results from the
411 elevated plus maze (EPM) did not reveal significant changes in general anxiety levels
412 between the experimental groups (Fig. S1I-L). We further evaluated cognitive
413 functions since cognitive impairments are frequently observed in MD patients. Our
414 results from the novel object recognition (NOR) (Fig. 3G) test revealed that miR-708-
415 5p overexpression led to a significant impairment in object recognition memory
416 after a 24-hour delay specifically in male mice (Fig. 3H; Fig. S2A, B). This impairment
417 was also evident in short-term memory (5 min delay), as miR-708-5p overexpressing
418 mice failed to discriminate between familiar and novel objects after a brief five-
419 minute interval, this time in a sex-independent manner (Fig. 3 I, J; Fig. S2C-F). Passive
420 avoidance, however, was intact in miR-708-5p expressing male mice (Fig. S2G).
421 Locomotor activity, assessed through the OFT remained unchanged, ruling out

422 locomotion as a confounding factor in our behavioral assessments (Fig. S2H-J).
423 Together, our results provide strong evidence that hippocampal overexpression of
424 miR-708-5p leads to distinct MD-associated behaviors, including reduced
425 behavioral despair, elevated compulsive behavior and impaired recognition
426 memory. This behavioural “signature” is consistent with an “anti-depressant” function
427 of miR-708-5p, for instances during the manic-like state of BD.

428 ***miR-708-5p directly targets Neuronatin (Nnat), an ER-resident***
429 ***protein involved in calcium homeostasis.***

430

431 As a next step, we decided to explore the mechanisms underlying miR-708-5p
432 dependent regulation of MD-associated behavior. miRNAs regulate gene
433 expression through binding to mRNAs, predominantly leading to their degradation
434 or inhibition of translation (Bartel, 2018). Therefore, we reasoned that the analysis of
435 the hippocampal transcriptome of miR-708-5p overexpressing mice could inform us
436 about potential miR-708-5p downstream targets mediating behavioral effects.
437 polyA-RNA-sequencing (seq) revealed 118 differentially expressed genes (DEG) (p-
438 value<0.01; FDR<0.001) between the hippocampus of hp-708 and hp-control
439 infected mice (Fig. 4A). Sixteen DEGs were significantly downregulated and
440 contained predicted miR-708-5p binding sites (Fig. 4B), making them strong
441 candidates for direct targets of miR-708-5p. Nnat was of particular interest, since it
442 has been previously identified as a direct target of miR-708-5p (Vatsa *et al*, 2019;
443 Yang *et al.*, 2015) and its 3'UTR contains a miR-708-5p perfect binding site (Fig. 4C).
444 The Nnat gene encodes for a small ER-resident protein which acts as an endogenous
445 inhibitor of the SERCA calcium pump, thereby controlling intracellular calcium
446 homeostasis which is disturbed especially in BD (Harrison *et al*, 2019). Moreover,
447 within the mouse brain, Nnat is primarily expressed in glutamatergic CA1 and CA3
448 neurons based on published single cell RNA-seq data (Fig. 4B), consistent with a
449 functional interaction of miR-708-5p and Nnat in neurons. To further validate our
450 RNA-seq data, we measured the levels of Nnat mRNA in the hippocampus of mice
451 upon miR-708-5p overexpression (Fig. 4D) and detected a significant decrease
452 compared to control infected mice (Fig. 4E). So far, our expression analysis on
453 hippocampal tissue did not allow to distinguish between effects occurring in

454 neuronal and non-neuronal cells. Therefore, we further extended our analysis to rat
455 primary hippocampal neuron cultures. Like in the *in vivo* experiments, infection of
456 rat neurons with hp708 resulted in a robust upregulation of miR-708-5p levels (Fig.
457 4F) and led to significant reductions in Nnat mRNA (Fig. 4G), and protein levels
458 (Fig. 4H and I), demonstrating that miR-708-5p represses endogenous Nnat
459 expression in neurons. To prove that the downregulation of Nnat is due to a direct
460 interaction of the miR-708-5p and Nnat mRNA via the predicted miR-708-5p binding
461 site, we performed luciferase reporter gene assay in primary rat hippocampal
462 neurons. Luciferase reporter genes were either fused to the wild type 3'UTR of Nnat
463 (Nnat wt) or to a 3'UTR of Nnat containing several point mutations expected to
464 prevent miR-708-5p binding (Nnat mt). Whereas Nnat wt was efficiently
465 downregulated by co-transfection of hp708-p, Nnat mt was insensitive to miR-708-
466 5p overexpression (Fig. 4J). The results obtained from these assays therefore confirm
467 that miR-708-5p directly suppresses Nnat expression through a 3'UTR interaction. In
468 a complementary approach, we employed a target-directed miRNA degradation
469 (TDMD) construct (sp708-p) to reduce endogenous miR-708-5p levels (Fig. S3A-C).
470 Here, we detected a significant increase in luciferase activity upon transfection with
471 sp708-p compared to control for Nnat wt, but not Nnat mt expressing neurons (Fig.
472 4K). In summary, our results from RNA-seq, qPCR and luciferase assays establish
473 Nnat as a direct target of miR-708-5p in rodent hippocampal neurons.

474 *Restoring Nnat expression in miR-708-5p overexpressing*
475 *hippocampal neurons rescues BD-associated behavioral*
476 *endophenotypes in mice.*

477
478 Building upon our identification of Nnat as a potential regulatory target of miR-708-
479 5p in the hippocampus, we hypothesized that Nnat downregulation might underlie
480 the observed MD-associated behavioral alterations elicited by miR-708-5p
481 overexpression. To test this hypothesis, we engineered a construct which allows to
482 simultaneously overexpress Nnat and miR-708-5p upon viral infection. This was
483 achieved by inserting the coding sequence of Nnat downstream of the hSYN
484 promoter, coupled with a P2A self-cleaving peptide; this fragment was followed by
485 the EGFP coding sequence and the overexpressing miR-708-5p hairpin. As a control,

486 we utilized a similar construct where the mCherry coding sequence replaced Nnat
487 followed by EGFP and hp708 or EGFP and hpCTL (Fig 5A). rAAV obtained from
488 these constructs was injected into the hippocampus of seven/eight weeks old male
489 mice by stereotaxis, followed by a four-week recovery period before behavioral
490 assessments as described in Fig. 3A. Expression analyses confirmed the
491 upregulation of miR-708-5p and the intended modulation of Nnat levels (Fig. 5B, 5C;
492 Fig. S4A, and Fig. 5D, Fig. S4B). Notably, the mCherry-P2A-hp708 construct led to a
493 pronounced upregulation of miR-708-5p (Fig. 5B) and a corresponding decrease in
494 Nnat levels, as opposed to the control and the Nnat-P2A-hp708 conditions, the latter
495 of which restored Nnat expression to wild-type levels (Fig. 5C and Fig. S4A, B).
496 Behavioral analyses revealed that miR-708-5p overexpression alone impaired object
497 discrimination ability in the NOR test as expected (Fig. 5D, Fig. S4C). This was not
498 observed in mice injected with the Nnat-P2A-hp708 construct, which displayed a
499 restoration of exploratory behavior towards the novel object to a similar degree than
500 control injected mice (Fig. 5D, Fig. S4C). Furthermore, as expected from our previous
501 results, the total exploration time of the animals was not affected in any of the
502 conditions (Fig. S4D). Similarly, the TST results indicated reduced behavioral despair
503 in miR-708-5p overexpressing mice, an effect that was normalized upon co-
504 expression of Nnat, again mirroring control group behaviors (Fig. 5E). Furthermore,
505 no significant differences between experimental groups were observed in
506 locomotor activity in the OFT (Fig. S4E-G). Taken together, our results strongly
507 suggest that Nnat is an important downstream target in mediating the effects on MD-
508 associated behavioral endophenotypes caused by miR-708-5p overexpression in
509 the mouse hippocampus.

510

511 **miR-708-5p levels negatively correlate with human cognitive processing and**
512 **represent a potential biomarker for differential diagnosis in MDs**

513 Our functional analysis in mice implies an important role of miR-708-5p in the
514 regulation of MD-associated behaviours. To explore a potential link between miR-
515 708-5p and human behaviour, we harnessed our rich dataset of neuropsychological
516 test results present within the FOR2107 cohort (Kircher *et al.*, 2019). Given our

517 previous results from mice (Fig. 3), we were specifically interested in correlations
518 between miR-708-5p expression levels (measured in PBMCs) and performances in
519 assessments covering the neurocognitive domains (attention/concentration;
520 executive function, verbal and visuo-spatial memory (see materials and methods).
521 Interestingly, miR-708-5p expression in a combined human sample (n=162; both
522 healthy and MD subjects of both sexes; Table 1) showed a significant negative
523 correlation with the score from the D2 attention test (Fig. 6A), which suggests that
524 high levels of miR-708-5p in human impair selective attention and cognitive
525 processing. Significant negative correlations were also observed when considering
526 males (n=90) and females (n=72) separately and were mostly driven by BD and to a
527 lesser extent MDD patients (Fig. S5). These finding aligns well with our results from
528 behavioural testing in mice, which revealed a negative role for miR-708-5p in novel
529 object recognition memory.

530 Finally, we assessed the potential of miR-708-5p as a diagnostic biomarker in MD.
531 Therefore, we measured the levels of miR-708-5p in PBMCs obtained from MDD
532 (n=42) and BD (n=63) patients (Fig. 6B; Table 1) by qPCR. miR-708-5p was
533 significantly upregulated in female BD (n=26) and MDD (n=18) patients (Fig. 6C)
534 compared to CTL (n=26), after correcting for age and antidepressant treatment (Fig.
535 S6A-B), whereby the effect was more pronounced in BD compared to MDD patients.
536 A similar picture was observed in male patients. Here, the increase was highly
537 significant for BD subjects (Fig. 6C, after age and antidepressant treatment
538 correction (Fig. S6C), and only trending for patients affected by MDD (Fig. 6D, Fig.
539 S6D). Furthermore, miR-708-5p was significantly upregulated in both subtypes of BD
540 in both female (Fig. S6E) and male (Fig. S6F) subjects. In female subjects, the only
541 significant BD state for miR-708-5p upregulation was mania, although it only
542 included two samples (Fig. S6G). There was also a significant miR-708-5p
543 upregulation in depressive and hypomanic states in male subjects (Fig. S5H).

544 We also investigated whether miR-708-5p correlated with the Beck's depression
545 inventory (BDI), in MDD male and female subjects, but no significant or trending
546 correlation could be observed (Fig. S6I and J). miR-708-5p levels showed no
547 correlation with the Young Mania Rating Scale (YMRS), which is used to assess manic-
548 like symptomatology in subjects affected by BD, in female BD patients (Fig. S6K). In

549 contrast, miR-708-5p showed a trending positive correlation with YMRS in male
550 subjects affected by BD (Fig. S6L). Taken together, our results suggest that miR-708-
551 5p is elevated in the peripheral blood of MD patients, with a particularly strong
552 upregulation observed for BD males.

