
Novel multi-omics deconfounding variational 1

autoencoders can obtain meaningful disease 2

subtyping 3

Zuqi Li1,†, Sonja Katz2,3,4,†, Edoardo Saccenti3, David W. Fardo5, Peter 4

Claes6,7,8, Vitor A.P. Martins dos Santos4,9, Kristel Van Steen1,10, 5

Gennady V. Roshchupkin2,11,*
6

1BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU 7

Leuven, Leuven, Belgium. 8

2Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The 9

Netherlands. 10

3Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 11

Wageningen, The Netherlands. 12

4LifeGlimmer GmbH, Berlin, Germany. 13

5University of Kentucky, Lexington, The United States. 14

6Department of Human Genetics, KU Leuven, Leuven, Belgium. 15

7Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium. 16

8Department of Electrical Engineering, ESAT-PSI, KU Leuven, Leuven, Belgium 17

9Laboratory of Bioprocess Engineering, Wageningen University & Research, 18

Wageningen, The Netherlands. 19

10BIO3 - Laboratory for Systems Genetics, GIGA Molecular & Computational 20

Biology, University of Liège, Liège, Belgium. 21
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Abstract 25

Unsupervised learning, particularly clustering, plays a pivotal role in disease subtyp- 26

ing and patient stratification, especially with the abundance of large-scale multi-omics 27

data. Deep learning models, such as variational autoencoders (VAEs), can enhance 28

clustering algorithms by leveraging inter-individual heterogeneity. However, the impact 29

of confounders - external factors unrelated to the condition, e.g. batch effect or age - on 30

clustering is often overlooked, introducing bias and spurious biological conclusions. In 31

this work, we introduce four novel VAE-based deconfounding frameworks tailored for 32

clustering multi-omics data. These frameworks effectively mitigate confounding effects 33

while preserving genuine biological patterns. The deconfounding strategies employed 34

include: i) removal of latent features correlated with confounders ii) a conditional vari- 35

ational autoencoder, iii) adversarial training, and iv) adding a regularization term to 36

the loss function. Using real-life multi-omics data from TCGA, we simulated various 37

confounding effects (linear, non-linear, categorical, mixed) and assessed model perfor- 38

mance across 50 repetitions based on reconstruction error, clustering stability, and de- 39

confounding efficacy. Our results demonstrate that our novel models, particularly the 40

conditional multi-omics VAE (cXVAE), successfully handle simulated confounding ef- 41

fects and recover biologically-driven clustering structures. cXVAE accurately identifies 42

patient labels and unveils meaningful pathological associations among cancer types, val- 43

idating deconfounded representations. Furthermore, our study suggests that some of 44

the proposed strategies, such as adversarial training, prove insufficient in confounder 45

removal. In summary, our study contributes by proposing innovative frameworks for si- 46

multaneous multi-omics data integration, dimensionality reduction, and deconfounding 47

in clustering. Benchmarking on open-access data offers guidance to end-users, facilitat- 48

ing meaningful patient stratification for optimized precision medicine. 49

Keywords: deep learning, autoencoder, multi-omics, confounders, fairness, clustering 50

1 Introduction 51

Unsupervised learning, in particular clustering, focuses on subgrouping individuals 52

based on their intrinsic data structures, therefore playing an essential role in tasks like 53
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disease subtyping and patient stratification. In the realm of biology and medicine, where 54

large-scale multi-omics data, including genomics, transcriptomics, and epigenomics, is 55

prevalent, deep learning models can enhance clustering algorithms. Their ability to re- 56

duce the dimensionality of complex data allows clustering algorithms to more effectively 57

explore the heterogeneity between patients. Underscoring the utility of deep learning 58

models, in particular autoencoders, in terms of data integration, dimensionality reduc- 59

tion, and handling a multitude of heterogeneous input data, Simidjievski et al. recently 60

benchmarked various variational autoencoder models for multi-omics data [24]. 61

Although patient stratification with deep learning methods are gaining traction in ge- 62

nomic data applications, they are often susceptible to external influences that are un- 63

related to the condition of interest. One severe limitation is the entanglement of bio- 64

logically meaningful signals with variables unrelated to the inherent structure that one 65

is interested in, i.e. technical artifacts, random noise from measurements, or other bio- 66

logical factors such as sex, ethnicity, and age (Figure 1a). These factors, referred to as 67

confounders in the context of unsupervised learning, may cause clustering algorithms 68

to form subgroups based on irrelevant signals, which may ultimately lead to spurious 69

biological conclusions [5, 11]. 70

Conventional strategies to account for and mitigate confounders involve training linear 71

regression per feature against the confounder and take the residual part during pre- 72

processing [22] or adjustments like pruning predictive dimensions after model training 73

[23]. Conditional variational autoencoders (cVAE) have been used to create normative 74

models considering confounding variables, such as age, for neurological disorders [17]. 75

