bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RealtimeDecoder: A fast software module for online clusterless

decoding

Joshua P. Chu'®, Michael E. Coulter®*?, Eric L. Denovellis®»**, Trevor T. K. Nguyen®*7,

Daniel F. Liu*>**, Xinyi Deng®, Uri T. Eden®, Caleb T. Kemere!", Loren M. Frank®3*"

1 Department of Electrical and Computer Engineering, Rice University

2 Department of Physiology, University of California, San Francisco

3 Howard Hughes Medical Institute, University of California, San Francisco

4 Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
5 Department of Statistics and Data Science, Beijing University of Technology

6 Department of Mathematics and Statistics, Boston University

7 SpikeGadgets, Inc.

@Equal contribution

* Corresponding authors: caleb.kemere@rice.edu, loren.frank@ucsf.edu

Abstract

Decoding algorithms provide a powerful tool for understanding the firing patterns that
underlie cognitive processes such as motor control, learning, and recall. When implemented
in the context of a real-time system, decoders also make it possible to deliver feedback based
on the representational content of ongoing neural activity. That in turn allows experimenters
to test hypotheses about the role of that content in driving downstream activity patterns

and behaviors. While multiple real-time systems have been developed, they are typically

1/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

implemented in C++ and are locked to a specific data acquisition system, making them
difficult to adapt to new experiments.

Here we present a Python software system that implements online clusterless decoding
using state space models in a manner independent of data acquisition systems. The
parallelized system processes neural data with temporal resolution of 6 ms and median
computational latency <50 ms for medium- to large-scale (32+ tetrodes) rodent
hippocampus recordings without the need for spike sorting. It also executes auxiliary
functions such as detecting sharp wave ripples from local field potential (LFP) data.
Performance is similar to state-of-the-art solutions which use compiled programming
languages. We demonstrate this system use in a rat behavior experiment in which the
decoder allowed closed loop neurofeedback based on decoded hippocampal spatial
representations . This system provides a powerful and easy-to-modify tool for real-time

feedback experiments.

Introduction

The brain enables animals to keep track of information about internal states and the
external world and to use that information to guide action selection. This tracking engages
neural representations, and thus understanding how those representation relate to internal or
external variables can help us understand mental processes.(Knierim). Decoding
analyses provide one approach to understanding neural representations: an initial encoding
model is built that relates observed variables to spiking, and then this model is inverted to
enable predictions of observed variables based on spiking data (Brown et al.). This
approach has been used to characterize representations of neural activity from brain
regionssuch as the hippocampus (Davidson, Kloosterman, and Wilson ; Karlsson and
Frank ; Pfeiffer and Foster).

The classic application of decoding was to assess how well a given variable could be read

2/31

10

11

12

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

out from ongoing neural population activity when that variable (e.g. the position of a limb or
of the animal in space) could be observed. When such a correspondence has been established,
decoding can also provide insight into representations expressed in the absence of an
observable variable. In the hippocampus, for example, the spiking of ”place cells” can be
decoded both during movement and during periods of immobility. Strikingly, there are times
when this spiking corresponds not to current location but instead to other places in the
animals environment or even other environments (Carr, Jadhav, and Frank ; Foster ;
Olafsdéttir, Bush, and Barry ; Pfeiffer). Similarly, decoding has also enabled the
development of neurofeedback systems, such as brain-machine interfaces, that can translate
neural activity patterns into useful outputs (e.g. moving a cursor on a screen or generating
speech in patients with paralysis) (Daly and Wolpaw ; Luo, Rabbani, and Crone).
Historically decoding hippocampal spatial activity patterns used a decoder which relied

on sorted spikes (spikes that can be ”clustered” and thereby assigned with reasonable

confidence to a single neuron)(Davidson, Kloosterman, and Wilson ; Davoudi and Foster
: Diba and Buzsaki ; Farooq et al. ; Grosmark and Buzsaki ; Gupta et al.
; Karlsson and Frank ; Pfeiffer and Foster ; Shin, Tang, and Jadhav ; Wu
et al. ; Zheng et al.). In this decoder a Poisson model was used to describe the

neural dynamics of individual place cells, where the Poisson rate is directly related to the
place field (Brown et al. ; Meer, Carey, and Tanaka ; K. Zhang et al.).

One disadvantage of the sorted spikes decoder is that it excludes lower amplitude or
otherwise non-clusterable spikes. These spikes nevertheless contain valuable information for
decoding, and alternative models known as clusterless decoders have been developed. (Deng,
Liu, Karlsson, et al. ; Deng, Liu, Kay, et al. ; Denovellis et al. ; Kloosterman
et al. ; Williams et al.). These decoders use many more of the recorded spikes
(typically all that pass a specific amplitude threshold), and provide more accurate decoding

compared to sorted spike decoders in cases that have been tested (Deng, Liu, Kay, et al.

3/31

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

; Kloosterman et al.). Subsequent studies have applied these methods to derive
scientific conclusions (Gillespie et al. : Hu et al. : Michon et al.).

Clusterless decoding thus offers a powerful tool for identifying the content of neural
representations, and real-time implementations have the potential to enable the use of this
tool in closed-loop experiments. Current implementations are tied to a specific data
acquisition system and written in a compiled programming language, however, which
increases the difficulty of customization for end users without more advanced programming
experience (Ciliberti, Michon, and Kloosterman). We therefore developed
RealtimeDecoder our software program that implements the state space models in
(Denovellis et al.) for online, real-time clusterless decoding
(https://github.com/LorenFrankLab/realtime _decoder). The system is parallelized and
written entirely in Python for ease of use for both users and developers. Despite using an
interpreted language, the software achieves computational latencies similar to state-of-the-art
solutions. An added benefit is the implementation of a state space model, allowing the
experimenter to use both likelihood and posterior for downstream analysis.

In this work we describe the architecture and performance of RealtimeDecoder. We focus
on the latencies of computations and feedback, which are especially relevant in a real-time
context. We also demonstrate the system’s use in a live closed-loop experiment for proof of
concept, and we briefly discuss some results. Our hope is that this work will help advance
scientific research by enabling other closed-loop experiments that can elucidate the role of

hippocampal spatial representations.

