

1 **Suppressing APOE4-induced mortality and cellular damage by targeting VHL**

2
3
4 Wei I. Jiang¹, Yiming Cao², Yue Xue², Yichun Ji², Benjamin Y. Winer^{1, 3, 4}, Mengqi
5 Zhang⁵, Neel S. Singhal⁵, Jonathan T. Pierce⁶, Song Chen^{2, *}, Dengke K. Ma^{1, 7, 8, *},

6
7 ¹Cardiovascular Research Institute, University of California, San Francisco, San
8 Francisco, CA, USA

9 ²Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of
10 Natural Medicines, School of Life Science and Technology, China Pharmaceutical
11 University, Nanjing, China

12 ³Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA.

13 ⁴Howard Hughes Medical Institute; Chevy Chase, MD, USA

14 ⁵Department of Neurology, University of California, San Francisco, San Francisco, USA

15 ⁶Department of Neuroscience, The Center for Learning and Memory, Waggoner Center
16 for Alcohol and Addiction Research, Institute of Neuroscience, University of Texas at
17 Austin, Austin, Texas, USA

18 ⁷Department of Physiology, University of California, San Francisco, San Francisco, CA,
19 USA

20 ⁸Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA

21 * Correspondence: ChenS@cpu.edu.cn (S.C.) & Dengke.Ma@ucsf.edu (D.K.M.)

25 **Abstract**

27 Mortality rate increases with age and can accelerate upon extrinsic or intrinsic damage
28 to individuals. Identifying factors and mechanisms that curb population mortality rate
29 has wide-ranging implications. Here, we show that targeting the VHL-1 (Von Hippel–
30 Lindau) protein suppresses *C. elegans* mortality caused by distinct factors, including
31 elevated reactive oxygen species, temperature, and *APOE4*, the genetic variant that
32 confers high risks of neurodegeneration in Alzheimer’s diseases and all-cause mortality
33 in humans. These mortality factors are of different physical-chemical nature, yet result in
34 similar cellular dysfunction and damage that are suppressed by deleting VHL-1.

35 Stabilized HIF-1 (hypoxia inducible factor), a transcription factor normally targeted for
36 degradation by VHL-1, recapitulates the protective effects of deleting VHL-1. HIF-1
37 orchestrates a genetic program that defends against mitochondrial abnormalities,
38 excess oxidative stress, cellular proteostasis dysregulation, and endo-lysosomal
39 rupture, key events that lead to mortality. Genetic *Vhl* inhibition also alleviates cerebral
40 vascular injury and synaptic lesions in *APOE4* mice, supporting an evolutionarily
41 conserved mechanism. Collectively, we identify the VHL-HIF axis as a potent modifier of
42 *APOE4* and mortality and propose that targeting VHL-HIF in non-proliferative animal
43 tissues may suppress tissue injuries and mortality by broadly curbing cellular damage.

44 **INTRODUCTION**

45
46 Age-related mortality is a universal phenomenon observed across all biological species.
47 Understanding the factors that modulate this trajectory is essential for developing
48 strategies to mitigate the impact of aging on population health. Intrinsic genetic
49 determinants and host physiology, extrinsic environmental challenges and abiotic
50 stress, as well as stochastic events all interact to confer mortality risks. In humans,
51 genetic association studies have identified major genetic risk factors for all-cause
52 mortality, including the $\epsilon 4$ allele of the *APOE* gene (*APOE4*)^{1–4}. This allele also
53 represents the highest genetic risk factor for late-onset Alzheimer's disease (AD) as well
54 as the highest genetic risk modifier of early-onset forms of AD^{5–7}. Emerging human
55 studies implicate *APOE4* homozygosity as a major genetic cause, not just a risk
56 modifier, of AD that constitutes one of the most frequent human Mendelian disorders⁸.
57 *APOE4* proteins differ in cholesterol transport capabilities compared to its allelic
58 counterparts and, contrary to its heightened association with AD risk, it is linked to
59 decreased susceptibility to age-related macular degeneration^{9–11}. Genetic variations
60 including non-*APOE4* variant alleles of *APOE* have also been shown to be associated
61 with reduced mortality in rare long-lived human centenarians¹². These studies have
62 provided intriguing cases of how genetic variations may link to mortality and age-related
63 diseases in humans. However, despite these advances, establishing causal and
64 mechanistic relationships among genetic variations, cellular processes, environmental
65 impacts, and mortality rates at the population level remains a formidable challenge.
66

67 To identify causal genetic factors that influence mortality and to elucidate their
68 underlying mechanisms, the nematode *Caenorhabditis elegans* emerges as a well-
69 suited model organism. Its amenability to genetic manipulation, short lifespan, and well-
70 characterized genome provide an ideal platform for discovering novel genetic modifiers
71 of age-related mortality and pathologies within the context of a whole organism and with
72 well-controlled environmental conditions^{13–15}. In addition, the relatively simple and
73 transparent anatomy of *C. elegans* allows for direct observation of cellular and
74 physiological changes throughout its lifecycle, facilitating the identification of cellular
75 mechanisms and their impact on mortality and pathologies. Pioneering investigations of
76 longevity mutants in *C. elegans* have underscored the importance of the insulin, PI3K
77 and mTOR pathways, leading to discoveries of their evolutionarily conserved roles
78 governing the aging process across various eukaryotic organisms, including humans^{16–}
79 ¹⁸. Besides the trajectory of aging under normal culture conditions, *C. elegans* is also
80 subject to rapidly increased mortality when exposed to severe environmental stresses,
81 including elevated temperature, pathogen infection and abiotic stress^{15,19–21}. While mild
82 stress can extend longevity through the mechanism of hormesis^{22,23}, it remains largely
83 unknown how mortality accelerates when *C. elegans* is severely stressed.
84

85 Genetic studies in *C. elegans* have identified reduction- or loss-of-function (LOF) alleles,
86 including those of *daf-2* and *vhl-1*, which can extend longevity and confer broad stress
87 resilience^{24–27}. *daf-2* encodes a homolog of insulin receptors that orchestrate anabolic
88 metabolism, autophagy regulation, and somatic maintenance program during aging.
89 *daf-2* mutants are exceptionally long lived and stress resistant. *vhl-1*, the ortholog of the

90 Von Hippel–Lindau tumor suppressor gene, encodes an E3-ubiquitin ligase that targets
91 the hypoxia-inducible factor HIF-1 for degradation. Loss of VHL-1 stabilizes HIF-1 and
92 activates a genetic program linked to both longevity extension and stress resilience.
93 While HIF-activating VHL mutations in humans increase risks to various cancers,
94 including clear cell renal cell carcinoma, HIF and its target gene activation in non-
95 proliferative cells, such as neurons and cardiomyocytes, can be protective against
96 ischemic insults, reperfusion injuries and metabolic stress^{28–30}. Although previous
97 transcriptomic and proteomic studies unveiled many transcriptional targets of HIF,
98 specific mechanisms underlying the protective effect of the VHL-HIF axis in the context
99 of mortality, longevity regulation and stress resilience still remain unclear.

100
101 In light of the escalating mortality rates associated with aging and exacerbated by
102 diverse intrinsic and extrinsic factors, our study aimed to identify factors and
103 mechanisms capable of mitigating these outcomes. We find that *vhl-1* loss or stabilized
104 HIF-1 strongly suppresses *C. elegans* population mortality induced by diverse factors,
105 including elevated reactive oxygen species (ROS), temperature stress, and transgenic
106 expression of the human AD-neurodegenerative and longevity risk variant *APOE4*. We
107 identify functional HIF-1-regulated genes that may contribute to guarding against
108 cellular processes mechanistically linked to age-related mortality. We further used
109 *APOE4*-humanized mice to highlight the likely evolutionarily conserved mechanism by
110 which VHL inhibition mitigates the *APOE4* effects on animal tissue injury and mortality.
111
112

113 RESULTS

114 Roles of VHL-1 in suppressing mortality

115 We showed previously that transgenic neuronal expression of human *APOE4*, but not
116 *APOE3*, in *C. elegans* exacerbated neurodegeneration³¹. To study potential effects of
117 *APOE4* on population mortality using a fast, reproducible and robust model, we
118 examined the mortality trajectory (lifespan curve) of *APOE4*-transgenic *C. elegans*
119 under various constant conditions of temperature stress beyond the normal range (15
120 °C to 25 °C). When subjected to a constant temperature of 28 °C, wild-type animals died
121 within a few days (median lifespan of approximate 4 days post L4), whereas neuronal
122 *APOE4* expression drastically shortened the lifespan (median lifespan fewer than 2
123 days post L4) (Fig. 1a). Under such constant heat stress, *APOE4* expression also led to
124 profound morphological deterioration of the PVD neuron (Fig. 1b).
125
126

127 Elevated temperature stress causes increased levels of ROS and HIF-1 activation in *C.*
128 *elegans*^{32,33}. Loss of VHL-1 leads to the stabilization of HIF-1, providing a defense
129 mechanism against hypoxic and oxidative stress (Fig. 1c). As we previously discovered
130 that VHL-1 inactivation mitigates the morphological degeneration of dopaminergic
131 neurons in *C. elegans* complex I mutants³⁴, we examined how a *vhl-1* deletion mutation
132 *ok161* affected the mortality of *APOE4*-transgenic *C. elegans* under 28 °C. We found
133 that *vhl-1* deletion abolished the effect of *APOE4* on increased mortality under 28 °C,
134 and extended lifespan in wild-type animals under 28 °C (Fig. 1d). These results
135

136 establish a *C. elegans* model for rapid APOE4-induced mortality and identified potent
137 mortality-suppressing effects of *vhl-1* LOF mutations.

138
139 APOE4 represents a lipoprotein variant with a diminished capacity for lipid recycling,
140 resulting in intracellular accumulation of cholesterol that is highly susceptible to
141 oxidation^{35–37}. Because *C. elegans* cannot synthesize cholesterol, its cholesterol levels
142 are determined and can be controlled by its diet. We developmentally synchronized and
143 cultured the APOE4-transgenic strain on culture plates deficient in exogenously added
144 cholesterol (Extended Data Fig. 1a-1b), a procedure to reduce overall cholesterol intake
145 during larval development³⁸. Such cholesterol-reduction conditions markedly restored
146 the lifespan of APOE4-transgenic animals, without affecting that of wild type (Fig. 1e) or
147 the mortality-decreasing effect of *vhl-1* deletion (Fig. 1f). Exogenous supplementation
148 with N-acetyl-cysteine (NAC), a precursor of glutathione and scavenger of ROS
149 previously used and validated in *C. elegans*^{39–42}, dose-dependently suppressed the
150 mortality effect of APOE4 (Fig. 1g). We also observed that body size was reduced in
151 APOE4-transgenic *C. elegans* when compared to wild type at normal 20 °C, while *vhl-1*
152 deletion LOF mutation or reduction of cholesterol uptake starting at embryonic stages
153 were sufficient to rescue body sizes (Extended Data Fig. 1c-1d).

154
155 We next tested how APOE4 may interact with other genetic and environmental factors
156 on mortality. Given that APOE4 can affect clearance of the amyloid precursor protein
157 APP, which is also implicated in AD, we examined the neuronal APP-transgenic *C.*
158 *elegans* under 28 °C, and found that neuronal APP expression did not affect mortality
159 rates in *C. elegans* (Extended Data Fig. 1e-1f). We also observed that neuronal APOE3
160 expression did not affect mortality rates under 28 °C (Extended Data Fig. 1g).
161 Additionally, we used a heat-independent approach to generate excessive oxidative
162 stress based on a transgenic strain with blue light-induced production of superoxide
163 from neuronal expression of a genetically-encoded miniSOG transgene^{43,44}. We
164 observed that blue light exposure in this strain induced a rapid and robust increase of
165 population mortality that was strongly suppressed by dietary cholesterol reduction or
166 NAC supplementation (Fig. 1i). *vhl-1* deletion recapitulated such mortality-suppressing
167 effects (Fig. 1j). Furthermore, we found that APOE4 also increased the mortality of *C.*
168 *elegans* under 20 °C normal culture conditions and *vhl-1* deletion or cholesterol
169 reduction strongly suppressed the mortality effect of APOE4 (Fig. 1k-n and Extended
170 Data Fig. 1h).

171

172 Taken together, these results identify VHL-1 as a potent modifier of APOE4 in mortality
173 and suggest that APOE4 may increase intracellular cholesterol, oxidation of which by
174 ROS contributes to an increase in population mortality suppressible by *vhl-1* deletion.

175

176 **Roles of HIF-1 in suppressing mortality caused by APOE4**

177

178 We next examined roles of HIF-1 in suppressing mortality. We monitored hypoxic and
179 redox stress responses using the well-characterized HIF-1-dependent transcriptional
180 reporter, *cysl-2p::GFP*^{45–47}. As would be predicted for stabilized HIF-1, *vhl-1* deletion
181 strongly activated *cysl-2p::GFP* in a HIF-dependent manner (Fig. 2b and Extended Data

182 Fig. 2a). Under normal 21% oxygen conditions, elevated temperature at 28 °C caused a
183 time- and temperature-dependent activation of *cysl-2p::GFP* (Extended Data Fig. 2b-
184 2d), consistent with elevated oxidative stress and HIF-1 activation by heat³². LOF *hif-1*
185 fully suppressed the mortality-reducing effects of *vhl-1* under both normal culture
186 conditions^{26,48} and on *APOE4* at 28 °C (Fig. 2a and 2c). We focused on characterizing
187 the effects of a stabilized form of HIF-1 using a transgene *otls197* that expresses a non-
188 degradable (VHL-resistant) P621A variant and driven by the *unc-14* promoter⁴⁹ (Fig.
189 2d). Testing thermal stress, we found that stabilized HIF-1 extended the lifespan of wild
190 type grown at 28 °C (Fig. 2e) and suppressed the mortality effect of *APOE4* to the same
191 level as *vhl-1* deletion (Fig. 2f). Testing cholesterol as a stressor, we found that reducing
192 cholesterol during larval development but not during adult stage occluded negative
193 effects of *APOE4* in both wild type and stabilized HIF-1 transgenic *otls197* animals (Fig.
194 2g-2i). In addition, supplementation with NAC dose-dependently reduced mortality of
195 *APOE4* but to a lesser extent in stabilized HIF-1 or *vhl-1* deletion mutant animals (Fig.
196 2j). Furthermore, stabilized HIF-1 also recapitulated the effect of *vhl-1* deletion on
197 reducing the mortality of *APOE4* transgenic animals at 20 °C (Fig. 2k-2n).

198
199 To test if HIF-1 played a similar role beyond *C. elegans*, we also generated a HEK293T
200 cell line by expressing stabilized mammalian HIF-1 by lentiviral infection (Extended Data
201 Fig. 2e). We found that it similarly protected HEK293T cells against thermal stress
202 conditions and suppressed the mortality-increasing effect of *APOE4* (Extended Data
203 Fig. 2f). The abundance, subcellular localization and secretion of *APOE4* were not
204 apparently affected by stabilized HIF-1 or thermal stress in HEK293T cells (Extended
205 Data Fig. 2g-2h). Exogenous supplementation with *APOE4*-expressing HEK293T cell
206 supernatants did not affect the mortality of *C. elegans* under 28 °C (Extended Data Fig.
207 2i). In HEK293T cells, we found that stabilized HIF-1 can also suppress heat or *APOE4*-
208 induced genomic DNA fragmentation (Extended Data Fig. 2j).

209
210 Together, these results demonstrate roles of HIF-1 in mediating effects of *vhl-1* loss in
211 mortality and that a stabilized HIF-1 transgene is sufficient to suppress *APOE4*-induced
212 increase in mortality during normal aging and under heightened heat stress conditions.

213
214 **Cellular consequences of *APOE4* suppressed by *vhl-1* loss or HIF-1 activation**

215
216 To understand mechanisms of *APOE4* toxicities and protection by *vhl-1* and HIF-1, we
217 assessed the molecular and cellular abnormalities in neuronal *APOE4* transgenic
218 animals. To discover pathways potentially dysregulated by *APOE4*, we performed
219 transcriptome profiling. RNAseq analysis revealed that *APOE4* caused numerous
220 alterations in genes involved in stress responses and proteostasis (Fig. 3a). To monitor
221 proteostasis *in vivo*, we generated a transcriptional reporter for the heat shock protein-
222 encoding *hsp-16.2* as a live indicator. We found that *hsp-16.2p::GFP* remained at low
223 baseline levels throughout development in the wild type under normal culture conditions
224 (Fig. 3b and Extended Data Fig. 3a). By comparison, *APOE4* increased *hsp-16.2p::GFP*
225 expression dramatically starting at fourth larval stage and with the highest penetrance at
226 day 5 post L4 (Fig. 3b and Extended Data Fig. 3c). *APOE4* elevated proteostatic stress,
227 as revealed by this reporter, even without exogenous proteostasis-perturbing

228 conditions, such as heat stress. High-magnification confocal microscopic analysis
229 revealed the site of abnormally up-regulated *hsp-16.2p::GFP* expression predominantly
230 in the body wall muscle, while its expression in a few unidentified neurons remained
231 largely unaltered (Fig. 3d-3f). As a more direct readout of proteostasis⁵⁰, we also
232 monitored length-dependent aggregation of polyQ-YFP fusion proteins in *C. elegans*.
233 We found that APOE4 increased *unc54p::Q40::YFP* aggregation, but not
234 *unc54p::Q35::YFP* in the body wall muscle (Fig. 3f, Extended Data Figs. 3b-3c). To
235 monitor the proteotoxic consequences of APOE4 and *vhl-1*, we used Western blot to
236 assess oxidative stress-induced actin cleavage (Fig. 3h). While APOE4 caused
237 dramatic accumulation of actin species with lower molecular weight indicative of protein
238 cleavage, such proteotoxic effects were largely absent in *vhl-1* LOF deletion mutants or
239 stabilized HIF-1 animals carrying APOE4 (Fig. 3h). Actin cleavage also occurred in wild-
240 type animals subjected to 28 °C heat stress, and was similarly suppressed in *vhl-1*
241 deletion mutants or stabilized HIF-1 animals without APOE4 (Fig. 3h).
242 Immunocytochemistry showed that the antibody used for Actin stained mostly body wall
243 muscles, consistent with *hsp-16.2p::GFP* activation in the same tissue (Fig. 3i). Given
244 neuronal specific APOE4 expression, these results suggest non-cell autonomous
245 proteotoxic effects of APOE4 suppressible by *vhl-1* loss or HIF-1 activation.
246

247 We next examined potential cell-autonomous consequences of APOE4 with respect to
248 *vhl-1* and HIF in neurons. Given the dramatic morphological deterioration of the PVD
249 neuron in APOE4 animals (Fig. 1b, Extended Data Figs. 4a-4d), we focused on a
250 detailed longitudinal analysis of PVD morphological integrity in both APOE4 and
251 APOE4; *vhl-1* animals. Confocal imaging analysis revealed that the morphological
252 defect, including decreased dendrite numbers and complexity, of the PVD neuron
253 manifested early at the larval L4 stage and persisted throughout adulthood (Fig. 4a-4c).
254 We found that *vhl-1* deletion strongly suppressed the morphological defects of the PVD
255 neuron in neuronal APOE4 transgenic animals (Fig. 4a-4c). While APOE4 caused a
256 nearly fully penetrant defect of PVD neurons at the larval L4 stage, *vhl-1* mutants
257 exhibited marked suppression of defects in all three stages examined (Fig. 4d-4f).
258 Together, these results show that APOE4 can cause both non cell-autonomous and
259 cell-autonomous cellular defects, both of which are suppressible by *vhl-1* LOF.
260

