
RealtimeDecoder: A fast software module for online clusterless

decoding

Joshua P. Chu1Y, Michael E. Coulter2,4Y, Eric L. Denovellis2,3,4, Trevor T. K. Nguyen2,4,7,

Daniel F. Liu2,3,4, Xinyi Deng5, Uri T. Eden6, Caleb T. Kemere1*, Loren M. Frank2,3,4*

1 Department of Electrical and Computer Engineering, Rice University

2 Department of Physiology, University of California, San Francisco

3 Howard Hughes Medical Institute, University of California, San Francisco

4 Kavli Institute for Fundamental Neuroscience, University of California, San Francisco

5 Department of Statistics and Data Science, Beijing University of Technology

6 Department of Mathematics and Statistics, Boston University

7 SpikeGadgets, Inc.

YEqual contribution

* Corresponding authors: caleb.kemere@rice.edu, loren.frank@ucsf.edu

Abstract

Decoding algorithms provide a powerful tool for understanding the firing patterns that

underlie cognitive processes such as motor control, learning, and recall. When implemented

in the context of a real-time system, decoders also make it possible to deliver feedback based

on the representational content of ongoing neural activity. That in turn allows experimenters

to test hypotheses about the role of that content in driving downstream activity patterns

and behaviors. While multiple real-time systems have been developed, they are typically

1/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

implemented in C++ and are locked to a specific data acquisition system, making them

difficult to adapt to new experiments.

Here we present a Python software system that implements online clusterless decoding

using state space models in a manner independent of data acquisition systems. The

parallelized system processes neural data with temporal resolution of 6 ms and median

computational latency <50 ms for medium- to large-scale (32+ tetrodes) rodent

hippocampus recordings without the need for spike sorting. It also executes auxiliary

functions such as detecting sharp wave ripples from local field potential (LFP) data.

Performance is similar to state-of-the-art solutions which use compiled programming

languages. We demonstrate this system use in a rat behavior experiment in which the

decoder allowed closed loop neurofeedback based on decoded hippocampal spatial

representations . This system provides a powerful and easy-to-modify tool for real-time

feedback experiments.

Introduction 1

The brain enables animals to keep track of information about internal states and the 2

external world and to use that information to guide action selection. This tracking engages 3

neural representations, and thus understanding how those representation relate to internal or 4

external variables can help us understand mental processes.(Knierim 2014). Decoding 5

analyses provide one approach to understanding neural representations: an initial encoding 6

model is built that relates observed variables to spiking, and then this model is inverted to 7

enable predictions of observed variables based on spiking data (Brown et al. 1998). This 8

approach has been used to characterize representations of neural activity from brain 9

regionssuch as the hippocampus (Davidson, Kloosterman, and Wilson 2009; Karlsson and 10

Frank 2009; Pfeiffer and Foster 2013). 11

The classic application of decoding was to assess how well a given variable could be read 12

2/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

out from ongoing neural population activity when that variable (e.g. the position of a limb or 13

of the animal in space) could be observed. When such a correspondence has been established, 14

decoding can also provide insight into representations expressed in the absence of an 15

observable variable. In the hippocampus, for example, the spiking of ”place cells” can be 16

decoded both during movement and during periods of immobility. Strikingly, there are times 17

when this spiking corresponds not to current location but instead to other places in the 18

animals environment or even other environments (Carr, Jadhav, and Frank 2011; Foster 2017; 19

Ólafsdóttir, Bush, and Barry 2018; Pfeiffer 2020). Similarly, decoding has also enabled the 20

development of neurofeedback systems, such as brain-machine interfaces, that can translate 21

neural activity patterns into useful outputs (e.g. moving a cursor on a screen or generating 22

speech in patients with paralysis) (Daly and Wolpaw 2008; Luo, Rabbani, and Crone 2023). 23

Historically decoding hippocampal spatial activity patterns used a decoder which relied 24

on sorted spikes (spikes that can be ”clustered” and thereby assigned with reasonable 25

confidence to a single neuron)(Davidson, Kloosterman, and Wilson 2009; Davoudi and Foster 26

2019; Diba and Buzsáki 2007; Farooq et al. 2019; Grosmark and Buzsáki 2016; Gupta et al. 27

2010; Karlsson and Frank 2009; Pfeiffer and Foster 2013; Shin, Tang, and Jadhav 2019; Wu 28

et al. 2017; Zheng et al. 2021). In this decoder a Poisson model was used to describe the 29

neural dynamics of individual place cells, where the Poisson rate is directly related to the 30

place field (Brown et al. 1998; Meer, Carey, and Tanaka 2017; K. Zhang et al. 1998). 31

One disadvantage of the sorted spikes decoder is that it excludes lower amplitude or 32

otherwise non-clusterable spikes. These spikes nevertheless contain valuable information for 33

decoding, and alternative models known as clusterless decoders have been developed. (Deng, 34

Liu, Karlsson, et al. 2016; Deng, Liu, Kay, et al. 2015; Denovellis et al. 2021; Kloosterman 35

et al. 2014; Williams et al. 2020). These decoders use many more of the recorded spikes 36

(typically all that pass a specific amplitude threshold), and provide more accurate decoding 37

compared to sorted spike decoders in cases that have been tested (Deng, Liu, Kay, et al. 38

3/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

2015; Kloosterman et al. 2014). Subsequent studies have applied these methods to derive 39

scientific conclusions (Gillespie et al. 2021; Hu et al. 2018; Michon et al. 2019). 40

Clusterless decoding thus offers a powerful tool for identifying the content of neural 41

representations, and real-time implementations have the potential to enable the use of this 42

tool in closed-loop experiments. Current implementations are tied to a specific data 43

acquisition system and written in a compiled programming language, however, which 44

increases the difficulty of customization for end users without more advanced programming 45

experience (Ciliberti, Michon, and Kloosterman 2018). We therefore developed 46

RealtimeDecoder our software program that implements the state space models in 47

(Denovellis et al. 2021) for online, real-time clusterless decoding 48

(https://github.com/LorenFrankLab/realtime decoder). The system is parallelized and 49

written entirely in Python for ease of use for both users and developers. Despite using an 50

interpreted language, the software achieves computational latencies similar to state-of-the-art 51

solutions. An added benefit is the implementation of a state space model, allowing the 52

experimenter to use both likelihood and posterior for downstream analysis. 53

In this work we describe the architecture and performance of RealtimeDecoder. We focus 54

on the latencies of computations and feedback, which are especially relevant in a real-time 55

context. We also demonstrate the system’s use in a live closed-loop experiment for proof of 56

concept, and we briefly discuss some results. Our hope is that this work will help advance 57

scientific research by enabling other closed-loop experiments that can elucidate the role of 58

hippocampal spatial representations. 59

4/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://github.com/LorenFrankLab/realtime_decoder
https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Materials and Methods 60