4/31

39

40

2

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

https://github.com/LorenFrankLab/realtime_decoder
https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods "
Model formulation 61
The clusterless decoder used in this work is based on (Deng, Liu, Kay, et al. ; Denovellis &
et al.). Similar to the sorted spikes decoder, this decoder uses a Bayesian framework. 3
The model is governed by the equation 64

xk’Hk) p(ANk) {mk} ’ Tk, Hk)
p(ANk) {mk} | Hk)

p(er AN, (e, Hy) = 2 0

where for a given time bin k, z; is decoded position, ANy is the number of spikes emitted, e
and {my} is the set of marks of length ANy, that is, vectors associated with each spike 66

observed in time bin k. In practice the marks used in the model are spike waveform features e

such as peak amplitudes. Lastly Hj represents the spiking history from time 1 to time k. 68
The distribution p(zx|Hy) in Eq. 1 is given by 60
py | Hy) = /p(ifk | 2r—1) p(ep—1 | ANkt , M1, Hy1) dog (2)

assuming that (1) transitions from zj_; to z; are Markovian, and (2) the distribution of the o
current decoded position is independent of past spiking history, given the previous decoded =
position (Deng, Liu, Kay, et al.). 72

For the clusterless likelihood, the relation is 73

i=1:F

P(ANy , i | 2, Hy) = p(ANSE) {Mh Y pan; [2)
E AN; (3)
x H H [Ni(te, Mg ;|) Ak exp[—A(te | mr) Ay]
i=1 j=1
where Hfﬁ’i [Ni(te, g, 5 | 20) Ag] exp[—Aq(ty | 1) A] is the likelihood for electrode group 74
i=1,...,E. (Our model assumed p(ANy , My | zx , Hr) = p(ANy, my | xx)). For each 75

5/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

electrode group, the product [Ai(ty, mj, ; | 2x)Ax] exp[—Ai(tx | 2x)Ag] is computed for every
spike 7 within time bin k. If there are no spikes observed for electrode group ¢ in time bin k,

then that electrode group’s likelihood becomes

exp[—A(t | T1)Ax], AN} = (4)

The likelihood consists of intensity functions

A’L t , =21 . — i 5J
(k mk,j |[L'k) H 7T({E)

Pz(ﬂﬁk)

where p; is the mean firing rate of electrode group i and m(z) is the occupancy, a

Ai(te | zx) =

distribution of positions the animal has visited. p;(xy) is the probability of observing any
spike given for electrode i, given the position. Lastly p;(zx, T?L}LC j) represents a joint
probability distribution over position and marks. During the model learning phase, no
computation is performed—each mark m is simply saved along with the position z at which
the mark was observed. Once the learning phase is complete, p(x,m) is estimated on-the-fly
for each observed mark ;. First a weight is computed for each mark m, that has been

saved in the model, using a Gaussian kernel:

D
%2 = Z (mo,d - ml,d)2 (7)

] (8)

Wy = expl—
oV 2 p[202

where D is the number of mark dimensions and o is a user-defined parameter. Then a

weighted histogram representing the estimate p(x,m) is computed using the positions {z,}

6/31

76

4

78

79

80

81

82

83

84

85

86

87

88

89

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

saved during the learning phase, and the corresponding weights {w,} described above. %
Finally the posterior distribution can be written as o1
p(wy | ANy, {mix}, Hy,) o< p(zr|Hy) p(ANg, {nig} | 2y, Hy) (9)
where p(x;|Hy) is given in Eq. 2 and p(AN, {7} | %, Hy) is given in Eq. 3. 92
Software architecture 0
a
Data

. RealtimeDecoder
Acquisition :

EncoderProcess
(1..E)

b l RippleProcess
. (1..R)

Figure 1. (a) Data flows through different Process nodes in the RealtimeDecoder system,
which are responsible for different computations.

DecoderProcess
(1..2)

MainProcess
Trigger

tripple

Since the clusterless likelihood in Eq 3 is a product over electrode groups, this formula %
presents a straightforward scheme for parallelization. Each factor in can be computed %
simultaneously before being combined into the overall likelihood. The likelihood is then used o
to estimate the posterior distribution in Eq. 9. o7

To carry out these computations RealtimeDecoder uses three different input data %8
streams: LFP, spike events (particularly the waveform data), and position. An overview of o
the computational approach is shown in Fig. 1. Input data (ellipses) flow to parallel 100

processes (rounded rectangles) which compute intermediate quantities (rhomboids), resulting 10

7/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in a reward trigger output (parallelogram) if a specific, experimenter specified representation 1
is detected. To send messages between different processes, we used the low-latency 103
messaging protocol MPI (Walker and Dongarra). 104

The primary objective of online real-time clusterless decoding is to estimate the posterior 1o
distribution in relation 9, which is a conditional probability distribution over a variable . In 10
this application z represents linearized (1D) position. Recall that the clusterless likelihood in 107
Eq. 3 is a product over electrode groups, which presents an obvious target over which to 108
parallelize. The overall software architecture reflects this feature, as the computation of Eq. 100
3 can be split among multiple processes to reduce total system latency. These 110
sub-computations is then be aggregated to form the posterior probability distribution. 11

Additionally the system can process LFP data to extract time boundaries in which LEP 11

events (specifically sharp wave ripples or SWRs) occur. Experimenters thus have multiple 13

options when using the system; for example they may specify that only replay with a 114
concomitant SWR will trigger neurofeedback. 115
RealtimeDecoder is implemented as different *Process objects, namely MainProcess, 116

RippleProcess, EncoderProcess, and DecoderProcess which serve different computational 17

functions (Fig 1). Each instance of these objects (with the exception of the event-driven 118
GuiProcess) implements a polling while loop which typically consists of the following 119
pseudocode: 120
MainProcess 121

The MainProcess coordinates all other Process instances by gathering information about the 122
binary data they output to file and monitoring their status to check for runtime errors, 123
among other functions. Inside the MainProcess runs a custom data handler that processes 12
data computed by other *Process objects, such as position information, ripple onset times, 12

a new posterior distribution estimate, etc. In our usage this object detects replay events; 126

8/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

while no errors or stop signal not triggered do
check for messages from other processes

if message ready
process message
endif

if data ready
process data
sent results to other processes
write results

endif

endwhile

Listing 1. Pseudocode example for a Process object

upon detection it sends a signal to dispense reward.

RippleProcess

An instance of a RippleProcess processes LFP data and is primarily responsible for

detecting sharp wave ripples. This occurs via the following procedure: (1) LFP from the

data acquisition system is band-pass filtered to the SWR frequency band (150-250 Hz), (2)

an estimate of SWR power is obtained by applying a low pass filter to the square of the

band-pass filtered data, and finally (3) the baseline (mean) power is estimated. The start of

a SWR is then marked when the z-score of this power estimate exceeds a user-defined

threshold (typically at least 3).