261 To further investigate cellular mechanisms underlying the neuronal toxicity of APOE4
262 and protection by *vhl-1* or HIF-1, we examined major organelles in live neurons,
263 including mitochondria, endosomes, and lysosomes. Using the neuronal organelle-
264 specific fluorescent markers (schematic in Fig. 5a) for longitudinal imaging, we found
265 that APOE4 did not appear to affect neuronal endosomes, as compared to wild type
266 (Extended Data Fig. 5a). However, APOE4 caused a striking age-dependent increase of
267 the fluorescent marker for mitochondria (Fig. 5b-5e) and decrease of the fluorescent
268 marker for lysosomes (Fig. 5h). The increase of mitochondrial markers did not manifest
269 until fourth larval stage and persisted throughout adult stage (Fig. 5c). The changes in
270 organelle reporters could not be explained by APOE4 affecting transgene expression
271 since RNAseq results (Table S1, Fig. 3a) indicated that APOE4 does not affect the
272 expression of *ric-19*, the promoter of which drives the organelle markers. Strikingly, *vhl-1*
273 deletion or stabilized HIF-1 strongly suppressed the abnormally increased

274 mitochondrial markers by APOE4 (Fig. 5f-5g). Reduction of cholesterol also suppressed
275 the effect of APOE4 on such mitochondrial and lysosomal phenotypes (Extended Data
276 Fig. 5c-5e). These results reveal organelle-specific defects caused by APOE4 and
277 suggest that APOE4 likely exerts cellular toxicity through excess cholesterol, oxidation
278 of which leads to lysosomal membrane disruption, impaired mitophagy and
279 mitochondria clearance, defects suppressible by *vhl-1* inhibition and HIF-1 activation.
280

281 **Transcriptional targets of HIF-1 mediating effects of *vhl-1* and HIF-1**

282
283 We aimed to determine the transcriptional targets of HIF-1 and their mechanisms of
284 action underlying protection against heat stress and APOE4. Proteomic and
285 transcriptomic studies have identified many genes differentially regulated in *vhl-1*
286 mutants⁵¹⁻⁵³. We used quantitative RT-PCR (qRT-PCR) and GFP reporters to validate
287 many of these targets based on their dramatic up-regulation in *vhl-1* mutants grown at
288 28 °C, under which condition HIF-1 is both stabilized and activated in target gene
289 transcriptional transactivation (Fig. 6a). We used deletion mutants or RNAi (when
290 deletion mutants were not available) against these candidate genes to test whether any
291 are functionally important for survival (measured as median lifespan) at 28 °C in both
292 wild type and *vhl-1* mutants. We found that genetic deletion or RNAi against each of two
293 candidate genes, *tgn-38* and *Y70C5C.1*, led to increased mortality at 28 °C (Fig. 6b-6e).
294 *tgn-38* encodes a *C. elegans* orthologue of human C5orf15 (chromosome 5 open
295 reading frame 15) and TGOLN2 (trans-golgi network protein 2) with uncharacterized
296 biological functions, whereas *Y70C5C.1* encodes a *C. elegans* ortholog of human IDE
297 (insulin degrading enzyme). Though mechanisms linking TGN-38 to mortality regulation
298 remain unclear, the loss-of-function phenotype of *Y70C5C.1* suggests that HIF-1 may
299 activate expression of an insulin-degrading enzyme, leading to insulin receptor (DAF-2)
300 inhibition and activation of the DAF-16 stress-responding pathway.
301

302 Among the most dramatically up-regulated gene by HIF-1 (via stabilized HIF-1 or loss of
303 *vhl-1* at 28 °C), *F22B5.4* encodes a predicted mitochondrial protein (with the probability
304 of mitochondrial presequence of 0.967, mitoFate⁵⁴) of uncharacterized biological
305 function. Although we did not observe the RNAi phenotype of *F22B5.4* (likely owing to a
306 paralogous gene *F36A2.7* and/or low RNAi efficiency in tissue of expression), single-cell
307 gene expression profiling by CeNGEN indicates its predominant expression in
308 neurons⁵⁵. We generated a translational GFP reporter for *F22B5.4* under the control of
309 its endogenous promoter and confirmed its specific expression in neurons and up-
310 regulation by HIF-1 and in the *vhl-1* mutant (Fig. 6f). Neuronal-specific gain-of-function
311 of *F22B5.4* by *ric-19* promoter-driven cDNA expression markedly reduced mortality at
312 28 °C (Fig. 6g-6h). Neuronal-specific gain-of-function of *F22B5.4* also partially
313 suppressed the mortality phenotype caused by transgenic APOE4 (Fig. 6i).
314

315 These results identify three previously uncharacterized HIF-1 targets that functionally
316 contribute to protection of neurons and suppression of animal mortality in *C. elegans*.
317

318 **Vhl inactivation suppresses APOE4-induced neurovascular injuries in mice**

320 To further evaluate evolutionarily conserved mechanisms by which VHL inactivation
321 may ameliorate toxic effects of APOE4, we assessed the neurovascular injuries in
322 *APOE4* mice and the protective action by *Vhl* inhibition in mice. Human *APOE4* allele
323 replacement in mice can lead to cerebral vascular and blood-brain barrier (BBB) lesions
324 accompanied by compromised tight junctions, and neurodegenerative changes,
325 including synaptic loss^{36,56,57}. To investigate the potential neurovascular benefits of *Vhl*
326 inactivation in such humanized *APOE4* transgenic mice, we injected AAV-*Vhl*-shRNA
327 bilaterally into the hippocampus (Fig. 7a and Extended Data Fig. 6a). We found that the
328 *APOE4* mice exhibited marked loss of brain capillary pericyte coverage in the
329 hippocampus compared to the wild-type control (C57BL/6 mice). Inhibition of *Vhl* by
330 shRNA markedly restored pericyte coverage of brain capillaries (Fig. 7b and 7c). We
331 also observed reduced abundance of the tight junction protein, Occludin, in the brains of
332 *APOE4* mice, which was mitigated by *Vhl* inhibition (Fig. 7d and 7e). We assessed the
333 integrity of the BBB by intravenous injection of Evans blue dye (Fig. 7f) and found that
334 the *APOE4* mice exhibited markedly weakened BBB as evidenced by higher optical
335 density at 620 nm compared to C57BL/6 mice. In contrast, Evans blue content analyses
336 showed that the BBB was largely intact when *Vhl* was knocked down in the brains of
337 *APOE4* mice, reaching levels comparable to those observed in control C57BL/6 mice
338 (Fig. 7f). In addition, we observed that *APOE4* caused a striking loss of hippocampal
339 axons and decreased protein levels of the synaptic marker Synaptophysin in the brain,
340 whereas inhibition of *Vhl* markedly reversed both axonal and synaptic degeneration
341 phenotypes caused by *APOE4* (Fig. 7g-7j). Collectively, these findings demonstrate that
342 genetic inhibition of *Vhl* can strongly ameliorate *APOE4*-induced cerebrovascular
343 injuries and neuronal synaptic damage in mice.

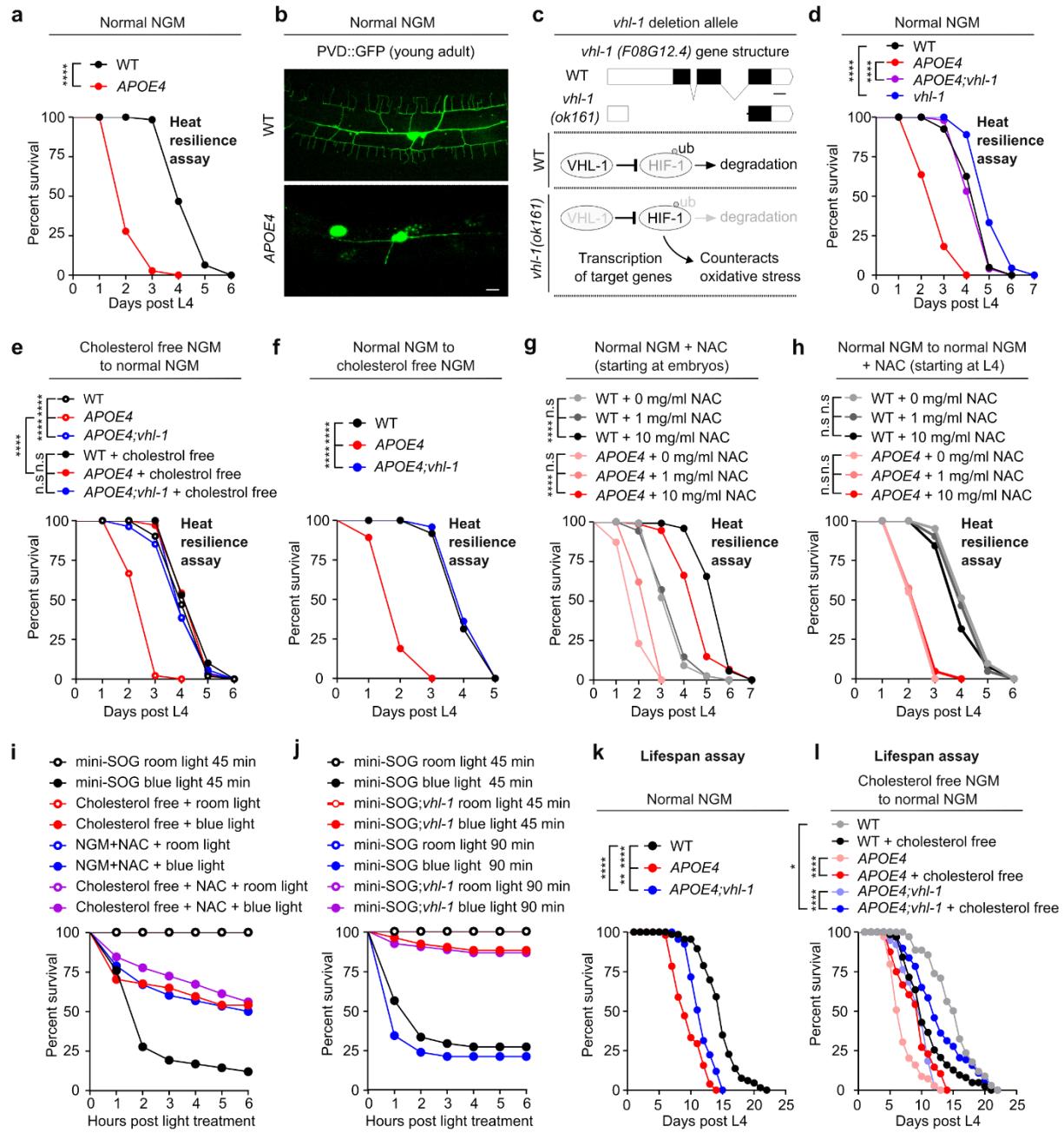
344

345 Discussion

346

347 Age-related mortality represents a universal phenomenon influenced by intrinsic genetic
348 factors, environmental stressors, and stochastic events. In this study, we investigated
349 how the VHL-HIF axis modulates mortality and cell damage in *C. elegans* and mice. Our
350 findings reveal that targeting VHL-1 remarkably suppresses mortality induced by various
351 factors, including elevated ROS, temperature stress, and the expression of the human
352 *APOE4* gene variant associated with neurodegeneration and mortality in humans. We
353 established a *C. elegans* model for rapid *APOE4*-induced mortality and demonstrated
354 the mortality-suppressing effects of VHL-1 inactivation. We show that stabilized HIF-1
355 recapitulates the effects of VHL-1 inactivation, likely through orchestrating a genetic
356 program that defends against various cellular dysfunctions linked to mortality, including
357 mitochondrial abnormalities, oxidative stress, proteostasis dysregulation, and endo-
358 lysosomal rupture (Extended Data Fig. 7). We identified previously uncharacterized
359 genes, including *tgn-38*, *Y70C5C.1*, and *F22B5.4*, as HIF-1 targets that contribute to
360 mortality suppression, adding depth to a molecular mechanistic understanding.

361

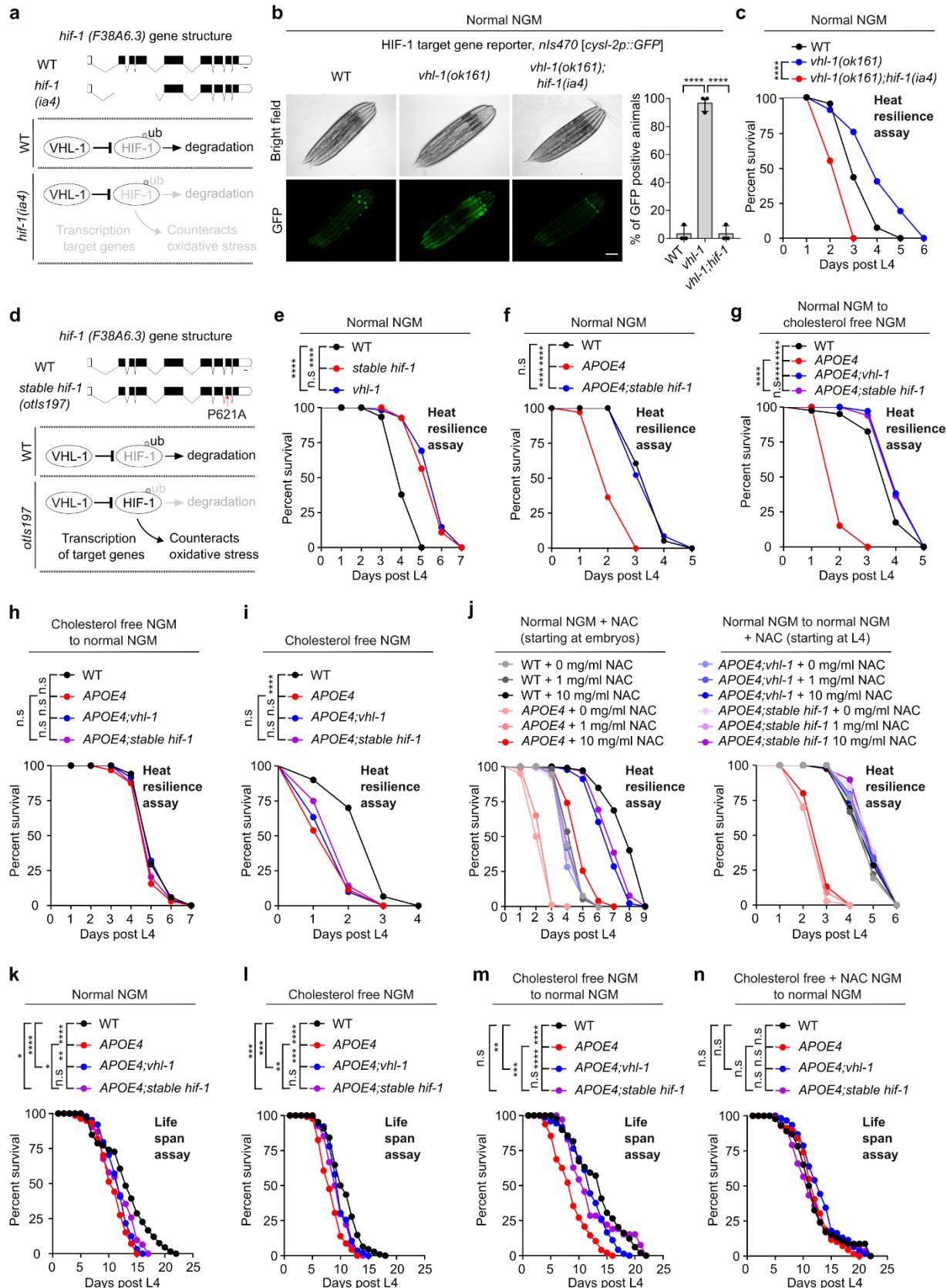

362 Extensive studies have investigated mechanisms of cellular toxicity associated with
363 *APOE4* in the context of neurodegeneration and AD. Emerging evidence suggests that
364 neuronal *APOE4* may act as a crucial upstream trigger and likely a driver of late-onset

365 AD pathogenesis, leading to downstream neuro-inflammation, glial responses and
366 subsequent neurodegeneration⁵⁸. Our study sheds light on the cellular consequences of
367 neuronal APOE4 expression, revealing not only cell-autonomous effects of APOE4 in
368 promoting neuronal morphological deterioration, mitochondrial dysfunction and
369 lysosomal disruption in neurons, but also cross-tissue actions on proteostatic
370 abnormalities in body wall muscles. Neuronal APOE4 inflicts oxidative stress via excess
371 ROS generation and intracellular cholesterol accumulation by multiple mechanisms^{58–60},
372 which may separately and additively lead to the observed cellular defects in *C. elegans*.
373 Importantly, reduction of cholesterol from dietary sources or amelioration of excess
374 oxidative stress through NAC or HIF-1 stabilization strongly suppressed these defects,
375 providing a causal link from cholesterol to mortality regulation by VHL-HIF.
376

377 In mice, we showed that *Vhl* knockdown mitigated neurovascular injuries induced by
378 APOE4. Beneficial effects of targeting *Vhl* in neural tissues include enhanced pericyte
379 coverage, preservation of tight junction proteins, and protection against blood-brain
380 barrier compromise and synaptic loss. This evidence of a conserved mechanism in a
381 mammalian system strengthens the potential clinical implications of targeting VHL-HIF
382 for mitigating age-related mortality and neurodegenerative risks associated with
383 APOE4. Although *Vhl* loss or HIF-1 activation in dividing cells could be oncogenic,
384 leading to tumor cell growth, specific targeting of VHL-HIF in non-proliferative tissues,
385 such as post-mitotic neurons, might broadly protect against oxidative stress resulting
386 from ischemia-reperfusion injuries, neurodegeneration, aging or APOE4 genetic
387 predisposition. The integration of our findings across different species paves the way for
388 future studies into conserved mechanistic links underlying the complex relationships
389 among genetic factors, cellular pathways, and environmental influences on mortality.
390

391 The reconceptualization of APOE4 homozygosity as a form of genetically determined
392 AD highlights the importance of understanding APOE4 biology, pathophysiology and
393 identifying targets that can be harnessed to modify APOE4-induced pathologies in cells
394 and organisms. We use genetic, cell biological and phenotypic analyses to elucidate
395 how APOE4 causes toxicity in *C. elegans* and identify the VHL-HIF pathway as a potent
396 APOE4 toxicity modifier. Our studies also raise many interesting questions that remain
397 unanswered. The mechanisms by which the three HIF-1 targets protect against cellular
398 damage and animal mortality in *C. elegans* await further studies. Whole-animal genetic
399 LOF of *vhl-1* and constitutive expression of stabilized HIF-1 in our study preclude high-
400 resolution dissection of the spatiotemporal requirement of VHL-HIF signaling in
401 protection against cellular damages and animal mortality. The proteostasis defects in
402 body wall muscles and morphological deterioration of PVD neurons caused by pan-
403 neuronal expression of APOE4 raise intriguing cell biological questions regarding
404 mechanisms of cross-tissue interactions, but the relative contribution of cell autonomous
405 and non-cell autonomous effects of APOE4 to mortality in *C. elegans* remain
406 undetermined. Although loss of *vhl-1* or HIF-1 activation protects against mortality in *C.*
407 *elegans*, it remains unclear whether it is also true in mice or humans. In addition, the
408 broader implications of VHL-HIF modulation on other aspects of organismal health,
409 such as neurological and behavioral outcomes, warrant further investigations.
410

