

1 Unraveling and quantifying “*Candidatus* 2 *Saccharibacteria*”: *in silico* and experimental 3 evaluation of V3-V4 16S rRNA metagenomics 4 and qPCR protocols

5

6 Stella Papaleo¹, Riccardo Nodari^{1,2}, Lodovico Sterzi¹, Enza D'Auria³, Camilla Cattaneo⁴,
7 Giorgia Bettoni¹, Clara Bonaiti¹, Ella Pagliarini⁴, Gianvincenzo Zuccotti^{1,3}, Simona
8 Panelli^{1*}, Francesco Comandatore^{1*}

9

10 *Corresponding authors

11

12 Affiliations:

13

14 1. Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical
15 and Clinical Sciences, University of Milan, Milan, Italy.

16

17 2. Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of
18 Milan, 20133 Milan, Italy.

19

20 3. Department of Pediatrics, Buzzi Children's Hospital, University of Milan, 20154, Milan,
21 Italy.

22

23 4. Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental
24 and Nutritional Sciences, University of Milan, 20133, Milan, Italy.

25

26

27

28

29

30

31

32 Abstract

33 Background:

34 Candidate Phyla Radiation (CPR) is a large monophyletic group thought to cover about
35 25% of bacterial diversity. Due to peculiar characteristics and unusual 16S rRNA gene
36 structure, they are often under-represented or lost in 16S rRNA-based microbiota
37 surveys. Among CPR, "*Candidatus Saccharibacteria*" is a phylum experimentally found
38 to modulate the immune response and enriched in the oral microbiota of subjects
39 suffering from several immune-mediated disorders, e.g. food allergies, as reported by
40 us in a previous work. Due to the growing evidence of "*Ca. Saccharibacteria*"s role in
41 clinical settings and in order to unravel its role in host physiology and pathology, it is
42 crucial to have a reliable method to detect and quantify this lineage.

43

44 Methods and Results:

45 Four qPCR protocols for quantifying "*Ca. Saccharibacteria*" (one targeting the 23S
46 rRNA gene and three the 16S) were selected from the literature among the few
47 available. Efficiency and coverage of primer pairs used in these protocols were
48 preliminary evaluated via *in silico* analyses on the "*Ca. Saccharibacteria*" known
49 taxonomic variability, and then tested *in vitro* on the salivary DNA previously
50 investigated by 16S metagenomics in the food allergy study. *In silico* analyses
51 evidenced that the 23S qPCR protocol covered more "*Ca. Saccharibacteria*" variability
52 compared to the 16S-based ones, and that the 16S metagenomics primers were the
53 most comprehensive. qPCR experiments confirmed that 16S-based protocols strongly
54 underestimated "*Ca. Saccharibacteria*" while the 23S protocol was the only one to yield

55 results comparable to 16S metagenomics both in terms of correlation and absolute
56 quantification. However, only 16S metagenomics evidenced an expansion of “Ca.
57 *Saccharibacteria*” in allergic subjects compared to controls, while none of the four qPCR
58 protocols detected it.

59

60 Conclusion:

61 These results underline the current limits in experimentally approaching “Ca.
62 *Saccharibacteria*”. To obtain a more realistic picture of their abundance within bacterial
63 communities, and to enable more efficient taxonomic resolution, it is essential to find
64 novel experimental strategies. This is a necessary premise for more targeted and
65 systematic functional studies to clarify the role of “Ca. *Saccharibacteria*” and, generally,
66 CPR bacteria, in maintaining the health of the host.

67

68 **Key words**

69 Candidate Phyla Radiation; Microbial Dark Matter; *Candidatus Saccharibacteria*; 16S
70 metagenomics; qPCR

71

72

73

74

75

76 1. Introduction

77 In the last decades, culture-independent molecular methods allowed the discovery of a
78 large new group of bacteria from environments and human bodies, now referred to as
79 Candidate Phyla Radiation (CPR) (Torrella and Morita 1981; Brown et al. 2015; Hug et
80 al. 2016; Castelle and Banfield 2018). Currently, this monophyletic bacterial lineage
81 includes more than 70 phyla (Danczak et al. 2017; Naud et al. 2022) and is still called
82 “candidate” due to the lack of cultivated representatives, except for a few exceptions
83 (Murugkar et al. 2020; Ibrahim et al. 2021a). CPR population structure is currently
84 poorly understood and the size of the CPR group is still debated. Recently, it has been
85 estimated that it encompasses about 25% of the bacterial diversity (Nie et al. 2022).

86

87 CPR are small-sized cocci (0.2-0.3 μm) with reduced genome size (usually $< 1 \text{ Mb}$)
88 (Luef et al. 2015) lacking important pathways, as those for aminoacids and nucleotide
89 biosynthesis (Brown et al. 2015). Shotgun metagenomics highlighted that they have an
90 unusual ribosome composition, missing some ubiquitous bacterial genes, such as uL1,
91 bL9, and/or uL30. Furthermore, they have a peculiar 16S rRNA gene sequence with
92 introns and indels (Tsurumaki et al. 2022). The few successful cultivation attempts led
93 to the discovery of unique lifestyles, with CPR colonizing the surface of other bacteria
94 within the community, and living as epibionts with mutualistic/parasitic lifestyles (Gong
95 et al. 2014; He et al. 2015).

96

97 CPR phyla as “*Candidatus Saccharibacteria*” (formerly known as TM7), “*Candidatus*
98 *Absconditabacteria*” (SR1) and “*Candidatus Gracilibacteria*” (GNO1) are now

99 considered as part of the microbiota of human healthy oral tract, stomach and skin.
100 Furthermore, either observational and experimental studies converged in suggesting
101 their medical importance (Bor et al. 2019); (Naud et al. 2022).

102

103 Among these lineages, "Ca. Saccharibacteria" is the most studied. It has been reported
104 to represent at least 3% of the human core oral microbiota and to be enriched in
105 dysbiotic microbiomes during infection and inflammatory states of the oral mucosa (e.g.,
106 periodontitis and gingivitis, (Bor et al. 2019), and beyond (i.e., in Inflammatory Bowel
107 Disease patients, Naud et al. 2022). These bacteria live as obligate epibionts (either
108 mutualistic or parasitic), colonizing the surface of *Actinobacteria*, a phylum of bacteria
109 usually present in human oral microbiota. The *Actinobacteria* host can belong to species
110 with the potential to cause proinflammatory effects to the human counterpart. The
111 epibiont can in turn modulate these inflammatory effects and have immunomodulatory
112 activities itself on the human host (He et al. 2015; Chipashvili et al. 2021). These effects
113 have been studied on *Nanosynbacter lyticus* (previously, TM7x), the first lineage within
114 "Ca. Saccharibacteria", and the first CPR, to be isolated in coculture with its host,
115 *Actinomyces odontolyticus* (now *Schaalia odontolytica*) strain XH001 (He et al. 2015).
116 *S. odontolytica* has a strong pro-inflammatory effect by inducing Tumor Necrosis Factor
117 Alpha (TNF- α) gene expression in macrophages. *N. lyticus* is able to suppress TNF- α
118 expression and to prevent the detection of its host by human macrophages (He et al.
119 2015). This anti-inflammatory effect of *N. lyticus*, as well as of other "Ca.
120 Saccharibacteria" species isolated in coculture in the meanwhile, have been confirmed
121 by subsequent functional studies (Chipashvili et al. 2021).

122

123 Due to the growing awareness of its clinical relevance, it is important to have reliable
124 methods to detect and quantify “Ca. Saccharibacteria” in human microbiota in various
125 physiological and pathological conditions. This is a necessary premise for more focused
126 taxonomic and functional studies, to clarify their population structure and role in
127 maintaining the host’s health status. Unfortunately, given the peculiar characteristics of
128 CPR bacteria, current molecular methods work poorly on them, or give biased pictures,
129 especially regarding the estimate of relative abundances. As regards the amplicon
130 sequencing, the most frequently used “universal” primers on the 16S gene display a low
131 efficiency in amplifying CPR sequences (Brown et al. 2015; Eloë-Fadrosh et al. 2016).
132 On the other hand, in the last years several qPCR protocols targeting 16S or 23S rRNA
133 genes have been designed for the quantification of “Ca. Saccharibacteria” in various
134 environments (Takenaka et al. 2018a; Ibrahim et al. 2021b).

135

136 In this work, we evaluated four published qPCR protocols for “Ca. Saccharibacteria”,
137 three designed on 16S and one on 23S rRNA gene. An *in silico* analysis was firstly
138 performed on sequences representative of the whole known taxonomic variability within
139 “Ca. Saccharibacteria”. qPCR experiments were then performed using the same
140 salivary DNA samples from children suffering from food allergy and matched controls,
141 previously characterized by us using the V3-V4 16S metagenomics (D’Auria et al.
142 2023). In that previous work, the oral microbiota of allergic children was found to be
143 enriched in “Ca. Saccharibacteria” and unclassified bacteria. Here, we reevaluated the
144 presence and relative abundance of “Ca. Saccharibacteria” in these samples, also in
145 the light of the *in silico* analyses, to get more insights into the drawbacks and distortions

146 associated with the currently available protocols for detecting, quantifying and
147 classifying this emerging bacterial lineage.