EncoderProcess

An instance of an EncoderProcess manages the encoding model for one or more electrode

groups (e.g. a single tetrode). Typically if the number of available threads permits, a single

9/31

127

128

129

130

131

132

133

134

135

136

137

138

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

instance will handle just one electrode group for minimum computational delay. During the 1
training period, an EncoderProcess adds spikes to the encoding model and also computes 140
an estimate of the joint mark intensity function (Deng, Liu, Kay, et al.). When the 141

training period is over, spikes are no longer added to the encoding model, but the joint mark 1a

intensity function continues to be estimated. 143
DecoderProcess 144
The DecoderProcess gathers the joint mark intensity functions sent by instances of an 145
EncoderProcess. At every user-defined time bin step, it computes the likelihood and 146

posterior distribution of the clusterless decoding state space model. It sends these estimates 147
to the MainProcess to be further processed by a custom data handler. This data handler is 14

developed according to the needs of the particular experiment and may implement features 1

such as remote spatial representation detection. 150
GuiProcess 151
The GuiProcess increases user-friendliness of the system. It consists of a visualization 152

window that displays the likelihood, posterior, and state probabilities in real time. It also 1s3
includes a dialog window that allows the user to change parameters during the course of the 1s

experiment, as well as some control options to start and stop the software as a whole. 155

System characterization 156

The utility of an online decoding system for real-time feedback depends in large part on its s
latency. For example, if one chooses too small of a time step to update the posterior 158
distribution estimate, the system cannot compute the necessary quantities quickly enough to 1s
be suitable for real-time use. The overall latency stems from the latencies of four major 160

components (Fig 2a): (1) Network latency, (2) spike incorporation latency, (3) posterior 161

10/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

computational latency, and (4) event detection latency, which are further expanded in panel 1

(b). Each of these latencies is expanded in further detail below. 163
a b Network latency
. 1.0
Data Acquisition - RealtimeDecoder 0.8 1
0.6 1
Netumei (Eenay Spike incorporation co:\(:ilt;rtignal Event detection 0.4 1 %
latency latency
latency 0.2 A
——
0-0 T T T
Ifp spikes pooled
Latency (ms)
C e N .
Overall p(x, m) estimation latencies
Fmmmmmmmmmmmmm) 10004 || |
1 1 e
1 1 o |
1 S1 S2 83 84 8 500/ m
1 1
1 1
1 1 o |H—||Hll|nnl||||||lll|r1..-m. .
: : | 0 1 2 3 4 5
| > Latency (ms)
f , .
— A} —>«— At delay — teur 2 plx, m} estimation IatenEy
£ AL F 2 st
= .u-** y = 0.496%¢/1e5 + 1.023
d c1q ¥ 2
2 e & 1
S é";- 1]
F=-===-==-===-=-=-- . L4 0 25000
: : 0 50000 100000 150000
S1 So . S3 S4, spike
1 1
| : | | :>< g Computational latency
' I
1 - 44
> £
Z
< > 5 21
< At > teur]
=
0

posterior update

Figure 2. (a) The four major components contributing to overall latency. (b) Network
latency. (c)-(d) Four spikes are shown. The darker shade indicates when a spike occur, and
the lighter shade indicates when it is in usable form for a DecoderProcess. Note that spike 4
is in usable form subsequent to t.,.,. (c¢) Time bin for when Atgeq, > 0. (d) Time bin for
when Atgeqy = 0. (e) Overall distribution of latencies due to estimation of p(x, m) using an
example tetrode. (f) p(z, m) estimation latencies as a function of number of spikes in the
encoding model. (g) Computational latency induced by update of the posterior distribution.

11/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Network latency 164
The network latency (Fig 2b) is the time difference between when data (spikes, LFP, 165
position) is sent out by the data acquisition system, and when that data is actually 166

requested by RealtimeDecoder. This type of latency depends on different factors such as 167
network speed, the type of machine running the decoder, etc. Spikes have a higher latency 168
than LEP due to its size, as the entire spike waveform/snippet is transmitted over the 160
network. Nevertheless the median network latency of the pooled data (spikes and LFP 170
combined) is <1 ms when the data acquisition program executes on the same host machine 1

as RealtimeDecoder. 172

Spike incorporation latency 173

The spike incorporation latency refers to the maximum length of time between when a spike 17
occurs and when it is sent to the decoder in a usable form. To be usable the joint mark 175

intensity must be estimated with the spike and be visible to a DecoderProcess instance. At 17

that point in time, the spike is ready to be incorporated into the posterior distribution 177
estimation via an update of the likelihood. 178
The spike incorporation latency is a user-defined parameter and therefore a constant 179

value. It must be long enough to account for the latency incurred from estimating the joint s
mark intensity function, a step whose computation time typically increases with the number 1
of spikes used to generate the encoding models utilized by the decoder. 182

In RealtimeDecoder, the estimation of the posterior distribution occurs one time bin at a 1ss
time. The data incorporated into each estimation step are those contained within a certain 1s
time window. This window is directly impacted by Atgeq, and At, the time bin size. 185

teurr Tefers to the time at which an update to the posterior occurs. Atgeq, (a non-negative s
value) refers to how far behind ¢, should define the upper edge of the window. A 187

combination of Atge,, and At defines the lower edge. In other words, the window is defined 1ss

12/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

by [teurr — Atdetay — AL, teyrr — Atgeray). The spike incorporation latency is the sum
At getay + At.

Fig 2b-c illustrates the effect of the spike incorporation latency on the boundaries of the
time window when an update to the posterior is requested at time t.,,.. In Fig 2¢, Atgejqy is
chosen to be a non-zero value so the upper edge of the window lies at a time prior to ¢....
Spikes s1, s9, and s3 are incorporated into the update of the posterior.

If Atgeray = 0 (Fig 2d), then the upper edge of the window is simply t.,,.. However, spike
s4 is NOT incorporated into the posterior update because it has not been transformed into a
usable form until a time past t.,,,. For this reason, it is advised to set Atgerqy > 0.