411
412
413

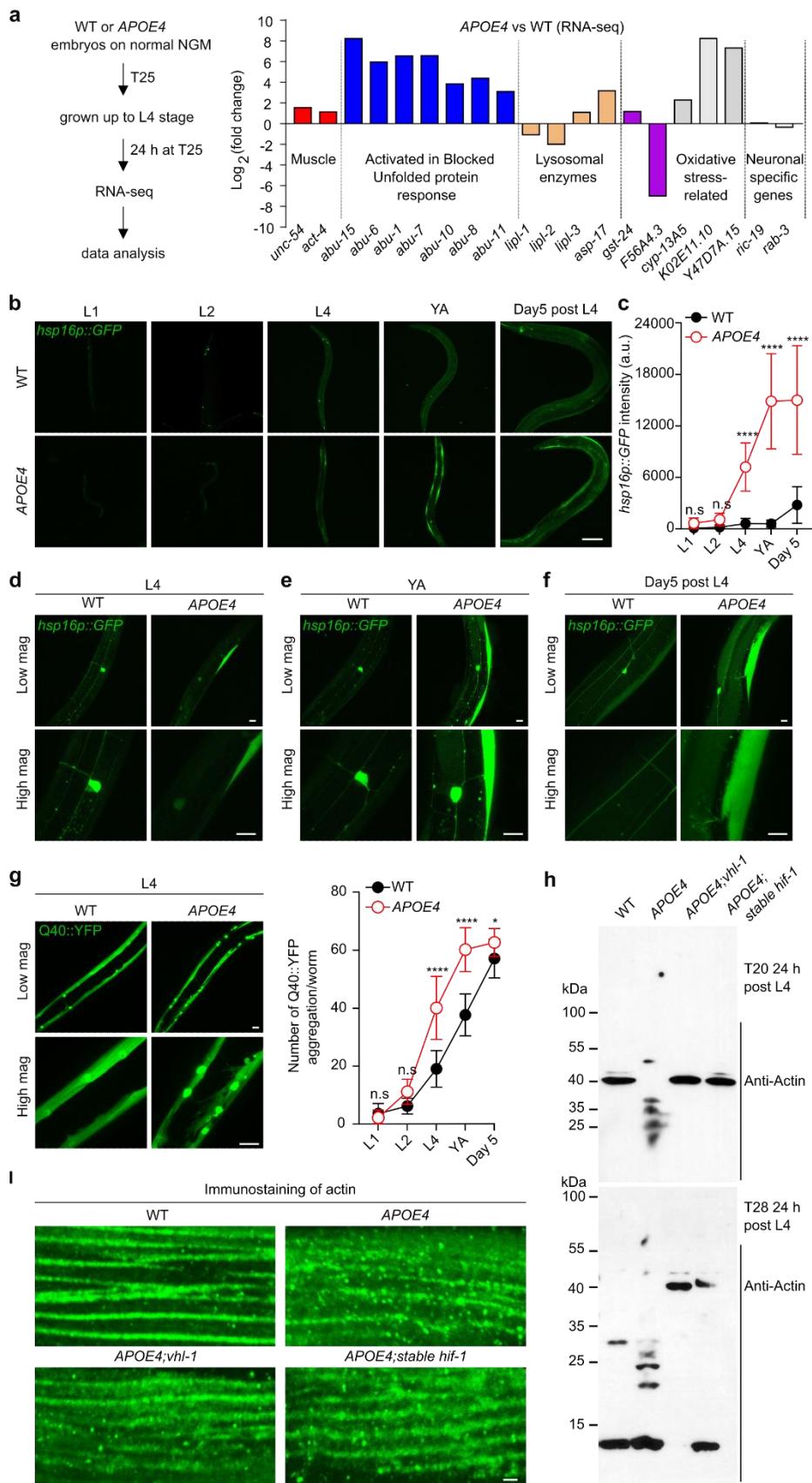

414
415

416 **Figure 1. Loss of *vhl-1* suppresses mortality induced by multiple factors**
417 **(miniSOG, heat and APOE4) that cause molecular and cellular damages.**

418 (a) Lifespan curves of N2 wild type (WT) and pan neuronal APOE4(*vxls824*) transgenic animals at 28 °C
419 starting at L4 on normal NGM, showing 50% median and 50% maximal survival decrease in
420 APOE4(*vxls824*) compared to WT. **** indicates P < 0.0001 (WT: n=62 animals, APOE4: n= 36 animals).
421 (b) Representative confocal microscopic images of PVD neuron (*wy1s592[ser-2prom-3p::myr-GFP]*) in WT
422 and pan neuronal APOE4(*vxls824*) animals at young adult stages on normal NGM, showing PVD
423 abnormalities with apparent loss of third and fourth branches. Scale bar: 10 μm.

424 (c) Schematic of *vhl-1(ok161)* loss-of-function deletion allele (with the exon 2 and 3 deleted) that leads to
425 impaired ubiquitination and stabilized HIF-1 to counteract oxidative stress. Scale bar: 100 bp.
426 (d) Lifespan curves of WT, pan neuronal *APOE4(vxls824)*, *vhl-1(ok161)* mutants, and *APOE4(vxls824)*;
427 *vhl-1(ok161)* animals at 28 °C starting at L4 on normal NGM. **** indicates P < 0.0001 (WT: n=40
428 animals, *APOE4*: n= 44 animals, *APOE4(vxls824)*; *vhl-1(ok161)*: n=49 animals, *vhl-1*: n= 45 animals).
429 (e) Lifespan curves of WT, *APOE4 (vxls824)* and *APOE4(vxls824)*; *vhl-1(ok161)* with or without early life
430 (starting at embryos) cholesterol-free NGM to L4 on cholesterol-free NGM followed by picking to normal
431 NGM and culturing at 28°C. **** indicates P < 0.0001, n.s indicates non-significant (WT: n=51 animals,
432 *APOE4*: n= 45 animals, *APOE4(vxls824)*; *vhl-1(ok161)*: n=54 animals, WT + cholesterol free: n=49
433 animals, *APOE4* + cholesterol free: n=35 animals, *APOE4(vxls824)*; *vhl-1(ok161)* + cholesterol free: n=52
434 animals).
435 (f) Lifespan curves of WT, *APOE4(vxls824)* and *APOE4(vxls824)*; *vhl-1(ok161)* grown to L4 on normal
436 NGM followed by picking to cholesterol-free NGM and culturing at 28°C. **** indicates P < 0.001 (WT:
437 n=48 animals, *APOE4*: n= 37 animals, *APOE4(vxls824)*; *vhl-1(ok161)*: n= 47 animals).
438 (g) Lifespan curves of WT and *APOE4(vxls824)* starting at early life (starting at embryos) with indicated
439 NAC diet concentration (0 mg/ml, 1 mg/ml and 10 mg/ml) to L4 on normal NGM supplemented with
440 indicated NAC concentration followed by picking to normal NGM supplement with indicated concentration
441 of NAC and culturing at 28°C. **** indicates P < 0.001, n.s indicates non-significant (WT+ 0 mg/ml: n=340
442 animals, WT+ 1 mg/ml: n=357 animals, WT+ 10 mg/ml: n=122 animals, *APOE4* + 0 mg/ml: n=78 animals,
443 *APOE4* + 1 mg/ml: n=29 animals, *APOE4* + 10 mg/ml: n=74 animals).
444 (h) Lifespan curves of WT and *APOE4(vxls824)* grown to L4 on normal NGM followed by picking to
445 normal NGM supplemented with indicated concentration of NAC (starting at L4) and transferred to 28°C.
446 *** indicates P < 0.001, n.s indicates non-significant (n > 40 animals per condition).
447 (i) Percent survival of miniSOG animals [*unc-25p::tomm20::miniSOG::SL2::RFP*], grown to L4 starting at
448 early life (embryos) with NAC supplement, starting at early life (embryos) with cholesterol free NGM or
449 normal NGM, followed by room light or blue light treatments for 45 mins. (n > 40 animals per condition).
450 (j) Percent survival of miniSOG animals [*unc-25p::tomm20::miniSOG::SL2::RFP*] or LOF mutant *vhl-*
451 *1(ok161)*; miniSOG animals grown to L4 on normal NGM, followed by room light or blue light treatments
452 for 45 mins or 90 mins (n > 40 animals per condition).
453 (k) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* animals at constant 20 °C on
454 normal NGM. ** indicates P < 0.01, **** indicates P < 0.0001, (n > 40 animals per condition).
455 (l) Lifespan curves of WT, *APOE4(vxls824)*, and *APOE4(vxls824)*; *vhl-1(ok161)* animals with or without
456 (starting at embryos) cholesterol diet to L4 followed by picking to normal NGM and culturing at 20°C. *
457 Indicates P < 0.05, **** indicates P < 0.0001, (n > 40 animals per condition).

458
459
460
461
462
463
464
465

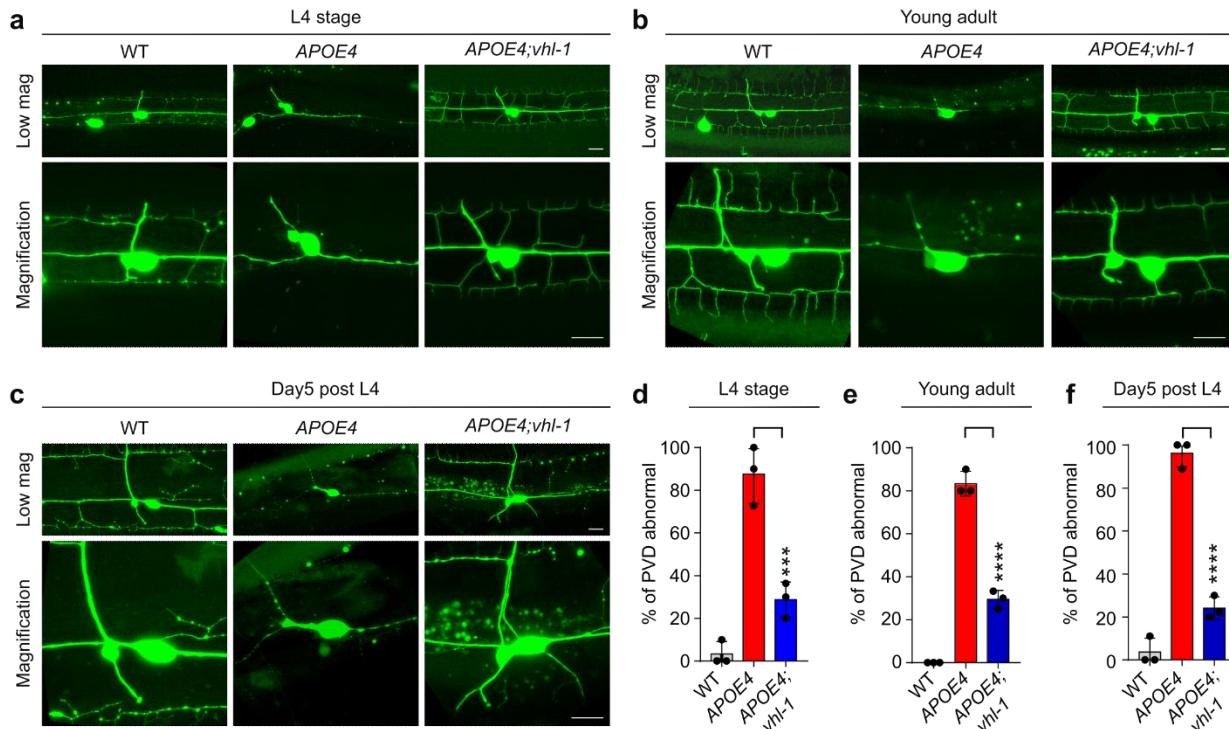

467

468 **Figure 2. Stabilized HIF-1 recapitulates the effects of VHL-1 inactivation.**

469 (a) Schematic of the *hif-1(ia4)* LOF deletion allele (1,231 bp deletion of the second, third, and fourth
470 exons) and its impaired capacity to counteract oxidative stress. Scale bar: 100 bp.
471 (b) Representative epifluorescence images and quantification showing that *cysl-2p::GFP* constitutive
472 upregulation in *vhl-1* mutants is blocked by *hif-1(ia4)*. Scale bar: 100 μ m. ****indicates $P < 0.0001$ ($n > 30$
473 animals per condition).
474 (c) Lifespan curves of WT, LOF mutant *vhl-1(ok161)* and double LOF mutant *vhl-1(ok161); hif-1(ia4)*
475 animals at 28 °C starting at L4 on normal NGM. **** indicates $P < 0.0001$ ($n > 40$ animals per condition).
476 (d) Schematic of non-degradable form of HIF-1 (P621A) expressed by the *unc-14* promoter
477 (predominantly active in neurons) in *hif-1* mutant background (*otls197 [unc-14p::hif-1(P621A) + ttx-3p::RFP]*). Scale bar: 100 bp.
478 (e) Lifespan curves of WT, non-degradable form of HIF-1(P621A) (*otls197* or *vhl-1(ok161)*) LOF mutant
479 animals at 28 °C starting at L4 on normal NGM. **** indicates $P < 0.0001$, n.s indicates non-significant
480 ($n > 40$ animals per condition).
481 (f) Lifespan curves of WT, *APOE4(vxls824)*; *otls197* and *APOE4(vxls824)* animals at 28 °C starting at L4
482 on normal NGM. **** indicates $P < 0.0001$, n.s indicates non-significant ($n > 40$ animals per condition).
483 (g) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*;
484 *otls197* animals grown to L4 on normal NGM followed by picking to cholesterol free NGM and culturing at
485 28°C. *** indicates $P < 0.001$, n.s indicates non-significant ($n > 40$ animals per condition).
486 (h) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*;
487 *otls197* animals starting at early life (embryos) with cholesterol free NGM to L4 followed by picking to
488 normal NGM and culturing at 28°C. n.s indicates non-significant ($n > 40$ animals per condition).
489 (i) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*; *stable*
490 *hif-1 (otls197)* animals starting at early life (embryos) with cholesterol free NGM to L4 followed by picking
491 to cholesterol free NGM and culturing at 28°C. **** indicates $P < 0.0001$, n.s indicates non-significant, ($n >$
492 40 animals per condition).
493 (j) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*; *stable*
494 *hif-1 (otls197)* animals starting at early life (starting at embryos) with indicated NAC concentration diet to
495 L4 on normal NGM followed by picking to normal NGM supplemented with indicated concentration of
496 NAC and transferred to 28°C (left). Lifespan curves of WT, *APOE4(vxls824)* and *APOE4(vxls824)*; *stable*
497 *hif-1 (otls197)* animals grown to L4 on normal NGM followed by picking to normal NGM supplemented
498 with indicated concentration of NAC (starting at L4 stage) and culturing at 28°C. ($n > 40$ animals per
499 condition).
500 (k) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*; *stable*
501 *hif-1 (otls197)* animals at constant 20 °C on normal NGM. * Indicates $P < 0.05$, ** indicates $P < 0.01$, ***
502 indicates $P < 0.001$, **** indicates $P < 0.0001$, n.s indicates non-significant ($n > 40$ animals per condition).
503 (l) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*; *stable*
504 *hif-1 (otls197)* animals at constant 20 °C on cholesterol free NGM. ** indicates $P < 0.01$, *** indicates $P <$
505 0.001, **** indicates $P < 0.0001$, n.s indicates non-significant ($n > 40$ animals per condition).
506 (m) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*; *stable*
507 *hif-1 (otls197)* animals starting at early life (start at embryos) with cholesterol free NGM to L4 followed by
508 picking to normal NGM and culturing at 20°C. ** indicates $P < 0.01$, *** indicates $P < 0.001$, **** indicates
509 $P < 0.0001$, n.s indicates non-significant ($n > 40$ animals per condition).
510 (n) Lifespan curves of WT, *APOE4(vxls824)*, *APOE4(vxls824)*; *vhl-1(ok161)* and *APOE4(vxls824)*; *stable*
511 *hif-1 (otls197)* animals starting at early life (embryos) with cholesterol free and 10 mg/ml NAC diets to L4
512 on cholesterol free NGM followed by picking to normal NGM and culturing at 20°C of incubator. n.s
513 indicates non-significant ($n > 40$ animals per condition).
514

515

516



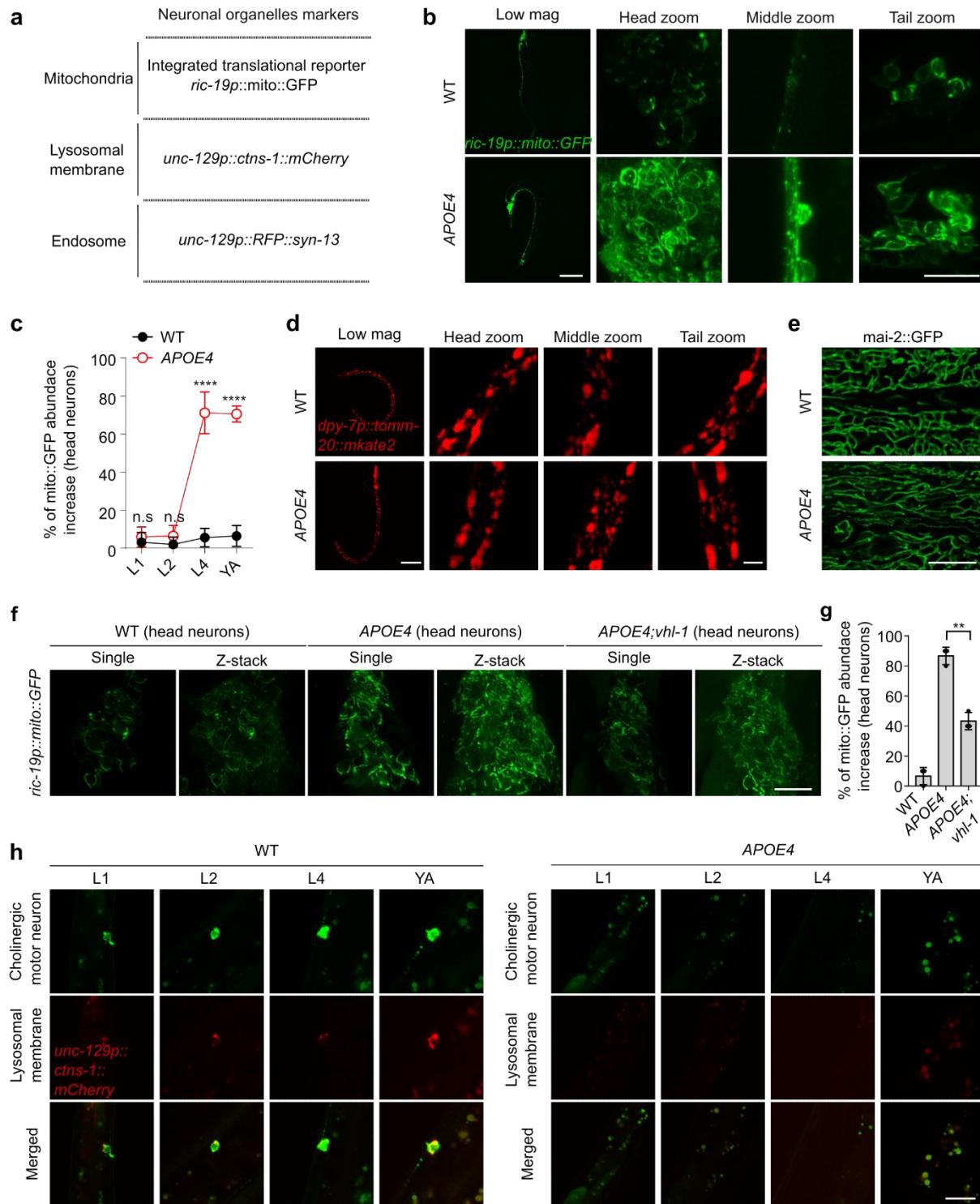
518

519 **Figure 3. APOE4 causes non-cell autonomous proteostasis dysregulation and**
520 **actin cleavage suppressed by vhl-1.**