148

149 **2. Materials and Methods**

150 *2.1. Selection of primer pairs*

151 The current efficiency in the detection and quantification of "Ca. Saccharibacteria" was
152 assessed *in silico* and through qPCR experiments using six primer pairs retrieved from
153 the literature (see Table S1): SacchariF-SacchariR (Ibrahim et al. 2021a) (here called
154 23S), TM7314F-TM7-910R (Hugenholtz et al. 2001; Brinig et al. 2003) (16S_p1),
155 Sac1031F-Sac1218R (Yang et al. 2015) (16S_p2), TM7_16S_590F-TM7_16S_965R
156 (Ferrari et al. 2014) (16S_p3), 926F-1062R (Bacchetti De Gregoris et al. 2011)
157 (16S_panbacteria), and pro314F-pro805R (Takahashi et al. 2014) (16s_meta).

158 The latter are V3-V4 primers commonly used in 16S rRNA metagenomic studies. We
159 used this pair in our previous work on the salivary microbiota of allergic children
160 (D'Auria et al., 2023). The other pairs have been designed for qPCR and were included
161 in the present study for the reasons detailed below.

162 The 23S protocol was chosen because primers are based on a very recent genomic
163 analysis ((Takenaka et al. 2018a; Ibrahim et al. 2021b) and because it targets a gene
164 other than the 16S rRNA, known to have a limited capacity to detect CPR.

165 Two out of the three 16S rRNA primer pairs (protocols 16S_p1 and 16S_p2) were
166 chosen based on Takenaka et al. (2018) (Takenaka et al. 2018a; Ibrahim et al. 2021b)
167 that evaluated different primers for "Ca. Saccharibacteria" quantification. These authors
168 concluded that TM7314F/TM7-910R (16S_p1) gave the most reliable real time

169 quantification, and for this reason we included them in our collection. The other pair,
170 Sac1031-F/Sac1218R (16S_p2) in their hands appeared to underestimate their
171 environmental samples, but because it was originally designed to analyze "Ca.
172 Saccharibacteria" in mammalian feces (Yang et al. 2015) we decided to test it on our
173 dataset. The third 16S pair (TM7_16S_590F/TM7_16S_965R, protocol 16S_p3),
174 described in (Ferrari et al. 2014), has already been recognized for its high coverage and
175 specificity for "Ca. Saccharibacteria" (Takenaka et al. 2018b).
176 The 926F-1062R pair (16S_panbacteria) (Bacchetti De Gregoris et al. 2011) is a pair of
177 universal 16S primers commonly used for qPCR. It was used in combination with the
178 "Ca. Saccharibacteria" pairs to evaluate by qPCR their abundance in reference to the
179 total bacterial quantification.

180

181 2.2. *In-silico* PCR experiments

182 The efficiency of the primer pairs listed above was first tested *in silico* PCR on two large
183 datasets: the "Candidatus Saccharibacteria" sequences contained in the SILVA
184 database and a collection of high quality "Candidatus Saccharibacteria" genomes.
185 Regarding the SILVA database, the reference datasets LSU Ref NR99 v.138.1 (Large
186 Subunit, i.e. 23S rRNA gene) and SSU Ref NR99 v.138.1 (Small Subunit i.e. 16S rRNA
187 gene) were retrieved and the sequences annotated as "Saccharimonadia" (the only
188 SILVA annotation relative to Saccharibacteria) were extracted. Unfortunately, only two
189 "Saccharimonadia" sequences were present in the LSU Ref NR99 v.138.1 (i.e. 23S
190 rRNA gene), and thus the *in silico* PCR analyses could be carried out only on the SSU
191 Ref NR99 v.138.1 (16S rRNA gene) dataset, from which 2,978 "Saccharimonadia"

192 sequences were extracted. The *in silico* PCR analyses were performed using the
193 ThermonucleotideBLAST tool (Gans and Wolinsky 2008) setting the following
194 parameters: --primer-clamp 5 --max-mismatch 6 --best-match -m 1.
195 The 2,978 extracted sequences were then aligned using the MAFFT tool (Gans and
196 Wolinsky 2008) and phylogenetic analysis carried out using FastTree (Price, Dehal, and
197 Arkin 2010). The results of the *in silico* PCR were mapped on the obtained phylogenetic
198 tree using iTOL web tool (Price, Dehal, and Arkin 2010; Letunic and Bork 2021).
199 The same analysis was repeated on the 16S rRNA and 23S rRNA gene sequences of a
200 second large dataset, a manually curated collection of “*Candidatus Saccharibacteria*”
201 genomes, as follows. All the “*Ca. Saccharibacteria*” genome assemblies present into the
202 BV-BRC database (Price, Dehal, and Arkin 2010; Letunic and Bork 2021; Olson et al.
203 2023) as of June 27, 2023 were retrieved and subjected to 16S rRNA and 23S rRNA
204 gene calling using Barrnap (github.com/tseemann/barrnap). The 16S rRNA sequences
205 sized between 1,300 and 1,500 nt, and the 23S rRNA sequences sized between 3,000
206 and 3,500 nt, were considered complete. The genome assemblies harboring at least
207 one complete 16S rRNA and one complete 23S rRNA gene were selected. For each
208 genome, all the 16S rRNA gene sequences called by Barrnap were analyzed by *in silico*
209 PCR as described above, using the five primer pairs targeting 16S (16S_p1, 16S_p2,
210 16S_p3, 16S_panbacteria and 16S_meta primers); the same was done for the 23S
211 rRNA gene and the corresponding primer pair. The longest 16S rRNA sequence of each
212 selected genome was extracted and subjected to phylogenetic analysis using FastTree,
213 after alignment using MAFFT. The results of the five *in silico* PCR experiments (five on

214 16S rRNA gene target and one on the 23S rRNA gene) were mapped on the obtained
215 phylogenetic tree using iTOL (Letunic and Bork 2021).

216 As described below, *in vitro* experiments were carried out on DNA previously extracted
217 and subjected to 16S metagenomics by D'Auria et al (D'Auria et al. 2023). The V3-V4
218 16S rRNA sequences annotated as Saccharibacteria by D'Auria and colleagues (2023)
219 were retrieved and Blastn searched against both the two 16S rRNA datasets (from
220 SILVA and genome assemblies) already used for phylogenetic analyses. For each
221 sequence, the most similar sequence was highlighted on the phylogenetic trees using
222 iTOL (Letunic and Bork 2021).

223

224 2.3. DNAs and Primers

225 The four qPCR protocols for quantification of “Ca. Saccharibacteria” were tested *in vitro*
226 on 61 DNA samples already subjected to 16S metagenomics by D'Auria et al (D'Auria
227 et al. 2023). In that study, DNA was extracted from saliva of patients suffering from food
228 allergies and matched controls, and subjected to 16S metagenomics. The same DNA
229 preparations were used in this study: samples were not re-extracted in order to avoid
230 any kind of variation that would have distorted the comparison between the qPCR
231 results and the metagenomic analysis. The quantifications obtained with the pairs
232 targeting “Ca. Saccharibacteria” (16S_1, 16S_2, 16S_3 and 23S) were normalized on
233 the total bacterial DNA quantification of the sample, performed with 926F-1062R (here
234 called 16S_panbacteria), a pair of universal 16S primers commonly used for qPCR
235 (Bacchetti De Gregoris et al. 2011).

236

237 *2.4. PCR protocols*

238 For each primer pair, a standard end-point PCR protocol was first run to verify
239 specificity and provide amplicons for the standard curve for subsequent qPCR
240 experiments. PCR reactions were performed on those salivary DNA samples that,
241 following amplicon metagenomics, displayed the highest relative abundances of “Ca.
242 *Saccharibacteria*”. Amplifications were set up in a total volume of 20 μ L containing: 10
243 μ L GoTaq® Green Master Mix (Promega Corporation, Madison, Wisconsin, USA), 1 μ L
244 of each 10 μ M primer, 6 μ L Promega PCR amplification-grade water (Promega) and 2
245 μ L of the sample DNA (corresponding to about 20 ng). Cycling programs were
246 performed on a Biorad T100 thermal cycler. Thermal profiles are listed in Table S2.
247 PCR products were analyzed through electrophoresis on 1% agarose gels. Amplicons
248 were gel-purified using Wizard® SV Gel and PCR Clean-Up System (Promega) and
249 quantified with a Qubit 4 Fluorometer (Thermofisher scientific, Waltham,
250 Massachusetts). DNA was finally diluted in Milli-Q water. Ten-fold serial dilutions were
251 prepared for each amplicon that contained known numbers of fragment copies ranging
252 from 10^7 to 10 copies/ μ L to create the standard curves.