Dincer et al. proposed adversarial training to derive expression embeddings devoid of 76

confounding effects [7], expanded upon by the single-cell Generative Adversarial Net- 77

work (scGAN) for batch effect removal [2]. Liu et al. used a regularization term in 78

the autoencoder’s loss function to minimize correlation between latent embeddings and 79

confounding bias [18]. Despite their methodological diversity, these methods have only 80

been validated to work effectively on data from a single omics source and are not tailored 81

towards disease subtyping and patient stratification. 82

To address this gap, we propose four novel VAE-based deconfounding frameworks for 83

clustering of multi-omics data, utilising the i) removal of latent features correlated with 84

confounders ii) a conditional variational autoencoder [17] iii) adversarial training [2, 7], 85
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and iv) adding a regularisation term to the loss function [18] as deconfounding strategies. 86

To objectively assess whether our models can remove out-of-interest signals and find a 87

patient clustering unbiased by confounding signals, we pplied and evaluated our models 88

on gene expression and DNA methylation pan-cancer data from The Cancer Genome 89

Atlas (TCGA) program which we augmented with artificial confounding effects. In 90

total, we simulated four different types of confounders, including linear, non-linear, 91

categorical, and a mixture thereof, resembling realistic confounders such as age (linar, 92

non-linear) [6, 15, 26] , BMI (non-linear) [20], or batch effects (categorical) [7, 11]. 93

The contribution of our study is as follows: 94

• Four novel multi-omics clustering models based on VAE and different deconfound- 95

ing strategies are presented. 96

• We highlight that various deconfounding techniques address confounded clustering 97

in distinct ways, often overlooked within the algorithm’s framework. 98

• Different confounding effects are simulated on the real-life TCGA dataset to 99

demonstrate the influence of confounders on clustering and underscore the ne- 100

cessity for deconfounding models. 101

• Readers are provided with guidelines detailing strengths and limitations of each 102

approach, along with suggestions on selecting an appropriate framework fitting 103

their purposes. 104

2 Materials and methods 105

2.1 Data collection & preprocessing 106

This study utilized data collected within The Cancer Genome Atlas project (TCGA) 107

[29]. Gene expressions (mRNA) of 4333 patients and DNA methylations (DNAm) of 108

2940 patients from six different cancer types, including BRCA, THCA, BLCA, LUSC, 109

HNSC, and KIRC, were downloaded using the R package TCGAbiolinks [4]. The sub- 110

sequent filtering step removed patients with (i) only a single data type available, (ii) 111

missing clinical metadata, (iii) “american indian” or “alaska native” ancestry, and (iv) 112

unknown tumor stage, resulting in a total of 2547 patients. The preprocessing of mRNA 113
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Figure 1: a. A simplified graphical representation of a measured signal (gray) which
is a mix of independent sources such as the true signal (pink), a biological confounder
(purple), and a technical confounder (blue). Note the difficulty of extracting the true
signal from the measured additive signals. b. Graphical summary of the work con-
ducted in this study. (1) Based on multi-omics pan-cancer TCGA data (section 2.1)
different confounding effects were simulated (section 2.2). (2) Subsequently, four dif-
ferent deconfounding VAE frameworks (section 2.4) were trained on the the artificially
confounded data. (3) The obtained deconfounded data was compared to the original,
un-confounded input data in terms of clustering stability and deconfounding capabilities
(section 2.6).

and DNAm data included the removal of probes (i) not shared across all cancer types, 114

(ii) with missing values, and (iii) with 0 variance across all included patients, resulting 115

in 58456 mRNA and 232088 DNAm features. To reduce the number of input features, 116

we only considered the 2000 probes showing the largest variance across patients for each 117

data type, resulting in a final data set of 2547 patients and 4000 features. This reduc- 118

tion strikes a balance between the number of features included and biological variability 119

addressed and is in line with other clustering works on TCGA data [3] 120

2.2 Simulation of confounders 121

To imitate common confounding scenarios in real-life clustering applications we simu- 122

lated linear, squared, categorical confounders, and a mixture thereof, resembling e.g. 123

ageing [6, 15, 26], BMI [20], or batch effects [7, 11]. These confounders hinder the true 124

or biologically meaningful clustering by intrinsically affecting the data structure in an 125

unwanted way and possibly leading to a confounded clustering. 126
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Here we denote the mRNA data as X1 ∈ Rn×p and DNAm data as X2 ∈ Rn×q, where 127

n, p, q are the number of patients, gene expressions, and DNA methylations, respectively. 128

We first rescaled every mRNA and DNAm feature to the range [0, 1] to avoid large ratios 129

between the raw feature and the confounding effect. A visualisation of all confounding 130

effects can be found in the Supplementary Methods. 131

2.2.1 Linear confounder 132

We uniformly generated a random numeric confounder c ∈ Rn with discrete values 133

{0, 1, 2, 3, 4, 5}, leading to a confounder clustering of six classes. Its linear effect on each 134

individual is c+ 5 and a random weight for each feature was multiplied with it: 135