521 (a) Schematic for RNA-seq transcriptome profiling of WT and pan neuronal transgenic *APOE4*
522 (*vxls824*), showing representative genes of various classes dysregulated in *APOE4* compared to WT.
523 (b) Representative confocal low-magnification images of *hsp16p::GFP* in body wall muscles in WT and
524 *APOE4* (*vxls824*) animals at different stages of L1, L2, L4, young adult (day1 post L4) and Day 5 post L4
525 on normal NGM. Scale bar: 100 μ m.
526 (c) Quantification of fluorescence intensities of *hsp16p::GFP* in body wall muscles under conditions
527 indicated. *** indicates $P < 0.001$, n.s indicates non-significant ($n > 30$ animals per condition).
528 (d-f) Representative confocal high-magnification images of *hsp16p::GFP* in body wall muscles in WT and
529 *APOE4* (*vxls824*) at different stages of L4, young adult (day1 post L4) and Day 5 post L4 on normal
530 NGM. Scale bar: 10 μ m.
531 (g) Representative confocal high-magnification images of *unc54p::Q40::YFP* in body wall muscles in WT
532 and *APOE4* (*vxls824*) at stages of L4 on normal NGM, and quantification of aggregation number of
533 *unc54p::Q40::YFP* in body wall muscles under conditions indicated. Scale bar: 10 μ m. * indicates $P <$
534 0.05, **** indicates $P < 0.0001$, n.s indicates non-significant ($n > 30$ animals per condition).
535 (h) Representative SDS-PAGE western blots of WT, *APOE4(vxls824)*, *APOE4(vxls824); vhl-1(ok161)*
536 and *APOE4(vxls824); stable hif-1 (otls197)*.
537 (i) Representative confocal high-magnification images in body wall muscles of WT, *APOE4(vxls824)*,
538 *APOE4(vxls824); vhl-1(ok161)* and *APOE4(vxls824); stable hif-1 (otls197)* animals immunostained with
539 primary antibody against actin at young adult stages (24 hrs post L4) on normal NGM. Scale bar: 1 μ m.
540

541

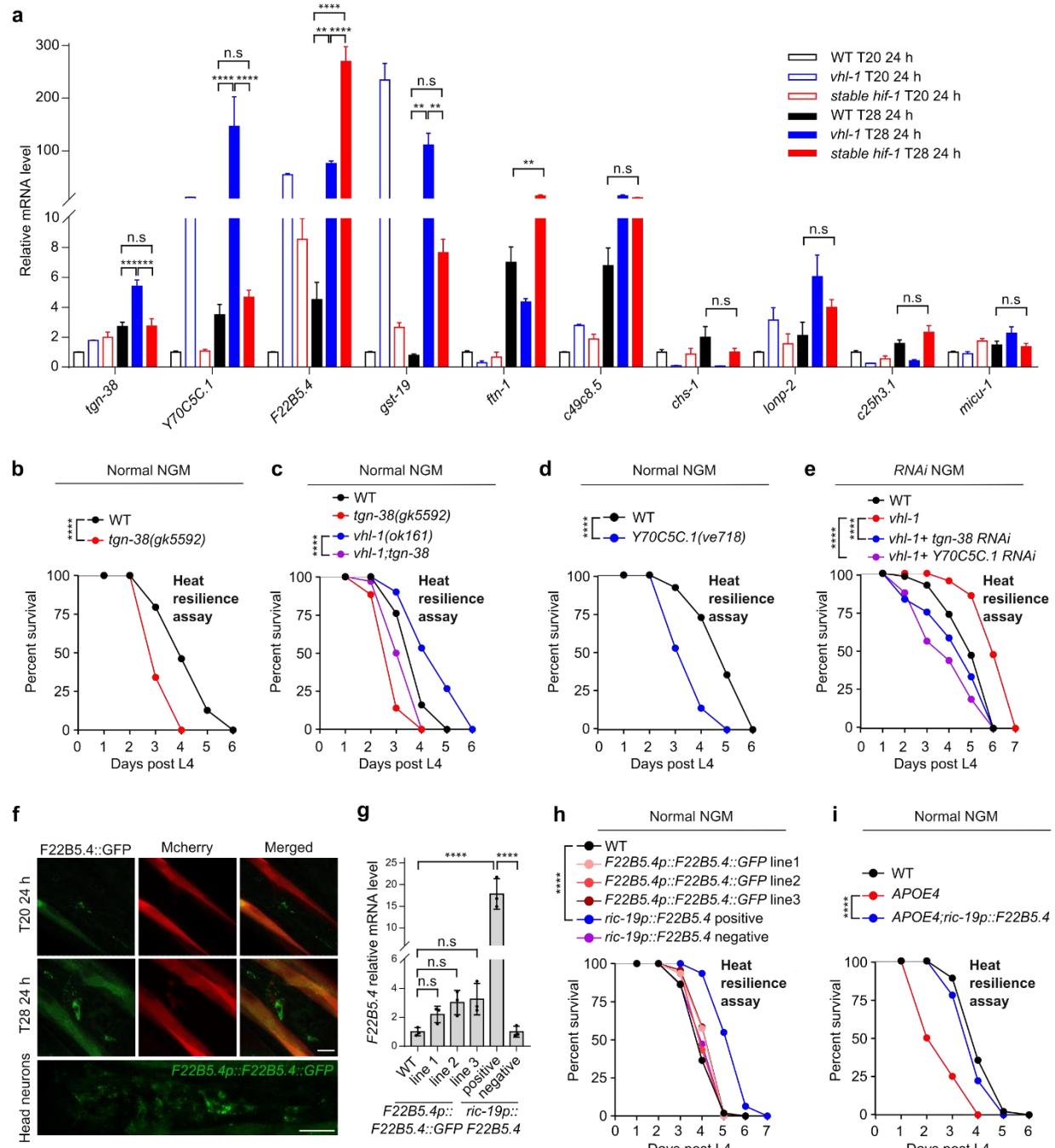
542


Figure 4. APOE4 causes PVD morphological deterioration suppressed by *vhl-1*.

543 (a) Representative confocal images of PVD neuron in WT, APOE4(vx1s824), APOE4(vx1s824); vhl-
544 1(ok161) at L4 stages on normal NGM showing *vhl-1* LOF mutants with rescued APOE4-induced PVD
545 morphological deterioration. Scale bar: 10 μ m.

546 (b) Representative confocal images of PVD neuron in WT, APOE4(vx1s824), APOE4(vx1s824); vhl-
547 1(ok161) at young adult stages on normal NGM showing *vhl-1* LOF mutants with rescued APOE4-
548 induced PVD morphological deterioration. Scale bar: 10 μ m.

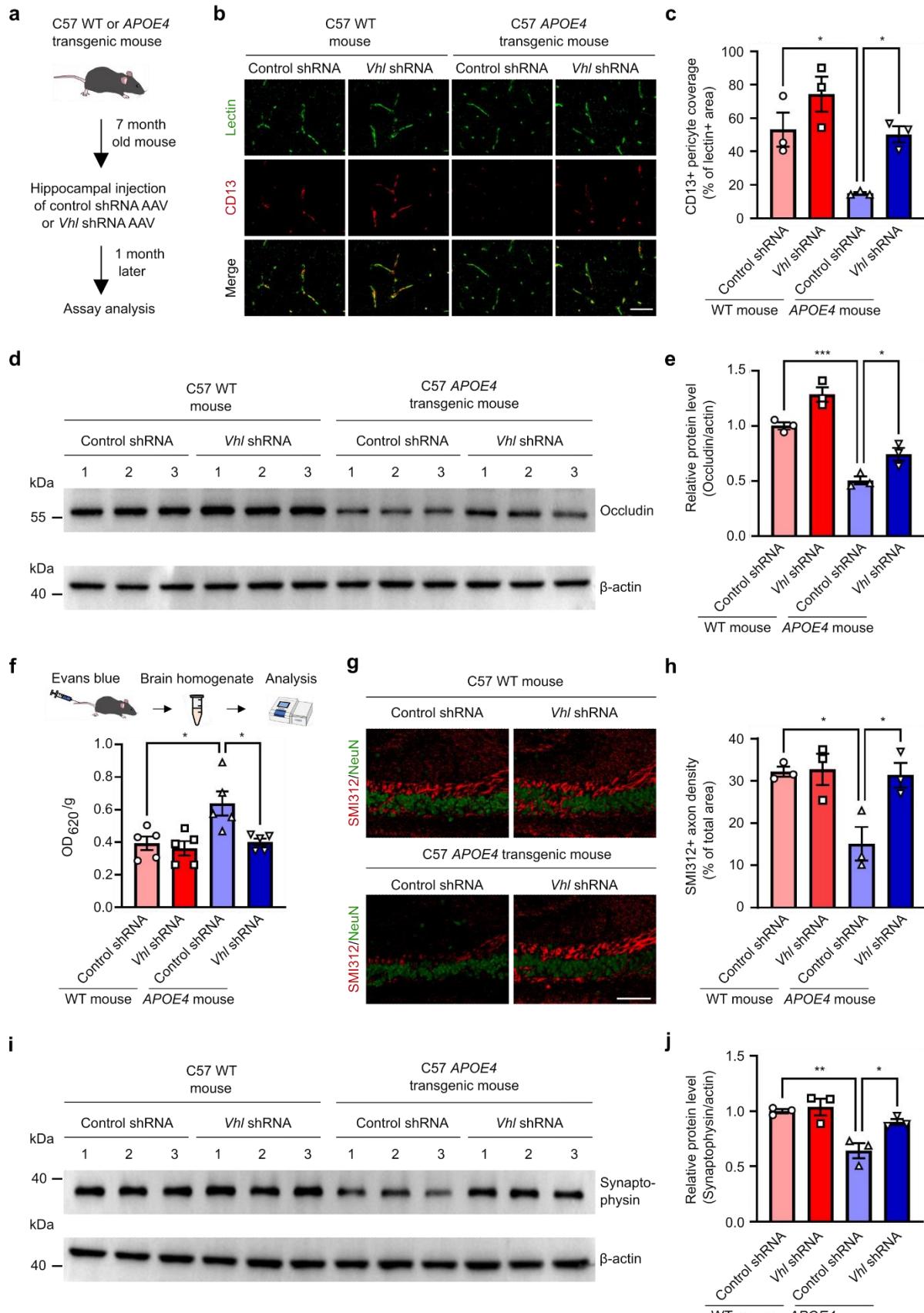
549 (c) Representative confocal images of PVD neuron in WT, APOE4(vx1s824), APOE4(vx1s824); vhl-
550 1(ok161) at day 5 post L4 stages on normal NGM showing *vhl-1* LOF mutants with rescued APOE4-
551 induced PVD morphological deterioration. Scale bar: 10 μ m.


552 (d-f) Quantification of % of PVD neuron abnormal (with the third and fourth branches of PVD neurons
553 missing or severed) in WT, APOE4(vx1s824), APOE4(vx1s824); vhl-1(ok161) under conditions indicated
554 on normal NGM. *** indicates $P < 0.001$, ($n > 30$ animals per condition).

556
557 **Figure 5. *APOE4* causes neuronal mitochondria defects suppressed by *vhl-1*.**

558 (a) Schematic of neuronal organelle-specific fluorescent markers.
559 (b) Representative confocal low and high magnification images of neuronal tissue specific expression
560 in *WT* and *APOE4(vx1s824)* animals at young adult (day1 post
561 L4 stages) with indicated position. Scale bar: 100 μ m (low magnification) and 10 μ m (high magnification).

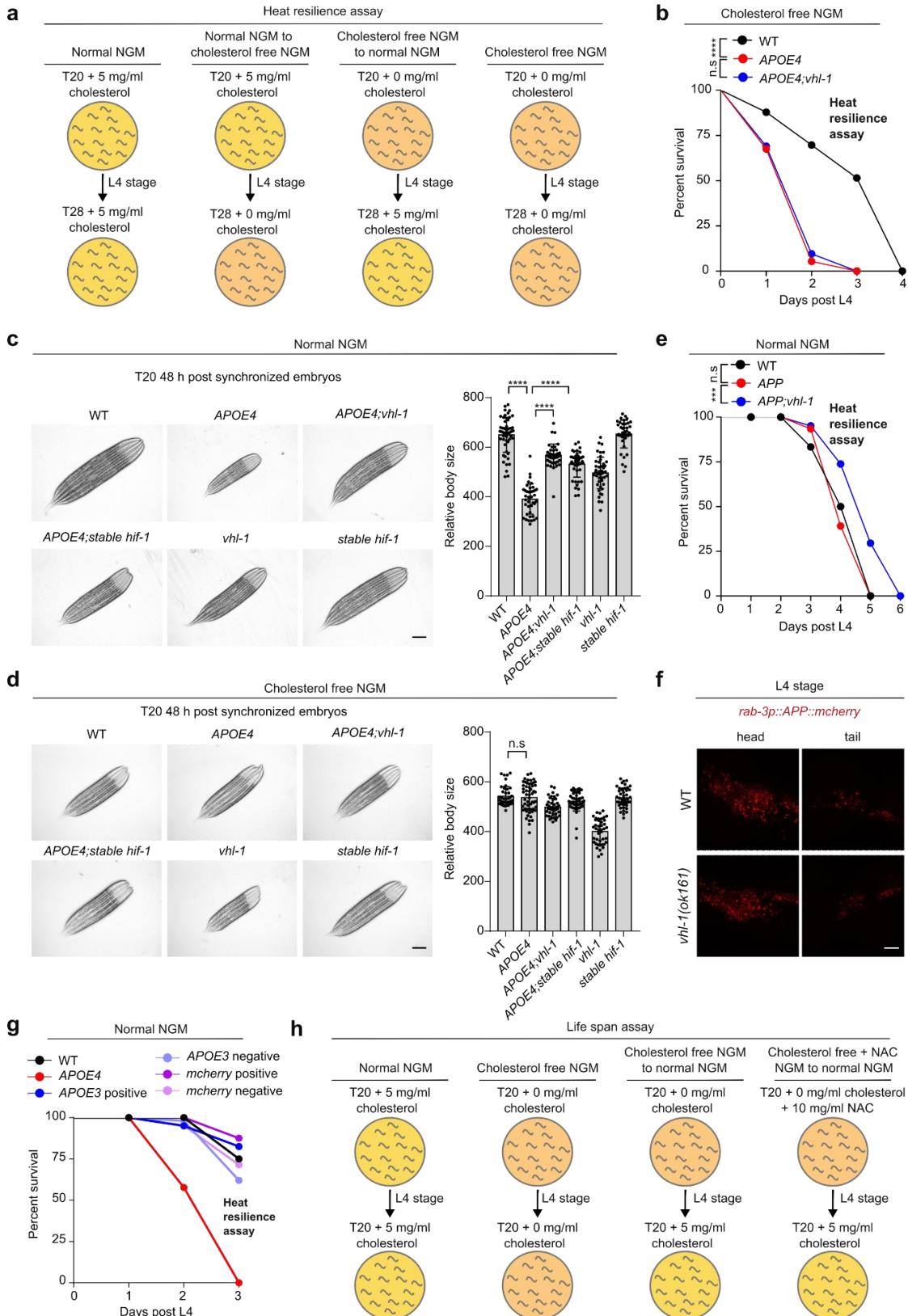
562 (c) Quantification of percentage of *ric19p::mito::GFP* abnormal based on head neurons in WT and
563 *APOE4(vxIs824)* animals at different stages of L1, L2, L4 and young adult (day1 post L4 stages) on
564 normal NGM. **** indicates $P < 0.0001$, n.s indicates non-significant ($n > 30$ animals per condition).
565 (d) Representative confocal low and high magnification images of hypodermal cell mitochondria based on
566 *dpy7p::mito::mKate2* showing no apparent change in WT and *APOE4(vxIs824)* at young adult stages on
567 normal NGM. Scale bars: 100 μm (low magnification) and 10 μm (high magnification).
568 (e) Representative confocal images of intestinal mitochondria based on *mai-2::GFP* showing no apparent
569 change in WT and *APOE4(vxIs824)* at young adult stages on normal NGM. Scale bar: 10 μm .
570 (f) Representative confocal images of *ric19p::mito::GFP* in WT, *APOE4(vxIs824)* and
571 *APOE4(vxIs824);vhl-1(ok161)* at young adult stages with head neuron positions (day1 post L4 stages) on
572 normal NGM. Scale bar: 10 μm .
573 (g) Quantification of percentage of *ric19p::mito::GFP* animals abnormal based on head neurons in WT,
574 *APOE4(vxIs824)* and *APOE4(vxIs824);vhl-1(ok161)* at young adult stages (day1 post L4 stages) on
575 normal NGM. ** indicates $P < 0.01$ ($n > 30$ animals per condition).
576 (h) Representative confocal images of neuronal lysosomal membrane reporter in WT and
577 *APOE4(vxIs824)* at different stages of L1, L2, L4 and Day 1 post L4 on normal NGM. Scale bar: 10 μm .