Fig 2e-f illustrates some considerations for determining an appropriate value to set as the
spike incorporation latency. The joint mark intensity (JMI) in Eq. 5 must be estimated,
where estimation of p(z,m) is the most computationally expensive component. Fig 2e shows
the overall distribution of the p(z, m) estimation latencies. However, this is not the complete
picture: Fig. 2f shows that these latencies are a function of number of samples in the
encoder model. It thus illustrates typical operation of RealtimeDecoder: at some point the
encoding model is considered trained, so no more spikes are added to the model and the
estimation latency no longer increases linearly. On our test machine the estimation latency
increased at an approximate rate of 0.5 ms additional latency for every 10000 additional
spikes in the encoding model.

In general, the more spikes are expected to be added to the encoding models, the higher
the user must set the value of the spike incorporation latency. Too low of a value would
mean some JMI’s cannot be computed and incorporated into the posterior estimation step in

time, which could adversely affect the quality and accuracy of the posterior.

13/31

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

189

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Posterior computational latency

The posterior computational latency is the computation time required to estimate the

posterior distribution for a single update step. Fig 2g shows the distribution of this latency

(median value 1.722 ms on our test machine). The latency is affected by multiple factors,

including how many electrodes RealtimeDecoder is configured to analyze and how many

states are in the state space model. The distribution in Fig 2g is useful for informing the

user what the time bin size At should be. We advise setting At to at least the 75th

percentile of this distribution. If At is too small, then the decoder would not be able to

estimate the posterior quickly enough and would fail to operate in real time.

Event detection latency

The event detection latency is a user-defined parameter relevant for replay detection. Similar

to the spike incorporation latency, it is a constant value. At each time bin step, a window is

drawn. If the current timestamp is ..., then the event detection window is defined by

[tewrr — Atevent, tewrr] Where Ateyen is the event detection latency, a positive value denoting

the size of the window. For example if At e, is 20 ms, then a putative representation will

have been expressed for at least 20 ms before it is detected by the software. A higher value

of the event detection latency will theoretically reduce the number of spurious detections, at

the cost of increasing the reaction time to a true event.

Summary

Overall our decoder performs comparably to state-of-the-art solutions (Table 1) despite

being written entirely in Python.

Scalability

The estimation of the JMI depends on the mark dimensionality, where Fig. 3(a)

14/31

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Decoder Network Spike Posterior Event
latency incorporation | computation | detection
latency latency latency
Ciliberti 2018 0 ms 10 ms ~2.2 ms 30 ms
(32 tetrodes) (median, (median)
localhost)
This work 0.102 ms 12 ms 1.722 ms 30 ms
(49 tetrodes) (median, (median)
localhost)

Table 1. RealtimeDecoder latency performance relative to the decoder in (Ciliberti,
Michon, and Kloosterman).

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

import numpy as np
def generate_mark_data(mark_dim, num_marks_in_model, max_position_bin):

marks = np.ones((num_marks_in_model, mark_dim))
positions = np.zeros(num_marks_in_model)
for ii in range(num_marks_in_model):

positions[ii] = ii % max_position_bin

return marks, positions

Listing 2. Test input generation for characterizing effect of mark dimensionality on
computational latency.

demonstrates this relation. Here test inputs were generated deterministically according to
Listing 2, where all spikes were identical in magnitude and the distribution of positions was
uniform. Note that different test inputs are not expected to change the relations
demonstrated by Fig 3(a) since the actual values of the marks and position do not matter
when only latency measurements are of concern.

Although the computational latencies increase with the number of mark dimensions, the
multiplier for this increase is less than the ratio of a given mark dimensionality to a reference

mark dimensionality. As an example, increasing the dimensionality from 1 to 16 does not

15/31

235

236

237

238

239

240

241

242

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

b

JMI computational latency

0.15
0.14
0.13

n

€ 0.12 -
3 0.11 A
]

2 0.10

-

0.09
0.08

0.07

Mark dims.

L]
o
o
o

Latency (us)

0 250 500 750 1000
Number of marks in model

LFP Computational Latency

500

400 A

300 A

200 A

100 A

106 115 116 118 121 123 124 128 129 132

H

1 2 3 45 6 7 8 9 10
Number of LFP channels

Figure 3. (a) Computational latency for estimation of the JMI depends on the mark

dimensionality. (b) LFP computational latency. Median values are labeled above the

distribution they were computed from.

result in a 16X increase in the computational latencies. This is a favorable characteristic

especially for experimenters using larger electrode groupings, such as for polymer or silicon

multielectrode arrays.

For the LFP processing path, users may want to process multiple channels on one given

RippleProcess instance. Real-time constraints dictate that every LFP sample must be

processed at Atppp < 1/fsprp where Atppp is the LEP processing time and fsppp is the

LFP sampling rate.

A RippleProcess instance is responsible for processing LFP by filtering the data into the

ripple band, estimating the ripple power (or a proxy of it), and determining the start and

end times of a ripple. Fig 3(b) shows the computational latency caused by processing LFP

data, for a single RippleProcess instance. Here the LFP sampling rate was 1500 Hz, so the

maximum LFP processing latency is 667 microseconds. These results demonstrate that 10

(and likely more) LFP channels may be processed with comfortable margin to meet the 667

microsecond real-time deadline. Recall that each *Process instance, with the exception of

GuiProcess, implements a polling while loop so this deadline represents the upper bound

since other tasks must be executed for every loop iteration.

16/31

243

244

245

246

247

248

249

250

251

253

254

255

256

257

258

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Overall Fig 3 demonstrates favorable scaling characteristics for higher dimensionality data.

Results

To demonstrate the utility of RealtimeDecoder we applied it to an experiment to study
internally driven memory retrieval. Specifically, we used RealtimeDecoder to deliver reward
based on decoded spatial representation to test whether rats can control the activation of
specific remote spatial representations . This endeavor is a type of experiment that can
decode neural activity while it is occurring and react on a timescale of 10s of milliseconds,
bringing researchers to a closer understanding of memory-related neural firing patterns.

In this experiment a Long-Evans rat was surgically implanted with a microdrive with 64
individually adjustable tetrodes (all animal surgery and care was performed in accordance
with UCSF TACUC guidelines). Over the course of several weeks, tetrodes were lowered into
the CA1 region of dorsal hippocampus. The rat was food-restricted and trained to run on a
two-arm maze where it collected sweetened milk reward from lick ports in the maze.