553 We then asked if miR-708-5p was also differentially expressed in PBMCs obtained
554 from patients suffering from related psychiatric disorders. For that purpose, we
555 chose schizophrenia (SCZ), given the high genetic similarities between SCZ and BD
556 (Craddock *et al*, 2005). We performed qPCR on PBMCs from female (n=8) and male
557 (n=15) SCZ patients but were unable to detect any significant change in miR-708-5p
558 expression compared to healthy control subjects (CTL; n=19) (Fig. 6E).

559 One of the biggest challenges in mood disorder diagnostics is to distinguish BD and
560 MDD patients, especially when BD patients are in a depressive phase (Nierenberg
561 *et al*, 2023; Vieta *et al*, 2018). Given our results from Fig. 6C-D, we hypothesized that
562 miR-708-5p expression in PBMCs could be used as a diagnostic tool to classify
563 samples into BD or control group, and BD or Control and MDD group. To do this, we
564 performed receiver operating characteristic (ROC) curve analysis (Zweig &
565 Campbell, 1993) and used miR-708-5p expression as predictor variable. We found
566 that miR-708-5p alone performed better in male samples than in female samples
567 when asked to discriminate BD patients from controls and MDD patients (Fig S7A
568 and B), consistent with our previous results (Fig. 6C-D). We then performed the same
569 analysis using the expression values of miR-499a-5p, which we previously found to
570 be significantly upregulated in male BD subjects compared to healthy controls
571 (Martins *et al.*, 2022). Like miR-708-5p, miR-499a-5p performed better as a classifier
572 in male subjects compared to female subjects (Fig S7C and D). Furthermore, we
573 performed another ROC curve analysis considering both miRNAs together and
574 found that the combined expression of miR-708-5p and miR-499a-5p performs
575 better (AUC=0.914) in classifying male BD vs controls (Fig. 6F) than when the
576 miRNAs are analyzed individually. In addition, the combination performs better
577 (AUC=0.914) also in classifying male BD vs controls and MDD patients (AUC=0.906)
578 (Fig. 6G).

579 Taken together, our results show that the combined expression of miR-708-5p and
580 miR-499a-5p in PBMCs shows a good predictive potential to distinguish BD patients
581 from MDD patients and healthy controls, in particular regarding males.

582

583

584 **Discussion**

585 In this study, we found that miR-708-5p is upregulated in healthy human subjects at
586 high risk to develop MDs, in genetic and environmental rat MD models, as well as in
587 MD patients. Furthermore, peripheral miR-708-5p expression was negatively
588 correlated with cognitive processing. Mimicking miR-708-5p overexpression in the
589 mouse hippocampus was sufficient to elicit MD-associated behavioural alterations,
590 namely memory impairments, increased compulsive anxiety and reduced
591 depression-like behavior. Finally, peripheral levels of miR-708-5p, together with the
592 previously characterized BD-associated miR-499-5p, efficiently discriminated male
593 BD from MDD patients and healthy subjects, emphasizing its utility as a diagnostic
594 biomarker in MDs.

595 **miR-708-5p regulation by genetic and environmental risk factors**

596 MDs are highly heritable psychiatric disorders. Genetic factors seem to explain
597 about 35–45% of variance in the etiology of MDD and 65–70% of variance for BD
598 (Coleman *et al.*, 2020; Polderman *et al.*, 2015). However, genetics alone cannot
599 explain the degree at which MD is inherited in families, suggesting that
600 environmental factors need to be considered as well. Childhood maltreatment is the
601 most studied environmental stressor in the context of MDs (Aas *et al.*, 2020;
602 Nemeroff, 2016). Interestingly miR-708-5p was upregulated in the juvenile social
603 isolation rat model, an animal model for childhood maltreatment (Seffer *et al.*, 2015).
604 Consistent with this result, a recent study reported miR-708-5p upregulation in the
605 PFC upon seven days of chronic social defeat in vulnerable rats compared to resilient
606 animals (Chen *et al.*, 2015). Moreover, miR-708-5p levels are elevated in *Cacna1c^{+/−}*
607 rats, a well-established genetic model of psychiatric disorders (Bhat *et al.*, 2012),
608 even without environmental stressors. Taken together, these results suggest that

609 genetic and environmental risk might impinge on common pathways triggering
610 miR-708-5p expression. Furthermore, studies in the context of ovarian cancer
611 revealed the presence of a glucocorticoid response element upstream of *ODZ4* (Lin
612 et al., 2015), suggesting that the expression of the host gene and of miR-708-5p
613 might be responsive to glucocorticoids. Moreover, studies in the context of ER stress
614 suggest that miR-708-5p expression is induced by CHOP, a transcription factor
615 involved in the Unfolded Protein Response (UPR) upon ER stress (Behrman et al.,
616 2011). Furthermore, metformin-induced upregulation of miR-708-5p elicits Nnat
617 downregulation in prostate cancer, leading to the expression of ER-Stress-mediators.
618 Finally, bisphenol A, an ubiquitous endocrine disruptive chemical, induces miR-708-
619 5p in hypothalamic neurons in a CHOP-dependent manner, accompanied by Nnat
620 downregulation (Nierenberg et al., 2023). Thus, we speculate that increased ER
621 stress, which has been implicated in BD, is a critical mediator of miR-708-5p
622 upregulation in response to genetic and environmental stress in neurons. In the
623 future, miR-708-5p manipulation in the context of a GxE rodent model should help
624 to test this hypothesis.

625 **miR-708-5p function in MD-associated behaviors**

626 Modelling the complex symptomatology of MD in animal models is challenging and
627 has so far only been partially achieved in mice in the context of miRNA manipulation.
628 For example, the acute manipulation of miR-124 in the PFC of mice led to impaired
629 social behavior and locomotor disturbances upon injection of psychostimulants
630 (Namkung et al., 2023). The hippocampal overexpression of miR-499-5p in
631 *Cacna1c^{+/}* rats provoked memory impairments, recapitulating the cognitive deficits
632 encountered in MD (Martins et al., 2022) which include difficulties in attention,
633 memory and executive functions present during the different mood phases and
634 during remission (Huang et al., 2023). Accordingly, we found that in humans miR-
635 708-5p peripheral expression is negatively correlated with D2 scoring in the
636 attention test (Camelo et al., 2017). Moreover, we found that both female and male
637 mice overexpressing miR-708-5p in the hippocampus showed memory
638 impairments. Furthermore, male, but not female, mice showed significantly
639 decreased immobility in the TST. This test has been historically used to test
640 antidepressant effects on mice but is also employed in mouse models of manic

641 behavior. For example, BD mouse models of mania (Ankyrin-G conditional knockout,
642 Clock19 deficient mice) show reduced immobility during TST (Zhu *et al*, 2017) and
643 the FST (Roybal *et al*, 2007), suggesting that the reduced behavioral despair in our
644 model could reflect a function of miR-708-5p in manic-like behavior. This is further
645 supported by increased (although non-significant) marble burying, indicative of a
646 compulsive response to anxiogenic stimuli. However, in our study, the
647 antidepressant-like behavior was neither accompanied by increased exploratory
648 behavior in the OFT, nor increased risk-taking during EPM testing, both of which are
649 usually observed in mouse models of mania. We consider two possible explanations
650 for this discrepancy. First, contrary to most of the models reported in the literature,
651 our animal model is characterized by an acute and selective overexpression of miR-
652 708-5p in the hippocampus. Therefore, we might expect to observe
653 endophenotypes dependent on the hippocampus (e.g., antidepressant-like
654 behavior, cognition), but not those related to other brain regions, such as the
655 amygdala, prefrontal cortex, or cerebellum (e.g., risk-taking behavior, hyperactivity).
656 Alternatively, the miR-708-5p/Nnat pathway might selectively control specific
657 aspects of manic- and depression-like behavior. To distinguish between these
658 possibilities, it will be important to study the role of miR-708-5p overexpression in
659 other brain areas relevant for MD-associated behaviors in the future.

660 **661 Molecular and cellular mechanisms downstream of the miR-708-5p/Nnat
interaction**

662 Dysregulated calcium homeostasis has been previously implicated in the
663 pathophysiology of MD, with a special emphasis on BD (Harrison *et al.*, 2019). Our
664 results from this and a previous study (Martins *et al.*, 2022) are consistent with
665 disrupted calcium flux via L-type calcium channels, e.g., due to *Cacna1c* mutation,
666 as a major underlying cause. However, ER calcium dynamics emerges as another
667 major player. For example, store operated calcium entry (SOCE) is dysregulated in
668 BD-induced pluripotent stem cells, leading to earlier neuronal differentiation and
669 abnormal neurite outgrowth (Hewitt *et al*, 2023). Furthermore, altered expression of
670 the miR-708-5p target Nnat has been associated with defective intracellular and ER
671 calcium levels (Sharma *et al*, 2013; Vatsa *et al.*, 2019; Zou *et al*, 2023). Nnat is a small
672 ER membrane protein which acts as an antagonist of the sarco-endoplasmic

673 reticulum calcium ATPase (SERCA) pump, thereby interfering with calcium re-uptake
674 into the ER (Braun *et al*, 2021). Consistently, it has been reported that miR-708-5p-
675 mediated downregulation of Nnat causes lower basal cytoplasmic calcium levels
676 (Vatsa *et al.*, 2019). On the other hand, excessive ER calcium re-uptake could result
677 in ER calcium overload, which in turn leads to calcium leakage to the cytoplasm and
678 mitochondria (Daverkausen-Fischer & Prols, 2022), with negative consequences for
679 calcium signaling and cell health, as exemplified in Alzheimer's disease
680 (Bezprozvanny & Mattson, 2008). Clearly, further studies are warranted on the impact
681 of aberrant miR-708-5p/Nnat signaling on intraneuronal calcium homeostasis in the
682 context of MD.