578

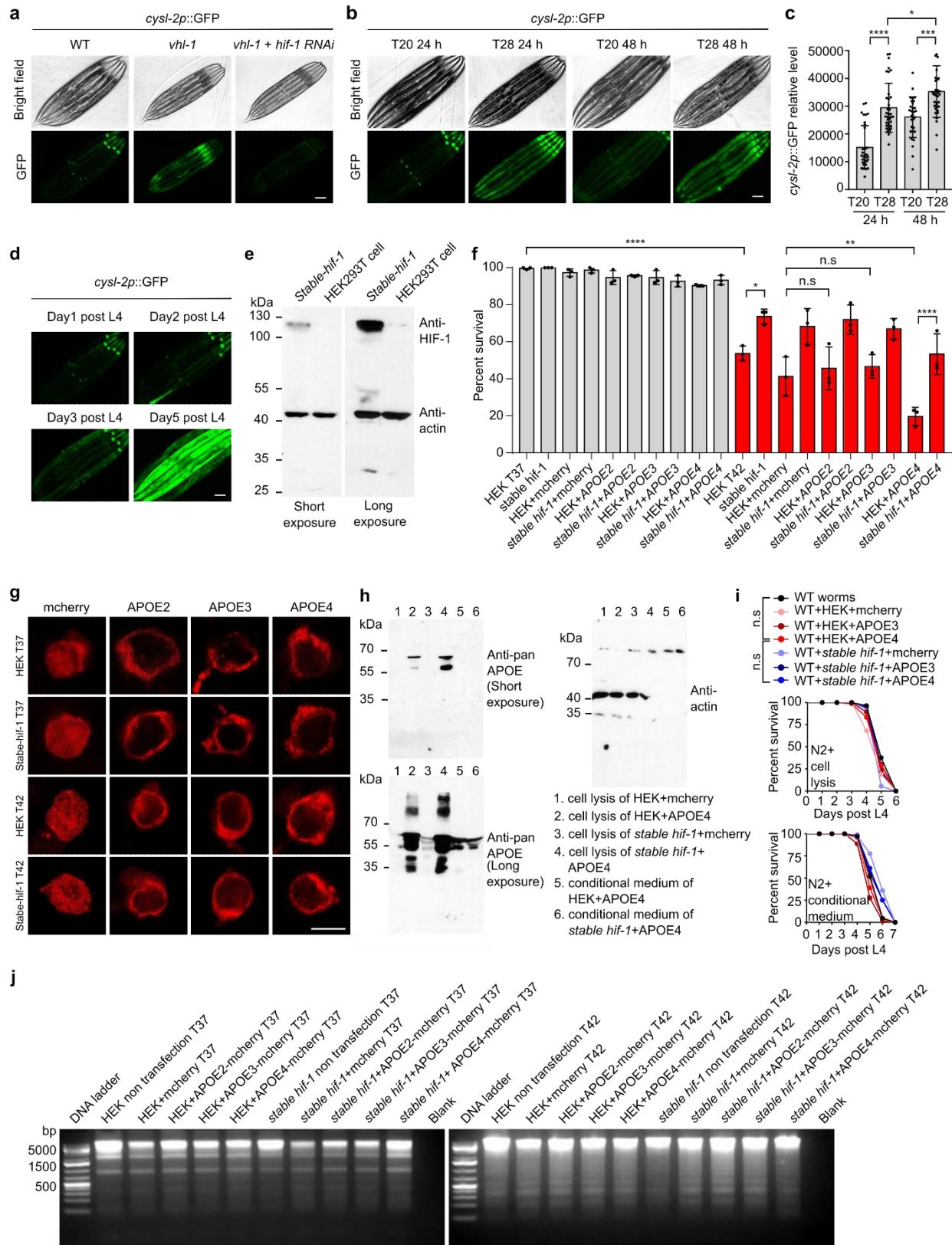
579

Figure 6. HIF-1 target gene *F22B5.4* in neurons protects against thermal stress.

580 (a) Quantitative RT-PCR measurements of indicated gene expression levels in WT, *vhl-1(ok161)* and
 581 *otls197* animals upon sustained treatment at 28 °C or 20 °C for 24 hours starting at L4 on normal NGM. **
 582 indicates $P < 0.01$, *** indicates $P < 0.001$, **** indicates $P < 0.0001$, n.s indicates non-significant.
 583 (b-c) Lifespan curves of WT, *tgn-38(gk5592)* LOF mutants, *vhl-1(ok161)* mutants, and double LOF mutant
 584 *vhl-1;tgn-38* at 28 °C starting at L4 on normal NGM. **** indicates $P < 0.0001$ ($n > 40$ animals per
 585 condition).
 586 (d) Lifespan curves of WT and *Y70C5C.1(ve718)* LOF mutants at 28 °C starting at L4 on normal NGM.
 587 **** indicates $P < 0.0001$ ($n > 40$ animals per condition).
 588 (e) Lifespan curves of WT, *vhl-1(ok161)* mutants, *vhl-1(ok161)* mutants with RNAi against *tgn-38* and
 589 *Y70C5C.1* at 28 °C starting at L4. **** indicates $P < 0.0001$ ($n > 40$ animals per condition).


590 (f) Representative confocal high magnification images of the *F22B5.4* translational reporter with GFP
591 observed predominantly in head neurons in WT animals. Scale bar: 10 μ m.
592 (g) Quantitative RT-PCR measurements of *F22B5.4* gene expression levels under conditions indicated on
593 normal NGM. **** indicates $P < 0.0001$, n.s. indicates non-significant.
594 (h) Lifespan curves of WT, three representative *F22B5.4* translational reporter lines and *ric19p::F22B5.4*
595 over-expression gain-of-function animals at 28 °C starting at L4 on normal NGM. **** indicates $P < 0.0001$
596 ($n > 40$ animals per condition).
597 (i) Lifespan curves of WT, *APOE4(vxls824)* and *APOE4(vxls824); Ex[ric19p::F22B5.4, unc54p::mcherry]*
598 animals at 28 °C starting at L4 on normal NGM. *** indicates $P < 0.001$ ($n > 40$ animals per condition).

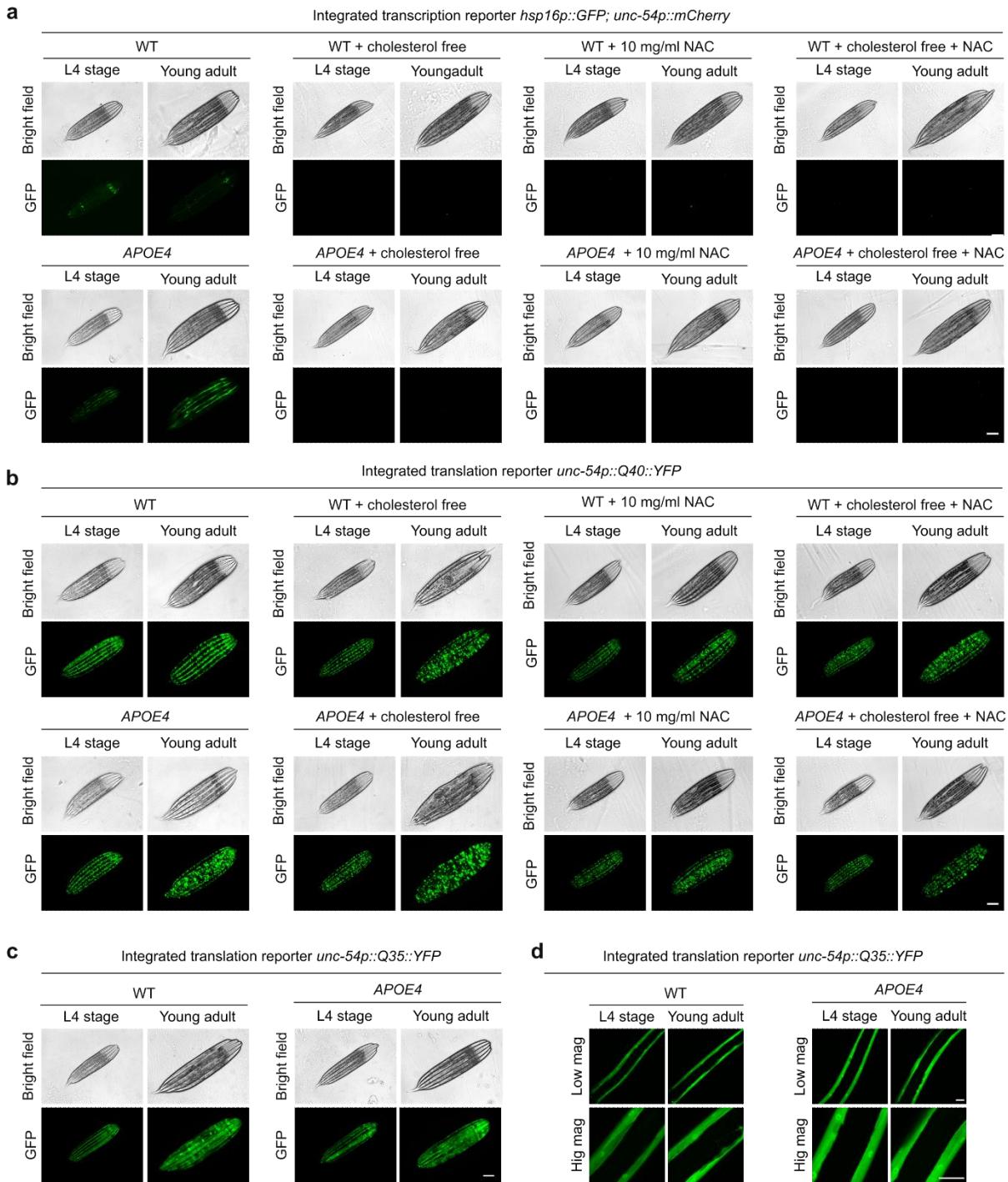
600 **Figure 7. *Vhl* inhibition mitigates cerebral vascular and synaptic damages in**
601 **humanized *APOE4* transgenic mice.**


602 (a) Schematic for the knockdown of *Vhl* by AAV-shRNA in humanized *APOE4* transgenic mice.
603 (b-c) Representative images of CD13+ pericyte coverage (red) of lectin+ endothelial capillary profiles
604 (green) in the hippocampus (b). Quantification of pericyte coverage on capillaries (c). * indicates $P < 0.05$,
605 $n = 3$ mice per group. Scale bar: 50 μ m.
606 (d-e) Representative western blot showing occludin proteins from mouse brain tissues (d) and
607 quantification of relative protein levels of Occludin (e). * indicates $P < 0.05$, *** indicates $P < 0.001$, $n = 3$
608 mice per group.
609 (f) Schematic for the Evans blue leakage experiment and quantification of Evans blue leakage in mouse
610 brain tissues. * indicates $P < 0.05$, $n = 5$ mice per group.
611 (g-h) Representative images of SMI312+ axons (red) and NeuN+ neurons (green) in the hippocampus
612 (g), with quantification of SMI312+ axon density (h). * indicates $P < 0.05$, $n = 3$ mice per group. Scale bar:
613 100 μ m.
614 (i-j) Representative western blot showing Synaptophysin proteins from mouse brain tissues (i).
615 Quantification of relative protein levels of Synaptophysin (j). * indicates $P < 0.05$, ** indicates $P < 0.01$, $n =$
616 3 mice per group. Data were presented as means \pm S.E.M.

617 **Extended Data Figures:**
618

620 **Extended Data Fig. 1. Characterization of pan-neuronal expression *APOE4* and**
621 **the modification by *vhl-1* LOF or HIF-1 stabilization in *C. elegans*.**

622 (a) Schematic of experimental flow of animals grown to L4 stage on normal NGM followed by transfer to
623 normal NGM for survival (at 28 °C) assay; schematic of experimental flow of animals grown to L4 on
624 normal NGM followed by transfer to cholesterol free NGM for survival (at 28 °C) assay; schematic of
625 experimental flow of animals grown to L4 on cholesterol free NGM followed by transfer to normal NGM for
626 survival (at 28 °C) assay; schematic of experimental flow of animals grown to L4 on cholesterol free NGM
627 followed by transfer to cholesterol free NGM for survival (at 28 °C) assay.
628 (b) Lifespan curves of indicated animals at 28 °C starting at L4 on cholesterol free NGM. *** indicates P <
629 0.001, n.s indicates non-significant (n > 40 animals per condition).
630 (c) Representative bright-field images and quantification of body size of animals with indicated genotype
631 on normal NGM. Scale bar: 100 µm. **** indicates P < 0.001 (n > 30 animals per condition).
632 (d) Representative bright-field images and quantification body size of animals with indicated genotype on
633 cholesterol free NGM starting at eggs. Scale bar: 100 µm. n.s indicates non-significant (n > 30 animals per
634 condition).
635 (e) Lifespan curves of wild type, pan neuronal expression APP (*vxls823 [rab-3p::APP::mCherry::unc-54*
636 3'UTR] II.>, *vhl-1;vxls823* at 28 °C starting at L4 on normal NGM. *** indicates P < 0.001, n.s. indicates
637 non-significant (n > 40 animals per condition).
638 (f) Representative confocal images of protein APP::mcherry in head and tail neuron in *vxls823* and *vhl-1;*
639 *vxls823* at L4 stage on normal NGM. Scale bar: 10 µm.
640 (g) Lifespan curves of wild type, pan neuronal expression *APOE4* (*vxls824*), pan neuronal extra
641 chromosome expression of *APOE3*, *Ex[rab-3p::APOE3,myo3p::mcherry]* positive, *Ex[rab-*
642 *3p::APOE3,myo3p::mcherry]* negative, *Ex[myo-3::mcherry]* positive and *Ex[myo-3::mcherry]* negative
643 animals at 28 °C starting at L4 on normal NGM, (n > 40 animals per condition).
644 (h) Schematic of experimental flow of animals grown to L4 stage on normal NGM followed by transfer to
645 normal NGM for life span (at 20 °C) assay; schematic of experimental flow animals grown to L4 on
646 cholesterol free NGM followed by transfer to cholesterol free NGM for life span (at 20 °C) assay;
647 schematic of experimental flow of animals grown to L4 on cholesterol free NGM followed by transfer to
648 normal NGM for life span (at 20 °C) assay, schematic of experimental flow of animals grown to L4 on
649 cholesterol free and supplementation with 10mg/ml NAC NGM followed by transfer to normal NGM for life
650 span (at 20 °C) assay.

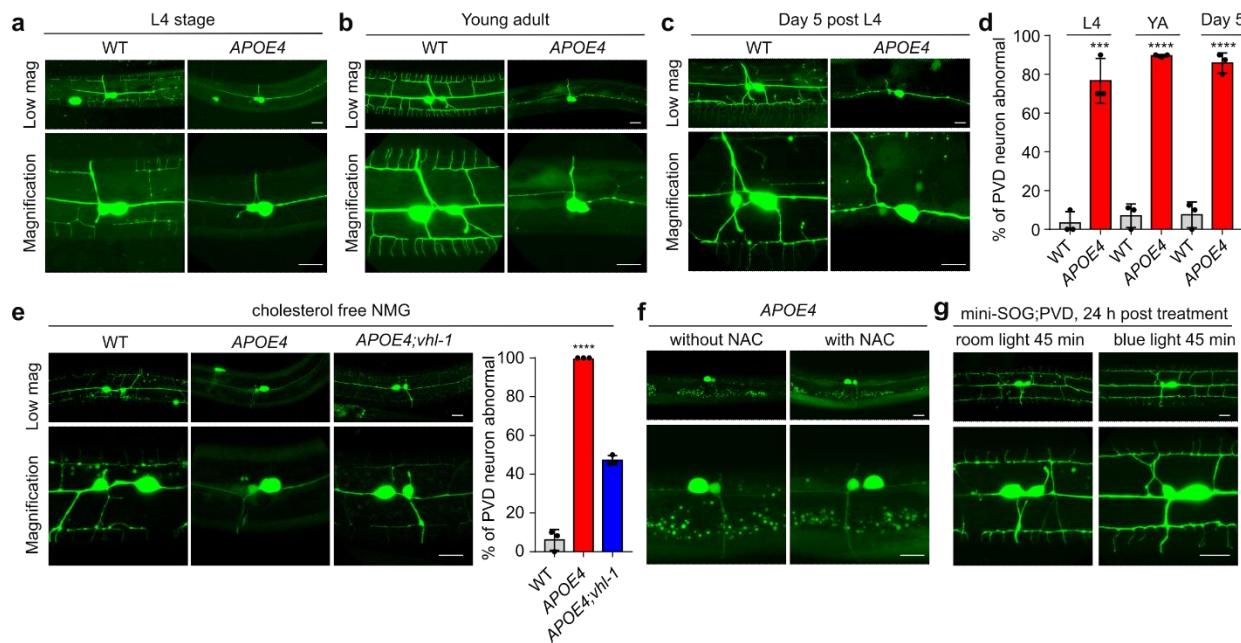

651

652

653 **Extended Data Fig. 2. Further characterization of VHL-1, HIF-1 and APOE4**

25

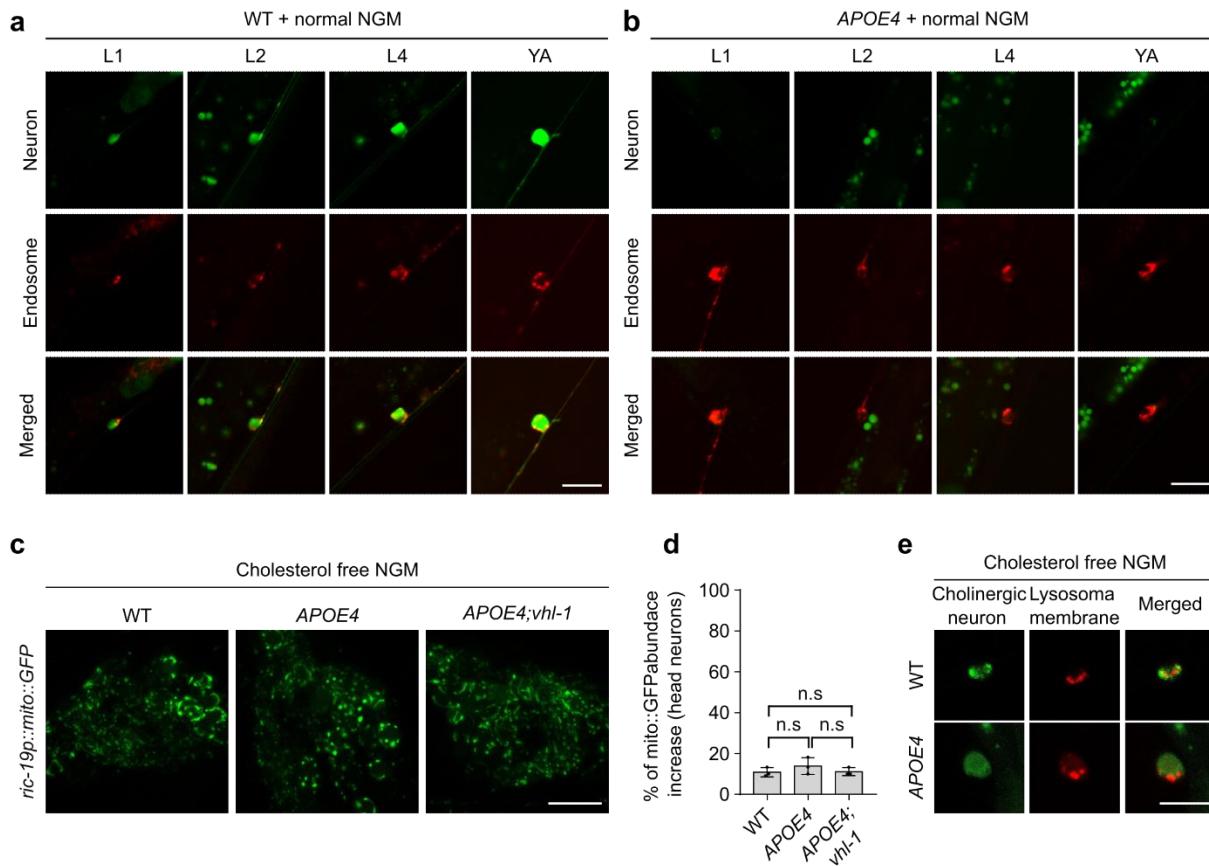
654 (a) Representative epifluorescence images of young adults animals showing *cysl-2p::GFP* constitutive
655 upregulation in *vhl-1* mutants that can be suppressed by *hif-1* RNAi. Scale bar: 100 μ m
656 (b) Representative epifluorescence images showing *cysl-2p::GFP* upregulation after exposure for 24
657 hours or 48 hours at 28°C starting at L4 on normal NGM. Scale bar: 100 μ m
658 (c) Quantification of fluorescence intensities of *cysl-2p::GFP* under conditions indicated. * indicates P <
659 0.05, *** indicates P < 0.001, **** indicates P < 0.0001, n.s indicates non-significant (n > 30 animals per
660 condition).
661 (d) Representative epifluorescence images showing *cysl-2p::GFP* upregulation during aging on normal
662 NGM. Scale bar: 100 μ m
663 (e) Representative SDS-PAGE western blots for lysates of HEK293T cells and stable-HIF-1 HEK293T cell
664 lines with primary antibodies against HIF-1 and actin.
665 (f) Quantification of survival rates after heat shock in HEK293T cells showing enhanced thermal resilience
666 conferred by gain-of-function stable-HIF-1.
667 (g) Representative confocal images of APOE2::mCherry, APOE3::mCherry, APOE4::mCherry localization
668 in HEK293T and stable-HIF-1 HEK293T cell line upon sustained treatment at 42 °C for 8 hrs.
669 (h) Representative SDS-PAGE western blots for lysates of HEK293T cells and stable-HIF-1 HEK293T cell
670 lines and conditional medium under indicated conditions with primary antibodies against pan-APOE and
671 actin.
672 (i) Lifespan curves of wild-type animals grown to L4 (starting at embryos) on normal NGM with indicated
673 cell supernatant followed by transfer to 28 °C (top) and lifespan curves of wild type animals grown to L4
674 (starting at embryos) on normal NGM with conditional medium followed by transfer to 28 °C (bottom).
675 (j) Representative agarose gel images of genomic DNA with indicated conditions.