Model formulation 61

The clusterless decoder used in this work is based on (Deng, Liu, Kay, et al. 2015; Denovellis 62

et al. 2021). Similar to the sorted spikes decoder, this decoder uses a Bayesian framework. 63

The model is governed by the equation 64

p(xk|∆Nk , {m⃗k} , Hk) =
p(xk|Hk) p(∆Nk , {m⃗k} | xk , Hk)

p(∆Nk , {m⃗k} |Hk)
(1)

where for a given time bin k, xk is decoded position, ∆Nk is the number of spikes emitted, 65

and {m⃗k} is the set of marks of length ∆Nk, that is, vectors associated with each spike 66

observed in time bin k. In practice the marks used in the model are spike waveform features 67

such as peak amplitudes. Lastly Hk represents the spiking history from time 1 to time k. 68

The distribution p(xk|Hk) in Eq. 1 is given by 69

p(xk |Hk) =

∫
p(xk | xk−1) p(xk−1 |∆Nk−1 , m⃗k−1 , Hk−1) dxk−1 (2)

assuming that (1) transitions from xk−1 to xk are Markovian, and (2) the distribution of the 70

current decoded position is independent of past spiking history, given the previous decoded 71

position (Deng, Liu, Kay, et al. 2015). 72

For the clusterless likelihood, the relation is 73

p(∆Nk , m⃗k | xk , Hk) = p(∆N
(1:E)
k , {m⃗i

k,j}
i=1:E

j=1:∆N i
k

| xk)

∝
E∏
i=1

∆N i
k∏

j=1

[λi(tk, m⃗
i
k,j | xk)∆k] exp[−Λi(tk | xk)∆k]

(3)

where
∏∆N i

k
j=1 [λi(tk, m⃗

i
k,j | xk)∆k] exp[−Λi(tk | xk)∆k] is the likelihood for electrode group 74

i = 1, ..., E. (Our model assumed p(∆Nk , m⃗k | xk , Hk) = p(∆Nk , m⃗k | xk)). For each 75

5/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

electrode group, the product [λi(tk, m⃗
i
k,j | xk)∆k] exp[−Λi(tk | xk)∆k] is computed for every 76

spike j within time bin k. If there are no spikes observed for electrode group i in time bin k, 77

then that electrode group’s likelihood becomes 78

exp[−Λi(tk | xk)∆k], ∆N i
k = 0 (4)

The likelihood consists of intensity functions 79

λi(tk, m⃗
i
k,j | xk) = µi

pi(xk, m⃗
i
k,j)

π(x)
(5)

Λi(tk | xk) = µi
pi(xk)

π(x)
(6)

where µi is the mean firing rate of electrode group i and π(x) is the occupancy, a 80

distribution of positions the animal has visited. pi(xk) is the probability of observing any 81

spike given for electrode i, given the position. Lastly pi(xk, m⃗
i
k,j) represents a joint 82

probability distribution over position and marks. During the model learning phase, no 83

computation is performed–each mark m⃗ is simply saved along with the position x at which 84

the mark was observed. Once the learning phase is complete, p(x, m⃗) is estimated on-the-fly 85

for each observed mark m⃗l. First a weight is computed for each mark m⃗o that has been 86

saved in the model, using a Gaussian kernel: 87

ao
2 =

D∑
d=1

(m⃗o,d − m⃗l,d)
2 (7)

wo =
1

σ
√
2π

exp[− ao
2

2σ2
] (8)

where D is the number of mark dimensions and σ is a user-defined parameter. Then a 88

weighted histogram representing the estimate p(x, m⃗) is computed using the positions {xo} 89

6/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

saved during the learning phase, and the corresponding weights {wo} described above. 90

Finally the posterior distribution can be written as 91

p(xk |∆Nk, {m⃗k}, Hk) ∝ p(xk|Hk) p(∆Nk, {m⃗k} | xk, Hk) (9)

where p(xk|Hk) is given in Eq. 2 and p(∆Nk, {m⃗k} | xk, Hk) is given in Eq. 3. 92

Software architecture 93

a

MainProcess

RippleProcess

(1..R)

DecoderProcess

(1..2)

Reward

Trigger

Spikes

LFP

Position

EncoderProcess

(1..E)

Data

Acquisition

RealtimeDecoder

Figure 1. (a) Data flows through different Process nodes in the RealtimeDecoder system,
which are responsible for different computations.

Since the clusterless likelihood in Eq 3 is a product over electrode groups, this formula 94

presents a straightforward scheme for parallelization. Each factor in can be computed 95

simultaneously before being combined into the overall likelihood. The likelihood is then used 96

to estimate the posterior distribution in Eq. 9. 97

To carry out these computations RealtimeDecoder uses three different input data 98

streams: LFP, spike events (particularly the waveform data), and position. An overview of 99

the computational approach is shown in Fig. 1. Input data (ellipses) flow to parallel 100

processes (rounded rectangles) which compute intermediate quantities (rhomboids), resulting 101

7/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

in a reward trigger output (parallelogram) if a specific, experimenter specified representation 102

is detected. To send messages between different processes, we used the low-latency 103

messaging protocol MPI (Walker and Dongarra 1996). 104

The primary objective of online real-time clusterless decoding is to estimate the posterior 105

distribution in relation 9, which is a conditional probability distribution over a variable x. In 106

this application x represents linearized (1D) position. Recall that the clusterless likelihood in 107

Eq. 3 is a product over electrode groups, which presents an obvious target over which to 108

parallelize. The overall software architecture reflects this feature, as the computation of Eq. 109

3 can be split among multiple processes to reduce total system latency. These 110

sub-computations is then be aggregated to form the posterior probability distribution. 111

Additionally the system can process LFP data to extract time boundaries in which LFP 112

events (specifically sharp wave ripples or SWRs) occur. Experimenters thus have multiple 113

options when using the system; for example they may specify that only replay with a 114

concomitant SWR will trigger neurofeedback. 115

RealtimeDecoder is implemented as different *Process objects, namely MainProcess, 116