683 **miR-708-5p as a potential biomarker in BD**

684 Our findings indicate an upregulation of miR-708-5p in PBMCs of females at risk of
685 MDs and in patients with MDD and BD. A previous study reported a downregulated
686 expression of miR-708-5p in leukocytes of women in depressive state compared to
687 women in remission (Banach *et al*, 2017). These results are in line with our detected
688 expression difference between female euthymic patients and depressive patients.
689 For male samples, on the other hand, our data suggest a role of miR-708-5p
690 specifically in the manic phase of the disorder, as indicated from the YMRS
691 correlation and the behavioral characterization. Although SCZ and BD were reported
692 to have the highest genetic correlation among psychiatric disorders (Craddock *et*
693 *al.*, 2005), we found that miR-708-5p expression was unchanged in peripheral
694 samples of patients diagnosed with SCZ. This suggests a rather specific expression
695 pattern of miR-708-5p in the spectrum of MDs. Within MDs, miR-708-5p
696 upregulation was most pronounced in BD. This is impressively illustrated by our ROC
697 curve analysis, which shows that miR-708-5p expression, when combined with miR-
698 499-5p, effectively distinguishes BD patients not only from healthy controls, but also
699 from MDD patients. Although miR-708-5p is significantly upregulated in both male
700 and female BD patient samples, the degree of increase is higher in males compared
701 to females (8.8-fold vs. 4.23-fold change). Moreover, based on our ROC curve
702 analysis, miR-708-5p expression discriminated male BD patients better from control
703 and MDD compared to female patients. Together, these observations suggest a
704 potential sex-specific role of miR-708-5p in BD, which also aligns with our results

705 from mouse behavior. Sex differences in BD manifest across various aspects, ranging
706 from clinical symptoms to the progression of the disorder. Males typically encounter
707 their first manic episode at a younger age compared to females, who are more likely
708 to experience a depressive episode at the onset of BD (Kennedy *et al*, 2005). In
709 contrast, females experience a higher incidence of depressive episodes and
710 hypomania, leading to a more frequent diagnosis of BD type II (Diflorio & Jones,
711 2010). Females are also more susceptible to mixed episodes (Arnold *et al*, 2000),
712 rapid cycling of mood phases (Tondo & Baldessarini, 1998), and show a greater
713 likelihood of attempting suicide (Clements *et al*, 2013). Thus, it is tempting to
714 speculate that miR-708-5p might play an important role in male-specific aspects of
715 BD, e.g., the development of more common and intense manic episodes. In this
716 regard, miRNAs have been previously implicated in the sexually dimorphic control
717 of circadian, cholinergic, and neurokinin pathways in BD (Lobentanzer *et al*, 2019).
718 Taken together, we propose that miR-708-5p represents a promising candidate for
719 the development of a biomarker that helps to stratify MD patients based on disease
720 entity, specific phases of the disease and sex, which should greatly help with
721 diagnosis and therapy.

722

723 Acknowledgements

724 We greatly acknowledge the technical support in the preparation of primary
725 hippocampal cultures by Cristina Furler, Tatjana Wüst and Dr. Roberto Fiore. We also
726 thank Dr. Bruno Rocha Levone for support in behavioral testing and inputs on the
727 manuscript. We also thank Darren Kelly for support in designing the TDMD
728 construct, and David Colameo and Emanuel Sonder for support in the statistical
729 analysis. RNA sequencing was performed at the Functional Genomics Center Zurich
730 (FGCZ) of the University Zurich and ETH Zurich. The work in the lab of GS was
731 supported by grants from ETH Zurich (ETH-24 18-2 Grant (NeuroSno)) and the Swiss
732 National Science Foundation (SNSF [310030E_179651](https://doi.org/10.13140/RG.2.2.12550.00000), 32NE30_189486,
733 310030_205064/1). This work was further funded by the German Research
734 Foundation (DFG grants FOR2107 KI588/14-1, and KI588/14-2, and KI588/20-1,
735 KI588/22-1 to TK; grant FOR2107 DA1151/5-1, DA1151/5-2, DA1151/9-1,

736 DA1151/10-1, DA1151/11-1 to UD; grant FOR2107 SCHR 1136/3-1 to GS; grant
737 DFG WO 1732/4-1 and DFG WO 1732/4-2 to MW; grant DFG 559/14-1 and DFG
738 559/14-2 to RS), as well as the Fonds Wetenschappelijk Onderzoek - Vlaanderen
739 (FWO; Research Foundation - Flanders) through a senior project to MW
740 (G0C0522N), and the Interdisciplinary Center for Clinical Research (IZKF) of the
741 medical faculty of Münster (grant Dan3/022/22 to UD). Biosamples and
742 corresponding data were sampled, processed, and stored in the Marburg Biobank
743 CBBMR.

744

745

746 **Author contributions**

747 Carlotta Gilardi: Investigation; writing. Helena Martins: Investigation. Pierre-Luc
748 Germain: Formal analysis. Fridolin Gross: Formal analysis. Alessandra Lo Bianco:
749 Investigation. Silvia Bicker: Investigation; methodology. Ayse Özge Sungur:
750 Investigation. Theresa M. Kisko: Investigation. Rainer K.W. Schwarting: Supervision.
751 Frederike Stein: Data curation; formal analysis. Susanne Meinert: Data curation. Udo
752 Dannlowski: supervision. Tilo Kircher: supervision; project administration. Markus
753 Wöhr: supervision; project administration. Gerhard Schratt: Conceptualization;
754 supervision; writing.

755 **Conflict of Interest**

756 The authors declare that they have no conflict of interest.

757 **Data availability**

758 RNA sequencing data has been deposited to Gene Expression Omnibus (GEO, small RNA-
759 sequencing Fig. 1B-C, accession numbers: GSE261287; RNA-sequencing Fig. 4A, accession
760 numbers: GSE261288).

761

762

763

764

765

766 **Figure legends**

767

768 **Fig. 1 miR-708-5p is upregulated in the peripheral blood of human subjects at**
769 **risk for with MDs.**

770

771 **A.** Schematic representation of the workflow to obtain PBMCs samples from the
772 FOR2107 cohort (see also materials and methods) (39). Subjects underwent
773 psychiatric and cognitive evaluation. After the data was collected, blood was
774 withdrawn and PBMCs prepared followed by RNA extraction and downstream
775 gene expression analysis. Samples were collected from psychiatrically healthy
776 female subjects (CTL), or psychiatrically healthy female subjects with genetic
777 predisposition for mood disorder (GR) or that suffered from childhood
778 maltreatment (ER) (Vulnerability samples).

779 **B. and C.** Volcano plot depicting miRNAs differentially expressed based on small
780 RNA sequencing performed with RNA isolated from PBMCs of control subjects
781 (CTL; n=18), healthy subjects who suffered childhood maltreatment
782 (Environmental risk, ER; n=18), or healthy subjects with a genetic risk (GR;
783 n=14). CTL vs ER (B) or GR (C): miRNAs that are significantly downregulated
784 (logFC<0.5, p-value<0.05) are marked in red; miRNAs that are significantly
785 upregulated (logFC>0.5, p-value<0.05) in blue. Each Volcano Plot is
786 accompanied by a table showing the top 15 differentially expressed genes
787 ordered from smallest to largest p-value. miRNAs overlapping between (B)
788 and (C) are highlighted.

789 **D.** miR-708-5p qPCR analysis of total RNA isolated from PBMCs of control
790 subjects (CTL=18), or healthy subjects who suffered childhood Maltreatment
791 (Environmental risk, ER= 16), or healthy subjects with a genetic risk (GR=18).
792 One-way ANOVA with Holm-Sidak's multiple comparisons test, HC vs ER, **,
793 P=0.0064; HC vs GR, ***, P=0.0006; ER vs GR, ns. Data are presented as violin
794 plots with median, quartiles and data points.

795

796 **Figure 2. miR-708-5p is expressed in rat hippocampal neurons and upregulated**
797 **in the hippocampus of rat models of environmental or genetic risk for MDs.**

798

799 **A.** miR-708-5p qPCR analysis using total RNA isolated from different areas of the
800 adult female rat brain. Data are represented as bar graphs, mean \pm SD (n=3
801 animals).

802 **B.** Single-molecule fluorescence *in situ* hybridization (smFISH) performed in rat
803 hippocampal neurons at 7 days *in vitro* (DIV7) using probes directed against miR-
804 708-5p (red channel) and CamK2a (green channel) to identify excitatory neurons.
805 Scale bar: 20 μ m.

806 **C.** smFISH performed in rat hippocampal neurons at DIV7 using probes against
807 miR-708-5p (red channel) and Gad2 (green channel) to identify inhibitory
808 neurons. Scale bar: 20 μ m.

809 **D.** Relative expression of miR-708-5p in primary rat hippocampal neurons at
810 different DIV (n = 3 independent experiments) normalized to U6 snRNA. Data are
811 represented on XY graph as mean \pm SD.

812 **E.** Schematic representation of the juvenile social isolation experiment, n=9 for
813 each experimental group; PND: postnatal day.

814 **F.** miR-708-5p qPCR analysis of total RNA isolated from hippocampi of Wild type
815 (WT) or *Cacna1c^{+/−}* male juvenile rats that were either group-housed or socially
816 isolated for four weeks (n=9 in each group). WT group-housed vs WT Isolated: *,
817 p=0.0265; WT group-housed vs *Cacna1c^{+/−}*: **, p=0.0026; linear mixed model, -
818 DeltaCq ~ Genotype * Housing + (1| Cohort), followed by post hoc pairwise
819 comparison with emmeans package (pairwise ~ Genotype * Housing); ns: non-
820 significant. Data are represented as box plot with whiskers and data points (+: mean,
821 line: median; whiskers: minimum and maximum values).

822

823 **Figure 3. miR-708-5p overexpression in the mouse hippocampus elicits MD-
824 associated behavioural endophenotypes.**

825

826 **A.** Schematic timeline of the acute rAAV stereotactic injection of control (hpCTL) or
827 miR-708-OE (hp708) virus into the dorsal and ventral hippocampus of mice at
828 PNW 7/8, followed by behavioral testing at PNW 11/12.

829 **B.** Coronal brain section of mouse brains displaying intense GFP expression upon
830 infection with hp708 virus in the dorsal (up) and ventral (down) hippocampus.
831 Scale bar: 2000 μ m.

832 **C.** miR-708-5p qPCR analysis of total RNA isolated from hippocampus of mice that
833 underwent behavioral testing. upon miR-708-5p overexpression. hpCTL n=39,
834 hp708 n=39. Unpaired t-Test, ****, p<0.00001. Data are represented as box plot

835 with whiskers and data points (+: mean, line: median; whiskers: minimum and
836 maximum values).

837 **D.** Tail Suspension Test. Time (s) male mice injected with the indicated rAAV (hpCTL
838 or hp708, n=15 each) spent immobile. Data are represented as box plot with
839 whiskers and data points (+: mean, line: median; whiskers: minimum and
840 maximum values). Unpaired t-test, ****, p<0.0001.

841 **E.** Tail Suspension Test. Time (s) female mice injected with the indicated rAAV
842 (hpCTL n= 12, or hp708, n=11) spent immobile. Data are represented as box plot
843 with whiskers and data points (+: mean, line: median; whiskers: minimum and
844 maximum values). Unpaired t-test, ns.

845 **F.** Schematic representation of the Novel Object Recognition (NOR) Test. mice are
846 exposed to two familiar objects during the familiarization phase. After five
847 minutes, they are returned to the home cage for either 24 hours or 5 minutes.
848 They are then exposed to a novel and a familiar object during the test phase.

849 **G.** Novel object recognition Test with 24 hours break in between familiarization and
850 novelty testing. Time (s) male mice injected with the indicated rAAV (hpCTL n= 10,
851 or hp708, n=12) explored either the familiar (F) or novel (N) object. Data are
852 represented as box plot with whiskers and data points (+: mean, line: median;
853 whiskers: minimum and maximum values). Two-way RM ANOVA: Novelty x
854 Group, ***, p=0.0004; Novelty, ****, p<0.0001; Group, ns, p=0.8830. Šídák's post
855 hoc test, F vs N: hpCTL, ****, p<0.0001; hp708, ns, p=0.6735.