253

254 *2.5. qPCR protocols*

255 Each 15 μ L reaction contained 7,5 μ L of 2x SsoAdvanced Universal SYBR® Green
256 Supermix (BioRad, Hercules, California), 0,4 μ L of each 10 μ M primer, 4,7 μ L of PCR
257 amplification-grade water (Promega Corporation, Wisconsin, USA) and 2 μ L of sample
258 DNA (about 20 ng). Each sample was qPCR-amplified in three technical replicates. The

259 qPCR assays were performed on a BioRad CFX Connect real-time PCR System
260 (BioRad, Hercules). Thermal profiles are listed in Table S3.

261 The specificity of each primer pair was assessed through the melting profile generated
262 at the end of each qPCR experiment, with a range of temperature between 60° and
263 95°C.

264

265 2.6. *Statistical analyses*

266 The detecting capability of the four primer sets tested in this study (16S_p1, 16S_p2,
267 16S_p3 and 23S) was compared on the basis of the “*Ca. Saccharibacteria*”
268 quantification provided by each of them, as follows. For each primer set, the “*Ca.*
269 *Saccharibacteria*” representation in the total bacterial community was calculated, in
270 percentage, as the ratio between their absolute quantification and the pan-bacterial
271 absolute quantification obtained using the 16S_panbacterial primers (see Table S1-S3
272 for details). Results obtained in this way for each of the four qPCR primer sets, and
273 those from the 16S metagenomics (D'Auria et al. 2023), were then compared with
274 Mann-Whitney U test and linear regression (significant p value threshold 0.05), using R.
275 For each of these five methods of quantification, the “*Candidatus Saccharibacteria*”
276 percentages obtained for allergic vs control subjects were compared using Mann-
277 Whitney U test, using R.

278

279 2.7. *Sequencing and analysis of 23S rRNA gene amplicon*

280 Twelve representative samples selected from the 61 tested first by 16S metagenomics
281 (D'Auria et al., 2023) and then by qPCR were chosen for 23S amplicon sequencing, to

282 verify the specificity of the primers and define the portion of the taxonomic variability of
283 “Ca. Saccharibacteria” covered by these primers. Eight samples were chosen because
284 they displayed the highest differences between the quantifications provided by the 23S
285 qPCR and those obtained from the 16S metagenomics, while other four samples were
286 sequenced as controls. Sequences were performed on an Illumina Novaseq 6000
287 platform by MrDNA, Shallowater, Texas. Reads quality was assessed using the FastQC
288 tool (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>). Then, the 23S rRNA
289 gene amplicon reads were taxonomically assigned using the Mothur tool (Schloss et al.
290 2009) and SILVA138.1 LSURef NR99 as reference database (Quast et al. 2013).
291 Briefly, reads were aligned against the reference Silva database and those containing
292 chimeric information were removed. The remaining reads were grouped into Operative
293 Taxonomic Units (OTUs) using the 0.05 distance threshold (without *a priori* information,
294 the threshold has been determined on the basis of the nucleotide distance distribution).
295 Then, a phylogenetic-based taxonomic annotation of OTUs was performed on the
296 representative reads of the different OTUs. The reads were BlastN-searched against
297 the NCBI nt database and, for the 20 best hits, sequences and taxonomic metadata
298 were retrieved. The obtained NCBI sequences and the representative OTU sequences
299 were aligned and subjected to Maximum Likelihood (ML) phylogenetic analysis using
300 RAxML8 (Stamatakis 2014), with 100 pseudo bootstraps, using the model K80+G, as
301 determined by best model selection analysis using ModelTest-NG (Darriba et al. 2019).
302
303
304

305 3. Results and discussion

306 3.1. *In silico* PCR experiments

307 *In silico* PCR analyses were performed on sequences representative of the whole
308 known taxonomic variability within “Ca. Saccharibacteria”, retrieved from two large
309 datasets. These sequences are the 2,978 16S rRNA annotated as Saccharimonadia
310 retrieved in the SILVA database (Quast et al. 2013), and the 16S/23S rRNA sequences
311 from a manually curated 114 “Ca. Saccharibacteria” genomes dataset (Table S4).

312 Figure 1 shows the 16S rRNA-based phylogenetic trees obtained for the two datasets
313 (hereafter referred to as “SILVA” and “genomes”), annotated with the results of the *in*
314 *silico* PCR analyses for all the six sets of primers considered in this study (see Methods
315 and Table S1 for details). The colored rings in Figure 1 indicate the taxonomic variability
316 within “Ca. Saccharibacteria” successfully amplified by each pair. Results for SILVA
317 (Figure 1a) evidenced that none of the protocols completely covered the taxonomic
318 variability. The highest coverage was obtained for 16S_meta, i.e., the primers for 16S
319 metagenomics, that *in silico* amplified 97.5% (2,903) of the 2,978 “Saccharimonadia”
320 16S rRNA sequences in SILVA. Similarly, 96.5% of the sequences (2,875) was
321 amplified by 16S_panbacteria primers, followed by 83.3% for 16S_p3 (2,482), 64%
322 (1,908) for 16S_p1, and only 5.6% (168) for 16S_p2. As explained above (see Methods,
323 paragraph 2.2) this analysis could not include the 23S primers because of the poor
324 representation of 23S rRNA sequences belonging to “Ca. Saccharibacteria” in the
325 SILVA database. Overall, the results for SILVA showed that, in this quite large dataset,
326 all *in silico* amplifications missed a variable portion of the currently known taxonomic
327 variability within “Ca. Saccharibacteria” (probably far from exhaustive), with the best

328 “performance” highlighted for the 16S_meta pair, which missed the 2.5% of
329 Saccharimonadia 16S rRNA sequences. This suggests that, even though 16S_meta
330 primers have a very high coverage for the “Ca. Saccharibacteria” phylum (which is the
331 one, within the CPR group, for which most sequence data are available) they may
332 conceivably fail to detect considerable portions of the CPR taxonomic variability outside
333 of “Ca. Saccharibacteria”, thus leading to a possible underestimation of some phyla and
334 the loss of information in metagenomics studies. Indeed, a recent systematic survey
335 analyzed the sequences from over 6,000 assembled metagenomes and evaluated 16S
336 rRNA primers commonly used in amplicon studies. The authors observed that >70% of
337 the bacterial clades systematically under-represented or missed in amplicon-based
338 studies belong to CPR (Eloe-Fadrosh et al. 2016).

339 Figure 1b shows the same analyses performed on the database of the 114 “Ca.
340 Saccharibacteria” genomes. From the Figure it emerges that, once again, the pan-
341 bacterial primer sets (16S_meta and 16S_panbacteria) are the most comprehensive,
342 with a coverage of 100% (114 sequences). Among qPCR protocols, 23S was found to
343 cover a greater portion of variability than those based on 16S. It successfully amplified
344 95.6% (109) of the sequences within the “Ca. Saccharibacteria” genome database,
345 followed by 75.4% (86) amplified by 16S_p3 primer set, 72.8% (83) by 16S_p1, and
346 19.2% (22) by 16S_p2. The *in silico* PCR on 23S showed that the qPCR protocol based
347 on this gene was able to intercept a larger portion of the “Ca. Saccharibacteria”
348 taxonomic variability compared to those designed on 16S rRNA (Figure 1b). The low
349 coverage of the 16S protocols could be attributed to the peculiar sequence and
350 structure of the 16S rRNA gene in members of Candidate Phyla Radiation. Indeed, as

351 stated above, it presents introns, insertions and deletions that could be an obstacle for
352 amplification (Tsurumaki et al. 2022).

353 Figure 1 also maps the position, on the two phylogenetic trees, of the best hits observed
354 for the “*Ca. Saccharibacteria*” V3-V4 16S sequences obtained by D’Auria et al. (2023).

355 It is interesting to note that none of the sequences obtained in this paper presented a
356 perfect match with those deposited in the two datasets. In other words, both the SILVA
357 and genomic datasets lacked sequences whose V3-V4 portions of 16S gene were
358 identical to those sequenced by D’auria and colleagues in their dataset, showing that
359 the “*Candidatus Saccharibacteria*” lineages expanded in allergic children could belong
360 to an unexplored portion within the phylum.

361

362 3.2. *qPCR* assays

363 The next step was to experimentally evaluate the efficiency of the selected qPCR
364 protocols (3 based on the 16S and one on the 23S gene, Table S1) on the collection of
365 salivary DNA previously characterized by 16S metagenomics by (D’Auria et al. 2023). In
366 that paper, the authors found that the saliva of children suffering from food allergy,
367 compared to matched controls, was enriched in “*Ca. Saccharibacteria*” and in
368 sequences unresolved by the 16S metagenomics that, when phylogenetically
369 investigated, clustered within another CPR phylum, namely “*Candidatus*
370 *Gracilibacteria*”.