RippleProcess, EncoderProcess, and DecoderProcess which serve different computational 117

functions (Fig 1). Each instance of these objects (with the exception of the event-driven 118

GuiProcess) implements a polling while loop which typically consists of the following 119

pseudocode: 120

MainProcess 121

The MainProcess coordinates all other Process instances by gathering information about the 122

binary data they output to file and monitoring their status to check for runtime errors, 123

among other functions. Inside the MainProcess runs a custom data handler that processes 124

data computed by other *Process objects, such as position information, ripple onset times, 125

a new posterior distribution estimate, etc. In our usage this object detects replay events; 126

8/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

while no errors or stop signal not triggered do

check for messages from other processes

if message ready
process message

endif

if data ready
process data
sent results to other processes
write results

endif

endwhile

Listing 1. Pseudocode example for a Process object

upon detection it sends a signal to dispense reward. 127

RippleProcess 128

An instance of a RippleProcess processes LFP data and is primarily responsible for 129

detecting sharp wave ripples. This occurs via the following procedure: (1) LFP from the 130

data acquisition system is band-pass filtered to the SWR frequency band (150-250 Hz), (2) 131

an estimate of SWR power is obtained by applying a low pass filter to the square of the 132

band-pass filtered data, and finally (3) the baseline (mean) power is estimated. The start of 133

a SWR is then marked when the z-score of this power estimate exceeds a user-defined 134

threshold (typically at least 3). 135

EncoderProcess 136

An instance of an EncoderProcess manages the encoding model for one or more electrode 137

groups (e.g. a single tetrode). Typically if the number of available threads permits, a single 138

9/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

instance will handle just one electrode group for minimum computational delay. During the 139

training period, an EncoderProcess adds spikes to the encoding model and also computes 140

an estimate of the joint mark intensity function (Deng, Liu, Kay, et al. 2015). When the 141

training period is over, spikes are no longer added to the encoding model, but the joint mark 142

intensity function continues to be estimated. 143

DecoderProcess 144

The DecoderProcess gathers the joint mark intensity functions sent by instances of an 145

EncoderProcess. At every user-defined time bin step, it computes the likelihood and 146

posterior distribution of the clusterless decoding state space model. It sends these estimates 147

to the MainProcess to be further processed by a custom data handler. This data handler is 148

developed according to the needs of the particular experiment and may implement features 149

such as remote spatial representation detection. 150

GuiProcess 151

The GuiProcess increases user-friendliness of the system. It consists of a visualization 152

window that displays the likelihood, posterior, and state probabilities in real time. It also 153

includes a dialog window that allows the user to change parameters during the course of the 154

experiment, as well as some control options to start and stop the software as a whole. 155

System characterization 156

The utility of an online decoding system for real-time feedback depends in large part on its 157

latency. For example, if one chooses too small of a time step to update the posterior 158

distribution estimate, the system cannot compute the necessary quantities quickly enough to 159

be suitable for real-time use. The overall latency stems from the latencies of four major 160

components (Fig 2a): (1) Network latency, (2) spike incorporation latency, (3) posterior 161

10/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

computational latency, and (4) event detection latency, which are further expanded in panel 162

(b). Each of these latencies is expanded in further detail below. 163

a

Data Acquisition

Network latency
Spike incorporation

latency

Posterior

computational

latency

Event detection

latency

RealtimeDecoder

c

d

Figure 2. (a) The four major components contributing to overall latency. (b) Network
latency. (c)-(d) Four spikes are shown. The darker shade indicates when a spike occur, and
the lighter shade indicates when it is in usable form for a DecoderProcess. Note that spike 4
is in usable form subsequent to tcurr. (c) Time bin for when ∆tdelay > 0. (d) Time bin for
when ∆tdelay = 0. (e) Overall distribution of latencies due to estimation of p(x,m) using an
example tetrode. (f) p(x,m) estimation latencies as a function of number of spikes in the
encoding model. (g) Computational latency induced by update of the posterior distribution.

11/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Network latency 164

The network latency (Fig 2b) is the time difference between when data (spikes, LFP, 165

position) is sent out by the data acquisition system, and when that data is actually 166

requested by RealtimeDecoder. This type of latency depends on different factors such as 167

network speed, the type of machine running the decoder, etc. Spikes have a higher latency 168

than LFP due to its size, as the entire spike waveform/snippet is transmitted over the 169

network. Nevertheless the median network latency of the pooled data (spikes and LFP 170

combined) is <1 ms when the data acquisition program executes on the same host machine 171

as RealtimeDecoder. 172

Spike incorporation latency 173

The spike incorporation latency refers to the maximum length of time between when a spike 174

occurs and when it is sent to the decoder in a usable form. To be usable the joint mark 175

intensity must be estimated with the spike and be visible to a DecoderProcess instance. At 176

that point in time, the spike is ready to be incorporated into the posterior distribution 177

estimation via an update of the likelihood. 178

The spike incorporation latency is a user-defined parameter and therefore a constant 179

value. It must be long enough to account for the latency incurred from estimating the joint 180

mark intensity function, a step whose computation time typically increases with the number 181

of spikes used to generate the encoding models utilized by the decoder. 182

In RealtimeDecoder, the estimation of the posterior distribution occurs one time bin at a 183

time. The data incorporated into each estimation step are those contained within a certain 184

time window. This window is directly impacted by ∆tdelay and ∆t, the time bin size. 185

tcurr refers to the time at which an update to the posterior occurs. ∆tdelay (a non-negative 186

value) refers to how far behind tcurr should define the upper edge of the window. A 187

combination of ∆tdelay and ∆t defines the lower edge. In other words, the window is defined 188

12/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

by [tcurr −∆tdelay −∆t, tcurr −∆tdelay). The spike incorporation latency is the sum 189

∆tdelay +∆t. 190

Fig 2b-c illustrates the effect of the spike incorporation latency on the boundaries of the 191

time window when an update to the posterior is requested at time tcurr. In Fig 2c, ∆tdelay is 192

chosen to be a non-zero value so the upper edge of the window lies at a time prior to tcurr. 193

Spikes s1, s2, and s3 are incorporated into the update of the posterior. 194

If ∆tdelay = 0 (Fig 2d), then the upper edge of the window is simply tcurr. However, spike 195

s4 is NOT incorporated into the posterior update because it has not been transformed into a 196

usable form until a time past tcurr. For this reason, it is advised to set ∆tdelay > 0. 197