856 **H.** Novel object recognition Test with 5 minutes break in between familiarization and
857 novelty testing. Time (s) male mice injected with the indicated rAAV (hpCTL or
858 hp708, n=15 each) explored either the familiar (F) or novel (N) object. Data are
859 represented as box plot with whiskers and data points (+: mean, line: median;
860 whiskers: minimum and maximum values). Two-way RM ANOVA: Novelty x
861 Group, ****, p<0.0001; Novelty, ****, p<0.0001; Group, ns, p=0.8207. Šídák's post
862 hoc test, F vs N: hpCTL, ****, p<0.0001; hp708, ns, p=0.6975.

863 **I.** Novel object recognition Test with 5 minutes break in between familiarization and
864 novelty testing. Time (s) female mice injected with the indicated rAAV (hpCTL n= 12,
865 or hp708, n=11) explored either the familiar (F) or novel (N) object. Data are
866 represented as box plot with whiskers and data points (+: mean, line: median;
867 whiskers: minimum and maximum values). Two-way RM ANOVA: Novelty x
868 Group, *, p<0.0130; Novelty, **, p=0.0001; Group, ns, p=0.8143. Šídák's post
869 hoc test, F vs N: hpCTL, ****, p<0.0001; hp708, ns, p=0.3127.

870

871 **Figure 4. miR-708-5p directly targets Nnat, an ER-resident protein involved in**
872 **calcium homeostasis.**

873

874 **A.** Volcano plot depicting differential gene expression in the hippocampus between
875 hp708 and hpCTL injected mice based on polyA-RNA sequencing.

876 **B.** Heatmap displaying miR-708-5p predicted targets which are significantly
877 downregulated from (A), as well as their expression in different cell types based
878 on single-cell RNA-seq data (Allen 10X+smartSeq taxonomy)(59). The red
879 rectangle highlights Nnat.

880 **C.** Nucleotide base pairing depicting the perfect binding of miR-708-5p with the
881 mouse Nnat 3'-UTR.

882 **D.** miR-708-5p qPCR analysis of total RNA isolated from mouse hippocampi upon
883 miR-708-5p overexpression. hpCTL n=17, hp708 n=17. Unpaired t-Test, ****,
884 p<0.00001. Data are represented as box plot with whiskers and data points (+:
885 mean, line: median; whiskers: minimum and maximum values).

886 **E.** Neuronatin qPCR analysis of total RNA isolated from mouse hippocampi upon
887 miR-708-5p overexpression. hpCTL n=13, hp708 n=15. Unpaired t-Test, ****,
888 p=0.0269. Data are represented as box plot with whiskers and data points (+:
889 mean, line: median; whiskers: minimum and maximum values).

890 **F.** miR-708-5p qPCR analysis of total RNA isolated from rat primary hippocampal
891 neurons at DIV20 infected with hpCTL or hp708 for miR-708-5p overexpression.
892 hpCTL n=4, hp708 n=5. Unpaired t-Test, *, p=0.0317. Data are represented as
893 box plot with whiskers and data points (+: mean, line: median; whiskers:
894 minimum and maximum values).

895 **G.** Neuronatin qPCR analysis of total RNA isolated from rat primary hippocampal
896 neurons at DIV20 infected with hpCTL or hp708 for miR-708-5p overexpression.
897 hpCTL n=4, hp708 n=5. Unpaired t-Test, *, p=0.0159. Data are represented as
898 box plot with whiskers and data points (+: mean, line: median; whiskers:
899 minimum and maximum values).

900 **H.** Representative Western blot image of Nnat (lower panel) and Tubulin (upper
901 panel) protein expression levels in hippocampal neurons (DIV20) that were
902 infected with hpCTL or hp708 for miR-708-5p overexpression on DIV2. Tubulin
903 was used as a loading control.

904 **I.** Quantification of the relative intensity of Nnat protein levels in hippocampal
905 neurons (DIV20) that were infected with hpCTL or hp708 for miR-708-5p
906 overexpression on DIV2 based on (G). Tubulin was used as normalizer. Ratio-
907 paired t-test, **, p=0.0042. n=4 per experimental group. Data are represented as
908 box plot with whiskers and data points (+: mean, line: median; whiskers:
909 minimum and maximum values).

910 **J.** Relative luciferase activity of rat hippocampal neurons transfected with the
911 indicated plasmid (Control: hpCTL-p; overexpressing miR-708-5p: hp708-p) and
912 expressing either Nnat wild-type (wt) or miR-708-5p binding site mutant (mt)
913 reporter genes. Data are represented as scattered dot plots with bar, mean \pm SD
914 (n=4 independent experiments; Two-way ANOVA: main effect of the hairpin
915 *p=0.0245, of the Nnat luciferase reporter **p=0.0050, and of the hairpin by
916 Nnat luciferase reporter interaction p<0.0374. Sidak's post hoc test: **p=0.0092).

917 **K.** Relative luciferase activity of rat hippocampal neurons transfected with the
918 indicated plasmid (Control: spCTL-p; knocking-down miR-708-5p: sp708-p) and
919 expressing either Nnat wt or mt reporter genes. Data are represented as
920 scattered dot plots with bar, mean \pm SD (n=4 independent experiments; Two-way
921 ANOVA: main effect of the hairpin *p=0.0211, no main effect of the Nnat
922 luciferase reporter, or of the hairpin by Nnat luciferase reporter interaction.
923 Sidak's post hoc test: *p=0.0287).

924

925 **Figure 5. Restoring Nnat expression in miR-708-5p overexpressing**
926 **hippocampal neurons rescues MD-associated behaviors in mice.**

927

928 **A.** Schematic representation of the three rAAV constructs used in the rescue
929 experiment.

930 **B.** miR-708-5p qPCR analysis of total RNA isolated from the hippocampus of male
931 mice injected with mCherry-P2A-hpCTL (n=9), mCherry-P2A-hp708 (n12), or
932 Nnat-P2A-hp708 (n=12) viruses. One-way ANOVA, Post hoc Tukey's Test:
933 mCherry-P2A-hpCTL vs mCherry-P2A-hp708: ****, p<0.0001, mCherry-P2A-
934 hpCTL vs Nnat-P2A-hp708: **, p<0.0001, mCherry-P2A-hp708 vs Nnat-P2A-
935 hp708: ns, p=0.1225. Data are represented as box plot with whiskers and data
936 points (+: mean, line: median; whiskers: minimum and maximum values).

937 **C.** Neuronatin qPCR analysis of total RNA isolated from the hippocampus of male
938 mice injected with mCherry-P2A-hpCTL (n=9), mCherry-P2A-hp708 (n12), or
939 Nnat-P2A-hp708 (n=12) viruses. One-way ANOVA, Post hoc Tukey's Test:
940 mCherry-P2A-hpCTL vs mCherry-P2A-hp708: **, p=0.0003, mCherry-P2A-
941 hpCTL vs Nnat-P2A-hp708: ns, p=0.7379, mCherry-P2A-hp708 vs Nnat-P2A-
942 hp708: ****, p<0.0001. Data are represented as box plot with whiskers and data
943 points (+: mean, line: median; whiskers: minimum and maximum values).

944 **D.** Novel object recognition Test with 5 minutes break in between familiarization and
945 novelty testing. Time (s) male mice injected with the indicated rAAV (mCherry-
946 P2A-hpCTL (n=9), mCherry-P2A-hp708 (n12), or Nnat-P2A-hp708 (n=12))
947 explored either the familiar (F) or novel (N) object. Data are represented as box

948 plot with whiskers and data points (+: mean, line: median; whiskers: minimum
949 and maximum values). Two-way RM ANOVA: Novelty x Group, ****, p<0.0001;
950 Novelty, ****, p<0.0001; Group, ns, p=0.5765. Šídák's post hoc test, F vs N:
951 mCherry-P2A-hpCTL, ****, p<0.0001; mCherry-P2A-hp708, ns, p=0.6534; Nnat-
952 P2A-hp708, ****, p<0.0001.

953 **E.** Tail Suspension Test. Time (s) male mice injected with the indicated rAAV
954 (mCherry-P2A-hpCTL (n=9), mCherry-P2A-hp708 (n12), or Nnat-P2A-hp708
955 (n=12)) spent immobile. One-way ANOVA, Post hoc Tukey's Test: mCherry-P2A-
956 hpCTL vs mCherry-P2A-hp708: ****, p<0.0001, mCherry-P2A-hpCTL vs Nnat-
957 P2A-hp708: ns, p=0.9617, mCherry-P2A-hp708 vs Nnat-P2A-hp708: ****,
958 p<0.0001. Data are represented as box plot with whiskers and data points (+:
959 mean, line: median; whiskers: minimum and maximum values).

960

961 **Figure 6: miR-708-5p levels negatively correlate with human cognitive
962 processing and represent a potential biomarker for differential diagnosis in
963 MDs**

964 **A.** Pearson correlation plot of miR708 peripheral levels and attention (d2 test) in all
965 human participants (female + male, CTL + MDD + BD, n=162), **, p=.005, r=-
966 .223.

967 **B.** Same as Fig. 1A, except that samples from the FOR2107 cohort were in addition
968 collected from male and female patients that were diagnosed with Major
969 Depressive Disorder (MDD) or Bipolar Disorder (BD) (mood disorder samples).

970

971 **C.** miR-708-5p qPCR analysis of total RNA isolated from PBMCs of female patients
972 diagnosed with BD or MDD (control: CTL= 26; MDD= 18; BD= 26). Wilcoxon
973 rank-sum test after correction for age and antidepressant treatment; linear model
974 of the form -DeltaCq ~ Group + Age + Antidepressant treatment. Females: CTL
975 vs MDD, *, p<0.05; CTL vs BD, ****, p<0.0005.

976 **D.** miR-708-5p qPCR analysis of total RNA isolated from PBMCs of male patients
977 diagnosed with BD or MDD (control: CTL=31; MDD=24; BD= 37. Wilcoxon rank-
978 sum test after correction for age and antidepressant treatment; linear model of
979 the form -DeltaCq ~ Group + Age + Antidepressant treatment. CTL vs MDD,
980 p=0.0549; CTL vs BD, ****, p<0.0005). Data are presented as violin plots with
981 median, quartiles and data points.

982 **E.** miR-708-5p qPCR analysis of total RNA isolated from PBMCs of male and female
983 patients diagnosed with Schizophrenia (male: CTL=11; SCZ=15; female: CTL=8;
984 SCZ=8). Two-way ANOVA: Group x Sex, ns, p=0.4904; Group, ns, p=0.2383, Sex,

985 ns, p=0.4904. Tukey's post hoc test, ns. Data are presented as violin plots with
986 median, quartiles and data points.

987 **F.** ROC curve of combined miR-708-5p and miR-499-5p expression in female (left)
988 and male (right) subjects to discriminate BD vs control samples. The indicated
989 thresholds are the closest point to the optimal (i.e. top-left).

990 **G.** ROC curve of combined miR-708-5p and miR-499-5p expression in female (left)
991 and male (right) subjects to discriminate BD vs controls and MDD samples. The
992 indicated thresholds are the closest point to the optimal (i.e. top-left).

993

994

995

996 **Table 1.**

	Control	BD	MDD	P Value
<i>n</i> (f/m)	26/31	26/37	18/24	N/A
Age \pm S.D.	29.4 \pm 5.4/ 39.7 \pm 13.4	29.9 \pm 5.4/ 41.7 \pm 11.3	29.6 \pm 4.9/ 39.3.6 \pm 14.7	0.94/0.75
CTQ \pm S.D. (%)	40.7 \pm 11.4 (53.8%)	42.3 \pm 13.2 (30.8%)	50.2 \pm 20.2 (61%)	0.1067/0.4170
Family history of MDs (%)	8 (30.8%)/ 5 (16.1%)	10 (38.5%)/ 10 (27.0%)	5 (27.8%)/ 7 (29.1%)	N/A
HAMD \pm S.D.	2.7 \pm 3.9/ 1.5 \pm 2.5	7.5 \pm 6.2/ 8.6 \pm 6.4	14.8 \pm 6.7/ 10.3 \pm 7.7	<0.0001
YMRS \pm S.D.	0.5 \pm 1.1/ 0.7 \pm 1.7	2.4 \pm 2.9/ 7.0 \pm 8.2	1.4 \pm 1.6/ 1.7 \pm 2.2	<0.01/ <0.0001
BDI \pm S.D.	6.1 \pm 6.1/ 4.5 \pm 3.9	12.9 \pm 11.1/ 12.9 \pm 9.6	26.6 \pm 11.0/ 16.6 \pm 10.7	<0.0001
AD (%)	0 (0%)	7 (26.9%)/ 17 (45.95%)	16 (88.9%)/ 17 (70.83%)	N/A
Antipsychotic (%)	0 (0%)	12 (46.15%)/ 19 (51.35%)	7 (38.89%)/ 4 (16.67%)	N/A
Lithium (%)	0 (0%)	4 (15.38%)/ 12 (32.43%)	1 (5.56%)/ 0 (0%)	N/A
Anticonvulsive (%)	0 (0%)	6 (23.08%)/ 10 (27.03%)	1 (5.56%)/ 1 (4.17%)	N/A
Stimulants (%)	0 (0%)	0 (0%)/ 1 (2.70%)	0 (0%)/ 2 (8.33%)	N/A
Benzodiazepin e (%)	0 (0%)	0 (0%)	1 (5.56%)/ 0 (0%)	N/A
Z substance (%)	0 (0%)	0 (0%)/ 1 (2.70%)	1 (5.56%)	N/A

997 Subjects for miR-708-5p expression analysis on psychiatrically healthy controls
 998 (Control), Bipolar disorder patients (BD) or Major Depressive Disorder patients
 999 (MDD). One-way-ANOVA was performed to evaluate significant differences
 1000 between groups. S.D.: standard deviation, CTQ: Childhood Maltreatment

1001 Questionnaire, HAMD: Hamilton Depression Rating Scale, YMRS: Young Mania
1002 Rating Scale, BDI: Beck's Depression Inventory, AD: antidepressant use.

1003

1004 **References**

1005

1006 Aas M, Bellivier F, Bettella F, Henry C, Gard S, Kahn JP, Lagerberg TV, Aminoff SR, Melle I,
1007 Leboyer M *et al* (2020) Childhood maltreatment and polygenic risk in bipolar disorders.
1008 *Bipolar Disord* 22: 174-181

1009 Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites
1010 in mammalian mRNAs. *Elife* 4

1011 Arnold LM, McElroy SL, Keck PE, Jr. (2000) The role of gender in mixed mania. *Compr
1012 Psychiatry* 41: 83-87

1013 Banach E, Dmitrzak-Weglarcz M, Pawlak J, Kapelski P, Szczepankiewicz A, Rajewska-Rager A,
1014 Słopień A, Skibinska M, Czerski P, Hauser J (2017) Dysregulation of miR-499, miR-708 and
1015 miR-1908 during a depression episode in bipolar disorders. *Neurosci Lett* 654: 117-119

1016 Bartel DP, 2018. *Metazoan MicroRNAs*, Cell. Elsevier Inc., pp. 20-51.

1017 Behrman S, Acosta-Alvear D, Walter P (2011) A CHOP-regulated microRNA controls
1018 rhodopsin expression. *J Cell Biol* 192: 919-927

1019 Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of
1020 Alzheimer's disease. *Trends Neurosci* 31: 454-463

1021 Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, Gould TD (2012) CACNA1C
1022 (Ca(v)1.2) in the pathophysiology of psychiatric disease. *Prog Neurobiol* 99: 1-14

1023 Braun JL, Teng ACT, Geromella MS, Ryan CR, Fenech RK, MacPherson REK, Gramolini AO,
1024 Fajardo VA (2021) Neuronatin promotes SERCA uncoupling and its expression is altered in
1025 skeletal muscles of high-fat diet-fed mice. *FEBS Lett* 595: 2756-2767

1026 Braun MD, Kisko TM, Witt SH, Rietschel M, Schwarting RKW, Wohr M (2019) Long-term
1027 environmental impact on object recognition, spatial memory and reversal learning
1028 capabilities in Cacna1c-haploinsufficient rats. *Hum Mol Genet* 28: 4113-4131

1029 Brickenkamp R (2002) Der Aufmerksamkeits-Belastungstest d2. Hogrefe, Göttingen; 2002.

1030 Camelo EV, Mograbi D, de Assis da Silva R, Bifano J, Wainstok M, Silveira LA, Netto T, Santana
1031 CM, Cheniaux E (2017) Performance of Bipolar Disorder Patients in Attention Testing:
1032 Comparison with Normal Controls and Among Manic, Depressive, and Euthymic Phases.
1033 *Psychiatr Q* 88: 55-63

1034 Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012) The tail suspension test.
1035 *J Vis Exp* e3769

1036 Chen CJ, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, Cognat V, Colot
1037 Voinnet O, Heard E *et al* (2012) ncPRO-seq: a tool for annotation and profiling of ncRNAs
1038 in sRNA-seq data. *Bioinformatics* 28: 3147-3149

1039 Chen RJ, Kelly G, Sengupta A, Heydendael W, Nicholas B, Beltrami S, Luz S, Peixoto L, Abel
1040 T, Bhatnagar S (2015) MicroRNAs as biomarkers of resilience or vulnerability to stress.
1041 *Neuroscience* 305: 36-48

1042 Christensen M, Larsen LA, Kauppinen S, Schratt G (2010) Recombinant Adeno-Associated
1043 Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-
1044 134 in Dendritogenesis in Vivo. *Frontiers in neural circuits* 5: 16

1045 Clements C, Morriss R, Jones S, Peters S, Roberts C, Kapur N (2013) Suicide in bipolar disorder
1046 in a national English sample, 1996-2009: frequency, trends and characteristics. *Psychol Med*
1047 43: 2593-2602

1048 Coleman JRI, Gaspar HA, Bryois J, Bipolar Disorder Working Group of the Psychiatric
1049 Genomics C, Major Depressive Disorder Working Group of the Psychiatric Genomics C, Breen

1050 G (2020) The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses
1051 of More Than 185,000 Cases and 439,000 Controls. *Biological psychiatry* 88: 169-184
1052 Craddock N, O'Donovan MC, Owen MJ (2005) The genetics of schizophrenia and bipolar
1053 disorder: dissecting psychosis. *J Med Genet* 42: 193-204
1054 Craddock N, Sklar P (2013) Genetics of bipolar disorder. *Lancet* 381: 1654-1662
1055 Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M, Shi J, Zandi PP, O'Donnell P,
1056 Bipolar Genome Study C *et al* (2010) Mood disorder susceptibility gene CACNA1C modifies
1057 mood-related behaviors in mice and interacts with sex to influence behavior in mice and
1058 diagnosis in humans. *Biological psychiatry* 68: 801-810
1059 Daswani R, Gilardi C, Soutschek M, Nanda P, Weiss K, Bicker S, Fiore R, Dieterich C, Germain
1060 PL, Winterer J *et al* (2022) MicroRNA-138 controls hippocampal interneuron function and
1061 short-term memory in mice. *Elife* 11
1062 Daverkausen-Fischer L, Prols F (2022) Regulation of calcium homeostasis and flux between
1063 the endoplasmic reticulum and the cytosol. *J Biol Chem* 298: 102061
1064 Dedic N, Pohlmann ML, Richter JS, Mehta D, Czamara D, Metzger MW, Dine J, Bedenk BT,
1065 Hartmann J, Wagner KV *et al* (2018) Cross-disorder risk gene CACNA1C differentially
1066 modulates susceptibility to psychiatric disorders during development and adulthood. *Mol
1067 Psychiatry* 23: 533-543
1068 Diflorio A, Jones I (2010) Is sex important? Gender differences in bipolar disorder. *Int Rev
1069 Psychiatry* 22: 437-452
1070 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
1071 TR (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29: 15-21
1072 Dwivedi Y (2011) Evidence demonstrating role of microRNAs in the etiopathology of major
1073 depression. *J Chem Neuroanat* 42: 142-156
1074 Forstner AJ, Hofmann A, Maaser A, Sumner S, Khudayberdiev S, Muhleisen TW, Leber M,
1075 Schulze TG, Strohmaier J, Degenhardt F *et al* (2015) Genome-wide analysis implicates
1076 microRNAs and their target genes in the development of bipolar disorder. *Transl
1077 Psychiatry* 5: e678
1078 Harrison PJ, Hall N, Mould A, Al-Juffali N, Tunbridge EM, 2019. Cellular calcium in bipolar
1079 disorder: systematic review and meta-analysis, *Molecular Psychiatry*. Springer US.
1080 Harrison PJ, Husain SM, Lee H, Los Angeles A, Colbourne L, Mould A, Hall NAL, Haerty W,
1081 Tunbridge EM (2022) CACNA1C (Ca(V)1.2) and other L-type calcium channels in the
1082 pathophysiology and treatment of psychiatric disorders: Advances from functional
1083 genomics and pharmacoepidemiology. *Neuropharmacology* 220: 109262
1084 He S, Liu X, Jiang K, Peng D, Hong W, Fang Y, Qian Y, Yu S, Li H (2016) Alterations of
1085 microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment
1086 patients with major depressive disorder. *J Psychiatr Res* 78: 65-71
1087 Hewitt T, Alural B, Tilak M, Wang J, Becke N, Chartley E, Perreault M, Haggarty SJ, Sheridan
1088 SD, Perlis RH *et al* (2023) Bipolar disorder-iPSC derived neural progenitor cells exhibit
1089 dysregulation of store-operated Ca(2+) entry and accelerated differentiation. *Mol
1090 Psychiatry* 28: 5237-5250
1091 Hoffman KL (2013) Role of murine models in psychiatric illness drug discovery: a
1092 dimensional view. *Expert Opin Drug Discov* 8: 865-877
1093 Huang Y, Zhang Z, Lin S, Zhou H, Xu G (2023) Cognitive Impairment Mechanism in Patients
1094 with Bipolar Disorder. *Neuropsychiatr Dis Treat* 19: 361-366
1095 Kennedy N, Everitt B, Boydell J, Van Os J, Jones PB, Murray RM (2005) Incidence and
1096 distribution of first-episode mania by age: results from a 35-year study. *Psychol Med* 35: 855-
1097 863
1098 Kircher T, Wohr M, Nenadic I, Schwarting R, Schratt G, Alferink J, Culmsee C, Garn H, Hahn
1099 T, Muller-Myhsok B *et al* (2019) Neurobiology of the major psychoses: a translational
1100 perspective on brain structure and function-the FOR2107 consortium. *Eur Arch Psychiatry
1101 Clin Neurosci* 269: 949-962
1102 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing
1103 batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*
1104 28: 882-883

1105 Levone BR, Moloney GM, Cryan JF, O'Leary OF (2021) Specific sub-regions along the
1106 longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects.
1107 *Neurobiol Stress* 14: 100331

1108 Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for
1109 assigning sequence reads to genomic features. *Bioinformatics* 30: 923-930

1110 Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015)
1111 Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis
1112 through targeting RapiB. *Nat Commun* 6: 5917

1113 Lobentanzer S, Hanin G, Klein J, Soreq H (2019) Integrative Transcriptomics Reveals Sexually
1114 Dimorphic Control of the Cholinergic/Neurokine Interface in Schizophrenia and Bipolar
1115 Disorder. *Cell Rep* 29: 764-777 e765

1116 Martins HC, Gilardi C, Sungur AO, Winterer J, Pelzl MA, Bicker S, Gross F, Kisko TM,
1117 Malikowska-Racia N, Braun MD *et al* (2022) Bipolar-associated miR-499-5p controls
1118 neuroplasticity by downregulating the Cav1.2 subunit CACNB2. *EMBO Rep* 23: e54420

1119 Martins HC, Schratt G (2021) MicroRNA-dependent control of neuroplasticity in affective
1120 disorders. *Transl Psychiatry* 11: 263

1121 McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar
1122 affective disorder and the genetic relationship to unipolar depression. *Arch Gen Psychiatry*
1123 60: 497-502

1124 McIlwraith EK, Lieu CV, Belsham DD (2022) Bisphenol A induces miR-708-5p through an ER
1125 stress-mediated mechanism altering neuronatin and neuropeptide Y expression in
1126 hypothalamic neuronal models. *Mol Cell Endocrinol* 539: 11480

1127 Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM (2011) Altered microRNA
1128 expression profiles in postmortem brain samples from individuals with schizophrenia and
1129 bipolar disorder. *Biological psychiatry* 69: 188-193

1130 Namkung H, Yukitake H, Fukudome D, Lee BJ, Tian M, Ursini G, Saito A, Lam S, Kannan S,
1131 Srivastava R *et al* (2023) The miR-124-AMPAR pathway connects polygenic risks with
1132 behavioral changes shared between schizophrenia and bipolar disorder. *Neuron* 111: 220-235
1133 e229

1134 Nemeroff CB (2016) Paradise Lost: The Neurobiological and Clinical Consequences of Child
1135 Abuse and Neglect. *Neuron* 89: 892-909

1136 Nierenberg AA, Agustini B, Kohler-Forsberg O, Cusin C, Katz D, Sylvia LG, Peters A, Berk M
1137 (2023) Diagnosis and Treatment of Bipolar Disorder: A Review. *JAMA* 330: 1370-1380

1138 Noble RE (2005) Depression in women. *Metabolism* 54: 49-52

1139 Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM,
1140 Posthuma D (2015) Meta-analysis of the heritability of human traits based on fifty years of
1141 twin studies. *Nat Genet* 47: 702-709

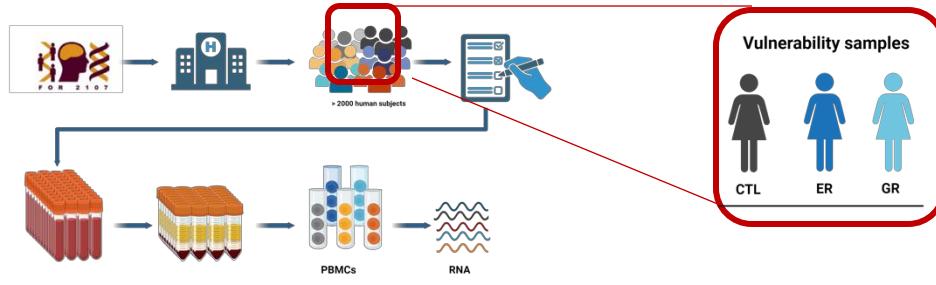
1142 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers
1143 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids
1144 Res* 43: e47

1145 Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential
1146 expression analysis of digital gene expression data. *Bioinformatics* 26: 139-140

1147 Rodriguez V, Alameda L, Trotta G, Spinazzola E, Marino P, Matheson SL, Laurens KR, Murray
1148 RM, Vassos E (2021) Environmental Risk Factors in Bipolar Disorder and Psychotic
1149 Depression: A Systematic Review and Meta-Analysis of Prospective Studies. *Schizophr Bull*
1150 47: 959-974

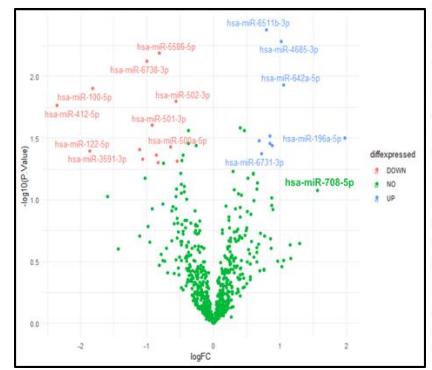
1151 Rodriguez-Comas J, Moreno-Asso A, Moreno-Vedia J, Martin M, Castano C, Marza-Florensa A,
1152 Bofill-De Ros X, Mir-Coll J, Montane J, Fillat C *et al* (2017) Stress-Induced MicroRNA-708
1153 Impairs beta-Cell Function and Growth. *Diabetes* 66: 3029-3040

1154 Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J,
1155 Oehrlein N, Birnbaum S *et al* (2007) Mania-like behavior induced by disruption of CLOCK.
1156 *Proc Natl Acad Sci U S A* 104: 6406-6411

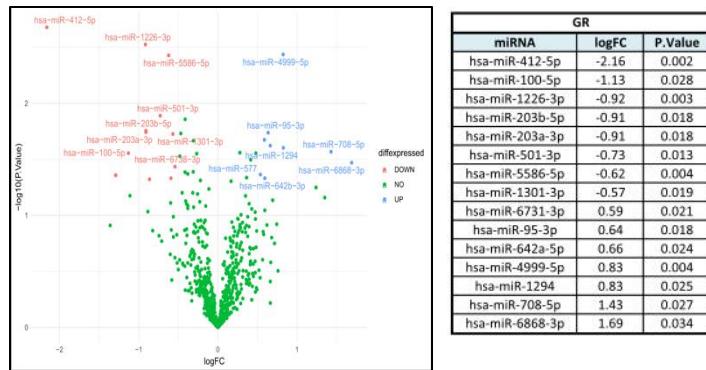

1157 Seffer D, Rippberger H, Schwarting RK, Wohr M (2015) Pro-social 50-kHz ultrasonic
1158 communication in rats: post-weaning but not post-adolescent social isolation leads to social
1159 impairments-phenotypic rescue by re-socialization. *Front Behav Neurosci* 9: 102

1160 Sharma J, Mukherjee D, Rao SN, Iyengar S, Shankar SK, Satishchandra P, Jana NR (2013)
1161 Neuronatin-mediated aberrant calcium signaling and endoplasmic reticulum stress
1162 underlie neuropathology in Lafora disease. *J Biol Chem* 288: 9482-9490
1163 Tondo L, Baldessarini RJ (1998) Rapid cycling in women and men with bipolar manic-
1164 depressive disorders. *Am J Psychiatry* 155: 1434-1436
1165 Valluy J, Bicker S, Aksoy-Aksel A, Lackinger M, Sumner S, Fiore R, Wust T, Seffer D, Metge F,
1166 Dieterich C *et al* (2015) A coding-independent function of an alternative Ube3a transcript
1167 during neuronal development. *Nat Neurosci* 18: 666-673
1168 Vatsa N, Kumar V, Singh BK, Kumar SS, Sharma A, Jana NR (2019) Down-Regulation of
1169 miRNA-708 Promotes Aberrant Calcium Signaling by Targeting Neuronatin in a Mouse
1170 Model of Angelman Syndrome. *Front Mol Neurosci* 12: 35
1171 Vieta E, Salagre E, Grande I, Carvalho AF, Fernandes BS, Berk M, Birmaher B, Tohen M, Suppes
1172 T (2018) Early Intervention in Bipolar Disorder. *Am J Psychiatry* 175: 411-426
1173 Walker EA, Gelfand A, Katon WJ, Koss MP, Von Korff M, Bernstein D, Russo J, 1999. Adult
1174 health status of women with histories of childhood abuse and neglect, The American Journal
1175 of Medicine. pp. 332-339.
1176 Wittchen H-U, Wunderlich, U., Gruschwitz, S., Zaudig, M., 1997. SKID I. Strukturiertes
1177 Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und
1178 Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen
1179 Originalversion des SKID I.
1180 Yang J, Wei J, Wu Y, Wang Z, Guo Y, Lee P, Li X (2015) Metformin induces ER stress-
1181 dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer. *Oncogenesis*
1182 4: e158
1183 Zhu S, Cordner ZA, Xiong J, Chiu CT, Artola A, Zuo Y, Nelson AD, Kim TY, Zaitka N, Woolums
1184 BM *et al* (2017) Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical
1185 synapse alteration and behavior reminiscent of bipolar disorder. *Proc Natl Acad Sci U S A*
1186 114: 10479-10484
1187 Zou HY, Guo L, Zhang B, Chen S, Wu XR, Liu XD, Xu XY, Li BY, Chen S, Xu NJ *et al* (2023)
1188 Aberrant miR-339-5p/neuronatin signaling causes prodromal neuronal calcium
1189 dyshomeostasis in mutant presenilin mice. *J Clin Invest* 133
1190 Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental
1191 evaluation tool in clinical medicine. *Clin Chem* 39: 561-577

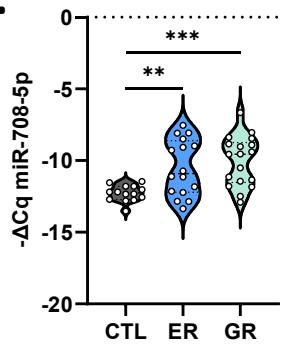
1192


Fig. 1 miR-708-5p is upregulated in PBMCs samples of human subjects at high environmental and genetic risk to develop MDs.

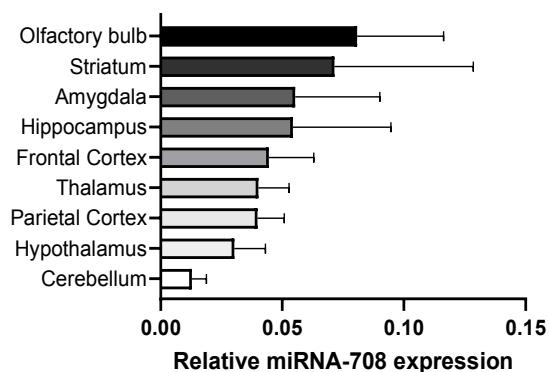
A.