Once tetrodes were in place, the experiment began. Each day consisted of interleaved
RUN and REST sessions in the following manner: REST 1, RUN 1, REST 2, RUN 2, REST
3, RUN 3, REST 4. During REST sessions, the animal was placed in an enclosed box away
from the maze.

The structure of a RUN session was sub-divided into two tasks (Fig 4a), but the decoder
itself runs for the entire duration of a session. During task 1 (~ 10 min.), a light cue directed
the rat to explore each arm (12 visits each). The data collected from this exploration period,
and specifically spikes that occurred during periods of running, defined the encoding models
contained in the decoder.

In task 2, the animal no longer collected reward by running to the end of a maze arm.
Instead, reward was only available at a reward port at the center of the maze, located away

from each arm. When the decoder detected a remote representation of a target location

17/31

259

260

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Task phase 1: Task phase 2:
Cued exploration Reward triggered by
(encoding model) remote representation
Arm 1 Arm 2
Z Key:
Target Place field
= Reward port
Cue + = Light cue
reward %) Sound cue
O Milk reward
CA1 Detected
spikes representation

L
Realtime decoding
Duration: ~10 min Duration: 15-30 min
(12 visits each arm) (up to 75 rewards)
B X
52 52
2 2
Detected events < 1 e 1
(targetarm 1) 3 g
Phase 2: feedback £ £ »
Arm 1 Arm 2 Box Box
& S 1 1 i 0.8 2
100 0 100 100 0 100 ’ s
Time (msec) Time (msec) 06 8
X X =
K]
0.4 ET_!
g2 52 0.2 §
—— Rat position K 2 :
Detected events o 1 a
(targetarm2) g g 1 -0
£ =
— -
Box Box
100 0 100 100 0 100
Time (msec) Time (msec)
C Target: arm 1 Target: arm 2
1] [J o 0.0
c -~ -
[- -
> = - -
® c 50 Pl 50 -
- 3 [] - -
o 0 - -
5L g []
2 -~ e
8 ([2
[J
0 T T T T T 0 T T T T T
0 45 9 0 4.5 9
Session

Figure 4. (a) Overview of experiment to which the real-time decoder was applied. Each
session consists of two tasks. In task 1 an animal explores the maze arms. This data is used
to train the encoding models. In task 2 the animal receives reward for generating a remote
representation event. Although place cells and remote sequences are expected to be present,
they are not used directly by the clusterless decoder. (b) Example events captured by the
decoder. The blue trace is the actual position of the animal. A 100 ms window is drawn
around the time of event detection. (¢) Number of rewards for each session of neurofeedback.

18/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

unknown to the rat (the end of one arm), a sound cue was played and the rat had 3 seconds
to nose-poke and collect the milk reward. Importantly, remote representations were only
rewarded if the rat was near the center port, away from the arms. Detected representations
were required to be high-fidelity events i.e. with little representation in the off-target arm.

To detect a remote representation, a sliding window is applied to the posterior or
likelihood, which are both normalized to be a probability distribution. The distribution used
for detection is a user-defined parameter. Whenever the distribution is updated (i.e. one
time bin step has advanced), a window [ty — Atwindow, tewrr] 18 drawn around the current
timestamp. The average for each bin (more exactly, position bin) in the distribution is taken
across the window. If representation in the target region exceeds a threshold and
representation in the off-target region is below a (different) threshold, a remote
representation is considered to have occurred. Note that in this implementation we did not
use the continuity constraint that combines information from the previous timestep with the
spiking information from the current timestep. We also did not include a requirement for a
specific LFP signature, although there would likely be some overlap among the events
detected by this method and those that detect SWRs or population burst events (PBEs).
Some example events are shown in Fig. 4b.

One pilot animal performed this task and demonstrated that the closed-loop
neurofeedback worked as designed to detect and reward sustained remote representations
(Fig. 4b). After several days of preliminary neurofeedback, we introduced the requirement
that at least 2 tetrodes had spatially specific activity for event detection, so as to reward
population-level representations. With this requirement, we found that detected event count
increased across 9 feedback sessions targeting arm 1 and then after switching the target
region to arm 2, also increased across 9 more sessions (Fig. 4c). This provides a preliminary
suggestion that remote hippocampal content can be enriched via reward-based

neurofeedback. In subsequent experiments, we tested whether this finding was reproducible

19/31

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

284

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

across multiple animals and robust to additional controls. 310
Discussion m
Decoding neural activity allows experimenters to assess the structure of ongoing neural 312

representations. Here we present a real-time system that implements a clusterless state space a3
decoder. The specific implementation was designed to decode spatial representations from su
the spiking of hippocampal neurons, but the system would be relatively easy to modify to s

decode other variables. We improved upon previous real-time clusterless decoders by writing s

the software in pure Python to ease the experience of users intending to extend and 317
customize the system for their needs. Despite the use of Python, our system achieved 318
comparable performance to previous systems written with a compiled language, 319

demonstrating the viability of using an interpreted language for this specific application. We 320
also demonstrate the system in a pilot experiment, illustrating how it can be used to detect sz
the expression of specific hippocampal representations of space and to trigger experimental s
stimuli based on that expression. 323

One area for improvement is the scalability of our decoder. For best results, one hardware 32
thread is needed for every electrode group. However, the channel counts of neural recording s
devices are continuing to increase, and even with systems that have many computing cores, s
the number of channels per device will exceed current CPU capabilities. One potential 307
solution would be to leverage computing on GPUs so that a single hardware thread can 328
support multiple electrode groups. In order to fully take advantage of the GPU, this strategy s
would likely require some non-trivial programming to convert the synchronous computing 33
into asynchronous. Alternatively, it may be possible to develop dimensionality reduction 331
approaches that make it possible to carry out real-time clusterless decoding from very high 3
channel count probes, something that is currently only possible offline (Y. Zhang et al.). s

While these improvements can be made, the current RealtimeDecoder has numerous 334

20/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

applications within the neuroscience sub-field of hippocampal physiology by assisting
researchers to run many kinds of closed-loop experiments. Applications to other neuroscience
sub-fields are also possible. For example one may wish to design a brain-computer interface
which can decode memories its human operator is attempting to retrieve, and to
subsequently react in real-time based on that decoding. The computational approach
illustrated by RealtimeDecoder has the potential to inform solutions to other
decoding-based problems in general. Overall we believe our work serves as a valuable tool to

accelerate neuroscience research.