Fig 2e-f illustrates some considerations for determining an appropriate value to set as the 198

spike incorporation latency. The joint mark intensity (JMI) in Eq. 5 must be estimated, 199

where estimation of p(x,m) is the most computationally expensive component. Fig 2e shows 200

the overall distribution of the p(x,m) estimation latencies. However, this is not the complete 201

picture: Fig. 2f shows that these latencies are a function of number of samples in the 202

encoder model. It thus illustrates typical operation of RealtimeDecoder: at some point the 203

encoding model is considered trained, so no more spikes are added to the model and the 204

estimation latency no longer increases linearly. On our test machine the estimation latency 205

increased at an approximate rate of 0.5 ms additional latency for every 10000 additional 206

spikes in the encoding model. 207

In general, the more spikes are expected to be added to the encoding models, the higher 208

the user must set the value of the spike incorporation latency. Too low of a value would 209

mean some JMI’s cannot be computed and incorporated into the posterior estimation step in 210

time, which could adversely affect the quality and accuracy of the posterior. 211

13/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Posterior computational latency 212

The posterior computational latency is the computation time required to estimate the 213

posterior distribution for a single update step. Fig 2g shows the distribution of this latency 214

(median value 1.722 ms on our test machine). The latency is affected by multiple factors, 215

including how many electrodes RealtimeDecoder is configured to analyze and how many 216

states are in the state space model. The distribution in Fig 2g is useful for informing the 217

user what the time bin size ∆t should be. We advise setting ∆t to at least the 75th 218

percentile of this distribution. If ∆t is too small, then the decoder would not be able to 219

estimate the posterior quickly enough and would fail to operate in real time. 220

Event detection latency 221

The event detection latency is a user-defined parameter relevant for replay detection. Similar 222

to the spike incorporation latency, it is a constant value. At each time bin step, a window is 223

drawn. If the current timestamp is tcurr, then the event detection window is defined by 224

[tcurr −∆tevent, tcurr] where ∆tevent is the event detection latency, a positive value denoting 225

the size of the window. For example if ∆tevent is 20 ms, then a putative representation will 226

have been expressed for at least 20 ms before it is detected by the software. A higher value 227

of the event detection latency will theoretically reduce the number of spurious detections, at 228

the cost of increasing the reaction time to a true event. 229

Summary 230

Overall our decoder performs comparably to state-of-the-art solutions (Table 1) despite 231

being written entirely in Python. 232

Scalability 233

The estimation of the JMI depends on the mark dimensionality, where Fig. 3(a) 234

14/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Decoder Network
latency

Spike
incorporation
latency

Posterior
computation
latency

Event
detection
latency

Ciliberti 2018
(32 tetrodes)

0 ms
(median,
localhost)

10 ms ∼2.2 ms
(median)

30 ms

This work
(49 tetrodes)

0.102 ms
(median,
localhost)

12 ms 1.722 ms
(median)

30 ms

Table 1. RealtimeDecoder latency performance relative to the decoder in (Ciliberti,
Michon, and Kloosterman 2018).

import numpy as np
def generate_mark_data(mark_dim, num_marks_in_model, max_position_bin):

marks = np.ones((num_marks_in_model, mark_dim))

positions = np.zeros(num_marks_in_model)
for ii in range(num_marks_in_model):

positions[ii] = ii % max_position_bin

return marks, positions

Listing 2. Test input generation for characterizing effect of mark dimensionality on
computational latency.

demonstrates this relation. Here test inputs were generated deterministically according to 235

Listing 2, where all spikes were identical in magnitude and the distribution of positions was 236

uniform. Note that different test inputs are not expected to change the relations 237

demonstrated by Fig 3(a) since the actual values of the marks and position do not matter 238

when only latency measurements are of concern. 239

Although the computational latencies increase with the number of mark dimensions, the 240

multiplier for this increase is less than the ratio of a given mark dimensionality to a reference 241

mark dimensionality. As an example, increasing the dimensionality from 1 to 16 does not 242

15/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 250 500 750 1000
Number of marks in model

0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15

La
te

nc
y

(m
s)

a
JMI computational latency

Mark dims.
1
2
4
8
16

1 2 3 4 5 6 7 8 9 10
Number of LFP channels

0

100

200

300

400

500

La
te

nc
y

(u
s)

b

106 115 116 118 121 123 124 128 129 132

LFP Computational Latency

Figure 3. (a) Computational latency for estimation of the JMI depends on the mark
dimensionality. (b) LFP computational latency. Median values are labeled above the
distribution they were computed from.

result in a 16X increase in the computational latencies. This is a favorable characteristic 243

especially for experimenters using larger electrode groupings, such as for polymer or silicon 244

multielectrode arrays. 245

For the LFP processing path, users may want to process multiple channels on one given 246

RippleProcess instance. Real-time constraints dictate that every LFP sample must be 247

processed at ∆tLFP < 1/fsLFP where ∆tLFP is the LFP processing time and fsLFP is the 248

LFP sampling rate. 249

A RippleProcess instance is responsible for processing LFP by filtering the data into the 250

ripple band, estimating the ripple power (or a proxy of it), and determining the start and 251

end times of a ripple. Fig 3(b) shows the computational latency caused by processing LFP 252

data, for a single RippleProcess instance. Here the LFP sampling rate was 1500 Hz, so the 253

maximum LFP processing latency is 667 microseconds. These results demonstrate that 10 254

(and likely more) LFP channels may be processed with comfortable margin to meet the 667 255

microsecond real-time deadline. Recall that each *Process instance, with the exception of 256

GuiProcess, implements a polling while loop so this deadline represents the upper bound 257

since other tasks must be executed for every loop iteration. 258

16/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Overall Fig 3 demonstrates favorable scaling characteristics for higher dimensionality data. 259

Results 260

To demonstrate the utility of RealtimeDecoder we applied it to an experiment to study 261

internally driven memory retrieval. Specifically, we used RealtimeDecoder to deliver reward 262

based on decoded spatial representation to test whether rats can control the activation of 263

specific remote spatial representations . This endeavor is a type of experiment that can 264

decode neural activity while it is occurring and react on a timescale of 10s of milliseconds, 265

bringing researchers to a closer understanding of memory-related neural firing patterns. 266