X ′
1 = X1 + Elinear

1 = X1 + (c+ 5)⊗w1 (1)

136

X ′
2 = X2 + Elinear

2 = X2 + (c+ 5)⊗w2 (2)

, where ⊗ denotes the outer product between two vectors, and w1 ∈ Rp ∼ U(0, 0.1), 137

w2 ∈ Rq ∼ U(0, 0.2). We chose the uniform distribution of w1 to range from 0 to 0.1 138

so that the total linear effect would range from 0 to 1, having the same scale as X1. We 139

increased the upper bound of w2 to 0.2 due to our observation that X2 is less sensitive 140

to linear confounders. 141

2.2.2 Non-linear confounder 142

Non-linear effects were simulated in a similar way to linear effects. However, to mimic a 143

non-linear confounder, as observed in, e.g. the significant quadratic association between 144

body mass index and colon cancer risk [20], we considered adding an element-wise 145

squared confounding effect c2 on the features: 146

X ′
1 = X1 + Esquare

1 = X1 + c2 ⊗w1 (3)

147

X ′
2 = X2 + Esquare

2 = X2 + c2 ⊗w2 (4)

, where w1 ∼ U(0, 0.04), w2 ∼ U(0, 0.04). The distribution of w1 and w2 was also 148

determined based on the scale of X1 and X2. 149
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2.2.3 Categorical confounder 150

A categorical confounding effect was achieved by shifting patients with the same con- 151

founder class to a distinctive direction in the feature space. More specifically, we first 152

sampled six shifting vectors from U(0, 1) corresponding to six different confounder 153

classes, and patients were randomly assigned to each of the six categories. As a re- 154

sult, C1 ∈ Rn×p denotes the concatenation of shifting vectors of every patient for gene 155

expression, while C2 ∈ Rn×q for DNA methylation, both are matrices. The categorical 156

confounder is therefore the membership of all individuals in the six classes. A typical 157

example of categorical confounders for clustering could be batch effects caused by col- 158

lecting data from different centers [7, 11]. Then the confounded features were created 159

via: 160

X ′
1 = X1 + Ecateg

1 = X1 + diag(w) · C1 (5)

161

X ′
2 = X2 + Ecateg

2 = X2 + diag(w) · C2 (6)

, where diag(·) converts a vector into its corresponding diagonal matrix. Different from 162

the case of a numeric confounder, the weight vector w ∈ Rn ∼ U(0, 1) of the categorical 163

confounder indicates to what extent every patient was shifted so that patients would 164

have various strength of association with their confounded class. 165

2.2.4 Mixed confounder types 166

Real-life data analyses are likely affected by multiple confounders of different kinds, for 167

instance, many cancer studies correct for age, age squared, education, etc. jointly in 168

their models [15, 26]. Here we simulated a mixed confounding effect of linear, non-linear, 169

and categorical confounders as described below: 170

X ′
1 = X1 + Elinear

1 + Esquare
1 + Ecateg

1 (7)

171

X ′
2 = X2 + Elinear

2 + Esquare
2 + Ecateg

2 (8)

, where Elinear
1 , Elinear

2 , Esquare
1 , Esquare

2 , Ecateg
1 , Ecateg

2 represent the second term in For- 172

mula (1-6), respectively. 173
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2.3 Variational autoencoder for data integration (XVAE) 174

A variety of different VAE architectures exist for the purpose of data integration, as ex- 175

tensively compared by Simidjievski et al. [24]. In this study, we utilize one architecture 176

recommended by the respective authors, namely the X-shaped Variational Autoencoder 177

(XVAE) (Figure 2). This architecture merges the heterogeneous input data sources into 178

a combined latent representation z by learning to reconstruct each source individually 179

from the common representation. Here we consider only two data types of a single 180

datapoint x1 and x2, and the loss function of XVAE is as follow: 181

LXVAE(ϕ, θ;x1, x2) = −Ez∼qϕ(z|x1,x2)[log pθ(x1, x2|z)] + β ∗MMD(qϕ(z|x1, x2)||p(z))

(9)

Figure 2: Schematic representation of an X-shaped Variational Autoencoder (XVAE).
The two input layers (X1, X2) denote the two omics dimension used in this study,
namely gene expression and DNA methylation. The encoder consists of contiguous
hidden layers, each with fewer nodes. We design the encoder of XVAE with a total
of 2 layers prior to the latent embedding. In the first hidden layer, the dimension of
each input entity is reduced individually. In the second hidden layer, input entities get
fused into a combined layer. The latent embedding (red) represents the bottleneck of
the XVAE with the minimum number of nodes. The decoder reversely mirrors the layer
structure of the encoder, with the final layer featuring the same number of nodes as the
input layer as it attempts to reconstruct (X1

′, X2
′) the original input from the latent

embedding.
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, where qϕ(z|x1, x2) encodes the latent space as a probability distribution over the input 182

variables (parameterised by ϕ) and pθ(x1, x2|z) encodes the reconstruction of input vari- 183

ables as a probability distribution over the latent space (parameterised by θ). Following 184

the originally proposed implementation, we use maximum mean discrepancy (MMD) as 185

a regularization term to constrain the latent distribution qϕ to be a standard Gaussian 186

distribution, balanced by the constant beta (β), which is set to 1 for all experiments. 187

A more detailed description on autoencoders, as well as the XVAE architecture and 188

training procedure can be found in the Supplementary Methods. 189

2.4 Multi-omics deconfounding models 190

Here, we will first describe in section 2.4.1 the use of linear regression for confounder 191

correction and PCA for dimensionality reduction, which we deem the ”baseline model” 192

due to their wide popularity. Then, we outline in section 2.4.2 - 2.4.5 the four XVAE- 193

based deconfounding models proposed in this study. Throughout this section we denote 194

the confounder value of a single data point as c. 195

2.4.1 Baseline model: linear regression and PCA (LR+PCA) 196

Under the assumption that the effects of one or multiple confounders are linearly additive 197

to the true signal of a feature, we build a linear regression (LR) model for the confounders 198

against each mRNA or DNAm feature and then take their residuals as adjusted features. 199

Subsequently, the adjusted features from the two data types are concatenated and their 200

dimensionality is reduced via PCA (LR+PCA). We select the top 50 PCs explaining 201

most of the variance of data to keep the embedding size identical to that of every XVAE- 202

based model. The 50 PCs explaining the most variance of data are considered for the 203

final clustering, for which KMeans with 10 random initialisations is applied. 204

2.4.2 Conditional X-shaped Variational Autoencoder (cXVAE) 205

Conditional variational autoencoder (cVAE) [25] is a semi-supervised variation of VAE, 206

which originally aims to fit the distribution of the high-dimensional output as a gen- 207

erative model conditioned on auxiliary variables. Lawry et al. proposed to achieve 208

deconfounding through a cVAE incorporating confounding variable information as aux- 209

iliary variables [17]. We extend this initial idea to be able to handle multi-omics data by 210
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replacing the originally proposed VAE with the XVAE model, resulting in a conditional 211

X-shaped variational autoencoder (cXVAE) architecture (Figure 3A). We tested the in- 212

tegration of confounders at different levels of the cXAVE, including the input layer, the 213

hidden layer that fuses multiple inputs, and the embedding. More details on cXVAE 214

implementations can be found in the Supplementary Methods. 215

Figure 3: Schematic representation of (A) conditional variational autoencoder (cVAE)
and (B) adversarial deconfounding XVAE (adv-XVAE). (A) Depicts the cXVAE imple-
mentation termed input + embed due to the addition of confounders (green) in the first
layer of the encoder and decoder. (B) Depicts the adv-XVAE implementation termed
multiclass due to the usage of only a single supervised adverarial network (light green)
trained to predict confounders (green) using a multiclass prediction loss. X1 and X2

are the two omics dimensions, namely gene expression and DNA methylation, while X1
′

and X2
′ denote their respective reconstruction. More details and visualisations of other

implementation can be found in the Supplementary Material.

2.4.3 X-shaped Variational Autoencoder with adversarial training (adv- 216

XVAE) 217

The adversarial deconfounding autoencoder proposed by Dincer et al. [7] follows the 218

idea of training two networks simultaneously - an autoencoder to generate a low dimen- 219

sional embedding and an adversary multi-layer perceptron (MLP) trained to predict 220

the confounder from said embedding (Figure 3B). By adversarially training the two 221

networks, i.e. the autoencoder aims to generate an embedding which can not be used 222

for confounder prediction by the MLP, it aims at generating embeddings that can en- 223
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code biological information without encoding any confounding signal. As the original 224

framework can only handle a single data type, we adapt it to work with multi-omics 225

input by replacing its autoencoder with XVAE architecture. Details on architecture 226

and training procedure of adv-XVAE can be found in Supplementary Methods. 227

2.4.4 X-shaped Variational Autoencoder with deconfounding regulariza- 228

tion (cr-XVAE) 229

Augmenting the loss function of deep learning models is an effective way to impose 230

restrictions on the model or enforce learning of specific patterns. As an example, studies 231

focused on disentangling the often highly correlated latent space of autoencoders impose 232

constraints on the correlation between latent features by adding a penalty term to the 233

loss function [18]. Inspired by this idea, we formulate a deconfounding regularization 234

term aiming to reduce the degree of correlation between latent features and confounders. 235

The regularized loss function becomes: 236

Lcr−XVAE(ϕ, θ;x1, x2, c) = LXVAE(ϕ, θ;x1, x2) + f(z, c) (10)

, where f(z, c) denotes the joint association between latent features and confounders. 237

More specifically, we choose two different association measurements, Pearson correlation 238

and mutual information. Because Pearson correlation ranges from -1 (negatively corre- 239

lated) to 1 (positively correlated) and both indicate strong relationship, we regularize 240

only the magnitude of correlation by two methods, taking its absolute value or squared 241

value. Because the confounder distribution needed for mutual information is usually 242

unknown, we implement two methods to approximately compute mutual information 243

as loss function, with differentiable histogram or kernel density estimate. 244

2.4.5 Feature selection by removing correlated latent features (XVAE+FS) 245

The removal of latent features correlated with confounders comes from the idea of 246

post hoc interpretation of latent features [10]. To identify confounded latent features, 247

we calculate the Pearson correlation between each latent variable and the confounder. 248

For determining the threshold indicating which latent features are being removed from 249

further analyses, we test two different approaches: 250
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1. p-value cutoff - the p-value of the Pearson correlation indicates the probability 251

that the computed correlation is smaller than a random correlation between un- 252

correlated datasets. Latent features with a p-value < 0.05 are excluded from 253

analyses. 254

2. absolute correlation coefficient - Pearson correlation measures the linear relation- 255

ship between two variables. Latent features exhibiting an absolute Pearson corre- 256

lation of more than 0.3 (weak correlation) or 0.5 (strong correlation) are excluded. 257

2.5 Consensus clustering 258

Different from the baseline linear regression model which adopts KMeans on the decon- 259

founded features for clustering, we apply consensus clustering on the latent features of 260

each VAE-based deconfounding model. Here, consensus clustering takes the advantage 261

of random sampling in a VAE and it constructs a consensus matrix A ∈ Rn×n from the 262

individual clustering of each embedding sampled from the latent distributions [16]. We 263

perform consensus clustering on the embeddings of the entire sample set, generating 50 264

embedding matrices, on each of which a k-means clustering is conducted. The values 265

in the consensus matrix indicate the fraction of times that two data points are assigned 266

to the same cluster in those 50 clustering solutions. Subsequently, each value is divided 267

by the total number of clusterings (50), resulting in the range [0,1], where 0 means the 268

two corresponding samples are never clustered together while 1 means they are always 269

in the same cluster. Finally, a spectral clustering is performed on the consensus matrix 270

A to derive a stable clustering of the patients. 271

2.6 Evaluation metrics 272

We apply each of the aforementioned models to the artifically confounded multi-omics 273

dataset described in section 2.1 and 2.2. Every model is evaluated in terms of their 274

XVAE reconstruction accuracy, measured as the relative reconstruction error of inputs, 275

their clustering stability, evaluated by the dispersion score of consensus clustering (CC), 276

and deconfounding capabilities for clustering, estimated by calculating the Adjusted 277

Rand index (ARI) for true (cancer types) and confounder labels. 278
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2.6.1 XVAE reconstruction accuracy 279

Model training is monitored through inspection of the validation loss. To evaluate 280

reconstruction quality of the trained XVAE model, we compute the L2 relative error 281

(RE) between the original input (x) and reconstructed data (x
′
) for (i) each data type 282

individually: 283

RE =

√∑n
i=1 ∥xi − x

′
i∥2√∑n

i=1 ∥xi∥2
(11)

, as well as (ii) for the combined data types: 284

RE =

∑2
m=1

√∑n
i=1 ∥xmi − x

′
mi∥2∑2

m=1

√∑n
i=1 ∥xmi∥2

(12)

, where m = 1, 2 indicates the two data types. 285

2.6.2 Clustering stability 286

Before assessing how well each model can derive a meaningful clustering, we want to 287

first check if a model can stably cluster the samples. To achieve this goal, we employ 288

the dispersion score to measure the internal stability of consensus clustering based on 289

its consensus matrix A: 290

Dispersion =

∑n
i=1

∑n
j=1(Aij − 0.5)2 ∗ 4

n2
(13)

The dispersion score ranges from 0 to 1, where 1 shows a perfect stability that every 291

value in A is either 0 or 1, i.e. no confusion among the clusterings, and the lower the 292

less consensus among the clusterings. 293

2.6.3 Deconfounding capabilities 294

We compare our clustering with two different labels, the true one, namely cancer types, 295

and the confounder. An ideal model should deconfound the features sufficiently while 296

keeping the meaningful information for obtaining the true clustering. In other words, 297

we expect a model with high ARI with the true label and low ARI with the confounder 298

label. The association between true patient label and clusters obtained when modelling 299
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the original (unconfounded) data represents the best achievable clustering, with ARI 300

value converging towards 1. 301

Similar to ARI, we compute another external clustering metric, the normalized mutual 302

information (NMI), which measures the dependence between two clusterings. As it only 303

shows complementary information to ARI, we record the NMI of every clustering model 304

in Supplementary Table 1. 305

2.7 Implementation 306

For better stability and generalization, we train each model 50 times using i) randomly 307

sampled training and validation sets with a ratio of 80:20 and ii) different seed of 308

randomization. 309

2.8 Software 310

All of the models described in this study are built in Pytorch Lightning [9] and trained 311

using the GPU units RTX 2080 Ti 11GB. 312

3 Results 313

cXVAE outperforms other considered deconfounding strategies 314

in the presence of a single confounder 315

We simulated different types of confounding effects - linear, non-linear (squared), and 316

categorical - on the multi-omics TCGA pan-cancer dataset to benchmark a total of 317

four deconfounding frameworks, namely XVAE with Pearson correlation feature selec- 318

tion (XVAE+FS), conditional XVAE (cXVAE), adversarial training with XVAE (adv- 319

XVAE), and confounder-regularised XVAE (cr-XAVE) (see Methods for more details). 320

We additionally included two baseline models to compare with: 1) confounder correc- 321

tion with linear regression (LR+PCA) and 2) vanilla XVAE without any deconfounding 322

(XVAE). To estimate the robustness of each method, each model was trained on 50 iter- 323

ations of randomly sampled training and validation data (80:20 split) and random seed 324

initialization. 325
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All proposed deconfounding approaches were able to correct for a linear confounder, as 326

denoted by the high ARI for true clustering and low ARI for confounder clustering (Table 327

1). Performances started to decline for non-linear confounding problems, with cXVAE 328

clearly outperforming other strategies. For non-linear confounders we noted large ARI 329

for confounder clustering across all strategies and simulation setups. This illustrates 330

that, while good clustering performance for true labels were achieved, the full removal 331

of unwanted signal was not easily achievable for all the models. Categorical confounding 332

was perceived to be the most difficult, with all models except cXVAE exhibiting a high 333

decrease in true clustering performance. Notably, cr-XVAE and XVAE+FS were able to 334

remove artificial confounders completely, however at the cost of simultaneously removing 335

true clustering signal. adv-XVAE, which in theory should be a strategy well suited to 336

deal with categorical problems, fails to consistently remove the categorical confounding 337

effect. In general we noted a decline of reconstruction accuracy of models with increasing 338

complexity of the confounder simulations. 339

Figure 4 visualizes the deconfounding behaviour of cXVAE for categorical confounding. 340

With an exception to THCA (thyroid carcinoma), all classes were strongly confounded 341

prior to cXVAE application (Figure 4, left). After model training, confounding classes 342

are homogeneously mixed and clustering occurs with respect to true cancer types (Figure 343

4, right). In summary, across all confounder simulations, cXVAE clearly outperformed 344

other deconfounding strategies in terms of clustering accuracy, deconfounding power, 345

and model robustness. The ARI on true clustering obtained by cXVAE in all three 346

scenarios reached around 0.7, which is very close to the performance of the vanilla 347

XVAE on unconfounded data (0.731, see details in Supplementary Table 2). 348

A more detailed summary of the performances of each model can be found in Supple- 349

mentary Table 1. 350

While Table 1 depicts the best performing implementation of each deconfounding model, 351

we tested a number of possible implementations (see Methods), which we observed to 352

have a notable impact on model performance (Supplementary Table 2). Therefore, we 353

provide design recommendations for each deconfounding strategy in the Supplementary 354

Results. 355
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Figure 4: Deconfounding behaviour of cXVAE. Dimensionality reduction (UMAP)
plot of categorically confounded data before and after application of cXVAE. Marker
colors indicate the true label labels (i.e. TCGA cancer types), while marker shapes
indicate the six classes (1-6) of the confounder (see section 2.2).

cXVAE is easily extendable to handle multiple confounders of 356

mixed types 357

In a realistic setting datasets can be confounded by multiple confounders with different 358

biasing effects. In an attempt to investigate how well deconfounding strategies can han- 359

dle more than one confounder, we simulated the parallel presence of three confounders 360

of different effect, namely linear, non-linear, and categorical (Table 2). 361

In line with our observations with the single confounder simulations, cXVAE outper- 362

formed other models in terms of true clustering accuracy and de-confounding efficiency. 363

While also other strategies like XVAE+FS, cr-XVAE, or LR+PCA were able to suc- 364

cessfully remove all three simulated effects, they achieved this at the cost of true signal. 365

adv-XVAE failed to fully remove confounders, while also showing very low true cluster- 366

ing accuracy and can therefore be considered unsuitable for the task. We also noted that 367

the decline in reconstruction accuracy with increasingly complex confounding situations 368

is even more pronounced in multiple confounder settings. 369
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cXVAE is able to retrieve biology-driven clustering from con- 370

founded data 371

To illustrate the deconfounding capabilities of cXVAE, the model that outperformed 372

others across all four evaluation metrics in various confounding scenarios, we examined 373

the clustering results obtained on the TCGA dataset involving categorical confounders 374

(Figure 4, right). The UMAP plot of latent features clearly showed that BRCA (breast 375

invasive carcinoma), THCA (thyroid carcinoma), and KIRC (kidney renal clear cell 376

carcinoma) were well clustered by cXVAE, while BLCA (bladder urothelial carcinoma), 377

LUSC (lung squamous cell carcinoma), and HNSC (head and neck squamous cell carci- 378

noma) were still entangled. In summary, we found this behaviour to be in line with the 379

pathological and physiological differences between these cancer types. BLCA arises from 380

urothelial cells in the transitional epithelium, which can change from cuboidal to squa- 381

mous form when stretched. Furthermore, squamous differentiation is by far the most 382

common histological variant of urothelial carcinoma [14], indicating a close relationship 383

between urothelial carcinoma and squamous cell carcinoma. Apart from BLCA, the 384

overlap in clustering of LUSC and HNSC can be directly explained by their common 385

origin of squamous cells, while BRCA, THCA, and KIRC are all carcinoma related to 386

glandular cells [13]. Supporting the validity of our obtained cXVAE clustering, other 387

multi-omics pan-cancer studies utilising stacked variational autoencoders [27], penal- 388

ized matrix factorization [12], or supervised VAE [31] have retrieved similar cancer type 389

clustering. 390

4 Discussion 391

In this study, we addressed the possible harm of ignoring or inadequately handling 392

confounders to clustering samples with (multi-)omics measurements. In epidemiology, 393

a confounder is a variable that can effect the result of a study because it is related to 394

both the exposure and the outcome being studied. Here, we extended the definition 395

to unsupervised models for disease subtyping to indicate variables that can distort the 396

relationship between inferred or predicted cluster membership and disease. 397

Extensive simulation revealed that cXVAE stands out as a versatile and accurate decon- 398
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founding approach. The applicability of conditional autoencoder to biological data to 399

e.g. correct for batch effects [17] or disentangle confounders in fMRI [28] or microRNA 400

data [30] has been shown before. However, by merging the principles of a conditional au- 401

toencoder with the framework of an autoencoder specifically tailored for the integration 402

of multi-omics data, our research charts new frontiers in the domain of deconfounded 403

patient stratification. 404

While adversarial training may offer an alternative flexible deconfounding approach, 405

we confirm that optimization of model hyper-parameters is challenging [2]. Instability 406

may become more pronounced in the presence of multiple confounders. This can be 407

explained by the fact that adversarial networks were trained separately for each con- 408

founder, sequentially adding extra terms to its objective function (see Supplementary 409

Table 2). 410

In the literature, a statistical correlation loss has been proposed to replace the ad- 411

versarial prediction loss in a adversarial training model [1], resembling our cr-XVAE 412

model. The difference is that cr-XVAE directly computes the correlation between the 413

VAE embedding and the confounder without an additional adversarial network. We 414

implemented Pearson correlation and mutual information as the regularization term of 415

cr-XVAE but other association measures could also be adopted, e.g. Spearman correla- 416

tion and cosine similarity. In the case of multiple confounders, it is also possible to weigh 417

their associations differently in the loss function to balance deconfounding strength. 418

The identification of disease subtypes requires performing a clustering algorithm at 419

some point. Even though iterative training of the clustering in a joint autoencoder 420

loss function can overcome inconsistencies between training and downstream clustering 421

performance [8, 19, 21], we chose for a decoupled strategy. This was to 1) avoid having 422

too many terms in loss function to confuse training, and 2) reduce computation time 423

and initialization settings with iteratively training clustering in a joint loss function. 424

Consensus clustering furthermore has several advantages in data science including ro- 425

bustness, stability, interpretability and flexibility, as it can be applied to various types 426

of data and clustering algorithms. 427

It remains a daunting task to generate data that adequately reflect the complexity of 428

real-life cases. Therefore, one needs to be aware that simulations of confounders always 429

represent simplifications of real observable effects. While this study is limited to the 430

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.02.05.578873doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/


use of two data types, in principle the XVAE design utilised allows the integration 431

of heterogeneous data from many more sources simultaneously. Additionally, since all 432

evaluated deconfounding strategies share the same XVAE design as a foundation, we 433

anticipate consistent training time and performance across models when scaling up 434

dimensions. 435

5 Conclusion 436

In this study, we presented four VAE-based multi-omics clustering models and their vari- 437

ations, following different deconfounding strategies. Their clustering and deconfounding 438

performance was evaluated and compared with baseline models on the multi-omics pan- 439

cancer dataset from TCGA with artificailly generated confounding effects. The results 440

showed both the necessity to adjust for confounders and that our novel models, cXVAE 441

in particular, can effectively deal with the confounding effects and obtain the biologically 442

meaningful clustering. We demonstrate that our multi-omics deconfounding VAE clus- 443

tering models have big potential in delivering accurate patient subgrouping or disesase 444

subtyping, ultimately enabling better personalised healthcare. 445
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The simulated data generated in the course of this study are available at Zenodo 448
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linear

Clustering performance (ARI)

Reconstruction error
CC

dispersion

True label

(cancer type)
Confounder

LR+PCA - - 0.692 0.001

XVAE 0.246 (± 0.004) 0.844 (± 0.045) 0.506 (± 0.116) 0.151 (± 0.057)

XVAE+FS 0.245 (± 0.004) 0.860 (± 0.028) 0.571 (± 0.092) 0.008 (± 0.007)

cXVAE 0.234 (± 0.003) 0.935 (± 0.023) 0.712 (±0.055) 0.001 (± 0.001)

adv-XVAE 0.245 (± 0.004) 0.901 (± 0.032) 0.568 (± 0.070) 0.093 (± 0.051)

cr-XVAE 0.244 (± 0.003) 0.873 (± 0.028) 0.598 (± 0.074) 0.004 (± 0.004)

non-linear

Clustering performance (ARI)

Reconstruction error
CC

dispersion

True label

(cancer type)
Confounder

LR+PCA - - 0.391 0.215

XVAE 0.236 (± 0.003) 0.826 (± 0.042) 0.307 (± 0.141) 0.297 (± 0.071)

XVAE+FS 0.236 (± 0.003) 0.805 (± 0.040) 0.411 (± 0.142) 0.138 (±0.078)

cXVAE 0.227 (± 0.002) 0.908 (± 0.031) 0.646 (± 0.079) 0.076 (± 0.074)

adv-XVAE 0.238 (± 0.004) 0.942 (± 0.025) 0.568 (± 0.049) 0.194 (± 0.006)

cr-XVAE 0.235 (± 0.002) 0.852 (± 0.043) 0.478 (± 0.129) 0.154 (± 0.042)

categorical

Clustering performance (ARI)

Reconstruction error
CC

dispersion

True label

(cancer type)
Confounder

LR+PCA - - 0.150 0.071

XVAE 0.216 (± 0.003) 0.762 (± 0.055) 0.330 (± 0.125) 0.048 (± 0.088)

XVAE+FS 0.216 (± 0.003) 0.787 (± 0.040) 0.361 (± 0.100) 0.010 (± 0.023)

cXVAE 0.210 (± 0.002) 0.911 (± 0.033) 0.664 (± 0.070) 0.001 (± 0.001)

adv-XVAE 0.217 (± 0.002) 0.764 (± 0.058) 0.240 (± 0.188) 0.156 (± 0.084)

cr-XVAE 0.216 (± 0.003) 0.813 (± 0.034) 0.368 (± 0.101) 0.001 (± 0.001)

Table 1: Overview performances of deconfounding strategy for single con-
founder simulations. Values are displayed as mean ± standard deviation of 50
runs with different parameter initialisation and randomly sampled training and vali-
dation data. Models on the first column indicate the following deconfounding strate-
gies and implementations thereof: linear regression followed by principal component
analysis and KMeans clustering (LR+PCA), vanilla XVAE without any deconfounding
(XVAE), XVAE with feature selection in the form of removing correlated latent features
(XVAE+FS, correlation cutoff = 0.5), conditional XVAE (cXVAE, input + embedding),
adversarial training with XVAE (adv-XVAE, multiclass MLP), confounder-regularised
XVAE (cr-XAVE, squared correlation regularisation). Reconstruction error: relative
error in the reconstruction of X1 and X2 weighted eqally; CC dispersion: consensus
clustering agreement over 50 iterations; True clustering: adjusted rand index (ARI) of
consensus clustering derived clusters with True label labels; Confounder clustering: ARI
of consensus clustering derived clusters with simulated confounder labels.
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multiple confounders

Clustering performance (ARI)

Reconstruction

error

CC

dispersion

True label

(cancer type)

Linear

confounder

Squared

confounder

Categorical

confounder

LR+PCA - - 0.215 0.001 0.014 0.001

XVAE 0.161 (± 0.003) 0.725 (± 0.043) 0.216 (± 0.089) 0.015 (± 0.019) 0.140 (± 0.043) 0.067 (± 0.048)

XVAE+FS 0.161 (± 0.003) 0.731 (± 0.037) 0.265 (± 0.085) 0.007 (± 0.009) 0.019 (± 0.030) 0.109 (± 0.057)

cXVAE 0.146 (± 0.002) 0.905 (± 0.022) 0.634 (± 0.042) 0.001 (± 0.001) 0.001 (± 0.001) 0.001 (± 0.001)

adv-XVAE 0.158 (± 0.004) 0.753 (± 0.066) 0.225 (± 0.120) 0.016 (± 0.023) 0.107 (± 0.052) 0.106 (± 0.051)

cr-XVAE 0.161 (± 0.003) 0.764 (± 0.031) 0.369 (± 0.064) 0.003 (± 0.002) 0.007 (± 0.010) 0.001 (± 0.001)

Table 2: Overview performances of deconfounding strategy in the presence of
multiple confounders. Values are displayed as mean ± standard deviation of 50 runs
with different parameter initialisation and randomly sampled training and validation
data. For a detailed description of columns and models, please refer to Table 1.
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