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Abstract 2

Unsupervised learning, particularly clustering, plays a pivotal role in disease subtyp- 2
ing and patient stratification, especially with the abundance of large-scale multi-omics 2~
data. Deep learning models, such as variational autoencoders (VAEs), can enhance
clustering algorithms by leveraging inter-individual heterogeneity. However, the impact 2
of confounders - external factors unrelated to the condition, e.g. batch effect or age - on 3
clustering is often overlooked, introducing bias and spurious biological conclusions. In =
this work, we introduce four novel VAE-based deconfounding frameworks tailored for
clustering multi-omics data. These frameworks effectively mitigate confounding effects 33
while preserving genuine biological patterns. The deconfounding strategies employed s
include: i) removal of latent features correlated with confounders ii) a conditional vari- 3
ational autoencoder, iii) adversarial training, and iv) adding a regularization term to s
the loss function. Using real-life multi-omics data from TCGA, we simulated various
confounding effects (linear, non-linear, categorical, mixed) and assessed model perfor- s
mance across 50 repetitions based on reconstruction error, clustering stability, and de- 30
confounding efficacy. Our results demonstrate that our novel models, particularly the 4
conditional multi-omics VAE (cXVAE), successfully handle simulated confounding ef-
fects and recover biologically-driven clustering structures. cXVAE accurately identifies
patient labels and unveils meaningful pathological associations among cancer types, val-
idating deconfounded representations. Furthermore, our study suggests that some of 4
the proposed strategies, such as adversarial training, prove insufficient in confounder s
removal. In summary, our study contributes by proposing innovative frameworks for si- 4
multaneous multi-omics data integration, dimensionality reduction, and deconfounding
in clustering. Benchmarking on open-access data offers guidance to end-users, facilitat- 4
ing meaningful patient stratification for optimized precision medicine. 29

Keywords: deep learning, autoencoder, multi-omics, confounders, fairness, clustering s

1 Introduction 5

Unsupervised learning, in particular clustering, focuses on subgrouping individuals s

based on their intrinsic data structures, therefore playing an essential role in tasks like s
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disease subtyping and patient stratification. In the realm of biology and medicine, where s
large-scale multi-omics data, including genomics, transcriptomics, and epigenomics, is s
prevalent, deep learning models can enhance clustering algorithms. Their ability to re- s
duce the dimensionality of complex data allows clustering algorithms to more effectively s
explore the heterogeneity between patients. Underscoring the utility of deep learning  ss
models, in particular autoencoders, in terms of data integration, dimensionality reduc-  so
tion, and handling a multitude of heterogeneous input data, Simidjievski et al. recently e
benchmarked various variational autoencoder models for multi-omics data [24]. 61
Although patient stratification with deep learning methods are gaining traction in ge- e
nomic data applications, they are often susceptible to external influences that are un- ¢
related to the condition of interest. One severe limitation is the entanglement of bio- e
logically meaningful signals with variables unrelated to the inherent structure that one e
is interested in, i.e. technical artifacts, random noise from measurements, or other bio- ¢
logical factors such as sex, ethnicity, and age (Figure [lp). These factors, referred to as &
confounders in the context of unsupervised learning, may cause clustering algorithms s
to form subgroups based on irrelevant signals, which may ultimately lead to spurious e
biological conclusions [, [11]. 70
Conventional strategies to account for and mitigate confounders involve training linear =
regression per feature against the confounder and take the residual part during pre- =
processing [22] or adjustments like pruning predictive dimensions after model training
[23]. Conditional variational autoencoders (cVAE) have been used to create normative 7
models considering confounding variables, such as age, for neurological disorders [I7].
Dincer et al. proposed adversarial training to derive expression embeddings devoid of
confounding effects [7], expanded upon by the single-cell Generative Adversarial Net-
work (scGAN) for batch effect removal [2]. Liu et al. used a regularization term in 7
the autoencoder’s loss function to minimize correlation between latent embeddings and 7
confounding bias [I§]. Despite their methodological diversity, these methods have only &
been validated to work effectively on data from a single omics source and are not tailored «
towards disease subtyping and patient stratification. 8
To address this gap, we propose four novel VAE-based deconfounding frameworks for s
clustering of multi-omics data, utilising the i) removal of latent features correlated with s

confounders ii) a conditional variational autoencoder [17] iii) adversarial training [2,[7],
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and iv) adding a regularisation term to the loss function [I8] as deconfounding strategies. s
To objectively assess whether our models can remove out-of-interest signals and find a &
patient clustering unbiased by confounding signals, we pplied and evaluated our models s
on gene expression and DNA methylation pan-cancer data from The Cancer Genome s
Atlas (TCGA) program which we augmented with artificial confounding effects. In o
total, we simulated four different types of confounders, including linear, non-linear, a
categorical, and a mixture thereof, resembling realistic confounders such as age (linar, o
non-linear) [0 [15] 26] , BMI (non-linear) [20], or batch effects (categorical) |7 [I1]. 0

The contribution of our study is as follows: 0

e Four novel multi-omics clustering models based on VAE and different deconfound- o

ing strategies are presented. 9%

e We highlight that various deconfounding techniques address confounded clustering o

in distinct ways, often overlooked within the algorithm’s framework. o8

e Different confounding effects are simulated on the real-life TCGA dataset to o
demonstrate the influence of confounders on clustering and underscore the ne- 100

cessity for deconfounding models. 101

e Readers are provided with guidelines detailing strengths and limitations of each 10

approach, along with suggestions on selecting an appropriate framework fitting 103

their purposes. 104
2 Materials and methods 105
2.1 Data collection & preprocessing 106

This study utilized data collected within The Cancer Genome Atlas project (TCGA) 1o
[29]. Gene expressions (mRNA) of 4333 patients and DNA methylations (DNAm) of 10
2940 patients from six different cancer types, including BRCA, THCA, BLCA, LUSC, 10
HNSC, and KIRC, were downloaded using the R package TCGAbiolinks [4]. The sub- 1o
sequent filtering step removed patients with (i) only a single data type available, (ii) 1
missing clinical metadata, (iii) “american indian” or “alaska native” ancestry, and (iv) 1w

unknown tumor stage, resulting in a total of 2547 patients. The preprocessing of mRNA 13
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Figure 1: a. A simplified graphical representation of a measured signal (gray) which
is a mix of independent sources such as the true signal (pink), a biological confounder
(purple), and a technical confounder (blue). Note the difficulty of extracting the true
signal from the measured additive signals. b. Graphical summary of the work con-
ducted in this study. (1) Based on multi-omics pan-cancer TCGA data (section [2.1)
different confounding effects were simulated (section . (2) Subsequently, four dif-
ferent deconfounding VAE frameworks (section were trained on the the artificially
confounded data. (3) The obtained deconfounded data was compared to the original,
un-confounded input data in terms of clustering stability and deconfounding capabilities

(section .

and DNAm data included the removal of probes (i) not shared across all cancer types, 1.
(ii) with missing values, and (iii) with 0 variance across all included patients, resulting us
in 58456 mRNA and 232088 DNAm features. To reduce the number of input features, s
we only considered the 2000 probes showing the largest variance across patients for each 117
data type, resulting in a final data set of 2547 patients and 4000 features. This reduc- us
tion strikes a balance between the number of features included and biological variability 19

addressed and is in line with other clustering works on TCGA data [3] 120

2.2 Simulation of confounders 121

To imitate common confounding scenarios in real-life clustering applications we simu- 122
lated linear, squared, categorical confounders, and a mixture thereof, resembling e.g. 12
ageing [0} [15], 26], BMI [20], or batch effects [7, [I1]. These confounders hinder the true 1
or biologically meaningful clustering by intrinsically affecting the data structure in an  12s

unwanted way and possibly leading to a confounded clustering. 126
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Here we denote the mRNA data as X; € R"*P and DNAm data as Xy € R"*?, where 1
n, p, q are the number of patients, gene expressions, and DNA methylations, respectively. 12
We first rescaled every mRNA and DNAm feature to the range [0, 1] to avoid large ratios 1
between the raw feature and the confounding effect. A visualisation of all confounding 130

effects can be found in the Supplementary Methods. 131

2.2.1 Linear confounder 132

We uniformly generated a random numeric confounder ¢ € R™ with discrete values 1z

{0,1,2,3,4,5}, leading to a confounder clustering of six classes. Its linear effect on each 13

individual is ¢ + 5 and a random weight for each feature was multiplied with it: 135
X=X, +Emear — X 4 (c+5)@wy (1)

136
X = Xo 4+ ES = X5 4 (c+5) @ wo (2)

, where ® denotes the outer product between two vectors, and wy € RP ~ U(0,0.1), 1w
wa € R? ~ U(0,0.2). We chose the uniform distribution of wy to range from 0 to 0.1 13
so that the total linear effect would range from 0 to 1, having the same scale as X;. We 13
increased the upper bound of w to 0.2 due to our observation that X, is less sensitive 10

to linear confounders. 141

2.2.2 Non-linear confounder 142

Non-linear effects were simulated in a similar way to linear effects. However, to mimic a 13
non-linear confounder, as observed in, e.g. the significant quadratic association between 14

body mass index and colon cancer risk [20], we considered adding an element-wise s

squared confounding effect c? on the features: 146
X =X;+Ef" = X1+ @w; (3)

147
Xé = X2 + E;quare = XQ + C2 ® Wo (4)

, where wy ~ U(0,0.04), wa ~ U(0,0.04). The distribution of w; and ws was also s

determined based on the scale of X; and Xs. 149
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2.2.3 Categorical confounder 150

A categorical confounding effect was achieved by shifting patients with the same con- s
founder class to a distinctive direction in the feature space. More specifically, we first 15
sampled six shifting vectors from U(0,1) corresponding to six different confounder s
classes, and patients were randomly assigned to each of the six categories. As a re- 1
sult, C; € R™*P denotes the concatenation of shifting vectors of every patient for gene 1ss
expression, while Co € R™"*? for DNA methylation, both are matrices. The categorical 156
confounder is therefore the membership of all individuals in the six classes. A typical 15
example of categorical confounders for clustering could be batch effects caused by col- 158
lecting data from different centers [7, [[1]. Then the confounded features were created 150
via: 160

X| = X1 + B = X, + diag(w) - C (5)

161

Xy = Xy + E5™% = X, + diag(w) - C (6)

, where diag(-) converts a vector into its corresponding diagonal matrix. Different from 1
the case of a numeric confounder, the weight vector w € R™ ~ U(0, 1) of the categorical 1
confounder indicates to what extent every patient was shifted so that patients would 16

have various strength of association with their confounded class. 165

2.2.4 Mixed confounder types 166

Real-life data analyses are likely affected by multiple confounders of different kinds, for 1
instance, many cancer studies correct for age, age squared, education, etc. jointly in 1

their models [I5, 26]. Here we simulated a mixed confounding effect of linear, non-linear, 160

and categorical confounders as described below: 170
X{ — Xl _|_Eiinear _i_Eiquare +E§ateg (7)

171
Xé — X2 + Eéinear + E;quare + Egateg (8)

Esquare Ecateg

. . < t .
, where Elinear plinear psauare’ p , B{*"°8 E5™°® represent the second term in For- 1n

mula (1-6), respectively. 3
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2.3 Variational autoencoder for data integration (XVAE) 174

A variety of different VAE architectures exist for the purpose of data integration, as ex- s
tensively compared by Simidjievski et al. [24]. In this study, we utilize one architecture s
recommended by the respective authors, namely the X-shaped Variational Autoencoder 17
(XVAE) (Figure . This architecture merges the heterogeneous input data sources into 17
a combined latent representation z by learning to reconstruct each source individually 17
from the common representation. Here we consider only two data types of a single 1s

datapoint x; and x9, and the loss function of XVAE is as follow: 181

Lxvage(9,0;r1,22) = *qud,(z\xl,xg)[10gpe(1171, Ta|2)| + B * MMD(Q¢(Z|$1,I2)||Z7(Z))
(9)

xl,
!

L L

ée‘ €,
9 O,
¢ %

Figure 2: Schematic representation of an X-shaped Variational Autoencoder (XVAE).
The two input layers (X, X2) denote the two omics dimension used in this study,
namely gene expression and DNA methylation. The encoder consists of contiguous
hidden layers, each with fewer nodes. We design the encoder of XVAE with a total
of 2 layers prior to the latent embedding. In the first hidden layer, the dimension of
each input entity is reduced individually. In the second hidden layer, input entities get
fused into a combined layer. The latent embedding (red) represents the bottleneck of
the XVAE with the minimum number of nodes. The decoder reversely mirrors the layer
structure of the encoder, with the final layer featuring the same number of nodes as the
input layer as it attempts to reconstruct (X;’, X»') the original input from the latent
embedding.
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, where ¢4 (2|71, x2) encodes the latent space as a probability distribution over the input 1
variables (parameterised by ¢) and pg(z1, 22|2) encodes the reconstruction of input vari-  1s3
ables as a probability distribution over the latent space (parameterised by 6). Following  1s
the originally proposed implementation, we use maximum mean discrepancy (MMD) as 1
a regularization term to constrain the latent distribution g4 to be a standard Gaussian 1
distribution, balanced by the constant beta (3), which is set to 1 for all experiments. 1
A more detailed description on autoencoders, as well as the XVAE architecture and  1ss

training procedure can be found in the Supplementary Methods. 189

2.4 Multi-omics deconfounding models 100

Here, we will first describe in section the use of linear regression for confounder a1
correction and PCA for dimensionality reduction, which we deem the ”baseline model” 19
due to their wide popularity. Then, we outline in section - the four XVAE- 1
based deconfounding models proposed in this study. Throughout this section we denote 19

the confounder value of a single data point as c. 105

2.4.1 Baseline model: linear regression and PCA (LR+PCA) 196

Under the assumption that the effects of one or multiple confounders are linearly additive 1o
to the true signal of a feature, we build a linear regression (LR) model for the confounders 19
against each mRNA or DNAm feature and then take their residuals as adjusted features. 1
Subsequently, the adjusted features from the two data types are concatenated and their 200
dimensionality is reduced via PCA (LR4+PCA). We select the top 50 PCs explaining oo
most of the variance of data to keep the embedding size identical to that of every XVAE- 20
based model. The 50 PCs explaining the most variance of data are considered for the 203

final clustering, for which KMeans with 10 random initialisations is applied. 204

2.4.2 Conditional X-shaped Variational Autoencoder (cXVAE) 205

Conditional variational autoencoder (cVAE) [25] is a semi-supervised variation of VAE, 20
which originally aims to fit the distribution of the high-dimensional output as a gen- 207
erative model conditioned on auxiliary variables. Lawry et al. proposed to achieve s
deconfounding through a ¢VAE incorporating confounding variable information as aux- 2

iliary variables [I7]. We extend this initial idea to be able to handle multi-omics data by 2w
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replacing the originally proposed VAE with the XVAE model, resulting in a conditional 2u
X-shaped variational autoencoder (cXVAE) architecture (Figure ) We tested the in- 2
tegration of confounders at different levels of the cXAVE, including the input layer, the 23
hidden layer that fuses multiple inputs, and the embedding. More details on cXVAE 21

implementations can be found in the Supplementary Methods. 215

A B

adversarial network

Figure 3: Schematic representation of (A) conditional variational autoencoder (cVAE)
and (B) adversarial deconfounding XVAE (adv-XVAE). (A) Depicts the cXVAE imple-
mentation termed input + embed due to the addition of confounders (green) in the first
layer of the encoder and decoder. (B) Depicts the adv-XVAE implementation termed
multiclass due to the usage of only a single supervised adverarial network (light green)
trained to predict confounders (green) using a multiclass prediction loss. X; and X5
are the two omics dimensions, namely gene expression and DNA methylation, while X’
and X, denote their respective reconstruction. More details and visualisations of other
implementation can be found in the Supplementary Material.

2.4.3 X-shaped Variational Autoencoder with adversarial training (adv- s

XVAE) o

The adversarial deconfounding autoencoder proposed by Dincer et al. [7] follows the s
idea of training two networks simultaneously - an autoencoder to generate a low dimen- 219
sional embedding and an adversary multi-layer perceptron (MLP) trained to predict 2
the confounder from said embedding (Figure ) By adversarially training the two 2
networks, i.e. the autoencoder aims to generate an embedding which can not be used 2

for confounder prediction by the MLP, it aims at generating embeddings that can en- 223

10
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code biological information without encoding any confounding signal. As the original 22
framework can only handle a single data type, we adapt it to work with multi-omics 22
input by replacing its autoencoder with XVAE architecture. Details on architecture 2

and training procedure of adv-XVAE can be found in Supplementary Methods. 27

2.4.4 X-shaped Variational Autoencoder with deconfounding regulariza- 23

tion (cr-XVAE) 220

Augmenting the loss function of deep learning models is an effective way to impose 2%
restrictions on the model or enforce learning of specific patterns. As an example, studies on
focused on disentangling the often highly correlated latent space of autoencoders impose 23
constraints on the correlation between latent features by adding a penalty term to the 233
loss function [I§]. Inspired by this idea, we formulate a deconfounding regularization 23
term aiming to reduce the degree of correlation between latent features and confounders. 23

The regularized loss function becomes: 236

Ler—xva(9,0; 21,22, ¢) = Lxvar(¢, 0; x1,22) + f(2,¢) (10)

, where f(z,c) denotes the joint association between latent features and confounders. 2
More specifically, we choose two different association measurements, Pearson correlation 23
and mutual information. Because Pearson correlation ranges from -1 (negatively corre- 2
lated) to 1 (positively correlated) and both indicate strong relationship, we regularize 20
only the magnitude of correlation by two methods, taking its absolute value or squared au
value. Because the confounder distribution needed for mutual information is usually s
unknown, we implement two methods to approximately compute mutual information 2

as loss function, with differentiable histogram or kernel density estimate. 244

2.4.5 Feature selection by removing correlated latent features (XVAE+FS) s

The removal of latent features correlated with confounders comes from the idea of s
post hoc interpretation of latent features [10]. To identify confounded latent features, o«
we calculate the Pearson correlation between each latent variable and the confounder. s
For determining the threshold indicating which latent features are being removed from 2o

further analyses, we test two different approaches: 250

11
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1. p-value cutoff - the p-value of the Pearson correlation indicates the probability s
that the computed correlation is smaller than a random correlation between un- 25
correlated datasets. Latent features with a p-value < 0.05 are excluded from s

analyses. 254

2. absolute correlation coefficient - Pearson correlation measures the linear relation- 255
ship between two variables. Latent features exhibiting an absolute Pearson corre-  2s6

lation of more than 0.3 (weak correlation) or 0.5 (strong correlation) are excluded. 25

2.5 Consensus clustering 258

Different from the baseline linear regression model which adopts KMeans on the decon- 250
founded features for clustering, we apply consensus clustering on the latent features of 20
each VAE-based deconfounding model. Here, consensus clustering takes the advantage o
of random sampling in a VAE and it constructs a consensus matrix A € R™*" from the 2
individual clustering of each embedding sampled from the latent distributions [I6]. We 26
perform consensus clustering on the embeddings of the entire sample set, generating 50 24
embedding matrices, on each of which a k-means clustering is conducted. The values 25
in the consensus matrix indicate the fraction of times that two data points are assigned 266
to the same cluster in those 50 clustering solutions. Subsequently, each value is divided 267
by the total number of clusterings (50), resulting in the range [0,1], where 0 means the 2
two corresponding samples are never clustered together while 1 means they are always 20
in the same cluster. Finally, a spectral clustering is performed on the consensus matrix 2w

A to derive a stable clustering of the patients. an

2.6 Evaluation metrics 72

We apply each of the aforementioned models to the artifically confounded multi-omics 273
dataset described in section 2.1 and 2] Every model is evaluated in terms of their
XVAE reconstruction accuracy, measured as the relative reconstruction error of inputs, s
their clustering stability, evaluated by the dispersion score of consensus clustering (CC),
and deconfounding capabilities for clustering, estimated by calculating the Adjusted o

Rand index (ARI) for true (cancer types) and confounder labels. 278

12
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2.6.1 XVAE reconstruction accuracy 279

Model training is monitored through inspection of the validation loss. To evaluate 20
reconstruction quality of the trained XVAE model, we compute the L2 relative error s
(RE) between the original input (z) and reconstructed data (z') for (i) each data type 2o
individually: 283
e Vi P -
iz il

, as well as (ii) for the combined data types: 284

2
T i — 2

RE — (12)
Yot Vi [l

, where m = 1,2 indicates the two data types. 285

2.6.2 Clustering stability 286

Before assessing how well each model can derive a meaningful clustering, we want to 2
first check if a model can stably cluster the samples. To achieve this goal, we employ  2ss
the dispersion score to measure the internal stability of consensus clustering based on 280

its consensus matrix A: 200

Z:’l:l Z?:l(Aij — 05)2 k 4
n2

Dispersion = (13)

The dispersion score ranges from 0 to 1, where 1 shows a perfect stability that every 2
value in A is either 0 or 1, i.e. no confusion among the clusterings, and the lower the e

less consensus among the clusterings. 203

2.6.3 Deconfounding capabilities 204

We compare our clustering with two different labels, the true one, namely cancer types, 2
and the confounder. An ideal model should deconfound the features sufficiently while 296
keeping the meaningful information for obtaining the true clustering. In other words, 207
we expect a model with high ARI with the true label and low ARI with the confounder 20

label. The association between true patient label and clusters obtained when modelling 20
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the original (unconfounded) data represents the best achievable clustering, with ARI s
value converging towards 1. 301
Similar to ARI, we compute another external clustering metric, the normalized mutual 0
information (NMI), which measures the dependence between two clusterings. As it only 30
shows complementary information to ARI, we record the NMI of every clustering model s

in Supplementary Table 1. 305

2.7 Implementation 306

For better stability and generalization, we train each model 50 times using i) randomly  sor
sampled training and validation sets with a ratio of 80:20 and ii) different seed of s

randomization. 300

2.8 Software 310

All of the models described in this study are built in Pytorch Lightning [9] and trained s
using the GPU units RTX 2080 Ti 11GB. 312

3 Results s

cXVAE outperforms other considered deconfounding strategies .

in the presence of a single confounder 315

We simulated different types of confounding effects - linear, non-linear (squared), and s
categorical - on the multi-omics TCGA pan-cancer dataset to benchmark a total of s
four deconfounding frameworks, namely XVAE with Pearson correlation feature selec- s
tion (XVAE+FS), conditional XVAE (cXVAE), adversarial training with XVAE (adv- w0
XVAE), and confounder-regularised XVAE (cr-XAVE) (see Methods for more details). s
We additionally included two baseline models to compare with: 1) confounder correc- s
tion with linear regression (LR+PCA) and 2) vanilla XVAE without any deconfounding s
(XVAE). To estimate the robustness of each method, each model was trained on 50 iter- s
ations of randomly sampled training and validation data (80:20 split) and random seed s

initialization. 325
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All proposed deconfounding approaches were able to correct for a linear confounder, as s
denoted by the high ARI for true clustering and low ARI for confounder clustering (Table s
. Performances started to decline for non-linear confounding problems, with cXVAE s
clearly outperforming other strategies. For non-linear confounders we noted large ARI 50
for confounder clustering across all strategies and simulation setups. This illustrates s
that, while good clustering performance for true labels were achieved, the full removal s
of unwanted signal was not easily achievable for all the models. Categorical confounding sz
was perceived to be the most difficult, with all models except cXVAE exhibiting a high s
decrease in true clustering performance. Notably, cr-XVAE and XVAE+FS were able to 33
remove artificial confounders completely, however at the cost of simultaneously removing 33
true clustering signal. adv-XVAE, which in theory should be a strategy well suited to 33
deal with categorical problems, fails to consistently remove the categorical confounding s
effect. In general we noted a decline of reconstruction accuracy of models with increasing 338
complexity of the confounder simulations. 339
Figure [ visualizes the deconfounding behaviour of ¢cXVAE for categorical confounding. a0
With an exception to THCA (thyroid carcinoma), all classes were strongly confounded —su
prior to ¢cXVAE application (Figure [4] left). After model training, confounding classes s«
are homogeneously mixed and clustering occurs with respect to true cancer types (Figure s
right). In summary, across all confounder simulations, cXVAE clearly outperformed s
other deconfounding strategies in terms of clustering accuracy, deconfounding power, s
and model robustness. The ARI on true clustering obtained by ¢cXVAE in all three 16
scenarios reached around 0.7, which is very close to the performance of the vanilla s+
XVAE on unconfounded data (0.731, see details in Supplementary Table 2). 348
A more detailed summary of the performances of each model can be found in Supple- 310
mentary Table 1. 350
While Table[I]depicts the best performing implementation of each deconfounding model, s
we tested a number of possible implementations (see Methods), which we observed to  ss
have a notable impact on model performance (Supplementary Table 2). Therefore, we 353
provide design recommendations for each deconfounding strategy in the Supplementary — sss

Results. 355
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Figure 4: Deconfounding behaviour of cXVAE. Dimensionality reduction (UMAP)
plot of categorically confounded data before and after application of cXVAE. Marker
colors indicate the true label labels (i.e. TCGA cancer types), while marker shapes
indicate the six classes (1-6) of the confounder (see section .

cXVAE is easily extendable to handle multiple confounders of s

mixed types 357

In a realistic setting datasets can be confounded by multiple confounders with different 358
biasing effects. In an attempt to investigate how well deconfounding strategies can han- 350
dle more than one confounder, we simulated the parallel presence of three confounders 360
of different effect, namely linear, non-linear, and categorical (Table . 361
In line with our observations with the single confounder simulations, cXVAE outper- s
formed other models in terms of true clustering accuracy and de-confounding efficiency. 363
While also other strategies like XVAE+FS, cr-XVAE, or LR+PCA were able to suc- s
cessfully remove all three simulated effects, they achieved this at the cost of true signal. e
adv-XVAE failed to fully remove confounders, while also showing very low true cluster-  ses
ing accuracy and can therefore be considered unsuitable for the task. We also noted that s
the decline in reconstruction accuracy with increasingly complex confounding situations s

is even more pronounced in multiple confounder settings. 369

16


https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cXVAE is able to retrieve biology-driven clustering from con- o

founded data -

To illustrate the deconfounding capabilities of cXVAE, the model that outperformed s
others across all four evaluation metrics in various confounding scenarios, we examined 33
the clustering results obtained on the TCGA dataset involving categorical confounders s
(Figure [4] right). The UMAP plot of latent features clearly showed that BRCA (breast s
invasive carcinoma), THCA (thyroid carcinoma), and KIRC (kidney renal clear cell s
carcinoma) were well clustered by ¢cXVAE, while BLCA (bladder urothelial carcinoma), sn
LUSC (lung squamous cell carcinoma), and HNSC (head and neck squamous cell carci- s
noma) were still entangled. In summary, we found this behaviour to be in line with the s
pathological and physiological differences between these cancer types. BLCA arises from 380
urothelial cells in the transitional epithelium, which can change from cuboidal to squa- s
mous form when stretched. Furthermore, squamous differentiation is by far the most s
common histological variant of urothelial carcinoma [14], indicating a close relationship — ss
between urothelial carcinoma and squamous cell carcinoma. Apart from BLCA, the 3s
overlap in clustering of LUSC and HNSC can be directly explained by their common  3ss
origin of squamous cells, while BRCA, THCA, and KIRC are all carcinoma related to  sss
glandular cells [I3]. Supporting the validity of our obtained ¢cXVAE clustering, other s
multi-omics pan-cancer studies utilising stacked variational autoencoders [27], penal- 38
ized matrix factorization [12], or supervised VAE [31] have retrieved similar cancer type ss

clustering. 390

4 Discussion 501

In this study, we addressed the possible harm of ignoring or inadequately handling 3o
confounders to clustering samples with (multi-)omics measurements. In epidemiology, 30
a confounder is a variable that can effect the result of a study because it is related to 30
both the exposure and the outcome being studied. Here, we extended the definition 30
to unsupervised models for disease subtyping to indicate variables that can distort the s
relationship between inferred or predicted cluster membership and disease. 307

Extensive simulation revealed that cXVAE stands out as a versatile and accurate decon- s
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founding approach. The applicability of conditional autoencoder to biological data to s
e.g. correct for batch effects [I7] or disentangle confounders in fMRI [28] or microRNA 40
data [30] has been shown before. However, by merging the principles of a conditional au-
toencoder with the framework of an autoencoder specifically tailored for the integration e
of multi-omics data, our research charts new frontiers in the domain of deconfounded 40
patient stratification. 204
While adversarial training may offer an alternative flexible deconfounding approach, s
we confirm that optimization of model hyper-parameters is challenging [2]. Instability s
may become more pronounced in the presence of multiple confounders. This can be 4o
explained by the fact that adversarial networks were trained separately for each con- s
founder, sequentially adding extra terms to its objective function (see Supplementary  aw
Table 2). 410
In the literature, a statistical correlation loss has been proposed to replace the ad-
versarial prediction loss in a adversarial training model [I], resembling our cr-XVAE a2
model. The difference is that cr-XVAE directly computes the correlation between the a3
VAE embedding and the confounder without an additional adversarial network. We a1
implemented Pearson correlation and mutual information as the regularization term of s
cr-XVAE but other association measures could also be adopted, e.g. Spearman correla- a6
tion and cosine similarity. In the case of multiple confounders, it is also possible to weigh a7
their associations differently in the loss function to balance deconfounding strength. 218
The identification of disease subtypes requires performing a clustering algorithm at o
some point. Even though iterative training of the clustering in a joint autoencoder o
loss function can overcome inconsistencies between training and downstream clustering
performance [8 19, 2], we chose for a decoupled strategy. This was to 1) avoid having 2
too many terms in loss function to confuse training, and 2) reduce computation time s
and initialization settings with iteratively training clustering in a joint loss function. a2
Consensus clustering furthermore has several advantages in data science including ro- s
bustness, stability, interpretability and flexibility, as it can be applied to various types 4
of data and clustering algorithms. a7
It remains a daunting task to generate data that adequately reflect the complexity of s
real-life cases. Therefore, one needs to be aware that simulations of confounders always a9

represent simplifications of real observable effects. While this study is limited to the 4
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use of two data types, in principle the XVAE design utilised allows the integration s
of heterogeneous data from many more sources simultaneously. Additionally, since all 4
evaluated deconfounding strategies share the same XVAE design as a foundation, we 4
anticipate consistent training time and performance across models when scaling up 4.

dimensions. 435

5 Conclusion w6

In this study, we presented four VAE-based multi-omics clustering models and their vari- 7
ations, following different deconfounding strategies. Their clustering and deconfounding s
performance was evaluated and compared with baseline models on the multi-omics pan-
cancer dataset from TCGA with artificailly generated confounding effects. The results o
showed both the necessity to adjust for confounders and that our novel models, cXVAE  a
in particular, can effectively deal with the confounding effects and obtain the biologically 2
meaningful clustering. We demonstrate that our multi-omics deconfounding VAE clus- 3
tering models have big potential in delivering accurate patient subgrouping or disesase

subtyping, ultimately enabling better personalised healthcare. a5
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Our code is available at [https://github.com/ZuqiLi/Multi-view-Deconfounding-VAE|

The simulated data generated in the course of this study are available at Zenodo a8
(https://doi.org/10.5281/zenodo.10458941]). 449
Acknowledgements 0

The authors thank the supporters of this study, namely the European Union’s Horizon 4
2020 research and innovation program under the Marie Sklodowska-Curie grant agree- s
ment No. 860895 TranSYS. Furthermore we thank the members of the Computational 43
Population Biology group at Erasmus Medical Center for their critical and creative s

input to this work. 255

19


https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Author contributions statement w56

Z.L. and S.K. designed, planned, carried out the practical aspects of this study, and 4
wrote the manuscript. G.V.R. offered mentoring and scientific input throughout the s

work process. G.V.R.; E.S., K.v.S., and V.MdS. provided critical revision of the manuscript sso

All authors approve of the final manuscript. 460
Conflict of interest w1
The authors declare no competing interests. 262

Elnding 463

This work was supported by the European Union’s Horizon 2020 research and innova-  ses
tion programme under the Marie Sklodowska-Curie grant agreement [860895 to Z.L., 46
S.K. and K.V.S.]; and the ZonMw Veni grant [1936320 to G.V.R.]. E. S. acknowl- s
edges the funding received from The Netherlands Organisation for Health Research s
and Development (ZonMW) through the PERMIT project (Personalized Medicine in e
Infections: from Systems Biomedicine and Immunometabolism to Precision Diagnosis o
and Stratification Permitting Individualized Therapies, project number 456008002) un- 4w
der the PerMed Joint Transnational call JTC 2018 (Research projects on personalised
medicine—smart combination of pre-clinical and clinical research with data and ICT

solutions). a3

References s

[1] E. Adeli, Q. Zhao, A. Pfefferbaum, E. V. Sullivan, L. Fei-Fei, J. C. Niebles, and s
K. M. Pohl. Representation learning with statistical independence to mitigate bias.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer —an
Vision, pages 2513-2523, 2021. 78

[2] M. Bahrami, M. Maitra, C. Nagy, G. Turecki, H. R. Rabiee, and Y. Li. Deep o

feature extraction of single-cell transcriptomes by generative adversarial network. s

20


https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bioinformatics, 37(10):1345-1351, June 2021. ISSN 1367-4803. doi: 10.1093/ 4

bioinformatics/btaad76. 482

[3] F. Chen, Y. Zhang, D. Bossé, A.-K. A. Lalani, A. A. Hakimi, J. J. Hsieh, T. K. s
Choueiri, D. L. Gibbons, M. Ittmann, and C. J. Creighton. Pan-urologic cancer s
genomic subtypes that transcend tissue of origin. Nature Communications, 8(1):  ass

199, Aug. 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-00289-x. 486

[4] A. Colaprico, T. C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, T. S. 4
Sabedot, T. M. Malta, S. M. Pagnotta, I. Castiglioni, M. Ceccarelli, G. Bontempi, s
and H. Noushmehr. TCGAbiolinks: An R/Bioconductor package for integrative 4so
analysis of TCGA data. Nucleic Acids Research, 44(8):e71, May 2016. ISSN 0305-
1048. doi: 10.1093/nar/gkv1507. 491

[5] J. Cuklina, P. G. A. Pedrioli, and R. Aebersold. Review of Batch Effects Pre- o
vention, Diagnostics, and Correction Approaches. In R. Matthiesen, editor, s
Mass Spectrometry Data Analysis in Proteomics, Methods in Molecular Biology, 10
pages 373-387. Springer, New York, NY, 2020. ISBN 978-1-4939-9744-2. doi: 4
10.1007/978-1-4939-9744-2_16. 496

[6] L. P.de Lima Camillo, L. R. Lapierre, and R. Singh. A pan-tissue DNA-methylation o
epigenetic clock based on deep learning. npj Aging, 8(1):1-15, Apr. 2022. ISSN 4
2731-6068. doi: 10.1038/s41514-022-00085-y. 499

[7] A. B. Dincer, J. D. Janizek, and S.-I. Lee. Adversarial deconfounding autoencoder s
for learning robust gene expression embeddings. Bioinformatics, 36(Suppl 2):i573—  sa

582, Dec. 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/btaa796. 502

[8] M. Eltager, T. Abdelaal, M. Charrout, A. Mahfouz, M. J. T. Reinders, and s
S. Makrodimitris. Benchmarking variational AutoEncoders on cancer transcrip- s

tomics data. PLOS ONE, 2023. 505

[9] W. Falcon and The PyTorch Lightning team. PyTorch Lightning, Mar. 2019. URL s

https://github.com/Lightning-AI/lightning, 507

[10] Y. J. Fan. Autoencoder node saliency: Selecting relevant latent representations. s

21


https://github.com/Lightning-AI/lightning
https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pattern Recognition, 88:643—-653, Apr. 2019. ISSN 0031-3203. doi: 10.1016/j. so0
patcog.2018.12.015. 510

[11] W. W. B. Goh, W. Wang, and L. Wong. Why Batch Effects Matter in Omics Data, su
and How to Avoid Them. Trends in Biotechnology, 35(6):498-507, June 2017. ISSN s
1879-3096. doi: 10.1016/j.tibtech.2017.02.012. 513

[12] A. Gonzédlez-Reymindez and A. I. Vézquez. Multi-omic signatures identify pan- su
cancer classes of tumors beyond tissue of origin. Scientific Reports, 10(1):8341, s

May 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-65119-5. 516

[13] T. K. Horne and M. J. Cronje. Cancer Tissue Classification, Associated Therapeu-  sw
tic Implications and PDT as an Alternative. Anticancer Research, 37(6):2785-2807, s

June 2017. ISSN 0250-7005, 1791-7530. 519

[14] A. M. Kamat, N. M. Hahn, J. A. Efstathiou, S. P. Lerner, P.-U. Malmstrom, s
W. Choi, C. C. Guo, Y. Lotan, and W. Kassouf. Bladder cancer. The Lancet, 388 sz
(10061):2796-2810, 2016. 522

[15] C. Kartsonaki, Y. Pang, I. Millwood, L. Yang, Y. Guo, R. Walters, J. Lv, M. Hill, s
C. Yu, Y. Chen, X. Chen, E. O’Neill, J. Chen, R. C. Travis, R. Clarke, L. Li, s
Z. Chen, and M. V. Holmes. Circulating proteins and risk of pancreatic cancer: a  s»
case-subcohort study among Chinese adults. International Journal of Epidemiol- s

o0gy, 51(3):817-829, June 2022. ISSN 1464-3685. doi: 10.1093/ije/dyab274. 527

[16] V. Kiselev, K. Kirschner, M. Schaub, T. Andrews, A. Yiu, T. Chandra, K. Natara- s
jan, W. Reik, M. Barahona, A. Green, and M. Hemberg. Sc3: consensus clustering s
of single-cell rna-seq data. Nat Methods, 2017-05-14. doi: 10.1038/nmeth.4236. s
Epub 2017 Mar 27. PMID: 28346451; PMCID: PMC5410170. 531

[17] A. Lawry Aguila, J. Chapman, M. Janahi, and A. Altmann. Conditional VAEs s»
for Confound Removal and Normative Modelling of Neurodegenerative Diseases. s
In L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, editors, Medical Image s
Computing and Computer Assisted Intervention — MICCAI 2022, Lecture Notes s
in Computer Science, pages 430-440, Cham, 2022. Springer Nature Switzerland. s
ISBN 978-3-031-16431-6. doi: 10.1007/978-3-031-16431-6_41. 537

22


https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[18] X. Liu, B. Li, E. Bron, W. Niessen, E. Wolvius, and G. Roshchupkin. Projection- s
wise disentangling for fair and interpretable representation learning: Application to s
3d facial shape analysis. In M. Bruijne, editor, Medical Image Computing and Com- s
puter Assisted Intervention — MICCAI 2021. MICCAI 2021. Lecture Notes in Com-  sa
puter Science(, volume 12905. Springer, 2021. doi: 10.1007/978-3-030-87240-3_78. s

URL https://doi.org/10.1007/978-3-030-87240-3_78. 543

[19] H. Muhammad. Unsupervised subtyping of cholangiocarcinoma using a deep clus- s«
tering convolutional autoencoder. In D. Shen, editor, Medical Image Comput- s
ing and Computer Assisted Intervention — MICCAI 2019. MICCAI 2019. Lec- s
ture Notes in Computer Science(, volume 11764. Springer, 2019. doi: 10.1007/ s«
978-3-030-32239-7_67. URL https://doi.org/10.1007/978-3-030-32239-7_67. s

[20] A. O. Odegaard, W. P. Koh, M. C. Yu, and J. M. Yuan. Body mass index and risk s
of colorectal cancer in Chinese Singaporeans: The Singapore Chinese Health Study.  sso

Cancer, 117(16):3841-3849, Aug. 2011. ISSN 1097-0142. doi: 10.1002/cncr.25936. s

[21] A. Owens, C. Mclnerney, and K. Prise. Novel deep learning-based solution for ss
identification of prognostic subgroups in liver cancer (hepatocellular carcinoma. sss
BMC Bioinformatics, 22:563, 2021. doi: 10.1186/s12859-021-04454-4. URL https:| ss

//doi.org/10.1186/s12859-021-04454-4. 555

[22] M. Pourhoseingholi, A. Baghestani, and M. Vahedi. How to control confounding sse

effects by statistical analysis. Gastroenterol Hepatol Bed Bench, 5:79-83, 2012. 557

[23] A. Radhakrishnan, S. F. Friedman, S. Khurshid, K. Ng, P. Batra, S. A. Lubitz, sss
A. A. Philippakis, and C. Uhler. Cross-modal autoencoder framework learns holistic  sso

representations of cardiovascular state. Nature Communications, 14(1):2436, 2023. s

[24] N. Simidjievski, C. Bodnar, I. Tariq, P. Scherer, H. Andres-Terre, Z. Shams, sa
M. Jamnik, and P. Lid. Variational autoencoders for cancer data integration: s
Design principles and computational practice. bioRziv, page 719542, 2019. doi: ses
10.1101/719542. 564

[25] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep  sss

conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, ses

23


https://doi.org/10.1007/978-3-030-87240-3_78
https://doi.org/10.1007/978-3-030-32239-7_67
https://doi.org/10.1186/s12859-021-04454-4
https://doi.org/10.1186/s12859-021-04454-4
https://doi.org/10.1186/s12859-021-04454-4
https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-  ser

ume 28. Curran Associates, Inc., 2015. 568

[26] H. Tu, C. P. Wen, S. P. Tsai, W.-H. Chow, C. Wen, Y. Ye, H. Zhao, M. K. Tsai, se
M. Huang, C. P. Dinney, C. K. Tsao, and X. Wu. Cancer risk associated with swo
chronic diseases and disease markers: prospective cohort study. BMJ (Clinical sn

research ed.), 360:k134, Jan. 2018. ISSN 1756-1833. doi: 10.1136/bmj.k134. 572

[27] B. Uyar, J. Ronen, V. Franke, G. Gargiulo, and A. Akalin. Multi-omics and deep s

learning provide a multifaceted view of cancer. bioRziv, pages 2021-09, 2021. 574

[28] X. Wang, R. Zhou, K. Zhao, A. Leow, Y. Zhang, and L. He. Normative Model- s
ing Via Conditional Variational Autoencoder and Adversarial Learning to Iden- s
tify Brain Dysfunction in Alzheimer’s Disease. In 2023 IEEE 20th Interna- sm
tional Symposium on Biomedical Imaging (ISBI), pages 1-4, Apr. 2023. doi: s
10.1109/1SBI53787.2023.10230377. 579

[29] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. M. Shaw, B. A. Ozenberger, ss
K. Ellrott, I. Shmulevich, C. Sander, and J. M. Stuart. The Cancer Genome Atlas s
Pan-Cancer Analysis Project. Nature genetics, 45(10):1113-1120, Oct. 2013. ISSN  ss
1061-4036. doi: 10.1038 /ng.2764. 583

[30] T. Yu. AIME: Autoencoder-based integrative multi-omics data embedding that s
allows for confounder adjustments. PLOS Computational Biology, 18(1):€1009826,  sss
Jan. 2022. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1009826. 586

[31] X. Zhang, J. Zhang, K. Sun, X. Yang, C. Dai, and Y. Guo. Integrated multi-omics  ssr
analysis using variational autoencoders: Application to pan-cancer classification. In  sss
2019 IEEF International Conference on Bioinformatics and Biomedicine (BIBM),  ss
pages 765-769, 2019. doi: 10.1109/BIBM47256.2019.8983228. 590

24


https://doi.org/10.1101/2024.02.05.578873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578873; this version posted March 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

linear
Clustering performance (ARI)
Reconstruction error cc True label Confounder
dispersion (cancer type)
LR+PCA - - 0.692 0.001

XVAE 0.246 (£ 0.004) 0.844 (% 0.045) 0.506 (£ 0.116) 0.151 (£ 0.057)
XVAE+FS 0.245 (£ 0.004) 0.860 (+ 0.028) 0.571 (£ 0.092) 0.008 (+ 0.007)
cXVAE 0.234 (£ 0.003) 0.935 (£ 0.023) 0.712 (+0.055) 0.001 (£ 0.001)
adv-XVAE 0.245 (£ 0.004) 0.901 (% 0.032) 0.568 (£ 0.070) 0.093 (+ 0.051)
cr-XVAE 0.244 (+ 0.003) 0.873 (& 0.028) 0.598 (+ 0.074) 0.004 (£ 0.004)

non-linear

Clustering performance (ARI)

. CcC True label
Reconstruction error Confounder
dispersion (cancer type)
LR+PCA - - 0.391 0.215
XVAE 0.236 (£ 0.003) 0.826 (+ 0.042) 0.307 (£ 0.141) 0.297 (£ 0.071)
XVAE+FS 0.236 (£ 0.003) 0.805 (% 0.040) 0.411 (£ 0.142) 0.138 (+0.078)
¢XVAE 0.227 (4 0.002)  0.908 (+ 0.031) 0.646 (+ 0.079) 0.076 (+ 0.074)
adv-XVAE 0.238 (£ 0.004) 0.942 (+ 0.025) 0.568 (£ 0.049) 0.194 (+ 0.006)
cr-XVAE 0.235 (£ 0.002) 0.852 (£ 0.043) 0.478 (£ 0.129) 0.154 (£ 0.042)
categorical

Clustering performance (ARI)

. CC True label
Reconstruction error Confounder
dispersion (cancer type)

LR+PCA - - 0.150 0.071

XVAE 0.216 (+ 0.003) 0.762 (+ 0.055) 0.330 (£ 0.125) 0.048 (+ 0.088)
XVAE+FS  0.216 (& 0.003) 0.787 (£ 0.040)  0.361 (£ 0.100)  0.010 (& 0.023)

cXVAE 0.210 (£ 0.002)  0.911 (£ 0.033) 0.664 (+ 0.070) 0.001 (< 0.001)
adv-XVAE 0.217 (+ 0.002) 0.764 (+ 0.058) 0.240 (+ 0.188) 0.156 (+ 0.084)
cr-XVAE 0.216 (£ 0.003) 0.813 (£ 0.034)  0.368 (£ 0.101)  0.001 (& 0.001)

Table 1: Overview performances of deconfounding strategy for single con-
founder simulations. Values are displayed as mean + standard deviation of 50
runs with different parameter initialisation and randomly sampled training and vali-
dation data. Models on the first column indicate the following deconfounding strate-
gies and implementations thereof: linear regression followed by principal component
analysis and KMeans clustering (LR+PCA), vanilla XVAE without any deconfounding
(XVAE), XVAE with feature selection in the form of removing correlated latent features
(XVAE+FS, correlation cutoff = 0.5), conditional XVAE (cXVAE, input + embedding),
adversarial training with XVAE (adv-XVAE, multiclass MLP), confounder-regularised
XVAE (cr-XAVE, squared correlation regularisation). Reconstruction error: relative
error in the reconstruction of X1 and X2 weighted eqally; CC dispersion: consensus
clustering agreement over 50 iterations; True clustering: adjusted rand index (ARI) of
consensus clustering derived clusters with True label labels; Confounder clustering: ARI
of consensus clustering derived clusters with simulated confounder labels.
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multiple confounders

Clustering performance (ARI)

Reconstruction cC True label Linear Squared Categorical
error dispersion (cancer type) confounder confounder confounder
LR+PCA - - 0.215 0.001 0.014 0.001

XVAE 0.161 (£ 0.003)  0.725 (+ 0.043)  0.216 (+ 0.089)  0.015 (£ 0.019)  0.140 (& 0.043)  0.067 (& 0.048)
XVAE+FS  0.161 (+ 0.003)  0.731 (+ 0.037)  0.265 (+ 0.085)  0.007 (£ 0.009)  0.019 (+ 0.030)  0.109 (+ 0.057)
¢XVAE  0.146 (+ 0.002) 0.905 (+ 0.022) 0.634 (+ 0.042) 0.001 (+ 0.001) 0.001 (+ 0.001) 0.001 (+ 0.001)
adv-XVAE ~ 0.158 (+ 0.004)  0.753 (+ 0.066)  0.225 (+ 0.120)  0.016 (£ 0.023)  0.107 (+ 0.052)  0.106 (& 0.051)
o-XVAE  0.161 (+ 0.003)  0.764 (+ 0.031)  0.369 (+ 0.064)  0.003 (£ 0.002)  0.007 (+ 0.010)  0.001 (+ 0.001)

Table 2: Overview performances of deconfounding strategy in the presence of
multiple confounders. Values are displayed as mean + standard deviation of 50 runs
with different parameter initialisation and randomly sampled training and validation
data. For a detailed description of columns and models, please refer to Table
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