Appendix

Customization

Although we have endeavored to write a generalized software system for real-time decoding,
it is difficult to anticipate every use case. In some scenarios customization may be necessary
to fulfill the particular needs of the experiment. Here we cover different layers of
customization and explain the source code at a deeper level so that the user can better

understand the modifications that must be made for their specific application.

Customizing the data acquisition interface

As explained previously our software can be likened to a client in a client-server architecture,
where RealtimeDecoder is the client and the data acquisition system is the server which
sends preprocessed data for decoding. The decoder will work out of the box with Trodes
software; for other systems, the user will need to develop a DataSourceReceiver subclass to
interface with their data acquisition. The data acquisition is not constrained to be one that
streams live data, as in the case of Trodes. One may wish to feed pre-recorded data into

RealtimeDecoder, by reading from file. The parent class is defined in Listing 3, and an

21/31

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

3

G

1

352

353

354

355

356

357

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

explanation of the intended uses of each method follows. 358

class DataSourceReceiver (MPIClass, metaclass=ABCMeta)

def __init__(self, comm, rank, config, datatype:datatypes.Datatypes):
super().__init__(comm, rank, config)
self.datatype = datatype

@abstractmethod
def register_datatype_channel(self, channel):
pass

@abstractmethod
def activate(self):
pass

@abstractmethod
def deactivate(self):
pass

@abstractmethod
def stop_iterator(self):
pass

@abstractmethod
def __next__(self):
pass

Listing 3. Definition of DataSourceReceiver class

In the __init__() method comm is the MPI communicator, rank is the MPI rank, and 350
config is the dictionary obtained from parsing the configuration file (explained in the 360
previous chapter). Finally datatype is one of the datatypes enumerated in the datatypes 3
module. 362

The register_datatype_channel() method is used to add an electrode group that the e
object should receive from. Each electrode group may consist of multiple electrodes; for 364

example a tetrode consists of 4 electrodes. 365

22/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The activate() method signifies that the DataSourceReceiver is ready to receive data;
thus __next__() may return a non-None object.

The deactivate() method signifies that the object is no longer receiving data. In this
state __next__() should always return None.

The stop_iterator() stops the object from running entirely. Since the object can be
used as an iterator (hence the __next__() method), this method should at the minimum
contain a raise Stoplteration statement.

Lastly __next__() should be called whenever data is to be returned. If no data are
currently available or the object is in a deactivated state, then this method should return
None.

Upon a call to __next__(), any DataSourceReceiver object that returns a data point in
the following formats are automatically compatible with RealtimeDecoder. These are
further explained below.

Spike data points are implemented as Listing 4. timestamp is a value that marks the
timestamp of the data point and can be represented as a 32-bit unsigned integer.

elec_grp_id is an integer denoting the electrode group the data point is coming from. data

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

class SpikePoint(messages.PrintableClass):
"""Object describing a single spike event”"""

def __init__(self, timestamp, elec_grp_id, data, t_send_data,
t_recv_data):

self.timestamp = timestamp

self.elec_grp_id = elec_grp_id
self.data = data
self.t_send_data
self.t_recv_data

t_send_data
t_recv_data

Listing 4. Definition of SpikePoint class

23/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is the actual spike waveform data, a 2D array of shape (nch, nt) where nch is the number of
electrodes in the electrode group and nt is the number of time samples in the spike waveform.
t_send_data is a 64-bit integer marking the time in nanoseconds where the data was sent out
by the data acquisition system. Similarly t_recv_data is a 64-bit integer marking the time in
nanoseconds where the data was actually received by the DataSourceReceiver. Both
t_send_data and t_recv_data are primarily used for diagnostics purposes to characterize
network latency.

LFP data points are implemented as 5. For an LFPPoint timestamp, t_send_data, and
t_recv_data have identical meanings as for a SpikePoint. Differences include elec_grp_ids
since a LFPPoint typically may contain data from multiple electrode groups elec_grp_ids is
a list of those groups. Finally data is a 1D array containing the actual LFP data.

Lastly position data points are implemented as 6. Both timestamp and t_recv_data have
identical meanings to those in SpikePoint and LFPPoint. In a real experiment the position
is often coming from a head-tracked animal, so we will refer to that when explaining the rest
of the data that this object represents. segment refers to a line segment (integer-valued) that

the animal is closest to. position is a value in [0, 1] that denotes the position along the line

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

class LFPPoint(messages.PrintableClass):
"""Object describing a single LFP data sample”"”

def __init__(self, timestamp, elec_grp_ids, data, t_send_data,
t_recv_data):

self.timestamp = timestamp

self.elec_grp_ids = elec_grp_ids
self.data = data
self.t_send_data
self.t_recv_data

t_send_data
t_recv_data

Listing 5. Definition of LFPPoint class

24/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

class CameraModulePoint(messages.PrintableClass):

def __init__(
self, timestamp, segment, position,
X, Yy, X2, y2, t_recv_data

self.timestamp = timestamp
self.segment = segment
self.position = position

self.x = x
self.y =y
self.x2 = x2
self.y2 = y2

self.t_recv_data = t_recv_data

"""Object describing a single data sample coming from a camera

nnn

Listing 6. Definition of CameraModulePoint class

segment. 0 and 1 are the ends of the segment. x and y are the x and y position of the

animal, respectively, in pixels. x2 and y2 have the same interpretation as x and y, except

that this is another point on the animal that is being tracked. For example the coordinates

(x, y) and (x2, y2) may be the position of a red and green LED.

The fastest way to make RealtimeDecoder compatible with a custom data acquisition

system is to develop a DataSourceReceiver subclass that still returns a SpikePoint,

LFPPoint, or CameraModulePoint. If the experimenter desires to use a different data format,

additional development will be necessary so that the software can handle the custom data

objects. The most relevant modifications to make will be the next_iter() methods for the

RippleManager, EncoderManager, and DecoderManager objects in ripple_process.py,

encoder_process.py, and decoder_process.py, respectively.

25/31

398

399

401

402

403

406

407

408

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Customizing the record format

When RealtimeDecoder is running, it records results to disk. These can simply be thought

of as log entries in binary form. For example a record is written when the posterior

distribution is updated one time step.

Occasionally a user may wish to add, remove, or otherwise change the type of records that

are written. At the minimum the appropriate *Manager object should be modified in its

constructor. Listing 7 shows an example for the DecoderManager.

rec_ids are a list of integer-valued numbers, each of which describes the type of record

that is being written. These are particularly useful when the outputs of RealtimeDecoder

are merged into a single file. Different processes can write the same type of records, so when

merging records, the ID is used to group them together.

rec_labels are used to label each element in a single record (i.e. a binary blob). This is

useful for converting the binary data into human-readable format, such as a pandas

dataframe.

Finally rec_formats describe the datatype (such integer, float, etc.) used to represent a

given record. These are all format strings from the struct module in the Python standard

library.

If a record is changed, the corresponding call to write_record() must likewise be

updated so that the correct arguments are supplied. Other modifications to the code may be

necessary. Since it is impossible to anticipate every possibility, such changes are not

described here. Nevertheless this section should point the user in the right direction on

where to begin their modifications.

26,31

409

4

s

0

411

412

413

414

415

416

417

418

419

420

421

422

4

N

3

424

425

426

4

N

7

428

429

430

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

rec_ids=[
binary_record.RecordIDs.DECODER_OUTPUT,
binary_record.RecordIDs.LIKELIHOOD_OUTPUT,
binary_record.RecordIDs.DECODER_MISSED_SPIKES,
binary_record.RecordIDs.0CCUPANCY

1,
rec_labels=[
['bin_timestamp_l', 'bin_timestamp_r', 'velocity', 'mapped_pos',
'raw_x', 'raw_.y', 'raw_x2', 'raw_y2', 'x', 'y',
"spike_count', 'task_state', 'cred_int_post', 'cred_int_lk',
'dec_rank', 'dropped_spikes', 'duplicated_spikes', 'vel_thresh',
"frozen_model'] +
pos_labels + state_labels,
['bin_timestamp_l', 'bin_timestamp_r', 'mapped_pos', 'spike_count',
"dec_rank',
'vel_thresh', 'frozen_model'] +
likelihood_labels,
['timestamp', 'elec_grp_id', 'real_bin', 'late_bin'],
['timestamp', 'raw_x', 'raw_y', 'raw_x2', 'raw_y2', 'x', 'y',
'segment', 'pos_on_seg', 'mapped_pos', 'velocity', 'dec_rank',
'vel_thresh', 'frozen_model'] +
occupancy_labels
1,

rec_formats=[
"ggddddddddqgqgqqqqqd?' + 'd'xlen(pos_labels) + 'd'xlen(state_labels),
'qqdqqd?' + 'd'xlen(likelihood_labels),
'giii',
'gddddddqdddqd?' + 'd'xlen(occupancy_labels)

Listing 7. Defining record types

References w1

Brown, E. N., L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson (1998). A statistical

paradigm for neural spike train decoding applied to position prediction from ensemble 433
firing patterns of rat hippocampal place cells. In: Journal of Neuroscience 18.18, 434
pp. T411-7425. .

27/31

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Carr, M. F., S. P. Jadhav, and L. M. Frank (2011). Hippocampal replay in the awake state: a

potential substrate for memory consolidation and retrieval. In: Nature neuroscience 14.2,

pp. 147-153.

Ciliberti, D., F. Michon, and F. Kloosterman (2018). Real-time classification of

experience-related ensemble spiking patterns for closed-loop applications. In: Elife 7,

e36275.
Daly, J. J. and J. R. Wolpaw (2008). Brain—computer interfaces in neurological

rehabilitation. In: The Lancet Neurology 7.11, pp. 1032-1043.

Davidson, T. J., F. Kloosterman, and M. A. Wilson (2009). Hippocampal replay of extended

experience. In: Neuron 63.4, pp. 497-507.
Davoudi, H. and D. J. Foster (2019). Acute silencing of hippocampal CA3 reveals a
dominant role in place field responses. In: Nature neuroscience 22.3, pp. 337-342.

Deng, X., D. F. Liu, M. P. Karlsson, L. M. Frank, and U. T. Eden (2016). Rapid

classification of hippocampal replay content for real-time applications. In: Journal of

neurophysiology 116.5, pp. 2221-2235.

Deng, X., D. F. Liu, K. Kay, L. M. Frank, and U. T. Eden (2015). Clusterless decoding of

position from multiunit activity using a marked point process filter. In: Neural

computation 27.7, pp. 1438-1460.

Denovellis, E. L., A. K. Gillespie, M. E. Coulter, M. Sosa, J. E. Chung, U. T. Eden, and

L. M. Frank (2021). Hippocampal replay of experience at real-world speeds. In: Elife 10,

e64505.

Diba, K. and G. Buzsdki (2007). Forward and reverse hippocampal place-cell sequences

during ripples. In: Nature neuroscience 10.10, pp. 1241-1242.

Farooq, U., J. Sibille, K. Liu, and G. Dragoi (2019). Strengthened temporal coordination

within pre-existing sequential cell assemblies supports trajectory replay. In: Neuron 103.4,

pp. 719-733.

28,31

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

4

o

5

457

458

459

460

461

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Foster, D. J. (2017). Replay comes of age. In: Annual review of neuroscience 40, pp. 581-602.

Gillespie, A. K., D. A. A. Maya, E. L. Denovellis, D. F. Liu, D. B. Kastner, M. E. Coulter,

D. K. Roumis, U. T. Eden, and L. M. Frank (2021). Hippocampal replay reflects specific

past experiences rather than a plan for subsequent choice. In: Neuron 109.19,

pp. 3149-3163.

Grosmark, A. D. and G. Buzséki (2016). Diversity in neural firing dynamics supports both

rigid and learned hippocampal sequences. In: Science 351.6280, pp. 1440-1443.

Gupta, A. S., M. A. Van Der Meer, D. S. Touretzky, and A. D. Redish (2010). Hippocampal

replay is not a simple function of experience. In: Neuron 65.5, pp. 695-705.

Hu, S., D. Ciliberti, A. D. Grosmark, F. Michon, D. Ji, H. Penagos, G. Buzséki,

M. A. Wilson, F. Kloosterman, and Z. Chen (2018). Real-time readout of large-scale

unsorted neural ensemble place codes. In: Cell reports 25.10, pp. 2635-2642.
Karlsson, M. P. and L. M. Frank (2009). Awake replay of remote experiences in the

hippocampus. In: Nature neuroscience 12.7, pp. 913-918.

Kloosterman, F., S. P. Layton, Z. Chen, and M. A. Wilson (2014). Bayesian decoding using

unsorted spikes in the rat hippocampus. In: Journal of neurophysiology.