B.

CTL vs ER


C.

CTL vs GR


D.

Female

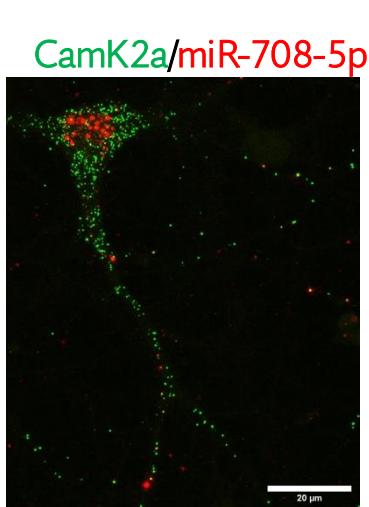
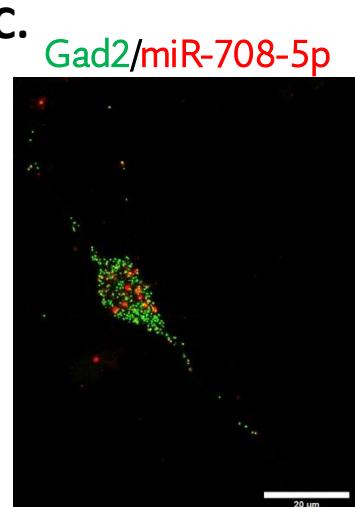
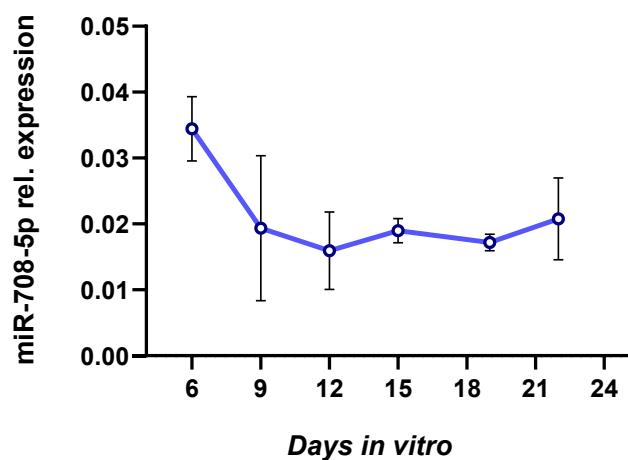
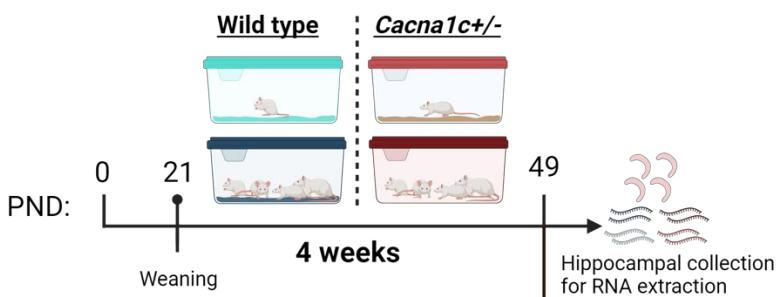
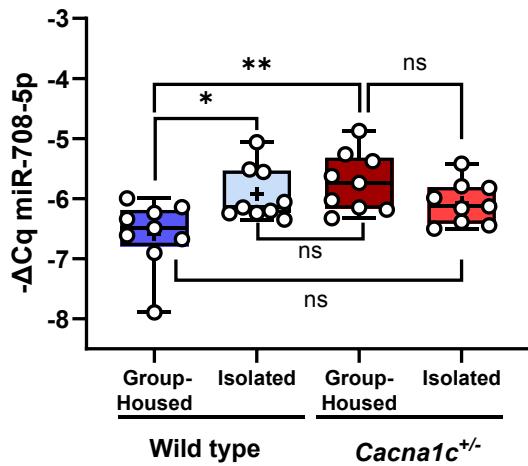


Fig. 2 miR-708-5p is expressed in rat hippocampal neurons and upregulated in the hippocampus of rat models of environmental or genetic risk for mood disorders.


A.


B.


C.


D.

E.

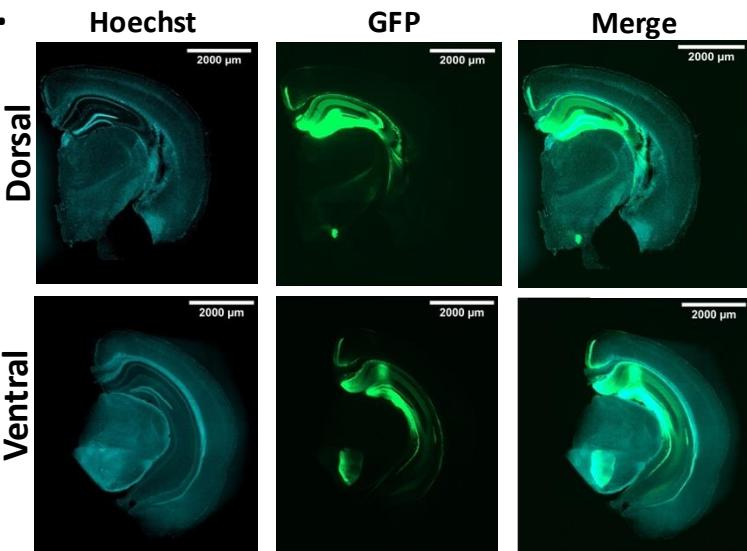
F.

Fig3. miR-708-5p overexpression in the mouse hippocampus elicits MD-associated behavioural endophenotypes.

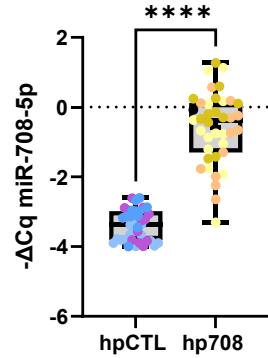
A.

Stereotactic injection (hpCTL or hp708)

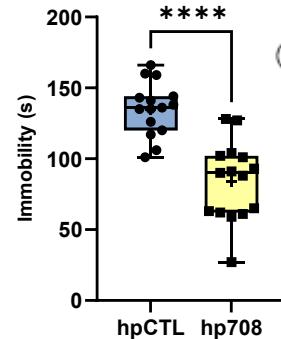
Recovery

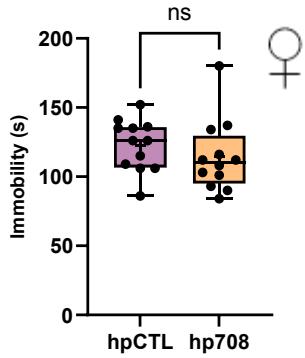

PNW 7/8

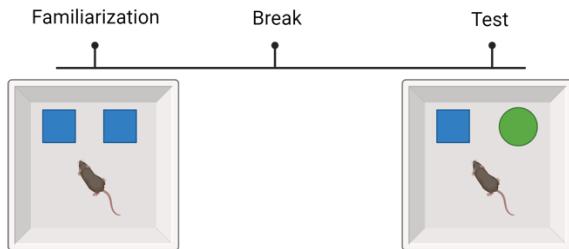
Behavioral testing

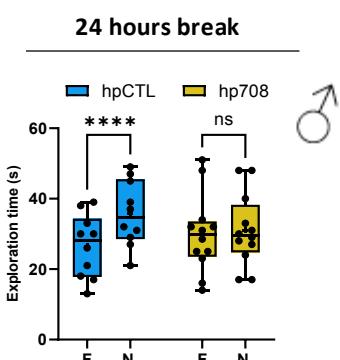

4 weeks

PNW 11/12

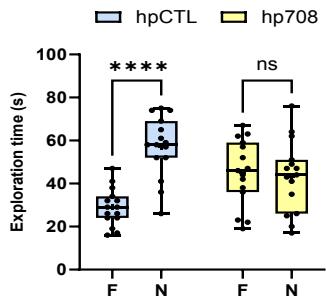

B.


C.

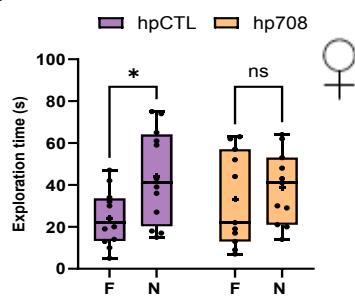

D.


E.

F.

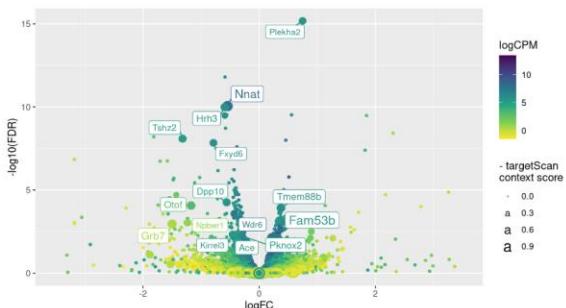


G.



5 minutes break

H.



I.

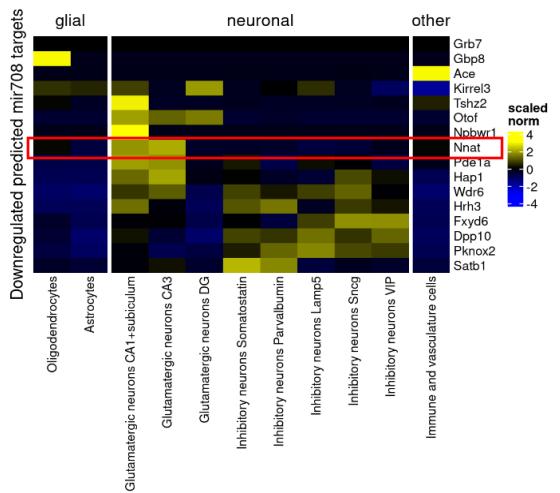
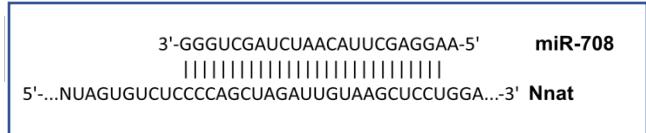
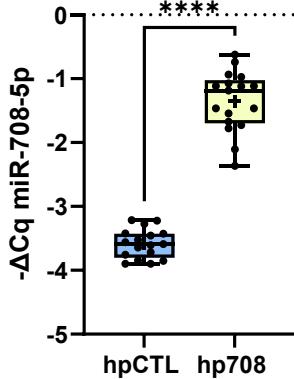
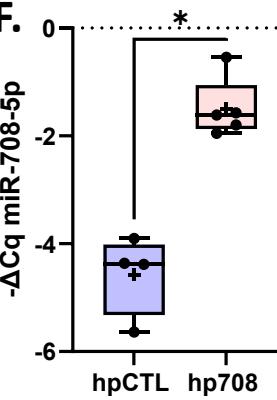


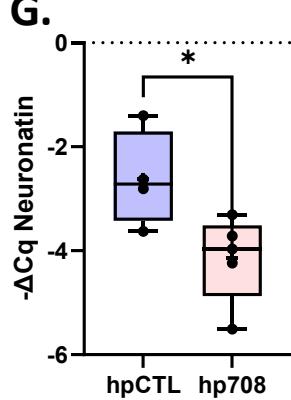
Fig.4 miR-708-5p target Neuronatin in the hippocampus.