371 For each protocol and for each sample, the representation of “*Ca. Saccharibacteria*”
372 within the bacterial community was estimated as the ratio between the “*Ca.*
373 *Saccharibacteria*” quantification obtained with the specific primers (16S_p1, 16S_p2,

374 16S_p3 and 23S) and the total bacterial estimate obtained with the universal primer set
375 16S_panbacteria (Table S5). These data were then compared to the relative
376 abundances previously obtained by the 16S metagenomics. The results of the
377 comparisons are shown in Figure 2. The figure shows that the quantifications obtained
378 from three out of the four protocols (23S, 16S_p1 and 16S_p2) were significantly
379 correlated to those obtained by 16S metagenomics (linear regression, pvalue < 0.05)
380 (Figure 2a-c). Among these protocols, only the one based on the 23S rRNA gene
381 produced estimates comparable to the 16S metagenomics, both in terms of correlation
382 and absolute quantification. Indeed, this protocol produced abundances not statistically
383 different from 16S metagenomics (Mann Whitney U test, pvalue > 0.05) (Figure 2e).
384 Instead, all the three qPCR protocols targeting the 16S gene underestimated the
385 presence of "Ca. Saccharibacteria", both in the allergic and control groups. In fact, even
386 though two of the 16S rRNA protocols were significantly correlated with the results of
387 the 16S metagenomics (16S_p1 and 16S_p2, see Figure 2), the absolute
388 quantifications provided for "Candidatus Saccharibacteria" differed from the 16S
389 metagenomics (and from the 23S protocol) by orders of magnitude.
390 Overall these results reflect the data of the *in silico* PCR conducted on the
391 Saccharibacteria genome collection and confirm that, *in vitro* as *in silico*, the 23S
392 protocol appears to be the most performing in terms of the portion of taxonomic diversity
393 detected.
394 Another point is that the relative abundance of "Ca. Saccharibacteria" provided by the
395 16S metagenomics ranges between 0.759% and 7.286%, against a range of 0.039%-
396 59.665% produced by the 23S protocol (see Table S5). Thus, quantifications obtained

397 from the 23S qPCR appear to be scattered over a much broader range than those,
398 more flattened, provided by the 16S metagenomics. Overall, the differences between
399 the 23S relative abundances and the 16S metagenomics ones range between -5.047%
400 and +52.892%. Interestingly differences emerge between the two groups (controls and
401 allergic subjects) in terms of “how much” the 23S qPCR data differ from those of the
402 16S metagenomics. In controls, this difference ranges within a limited interval (from -
403 2.455% to +10.652%) while in the allergic group it encompasses the whole interval
404 (from -5.047% to +52.892%) (Figure S1 and Table S5).

405

406 The difference between the two quantifications was > 5% in a total of seven subjects,
407 five allergic patients and two controls (Figure S1), thus highlighting the presence of a
408 subset of samples, even if limited, for which the 23S qPCR protocol yielded a strongly
409 higher quantification. For this reason, in order to exclude cross-reactions of the primers,
410 and thus the amplification by qPCR of non-specific templates, we sequenced the 23S
411 amplicons (see paragraph 3.3).

412 Among the other protocols, the best performing 16S rRNA-based qPCR was the
413 16S_p1. The quantifications provided by this protocol correlated with those of the 16S
414 metagenomics but the absolute values were considerably lower. Therefore, they were
415 not comparable in terms of absolute quantifications, clearly showing a strong
416 underestimation of “*Candidatus Saccharibacteria*”.

417 There is one last important difference between the results obtained using qPCRs or 16S
418 metagenomics. This difference is related to the increase of lineages attributable to “*Ca.*
419 *Saccharibacteria*” in allergic children. While the 16S metagenomics returned a higher

420 load of this phylum in allergic children compared to controls, these results were not
421 confirmed by any of the tested qPCR protocols (Figure 3). This point shows very
422 effectively how the choice to use a given technique over another can profoundly
423 influence the final results and their interpretation in studies investigating these emerging
424 CPR phyla and their role in the maintaining of the health status of the host. This
425 limitation turns out to be particularly important in the case of groups such as “Ca.
426 *Saccharibacteria*” whose role in immune-mediated diseases is increasingly evident.

427

428 3.3. 23S rRNA qPCR amplicon sequence analysis

429 To exclude cross-reactions and contaminations in the 23S qPCR (see above), and
430 have direct evidence on which “Ca. *Saccharibacteria*” lineages were amplified by this
431 protocol (the first one to target a gene other than the 16S on “Ca. *Saccharibacteria*”)
432 amplicons from a selected subset of samples were sequenced on an Illumina platform.
433 A total of 940,756 sequences were produced and 819,506 (87,11%) of them passed the
434 filtering steps. The analysis grouped these sequences into a total of 11 OTUs, of which
435 the OTU1 contains 818,910 reads, corresponding to the 99.93% of the filtered reads
436 (Table S6). Figure S2 shows the Maximum Likelihood (ML) phylogenetic tree including
437 the representative sequences of the 11 OTUs and the most similar sequences retrieved
438 from the NCBI nt database. The tree topology shows that 9 out of 11 OTUs sequences
439 (for a total of 819,498 / 819,506) clusterize within “*Candidatus Saccharibacteria*”. The
440 remaining two OTU sequences (representing a total of 8 reads) are close to non-CPR
441 bacteria.

442 These results excluded primers cross-reactions and the presence of non-specific
443 amplicons. Therefore, the discrepancies observed with 16S metagenomics, i.e. the
444 production, by the 23S protocol, of a broader range of quantifications, some of which
445 are strongly higher in a subset of samples (see section “3.2. qPCR assays”), could be
446 explained by hypothesizing the existence of “Ca. Saccharibacteria” lineages amplified
447 by 23S and not by 16_meta. This point once again underlines the current lack of
448 experimental approaches capable of detecting in a comprehensive and reproducible
449 way the taxonomic diversity underlying “*Candidatus Saccharibacteria*” and, probably
450 even more so, all those CPR phyla for which sequence data are even scarcer.

451

452 **5. Conclusion**

453 Growing evidence currently highlights the importance of having a reliable method for the
454 detection and quantification of Candidate Phyla Radiation (CPR) members in
455 metagenomic studies. Several papers have shown that 16S metagenomics strongly
456 underestimates CPR and is unable to efficiently resolve their taxonomy, probably due to
457 sequence peculiarities of this gene in CPR members. (Brown et al. 2015). It has also
458 been estimated that >70% of bacterial clades under-represented or missed in amplicon-
459 based microbiota surveys belong to CPR (D’Auria et al. 2023; Elo-Fadrosch, Paez-
460 Espino, et al. 2016). This metagenomic underestimation has several effects, particularly
461 relevant when investigating immune-mediated diseases, considering that CPR lineages
462 as “Ca. Saccharibacteria” have been experimentally observed to exert
463 immunomodulatory roles in the human host and are enriched in several inflammatory
464 conditions.

465 In recent years, several qPCR protocols targeting 16S or 23S rRNA genes have been
466 designed for the quantification of “*Ca. Saccharibacteria*” in various environments. Four
467 of these qPCR protocols were evaluated in this study, both *in silico* and experimentally
468 on samples already characterized by 16S metagenomics. From the data presented in
469 this work, we conclude that none of these experimental approaches is able to
470 comprehensively and reproducibly detect the taxonomic diversity within “*Ca.*
471 *Saccharibacteria*” and that each protocol likely introduces distortions in detection,
472 quantification and reconstruction of taxonomic pictures. If this is the situation for the
473 CPR phylum for which the greatest amount of sequence data has been produced, the
474 limitations of the current protocols will likely be much greater for other CPR phyla for
475 which sequence data are even scarcer, if not at their beginning.

476 On the other hand, it is becoming increasingly clear that this intriguing and ubiquitous
477 part of the microbial world has emerging roles in important clinical and environmental
478 processes, and that these roles have been probably greatly underestimated until now.
479 To overcome these limitations, new experimental strategies are therefore necessary,
480 such as the availability of new amplification targets and workflows based on amplicon
481 sequencing. These strategies should lead to more realistic pictures of CPR abundance
482 within bacterial communities, and of associated fluctuations (either inter-individual or
483 associated with pathogenic processes), and allow for more efficient and precise
484 taxonomic resolution. These premises are necessary for more targeted and systematic
485 functional studies, to clarify their role in maintaining the health status of the host and
486 ecological roles in the environment.

487

488 **Author Contributions**

489 Conceptualization, F.C. and S.Pan.; formal analysis, F.C., R.N., L.S. investigation,
490 S.Pap. and C.C.; supervision, E.D., E.P., G.Z.; writing—original draft, S.Pap. writing—
491 review & editing, S.Pan. and F.C. All authors have read and agreed to the published
492 version of the manuscript.

493

494 **Funding**

495 This work was supported by a grant "Finanziamento Linea 2" from Università degli Studi
496 di Milano, Dipartimento di Scienze Biomediche e Cliniche to F.C. (project number 40225
497 PSR2021).