676
677
678
679
680
681
682
683

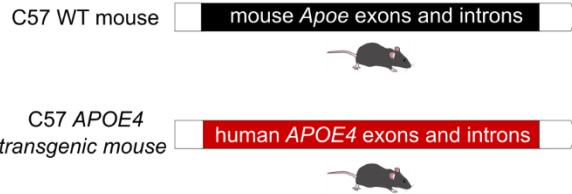
Extended Data Fig. 3. APOE4 causes proteostasis dysregulation in body wall muscles.

(a) Representative bright-field and epifluorescence images of *hsp16p::GFP* in body wall muscles in WT and pan neuronal expression *APOE4(vx/s824)* on normal NGM, on cholesterol free NGM on cholesterol free NGM (starting at embryos), on normal NGM supplemented with 10 mg/ml NAC (starting at embryos), on cholesterol free NGM on cholesterol free NGM and supplemented with 10 mg/ml NAC (starting at embryos) to L4 and young adult stages. Scale bar: 100 μ m.

684 (b) Representative bright-field and epifluorescence images of *unc54p::Q40::YFP* in body wall muscles in
685 WT and pan neuronal expression *APOE4(vxIs824)* on normal NGM, on cholesterol free NGM on
686 cholesterol free NGM (starting at embryos), on normal NGM supplemented with 10 mg/ml NAC (starting
687 at embryos), on cholesterol free NGM on cholesterol free NGM and supplemented with 10 mg/ml NAC
688 (starting at embryos) to L4 and young adult stages. Scale bar: 100 μ m.
689 (c-d) Representative bright-field, epifluorescence images (c) and confocal images (d) of
690 *unc54p::Q35::YFP* in body wall muscles in WT and pan neuronal expression *APOE4(vxIs824)* on normal
691 NGM to L4 and young adult stages. Scale bar: 100 μ m(c) and 10 μ m(d).
692


693

694
695

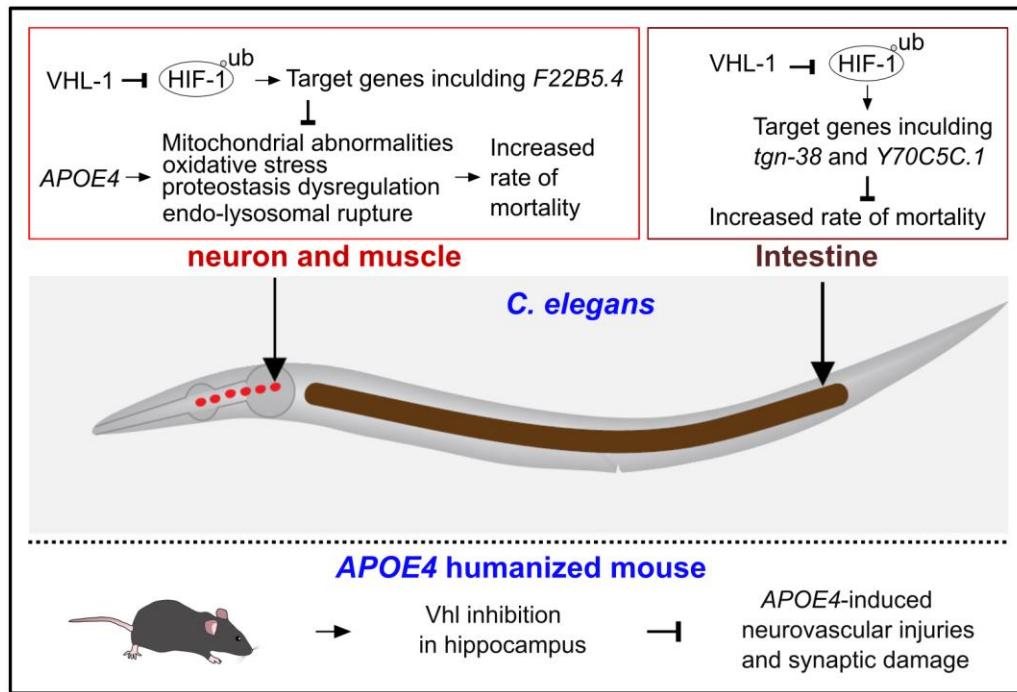

696 **Extended Data Fig.4. Characterization of APOE4-induced PVD defects.**

697 (a) Representative confocal images of PVD neuron in WT and pan neuronal expression APOE4(vxls824)
698 at L4 stages on normal NGM. Scale bar: 10 μ m.
699 (b) Representative confocal images of PVD neuron in WT and pan neuronal expression APOE4(vxls824)
700 at young adult stages (24 hrs post L4) on normal NGM. Scale bar: 10 μ m.
701 (c) Representative confocal images of PVD neuron in WT and pan neuronal expression APOE4(vxls824)
702 at day 5 post L4 stages on normal NGM. Scale bar: 10 μ m.
703 (d) Quantification of the percentage of PVD neuron abnormal (defined as the third and fourth branches of
704 PVD neuron missing) in WT and pan neuronal expression APOE4(vxls824) under conditions indicated on
705 normal NGM. *** indicates $P < 0.001$, **** indicates $P < 0.0001$ ($n > 30$ animals per condition).
706 (e) Representative confocal images and quantification of abnormal PVD neuron in WT and pan neuronal
707 expression APOE4(vxls824), APOE4; vhl-1 at young adult stages on cholesterol free NGM starting at
708 embryos. Scale bar: 10 μ m.
709 (f) Representative confocal images and quantification of abnormal PVD neurons with pan neuronal
710 expression APOE4(vxls824) at young adult stages on NGM supplementation without or with 10 mg/ml
711 NAC starting at embryos. Scale bar: 10 μ m.
712 (g) Representative confocal images of mini-SOG [unc-25p::tomm20::miniSOG::SL2::RFP]; PVD grown to
713 L4 on normal NGM, followed by room light and blue light treatments for 45 mins. Scale bar: 10 μ m.

a

Replacing the mouse *Apoe* gene coding exons and introns
with the human *APOE4* corresponding sequence
by homologous recombination

731


732

733 **Extended Data Fig. 6. Schematic of the humanized *APOE4* transgenic mice.**

734 (a) Schematic showing that the mouse *Apoe* gene (coding exons and introns) was replaced by
735 the human *APOE4* allele by homologous recombination.

736

737

738

739

740 **Extended Data Fig. 7. A schematic model.**

741 **Methods**

742

743 **C. elegans strains**

744 *C. elegans* strains were grown on nematode growth media (NGM) plates seeded with
745 *Escherichia coli* OP50 at 20°C with laboratory standard procedures unless otherwise
746 specified. The N2 Bristol strain was used as the reference wild type. Mutants and
747 integrated transgenes were backcrossed at least 5 times.

748

749 Genotypes of strains used are as follows:

750

751 Figure 1 and Extended Data Figure 1:

752 *vhl-1(ok161)* X; *nls470* IV; *him-5* V,
753 *vxls824* [*rab-3p::ND18ApoE4::unc-54 3'UTR* + *myo-2p::mCherry::unc-54 3'UTR*],
754 *vhl-1(ok161)* X; *vxls824*,
755 *hpls376* [*unc-25p::tomm20::miniSOG::SL2::RFP*],
756 *vhl-1(ok161)* X; *hpls376*,
757 *wyls592* [*ser-2prom-3p::myr-GFP*],
758 *vxls824*; *wyls592*,
759 *vxls823* [*rab-3p::APP::mCherry::unc-54 3'UTR*] II.
760 *vhl-1(ok161)* X; *vxls823*,
761 *otls197* [*unc-14p::hif-1(P621A)* + *tx-3p::RFP*],
762 *otls197*; *vxls824*
763 *Ex[rab-3p::APOE3;myo-3p::mcherry]*
764 *Ex[myo-3p::mcherry]*

765

766 Figure 2 and Extended Data Figure 2:

767 *nls470* [*cysl-2p::GFP* + *myo-2p::mCherry*] IV,
768 *hif-1(ia4)*
769 *vhl-1(ok161);hif-1(ia4);nls470*

770

771 Figure 3 and Extended Data Figure 3:

772 *dmals8* [*hsp-16p::GFP*; *unc-54p::mCherry*]; *him-5(e1490)*,
773 *vxls824*; *dmals8*,
774 *rmls132* [*unc-54p::Q35::YFP*],
775 *vxls824*; *rmls132*,
776 *rmls133* [*unc-54p::Q40::YFP*],
777 *vxls824*; *rmls133*

778

779 Figure 4 and Extended Data Figure 4 :

780 *vhl-1(ok161)* X; *vxls824*; *wyls592*,
781 *hpls376*; *wyls592*

782

783 Figure 5 and Extended Data Figure 5:

784 *dmals24* [*ric-19p::mito::GFP*; *unc-25p::mCherry*],
785 *vxls824*; *dmals24*
786 *vhl-1(ok161)* X; *vxls824*; *dmals24*,
787 *cels56* [*unc-129p::ctns-1::mCherry* + *nlp-21p::Venus* + *tx-3p::RFP*],

788 *vxls824; cels56,*
789 *cels259 [unc-129p::RFP::syn-13 + unc-129p::Venus + ttx-3p::RFP],*
790 *vxls824; cels259,*
791 *foxSi41 [dpy-7p::tomm-20::mKate2::HA::tbb-2 3' UTR] I,*
792 *vxls824; foxSi41,*
793 *xmSi[mai-2::GFP(single copy integration)]*

794

795 Figure 6 and Extended Data Figure 6:

796 *Y70C5C.1(ve718[LoxP + myo-2p::GFP::unc-54 3' UTR + rps-27p::neoR::unc-54 3' UTR*
797 *+ LoxP] V.*
798 *tgn-38(gk5592[loxP + myo-2p::GFP::unc-54 3' UTR + rps-27p::neoR::unc-54 3' UTR +*
799 *loxP] IV.*
800 *vhl-1(ok161) X; tgn-38(gk5592[loxP + myo-2p::GFP::unc-54 3' UTR + rps-*
801 *27p::neoR::unc-54 3' UTR + loxP] IV.,*
802 *dmaEx[ric-19p::F22B5.4; unc54p::mcherry],*
803 *dmaEx[F22b5.4p::F22B5.4::GFP;unc54p::mcherry],*
804 *vxls824; dmaEx[ric-19p::F22B5.4;unc54p::mcherry]*

805

806 **Mice and AAV injection**

807 7-month male *APOE4* mice (NM-HU-190002) and C57BL/6 mice (SM-001) were
808 purchased from Shanghai Model Organisms Center, Inc. (Shanghai, China). Animals
809 were maintained on a 12 h light/dark cycle with ad libitum access to food and water. The
810 animal experiments were approved by the Institutional Animal Care and Use Committee
811 of China Pharmaceutical University. For the *in vivo* genetic inhibition of Vhl, mice were
812 randomly divided into the following groups: C57BL/6 + AAV-negative control (NC)-
813 shRNA, C57BL/6 + AAV-Vhl-shRNA, *APOE4* + AAV-NC-shRNA, *APOE4* + AAV-Vhl-
814 shRNA. AAV (1.0 μ l per hippocampus, 1.1×10^{13} VG/ml) was injected bilaterally into the
815 hippocampus (from bregma: -2.0 mm AP, ± 1.0 mm ML, -2.2 mm DV) of the mice using
816 a stereotaxic apparatus (RWD Life Science Co., Ltd., Shenzhen, China). The cerebral
817 vascular and synaptic assays were performed 30 days after AAV injection.

818

819

820 **Transgenic arrays and strains in *C. elegans***

821 Transgenic animals that carry non-integrated, extra-chromosomal arrays were
822 generated by co-injecting an injection marker with one to multiple DNA construct at 5–
823 50 ng/ μ l. Animals that carry integrated transgenic arrays were generated by UV
824 irradiation (UV Stratalinker2400, Stratagene), followed by outcross at least five times.

825

826 **Compound and confocal imaging**

827 Epifluorescence compound microscopes (Leica DM5000 B Automated Upright
828 Microscope System) were used to capture fluorescence images (with a 10 \times objective
829 lens). Animals of different genotypes and different stages (L1, L2, L4, Day 1 post L4,
830 Day 5 post L4) and different heat treatment were randomly picked and treated with 10
831 mM sodium azide solution (71290-100MG, Sigma-Aldrich) in M9, aligned on an 2%
832 agarose pad on slides for imaging. The same settings (for bright field: exposure time 1
833 second, for GFP: exposure time 10-100 seconds) were maintained for the images of all
834 samples. The integrated density (IntDen) of *cysl-2p::GFP* and *hsp16p::GFP* was

835 measured by NIH image program (Fiji image J); averages of mean gray values (three
836 background area of each image randomly selected) were employed for quantification
837 and normalization of *cysl-2p::GFP* and *hsp16p::GFP*. For confocal images, the animals
838 of different genotypes and stages were randomly chosen and treated with 10 mM
839 sodium azide in M9 solution and aligned on an 2% agarose pad on slides and images
840 were acquired using a confocal microscope (Leica TCS SPE) with a 20x, 40x and 63x
841 objective lens, with the same settings maintained for the images of all samples.
842

843 **Western blotting**

844 For *C. elegans* samples, stage-synchronized animals for control and experiment groups
845 were picked (n = 50) in 60 μ l M9 buffer and lysed directly by adding 20 μ l of 4x Laemmli
846 sample buffer (1610747, Bio-Rad) containing 10% of 2-Mercaptoethanol (M6250-
847 100ML, Sigma(v/v)). For cell samples, cultured HEK293T cells were collected by
848 centrifugation followed by adding 60 μ l of 1x Laemmli sample buffer containing 10% of
849 2- Mercaptoethanol. Conditional mediums were collected by centrifugation at 3000g for
850 5 mins at room temperature to remove cell pellets followed by adding 4x Laemmli
851 sample buffer containing 10% of 2-Mercaptoethanol. Protein extracts were denatured at
852 95 °C for 10 min and separated in 10% SDS-PAGE gels (1610156, Bio-Rad) at 80 V for
853 ~45 min followed by 110 V for ~65 min. The proteins were transferred to a
854 nitrocellulose membrane (1620094, Bio-Rad,) at 25 V for 40 mins by Trans-Blot®
855 Turbo™ Transfer System (Bio-Rad). The NC membrane was initially blocked with 5%
856 nonfat milk and 2% BSA (A4503, Sigma (v/v)) in tris buffered saline with 0.1% Tween
857 20 (93773, Sigma) (TBS-T) at room temperature for 1 h. Proteins of interest were
858 detected using antibodies against pan-actin (4968S, Cell Signaling Technology), pan-
859 APOE (13366S, Cell Signaling Technology) and HIF-1 (14179S, Cell Signaling
860 Technology) in cold room for overnight.

861 For mouse brain samples, the tissue samples were homogenized, lysed in RIPA buffer
862 (Beyotime, P1003B) containing protease and phosphatase inhibitor (Millipore, 539134
863 and 524625), and centrifuged at 12,000 rpm for 5 min. Proteins in the supernatant were
864 separated by SDS-PAGE and transferred to PVDF membranes. The membranes were
865 incubated with primary antibodies against Occludin (ABclonal, A2601), Synaptophysin
866 (ABclonal, A19122) or β -actin (ABclonal, AC026) at 4 °C overnight. HRP-conjugated
867 secondary antibodies (Cell Signaling Technology, 7074S) were used, and bands were
868 visualized with ECL chemiluminescence detection kit (Vazyme, E412-01/02) and
869 digitally acquired using Tanon 5200 Multi Chemiluminescent Imaging system (Tanon,
870 Shanghai, China).

871

872 **Immunofluorescence**

873 For immunostaining of *C. elegans*, animals were washed with M9 and put in 1.5 ml
874 Eppendorf tubes. The animals were centrifuged for 1 min at 1000g, with the liquid
875 removed, and washed again with M9 for three times followed by adding 500 μ l ice-cold
876 4% paraformaldehyde solution for incubation at room temperature for 30 minutes. Fixed
877 animals were washed 3 times by PBS-Tween (0.05%). Animals were centrifuged again
878 with most of the supernatant removed without disturbing the pellet. The pellets were

879 resuspended in 1 mL of 2-mercaptoethanol solution (1ml dH₂O, 400 μ l 0.5 M Tris pH
880 6.8, 15 μ l Triton X-100, 76 μ l 2-Mercaptoethanol) in the hood followed by incubation at
881 37°C overnight on a rotator mixer. Samples were then washed 3 times in 1X PBS-
882 Tween (pH 7.2), incubated between each wash with gentle mixing (~1 hour at room
883 temperature), resuspend in 50 μ l of 1X PBS-Tween (pH 7.2) and added with 150 μ l of
884 collagenase solution to each tube followed by incubation at 37°C with shaking for 10
885 min (750 rpm, Eppendorf ThermoMixer F1.5). The samples were then washed 2 times
886 with 1X PBS-Tween (pH 7.2) and 1 time with AbA (40 mL 1X PBS, 200 μ l Triton X-100,
887 0.4 g BSA), resuspended in 200 μ l of AbA with primary antibody for anti-pan actin
888 (dilution of 1:1000, 4968S, Cell Signaling Technology) with rocking in cold room for
889 overnight. Samples were washed 3 times with AbA followed by 200 μ l of AbA containing
890 Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody Alexa Fluor® 488
891 conjugate (dilution of 1:100, A-11008, Thermo Fisher). Samples were kept in the dark
892 and incubated with rocking for overnight at 4°C. Animals were washed 6 times with
893 AbA, incubated with gentle rocking for 1 hr at RT. All animals of different genotypes and
894 conditions were randomly chosen and aligned on a 2% agarose pad on slides and
895 images were acquired using a confocal microscope.