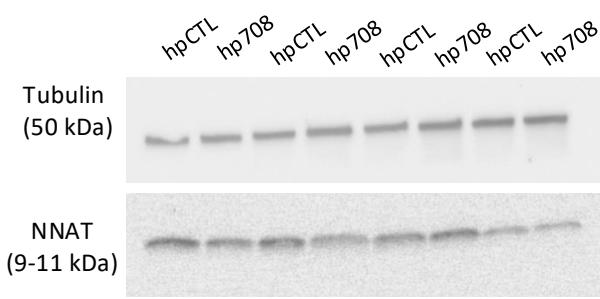

A.

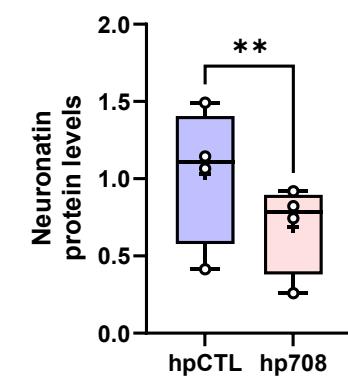

B.

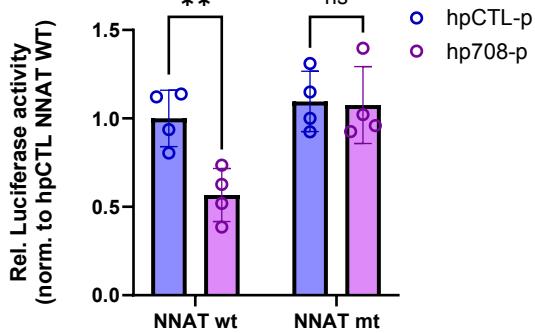
C.

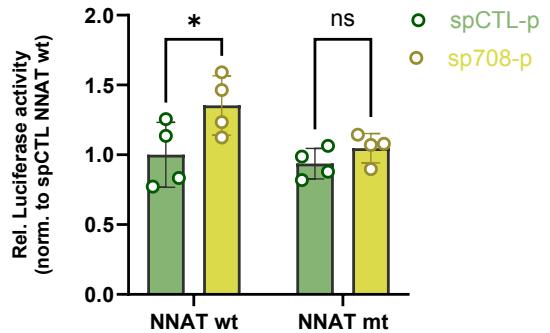

D.


E.

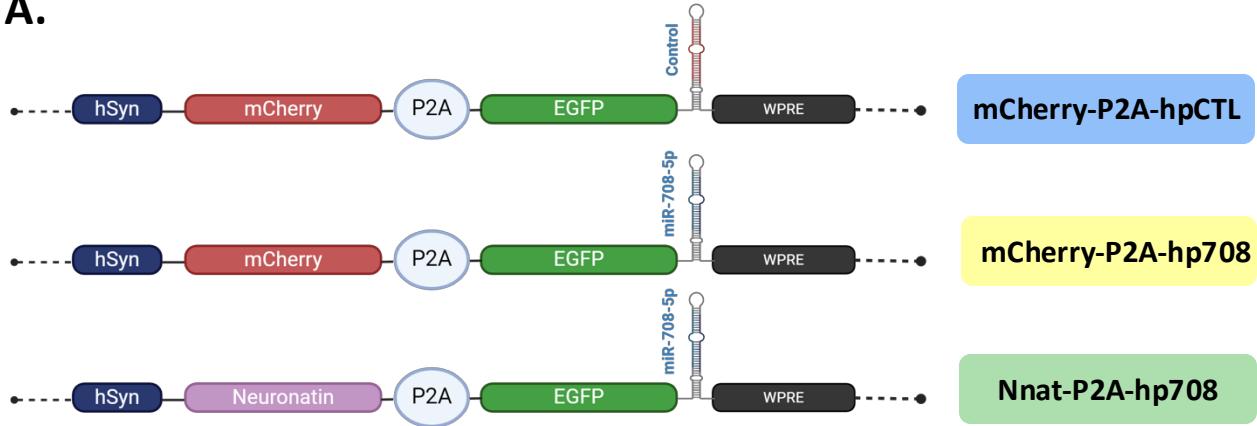

F.


G.


H.


I.

J.



K.

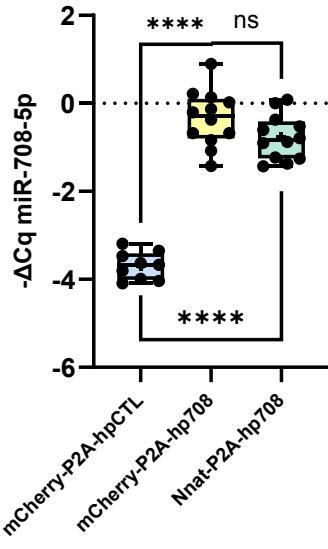
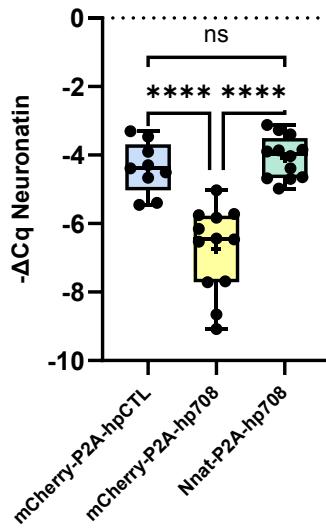
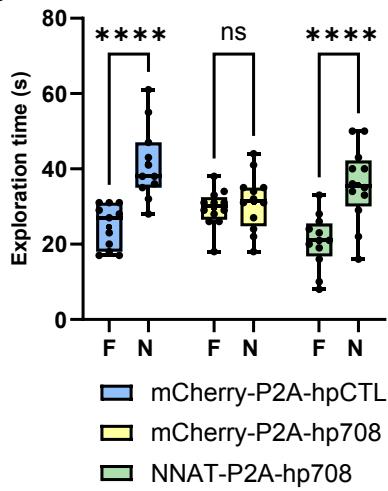
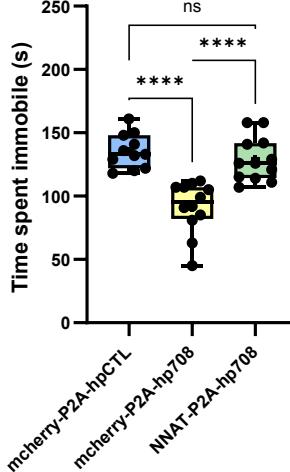
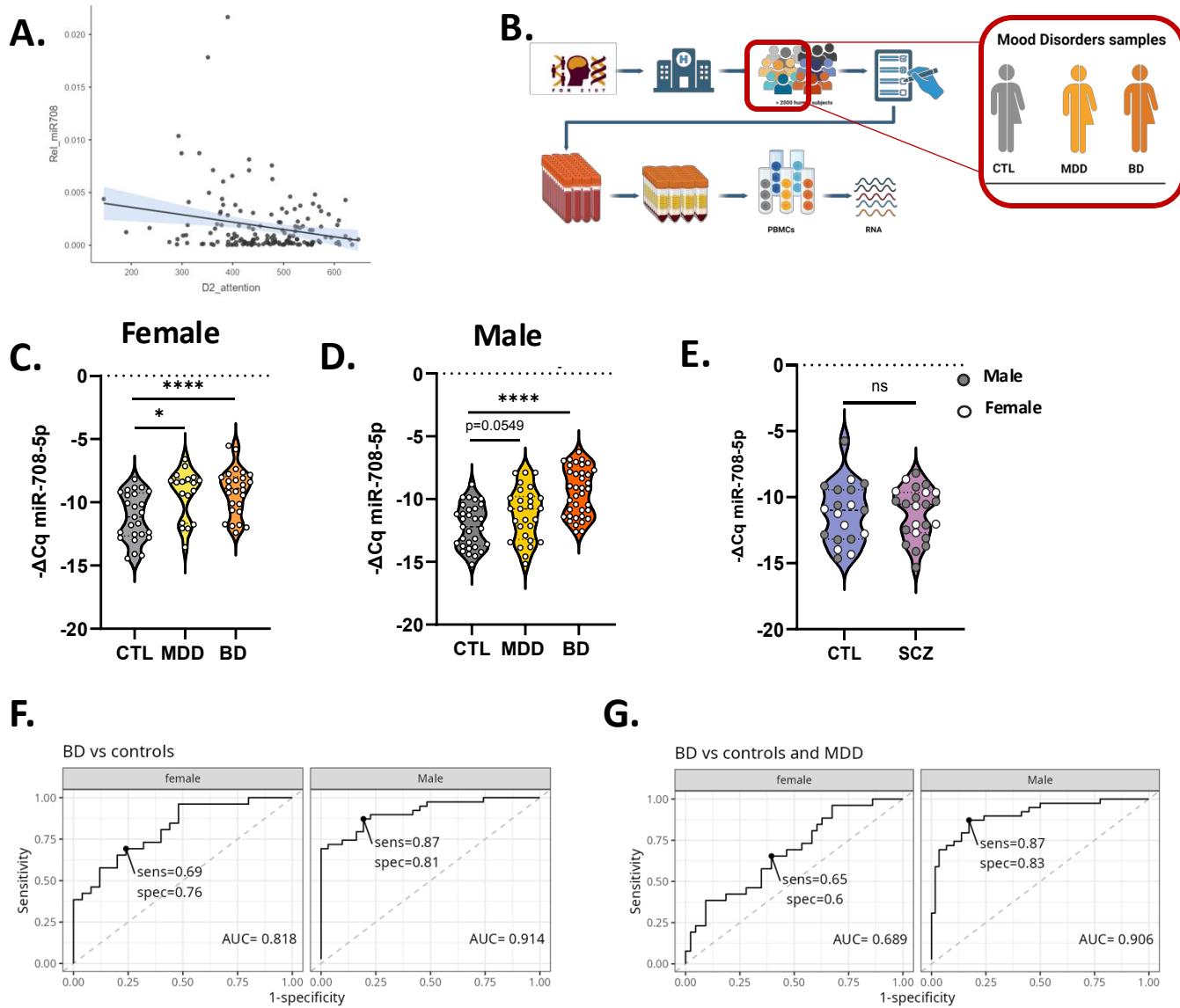


Fig. 5 miR-708-5p-dependent Neuronatin downregulation mediates memory impairments and antidepressant-like behavior.


A.


B.


C.


D.

E.

Fig. 6 miR-708-5p has potential as a diagnostic biomarker in MD