498 **References**

499

500 Bacchetti De Gregoris, Tristano, Nick Aldred, Anthony S. Clare, and J. Grant Burgess.
501 2011. "Improvement of Phylum- and Class-Specific Primers for Real-Time PCR
502 Quantification of Bacterial Taxa." *Journal of Microbiological Methods* 86 (3): 351-
503 56. <https://doi.org/10.1016/j.mimet.2011.06.010>

504 Bor, B., J. K. Bedree, W. Shi, J. S. McLean, and X. He. 2019. "Saccharibacteria (TM7)
505 in the Human Oral Microbiome." *Journal of Dental Research* 98 (5): 500-509.
506 <https://doi.org/10.1177/0022034519831671>

507 Brinig, Mary M., Paul W. Lepp, Cleber C. Ouverney, Gary C. Armitage, and David A.
508 Relman. 2003. "Prevalence of Bacteria of Division TM7 in Human Subgingival
509 Plaque and Their Association with Disease." *Applied and Environmental
510 Microbiology* 69 (3): 1687-94. <https://doi.org/10.1128/AEM.69.3.1687-1694.2003>

511 Brown, Christopher T., Laura A. Hug, Brian C. Thomas, Itai Sharon, Cindy J. Castelle,
512 Andrea Singh, Michael J. Wilkins, Kelly C. Wrighton, Kenneth H. Williams, and
513 Jillian F. Banfield. 2015. "Unusual Biology across a Group Comprising More than
514 15% of Domain Bacteria." *Nature* 523 (7559): 208-11.
515 <https://doi.org/10.1038/nature14486>

516 Castelle, Cindy J., and Jillian F. Banfield. 2018. "Major New Microbial Groups Expand
517 Diversity and Alter Our Understanding of the Tree of Life." *Cell* 172 (6): 1181-97.
518 <https://doi.org/10.1016/j.cell.2018.02.016>

519 Chipashvili, Otari, Daniel R. Utter, Joseph K. Bedree, Yansong Ma, Fabian Schulte,
520 Gabrielle Mascarin, Yasmin Alayyoubi, et al. 2021. "Episymbiotic Saccharibacteria
521 Suppresses Gingival Inflammation and Bone Loss in Mice through Host Bacterial
522 Modulation." *Cell Host & Microbe* 29 (11): 1649-62.e7.
523 <https://doi.org/10.1016/j.chom.2021.09.009>

524 Danczak, R. E., M. D. Johnston, C. Kenah, M. Slattery, K. C. Wrighton, and M. J.
525 Wilkins. 2017. "Members of the Candidate Phyla Radiation Are Functionally
526 Differentiated by Carbon- and Nitrogen-Cycling Capabilities." *Microbiome* 5 (1):
527 112. <https://doi.org/10.1186/s40168-017-0331-1>

528 Darriba, Diego, David Posada, Alexey M. Kozlov, Alexandros Stamatakis, Benoit Morel,
529 and Tomas Flouri. 2019. "ModelTest-NG: A New and Scalable Tool for the
530 Selection of DNA and Protein Evolutionary Models." *Molecular Biology and
531 Evolution* 37 (1): 291-94. <https://doi.org/10.1093/molbev/msz189>

532 D'Auria, Enza, Camilla Cattaneo, Simona Panelli, Carlotta Pozzi, Miriam Acunzo, Stella
533 Papaleo, Francesco Comandatore, et al. 2023. "Alteration of Taste Perception,
534 Food Neophobia and Oral Microbiota Composition in Children with Food Allergy."
535 *Scientific Reports* 13 (1): 7010. <https://doi.org/10.1038/s41598-023-34113-y>

536 Eloe-Fadrosh, Emiley A., Natalia N. Ivanova, Tanja Woyke, and Nikos C. Kyrpides.
537 2016. "Metagenomics Uncovers Gaps in Amplicon-Based Detection of Microbial
538 Diversity." *Nature Microbiology* 1 (February): 15032.
539 <https://doi.org/10.1038/nmicrobiol.2015.32>

540 Eloë-Fadrosh, Emiley A., David Paez-Espino, Jessica Jarett, Peter F. Dunfield, Brian P.
541 Hedlund, Anne E. Dekas, Stephen E. Grasby, et al. 2016. "Global Metagenomic
542 Survey Reveals a New Bacterial Candidate Phylum in Geothermal Springs." *Nature
543 Communications* 7 (January): 10476. <https://doi.org/10.1038/ncomms10476>

544 Ferrari, Belinda, Tristrom Winsley, Mukan Ji, and Brett Neilan. 2014. "Insights into the
545 Distribution and Abundance of the Ubiquitous *Candidatus Saccharibacteria* Phylum
546 Following Tag Pyrosequencing." *Scientific Reports* 4 (February): 3957.
547 <https://doi.org/10.1038/srep03957>

548 Gans, Jason D., and Murray Wolinsky. 2008. "Improved Assay-Dependent Searching of
549 Nucleic Acid Sequence Databases." *Nucleic Acids Research* 36 (12): e74.
550 <https://doi.org/10.1093/nar/gkn301>

551 Gong, Jun, Yao Qing, Xiaohong Guo, and Alan Warren. 2014. "'*Candidatus
552 Sonnebornia Yantaiensis*', a Member of Candidate Division OD1, as Intracellular
553 Bacteria of the Ciliated Protist *Paramecium Bursaria* (Ciliophora,
554 Oligohymenophorea)." *Systematic and Applied Microbiology* 37 (1): 35-41.
555 <https://doi.org/10.1016/j.syapm.2013.08.007>

556 He, Xuesong, Jeffrey S. McLean, Anna Edlund, Shibu Yooseph, Adam P. Hall, Su-Yang
557 Liu, Pieter C. Dorrestein, et al. 2015. "Cultivation of a Human-Associated TM7
558 Phylotype Reveals a Reduced Genome and Epibiotic Parasitic Lifestyle."
559 *Proceedings of the National Academy of Sciences of the United States of America*
560 112 (1): 244-49. <https://doi.org/10.1073/pnas.1419038112>

561 Hugenholtz, P., G. W. Tyson, R. I. Webb, A. M. Wagner, and L. L. Blackall. 2001.

562 "Investigation of Candidate Division TM7, a Recently Recognized Major Lineage of

563 the Domain Bacteria with No Known Pure-Culture Representatives." Applied and

564 Environmental Microbiology 67 (1): 411-19. <https://doi.org/10.1128/AEM.67.1.411-419.2001>

566 Hug, Laura A., Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander

567 J. Probst, Cindy J. Castelle, Cristina N. Butterfield, et al. 2016. "A New View of the

568 Tree of Life." Nature Microbiology 1 (April): 16048.

569 <https://doi.org/10.1038/nmicrobiol.2016.48>

570 Ibrahim, Ahmad, Mohamad Maatouk, Andriamiharimamy Rajaonison, Rita Zgheib,

571 Gabriel Haddad, Jacques Bou Khalil, Didier Raoult, and Fadi Bittar. 2021. "Adapted

572 Protocol for Cocultivation: Two New Members Join the Club of Candidate Phyla

573 Radiation." Microbiology Spectrum 9 (3): e0106921.

574 <https://doi.org/10.1128/spectrum.01069-21>

575 Letunic, Ivica, and Peer Bork. 2021. "Interactive Tree Of Life (iTOL) v5: An Online Tool

576 for Phylogenetic Tree Display and Annotation." Nucleic Acids Research 49 (W1):

577 W293-96. <https://doi.org/10.1093/nar/gkab301>

578 Luef, Birgit, Kyle R. Frischkorn, Kelly C. Wrighton, Hoi-Ying N. Holman, Giovanni

579 Birarda, Brian C. Thomas, Andrea Singh, et al. 2015. "Diverse Uncultivated Ultra-

580 Small Bacterial Cells in Groundwater." Nature Communications 6 (February): 6372.

581 <https://doi.org/10.1038/ncomms7372>

582 Murugkar, Pallavi P., Andrew J. Collins, Tsute Chen, and Floyd E. Dewhirst. 2020.

583 "Isolation and Cultivation of Candidate Phyla Radiation (TM7) Bacteria in Coculture
584 with Bacterial Hosts." *Journal of Oral Microbiology* 12 (1): 1814666.

585 <https://doi.org/10.1080/20002297.2020.1814666>

586 Naud, Sabrina, Ahmad Ibrahim, Camille Valles, Mohamad Maatouk, Fadi Bittar,
587 Maryam Tidjani Alou, and Didier Raoult. 2022. "Candidate Phyla Radiation, an
588 Underappreciated Division of the Human Microbiome, and Its Impact on Health and
589 Disease." *Clinical Microbiology Reviews* 35 (3): e0014021.

590 <https://doi.org/10.1128/cmr.00140-21>

591 Nie, Jie, Daniel R. Utter, Kristopher A. Kerns, Eleanor I. Lamont, Erik L. Hendrickson,
592 Jett Liu, Tingxi Wu, Xuesong He, Jeffrey McLean, and Batbileg Bor. 2022. "Strain-
593 Level Variation and Diverse Host Bacterial Responses in Episymbiotic
594 Saccharibacteria." *mSystems* 7 (2): e0148821.

595 <https://doi.org/10.1128/msystems.01488-21>

596 Olson, Robert D., Rida Assaf, Thomas Brettin, Neal Conrad, Clark Cucinell, James J.
597 Davis, Donald M. Dempsey, et al. 2023. "Introducing the Bacterial and Viral
598 Bioinformatics Resource Center (BV-BRC): A Resource Combining PATRIC, IRD
599 and ViPR." *Nucleic Acids Research* 51 (D1): D678-89.

600 <https://doi.org/10.1093/nar/gkac1003>

601 Price, Morgan N., Paramvir S. Dehal, and Adam P. Arkin. 2010. "FastTree 2 -
602 Approximately Maximum-Likelihood Trees for Large Alignments." *PLoS One* 5 (3):
603 e9490. <https://doi.org/10.1371/journal.pone.0009490>

604 Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo
605 Yarza, Jörg Peplies, and Frank Oliver Glöckner. 2013. "The SILVA Ribosomal RNA
606 Gene Database Project: Improved Data Processing and Web-Based Tools."
607 Nucleic Acids Research 41 (Database issue): D590-96.
608 <https://doi.org/10.1093/nar/gks1219>

609 Schloss, Patrick D., Sarah L. Westcott, Thomas Ryabin, Justine R. Hall, Martin
610 Hartmann, Emily B. Hollister, Ryan A. Lesniewski, et al. 2009. "Introducing Mothur:
611 Open-Source, Platform-Independent, Community-Supported Software for
612 Describing and Comparing Microbial Communities." Applied and Environmental
613 Microbiology 75 (23): 7537-41. <https://doi.org/10.1128/AEM.01541-09>

614 Stamatakis, Alexandros. 2014. "RAxML Version 8: A Tool for Phylogenetic Analysis and
615 Post-Analysis of Large Phylogenies." Bioinformatics 30 (9): 1312-13.
616 <https://doi.org/10.1093/bioinformatics/btu033>

617 Takahashi, Shunsuke, Junko Tomita, Kaori Nishioka, Takayoshi Hisada, and Miyuki
618 Nishijima. 2014. "Development of a Prokaryotic Universal Primer for Simultaneous
619 Analysis of Bacteria and Archaea Using next-Generation Sequencing." PloS One 9
620 (8): e105592. <https://doi.org/10.1371/journal.pone.0105592>

621 Takenaka, Ryota, Yoshiteru Aoi, Noriatsu Ozaki, Akiyoshi Ohashi, and Tomonori
622 Kindaichi. 2018. "Specificities and Efficiencies of Primers Targeting Phylum
623 Saccharibacteria in Activated Sludge." Materials 11 (7).
624 <https://doi.org/10.3390/ma11071129>

625 Torrella, F., and R. Y. Morita. 1981. "Microcultural Study of Bacterial Size Changes and
626 Microcolony and Ultramicrocolony Formation by Heterotrophic Bacteria in
627 Seawater." *Applied and Environmental Microbiology* 41 (2): 518-27.
628 <https://doi.org/10.1128/aem.41.2.518-527.1981>

629 Tsurumaki, Megumi, Motofumi Saito, Masaru Tomita, and Akio Kanai. 2022. "Features
630 of Smaller Ribosomes in Candidate Phyla Radiation (CPR) Bacteria Revealed with
631 a Molecular Evolutionary Analysis." *RNA* 28 (8): 1041-57.
632 <https://doi.org/10.1261/rna.079103.122>

633 Yang, Yun-Wen, Mang-Kun Chen, Bing-Ya Yang, Xian-Jie Huang, Xue-Rui Zhang,
634 Liang-Qiang He, Jing Zhang, and Zi-Chun Hua. 2015. "Use of 16S rRNA Gene-
635 Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant
636 Bacteria in Mouse Feces." *Applied and Environmental Microbiology* 81 (19): 6749-
637 56. <https://doi.org/10.1128/AEM.01906-15>

638 **Captions**

639

640 **Figure 1. *In silico* PCR amplifications mapped on “*Candidatus Saccharibacteria*” 16S** 641 **phylogenetic trees**

642 The results of *in silico* PCR amplifications are mapped on the 16S phylogenetic trees to
643 visualize the existence of “*Candidatus Saccharibacteria*” lineages not amplified by
644 qPCR primers. a) Maximum Likelihood (ML) phylogenetic tree obtained using the 16S
645 rRNA gene sequences extracted from 114 “*Candidatus Saccharibacteria*” genomes
646 harboring complete 16S and 23S genes. The inner circle (violet) shows the 16S rRNA
647 most similar to those sequenced by D’auria et al. 2023, the second (in orange) the *in*
648 *silico* amplification of the 23S rRNA gene on the relative genome assembly; the other
649 circles report the *in silico* 16S rRNA gene amplifications of the primers in legend. b) ML
650 phylogenetic tree performed on the 2,978 16S rRNA sequences annotated as belonging
651 to “*Saccharimonadia*” group in the SILVA database. The circles report the the 16S rRNA
652 most similar to those sequenced by D’auria et al. 2023 (in violet) and the the *in silico*
653 16S rRNA gene amplifications of the primers in legend.

654

655 **Figure 2. Comparison between the “*Candidatus Saccharibacteria*” quantification** 656 **performed by 16S metagenomics and the four tested qPCR protocols**

657 The “*Candidatus Saccharibacteria*” relative quantification obtained by 16S
658 metagenomics and the four qPCR protocols tested on the 61 saliva samples analysed
659 in this study are compared. a-d) Linear regression graphs of the “*Ca. Saccharibacteria*”
660 percentages obtained by 16S metagenomics against the 23S qPCR protocol

661 (SacchariF-SacchariR) (a), 16S p1 (TM7314F/TM7-910R) (b), 16S p2
662 (Sac1031-F/Sac1218R) (c) and 16S p3 (TM7_16S_590F/TM7_16S_965R) (d). For
663 each plot, R and p-values are reported on the top and the confidence interval is shown
664 in gray. e) Boxplot graph of the “*Ca. Saccharibacteria*” percentages measured by 16S
665 metagenomics and the four qPCR protocols. The median values are compared between
666 16S metagenomics and the other four qPCR protocols by Wilcoxon test (p-values are
667 reported on the plot).

668

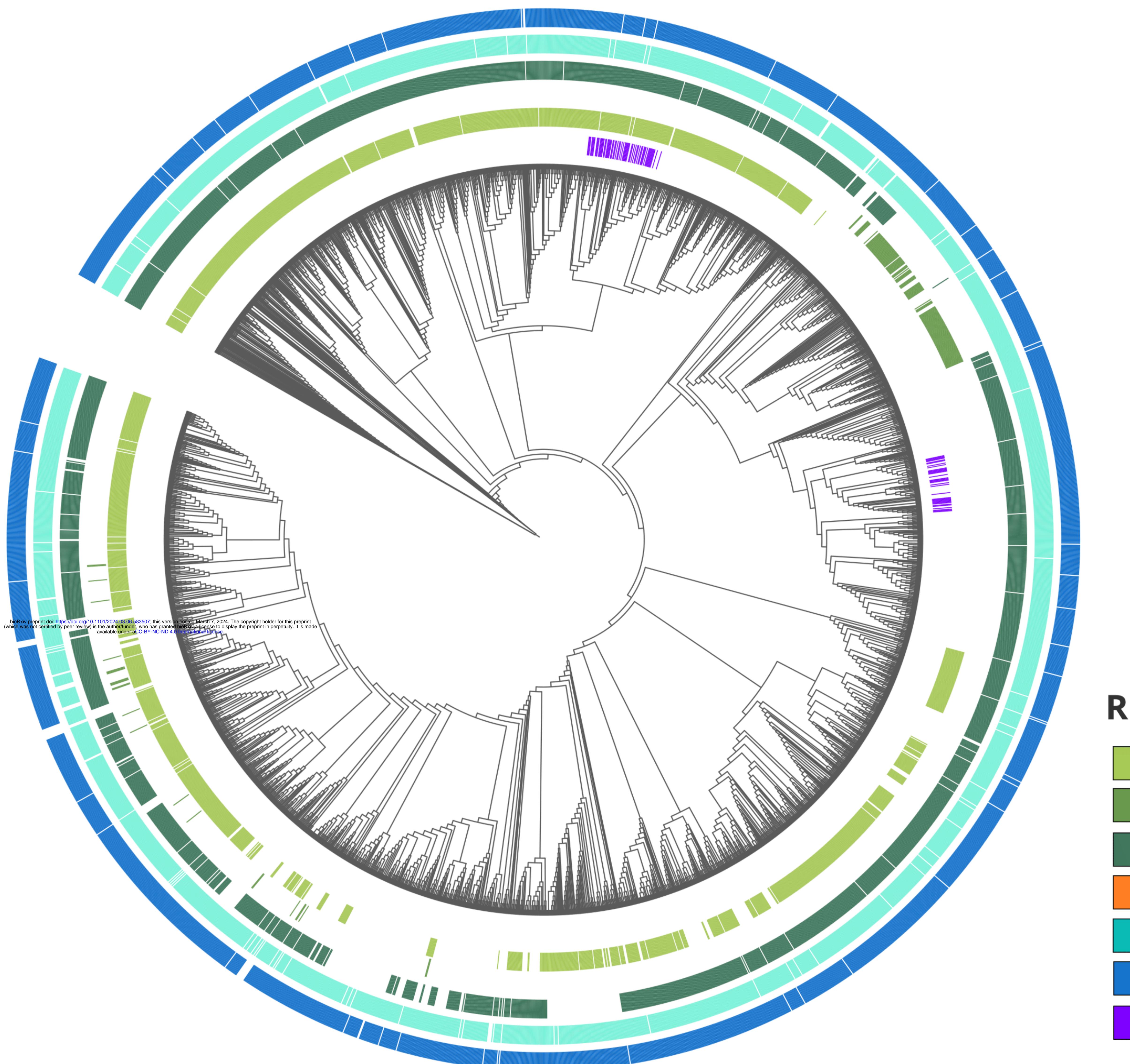
669 **Figure 3. Comparison of “*Candidatus Saccharibacteria*” quantification in allergic
670 vs control patients obtained by 16S metagenomics and four qPCR protocols**

671 a-e) Boxplots reporting the percentage of “*Candidatus Saccharibacteria*” determined by
672 a) V3-V4 16S amplicon metagenomics, b) 23S (SacchariF-SacchariR), c) 16S p1
673 (TM7314F/TM7-910R), d) 16S p2 (Sac1031-F/Sac1218R) and e) 16S p3
674 (TM7_16S_590F/TM7_16S_965R). The values obtained from allergic vs control
675 patients were compared using Wicoxon test and the p-values are reported on the bars.

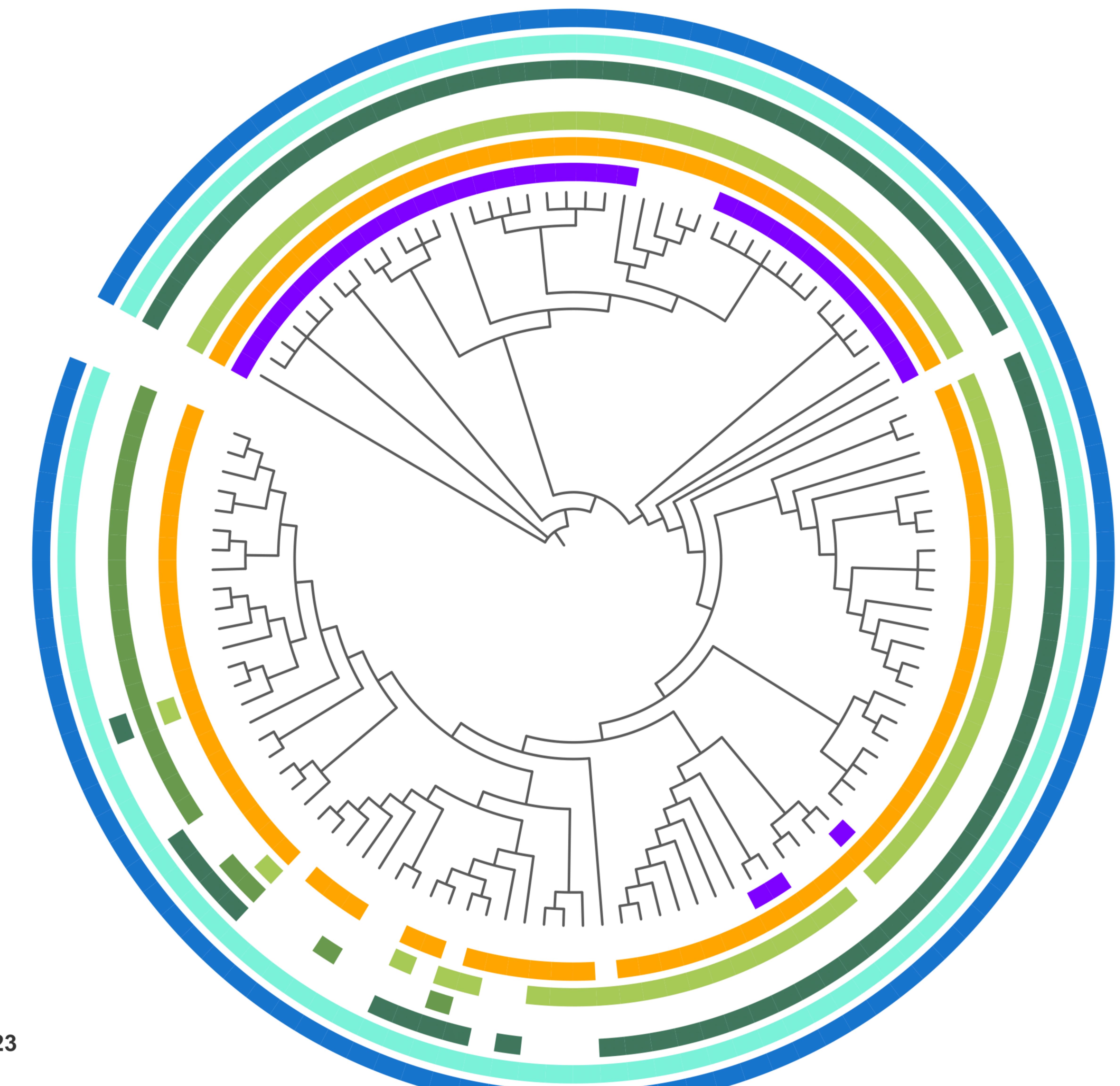
676

677 **Figure S1. Difference in “*Candidatus Saccharibacteria*” percentages obtained by
678 23S qPCR and V3-V4 16S rRNA metagenomics**

679 The two histograms report the distribution of the differences between the “*Candidatus
680 Saccharibacteria*” percentages obtained by 23S qPCR quantification and V3-V4 16S
681 rRNA metagenomics. On the top, the distribution of the differences on the samples from
682 allergic subjects, on the bottom those from controls. Dashed vertical lines indicate -5
683 and +5 percentages.

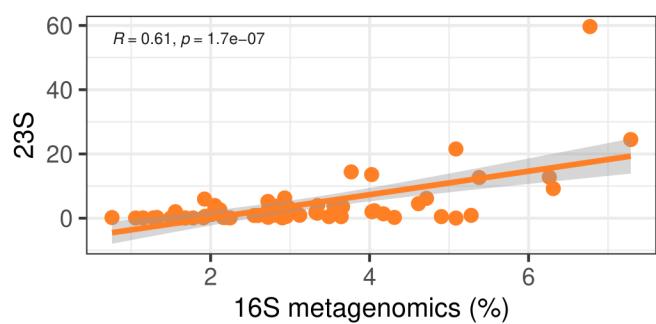
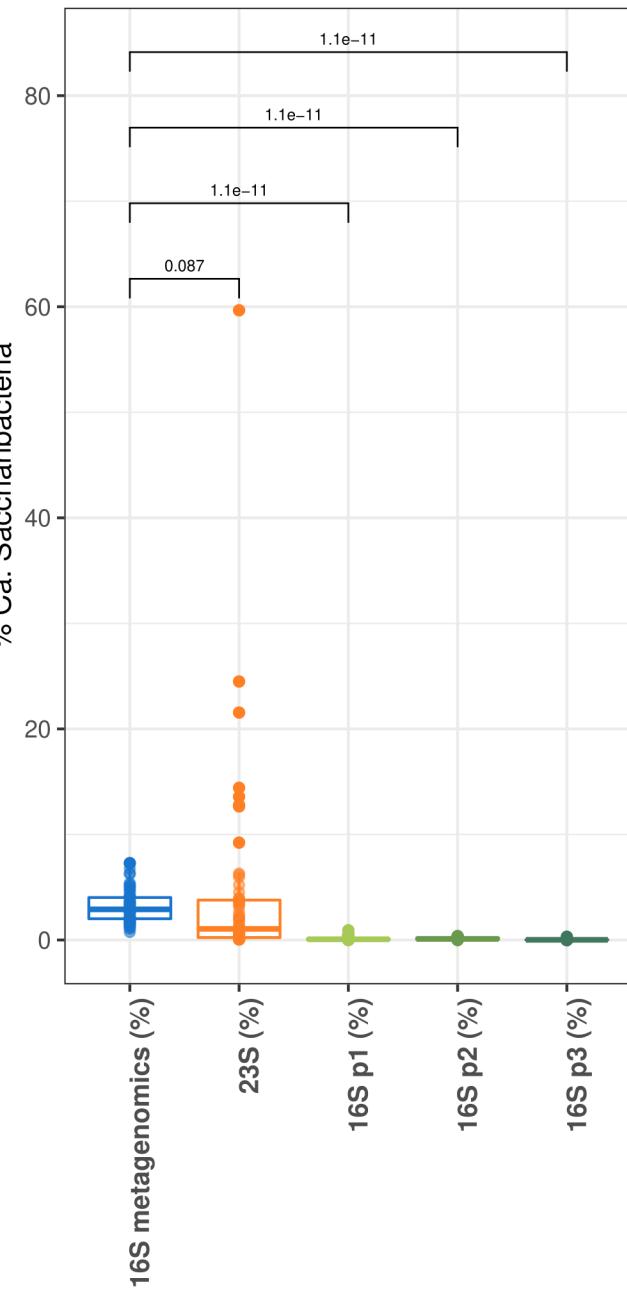
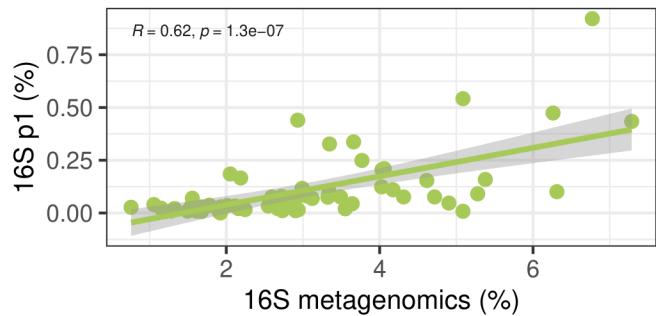
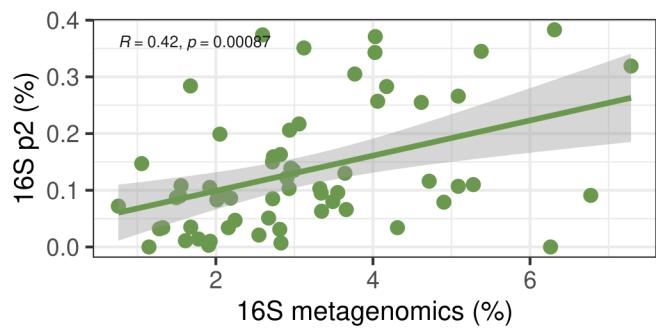
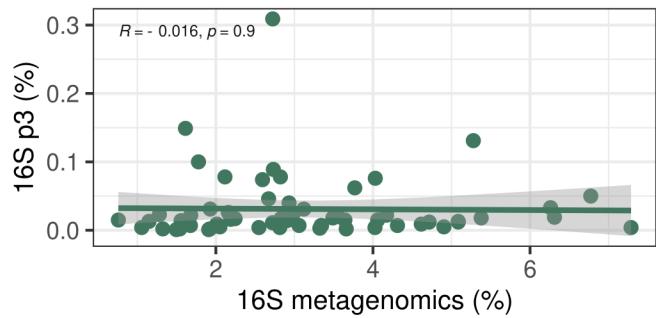

684

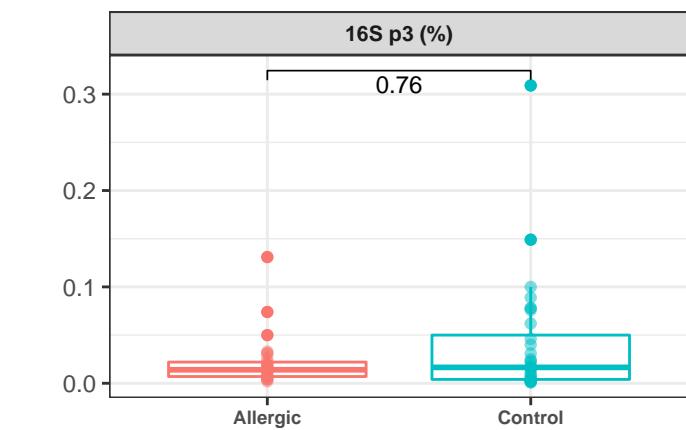
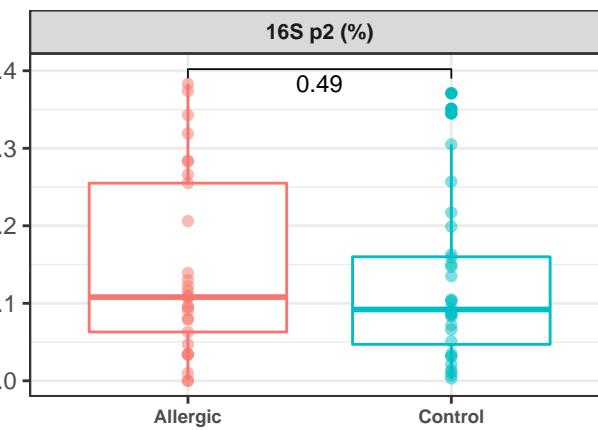
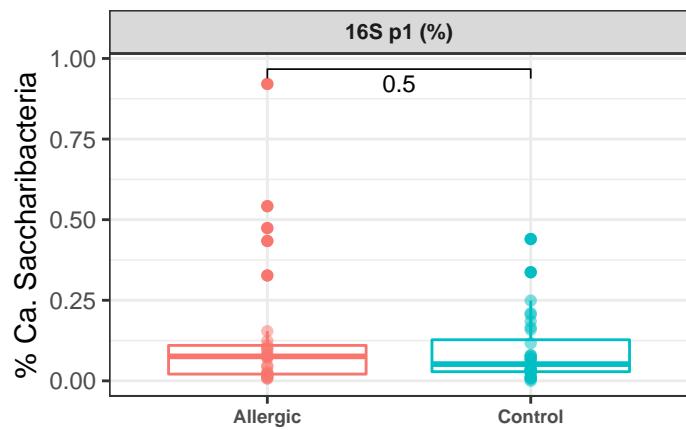
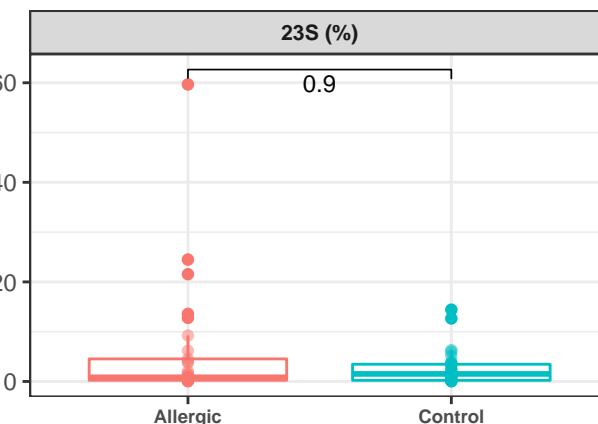
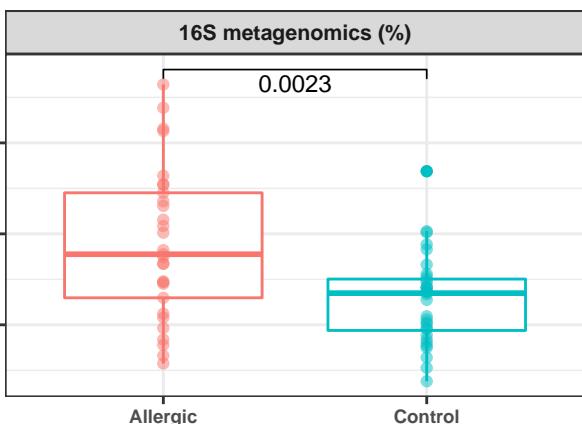
685 **Figure S2. Phylogenetic tree of the qPCR 23S amplicon sequences**


686 On the left, the Maximum Likelihood (ML) phylogenetic tree of the sequences
687 representative of the Operative Taxonomic Units (OTUs) of the amplicons obtained
688 using the 23S primers (SacchariF-SacchariR) and background sequences retrieved
689 from nt NCBI database after Blastn search. In red, the “*Candidatus* Saccharibacteria”
690 clade and in gray the clade including sequences of non-*Candidatus* Phyla Radiation
691 (CPR). The name of the OTUs and the number of sequences included in each OTU are
692 reported on the leaves on the tree. The labels of the leaves of the sequence retrieved
693 from the NCBI nt database are omitted.

a)

SILVA database






b)






Genomes

Rings legend

- 16S_p1 primer set
- 16S_p2 primer set
- 16S_p3 primer set
- 23S primer set
- 16S_panbacteria primer set
- 16S_meta primer set
- Best Hit Blast D'Auria et al. 2023

a)**e)****b)****c)****d)**

Protocols	In Silico PCR Coverage on 16S rRNA sequences of the SILVA Database	In Silico PCR Coverage on 16S/23S rRNA sequences of Ca. Saccharibacteria genome dataset	In vitro PCR Level of correlation with V3-V4 16S rRNA metagenomic
16S_p1	64%	73%	
16S_p2	6%	19%	low correlated
16S_p3	83%	75%	
23S	/	95%	highly correlated
16S_meta	97%	100%	/
16S_panbacteria	97%	100%	/