896
897 For immunostaining of mouse brain, the brains were fixed in 4% paraformaldehyde
898 solution for 48 h and then embedded in paraffin. Brain sections were cut at 5 μ m
899 thickness. Sections were incubated with auto-fluorescence quencher for 5 min to
900 eliminate auto-fluorescence. The sections were incubated with primary antibodies
901 against CD13 (Proteintech, 66211-1-Ig), NeuN (ABclonal, A19086), SMI312
902 (BioLegend, 837904) for 12 h at 4 °C and subsequently treated with fluorescence-
903 conjugated secondary antibody (Beyotime, A0423 and A0460) for 2 hr at room
904 temperature in the dark. To visualize brain microvessels, sections were incubated with
905 Lycopersicon Esculentum DyLight 488 (Invitrogen, L32470) for 1 hr. The sections were
906 sealed with an anti-fluorescence quencher. Images were acquired using a digital slide
907 scanner (Pannoramic MIDI; 3DHISTECH, Budapest, Hungary).
908 For standard image analysis of fluorescent images, TIFF image files were opened using
909 ImageJ and converted to 8-bit greyscale files. An appropriate threshold value for
910 optimally capturing the intended staining across all conditions in that cohort was
911 determined, and then held constant across all images in the cohort. The areas occupied
912 by CD13+ pericyte on lectin+ brain capillaries, and the areas occupied by the SMI312+
913 signal were analyzed respectively.

914

915 **RNA interference (RNAi)**

916 RNAi were performed by feeding animals with *E. coli* strain HT115 (DE3) expressing
917 double-strand RNA (dsRNA) targeting endogenous genes. Briefly, dsRNA-expressing
918 bacteria were replicated from the Ahringer library to LB plates containing 100 μ g/ml
919 ampicillin (BP1760-25, Fisher Scientific) at 37 °C for 16 hrs. Single clone was picked to
920 LB medium containing 100 μ g/ml ampicillin at 37 °C for 16 hrs and positive clones
921 (verified by bacteria PCR with pL4440 forward and pL4440 reverse primers) were
922 spread onto NGM plates containing 100 μ g/ml ampicillin and 1 mM isopropyl 1-thio- β -
923 Dgalactopyranoside (IPTG, 420322, Millipore) for 24 hrs. Developmentally synchronized

924 embryos from bleaching of gravid adult hermaphrodites were seeded on RNAi plates
925 and grown at 20 °C to L4 followed by transfer to 28 °C for imaging or survival assays.
926

927 **qRT-PCR**

928 Animals of synchronized stages (young adults, 24 hrs post L4) were washed off from
929 NGM plates using M9 solution, centrifuged and washed with M9 for three times and
930 subjected to RNA extraction using TissueDisruptor and RNA lysis buffer (Motor unit '6'
931 for 10 seconds and take it out, repeat 3-5 times on ice) and total RNA was extracted
932 following the instructions of the Quick-RNA MiniPrep kit (Zymo Research, R1055) and
933 reverse transcription was performed by SuperScript™ III (18080093, Thermo scientific).
934 Real-time PCR was performed by using ChamQ Universal SYBR qPCR Master Mix
935 (Q711-02, Vazyme) on the Roche LightCycler96 (Roche, 05815916001) system. Ct
936 values of target gene were normalized to measurements of *rps-23* (*C. elegans*) levels.
937 Primers for qRT-PCR were listed in the key resources table.
938

939 **RNA-seq**

940 Bleach-synchronized embryos of wild type and *APOE4*-transgenic *C. elegans* (vxl824)
941 were grown to L4 stages with characteristic crescent vulva followed by culture for 24
942 hours at 25 °C. Animals were washed off from NGM plates using M9, centrifuged and
943 washed with M9 for three times and subjected to RNA extraction using TissueDisruptor
944 and the RNeasy Mini Kit from Qiagen. Three biological replicates were included for WT
945 and *APOE4*. RNA sequencing was performed by BGI American Corporation (DNBseq-
946 G400 platform). An average of 43 million paired reads were generated per sample and
947 the percent of mRNA bases per sample ranged from 46% to 89%. Sequences were
948 aligned to ensemble *C. elegans* genome WBcel235 and read counts per gene were
949 tabulated. All statistical analysis of RNA-seq data was conducted in R v.4.0.5, and count
950 normalization and differential gene expression was performed using the R package
951 DESeq2. Three independent replicates were analyzed for each experiment.
952

953 **Thermal resilience and lifespan assays**

954 For thermal resilience assays, animals were cultured under non-starved conditions for
955 at least 2 generations before heat stress assays. (1) For normal NGM thermal resilience
956 assays, synchronized L4 stage animals ($n \geq 50$) were picked to new normal NGM plates
957 seeded with OP50 and transferred to 28 °C incubator. (2) For cholesterol free NGM
958 thermal assays, animals were cultured under non-starved conditions for at least one
959 generation on cholesterol free NGM, and synchronized embryos grown up to L4 stage
960 on cholesterol free NGM plates were seeded with OP50 and animals ($n \geq 50$) were
961 picked to new cholesterol free NGM plates seeded with OP50 and transferred to 28 °C
962 incubator. (3) For early-life cholesterol free NGM thermal assays, animals were cultured
963 under non-starved conditions for at least one generation on cholesterol free NGM,
964 synchronized embryos grown up to L4 stage on cholesterol free NGM plates seeded
965 with OP50, and animals ($n \geq 50$) were picked to new normal NGM plates seeded with
966 OP50 and transferred to 28 °C incubator. (4) For post L4-life cholesterol free NGM
967 thermal assays, animals were cultured under non-starved conditions on normal NGM,
968 synchronized embryos grown up to L4 stage on normal NGM plates seeded with OP50
969 and animals ($n \geq 50$) were picked to new cholesterol free NGM plates seeded with

970 OP50 and transferred to 28 °C incubator. Animals were scored for survival every 24 hrs.
971 Animals failing to respond to repeated touch of a platinum wire were scored as dead.
972 For lifespan assays, Animals were cultured under non-starved conditions for at least 2
973 generations before life span assays. (1) For normal NGM life span assay, stage-
974 synchronized L4 stage animals ($n \geq 50$) were picked to new NGM plates seeded with
975 OP50 containing 50 μ M 5-fluoro-2'-deoxyuridine (FUDR) to prevent embryo growth at
976 20 °C incubator. (2) For cholesterol free NGM life span assay, animals were cultured
977 under non-starved conditions for at least one generation on cholesterol free NGM,
978 synchronized embryos grown up to L4 stage on cholesterol free NGM plates seeded
979 with OP50 and animals ($n \geq 50$) were picked to new cholesterol free NGM plates
980 seeded with OP50 containing 50 μ M FUDR and transferred to 20 °C incubator. (3) For
981 early-life cholesterol free NGM life span assay, animals were cultured under non-
982 starved conditions for at least 1 generation on cholesterol free NGM, synchronized
983 embryos grown up to L4 stage on cholesterol free NGM plates seeded with OP50 and
984 animals ($n \geq 50$) were picked to new normal NGM plates seeded with OP50 containing
985 50 μ M FUDR and transferred to 20 °C incubator. (4) For early-life cholesterol free and
986 supplementation with NAC diet life span assay, animals were cultured under non-
987 starved conditions for at least 1 generation on cholesterol free NGM, synchronized
988 embryos grown up to L4 stage on cholesterol free and supplementation with 10 mg/ml
989 NAC NGM plates seeded with OP50 and animals ($n \geq 50$) were picked to new normal
990 NGM plates seeded with OP50 containing 50 μ M FUDR and transferred to 20 °C
991 incubator. Animals were scored for survival per 24 hrs. Animals failing to respond to
992 repeated touch of a platinum wire were scored as dead.
993

994 **miniSOG assay**

995 For normal NGM based miniSOG assay, stage-synchronized L4 stage animals ($n \geq 50$)
996 were randomly picked to 20 μ l M9 solution on the 35 mm dish without lid followed by
997 exposure under 470 nm blue light for 45-90 min under the epifluorescence microscope
998 (SMZ18, Nikon) in the dark room. For early-life cholesterol free NGM based miniSOG
999 assay, animals were cultured under non-starved conditions for at least one generation
1000 on cholesterol free NGM, and stage synchronized L4 stage animals ($n \geq 50$) were
1001 picked to 20 μ l M9 solution on the 35 mm dish without lid followed by exposure under
1002 470 nm blue light for 45 min under the epifluorescence microscope (SMZ18, Nikon) in
1003 the dark room. For early-life anti-oxidative diet (NAC treatment) based miniSOG assay,
1004 animals were cultured under non-starved conditions for at least one generation on
1005 normal 60 mm NGM supplemented with 300 μ l of 10 mg/ml NAC, stage synchronized
1006 L4 stage animals ($n \geq 50$) were picked to 20 μ l M9 solution on the 35 mm dish without
1007 lid followed by exposure under 470 nm blue light for 45 min under the epifluorescence
1008 microscope (SMZ18, Nikon) in the dark room. Animals were transferred to NGM plates
1009 seeded with OP50. Animals were scored for survival per 1 hr. Animals failing to respond
1010 to repeated touch of a platinum wire were scored as dead.
1011

1012 **NAC Compound treatment**

1013 For normal NGM thermal resilience, 60 mm dish normal NGM were seeded with 300
1014 μ l N-acetyl cysteine (NAC) at concentration of 1 mg/ml or 10 mg/ml, (1) for early-life with
1015 NAC diet, bleached-eggs were transferred to NGM plates supplemented with NAC and

1016 grown up to L4 stage at 20 °C incubator followed by transfer to 28 °C incubator, (2) for
1017 post-L4 life with NAC diet, L4 stage-synchronized animals from normal NGM plates at
1018 20 °C incubator were picked to NGM plates supplemented with NAC followed by
1019 transfer to 28 °C incubator. For early-life cholesterol free and NAC diet thermal
1020 resilience, animals were cultured under non-starved conditions for at least one
1021 generation on cholesterol free NGM, bleached-embryos were transferred to cholesterol
1022 free NGM plates supplement with NAC and grown up to L4 stages at 20 °C incubator
1023 followed by pickeing to normal NGM supplemented with 10 mg/ml NAC and transferred
1024 to 28 °C incubator. For all NAC diet only-based imaging (*hsp16p::GFP*,
1025 *unc54p::Q40::YFP* and *PVD::GFP*), 60 mm dish normal NGM were seeded with of 300
1026 ul N-acetyl cysteine (NAC) at concentration of 10 mg/ml, bleach-synchronized embryos
1027 from normal NGM were transferred to NGM plates supplemented with NAC and grown
1028 up to L4 and young adult stages at 20 °C incubator.

1029
1030 For all cholesterol free and NAC diet based imaging (*hsp16p::GFP*, *unc54p::Q40::YFP*),
1031 60 mm dish normal NGM with OP50 were seeded with of 300 ul N-acetyl cysteine
1032 (NAC) at concentration of 10 mg/ml, animals were cultured under non-starved
1033 conditions for at least one generation on cholesterol free NGM, bleach-synchronized
1034 embryos were transferred to cholesterol free NGM plates supplemented with NAC and
1035 grown up to L4 and young adult stages at 20 °C incubator. Animals were randomly
1036 picked and treated with 10 mM sodium azide in M9 buffer and aligned on a 2% agarose
1037 pad on slides for microscopic imaging.

1038
1039 **Animal body size assay**
1040 Animals on the normal NGM plates were washed by 1 ml M9 buffer, followed by transfer
1041 to 1.5 ml EP tube and addition of 100 μ l 5M NaOH, and 200 μ l bleach solutions, mixed
1042 well and incubated for 4 min (with gentle shaking each mins) at room temperature. The
1043 samples were then centrifuged at 850 g for 30 seconds to remove the supernatant,
1044 followed by 1 ml M9 buffer resuspension, and 850 g for 30 seconds for twice. The eggs
1045 were resuspended with M9 buffer (200 μ l) and transferred to new normal NGM plates or
1046 cholesterol free NGM seeded with OP50 and incubated at 20 °C and grown for 48 hrs.
1047 Animals were randomly picked and treatment with 10 mM sodium azide in M9 buffer
1048 and aligned on a 2% agarose pad on slides for compound microscope imaging.
1049 Animals' relative body size was measured by NIH image program (Fiji image J) based
1050 on the area of the worm using freehand lines in the program.

1051
1052 **Genomic DNA damage**
1053 For HEK293T cell cultures, parental HEK293T cells and stable-HIF-1 lines were
1054 transfected with indicated plasmids for 48 hrs, followed by transfer to 42 °C incubator or
1055 37 °C incubator for 24 hrs. The genomic DNA samples were extracted using Qiagen kits
1056 and followed by loading to 1.5% agarose gel for imaging.

1057
1058 **Plasmids**
1059 p-mCherry-N1 vector expressing human ApoE2, ApoE3, and ApoE4 were provided by
1060 Aparna Lakkaraju (University of California, San Francisco). pLenti PGK Puro vectors

1061 expressing stable-HIF-11 (Plasmid #177202, addgene), pMD2.G (Plasmid #12259,
1062 addgene) and psPAX2 (Plasmid #12260, addgene) were ordered from Addgene.
1063

1064 **Cell culture and transfection**

1065 Human embryonic kidney (HEK) 293T cells (CRL-3216, ATCC) were maintained in
1066 Dulbecco's modified Eagle's medium with 10% inactive fetal bovine serum (FBS) and
1067 penicillin-streptomycin (Gibco, Grand Island, 15140122) at 37 °C supplied with 5% CO₂
1068 in an incubator (Thermo Fisher Scientific) with a humidified atmosphere. Cells were
1069 washed once using PBS and digested with 0.25% trypsin-EDTA (Gibco) at 37 °C for
1070 routine passage. HEK 293T cells were transiently transfected with indicated constructs
1071 using the lipo2000 (1 mg/ml, LIFE technologies) reagents. The lipo2000/DNA mixture
1072 with the ratio of lipo2000 to DNA at 3:1 was incubated for 30 min at room temperature
1073 before being added to the HEK 293T cell cultures dropwise.
1074

1075 **Lentivirus and Cell line generation**

1076 Lentiviruses were produced by transfecting the HEK293T cells with the pLenti PGK
1077 Puro vectors expressing stable-HIF-1 (Plasmid #177202, addgene), and two helper
1078 plasmids pMD2.G (Plasmid #12259, addgene) and psPAX2 (Plasmid #12260,
1079 addgene). The transfections were carried out using the Polyethylenimine (PEI) method
1080 with the ratio at PEI: pLenti PGK Puro: psPAX2: pMD2.G = 18:3:2:1. The lentivirus-
1081 containing medium was harvested 72 hrs after transfection and subsequently pre-
1082 cleaned with a 3,000 g centrifuge for 5 min. The HEK293T cells were incubated with
1083 stable-*hif-1* lentivirus medium with culture medium containing with 5 ug/ml puromycin in
1084 a humidified incubator at 37°C with 5% CO₂. The cultured medium was changed after
1085 24 hrs with fresh medium containing 5 ug/ml puromycin. The stable-HIF-1 positive
1086 HEK293T cell lines were maintained with medium containing with 5 ug/ml puromycin.
1087

1088 **Mammalian cell thermal resilience assay**

1089 For thermal resilience assay, mock control and transfected HEK293T cells or stable-*hif-1*
1090 HEK293T cell line (48 h) in 24 well plates were placed in a culture incubator with an
1091 ambient temperature at 42°C and humidified 5% CO₂ for 8-24 hrs followed by cell death
1092 assay, genomic DNA extract or imaging with 4% PFA treatment for 12 min at room
1093 temperature. For cell death assay, the collected cells were resuspended with 100 µl
1094 buffer with addition of 0.1 µl Sytox blue (Thermo Fisher Scientific) for an additional 15
1095 min at room temperature. 25 ul of incubated cells were loaded into ArthurTM cell
1096 analysis slide (Nanoentek, AC0050). The fluorescence intensity was measured for
1097 individual cells using automated cytometry (ArthureTM image-based cytometer,
1098 Nanoentek, AT1000) as viability assay. The 190 RFU (Fluorescence) threshold and cell
1099 size min 5 to max 25 were used for cell death analysis and quantification.
1100

1101 **Conditional medium and cell lysis treatment with *C. elegans***

1102 For conditional medium treatment with *C. elegans*, the conditional medium of HEK293T
1103 cells and stable-*hif-1* HEK293T cell line were collected to 1.5 ml EP tubes, and
1104 subsequently pre-cleaned with a 3,000 g centrifuge for 5 mins to remove cell pellets. 60
1105 mm dish normal NGM were seeded with of 300 ul defined conditional medium. 24 hrs
1106 later, bleach-synchronized embryos were transferred to NGM containing with

1107 conditional medium and grown up to L4 stage at 20 °C incubator followed by transfer to
1108 28 °C incubator. For HEK293T cell lysate treatment, HEK293T cells and stable-hif-1
1109 cells transfected with mCherry or APOE4::mCherry were collected followed by lysis
1110 using lysis buffer (50 mM Hepes, pH 7.4, 100 mM NaCl, 50 mM KCl, 2 mM CaCl₂, 2 mM
1111 MgCl₂, 1 mM PMSF, one tablet of protease inhibitor cocktail per 50 ml buffer containing
1112 0.5 % Triton X-100.) Insoluble material was removed by centrifugation (10,000 g for 10
1113 min), and the supernatant was used for seeding onto 60 mm dish normal NGM, bleach-
1114 synchronized embryos were transferred to NGM containing the conditional medium and
1115 grown up to L4 stage at 20 °C incubator followed by transfer to 28 °C incubator.
1116

1117 **Evans blue leakage**

1118 Evans blue dye (2% in saline, 4 ml/kg body weight, Macklin, E6135-1g) was injected
1119 intravenously into mice. Mice were transcardially perfused with saline, and brain tissues
1120 were harvested after 1 h. The brain tissues were subsequently homogenized in 2 ml of
1121 50% trichloroacetic acid, and centrifuged at 12000 rpm for 30 min. The supernatants
1122 were measured for optical density at 620 nm using a Spectramax 190 Microplate
1123 Reader (Molecular Devices, San Jose, USA).

1124 **Statistical analysis**

1125 Data were analyzed using GraphPad Prism 9.2.0 Software (Graphpad, San Diego, CA)
1126 and presented as means ± S.D. unless otherwise specified, with P values calculated by
1127 unpaired two-tailed t-tests (comparisons between two groups), one-way ANOVA
1128 (comparisons across more than two groups) and two-way ANOVA (interaction between
1129 genotype and treatment), with post-hoc Tukey HSD and Bonferroni's corrections. The
1130 lifespan assay was quantified using Kaplan–Meier lifespan analysis, and P values were
1131 calculated using the log-rank test.
1132

1133 **Acknowledgment**

1134 Some strains were provided by the *Caenorhabditis* Genetics Center (CGC), which is
1135 funded by the NIH Office of Research Infrastructure Programs (P40 OD010440), by Drs.
1136 Kang Shen, Rosa Navarro, and Jo Anne Powell-Coffman. The work was supported by
1137 NIH grants (R35GM139618 to D.K.M., RF1AG057355 and R21OD032463 to J.T.P.),
1138 BARI Investigator Award (D.K.M.), UCSF PBBR New Frontier Research Award
1139 (D.K.M.), National Natural Science Foundation of China (No. 82173728, S.C.), UCSF
1140 CIRM Scholars Training Program EDUC4-12812 (W.J.), Schmidt Science Fellowship
1141 (B.Y.W.) and Cancer Research Irvington postdoctoral fellowship (B.Y.W.).
1142

1143 **Author contributions**

1144 W.J. and D.K.M. designed, performed and analyzed the *C. elegans* and cell culture
1145 experiments, contributed to project conceptualization and wrote the manuscript. Y.C.,
1146 Y.X., Y.J. and S.C. designed, performed and analyzed the mouse experiments,
1147 contributed to project conceptualization and wrote the manuscript. B.Y.W. analyzed the
1148 RNA-seq data. N.S., M.Z., and J.P. contributed to research materials, project
1149 conceptualization and editing manuscript.
1150

1152 **Competing interests**

1153 The authors declare no competing interests.

1154

1155 **Reference**

1156

- 1157 1. Schächter, F., Faure-Delanef, L., Guénot, F., Rouger, H., Froguel, P., Lesueur-Ginot, L., and
1158 Cohen, D. (1994). Genetic associations with human longevity at the APOE and ACE loci. *Nat Genet* 6, 29–
1159 32. 10.1038/ng0194-29.
- 1160 2. Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S.,
1161 and Roses, A.D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency
1162 of type 4 allele in late-onset familial Alzheimer disease. *Proc Natl Acad Sci U S A* 90, 1977–1981.
1163 10.1073/pnas.90.5.1977.
- 1164 3. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W.,
1165 Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and
1166 the risk of Alzheimer's disease in late onset families. *Science* 261, 921–923. 10.1126/science.8346443.
- 1167 4. Sebastiani, P., Gurinovich, A., Nygaard, M., Sasaki, T., Sweigart, B., Bae, H., Andersen, S.L., Villa,
1168 F., Atzmon, G., Christensen, K., et al. (2019). APOE Alleles and Extreme Human Longevity. *J Gerontol A
1169 Biol Sci Med Sci* 74, 44–51. 10.1093/gerona/gly174.
- 1170 5. Bejanin, A., Iulita, M.F., Vilaplana, E., Carmona-Iragui, M., Benejam, B., Videla, L., Barroeta, I.,
1171 Fernandez, S., Altuna, M., Pegueroles, J., et al. (2021). Association of Apolipoprotein E ε4 Allele With
1172 Clinical and Multimodal Biomarker Changes of Alzheimer Disease in Adults With Down Syndrome. *JAMA
1173 Neurol* 78, 937–947. 10.1001/jamaneurol.2021.1893.
- 1174 6. Lemere, C.A., Head, E., and Holtzman, D.M. (2021). APOE ε4 Association With Cognition and
1175 Alzheimer Disease Biomarkers in Down Syndrome—Implications for Clinical Trials and Treatments for All.
1176 *JAMA Neurol* 78, 913–915. 10.1001/jamaneurol.2021.1649.
- 1177 7. Almkvist, O., and Graff, C. (2021). The APOE ε4 Allele Affects Cognitive Functions Differently in
1178 Carriers of APP Mutations Compared to Carriers of PSEN1 Mutations in Autosomal-Dominant
1179 Alzheimer's Disease. *Genes (Basel)* 12, 1954. 10.3390/genes12121954.
- 1180 8. Fortea, J., Pegueroles, J., Alcolea, D., Belbin, O., Dols-Icardo, O., Vaqué-Alcázar, L., Videla, L.,
1181 Gispert, J.D., Suárez-Calvet, M., Johnson, S.C., et al. (2024). APOE4 homozygozity represents a distinct
1182 genetic form of Alzheimer's disease. *Nat Med.* 10.1038/s41591-024-02931-w.
- 1183 9. Fritzsche, L.G., Igl, W., Bailey, J.N.C., Grassmann, F., Sengupta, S., Bragg-Gresham, J.L., Burdon,
1184 K.P., Hebbring, S.J., Wen, C., Gorski, M., et al. (2016). A large genome-wide association study of age-
1185 related macular degeneration highlights contributions of rare and common variants. *Nat Genet* 48, 134–
1186 143. 10.1038/ng.3448.
- 1187 10. McKay, G.J., Patterson, C.C., Chakravarthy, U., Dasari, S., Klaver, C.C., Vingerling, J.R., Ho, L., de
1188 Jong, P.T.V.M., Fletcher, A.E., Young, I.S., et al. (2011). Evidence of association of APOE with age-related
1189 macular degeneration: a pooled analysis of 15 studies. *Hum Mutat* 32, 1407–1416.
1190 10.1002/humu.21577.

1191 11. La Cunza, N., Tan, L.X., Thamban, T., Germer, C.J., Rathnasamy, G., Toops, K.A., and Lakkaraju, A.
1192 (2021). Mitochondria-dependent phase separation of disease-relevant proteins drives pathological
1193 features of age-related macular degeneration. *JCI Insight* 6, 142254. 10.1172/jci.insight.142254.

1194 12. Milman, S., and Barzilai, N. (2023). Discovering Biological Mechanisms of Exceptional Human
1195 Health Span and Life Span. *Cold Spring Harb Perspect Med* 13, a041204. 10.1101/cshperspect.a041204.

1196 13. Corsi, A.K., Wightman, B., and Chalfie, M. (2015). A Transparent window into biology: A primer
1197 on *Caenorhabditis elegans*. *WormBook*, 1–31. 10.1895/wormbook.1.177.1.

1198 14. Griffin, E.F., Scopel, S.E., Stephen, C.A., Holzhauer, A.C., Vaji, M.A., Tuckey, R.A., Berkowitz, L.A.,
1199 Caldwell, K.A., and Caldwell, G.A. (2019). ApoE-associated modulation of neuroprotection from A β -
1200 mediated neurodegeneration in transgenic *Caenorhabditis elegans*. *Dis Model Mech* 12, dmm037218.
1201 10.1242/dmm.037218.

1202 15. Pandey, T., and Ma, D.K. (2022). Stress-Induced Phenoptosis: Mechanistic Insights and
1203 Evolutionary Implications. *Biochemistry (Mosc)* 87, 1504–1511. 10.1134/S0006297922120082.

1204 16. Kenyon, C.J. (2010). The genetics of ageing. *Nature* 464, 504–512. 10.1038/nature08980.

1205 17. Finch, C.E., and Ruvkun, G. (2001). The genetics of aging. *Annu Rev Genomics Hum Genet* 2,
1206 435–462. 10.1146/annurev.genom.2.1.435.

1207 18. Johnson, T.E. (2013). 25 Years after age-1: Genes, Interventions and the Revolution in Aging
1208 Research. *Exp Gerontol* 48, 640–643. 10.1016/j.exger.2013.02.023.

1209 19. Rodriguez, M., Snoek, L.B., De Bono, M., and Kammenga, J.E. (2013). Worms under stress: *C.*
1210 *elegans* stress response and its relevance to complex human disease and aging. *Trends Genet* 29, 367–
1211 374. 10.1016/j.tig.2013.01.010.

1212 20. Bar-Ziv, R., Frakes, A.E., Higuchi-Sanabria, R., Bolas, T., Frankino, P.A., Gildea, H.K., Metcalf,
1213 M.G., and Dillin, A. (2020). Measurements of physiological stress responses in *C. elegans*. *J Vis Exp*,
1214 10.3791/61001. 10.3791/61001.

1215 21. Jiang, W., Wei, Y., Long, Y., Owen, A., Wang, B., Wu, X., Luo, S., Dang, Y., and Ma, D.K. (2018). A
1216 genetic program mediates cold-warming response and promotes stress-induced phenoptosis in *C.*
1217 *elegans*. *Elife* 7. 10.7554/elife.35037.

1218 22. Jiang, W.I., De Belly, H., Wang, B., Wong, A., Kim, M., Oh, F., DeGeorge, J., Huang, X., Guang, S.,
1219 Weiner, O.D., et al. (2024). Early-life stress triggers long-lasting organismal resilience and longevity via
1220 tetraspanin. *Sci Adv* 10, eadj3880. 10.1126/sciadv.adj3880.

1221 23. Cypser, J.R., Tedesco, P., and Johnson, T.E. (2006). Hormesis and aging in *Caenorhabditis*
1222 *elegans*. *Exp Gerontol* 41, 935–939. 10.1016/j.exger.2006.09.004.

1223 24. Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A *C. elegans* mutant that
1224 lives twice as long as wild type. *Nature* 366, 461–464. 10.1038/366461a0.

1225 25. Kd, K., Ha, T., Y, L., and G, R. (1997). *daf-2*, an insulin receptor-like gene that regulates longevity
1226 and diapause in *Caenorhabditis elegans*. *Science (New York, N.Y.)* 277. 10.1126/science.277.5328.942.

1227 26. Mehta, R., Steinkraus, K.A., Sutphin, G.L., Ramos, F.J., Shamieh, L.S., Huh, A., Davis, C., Chandler-
1228 Brown, D., and Kaeberlein, M. (2009). Proteasomal Regulation of the Hypoxic Response Modulates Aging
1229 in *C.elegans*. *Science* **324**, 1196–1198. 10.1126/science.1173507.

1230 27. Müller, R.-U., Fabretti, F., Zank, S., Burst, V., Benzing, T., and Schermer, B. (2009). The von Hippel
1231 Lindau tumor suppressor limits longevity. *J Am Soc Nephrol* **20**, 2513–2517. 10.1681/ASN.2009050497.

1232 28. Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. *Cell* **148**, 399–408.
1233 10.1016/j.cell.2012.01.021.

1234 29. Kaelin, W.G., and Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the central role of the HIF
1235 hydroxylase pathway. *Mol. Cell* **30**, 393–402. 10.1016/j.molcel.2008.04.009.

1236 30. Ma, D.K., Rothe, M., Zheng, S., Bhatla, N., Pender, C.L., Menzel, R., and Horvitz, H.R. (2013).
1237 Cytochrome P450 drives a HIF-regulated behavioral response to reoxygenation by *C. elegans*. *Science*
1238 **341**, 554–558. 10.1126/science.1235753.

1239 31. Sae-Lee, W., Scott, L.L., Brose, L., Encarnacion, A.J., Shi, T., Kore, P., Oyibo, L.O., Ye, C.,
1240 Rozmiarek, S.K., and Pierce, J.T. (2020). APP-Induced Patterned Neurodegeneration Is Exacerbated by
1241 APOE4 in *Caenorhabditis elegans*. *G3 (Bethesda)* **10**, 2851–2861. 10.1534/g3.120.401486.

1242 32. Treinin, M., Shliar, J., Jiang, H., Powell-Coffman, J.A., Bromberg, Z., and Horowitz, M. (2003). HIF-
1243 1 is required for heat acclimation in the nematode *Caenorhabditis elegans*. *Physiol Genomics* **14**, 17–24.
1244 10.1152/physiolgenomics.00179.2002.

1245 33. Yoon, D.S., Lee, M.-H., and Cha, D.S. (2018). Measurement of Intracellular ROS in *Caenorhabditis*
1246 *elegans* Using 2',7'-Dichlorodihydrofluorescein Diacetate. *Bio-protocol* **8**. 10.21769/BioProtoc.2774.

1247 34. Chen, S., Luo, S., Zhang, Z., and Ma, D.K. (2019). VHL-1 inactivation and mitochondrial
1248 antioxidants rescue *C. elegans* dopaminergic neurodegeneration. *Protein Cell* **10**, 610–614.
1249 10.1007/s13238-019-0621-4.

1250 35. Mahley, R.W. (2016). Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol
1251 Metabolism. *Arterioscler Thromb Vasc Biol* **36**, 1305–1315. 10.1161/ATVBAHA.116.307023.

1252 36. Yamazaki, Y., Zhao, N., Caulfield, T.R., Liu, C.-C., and Bu, G. (2019). Apolipoprotein E and
1253 Alzheimer disease: pathobiology and targeting strategies. *Nat Rev Neurol* **15**, 501–518. 10.1038/s41582-
1254 019-0228-7.

1255 37. Vigne, S., and Pot, C. (2024). Implication of Oxysterols and Phytosterols in Aging and Human
1256 Diseases. *Adv Exp Med Biol* **1440**, 231–260. 10.1007/978-3-031-43883-7_12.

1257 38. Matyash, V., Geier, C., Henske, A., Mukherjee, S., Hirsh, D., Thiele, C., Grant, B., Maxfield, F.R.,
1258 and Kurzchalia, T.V. (2001). Distribution and transport of cholesterol in *Caenorhabditis elegans*. *Mol Biol*
1259 *Cell* **12**, 1725–1736. 10.1091/mbc.12.6.1725.

1260 39. Oh, S.-I., Park, J.-K., and Park, S.-K. (2015). Lifespan extension and increased resistance to
1261 environmental stressors by N-Acetyl-L-Cysteine in *Caenorhabditis elegans*. *Clinics (Sao Paulo)* **70**, 380–
1262 386. 10.6061/clinics/2015(05)13.

1263 40. Desjardins, D., Cacho-Valadez, B., Liu, J.-L., Wang, Y., Yee, C., Bernard, K., Khaki, A., Breton, L.,
1264 and Hekimi, S. (2017). Antioxidants reveal an inverted U-shaped dose-response relationship between
1265 reactive oxygen species levels and the rate of aging in *Caenorhabditis elegans*. *Aging Cell* 16, 104–112.
1266 10.1111/ace.12528.

1267 41. Zhang, J., Li, X., Olmedo, M., Holdorf, A.D., Shang, Y., Artal-Sanz, M., Yilmaz, L.S., and Walhout,
1268 A.J.M. (2019). A Delicate Balance between Bacterial Iron and Reactive Oxygen Species Supports Optimal
1269 *C. elegans* Development. *Cell Host Microbe* 26, 400-411.e3. 10.1016/j.chom.2019.07.010.

1270 42. Mirza, Z., Walhout, A.J.M., and Ambros, V. (2023). A bacterial pathogen induces developmental
1271 slowing by high reactive oxygen species and mitochondrial dysfunction in *Caenorhabditis elegans*. *Cell*
1272 *Rep* 42, 113189. 10.1016/j.celrep.2023.113189.

1273 43. Qi, Y.B., Garren, E.J., Shu, X., Tsien, R.Y., and Jin, Y. (2012). Photo-inducible cell ablation in
1274 *Caenorhabditis elegans* using the genetically encoded singlet oxygen generating protein miniSOG. *Proc*
1275 *Natl Acad Sci U S A* 109, 7499–7504. 10.1073/pnas.1204096109.

1276 44. Xu, S., and Chisholm, A.D. (2016). Highly efficient optogenetic cell ablation in *C. elegans* using
1277 membrane-targeted miniSOG. *Sci Rep* 6, 21271. 10.1038/srep21271.

1278 45. Ma, D.K., Vozdek, R., Bhatla, N., and Horvitz, H.R. (2012). CYSL-1 interacts with the O₂-sensing
1279 hydroxylase EGL-9 to promote H₂S-modulated hypoxia-induced behavioral plasticity in *C. elegans*.
1280 *Neuron* 73, 925–940. 10.1016/j.neuron.2011.12.037.

1281 46. Wang, B., Pandey, T., Long, Y., Delgado-Rodriguez, S.E., Daugherty, M.D., and Ma, D.K. (2022).
1282 Co-opted genes of algal origin protect *C. elegans* against cyanogenic toxins. *Curr Biol* 32, 4941-4948.e3.
1283 10.1016/j.cub.2022.09.041.

1284 47. Budde, M.W., and Roth, M.B. (2011). The response of *Caenorhabditis elegans* to hydrogen
1285 sulfide and hydrogen cyanide. *Genetics* 189, 521–532. 10.1534/genetics.111.129841.

1286 48. Zhang, Y., Shao, Z., Zhai, Z., Shen, C., and Powell-Coffman, J.A. (2009). The HIF-1 Hypoxia-
1287 Inducible Factor Modulates Lifespan in *C. elegans*. *PLoS One* 4, e6348. 10.1371/journal.pone.0006348.

1288 49. Topalidou, I., and Miller, D.L. (2017). *Caenorhabditis elegans* HIF-1 Is Broadly Required for
1289 Survival in Hydrogen Sulfide. *G3 (Bethesda)* 7, 3699–3704. 10.1534/g3.117.300146.

1290 50. Morley, J.F., Brignull, H.R., Weyers, J.J., and Morimoto, R.I. (2002). The threshold for
1291 polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in
1292 *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* 99, 10417–10422. 10.1073/pnas.152161099.

1293 51. Powell-Coffman, J.A. (2010). Hypoxia signaling and resistance in *C. elegans*. *Trends Endocrinol
1294 Metab* 21, 435–440. 10.1016/j.tem.2010.02.006.

1295 52. Esmaillie, R., Ignarski, M., Bohl, K., Krüger, T., Ahmad, D., Seufert, L., Schermer, B., Benzing, T.,
1296 Müller, R.-U., and Fabretti, F. (2019). Activation of Hypoxia-Inducible Factor Signaling Modulates the
1297 RNA Protein Interactome in *Caenorhabditis elegans*. *iScience* 22, 466–476. 10.1016/j.isci.2019.11.039.

1298 53. Vora, M., Pyonteck, S.M., Popovitchenko, T., Matlack, T.L., Prashar, A., Kane, N.S., Favate, J.,
1299 Shah, P., and Rongo, C. (2022). The hypoxia response pathway promotes PEP carboxykinase and
1300 gluconeogenesis in *C. elegans*. *Nat Commun* *13*, 6168. 10.1038/s41467-022-33849-x.

1301 54. Fukasawa, Y., Tsuji, J., Fu, S.-C., Tomii, K., Horton, P., and Imai, K. (2015). MitoFates: improved
1302 prediction of mitochondrial targeting sequences and their cleavage sites. *Mol Cell Proteomics* *14*, 1113–
1303 1126. 10.1074/mcp.M114.043083.

1304 55. Taylor, S.R., Santpere, G., Weinreb, A., Barrett, A., Reilly, M.B., Xu, C., Varol, E., Oikonomou, P.,
1305 Glenwinkel, L., McWhirter, R., et al. (2021). Molecular topography of an entire nervous system. *Cell* *184*,
1306 4329–4347.e23. 10.1016/j.cell.2021.06.023.

1307 56. Jackson, R.J., Meltzer, J.C., Nguyen, H., Commins, C., Bennett, R.E., Hudry, E., and Hyman, B.T.
1308 (2022). APOE4 derived from astrocytes leads to blood-brain barrier impairment. *Brain* *145*, 3582–3593.
1309 10.1093/brain/awab478.

1310 57. Liraz, O., Boehm-Cagan, A., and Michaelson, D.M. (2013). ApoE4 induces A β 42, tau, and
1311 neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. *Mol Neurodegener*
1312 *8*, 16. 10.1186/1750-1326-8-16.

1313 58. Blumenfeld, J., Yip, O., Kim, M.J., and Huang, Y. (2024). Cell type-specific roles of APOE4 in
1314 Alzheimer disease. *Nat Rev Neurosci* *25*, 91–110. 10.1038/s41583-023-00776-9.

1315 59. Tcw, J., Qian, L., Pipalia, N.H., Chao, M.J., Liang, S.A., Shi, Y., Jain, B.R., Bertelsen, S.E., Kapoor,
1316 M., Marcora, E., et al. (2022). Cholesterol and matrisome pathways dysregulated in astrocytes and
1317 microglia. *Cell* *185*, 2213–2233.e25. 10.1016/j.cell.2022.05.017.

1318 60. Long, J.M., and Holtzman, D.M. (2019). Alzheimer Disease: An Update on Pathobiology and
1319 Treatment Strategies. *Cell* *179*, 312–339. 10.1016/j.cell.2019.09.001.