In this experiment a Long-Evans rat was surgically implanted with a microdrive with 64 267

individually adjustable tetrodes (all animal surgery and care was performed in accordance 268

with UCSF IACUC guidelines). Over the course of several weeks, tetrodes were lowered into 269

the CA1 region of dorsal hippocampus. The rat was food-restricted and trained to run on a 270

two-arm maze where it collected sweetened milk reward from lick ports in the maze. 271

Once tetrodes were in place, the experiment began. Each day consisted of interleaved 272

RUN and REST sessions in the following manner: REST 1, RUN 1, REST 2, RUN 2, REST 273

3, RUN 3, REST 4. During REST sessions, the animal was placed in an enclosed box away 274

from the maze. 275

The structure of a RUN session was sub-divided into two tasks (Fig 4a), but the decoder 276

itself runs for the entire duration of a session. During task 1 (∼ 10 min.), a light cue directed 277

the rat to explore each arm (12 visits each). The data collected from this exploration period, 278

and specifically spikes that occurred during periods of running, defined the encoding models 279

contained in the decoder. 280

In task 2, the animal no longer collected reward by running to the end of a maze arm. 281

Instead, reward was only available at a reward port at the center of the maze, located away 282

from each arm. When the decoder detected a remote representation of a target location 283

17/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Task phase 1:
Cued exploration
(encoding model)

Task phase 2:
Reward triggered by

remote representation

Arm 1 Arm 2
Arm 1

Arm 2
Milk reward
Sound cue

Reward port
Light cue

Place field
Key:

Duration: ~10 min
(12 visits each arm)

Duration: 15-30 min
(up to 75 rewards)

Detected events
(target arm 1)

Detected events
(target arm 2)

P
os

te
rio

r p
ro

ba
bi

lit
y

Rat position

Arm 1 Arm 2

Phase 2: feedback

100 0
Time (msec)

1

0.8

0.6

0.4

0.2

0

Realtime decoding

CA1
spikes

Cue +
reward

A

B

50
msec

Target

Box

2

Box

Li
ne

ar
 p

os
iti

on

1

2

Box

Li
ne

ar
 p

os
iti

on

1

2

Box

Li
ne

ar
 p

os
iti

on

1

2

Box

Li
ne

ar
 p

os
iti

on

1

100 100 0
Time (msec)

100

100 0
Time (msec)

100100 0
Time (msec)

100

Detected
representation

C

D
et

ec
te

d
ev

en
ts

 (c
ou

nt
)

Session

Target: arm 1 Target: arm 2

0 4.5 90 4.5 9

50

0

50

0

Figure 4. (a) Overview of experiment to which the real-time decoder was applied. Each
session consists of two tasks. In task 1 an animal explores the maze arms. This data is used
to train the encoding models. In task 2 the animal receives reward for generating a remote
representation event. Although place cells and remote sequences are expected to be present,
they are not used directly by the clusterless decoder. (b) Example events captured by the
decoder. The blue trace is the actual position of the animal. A 100 ms window is drawn
around the time of event detection. (c) Number of rewards for each session of neurofeedback.

18/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

unknown to the rat (the end of one arm), a sound cue was played and the rat had 3 seconds 284

to nose-poke and collect the milk reward. Importantly, remote representations were only 285

rewarded if the rat was near the center port, away from the arms. Detected representations 286

were required to be high-fidelity events i.e. with little representation in the off-target arm. 287

To detect a remote representation, a sliding window is applied to the posterior or 288

likelihood, which are both normalized to be a probability distribution. The distribution used 289

for detection is a user-defined parameter. Whenever the distribution is updated (i.e. one 290

time bin step has advanced), a window [tcurr −∆twindow, tcurr] is drawn around the current 291

timestamp. The average for each bin (more exactly, position bin) in the distribution is taken 292

across the window. If representation in the target region exceeds a threshold and 293

representation in the off-target region is below a (different) threshold, a remote 294

representation is considered to have occurred. Note that in this implementation we did not 295

use the continuity constraint that combines information from the previous timestep with the 296

spiking information from the current timestep. We also did not include a requirement for a 297

specific LFP signature, although there would likely be some overlap among the events 298

detected by this method and those that detect SWRs or population burst events (PBEs). 299

Some example events are shown in Fig. 4b. 300

One pilot animal performed this task and demonstrated that the closed-loop 301

neurofeedback worked as designed to detect and reward sustained remote representations 302

(Fig. 4b). After several days of preliminary neurofeedback, we introduced the requirement 303

that at least 2 tetrodes had spatially specific activity for event detection, so as to reward 304

population-level representations. With this requirement, we found that detected event count 305

increased across 9 feedback sessions targeting arm 1 and then after switching the target 306

region to arm 2, also increased across 9 more sessions (Fig. 4c). This provides a preliminary 307

suggestion that remote hippocampal content can be enriched via reward-based 308

neurofeedback. In subsequent experiments, we tested whether this finding was reproducible 309

19/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

across multiple animals and robust to additional controls. 310

Discussion 311

Decoding neural activity allows experimenters to assess the structure of ongoing neural 312

representations. Here we present a real-time system that implements a clusterless state space 313

decoder. The specific implementation was designed to decode spatial representations from 314

the spiking of hippocampal neurons, but the system would be relatively easy to modify to 315

decode other variables. We improved upon previous real-time clusterless decoders by writing 316

the software in pure Python to ease the experience of users intending to extend and 317

customize the system for their needs. Despite the use of Python, our system achieved 318

comparable performance to previous systems written with a compiled language, 319

demonstrating the viability of using an interpreted language for this specific application. We 320

also demonstrate the system in a pilot experiment, illustrating how it can be used to detect 321

the expression of specific hippocampal representations of space and to trigger experimental 322

stimuli based on that expression. 323

One area for improvement is the scalability of our decoder. For best results, one hardware 324

thread is needed for every electrode group. However, the channel counts of neural recording 325

devices are continuing to increase, and even with systems that have many computing cores, 326

the number of channels per device will exceed current CPU capabilities. One potential 327

solution would be to leverage computing on GPUs so that a single hardware thread can 328

support multiple electrode groups. In order to fully take advantage of the GPU, this strategy 329

would likely require some non-trivial programming to convert the synchronous computing 330

into asynchronous. Alternatively, it may be possible to develop dimensionality reduction 331

approaches that make it possible to carry out real-time clusterless decoding from very high 332

channel count probes, something that is currently only possible offline (Y. Zhang et al. 2024). 333

While these improvements can be made, the current RealtimeDecoder has numerous 334

20/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

applications within the neuroscience sub-field of hippocampal physiology by assisting 335

researchers to run many kinds of closed-loop experiments. Applications to other neuroscience 336

sub-fields are also possible. For example one may wish to design a brain-computer interface 337

which can decode memories its human operator is attempting to retrieve, and to 338

subsequently react in real-time based on that decoding. The computational approach 339

illustrated by RealtimeDecoder has the potential to inform solutions to other 340

decoding-based problems in general. Overall we believe our work serves as a valuable tool to 341

accelerate neuroscience research. 342

Appendix 343

Customization 344

Although we have endeavored to write a generalized software system for real-time decoding, 345

it is difficult to anticipate every use case. In some scenarios customization may be necessary 346

to fulfill the particular needs of the experiment. Here we cover different layers of 347

customization and explain the source code at a deeper level so that the user can better 348

understand the modifications that must be made for their specific application. 349

Customizing the data acquisition interface 350

As explained previously our software can be likened to a client in a client-server architecture, 351

where RealtimeDecoder is the client and the data acquisition system is the server which 352

sends preprocessed data for decoding. The decoder will work out of the box with Trodes 353

software; for other systems, the user will need to develop a DataSourceReceiver subclass to 354

interface with their data acquisition. The data acquisition is not constrained to be one that 355

streams live data, as in the case of Trodes. One may wish to feed pre-recorded data into 356

RealtimeDecoder, by reading from file. The parent class is defined in Listing 3, and an 357

21/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

explanation of the intended uses of each method follows. 358

class DataSourceReceiver(MPIClass, metaclass=ABCMeta)

def __init__(self, comm, rank, config, datatype:datatypes.Datatypes):
super().__init__(comm, rank, config)
self.datatype = datatype

@abstractmethod
def register_datatype_channel(self, channel):

pass

@abstractmethod
def activate(self):

pass

@abstractmethod
def deactivate(self):

pass

@abstractmethod
def stop_iterator(self):

pass

@abstractmethod
def __next__(self):

pass

Listing 3. Definition of DataSourceReceiver class

In the init () method comm is the MPI communicator, rank is the MPI rank, and 359

config is the dictionary obtained from parsing the configuration file (explained in the 360

previous chapter). Finally datatype is one of the datatypes enumerated in the datatypes 361

module. 362

The register datatype channel() method is used to add an electrode group that the 363

object should receive from. Each electrode group may consist of multiple electrodes; for 364

example a tetrode consists of 4 electrodes. 365

22/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

The activate() method signifies that the DataSourceReceiver is ready to receive data; 366

thus next () may return a non-None object. 367

The deactivate() method signifies that the object is no longer receiving data. In this 368

state next () should always return None. 369

The stop iterator() stops the object from running entirely. Since the object can be 370

used as an iterator (hence the next () method), this method should at the minimum 371

contain a raise StopIteration statement. 372

Lastly next () should be called whenever data is to be returned. If no data are 373

currently available or the object is in a deactivated state, then this method should return 374

None. 375

Upon a call to next (), any DataSourceReceiver object that returns a data point in 376

the following formats are automatically compatible with RealtimeDecoder. These are 377

further explained below. 378

Spike data points are implemented as Listing 4. timestamp is a value that marks the 379

timestamp of the data point and can be represented as a 32-bit unsigned integer. 380

elec grp id is an integer denoting the electrode group the data point is coming from. data 381

class SpikePoint(messages.PrintableClass):
"""Object describing a single spike event"""

def __init__(self, timestamp, elec_grp_id, data, t_send_data,
t_recv_data):

self.timestamp = timestamp
self.elec_grp_id = elec_grp_id
self.data = data
self.t_send_data = t_send_data
self.t_recv_data = t_recv_data

Listing 4. Definition of SpikePoint class

23/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

is the actual spike waveform data, a 2D array of shape (nch, nt) where nch is the number of 382

electrodes in the electrode group and nt is the number of time samples in the spike waveform. 383

t send data is a 64-bit integer marking the time in nanoseconds where the data was sent out 384

by the data acquisition system. Similarly t recv data is a 64-bit integer marking the time in 385

nanoseconds where the data was actually received by the DataSourceReceiver. Both 386

t send data and t recv data are primarily used for diagnostics purposes to characterize 387

network latency. 388

LFP data points are implemented as 5. For an LFPPoint timestamp, t send data, and 389

t recv data have identical meanings as for a SpikePoint. Differences include elec grp ids: 390

since a LFPPoint typically may contain data from multiple electrode groups elec grp ids is 391

a list of those groups. Finally data is a 1D array containing the actual LFP data. 392

Lastly position data points are implemented as 6. Both timestamp and t recv data have 393

identical meanings to those in SpikePoint and LFPPoint. In a real experiment the position 394

is often coming from a head-tracked animal, so we will refer to that when explaining the rest 395

of the data that this object represents. segment refers to a line segment (integer-valued) that 396

the animal is closest to. position is a value in [0, 1] that denotes the position along the line 397

class LFPPoint(messages.PrintableClass):
"""Object describing a single LFP data sample"""

def __init__(self, timestamp, elec_grp_ids, data, t_send_data,
t_recv_data):

self.timestamp = timestamp
self.elec_grp_ids = elec_grp_ids
self.data = data
self.t_send_data = t_send_data
self.t_recv_data = t_recv_data

Listing 5. Definition of LFPPoint class

24/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

class CameraModulePoint(messages.PrintableClass):
"""Object describing a single data sample coming from a camera"""

def __init__(
self, timestamp, segment, position,
x, y, x2, y2, t_recv_data

):

self.timestamp = timestamp
self.segment = segment
self.position = position
self.x = x
self.y = y
self.x2 = x2
self.y2 = y2
self.t_recv_data = t_recv_data

Listing 6. Definition of CameraModulePoint class

segment. 0 and 1 are the ends of the segment. x and y are the x and y position of the 398

animal, respectively, in pixels. x2 and y2 have the same interpretation as x and y, except 399

that this is another point on the animal that is being tracked. For example the coordinates 400

(x, y) and (x2, y2) may be the position of a red and green LED. 401

The fastest way to make RealtimeDecoder compatible with a custom data acquisition 402

system is to develop a DataSourceReceiver subclass that still returns a SpikePoint, 403

LFPPoint, or CameraModulePoint. If the experimenter desires to use a different data format, 404

additional development will be necessary so that the software can handle the custom data 405

objects. The most relevant modifications to make will be the next iter() methods for the 406

RippleManager, EncoderManager, and DecoderManager objects in ripple process.py, 407

encoder process.py, and decoder process.py, respectively. 408

25/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Customizing the record format 409

When RealtimeDecoder is running, it records results to disk. These can simply be thought 410

of as log entries in binary form. For example a record is written when the posterior 411

distribution is updated one time step. 412

Occasionally a user may wish to add, remove, or otherwise change the type of records that 413

are written. At the minimum the appropriate *Manager object should be modified in its 414

constructor. Listing 7 shows an example for the DecoderManager. 415

rec ids are a list of integer-valued numbers, each of which describes the type of record 416

that is being written. These are particularly useful when the outputs of RealtimeDecoder 417

are merged into a single file. Different processes can write the same type of records, so when 418

merging records, the ID is used to group them together. 419

rec labels are used to label each element in a single record (i.e. a binary blob). This is 420

useful for converting the binary data into human-readable format, such as a pandas 421

dataframe. 422

Finally rec formats describe the datatype (such integer, float, etc.) used to represent a 423

given record. These are all format strings from the struct module in the Python standard 424

library. 425

If a record is changed, the corresponding call to write record() must likewise be 426

updated so that the correct arguments are supplied. Other modifications to the code may be 427

necessary. Since it is impossible to anticipate every possibility, such changes are not 428

described here. Nevertheless this section should point the user in the right direction on 429

where to begin their modifications. 430

26/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

rec_ids=[
binary_record.RecordIDs.DECODER_OUTPUT,
binary_record.RecordIDs.LIKELIHOOD_OUTPUT,
binary_record.RecordIDs.DECODER_MISSED_SPIKES,
binary_record.RecordIDs.OCCUPANCY

],
rec_labels=[

['bin_timestamp_l', 'bin_timestamp_r', 'velocity', 'mapped_pos',
'raw_x', 'raw_y', 'raw_x2', 'raw_y2', 'x', 'y',
'spike_count', 'task_state', 'cred_int_post', 'cred_int_lk',
'dec_rank', 'dropped_spikes', 'duplicated_spikes', 'vel_thresh',
'frozen_model'] +
pos_labels + state_labels,
['bin_timestamp_l', 'bin_timestamp_r', 'mapped_pos', 'spike_count',

'dec_rank',
'vel_thresh', 'frozen_model'] +
likelihood_labels,
['timestamp', 'elec_grp_id', 'real_bin', 'late_bin'],
['timestamp', 'raw_x', 'raw_y', 'raw_x2', 'raw_y2', 'x', 'y',
'segment', 'pos_on_seg', 'mapped_pos', 'velocity', 'dec_rank',
'vel_thresh', 'frozen_model'] +
occupancy_labels

],
rec_formats=[

'qqddddddddqqqqqqqd?' + 'd'*len(pos_labels) + 'd'*len(state_labels),
'qqdqqd?' + 'd'*len(likelihood_labels),
'qiii',
'qddddddqdddqd?' + 'd'*len(occupancy_labels)

]

Listing 7. Defining record types

References 431

Brown, E. N., L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson (1998). A statistical 432

paradigm for neural spike train decoding applied to position prediction from ensemble 433

firing patterns of rat hippocampal place cells. In: Journal of Neuroscience 18.18, 434

pp. 7411–7425. 435

27/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Carr, M. F., S. P. Jadhav, and L. M. Frank (2011). Hippocampal replay in the awake state: a 436

potential substrate for memory consolidation and retrieval. In: Nature neuroscience 14.2, 437

pp. 147–153. 438

Ciliberti, D., F. Michon, and F. Kloosterman (2018). Real-time classification of 439

experience-related ensemble spiking patterns for closed-loop applications. In: Elife 7, 440

e36275. 441

Daly, J. J. and J. R. Wolpaw (2008). Brain–computer interfaces in neurological 442

rehabilitation. In: The Lancet Neurology 7.11, pp. 1032–1043. 443

Davidson, T. J., F. Kloosterman, and M. A. Wilson (2009). Hippocampal replay of extended 444

experience. In: Neuron 63.4, pp. 497–507. 445

Davoudi, H. and D. J. Foster (2019). Acute silencing of hippocampal CA3 reveals a 446

dominant role in place field responses. In: Nature neuroscience 22.3, pp. 337–342. 447

Deng, X., D. F. Liu, M. P. Karlsson, L. M. Frank, and U. T. Eden (2016). Rapid 448

classification of hippocampal replay content for real-time applications. In: Journal of 449

neurophysiology 116.5, pp. 2221–2235. 450

Deng, X., D. F. Liu, K. Kay, L. M. Frank, and U. T. Eden (2015). Clusterless decoding of 451

position from multiunit activity using a marked point process filter. In: Neural 452

computation 27.7, pp. 1438–1460. 453

Denovellis, E. L., A. K. Gillespie, M. E. Coulter, M. Sosa, J. E. Chung, U. T. Eden, and 454

L. M. Frank (2021). Hippocampal replay of experience at real-world speeds. In: Elife 10, 455

e64505. 456

Diba, K. and G. Buzsáki (2007). Forward and reverse hippocampal place-cell sequences 457

during ripples. In: Nature neuroscience 10.10, pp. 1241–1242. 458

Farooq, U., J. Sibille, K. Liu, and G. Dragoi (2019). Strengthened temporal coordination 459

within pre-existing sequential cell assemblies supports trajectory replay. In: Neuron 103.4, 460

pp. 719–733. 461

28/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Foster, D. J. (2017). Replay comes of age. In: Annual review of neuroscience 40, pp. 581–602. 462

Gillespie, A. K., D. A. A. Maya, E. L. Denovellis, D. F. Liu, D. B. Kastner, M. E. Coulter, 463

D. K. Roumis, U. T. Eden, and L. M. Frank (2021). Hippocampal replay reflects specific 464

past experiences rather than a plan for subsequent choice. In: Neuron 109.19, 465

pp. 3149–3163. 466

Grosmark, A. D. and G. Buzsáki (2016). Diversity in neural firing dynamics supports both 467

rigid and learned hippocampal sequences. In: Science 351.6280, pp. 1440–1443. 468

Gupta, A. S., M. A. Van Der Meer, D. S. Touretzky, and A. D. Redish (2010). Hippocampal 469

replay is not a simple function of experience. In: Neuron 65.5, pp. 695–705. 470

Hu, S., D. Ciliberti, A. D. Grosmark, F. Michon, D. Ji, H. Penagos, G. Buzsáki, 471

M. A. Wilson, F. Kloosterman, and Z. Chen (2018). Real-time readout of large-scale 472

unsorted neural ensemble place codes. In: Cell reports 25.10, pp. 2635–2642. 473

Karlsson, M. P. and L. M. Frank (2009). Awake replay of remote experiences in the 474

hippocampus. In: Nature neuroscience 12.7, pp. 913–918. 475

Kloosterman, F., S. P. Layton, Z. Chen, and M. A. Wilson (2014). Bayesian decoding using 476

unsorted spikes in the rat hippocampus. In: Journal of neurophysiology. 477

Knierim, J. J. (2014). Chapter 19 - Information Processing in Neural Networks. In: From 478

Molecules to Networks (Third Edition). Ed. by J. H. Byrne, R. Heidelberger, and 479

M. N. Waxham. Third Edition. Boston: Academic Press, pp. 563–589. isbn: 480

978-0-12-397179-1. doi: https://doi.org/10.1016/B978-0-12-397179-1.00019-1. url: 481

https://www.sciencedirect.com/science/article/pii/B9780123971791000191. 482

Luo, S., Q. Rabbani, and N. E. Crone (2023). Brain-computer interface: applications to 483

speech decoding and synthesis to augment communication. In: Neurotherapeutics 19.1, 484

pp. 263–273. 485

29/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/https://doi.org/10.1016/B978-0-12-397179-1.00019-1
https://www.sciencedirect.com/science/article/pii/B9780123971791000191
https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Meer, M. A. van der, A. A. Carey, and Y. Tanaka (2017). Optimizing for generalization in 486

the decoding of internally generated activity in the hippocampus. In: Hippocampus 27.5, 487

pp. 580–595. 488

Michon, F., J.-J. Sun, C. Y. Kim, D. Ciliberti, and F. Kloosterman (2019). Post-learning 489

hippocampal replay selectively reinforces spatial memory for highly rewarded locations. In: 490

Current Biology 29.9, pp. 1436–1444. 491

Ólafsdóttir, H. F., D. Bush, and C. Barry (2018). The role of hippocampal replay in memory 492

and planning. In: Current Biology 28.1, R37–R50. 493

Pfeiffer, B. E. (2020). The content of hippocampal “replay”. In: Hippocampus 30.1, pp. 6–18. 494

Pfeiffer, B. E. and D. J. Foster (2013). Hippocampal place-cell sequences depict future paths 495

to remembered goals. In: Nature 497.7447, pp. 74–79. 496

Shin, J. D., W. Tang, and S. P. Jadhav (2019). Dynamics of awake hippocampal-prefrontal 497

replay for spatial learning and memory-guided decision making. In: Neuron 104.6, 498

pp. 1110–1125. 499

Walker, D. W. and J. J. Dongarra (1996). MPI: a standard message passing interface. In: 500

Supercomputer 12, pp. 56–68. 501

Williams, A., A. Degleris, Y. Wang, and S. Linderman (2020). Point process models for 502

sequence detection in high-dimensional neural spike trains. In: Advances in neural 503

information processing systems 33, pp. 14350–14361. 504

Wu, C.-T., D. Haggerty, C. Kemere, and D. Ji (2017). Hippocampal awake replay in fear 505

memory retrieval. In: Nature neuroscience 20.4, pp. 571–580. 506

Zhang, K., I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski (1998). Interpreting 507

neuronal population activity by reconstruction: unified framework with application to 508

hippocampal place cells. In: Journal of neurophysiology 79.2, pp. 1017–1044. 509

Zhang, Y., T. He, J. Boussard, C. Windolf, O. Winter, E. Trautmann, N. Roth, H. Barrell, 510

M. Churchland, N. A. Steinmetz, et al. (2024). Bypassing spike sorting: Density-based 511

30/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

decoding using spike localization from dense multielectrode probes. In: Advances in 512

Neural Information Processing Systems 36. 513

Zheng, C., E. Hwaun, C. A. Loza, and L. L. Colgin (2021). Hippocampal place cell sequences 514

differ during correct and error trials in a spatial memory task. In: Nature communications 515

12.1, pp. 1–14. 516

31/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

a

MainProcess

RippleProcess

(1..R)

DecoderProcess

(1..2)

Reward

Trigger

Spikes

LFP

Position

EncoderProcess

(1..E)

Data

Acquisition

RealtimeDecoder

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

a

Data Acquisition

Network latency
Spike incorporation

latency

Posterior

computational

latency

Event detection

latency

RealtimeDecoder

c

d

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

0 250 500 750 1000
Number of marks in model

0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15

La
te

nc
y

(m
s)

a
JMI computational latency

Mark dims.
1
2
4
8
16

1 2 3 4 5 6 7 8 9 10
Number of LFP channels

0

100

200

300

400

500

La
te

nc
y

(u
s)

b

106 115 116 118 121 123 124 128 129 132

LFP Computational Latency

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

Task phase 1:
Cued exploration
(encoding model)

Task phase 2:
Reward triggered by

remote representation

Arm 1 Arm 2
Arm 1

Arm 2
Milk reward
Sound cue

Reward port
Light cue

Place field
Key:

Duration: ~10 min
(12 visits each arm)

Duration: 15-30 min
(up to 75 rewards)

Detected events
(target arm 1)

Detected events
(target arm 2)

P
os

te
rio

r p
ro

ba
bi

lit
y

Rat position

Arm 1 Arm 2

Phase 2: feedback

100 0
Time (msec)

1

0.8

0.6

0.4

0.2

0

Realtime decoding

CA1
spikes

Cue +
reward

A

B

50
msec

Target

Box

2

Box

Li
ne

ar
 p

os
iti

on

1

2

Box

Li
ne

ar
 p

os
iti

on
1

2

Box

Li
ne

ar
 p

os
iti

on

1

2

Box

Li
ne

ar
 p

os
iti

on

1

100 100 0
Time (msec)

100

100 0
Time (msec)

100100 0
Time (msec)

100

Detected
representation

C

D
et

ec
te

d
ev

en
ts

 (c
ou

nt
)

Session

Target: arm 1 Target: arm 2

0 4.5 90 4.5 9

50

0

50

0

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592417doi: bioRxiv preprint

https://doi.org/10.1101/2024.05.03.592417
http://creativecommons.org/licenses/by-nc-nd/4.0/