Knierim, J. J. (2014). Chapter 19 - Information Processing in Neural Networks. In: From

Molecules to Networks (Third Edition). Ed. by J. H. Byrne, R. Heidelberger, and
M. N. Waxham. Third Edition. Boston: Academic Press, pp. 563-589. ISBN:

978-0-12-397179-1. DOIL: https://doi.org/10.1016/B978-0-12-397179-1.00019-1. URL:

https://www.sciencedirect.com/science/article/pii/B9780123971791000191.

Luo, S., Q. Rabbani, and N. E. Crone (2023). Brain-computer interface: applications to

speech decoding and synthesis to augment communication. In: Neurotherapeutics 19.1,

pp- 263-273.

29/31

462

463

464

465

466

467

468

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

https://doi.org/https://doi.org/10.1016/B978-0-12-397179-1.00019-1
https://www.sciencedirect.com/science/article/pii/B9780123971791000191
https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Meer, M. A. van der, A. A. Carey, and Y. Tanaka (2017). Optimizing for generalization in
the decoding of internally generated activity in the hippocampus. In: Hippocampus 27.5,
pp. H580-595.

Michon, F.; J.-J. Sun, C. Y. Kim, D. Ciliberti, and F. Kloosterman (2019). Post-learning
hippocampal replay selectively reinforces spatial memory for highly rewarded locations. In:
Clurrent Biology 29.9, pp. 1436-1444.

Olafsdéttir, H. F., D. Bush, and C. Barry (2018). The role of hippocampal replay in memory
and planning. In: Current Biology 28.1, R37-R50.

Pfeiffer, B. E. (2020). The content of hippocampal “replay”. In: Hippocampus 30.1, pp. 6-18.

Pfeiffer, B. E. and D. J. Foster (2013). Hippocampal place-cell sequences depict future paths
to remembered goals. In: Nature 497.7447, pp. 74-79.

Shin, J. D., W. Tang, and S. P. Jadhav (2019). Dynamics of awake hippocampal-prefrontal
replay for spatial learning and memory-guided decision making. In: Neuron 104.6,
pp. 1110-1125.

Walker, D. W. and J. J. Dongarra (1996). MPI: a standard message passing interface. In:
Supercomputer 12, pp. 56-68.

Williams, A., A. Degleris, Y. Wang, and S. Linderman (2020). Point process models for
sequence detection in high-dimensional neural spike trains. In: Advances in neural
information processing systems 33, pp. 14350-14361.

Wu, C.-T., D. Haggerty, C. Kemere, and D. Ji (2017). Hippocampal awake replay in fear
memory retrieval. In: Nature neuroscience 20.4, pp. 571-580.

Zhang, K., I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski (1998). Interpreting
neuronal population activity by reconstruction: unified framework with application to
hippocampal place cells. In: Journal of neurophysiology 79.2, pp. 1017-1044.

Zhang, Y., T. He, J. Boussard, C. Windolf, O. Winter, E. Trautmann, N. Roth, H. Barrell,

M. Churchland, N. A. Steinmetz, et al. (2024). Bypassing spike sorting: Density-based

30/31

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

508

509

5

=

0

5

Py

1

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592417; this version posted May 6, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

decoding using spike localization from dense multielectrode probes. In: Advances in

Neural Information Processing Systems 36.

Zheng, C., E. Hwaun, C. A. Loza, and L. L. Colgin (2021). Hippocampal place cell sequences

differ during correct and error trials in a spatial memory task. In: Nature communications

12.1, pp. 1-14.

31/31

512

513

5

ey

4

515

516

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data
Acquisition

RealtimeDecoder

EncoderProcess

(1.E) DecoderProcess MainProcess

(1..2)

Reward
Trigger

RippleProcess N ¢
(1..R) > ripple

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data Acquisition

Network latency

RealtimeDecoder

Posterior
computational
latency

Spike incorporation
latency

Fmmmm T e .
1 1
1 1
1 S1 S2 S3 S4
1 1
1 1
] 1
1 1
1 1 I >
< At »€— Atdelay = teurr
F-=-=—==========-= =
1
1 S 83 4

Event detection

Count

latency

Network latency

b
1.0

0.8 A
0.6 A
0.4 | %
0.2 A
—
0.0 . T .
Ifp spikes pooled

Latency (ms)

Owverall p(x, m) estimation latencies
1000 -
500 - H
n | |||-I|-|'|hrrnm...;. :
0 1 2 3 4
Latency {ms)
pix, m) estimation latency
[]
— 27
£ AR e B RS
- 4 y = 0.496%x/1e5 + 1.023
[¥)
c 1+ é 2
2 e & 1
5 & 0
& . 0 25000
0 50000 100000 150000
spike
Computational latency
T4
E
=
&
G 27
ki
(]

posterior update

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

JMI computational latency
0.15
Mark dims.
0.14 ~
0.13 A
0.12 A 3
0.11 g
()
0.10 A ©
-
0.09 ~
0.08 A
0.07

0

250 500 750 1000
Number of marks in model

LFP Computational Latency

500

400 A

300 A

200 A

100 A

106 115 116 118 121 123 124 128 129 132

H

1 2 3 4 5 6 7 8 9 10
Number of LFP channels

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Task phase 1: Task phase 2:

Cued exploration Reward triggered by
(encoding model) remote representation
Arm 1 Arm 2
Key:
Target Place field
= Reward port
Cue + = Light cue
reward %) Sound cue
O Milk reward
X Detected
representation

/AN

Realtime decoding

Duration: ~10 min Duration: 15-30 min
(12 visits each arm) (up to 75 rewards)
B -
o 2 S 2
3 Z
O O
Detected events < Q.
(target arm 1) § ®
Phase 2: feedback = S »
Arm 1 Arm 2 Box Box
| | | 0.8
100 0 100 100 0 100 |
Time (msec) Time (msec)
0.6
o 0.4
Box S 2 S 2
.. = = 0.2
Rat position 2 B
Detected events <o 1 0.1
- -
(target arm 2) ® © 0
D D
= =
—1 —
Box Box
| | | | | |
O Vas hot corified by peer review) e authorifunder, who has oranted DGR a licane 1o display e preprint i porbetity. i & made 1 O O O 1 O O 1 O O O 1 O O
S Time (msec) Time (msec)
C Target: arm 1 Target: arm 2
b2
C
)
>
© 50
2 3
O —=
9
)
a
0

0 4.5 9
Session

Posterior probability

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

