

Differential functions of the dorsal and intermediate regions of the hippocampus for optimal goal-directed navigation in VR space

Hyeri Hwang¹, Seung-Woo Jin², Inah Lee^{1*}

10 ¹Department of Brain and Cognitive Sciences
11 Seoul National University
12 Gwanak-ro 1, Gwanak-gu
13 Seoul, Korea
14 08826

16 ²Department of Psychiatry and Behavioral Sciences
17 University of Washington
18 1959 N.E. Pacific St, Seattle
19 WA, 98195, USA

23 *Corresponding author:

24 E-mail: inahlee@snu.ac.kr

25 Phone: +82-2-880-8013

31 **Abstract**

32

33 Goal-directed navigation requires the hippocampus to process spatial information in a value-
34 dependent manner, but its underlying mechanism needs to be better understood. Here, we
35 investigated whether the dorsal (dHP) and intermediate (iHP) regions of the hippocampus
36 differentially function in processing place and its associated value information. Rats were
37 trained in a place-preference task involving reward zones with different values in a visually
38 rich VR environment where two-dimensional navigation was possible. Rats learned to use
39 distal visual scenes effectively to navigate to the reward zone associated with a higher reward.
40 Inactivation of both dHP and iHP with muscimol altered the efficiency and precision of
41 wayfinding behavior, but iHP inactivation induced more severe damage, including impaired
42 place preference. Our findings suggest that the iHP is more critical for value-dependent
43 navigation toward higher-value goal locations.

44

45

46

47

48

49

50

51 **Introduction**

52

53 It has long been suggested that the hippocampus is the neural substrate of a ‘cognitive map’ –
54 a map-like representation of the spatial environment that allows flexible spatial navigation
55 (O’Keefe and Nadel, 1978). The cognitive map is also needed for remembering important
56 events in space. Animals in the natural environment often navigate to achieve goals, such as
57 finding food or avoiding predators, and this goal-directed navigation involves remembering
58 places and their associated values. It has been reported that the receptive fields of place cells
59 in the hippocampus tend to accumulate near a goal location or shift towards it (Hollup et al.,
60 2001; Kennedy and Shapiro, 2009; Dupret et al., 2010). One could argue that the
61 hippocampus must process task- or goal-relevant information, including the value of a place,
62 to achieve the goal. However, the specific hippocampal processes involved in integrating the
63 two types of representation – place and value – towards goal-oriented behavior are still
64 largely unknown.

65 Such integration may occur along the dorsoventral axis of the hippocampus. Previous
66 anatomical studies (Krettek and Price, 1977; Swanson et al., 1978; Pikkarainen et al., 1999;
67 Tao et al., 2021) suggest that the hippocampus can be divided along its dorsoventral axis into
68 dorsal (dHP), intermediate (iHP), and ventral (vHP) hippocampal subregions based on
69 different anatomical characteristics. The dHP is connected with brain regions that process
70 visuospatial information, including the retrosplenial cortex and the caudomedial entorhinal
71 cortex (van Groen and Wyss, 2003; Dolorfo and Amaral, 1998); it also communicates with
72 the iHP via bidirectional extrinsic connections but exhibits limited connections with the vHP
73 (Tao et al., 2021; Swanson et al., 1978). The iHP receives heavy projections from valence-
74 related areas, such as the amygdala and ventral tegmental area (VTA) – subcortical inputs
75 that are less prominent in the dHP (Pikkarainen et al., 1999; Felix-Ortiz and Tye, 2014;
76 Gasbarri et al., 1994). The vHP also has connections with the iHP and value-representing
77 areas like the amygdala, but it does not project heavily to the dHP (Tao et al., 2021; Swanson
78 et al., 1978; Pikkarainen et al., 1999; Krettek and Price, 1977). Notably, compared with the
79 dHP, the iHP and vHP have much heavier connections with the medial prefrontal cortex
80 (mPFC), contributing to goal-directed action control (Hoover and Vertes, 2007; Liu and

81 Carter, 2018). Additionally, the three subregions along the dorsoventral axis display different
82 gene expression patterns that corroborate the anatomical delineations (Dong et al., 2009;
83 Bienkowski et al., 2018). Overall, the iHP subregion of the hippocampus appears to be
84 ideally suited to integrating information from the dHP and vHP.

85 Surprisingly, beyond the recognition of anatomical divisions, the available literature
86 on the functional differentiation of subregions along the dorsoventral axis of the hippocampus,
87 particularly in the context of value representation, is somewhat inconsistent. Specifically,
88 there is physiological evidence that the size of a place field becomes larger as recordings of
89 place cells move from the dHP to the vHP (Jung et al., 1994; Maurer et al., 2005; Kjelstrup et
90 al., 2008; Royer et al., 2010). Thus, it has been thought that the dHP is more specialized for
91 fine-grained spatial representation than the iHP and vHP. However, when it comes to the
92 neural representation of value information of a place, results are mixed. Several studies have
93 reported that place fields recorded in the dHP respond to internal states and motivational
94 significance based on their accumulation near behaviorally significant locations (e.g., reward
95 locations or escape platforms; Hollup et al., 2001; Kennedy and Shapiro, 2009; Dupret et al.,
96 2010), or to the reward per se (Gauthier and Tank, 2018). In contrast, others have reported
97 that dHP place cells do not alter their activity according to a change in reward or reward
98 location and thus do not represent value information (Duvelle et al., 2019; Jin and Lee, 2021;
99 Speakman and O’Keefe, 1990).

100 Furthermore, although the iHP and vHP have mainly been studied in the context of
101 fear and anxiety, several studies have also reported spatial representation and value-related
102 signals in these subregions. Specifically, prior studies reported that rats with a dysfunctional
103 dHP retained normal goal-directed, target-searching behavior if the iHP and vHP were intact
104 (Moser et al., 1995; de Hoz et al., 2003). Moreover, lesions in the iHP have been shown to
105 impair rapid place learning in the water maze task (Bast et al., 2009). Our laboratory also
106 reported that place cells in the iHP, but not the dHP, instantly respond to a change in spatial
107 value and overrepresent high-value locations (Jin and Lee, 2021).

108 Based on existing experimental evidence, we hypothesize that the iHP is the primary
109 locus for associating spatial representation with value information, distinguishing it from the
110 dHP and vHP. In the current study, we investigated the differential functions of the dHP and

111 iHP in goal-directed spatial navigation by monitoring behavioral changes after
112 pharmacological inactivation of either of the two regions as rats performed a place-preference
113 task in a two-dimensional (2D) virtual reality (VR) environment. In this experimental
114 paradigm, rats learned to navigate toward one of two hidden goal locations associated with
115 different reward amounts. Whereas inactivation of the dHP mainly affected the precision of
116 wayfinding, iHP inactivation impaired value-dependent navigation more severely by
117 affecting place preference.

118

119

120 **Results**

121

122 **Well-trained rats align themselves toward the high-value zone before departure in the**
123 **place-preference task**

124 We established a VR version of a place-preference task (**Figure 1A**) in which rats could
125 navigate a 2D environment by rolling a spherical treadmill with their body locations fixed,
126 allowing them to run at the apex of the treadmill. Body-fixed rats ($n = 8$) were trained to
127 explore a virtual circular arena surrounded by multiple distal visual landmarks (houses, rocks,
128 mountains, and trees) (**Figure 1B**). Rats were always started at the center of the arena, and
129 the arena contained two unmarked reward zones – a high-value zone and a low-value zone –
130 each associated with different amounts of honey water (6:1 ratio between high- and low-
131 value zones). A trial started with the rat facing one of six start directions – north (N),
132 northeast (NE), southeast (SE), south (S), southwest (SW), and northwest (NW) – determined
133 pseudorandomly to guarantee equal numbers of trials in all directions. In the example trial
134 shown in **Figure 1C**, the rat was heading in the NE direction at the start location ('Trial
135 Start'), then turned to the left side to run toward the W goal zone ('Navigation'). Once the rat
136 arrived at one of the reward zones, the synchronization between the spherical treadmill
137 movement and the virtual environment stopped, and multiple drops of honey water were
138 delivered via the licking port ('Reward'). Then, during an inter-trial interval (ITI), the LCD
139 screens turned gray, and the rat was required to remain still for 5 seconds to initiate the

140 subsequent trial. The pre-surgical training session consisted of 60 trials, which were reduced
141 to 40 during post-surgical training.

142 Pre-surgical training began after shaping in the VR environment. On average, it took
143 13 days for rats to reach pre-surgical criteria, namely, to complete 60 trials and visit the high-
144 value goal zone in more than 75% of completed trials (see Methods for the detailed
145 performance criteria). Well-trained rats exhibited two common behaviors during the pre-
146 surgical training. First, although it was not required in the task, they learned to rotate the
147 spherical treadmill counterclockwise to move around in the virtual environment (presumably
148 to perform energy-efficient navigation). To rule out the potential effect of hardware bias or
149 any particular aspect of peripheral landscape to make rats turn only to one side, we measured
150 the direction of the first body-turn in each trial on the last day of shaping and the first day of
151 the main task (i.e., before rats learned the reward zones). There was no significant difference
152 between the clockwise and counterclockwise turns ($p=0.46$ for shaping, $p=0.76$ for main task;
153 Wilcoxon signed-rank test), indicating that the stereotypical pattern of counterclockwise
154 body-turn appeared only after the rats learned the reward locations.

155 Second, once a trial started, the animal rotated the treadmill immediately to align its
156 starting direction with the visual scene associated with the high-value reward zone. After
157 setting the starting direction, the rat started to run on the spherical treadmill, moving the
158 treadmill forward to navigate directly toward the reward zone. All eight rats displayed this
159 strategy during the later learning phase but not during the earlier learning stage, suggesting
160 that the start-scene-alignment strategy was learned during training. Because the initial
161 rotational scene alignment before departure was an essential component of the task and this
162 behavior was not readily detectable with position-based analysis, we based most of our
163 behavioral analysis on the directional information defined by the allocentric reference frame
164 of the virtual environment (**Figure 2A**). Because we did not measure the rat's head direction
165 in the current study, the allocentric directional information represented the angular position of
166 a particular scene in the virtual environment displayed in the center of the screen.

167 To establish the direction in which the rat departed the starting point at the center
168 after scene alignment, we first defined a *departure circle* – a virtual circle (~20 cm in
169 diameter) in the VR environment at the center of the arena (**Figure 2A**). In the example trial

170 shown in **Figure 2A**, the rat faced the NE direction (315°) at the trial start but immediately
171 turned its body to the NW direction upon starting and ran straight toward the high-value zone
172 after that. Since the initial scene rotations at the start point cannot be visualized in the
173 position-based graph, we made a *scene rotation plot* that visualizes the rotational movement
174 traces in the virtual environment. The scene rotation plot covers the period from the start of
175 the trial to when the rat leaves the departure circle (**Figure 2B**).

176 On the first day of training for the task ('Novice' stage), the rat produced almost no
177 rotation of the VR environment until he exited the departure circle, indicating that the animal
178 ran straight in the initially set start direction without adjusting the scene orientation. As a
179 result, rats missed the target reward zones in most trials (**Figure 2B** and **2C**). However, by
180 the last day of training ('Expert' stage), there were noticeable rotational shifts in all
181 directional traces (i.e., counterclockwise rotations) that converged on the high-value reward
182 zone (**Figure 2B** and **2D**). This was the case for all trials except those in which the initial
183 start direction almost matched the orientation of the high-value reward zone (i.e., 225° or
184 NW). Furthermore, the average travel distance and latency for each start direction declined
185 from the novice to the expert stage, suggesting that the rats navigated more efficiently toward
186 reward zones in the later stage of learning by pre-adjusting their starting scene direction at the
187 trial start (**Figure 2C** and **2D**).

188 Overall, the marked differences in orienting behaviors between early and late
189 learning stages suggest that rats could discriminate the high-value reward zone from the low-
190 value zone in our VR environment and show that they preferred visiting the high-value
191 reward zone over the low-value zone. It also indicates that rats could explore the VR
192 environment using allocentric visual cues to find the critical scenes associated with the high-
193 value zone before leaving the starting point (i.e., departure circle).

194

195 **Departing orientation and perimeter-crossing direction provide a measure of**
196 **navigational efficiency and precision, respectively**

197 To analyze behavioral changes during learning in more detail, we analyzed various learning-
198 related parameters at different stages of pre-surgical training. For this, we focused on days in

199 which rats visited the high-value zone on more than 75% of trials for two consecutive days –
200 the performance criterion for completion of pre-surgical training. These two consecutive days
201 (post-learning days) were grouped and averaged for each rat as the post-learning group
202 ('POST' in **Figure 3A-ii**) and compared with the two consecutive days immediately
203 preceding the post-learning days (pre-learning days; 'PRE' in **Figure 3A-ii**).

204 We first measured the departing direction when crossing the departure circle
205 (Departing Direction [DD]; **Figure 3A-i**). As indicated in **Figure 2**, well-trained rats rotated
206 the VR environment to place the target VR scene (i.e., high-value reward zone scene) ahead
207 before departure. Therefore, alignment of the departure direction with the high-value zone at
208 the beginning of navigation indicated that the rat remembered the scenes associated with the
209 high-value zone. For example, the distribution of pre-learning days departure directions was
210 widely distributed without any directional bias; as such, its mean vector was small (**Figure**
211 **3A-ii**). On the other hand, the departure directions of post-learning sessions mostly converged
212 on the direction aligned with the high-value zone, resulting in a larger mean vector length
213 compared with that in the pre-learning session. The distributions of averaged departure
214 directions for all rats significantly differed between 'PRE' and 'POST' ($p < 0.001$, Kuiper's
215 test), verifying that departure direction is a valid index of the acquisition of the high-value
216 zone and efficient navigation. To investigate how accurately rats oriented themselves directly
217 to the high-value zone before leaving the start point, we also calculated the average deviation
218 angle of departure directions (DD-deviation) – the angle between the departure direction and
219 the high-value zone (180° , measured at the center of the zone) – for each rat (**Figure 3A-iii**).
220 A comparison between pre- and post-learning sessions showed that the DD-deviation
221 significantly declined after learning. This implies that well-trained rats aligned their bodies
222 more efficiently to directly navigate to the high-value zone ($p < 0.01$, Wilcoxon signed-rank
223 test).

224 Rats adjusted their navigational routes further, even after exiting the departure circle,
225 to navigate more accurately and straight to the goal, avoiding the wall surrounding the arena.
226 Such fine spatial tuning (i.e., navigation precision), measured as the decrease in DD-deviation,
227 only appeared after the rats learned the high-value reward location. To quantify navigation
228 precision, we measured the perimeter-crossing direction (PCD; **Figure 3B-i**), defined as the
229 angle at which the rat first touched the unmarked circular boundary along the arena's

230 perimeter, which shares the inner boundaries of the reward zones (green dashed lines in
231 **Figure 3B-i**). During pre-learning, the PCD was randomly distributed along the perimeter
232 ('PRE' in **Figure 3B-ii**). On the other hand, in most post-learning stage trials, rats crossed the
233 unmarked peripheral boundaries only in the vicinity of the high-value zone ('POST' in
234 **Figure 3B-ii**). Since rats usually turned counterclockwise during navigation, the convergence
235 of crossings near the northern edge of the high-value zone indicates that they took a shortcut
236 – the most efficient route – to enter the goal zone. The PCD distributions were significantly
237 different between pre- and post-learning stages ($p < 0.001$; Kuiper's test) (**Figure 3B-ii**). The
238 deviation angle between the PCD and the high-value zone center also significantly decreased
239 with learning (**Figure 3B-iii**), indicating that the navigation of rats to the goal became more
240 accurate.

241 Additionally, to investigate whether the rats used a certain landmark as a beacon to
242 find the reward zones, we conducted the landmark omission test as a part of control
243 experiments. Here, one of the landmarks was omitted, and the landmark to be made disappear
244 was pseudorandomly manipulated on a trial-by-trial basis. The omission of one landmark,
245 regardless of its identity, did not cause a specific behavioral change in finding the reward
246 zones, suggesting that the rats were not relying on a single visual landmark when finding the
247 reward zones. The result can be reported anecdotally only because of an insufficient sample
248 size ($n=3$), not permitting any meaningful statistical testing.

249

250 **Navigation is impaired by inactivation of either the dHP or iHP, but only iHP
251 inactivation affects place-preference behavior**

252 To dissociate the roles of the dHP and iHP, we inactivated either the dHP or iHP in an
253 individual animal using muscimol (MUS), a GABA-A receptor agonist, before the rat
254 performed the place-preference task. To allow within-subject comparisons in performance,
255 we bilaterally implanted two pairs of cannulas – one targeting the dHP and the other targeting
256 the iHP – in the same rat after it successfully reached pre-surgical training criteria (**Figure
257 4A**). After 1 week of recovery from surgery, rats were retrained to regain a level of
258 performance similar to that in the pre-surgical training period (**Figure 4B**), after which the
259 drug injection schedule was started.

260 We divided rats into two drug-injection groups ($n = 4$ rats/group) to counterbalance
261 the injection order between the dHP and iHP. Rats in one group received drug infusion into
262 the dHP first, whereas rats in the other group were injected into the iHP first. For all rats,
263 phosphate-buffered saline (PBS) was initially injected in both regions as a vehicle control.
264 For analytical purposes, we first ensured no statistical difference in performance between the
265 two PBS sessions (dPBS and iPBS; see below) and then averaged them into a single PBS
266 session to increase statistical power. During the PBS session, rats tended to take the most
267 efficient path to the high-value zone, as they had done during pre-surgical training (**Figure**
268 **5A**). They aligned the VR scene at the start with the high-value zone for all start directions
269 and then ran directly toward the goal zone. Notably, once the start scene alignment was
270 complete, rats usually moved quickly and straight without slowing in the middle. Also, their
271 navigation paths led them directly toward the center of the goal zone. During subsequent
272 dHP-inactivation sessions, rats appeared less accurate, bumping into the arena wall in many
273 trials (dMUS in **Figure 5A**), but most of these wall bumps occurred in the vicinity of the
274 high-value zone, and rats quickly compensated for their error by turning their bodies to target
275 the reward zone correctly after wall bumping. In contrast, in iHP-inactivation sessions, the
276 trajectories were largely disorganized, and the wall-bumping locations were no longer limited
277 to the vicinity of the high-value zone. In some trials, rats moved largely randomly (as shown
278 in 860-17-24 in **Figure 5A**) and appeared to visit the low-value zone significantly more than
279 during PBS or dMUS sessions.

280 To quantitatively analyze these observations, we compared the proportions of visits
281 to the high-value zone among drug conditions (**Figure 5B**), finding a significant difference in
282 the percentage of correct target visits among drug conditions ($F_{(2,14)} = 10.56$, $p < 0.01$, one-
283 way repeated-measures ANOVA; $p = 0.25$ for dPBS vs. iPBS, Wilcoxon signed-rank test). A
284 post hoc analysis revealed a significant decrease in the iMUS session compared to the PBS
285 session ($p < 0.05$, Bonferroni-corrected post hoc test). In contrast, no significant differences
286 were found in other conditions, although there was a decreasing trend in the iMUS compared
287 to PBS ($p = 0.2$ for PBS vs. dMUS; $p = 0.1$ in dMUS vs. iMUS). These results indicate that
288 dHP-inactivated rats show a strong preference for the high-value zone, as they did in control
289 sessions, but that the performance of iHP-inactivated rats was impaired in our place-
290 preference task, as reflected in their significantly more frequent visits to the low-value zone

291 compared with controls.

292 It is unlikely that these differences stemmed from generic sensorimotor impairment
293 as a result of MUS infusion because running speed remained unchanged across drug
294 conditions ($F_{(2,14)} = 0.99$, $p = 0.37$, one-way repeated-measures ANOVA; $p = 0.95$ for dPBS
295 vs. iPBS, Wilcoxon signed-rank test) (**Figure 5C**). Furthermore, rats remained motivated
296 throughout the testing session, as evidenced by the absence of a significant difference in the
297 number of trials across drug groups ($F_{(1,16, 8,13)} = 1.34$, $p = 0.29$, one-way repeated-measures
298 ANOVA with Greenhouse-Geisser correction; $p = 1.0$ for dPBS vs. iPBS, Wilcoxon signed-
299 rank test; data not shown), although there was an increase in the session duration ($F_{(2,14)} =$
300 6.46 , $p < 0.05$, one-way repeated-measures ANOVA; $p = 0.27$ for dPBS vs. iPBS, Wilcoxon
301 signed-rank test; data not shown) during MUS sessions (dMUS and iMUS) compared with
302 the PBS session (p -values < 0.05 , Bonferroni-corrected post hoc test). This increase in
303 session duration was attributable to arena wall bumping events, which usually entailed a
304 recovery period before rats left the peripheral boundaries and moved again toward the goal.
305 These observations indicate that inactivation of the iHP significantly impairs the rat's ability
306 to effectively navigate to the higher-value reward zone in a VR environment without
307 affecting goal-directedness or locomotor activity.

308 To determine how effectively rats traveled to the goal in each condition, we also
309 quantified the errors made in each condition by assessing the number of perimeter crossings
310 (**Figure 5D**). To avoid duplicate assessments, we only counted an event as a perimeter
311 crossing when the rat crossed the perimeter boundary from inside to outside. Rats tended to
312 make more errors in dMUS sessions compared with controls, and errors were even more
313 prevalent in iMUS sessions ($F_{(2,14)} = 18.59$, $p < 0.001$, one-way repeated-measures ANOVA;
314 $p = 0.39$ for dPBS vs. iPBS, Wilcoxon signed-rank test; $p < 0.01$ for PBS vs. dMUS, $p < 0.01$
315 in PBS vs. iMUS; $p < 0.05$ for dMUS vs. iMUS, Bonferroni-corrected post hoc test). During
316 PBS sessions, navigation was mostly precise, resulting in just one perimeter crossing. In the
317 dMUS sessions, precision declined, but the rats were relatively successful in finding the high-
318 value zone, with most trials being associated with a slightly increased number of perimeter
319 crossings. In contrast, rats in the iMUS sessions failed to find the high-value zone. They
320 seemed undirected, exhibiting a significantly increased number of perimeter crossings
321 compared with the other two sessions. Taken together, these results indicate that iHP

322 inactivation more severely damages normal goal-directed navigational patterns than dHP
323 inactivation in our place-preference task.

324

325 **The iHP causes more damage to value-dependent spatial navigation than the dHP,
326 which is important for navigational precision**

327 To further differentiate among conditions, we examined departure direction and PCD –
328 indices of the effectiveness and precision of navigation, respectively (**Figure 3**). We first
329 investigated the distribution of departure directions in all trials for all rats and calculated the
330 resultant mean vector (**Figure 6A**). Note that dPBS and iPBS sessions were separately
331 illustrated here for better visualization of changes in behavioral pattern for each subregion.
332 Whereas departure directions for both PBS sessions (dPBS and iPBS) were distributed
333 relatively narrowly towards the high-value zone, those for dMUS sessions were more widely
334 distributed, and their peak pointed away from the reward zone. In the case of the iHP-
335 inactivation session, some departure directions were even pointed towards the opposite side
336 of the target goal zone (i.e., the low-value zone). Thus, the mean vectors from PBS sessions
337 were relatively longer than those from MUS sessions. The mean vectors for PBS sessions
338 also stayed within the range of the high-value zone, whereas those for MUS sessions pointed
339 either toward the edge of the reward zone (dMUS) or the outside of the reward zone (iMUS).

340 We next quantitatively confirmed these observations, comparing the mean direction
341 for each drug condition to determine how inactivation affected the accuracy of the body
342 alignment of rats at departure (**Figure 6A**). A Watson-Williams test indicated that the mean
343 angles of departure directions in all four drug conditions (dPBS, iPBS, dMUS, and iMUS) for
344 all rats significantly differed from each other ($F_{(3,1253)} = 7.78$, $p < 0.001$). Post hoc pairwise
345 comparisons showed that inactivation of either the dHP or iHP significantly altered departure
346 directions compared with the PBS condition ($p < 0.05$ for dPBS vs. dMUS; $p < 0.001$ for
347 iPBS vs. iMUS; $p = 0.66$ for dPBS vs. iPBS; Watson-Williams test). Moreover, the mean
348 departure directions of dMUS and iMUS sessions were displaced from the center of the high-
349 value zone compared with those of PBS sessions (i.e., dPBS and iPBS), suggesting that the
350 rats did not accurately align themselves to the target reward zone at the time of departure.
351 The mean vector of the iMUS session also appeared smaller than that of the other conditions,

352 indicating a less concentrated distribution of departure directions with iHP inactivation.
353 Unfortunately, it was not possible to perform a statistical comparison between dMUS and
354 iMUS because the departure directions for the iMUS session were too dispersed to yield a
355 mean vector with a sufficient length to compare directions between the two conditions
356 (averaged mean vector length of dMUS and iMUS sessions < 0.45; Berens, 2009).

357 The mean vector lengths for departure directions were also significantly different
358 among drug conditions ($F_{(2,14)} = 12.64$, $p < 0.001$, one-way repeated-measures ANOVA; $p =$
359 0.55 for dPBS vs. iPBS, Wilcoxon signed-rank test) (**Figure 6B**), with a post hoc analysis
360 showing a significant difference between the iMUS session and both PBS ($p < 0.01$) and
361 dMUS ($p = 0.05$) sessions; however, no significant difference was found between PBS and
362 dMUS sessions ($p = 0.24$, Bonferroni-corrected post hoc test). The profound performance
363 deficits in the iHP-inactivated condition were also confirmed by examining the DD-deviation
364 from the target direction, defined as the center of the high-value zone (**Figure 6C**).
365 Specifically, we found that DD-deviations were significantly different among drug conditions
366 ($F_{(2,14)} = 13.37$, $p < 0.001$, one-way repeated-measures ANOVA; $p = 0.38$ for dPBS vs. iPBS,
367 Wilcoxon signed-rank test), with a Bonferroni-corrected post hoc test revealing a significant
368 increase in DD-deviation in the iMUS session compared with both the PBS session ($p < 0.01$)
369 and the dMUS session ($p < 0.05$). Again, no significant difference was found between PBS
370 and dMUS sessions ($p = 0.19$). These results demonstrate that disruption of the dHP does not
371 significantly affect the ability of rats to orient themselves effectively at departure to target the
372 high-value reward zone. In contrast, inactivation of the iHP across all trials caused rats to
373 depart the starting location without strategically aligning to the scene and consequently
374 failing to hit the target zone effectively and directly.

375 Next, we ran similar analyses for the PCD (**Figure 7**), also investigating the PCD
376 distribution and its mean vector for each drug condition (**Figure 7A**). PCD distributions
377 appeared similar to those for departure direction; the PCD distributions of PBS sessions were
378 narrowly contained within the high-value reward zone, whereas those of MUS sessions were
379 more dispersed and misaligned with the reward zone. Again, the PCD distribution of the
380 iMUS session showed some occurrences near the low-value zone. An examination of the
381 resulting mean vectors using a Watson-Williams test revealed a significant difference in
382 mean PCD angle in all sessions except for the comparison between the two PBS sessions

383 ($F_{(3,1253)} = 16.22$, $p < 0.001$; $p = 0.08$ for dPBS vs. iPBS). The mean PCD angle of the dMUS
384 session was shifted toward the upper end of the high-value zone ($p < 0.001$ for dPBS vs.
385 dMUS), whereas that of the iMUS session was outside of the reward zone ($p < 0.001$ for
386 iPBS vs. iMUS). Notably, iHP inactivation resulted in more severe errors in finding the high-
387 value zone than dHP inactivation ($p < 0.01$ for dMUS vs. iMUS). Interestingly, with iHP
388 inactivation, several PCDs were found near the low-value zone, an outcome that rarely
389 occurred in other conditions. Considering the decreased percentage of high-value zone visits
390 (**Figure 5**), some of these trials ended with the rat visiting the low-value zone, suggesting an
391 impaired ability of the animal to perform goal-directed navigation strategically.

392 The PCD mean vector length was largest in the PBS condition, shortest in the iMUS
393 condition, and intermediate in the dMUS condition ($F_{(2,14)} = 15.67$, $p < 0.001$, one-way
394 repeated-measures ANOVA; $p = 0.55$ for dPBS vs. iPBS, Wilcoxon signed-rank test) (**Figure**
395 **7B**). Unlike the mean vector length for departure direction, the PCD mean vector length
396 differed between PBS and dMUS sessions, suggesting that wayfinding behavior is explicitly
397 disrupted by dHP inactivation, albeit to a lesser extent compared with iHP inactivation ($p <$
398 0.05 for PBS vs. dMUS; $p < 0.01$ for PBS vs. iMUS; $p = 0.06$ for dMUS vs. iMUS,
399 Bonferroni-corrected post hoc test).

400 On the other hand, the PCD deviation angle from the center of the high-value zone
401 increased in inverse order: smallest in the PBS condition and largest in the iMUS condition
402 ($F_{(2,14)} = 17.24$, $p < 0.001$, one-way repeated-measures ANOVA; $p = 0.55$ for dPBS vs. iPBS,
403 Wilcoxon signed-rank test) (**Figure 7C**). Similar to the PCD mean vector length data, the
404 significant increase in deviation angle after dHP inactivation indicates that dHP-inactivated
405 rats failed to achieve fine spatial tuning toward the high-value zone compared with controls
406 ($p < 0.05$ for PBS vs. dMUS, Bonferroni-corrected post hoc test). iHP inactivation also
407 resulted in less accurate navigation, including perimeter crossings – effects that were more
408 severe than those caused by dHP inactivation ($p < 0.01$ for PBS vs. iMUS; $p = 0.06$ for
409 dMUS vs. iMUS, Bonferroni-corrected post hoc test).

410 Overall, results based on the PCD measure revealed that dHP-inactivated rats showed
411 decreased precision in arriving at the goal, as reflected in the significant deviation of their
412 PCD from the high-value zone. The PCD distribution was also not as narrow as under control

413 conditions. Notably, deficits in navigation performance were even more severe in rats with
414 iHP inactivation, and their performance impairment was qualitatively different from that
415 observed with dHP inactivation in terms of both efficiency and precision of navigation. Again,
416 these results suggest that, while the dHP is essential for accurate wayfinding, the iHP is
417 crucial for value-dependent navigation to the higher-reward location.

418

419 **Hippocampal inactivation does not impair cue-guided navigation or goal-directedness**

420 After the drug-injection stage, we trained five of the same rats used in the main task in a
421 visual cue-guided navigation task to verify whether MUS inactivation of the hippocampus
422 resulted in deficits in goal-directed navigation in general (**Figure 8A-i**). We used the same
423 circular arena from the main task but removed all allocentric visual landmarks. The rat was
424 started from a fixed location near the periphery of the arena. As the trial started, a spherical
425 visual landmark with a checkered pattern flickered on either the left or right side
426 (pseudorandomized across trials) of the rat's starting position, serving as a beacon. When the
427 rat arrived at the landmark area (see Methods), the connection between treadmill movement
428 and the virtual environment stopped, and honey water was provided as a reward. The rewards
429 provided by left and right reward zones were the same in terms of both quality and quantity.

430 In this version of the navigation task, the rat's navigation was simply guided by the
431 visual beacon, a type of task that the literature suggests is not hippocampus-dependent
432 (Morris et al., 1986; Packard et al., 1989). Rats learned the task rapidly. Specifically, it took 3
433 days on average for rats to reach the criterion of completing 40 trials with an excess travel
434 distance of less than 0.1 meters (see Methods). Moreover, examining their trajectories
435 suggested that rats had no problem moving toward the visual landmark, whether it appeared
436 on the left or right of the starting location (**Figure 8A-ii**). Rats arrived at the reward zone
437 directly in most trials ('Direct hit') but bumped into the arena wall in some trials. Given the
438 presence of a strong visual landmark, which served as a beacon, trials in which the rat
439 bumped the arena walls were considered failed trials (**Figure 8A-ii**).

440 Finally, we applied the same drug injection schedule for the main task after the rats
441 reached the abovementioned criterion. A one-way repeated-measures ANOVA revealed that

442 the proportion of direct-hit trials did not significantly differ across drug conditions, indicating
443 no significant change in navigation precision when the goal was marked by the visual beacon
444 ($F_{(2,8)} = 1.60$, $p = 0.26$; $p = 0.50$ for dPBS vs. iPBS, Wilcoxon signed-rank test) (**Figure 8B**).
445 These results also imply that no generic sensory-motor or motivational deficits were involved.
446 Collectively, these observations confirm that MUS injections in the hippocampus do not alter
447 the ability of the rat to move around freely in the VR environment in a goal-directed fashion
448 when the hippocampus is not necessary for the task.

449

450

451 **Discussion**

452

453 In the current study, we inactivated the dorsal or intermediate hippocampal region in rats
454 performing a place-preference task in VR space to investigate the functional differentiation
455 along the dorsoventral hippocampal axis during goal-directed navigation. Inactivation of the
456 intermediate region, but not the dorsal region, of the hippocampus produced a marked
457 reduction in the rat's ability to conduct strategic goal-directed navigation in the virtual space
458 without affecting goal-directedness or locomotor ability. We further examined navigational
459 quality by measuring the precision of scene alignment upon departure and by assessing the
460 efficiency (i.e., directness) of travel to the target goal zone (i.e., higher-value zone) without
461 bumping into walls on the arena boundaries. We found that dHP-inactivated rats were
462 modestly, but significantly, impaired, not only in precisely targeting the goal at the time of
463 departure but also in effectively traveling to the goal zone, compared with controls.
464 Importantly, however, the ability of these dHP-inactivated rats to head toward the higher-
465 value zone in the VR environment was unimpaired. In contrast, iHP-inactivated rats were
466 severely impaired in the initial targeting of the goal zone at the time of departure and traveled
467 somewhat aimlessly in the VR environment compared with both controls and dHP-
468 inactivated rats. Our findings suggest that the dHP is essential for finding the most effective
469 travel path for precise spatial navigation and that the iHP is necessary for navigating the
470 space in a value-dependent manner to achieve goals.

471

472 **Rats use allocentric visual scenes and landmarks to target the goal zone and adjust their**
473 **paths accordingly during navigation in the VR environment**

474 In the current paradigm, rats rotated the spherical treadmill counterclockwise immediately
475 after the trial started at the VR arena's center, presumably to find the visual scene to guide
476 them directly toward the goal zone (i.e., high-value zone) upon departure. This initial
477 orientation of departure – or departure direction (DD) – seems critical in our task, as
478 evidenced by the fact that, during training, rats that miscalculated the departure direction
479 usually bumped into the wall and had to reorient themselves at various positions within the
480 environment. Once the rats learned the task, they oriented themselves before leaving the start
481 point by rotating the visual environment until they found the goal-associated visual scenes
482 and then ran straight toward the goal zone. These behavioral characteristics suggest that our
483 task is heavily dependent on the rat's ability to use the allocentric reference frame of the
484 visual environment.

485 Prior studies suggest that, in an environment where the directional information comes
486 largely from allocentric visual cues, the spiking activity of place cells is significantly
487 modulated by directional visual cues, a finding that holds in both real and virtual
488 environments (Acharya et al., 2016; Ravassard et al., 2013; Aronov and Tank, 2015). In one
489 of these studies (Acharya et al.), directional modulation of place cells was observed even
490 during random foraging in the absence of a goal-directed memory task. Notably, this was also
491 true for spatial view cells in nonhuman primates (Rolls and O'Mara, 1995; Georges-Francois
492 et al., 1999). Although we did not record place cells in our study, hippocampal place cells
493 could be predicted to exhibit directional firing patterns associated with the visual scenes
494 along the periphery of the current VR environment. Because rats in the current study rotated
495 the environment until they found the target-matching scene without leaving the center starting
496 point, our VR task may be an ideal behavioral paradigm for examining the directional firing
497 of place cells in future studies.

498

499 **Inactivating the dHP impairs navigational precision but does not affect place preference**
500 **based on differential reward values**

501 Our working model posits that the dHP represents a fine-scaled spatial map of an
502 environment, in this case, a VR environment, that allows an animal to map its location
503 precisely and choose the most efficient travel routes. Our experimental results support this
504 model, demonstrating that dHP-inactivated rats deviated slightly, but significantly, from the
505 ideal target heading at the time of departure (measured by departure direction), resulting in
506 crossing the area boundary near the target goal zone. Nonetheless, it is important to note that
507 dHP-inactivated rats in our study oriented themselves normally in the direction of the high-
508 value reward zone at the time of departure, suggesting that the value-coding cognitive map
509 and its use were intact and able to spatially guide the rats to the high-reward area in the
510 absence of a functioning dHP. We argue that such intact place preference performance with
511 reasonable spatial navigation ability is supported by the iHP (presumably in connection with
512 the vHP) in dHP-inactivated rats.

513 Whether the dHP represents value signals remains a matter of controversy.
514 According to previous studies, place fields of the dHP seem to translocate to or accumulate
515 near the location with motivational significance (e.g., reward zone), and where the strategic
516 importance is higher (e.g., choice point in the T-maze) (Hollup et al., 2001; Lee et al., 2006;
517 Kennedy and Shapiro, 2009; Dupret et al., 2010; Ainge et al., 2011; Valenti et al., 2018). For
518 instance, the overrepresentation of the escape platform in a water maze – a location of high
519 motivational significance – was observed in the neural firing patterns of place cells in the
520 hippocampus (Hollup et al., 2001). In addition, Lee et al. reported that dHP place fields
521 gradually translocate toward the goal arm of a continuous T-maze (Lee et al., 2006), and
522 Dupret and colleagues suggested a goal-directed reorganization of hippocampal place fields
523 based on an experimental paradigm in which reward locations were changed daily (Dupret et
524 al., 2010). Such accumulation of spatial firing is not restricted to the goal location, as place
525 fields recorded from the dHP were reported to be unevenly distributed near the start box and
526 the choice point of a T-maze (Ainge et al., 2011). One potential explanation for the
527 discrepancy between our study and studies that reported apparent valence-dependent signals
528 in the dHP could be that the dHP processes motivational and strategic significance (from the
529 perspective of task demand), which is not always the same as the reward. Significance might
530 include task demand, such as a change between random and directed search of reward
531 (Markus et al., 1995), or a change in a significant environment stimulus from which the goal

532 location needs to be calculated (Gothard et al., 1996). However, none of these were changed
533 in our experimental paradigm, which might explain why dHP inactivation did not affect
534 place-preference behavior.

535 Another possibility is that the dHP responds only to a more radical change in value,
536 such as the presence or absence of reward, but not to different amounts of the same reward.
537 Indeed, hippocampal neuronal activity does not show an explicit response to reward value in
538 rats trained to visit arms of a plus-maze in descending order of reward amount (Tabuchi et al.,
539 2002). Moreover, when the reward is unexpectedly altered to a less preferred one, thus
540 decreasing motivational significance, place cells in the dHP remain mostly unchanged (Jin
541 and Lee, 2021). These results suggest that the dHP is not crucial to maintaining value
542 preference, a finding in line with the observed absence of an effect on place preference after
543 dHP inactivation in our study. A recent study in which mice were trained to associate a
544 particular odor with an appetitive outcome and distinguish it from the non-rewarded odor
545 suggested that the dHP is responsible for stimulus identity, not saliency (Biane et al., 2023).
546 This might be another possible interpretation of our dHP results since we used the same
547 honey water reward for both reward zones.

548

549 **The iHP may contain a value-associated cognitive map with reasonable spatial
550 resolution for value-based navigation**

551 iHP-inactivated rats showed poor goal-directed navigation, characterized by misalignment of
552 their departing orientation with the goal zone and arrival points that were often far removed
553 from the goal zone compared with the same rats under both control and dHP-inactivated
554 conditions. Particularly, rats changed their heading directions during the navigation when
555 they were not confident with the location of the higher reward, resulting in a less efficient
556 route to the goal location. Rats showing this type of behavior tended to hit the perimeter of
557 the arena first before correcting their routes. Therefore, when considered together with DD,
558 our PCD measure could tell that the rats not hitting the goal zone directly after departure were
559 impaired in orienting themselves to the target zone accurately from the start, not in
560 maintaining the correct heading direction to the goal zone at the start location.

561 Although there is still a possibility that the levels of expression of GABA-A
562 receptors might be different along the longitudinal axis of the hippocampus, these results
563 support our working model that the iHP is critical for representing a value-associated
564 cognitive map of the environment. iHP-inactivated rats, presumably unable to utilize such a
565 value-representing map, could not strategically plan and organize their behaviors to target the
566 high-value area in the current study. Consequently, the fine-grained spatial map present in the
567 dHP may be of little use without the guidance of the value-associated map in the iHP,
568 accounting for the poor navigational performance of iHP-inactivated rats. The value-
569 associated cognitive map in the iHP may still show reasonable spatial specificity, as
570 evidenced by the larger, but still specifically located, place fields in the iHP compared with
571 the dHP (Jin and Lee, 2021).

572 The involvement of the iHP in spatial value association has been reported or
573 implicated in several studies. For example, Bast and colleagues reported that rapid place
574 learning is disrupted by removing the iHP and vHP, even when the dHP remains undamaged
(Bast et al., 2009). On the other hand, if the iHP is spared but the dHP and vHP are removed
575 by lesioning, rats in a water maze test quickly learn a new platform location normally.
576 Moreover, a change in reward value induced an immediate global remapping response and a
577 greater overrepresentation of the reward zone with a higher value in iHP neurons (Jin and Lee,
578 2021). Another recent study by Jarzebowski et al. focused on how hippocampal place cells
579 change their firing patterns during the learning process for several sets of changing reward
580 locations (Jarzebowski et al., 2022). The results from this study suggest that, in the iHP, the
581 same place cells persistently fire across different reward locations, thus tracking the changes
582 in reward locations.

584 Anatomically, the iHP is in an ideal position to represent associations between a
585 space and its value by intrahippocampal connections from both the dHP and vHP (Tao et al.,
586 2021; Swanson et al., 1978). Importantly, the vHP is known to receive much heavier
587 projections from value-processing subcortical areas, such as the amygdala and VTA,
588 compared with the upper two-thirds of the hippocampus (Krettek and Price, 1977; Swanson
589 et al., 1978; Pikkarainen et al., 1999; Felix-Ortiz and Tye, 2014; Gasbarri et al., 1994). Thus,
590 although the iHP also receives afferent projections from these areas, it is highly likely that the
591 vHP plays a crucial role in the value-related representation of the iHP. Notably, both the

592 amygdala and VTA are known to be involved in processing palatability information (Tye and
593 Janak, 2007; Fontanini et al., 2009; Chen et al., 2020), and the amygdala has a subpopulation
594 of neurons dedicated to encoding positive values (Kim et al., 2016; Beyeler et al., 2016).
595 These anatomical studies support our working model of the iHP in integrating place-value
596 information.

597 It is worth noting that the iHP sends direct projections to the mPFC, which is thought
598 to be involved in behavioral control and action (Hoover and Vertes, 2007; Liu and Carter,
599 2018). Our experimental paradigm required rats to choose and navigate towards one of two
600 reward zones with different values, a task structure that must demand active cognitive control,
601 presumably by the mPFC in collaboration with the hippocampus. It is also possible that
602 inactivation of the iHP prevents the transfer of the dHP's spatial information to the mPFC via
603 the iHP, which may explain why iHP inactivation produces severe deficits in goal-directed
604 navigation in the current task. Based on these findings, we propose a working model in which
605 the iHP associates spatial value information with the cognitive map of the dHP and sends
606 value-associated spatial information to the mPFC, which translates the space-value-
607 integrated representation into action (Bast, 2011; Bast et al., 2009).

608

609 **Limitations**

610 We tested the differential functions of the hippocampal subregions in the long axis, dHP and
611 iHP, by inactivating each subregion during goal-directed navigation. The subregional
612 inactivation allowed us to compare the differences in navigational patterns directly between
613 the drug conditions within subjects. However, our study includes only behavioral results and
614 further mechanistic explanations as to the processes underlying the behavioral deficits require
615 physiological investigations at the cellular level. Neurophysiological recordings during VR
616 task performance could answer, for example, the questions such as whether the value-
617 associated map in the iHP is built upon the map inherited from the dHP or it is independently
618 developed in the iHP. Also, although our observations and behavioral data strongly suggest
619 that rats rely on allocentric visual scenes in the VR environment instead of a single or limited
620 set of landmarks, it is still difficult to prove experimentally whether rats used the cognitive
621 map of the virtual arena to find the high-value zone or they had an alternative strategy to find

622 the goal.

623

624 **Methods**

625

626 *Subjects*

627 Eight male Long-Evans rats (8 weeks old) were housed individually under a 12-hour
628 light/dark cycle in a temperature- and humidity-controlled environment. Rats were food-
629 restricted to maintain ~80% of their free-feeding weight, but water was provided ad libitum.
630 The experimental protocol (SNU-200504-3-1) complied with the guidelines of the
631 Institutional Animal Care and Use Committee of Seoul National University. Based on our
632 prior studies (Park et al., 2017; Yoo and Lee, 2017; Lee et al., 2014), the sample size of our
633 study was set to the least number to achieve the necessary statistical power in the current
634 within-subject study design for ethical commitments and practical considerations (i.e.,
635 relatively long training periods).

636

637 **2D VR system**

638 We established our own VR environment consisting of a circular arena surrounded by
639 multiple landmarks using a game engine (Unreal Engine [UE] 4.14.3; Epic Games, Inc., USA)
640 (**Figure 1A and 1B**). The VR environment was presented via five adjacent LCD monitors
641 covering 270 degrees of the visual field. Rats were body-restrained at the top of a spherical
642 treadmill, and a silicone-coated Styrofoam ball with 400mm diameter was placed on multiple
643 ball bearings. Rats could move their heads freely; body jackets were used to anchor their
644 positions, limiting their body movements to a 120-degree range. As rats rolled the treadmill,
645 their movement was recorded by three rotary encoders (DBS60E-BGFJD1024; Sick, Inc.,
646 Germany) attached to the treadmill surface. The signal from the encoders was then sent to the
647 computer and synchronized with the movement in the virtual environment via an Arduino
648 interface board (Arduino Leonardo; Arduino, Italy) and MATLAB R2021a (MathWorks,
649 USA). A licking port was placed in front of the rats and moved in association with their body

650 movement. It was maintained in a retracted position but was extended toward the snout by a
651 linear motor (L16-R; Actuonix Motion Devices, Canada); an infrared sensor (FD-S32;
652 Panasonic Industry, Japan) detected rats' tongues to record licking behavior. When rats
653 arrived at either reward zone, the solenoid valve (VA212-3N; Aonetech, Republic of Korea),
654 controlled by the UE via the Arduino interface (Arduino UNO; Arduino, Italy), dispensed
655 honey water as a reward. The amount of honey water dispensed for high-value and low-value
656 zones was maintained at a ratio (in drops) of 12:2, with 12 μ L per drop.

657

658 ***Behavioral paradigm***

659 After several days of handling, rats were moved to the VR apparatus and trained to roll the
660 treadmill to navigate the virtual environment ('Shaping'; **Figure 4B**). In this session, rats had
661 to reach a flickering checkerboard-shaped sphere randomly spawned on a circular arena (1.6
662 meters in diameter) to obtain a honeywater reward. After rats had completed more than 60
663 trials on two consecutive days, they were assumed to have adapted to navigating freely. They
664 were moved to pre-surgical training ('Pre-training') – a 2D VR version of the place-
665 preference task. For the pre-training session, rats were required to find hidden reward zones
666 using the surrounding scene, including various landmarks, such as houses, mountains, and
667 arches, on the same circular arena from the shaping session. The start position was located at
668 a fixed point in the center of the arena, and reward zones were located at the east and west
669 sides of the circular platform; reward zones were positioned at a slight distance from the
670 arena wall to prevent rats from employing a thigmotaxis strategy. Therefore, the shortest path
671 length between the start position and the reward zone was 0.62 meters. A trial started with a
672 heading in one of six start directions, pseudorandomly chosen, and ended when the rat arrived
673 at either reward zone. Pre-surgical training criteria were defined by the number of trials (60
674 trials in 40 minutes), high-value zone visit percentage ($>75\%$), and average excess travel
675 distance (<0.6 meters). If a rat successfully achieved training criteria 2 days in a row, it
676 received cannula implantation surgery.

677 After the surgery, rats were allowed 1 week of recovery ('Recovery') and then were moved to
678 post-surgical training ('Post-training'). During post-training, rats were tested on the same
679 place-preference task until they achieved the same criteria as pre-surgical training, except that

680 the trial number was reduced to 40 and the average excess travel distance was reduced to less
681 than 1 meter. This point marked the beginning of the drug injection stage; four rats received
682 their initial injection in the dHP, and the other four rats were injected first in the iHP to
683 counterbalance the injection order ('Place Preference Task').

684

685 ***Object-guided navigation task***

686 After completing drug injections, we trained five of the eight rats from the main task for an
687 object-guided navigation task to investigate whether drug infusion caused any motor- or
688 motivation-related impairments ('Probe'; **Figure 4B**). Note the smaller sample size in the
689 object-guided navigation task. This was because the task was later added to the study design.
690 In this task, the rat simply had to find and navigate toward a flickering object; because there
691 was no need for the rat to use the surrounding scene to locate the reward, this probe test was
692 hippocampus-independent. For the probe test, the rat started from the south of the arena;
693 concurrently, a flickering checkerboard-shaped sphere appeared on either the left or right side
694 of the screen. When the rat arrived at the reward zone (i.e., a 0.4m-radius circle surrounding
695 the object), the visual stimulus stopped, a honeywater reward was given, and the trial ended.
696 No landmarks surrounded the circular arena to distinguish the environment from that in the
697 main task. The criterion for training included the completion of 40 trials with less than 0.1
698 meter of mean excess travel distance, calculated as the shortest path length between the start
699 location and the reward zone; a time limit of 60 seconds was also imposed. The drug infusion
700 schedule from the place-preference task was then repeated, at which point rats were sacrificed
701 for histological procedures.

702

703 ***Surgery***

704 After rats reached pre-surgical training criteria, they were implanted with four commercial
705 cannulae (P1 Technologies, USA), bilaterally targeting the dHP and the iHP, enabling within-
706 subject comparisons in performance between dHP inactivation (dMUS) and iHP inactivation
707 (iMUS) conditions (**Figure 4A**). Animals were first anesthetized with an intraperitoneal
708 injection of sodium pentobarbital (Nembutal, 65 mg/kg), then their heads were fixed in a

709 stereotaxic frame (Kopf Instruments, USA). Isoflurane (0.5-2% mixed with 100% oxygen)
710 was used to maintain anesthesia throughout the surgery. The cannula tips targeted
711 approximately the upper blades of the dentate gyrus of both regions (AP -3.8 mm, ML \pm 2.6
712 mm, DV -2.7 mm for the dHP; AP -6.0 mm, ML \pm 5.6 mm, DV -3.2 mm with a 10-degree tilt
713 for the iHP) to inactivate each subregion effectively. The cannula, consisting of a 26-gauge
714 guide cannula coupled with a 33-gauge dummy cannula, was fixed to the target location by
715 several skull screws and bone cement. After the surgery, ibuprofen syrup was orally
716 administered for pain relief, and the animal was kept in an intensive care unit overnight.

717

718 ***Drug infusion***

719 For drug injection, the rat was first anesthetized with isoflurane. Then, 0.3 to 0.5 μ l of either
720 phosphate-buffered saline (PBS) or muscimol (MUS; 1mg/ml, dissolved in saline) was
721 infused into each hemisphere via a 33-gauge injection cannula at an injection speed of 0.167
722 μ l/min, based on our previous study (Lee et al., 2014; Kim et al., 2012). The injection
723 cannula and dummy cannula extended 1 mm below the tip of the guide cannula. The injection
724 cannula was left in place for 1 minute after completing the drug infusion to ensure stable
725 diffusion of the drug. Then, it was slowly removed from the guide cannula and replaced by
726 the dummy cannula. The rat was kept in a clean cage to recover from anesthesia completely
727 and monitored for side effects for 20 minutes, then was moved to the VR apparatus for
728 behavioral testing. If the rat showed any side effect, particularly sluggishness or aggression,
729 we reduced the drug injection amount in the rat by 0.1 μ l until we found the dosage with
730 which there was no visible side effect. As a result, five of the rats received 0.4 μ l, two
731 received 0.3 μ l, and one received 0.5 μ l.

732

733 ***Histology***

734 After completing the probe test, animals were sacrificed by inhalation of an overdose of CO₂.
735 Rats were then transcardially perfused, first with PBS, administered with a syringe, and then
736 with a 4% v/v formaldehyde solution, delivered using a commercial pump (Masterflex Easy-
737 Load II Pump; Cole-Parmer, USA). The brain was extracted and placed in a 4% v/v

738 formaldehyde-30% sucrose solution at 4°C until it sank to the bottom of the container. After
739 gelatin embedding, the brain was sectioned at 40 µm using a microtome (HM430; Thermo-
740 Fisher Scientific, USA), and sections were mounted on subbed slide glasses for Nissl staining.

741

742 ***Statistical analysis***

743 Data were statistically analyzed using custom programs written in MATLAB R2021a
744 (MathWorks, USA), Prism 9 (GraphPad, USA), and SPSS (IBM, USA). Statistical
745 significance was determined using the Wilcoxon signed-rank test and one-way repeated-
746 measures analysis of variance (RM ANOVA) followed by a Bonferroni post hoc test.
747 Although most of our statistics were based on the non-parametric tests for the relatively small
748 sample size (n=8), we used the parametric RM ANOVA for comparing three groups (i.e.,
749 PBS, dMUS, and iMUS) because it is the most commonly known and widely used statistical
750 test in such comparison. However, we also performed statistical test with the alternatives for
751 reference, and the statistical significances were not changed with any of the results. For
752 directional analysis, Kuiper's test and Watson-Williams test were used. However, the latter
753 test was considered inapplicable for the mean angle when the average mean vector length
754 between two samples was less than 0.45 (Berens, 2009). The significance level was set at
755 $\alpha = 0.05$, and all error bars indicate the standard error of the mean (SEM).

756

757

758 **Competing Interests**

759 The authors have no conflicts of interest to declare.

760

761 **Acknowledgments**

762 This work was supported by the National Research Foundation of Korea
763 (2019R1A2C2088799, 2021R1A4A2001803, 2022M3E5E8017723) and the Global Ph.D.
764 Fellowship program (2019H1A2A1073456). We thank Heesoo Oh for his assistance in
765 behavioral training.

766

767 **Data Availability**

768 The data used in this study are deposited on GitHub at
769 <https://github.com/hhwang28/Behavioral-Data>.

770 **References**

771

772 Acharya L, Aghajan ZM, Vuong C, Moore JJ, Mehta MR (2016) **Causal influence of visual**
773 **cues on hippocampal directional selectivity** *Cell* **164**: 197–207.

774 Aronov D, Tank DW (2014) **Engagement of neural circuits underlying 2D spatial**
775 **navigation in a rodent virtual reality system** *Neuron* **84**: 442–456.

776 Bast T (2011) **The hippocampal learning-behavior translation and the functional**
777 **significance of hippocampal dysfunction in schizophrenia** *Current Opinion in*
778 *Neurobiology* **21**: 492–501.

779 Bast T, Wilson IA, Witter MP, Morris RGM (2009) **From rapid place learning to**
780 **behavioral performance: A key role for the intermediate hippocampus** *PLoS Biology*
781 **7**: e1000089.

782 Berens P (2009) **CircStat: A MATLAB toolbox for circular statistics** *Journal of Statistical*
783 *Software* **31**: 1–21.

784 Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, Luck R, Wildes
785 CP, Tye KM (2016) **Divergent routing of positive and negative information from the**
786 **amygdala during memory retrieval** *Neuron* **90**: 348–361.

787 Biane JS, Ladow MA, Stefanini F, Boddu SP, Fan A, Hassan S, Dundar N, Apodaca-
788 Montano DL, Zhou LZ, Fayner V, Woods NI, Kheirbek MA (2023) **Neural dynamics**
789 **underlying associative learning in the dorsal and ventral hippocampus** *Nature*
790 *Neuroscience* **26**: 798–809.

791 Bienkowski MS, Bowman I, Song MY, Gou L, Ard T, Cotter K, Zhu M, Benavidez NL,
792 Yamashita S, Abu-Jaber J, Azam S, Lo D, Foster NN, Hintiryan H, Dong H-W (2018)
793 **Integration of gene expression and brain-wide connectivity reveals the multiscale**
794 **organization of mouse hippocampal networks** *Nature Neuroscience* **21**: 1628–1643.

795 Chen L, Lu Y-P, Chen H-Y, Huang S-N, Guo Y-R, Zhang J-Y, Li Q-X, Luo C-Y, Lin S-W,
796 Chen Z-N, Hu L-H, Wang W-X, Li H-Y, Cai P, Yu C-X (2020) **Ventral tegmental area**
797 **GABAergic neurons induce anxiety-like behaviors and promote palatable food**
798 **intake** *Neuropharmacology* **173**: 108114.

799 De Hoz L, Knox J, Morris RGM (2003) **Longitudinal axis of the hippocampus: Both**
800 **septal and temporal poles of the hippocampus support water maze spatial learning**
801 **depending on the training protocol** *Hippocampus* **13**: 587–603.

802 Dolorfo CL, Amaral DG (1998) **Entorhinal cortex of the rat: Organization of intrinsic**
803 **connections** *Journal of Comparative Neurology* **398**: 49-82.

804 Dong H-W, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) **Genomic-anatomic**
805 **evidence for distinct functional domains in hippocampal field CA1** *Proceedings of*
806 *the National Academy of Sciences* **106**: 11794–11799.

807 Dupret D, O'Neill J, Pleydell-Bouverie B, Csicsvari J (2010) **The reorganization and**
808 **reactivation of hippocampal maps predict spatial memory performance** *Nature*
809 *Neuroscience* **13**: 995–1002.

810 Duvelle É, Grieves RM, Hok V, Poucet B, Arleo A, Jeffery K, Save E (2019) **Insensitivity**
811 **of place cells to the value of spatial goals in a two-choice flexible navigation task** *The*
812 *Journal of Neuroscience* **39**: 2522-2541.

813 Felix-Ortiz AC and Tye KM (2014) **Amygdala inputs to the ventral hippocampus**
814 **bidirectionally modulate social behavior** *The Journal of Neuroscience* **34**: 586-595.

815 Fontanini A, Grossman SE, Figueroa JA, Katz DB (2009) **Distinct subtypes of basolateral**
816 **amygdala taste neurons reflect palatability and reward** *The Journal of Neuroscience*,
817 **29**: 2486–2495.

818 Gasbarri A, Packard MG, Campana E, Pacitti C (1994) **Anterograde and retrograde**
819 **tracing of projections from the ventral tegmental area to the hippocampal**
820 **formation in the rat** *Brain Research Bulletin* **33**: 445–452.

821 Gauthier JL, Tank DW (2018) **A dedicated population for reward coding in the**
822 **hippocampus** *Neuron* **99**: 179-193.e7.

823 Georges-Francois P, Rolls ET, Robertson RG (1999) **Spatial view cells in the primate**
824 **hippocampus: Allocentric view not head direction or eye position or place** *Cerebral*
825 *Cortex* **9**: 197–212.

826 Gothard K, Skaggs W, Moore K, McNaughton B (1996) **Binding of hippocampal CA1**
827 **neural activity to multiple reference frames in a landmark-based navigation task**
828 *The Journal of Neuroscience* **16**: 823–835.

829 Hollup SA, Molden S, Donnett JG, Moser M-B, Moser EI (2001) **Accumulation of**
830 **hippocampal place fields at the goal location in an annular watermaze task** *The*
831 *Journal of Neuroscience* **21**: 1635–1644.

832 Hoover WB, Vertes RP (2007) **Anatomical analysis of afferent projections to the medial**
833 **prefrontal cortex in the rat** *Brain Structure and Function* **212**: 149–179.

834 Jarzebowski P, Hay YA, Grewe BF, Paulsen O (2022) **Different encoding of reward**
835 **location in dorsal and intermediate hippocampus** *Current Biology* **32**: 834-841.e5.

836 Jin S-W, Lee I (2021) **Differential encoding of place value between the dorsal and**
837 **intermediate hippocampus** *Current Biology* **31**: 3053-3072.e5.

838 Jung M, Wiener S, McNaughton B (1994) **Comparison of spatial firing characteristics of**
839 **units in dorsal and ventral hippocampus of the rat** *The Journal of Neuroscience*, **14**:
840 7347–7356.

841 Kennedy PJ, Shapiro ML (2009) **Motivational states activate distinct hippocampal**
842 **representations to guide goal-directed behaviors** *Proceedings of the National*
843 *Academy of Sciences* **106**: 10805–10810.

844 Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S (2016) **Antagonistic negative and**
845 **positive neurons of the basolateral amygdala** *Nature Neuroscience* **19**: 1636–1646.

846 Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser M-B
847 (2008) **Finite scale of spatial representation in the hippocampus** *Science* **321**: 140–
848 143.

849 Krettek JE, Price JL (1977) **Projections from the amygdaloid complex and adjacent**
850 **olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat**
851 *Journal of Comparative Neurology* **172**: 723–752.

852 Lee I, Griffin AL, Zilli EA, Eichenbaum H, Hasselmo ME (2006) **Gradual translocation of**
853 **spatial correlates of neuronal firing in the hippocampus toward prospective reward**
854 **locations** *Neuron* **51**: 639–650.

855 Lee KJ, Park SB, Lee I (2014) **Elemental or contextual? It depends: individual difference**
856 **in the hippocampal dependence of associative learning for a simple sensory stimulus**
857 *Frontiers in Behavioral Neuroscience* **8**: 217.

858 Liu X, Carter AG (2018) **Ventral hippocampal inputs preferentially drive corticocortical**
859 **neurons in the infralimbic prefrontal cortex** *The Journal of Neuroscience* **38**: 7351–
860 7363.

861 Markus E, Qin Y, Leonard B, Skaggs W, McNaughton B, Barnes C (1995) **Interactions**
862 **between location and task affect the spatial and directional firing of hippocampal**
863 **neurons** *The Journal of Neuroscience* **15**: 7079–7094.

864 Maurer AP, VanRhoads SR, Sutherland GR, Lipa P, McNaughton B (2005) **Self-motion and**
865 **the origin of differential spatial scaling along the septo-temporal axis of the**
866 **hippocampus** *Hippocampus* **15**: 841-852.

867 Morris RGM, Hagan JJ, Rawlins JNP (1986) **Allocentric spatial learning by**
868 **hippocampectomised rats: A further test of the “spatial mapping” and “working**
869 **memory” theories of hippocampal function** *The Quarterly Journal of Experimental*
870 *Psychology* **38**: 365-395.

871 Moser MB, Moser EI, Forrest E, Andersen P, Morris RG (1995) **Spatial learning with a**
872 **minislab in the dorsal hippocampus** *Proceedings of the National Academy of Sciences*
873 **92**: 9697–9701.

874 O’Keefe J, Dostrovsky J (1971) **The hippocampus as a spatial map. Preliminary evidence**
875 **from unit activity in the freely-moving rat** *Brain Research* **34**: 171–175.

876 O’Keefe J, Nadel L (1978) *The hippocampus as a cognitive map*. Oxford: Clarendon.

877 Packard MG, Hirsh R, White NM (1989) **Differential effects of fornix and caudate nucleus**
878 **lesions on two radial maze tasks: evidence for multiple memory systems** *The Journal*
879 *of Neuroscience* **9**: 1465-1472.

880 Park EH, