bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584574; this version posted May 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dynamics of Brain Connectivity acrosstheAlzhemer's
Disease Spectrum: a magnetoencephalography study

Running title: MEG Insights on AD spectra Brain Dynamics

Martin Carrasco-Gémez,*?® Alejandra Garcia-Colomo,** Jesiis Cabrera-Alvarez,>* Ricardo

Brufia,>>® Andrés Santos,™® Fernando M aest(,>*°
Author affiliations:

1. Department of Electronical Engineering, E.T.S. de Ingenieros de Telecomunicacion,
Universidad Politécnica de Madrid, 28040, Madrid, Spain.

2. Center for Cognitive and Computational Neuroscience, Complutense University of
Madrid, 28223, Madrid, Spain.

3. CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud
Carlos I11, Madrid, Spain

4. Department of Experimental Psychology, Cognitive Psychology and Speech & Language
Therapy, Complutense University of Madrid, 28223, Madrid, Spain.

5. Health Research Institute of the Hospital Clinico San Carlos (1dISSC), 28240, Madrid,
Spain.
6. Department of Radiology, Universidad Complutense de Madrid, 28240, Madrid, Spain.

Acknowledgements

We would like to thank all participants that were included in this study for their selfless

contribution to science, making this work possible.

Correspondence to: Martin Carrasco-Gomez (martin.carrasco@upm.es)
Full address: Calle del Ministro Ibafiez Martin, 4, 2°B, 28015, Madrid, Spain.

1


https://doi.org/10.1101/2024.03.14.584574
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584574; this version posted May 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Alzheimer's disease (AD) represents amajor challenge in neurodegenerative disease research,
as it is characterized by a complex pathophysiology that involves not only structural but also
functional changes in the brain. While changes in static functional connectivity have already
been linked to AD, there is still alack of research studying dynamic functional connectivity
(dFC) across the AD continuum, which could be crucia for identifying potential biomarkers
for early diagnosis and tracking disease progression. This study leverages the high temporal
resolution of MEG to dissect the dynamics of brain connectivity alterations across various

stages of AD and their association with cognitive decline and structural brain changes.

321 participants were included in this study, categorized into heathy control, subjective
cognitive decline (SCD), and mild cognitive impairment (MCI) groups. Amplitude envelope
correlation with leakage correction was calculated over MEG signals using a sliding window,
and the correlation across epochs was studied to assess dFC at whole-brain and node level.
Finally, we explored dFC associations with cognitive scores, grey matter volume, and white

matter fractal anisotropy.

The study unveils a significant reduction in whole-brain dFC, especially within the alpha and
beta frequency bands, as individuals advance along the AD continuum. Notably, the frontal
and tempora lobes, as well as regions within the default mode network, exhibited
pronounced dFC reductions. Finally, dFC significantly correlated with cognitive performance
and changes in structural brain, suggesting the potential of the proposed dFC metric as

sensitive indicator for monitoring disease progression.

This investigation provides crucial insights into the temporal dynamics of brain connectivity
aterations in the early stages of the AD spectrum, underlining the importance of dFC
changes as reflective of cognitive and anatomical degeneration. The findings hint towards a
strong relationship between connectivity profiles and white matter integrity, especially for

high frequency activity in the association cortices.

Keywords: Dynamic functional connectivity; Magnetoencephalography; Alzheimer's
disease; White-matter integrity; Amplitude Envelope Correlation.
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Key Points:

e Dynamic functional connectivity declines over the AD spectrum.

e Dynamic functional connectivity reductions are most prominent in orbitofrontal,
temporal, and DM N-related ar eas.

e Cognitive performance, brain volumetrics, and white matter integrity
parameters positively correlate with dynamic functional connectivity over the
whole AD spectrum, and most significantly among mild cognitive impair ment

participants.

| ntr oduction

Alzheimer's disease (AD) is the most common form of dementia,* affecting an estimated of
32 million people worldwide. In AD, functional networks supporting cognition become
atered, including activation and deactivation deficits, abnormal oscillatory activity, and
synaptic failure, and leading to impaired memory, behaviora disorders, and emotional

changes.?

One way to evaluate the integrity of neural communication in the brain is through functional
connectivity (FC), the statistical dependency of distant neura activity, which has been
extensively used in the study of AD. More specificaly, FC changes have been described
along the disease spectrum, including alterations among individuals in the dementia phase of
AD:;? in participants with mild cognitive impairment (MCI);** in subjective cognitive decline
(SCD),%" a preclinical asymptomatic stage in which participants already report a decrease in
their cognitive capabilities, prodroma to MCI; and even as early as in hedthy adults at risk
of developing dementia®® Taken together, these studies show an inverted u-shape pattern of
FC changes aong the continuum of AD, finding increased FC in the early stages, followed by
a decrease in connectivity later on in the continuum.’® These changes have been previously

11,12

associated with the underlying pathology hallmarks of AD.

Notably, studies on brain connectivity have assumed, until recently, the stationarity of FC.
However, the brain’s functional activity, far from being static, has been described as highly
dynamic, forming various functional networks that underlie complex cognition.™

Consequently, by averaging over lengthy imaging recordings, transient information may be
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lost, and what we interpreted as inter-subject variability might in fact be averaged temporal
variability. This perspective has brought attention to the field of spatiotemporal dynamics of
brain networks, also called “dynamic functional connectivity” (dFC), which studies how FC
evolves over time and what connectivity profiles arise. It has been proven that dFC changes

dynamically in response to different contexts or stimuli, even in the resting-state.**

Given the consistency of the changes in static FC (sFC) throughout the continuum of AD, a
novel line of research, focused on the possible dFC alterations underlying sFC changes, has
become especially relevant for the disease. Most investigations involving dFC in AD have
been carried out using functional magnetic resonance imaging (FMRI). A common finding in
these studies is that dFC is reduced in AD, in key networks and regions for the disease, such
as the DMN.™ Additionally, some studies have also reported such a decrease in dFC among
MCI participants in regions like the precuneus, which correlated with cognitive
performance.’*® Likewise, Jones et al.’® found a reduction of time spent in connectivity
states with a high contribution of posterior DMN areas among AD patients, and Schumacher
et al.?° reported that AD patients spend more time in states of sparse connectivity, an inability
to switch between states of low inter-network connectivity, and more highly and specifically
connected network configurations than controls. For a review of fMRI findings about dFC in
AD, seeFilippi et al.?* and Matsui et al.™®

However, the temporal resolution of fMRI is hampered by its low sampling frequency and
the slow nature of the hemodynamic responses recorded, and is consequently likely to miss
relevant dFC changes in the sub-second scale.** Electrophysiological techniques such as
electroencephalography (EEG) and magnetoencephaography (MEG) are able to overcome
such difficulties, both because of their higher sampling frequency and the fact that they
measure the electrical activity of cortical neurons. While very scarce, electrophysiological
studies point in the same direction as those using fMRI, suggesting a decrease in dFC in the
last stages of the AD continuum. Nufiez et al.** found decreased variance when studying the
leaked-corrected amplitude envelope (AEC-c) correlations in sensor-space EEG in AD
patients compared to the control group in both high apha and low beta bands, while no
significant differences appeared in the MCI group. In a posterior work they applied hidden
Markov models to instantaneous FC in EEG sensor-space to study meta-states dynamics in
AD and MCI, and found a decrease in modularity of meta-states in both MCl and AD
participants compared to controls in both alpha and low beta bands,?* meaning that their

resting-state networks were less well defined, possibly contributing to the shorter dwell times
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they also found in the pathological groups. In a functional near-infrared spectroscopy
(fFNIRS) and EEG integrative investigation, Li et al.?* found weaker or suppressed dFC in the
high alpha and low beta bands of AD participants, reporting lower values for degree and
clustering coefficient in the frontal pole and medial orbital regions of AD-induced brain
networks. On the other hand, while not centered in dFC, other electrophysiological studies
focused on other highly correlated parameters, such as entropy and dynamic changes in
power, report findings in the same direction. Sun et al.** compile, in a review, reports on
decreasing complexity of the MEG/EEG signal in multiple entropy parameters in AD.
Finaly, Puttaert et al.® applied hidden Markov models to MEG power topographies of
healthy individuals and SCD, MCI, and AD participants, finding only differences in the
dynamics of the control and AD groups. Smilarly to the aforementioned fMRI study by
Jones et a.," they found that AD participants spent less time in, and switched less frequently
into, states with a high contribution of the posterior DMN.

To the best of our knowledge, no electrophysiological studies exist on the whole pre-
dementia spectrum of AD that characterize the evolution of dFC in this population. Based on
the presented premises, this study aims to characterize the evolution of dFC in the AD
spectrum by estimating connectivity through AEC-c and correlating it over different
segments of MEG datain a large cohort consisting of healthy controls, SCD participants, and
both stable and progressive MCI participants. Guided by the claims of previous research, we
hypothesize we will find the trend of dFC reduction earlier in the AD spectrum, as well as
that these reductions to be predominant in frontal and temporal regions and in the DMN.
Lastly, to wrap the interpretation of our findings, we will also study the correlation of dFC
with cognitive scores, anatomical metrics, and white matter integrity markers, which we

hypothesize to decline along with dFC.

M aterials and methods

Participants

The sample for the present study consisted of 321 individuals with valid MEG resting state
recordings, T1l-weighted magnetic resonance imaging (MRI) scans, and a thorough

neuropsychological evaluation. Of them, 143 were unimpaired older adults with no cognitive
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complaints, namely the heathy control (HC) group, 72 were unimpaired individuals with
SCD, and 106 presented MCI.

MCI patients were diagnosed according to the National Institute on Aging-Alzheimer
Association (NIA-AA) criteria,®® based on their cognitive profile. Besides meeting the core
clinical criteriafor MCI, patients also exhibited significant hippocampal atrophy according to
the evaluation of an experienced neuroradiologist who was blinded to the clinical outcome
(see also below hippocampal volumes calculation). Consequently, patients were categorized
as “MCI due to AD with intermediate likelihood”.*® MCI participants underwent longitudinal
assessment on their clinical progression after a mean of 2 (standard deviation of 0.5 years).
They were further subdivided into 64 stable MCI (sMCI) and 42 progressive MCI (pMCI)
patients, depending on their progression to probable AD in during the follow-up period.?
The participants were recruited from different Spanish institutions and associations; namely,
the “Fulbright Alumni Association”, the “Asociacion Espafiola de Ingenieros de
Telecomunicacion”, or the “Hospital Universitario Clinico San Carlos’, being the last one
located in Madrid.

To correctly characterize the SCD group, cognitive concerns were self-reported by the
participantsin an interview with clinician experts. The final group assignment was made after
neuropsychological evaluation attending to a multidisciplinary consensus (by
neuropsychologists, psychiatrists, and neurologists). To prevent possible confounders of
SCD, problematic medication, psycho-affective disorders or other relevant medical
conditions lead to the exclusion from the study. Following the recommendations made by the
SCD-I-WG, all subjects were older than 60 at onset of SCD, and this onset took place within

the last 5 years prior to the recruitment.

The exclusion criteria employed in this study were the followings: (1) history of psychiatric
or neurological disorders or drug consumption that could affect MEG activity, such as
cholinesterase inhibitors; (2) evidence of infection, infarction or focal lesions in a T2-
weighted scan within 2 months before MEG acquisition; (3) history of alcoholism, chronic
use of anxiolytics, neuroleptics, narcotics, anticonvulsants or sedative hypnotics; and (4) for
the healthy individuas (HC and SCD groups), a score below 26 points in the MMSE.
Besides, additional analyses were conducted to rule out other possible causes of cognitive
decline, such as B12 vitamin deficit, diabetes mellitus, thyroid problems, syphilis, or

infection by the human immunodeficiency virus (HIV).
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All participants were native Spanish speakers and provided written informed consent. The
Institutional Review Board Ethics Committee at Hospital Universitario San Carlos approved
the study protocol, and the procedure was performed following the Helsinki Declaration and
National and European Union regulations. Table 1 summarizes relevant demographic and
clinical information of the sample, and Table S1 compares demographics from sMCl and

pMCI groups.

Neuropsychological assessment

To assess the general cognitive and functional status of the participants, the following set of
screening questionnaires were used: The Mini Mental State Examination (MMSE):® the
Geriatric Depression Scale-Short Form (GDS);?® the Hachinski Ischemic Score, (HIS);*° and
the Functional Assessment Questionnaire (FAQ).*! After the initial screening, al subjects
underwent an exhaustive neuropsychological assessment including: Direct and Inverse Digit
Span tests (Wechsler Memory Scale, WMS-IV);* Immediate and Delayed logic memory
component of the WMS-1V;* and Phonemic and Semantic Fluency (Controlled oral Word
Association Test, COWAT).** From these measures, both MM SE scores and the Delayed
logic memory component of the WMS-1V were used in this study.

M agnetic resonance imaging

An individual T1-weighted MRI scan was acquired for each participant in a General Electric
1.5 T scan. A high-resolution antenna was employed, together with a homogenization phased
array uniformity enhancement filter (fast spoiled gradient echo sequence, TR/TE/TI of
11.2/4.2/450 ms; flip angle of 12°; slice thickness of 1 mm, 256 x 256 matrix, and FOV of 25
cm. These images were processed using the FreeSurfer software (version 6.1.0) for

automated cortical and subcortical segmentation and parcellation.®

Additionally, diffusion weighted imaging (DWI) scans were acquired using a single shot
echo planar imaging sequence with a TE of 96.1 ms, a TR of 12ms; a NEX 3 for increasing
the signal-to-noise ratio, a FOV of 30.7 cm (resolution of 128 x 128), and a 4 mm slice
thickness. In the DWI sequence, one image had no diffusion sensitization (i.e., T2-weighted
b0 images), and 25 were DWI (b = 900 mm?2). DWI images were processed with AutoPtx


https://doi.org/10.1101/2024.03.14.584574
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584574; this version posted May 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

|.35

for probabilistic tractography, as outlined in the paper of de Groot et al.” The procedure

extracted the mean fractional anisotropy (FA) for each of the tracts of interest (see next
paragraph).

The volumetric and tractography measures that were included in further analyses were the
total volumes (mm?®) of cortical gray matter and hippocampus, normalized by the estimated
intracranial volume (eTIV), and the FA of the cingulate gyrus part of the cingulum (CGC)
and the inferior longitudinal fasciculus (ILF), due to their relevance in the early progression

of the disease.*®

MEG data acquisition

Each participant underwent a four-minute, eyes-closed, resting-state MEG scan at the Center
for Biomedical Technology in Madrid, Spain. This sesson used a 306-sensor Elekta
Neuromag system (Elekta AB, Stockholm, Sweden) to record brain activity. Additionally,
ocular and cardiac activities were monitored using two sets of bipolar electrodes. To track
head position, four head position indication coils were placed on the participants scalp: two
on the forehead and two on the mastoids. These coils, along with approximately 200 points of
the participant’ s head shape, were digitized using the Fastrak 3D scan (Polhemus, Colchester,
VT, USA). The coils were actively used during the recording to continuously monitor the
head's position in relation to the MEG helmet. The procedure was conducted in a
magnetically shielded room, and participants were advised to remain as motionless and
relaxed as possible. The data were filtered in real time between 0.1 and 330 Hz and digitized
at a rate of 1000 Hz. For data processing, the spatiotemporal signal space separation
method,® as implemented in the Neuromag software (MaxFilter version 2.2, with a
correlation of 0.90 and a time window of 10 seconds), was employed to eliminate external

noise and correct for any head movements during the MEG scan.

MEG preprocessing and sour ce reconstruction

MEG data were blindly preprocessed by an electrophysiology expert using FieldTrip
software.® This process involved dividing the continuous data into non-overlapping, artifact-
free 4-second segments, with an extra 2 seconds of real data to each side for padding
purposes. Participants who had at least 20 valid segments were selected for further analysis.


https://doi.org/10.1101/2024.03.14.584574
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584574; this version posted May 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Due to the high redundancy in the data after applying the signal space separation method,*

analysis focused solely on data from the magnetometers.

Each participant's T1-weighted MRI scan was used for individual source reconstruction. The
source model was established in MNI space using a uniform 3D grid with 10 mm spacing.
Source positions were identified based on the automated anatomical labeling atlas,* resulting
in 1210 cortical sources distributed across 80 regions of interest. This source model was then
linearly transformed to each participant's T1-weighted scan. The scans were segmented using
SPM12 software,*" creating a brain mask. This mask aided in constructing the participants
single-shell redlistic head models. These models, combined with the participants source
models, facilitated the generation of a lead field using a modified spherical solution.*?

To derive time series data for each source location, alinearly constrained, minimum variance
beamformer was used as the inverse model. To this end, the beamformers were computed
using the covariance matrix of the data filtered between 2 and 45 Hz, with a regularization

level set at 1% of the average sensor power.

Dynamic functional connectivity

dFC calculation

FC was estimated using the AEC with leakage correction,” either between each pair of time-
seriesin the 80 ROIS of the AAL or between the 1210 brain sources, using the absolute value
of the Pearson correlation between the envelopes of the band-pass filtered time-series. Data
was filtered in the theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz) frequency bands
through a finite impulse response filter with an order of 1800, designed with a hamming
window. AEC was chosen because of its reliability, its within and between subject
consistency,* and due to its sensibility to dFC in aforementioned literature with a similar

objective. 4?4

Typicaly, this connectivity metric is calculated in each of the defined signal segments, and
then averaged over those, obtaining the so-called static FC (Figure 1A). However, for the
sake of studying dFC, we calculated the correlation between the connectivity matrices
corresponding to each segment. This is usually labeled in literature as the recurrence matrix

(C),%*® and represents the similarity of connectivity distributions over time, as represented in
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figure 1B. To maintain a uniform representation of the data of all subjects, the same number
of segments were used for dFC calculations in all subjects. Given that the minimum number
of segments among the participants was 21, we just kept the first 21 clean segments of each

participant.

{Insert Figure 1 here}

Whole-brain dFC

Each of the C;; terms of the recurrence matrix represents the correlation of al connectivity
terms of the connectivity matrix of segment i with those of the connectivity matrix of
segment j, resulting in a matrix of dimensions number of segments x number of segments.
Consequently, we obtained 321 21 x 21 recurrence matrices, one for each subject,
representing the consistency of connectivity profiles over time. The Fisher Z-transformation
was subsequently applied to these matrices, to prevent any possible skewness in the
calculated distribution.*” In order to acquire a parameter representing the dynamic nature of

the connectivity, we calculate dynamicity as:

Dyn = triu(atanh(0.99)) — triu(atanh (C)) 1
yn= atanh(0.99)) &

Where the operator triu is the upper triangle selector, the operator x is the average of x, the
operator atanh is the inverse hyperbolic tangent, equivalent to the Fisher z-transform, and C
is the recurrence matrix. This parameter would range from 0 to 1, where O represents
complete stationarity, while 1 would represent a complete lack of temporal correlation among
connectivity matrices. Note that we use the atanh of 0.99 instead of 1 for normalization, since

the inverse hyperbolic tangent of 1 isinfinite.

Spatial dFC analysis

No spatial information can be derived from the previous recurrence matrix. To perform a
data-driven analysis of the spatial distribution of changesin dFC through recurrence matrices,
we propose the methodology we called “ seed-based recurrence matrix”. While all sources are
used to calculate the correlation of each segment with the others in a recurrence matrix, the
seed-based recurrence matrix separates that process for each of the sources, as shown in
Figure 1C.

10
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For each source, the connectivity values of that source with the remaining sources are
extracted, and then correlated along the different segments, obtaining a number of segments x
number of segments recurrence matrix for each of the original 1210 source positions.
Consequently, the seed-based recurrence matrix has a dimension of sources x number of
segments x number of segments. Once again, the Fisher Z-transformation was applied to the
data to favor the normality of the distribution and the result was subtracted from the inverse
hyperbolic tangent of 0.99, and normalized by the same number, as in Equation 1. Given the
number of sources used for the source reconstruction, we obtained 321 1210 x 21 x 21 seed-
based recurrence matrices, one for each participant. Equally as before, we averaged the upper
triangle values of the recurrence matrices of each source to finally obtain 1210 values per

subject.

Statistical analyses

Initially, demographic characteristics were evaluated, using an independent samples t-test to
compare age and neuropsychological variables, as well as a chi-square test to compare sex

proportion between each of the groups.

Whole-brain dFC

Statistical analyses were carried out in a stepwise manner. Firstly, we studied whole-brain
dFC across the different groups in our sample, to study whether global dFC diminishes along
the AD continuum. To this end, we firstly compared the dynamicity values (Equation 1),
between groups in each frequency band (theta, alpha and beta) through a regression analysis,
introducing sex and age as covariates. FDR correction was applied to each frequency band set
of comparisons through the Benjamini-Hochberg procedure,® with a q of 0.05. Any p-values
surviving FDR were considered statistically significant, and p-values were used for

interpreting the directionality of results.

Given that we also had the information on the progression towards AD of the participants in
the MCI group, we also carried out an additional test comparing the whole-brain dFC of the
participants in the sMCI and pMCI groups.

11
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Spatial dFC analysis

The second step of our analysis aimed to study the spatial distribution of dFC changes
between groups. For that purpose, the aforementioned seed-based recurrence matrices (Figure
1C) of each subject were used. To account for multiple comparisons, we conducted two-sided
nonparametric cluster-based permutation tests, using a Montecarlo approach and an
independent samples F-statistic ANOVA in each sample, including sex and age as covariates.
The source-level and cluster-level significance thresholds were set to 0.05. Significant
sources were grouped based on spatia contiguity, obtaining a cluster statistic defined as the
sum of the individual statistics of each sourcein it. We conducted 10,000 permutations on the
original datato create a surrogate distribution of random cluster statistics to compare with our
original result. Asthistest was apos-hoc analysis, it was only performed between groups that
showed significant differences in global dFC (i.e., in the previous anaysis). Subsequently, a
post-hoc linear regression analysis comparing the seed-based dynamicity between groups at

the found cluster was performed to check for the directionality of the results.

Neuropsychological, volumetricand DTI FA correlations

Finally, we investigated whether the observed changes in dFC were related to changes in
cognition, brain volumetrics, and white matter integrity. To do so, we calculated Pearson's
partial correlation of the dynamicity with the previously mentioned neuropsychological test
scores, volumetry parameters, and tract FA in the frequency bands where statistical
differences in global dFC were detected. We performed these tests both using the data from
all groups as well as only from the individual groups, including sex and age as covariate in all
cases. FDR correction was again applied to each frequency band set of comparisons, with aq
of 0.05.

Results

Sample demographics and neur opsychological assessment

Sample demographics and neuropsychological test scores, as well as group-level differences,

areshown in Table 1, and in Supplementary Table 1 for sSMCI and pMCI groups.

12


https://doi.org/10.1101/2024.03.14.584574
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584574; this version posted May 29, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The age of the MCI group was significantly higher than that of both SCD and HC groups, and
while sex did not significantly differ between any of the groups, p-values were close to
significance, supporting the inclusion of both variables as covariates in the rest of statistical
tests of the study. MCI performed significantly worse than both HC and SCD groups in all
the neuropsychological tests.

{Insert Table 1 here}

Whole-brain dFC isreduced along the AD spectrum

Whole-brain dFC was compared through dynamicity (Equation 1) using a linear regression
test between each pair of groups, including sex and age as covariates, as shown in Figure 2.
Dynamicity values in the HC group were significantly higher than those in the MCI group
after FDR correction (q = 0.05) in both alpha (corrected p-value = 0.0002, s-value = -0.0265,
Cohen’s d = 0.474) and beta (corrected p-value = 0.0008, g-value = -0.0135, Cohen’'s d =
0.506). On the other hand, the SCD group lies in the middle, with nonsignificant differences
with neither the HC nor the MCI group (all corrected p-values and g-values can be found in
Supplementary Table 2). Post-hoc comparisons between sMCI and pMCI groups were all
non-significant, as shown in Supplementary Figure 1 and Supplementary Table 3.

{Insert Figure 2 here}

L ocalization of dFC changes along the AD continuum

Seed-based dynamicity was compared through nonparametric CBPTs between those groups
with significant differences in whole-brain dFC, namely between the HC and MCI groups in
the alpha and beta frequency bands. Significant statistical differences were found in seed-
based dynamicity between the HC and MCI groups in both the alpha (p-value = 0.0288) and
the beta (p-value = 0.009) bands.

The cluster showing the most notable differences in the alpha band (Figure 3A) included the
orbital and media-orbital areas of the frontal gyrus, the left hippocampus and
parahippocampus, as well as the left temporal pole and parts of the inferior and middle
temporal gyrus. A post-hoc linear regression analysis found that MCI participants showed a
significant reduction in seed-based dynamicity compared to HC in this cluster (Figure 3B; p-
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value < 0.0001; g-value = -0.0506; Cohen’s d = 0.594). For a complete list of the AAL ROIs
contained in the cluster, please see Supplementary Table 4.

In the beta band, the cluster showing maximal differences (Figure 3C) comprised the left
orbital and right superior frontal gyrus, left temporal pole, bilateral temporal gyrus, left
hippocampus and parahippocampus, the anterior, middle, and posterior cingulate gyrus, the
precuneus, the left inferior parietal gyrus, and some parts of the calcarine fissure, fusiform
gyrus, and cuneus. Again, the post-hoc linear regression analysis found a significant
reduction in the MCI group compared to HC in the mentioned cluster (Figure 3D; p-value <
0.0001; p-value = -0.0297; Cohen's d = 0.668). For a complete list of the AAL ROIls
contained in the cluster, please see Supplementary Table 5.

{Insert Figure 3 here}

dFC correlates with cognitive performance along the AD
continuum and in MCI

Finally, we investigated the correlation between dFC and cognition, brain volume and DTI
parameters, both considering the whole dataset and the individual groups. Figure 4 depicts
correlations between dynamicity and MM SE, eTlV-normalized hippocampal volume, and

fractal anisotropy of the left cingulum.

Interestingly, the MCI group showed multiple significant positive correlations, including
those between dynamicity and MM SE scores, normalized hippocampus, and total grey matter
volumes, and both left and right ILF tract FA. While the cingulum tracts FA did not maintain
significance after FDR, both right and left tracts show a possible trend for a positive

correlation with dynamicity.

At the same time, when calculating correlations with all the dataset, significant direct
correlations between dynamicity and MMSE score, delayed logic recall score, normalized
hippocampus and total cortical grey matter volume, and left cingulum FA were found. Both
rhos and corrected p-values for al correlations calculated are shown in Table 2, where

correlations found significant after FDR are marked in bold and with an asterisk.

{Insert Figure 4 and Table 2 here}
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Discussion

In this pioneering study, we aimed to evaluate the evolution of dFC measured with
electrophysiology over the early AD spectrum. To this end, we performed the correlation of
connectivity matrices over time, both globally and a source-level, a metric simple to
calculate and interpret, and that only imposes assumptions regarding the size of the sliding
window used for the calculations. Finally, we studied the relationship between this metric and
the cognitive and anatomical hallmarks of AD. Our findings suggest that AD progression
involves a reduction in dFC, mainly in the alpha and beta bands, which is especialy
pronounced over orbital and temporal areas and in regions involving the DMN. In addition,
the decrease in dFC is related to cognitive decline and anatomical deterioration, both when
considering data from all groups and, particularly, in the MCI group. These results shed light

towards the understanding of brain dynamics along the AD continuum.

Whole-brain dFC analyses displayed a reduction of dynamicity over the continuum of AD,
with differences of medium effect sizes between HCs and MCls in the alpha (Cohen’'s d =
0.474) and beta (Cohen’s d = 0.506) frequency bands, as shown in Figure 2. The SCD group
did not show significant differences in their whole-brain dFC in any frequency band when
compared to HCs or MCIs, proving to be an intermediate state between both conditions. This
dFC decreases evidence that AD progression involves a reduction in connectivity profiles
over time or, in other words, an increase in the consistency of connectivity patterns. These
findings are aligned with previous literature on dFC, where a shrinkage in the dynamic

S14,23 and

repertoire of connectivity is observed through electrophysiological measurement
fMRI-based metrics.'**"? Additionally, studies focused on brain activity entropy, which
depict the quantity of information on individual nodes of activity, find a decrease in signal

24490 a5 well as in consciousness disorders.”

complexity with the advance of the pathology,
Remarkably, significant decreases in dynamicity between HC and MCI groups were observed
specifically in the alphaand beta bands, agreeing with resultsin NUfiez et al.** and Li et al.,®
even if they report differences between HCs and AD participants, while we found those
earlier in the AD continuum, between the HC and MCI groups. On a related note, recent
studies have observed a dilution of FC topologies in MCIl and AD participants, with
decreasing modularity,?? and a blurring of frequency-dependent connectivity structure.® This

increase in frequency and spatial network homogeneity is thought to underlie the loss of
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specialized and integrated networks observed in these pathologic states and, in line with our

results, could contribute to the decrease in temporal variability observed in the present study.

What physiological alterations may explain these changes in dFC? Previous literature has
already discussed the reduction of the dynamic repertoire of connectivity along the spectrum
of AD,* linking it to possible alterations in white matter integrity. AD is associated with
myelin aberrations both in animal models® and in humans™, which may occur as early as 20
years before the symptoms onset, and has been aso been connected to B-amyloid
deposition.> At the same time, several studies have drawn a connection between myelin
abnormalities and brain connectivity, highlighting the importance of tract myelination,
transmission speed, and the resulting coupling and synchrony patterns observed in the
brain.**’ More specifically, it has been observed that the relations between structural and FC

%859 and varies with age.*® Importantly, multiple works,

are spatial and frequency-dependent
such as Karahan and colleagues,® have established a connection between the frequency
bands affected in this study and myelination distribution and white matter properties. In their
work, they showed negative correlations between beta sFC inter-subject variability (1SV) and
myelination, with apha sFC-ISV failing to maintain significance due to statistical
corrections, and significant negative correlations between alpha and beta sFC-ISV and the
hindrance of white matter pathways. Additionally, the temporal precision needed for the
oscillatory coupling and phase-locking increases with oscillation frequency, leading to
enhanced susceptibility to myelin degradation for higher frequency bands.*® Our results are
aligned with al their conclusions, as we found increased effect sizes of differences over the
whole-brain and source-level dFC and more widespread differences between MCl and HC
groups over the beta band than in the alpha band, while not finding any result in the theta
band. These events support the theory of increased vulnerability of brain coupling at higher
frequencies. We also discovered significant negative correlations between whole-brain beta
and alpha dFC and FA in multiple tracts, indicating a strong and important dependence
between white matter degradation and network integrity in AD.

The relevance of the regions and brain networks found using seed-based dFC (including
orbitofrontal and temporal areas for both alpha and beta bands, and also precuneus, IFG,
anterior and posterior cingulate gyrus, and superior medial frontal gyrus for the latter) has
been highlighted in former research on brain changes throughout the AD continuum, such as

2,6,8,9,23

functional alterations, volumetric atrophy observed with MRI,®*®? and amyloid

neuropathological disturbances measured with positron emission tomography.® Interestingly,
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the distribution of the dFC changes found between MCI and HC correspond to multiple
results in Karahan et al.® Brain areas with decreased hindrance of white matter pathways
display a similar distribution as the significant cluster found in the alpha band, and the
location of the areas with the lowest cortical R1, e.g., with the lowest myelination, is alike the
cluster found in the beta band. These areas are characterized by a lower neuronal density,
large dendritic arborization, more spine density, more synapses, and higher aerobic
glycolysis, which may be a neurobiological feature of the association cortices, enabling
adaptable and plastic neural circuitry. These attributes might, in turn, lead to more complex
FC behaviors, highlighting the importance of loss of dynamic activity in these areas along the

AD continuum.

Finally, the potential of the proposed dFC marker isindicated by its significant correlationsin
alpha and beta with the cognitive and anatomical parameters. It is worth highlighting that
those trends were found both when using the whole dataset and for the MCI group only.
While correlations found in the whole dataset showcase the value of dynamicity as a possible
biomarker for AD progression, it includes groups with significantly different cognitive and
anatomical scores. On the other hand, MCI group correlations imply that lower dFC is related
to the severity of the signs these participants show, as well as showing the link between dFC
and anatomical damage due to the advance of the disease. Surprisingly, we can find studies
describing significant relationships between sFC and DTI measures,® ® and at the same time
aternative sFC-based investigations that do not find a relationship between these two
markers.®”®° Based on a relatively large sample, the correlations found in this study between
dFC and white matter degradation in the pre-dementia phase of the AD continuum contrast
with those reported using sSFC and motivate further investigation to unveil the potential

sensitivity of dFC to early structural changesin the brain.

Nevertheless, some limitations need to be noted. Firstly, the use of a dliding-window
technique does not come without disadvantages. The size of the window used in this study (4
seconds) has been used in previous relevant studies determining relevant FC features in AD
for the frequency bands investigated here,>#%" but it was not large enough to capture
sufficient oscillations in the delta band, and not small enough to capture dynamic patterns in
the gamma band. Future studies will address this limitation for the study of the latter
frequency band, especialy relevant for AD, and according to our discussion particularly
vulnerable to myelin damage. While based on a large dataset, this study did not include any

participant with AD, necessary to obtain a complete assessment of the entire AD spectrum.
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Future studies should investigate the relation of dFC with white matter integrity, sFC, and

neural excitation/inhibition.

Conclusion

In conclusion, our study offers compelling evidence that dFC declines across the AD
spectrum, particularly within the alpha and beta frequency bands, emphasizing its potential as
a biomarker for early AD detection and progression monitoring. This decline in dFC,
especialy pronounced in critical brain regions involved in the default mode network,
correlates with cognitive deterioration and structural brain changes, further indicating the
relevance of dFC in AD, and underpinning the interconnected nature of functional, cognitive,

and anatomical alterationsin this disorder.
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Figure 1. Depiction of the methods used in this study. (A) Description of the procedure to
calculate AEC, including the signal filtering, envelope extraction through the Hilbert
transform, correlation between envelopes, and averaging over trials to obtain the static
functional connectivity measure of AEC. (B) Whole brain dynamicity calculation. Each of
the AEC upper triangular matrices extracted from each signal segment of four seconds is then
correlated with each other, obtaining a “number of trials” by “number of trials” recurrence
matrices. The upper triangle of this matrix is then averaged to obtain a final dynamicity
parameter for each subject. (C) Seed-based dynamicity calculation. In this case, and for each
source, the connectivity of that source with the rest is extracted to obtain the recurrence
matrices, obtaining a seed-based recurrence matrix of dimensions number of sources x
number of trials x number of trials. Later, the upper triangle of each source recurrence matrix
is averaged to get a dynamicity parameter for each of the sources, which enables us to extract

gpatial comparisons between groups.
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Figure 2. Whole-brain dynamicity comparisons between healthy control (HC),
subjective cognitive decline (SCD) and mild cognitive impairment (MCI) groups.
Significant differences were seen between the HC and MCI groups in the alpha (corrected p-
value = 0.00015, p-value = -0.0265, Cohen’sd = 0.474, g = 0.05) and beta (corrected p-value
=0.00076, p-value = -0.0135, Cohen’s d = 0.506, q = 0.05). No differences were observed in
the theta band or between the SCD group and the rest in any frequency band.
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Figure 3. Results of the CBPT analyses for seed-based dynamicity. These comparisons
were performed between those groups with significant differences in whole-brain dynamicity.
Thus, CBPT tests were performed between the MCI and HC groups in the alpha and beta
bands. (A) Significant cluster showing altered dynamic functional connectivity (dFC) in the
apha band (p-value = 0.0285). (B) Linear regression test results for the alpha band seed-
based dynamicity values in the significant cluster depicted in A, showing a significant
decrease of dFC in the MCI group (Cohen’s d = 0.594). (C) Significant cluster showing
atered dFC in the beta band (p-value = 0.0089). (D) Linear regression test results for the
alpha band seed-based dynamicity values in the significant cluster depicted in C, showing a
significant decrease of dFC in the MCI group (Cohen’s d = 0.668).
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Figure 4. Correlations between whole-brain dynamicity and MM SE, eTIV-normalized
hippocampal volume and the left Cingulum fractal anisotropy. Green corresponds to the
HC group, blue to the SCD group, and red to the MCI group. The black line represents the
correlation calculated when considering all subjects at the same time.

Table 1. Sample demographics, neur opsychological test scores, and anatomic and white
matter parameters. Pair-wise group-level differences are shown in the right columns, with
significant results after FDR correction (q = 0.05) with an asterisk. HC: healthy control;
SCD: subjective cognitive decline; MCI: mild cognitive impairment; MMSE: Mini Mental
State Examination; FA: fractional anisotropy.

p-value

HC SCD MCI HC vs SCD HC vs MCI SCD vs MCI
N 143 72 106
Sex 55M/92F 19M/63F 38M/68F 0.0620 0.8880 0.0925
Age 71.5+4.0 72.1+5.4 74.415.2 0.5924 4.66E-06* 0.0001*
MMSE 28.8+1.4 28.2+1.9 26.612.6 0.1591 5.07E-18* 4.04E-09*
Delayed recall test 22.249.5 18.7+8.7 5.0+6.5 0.0759 1.94E-36* 1.82E-25*
Total grey matter 0.293+0.017 0.292+0.016 0.280+0.022 0.4818 1.60E-7* 1.85E-4*
volume (eTIV
normalized)
Hippocampus volume 0.005+0.0005 0.0049+0.0005 0.0045x0.0007 0.0735 2.96E-11* 4.20E-5*
(eTlV normalized)
Left Cingulum FA 0.535910.0326 0.5292+0.0367 0.5194+0.0336 0.1872 3.42E-04* 0.0847
Right Cingulum FA 0.498610.0263 0.4951+0.0290 0.4889x0.0280 0.3828 0.0101* 0.1868
Left Inferior Longitudinal 0.4752+0.0883 0.489710.0241 0.4834+0.0584 0.1838 0.4470 0.3987
Fasciculus FA
Right Inferior  0.4781+0.0892 0.491510.0271 0.487410.0599 0.2265 0.3915 0.6018
Longitudinal  Fasciculus
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Table 2. Correlation results between whole brain dynamicity and neuropsychological,
anatomic and diffusion tensor imaging (DTI) parameters. Correlations were calculated
for each group individually and then using all subjects in the sample (as indicated by the
“All” column. Significant corrected p-values after FDR correction (q = 0.05) are bolded and
marked with an asterisk. Column colours correspond to those assigned to each group in
Figure 4.
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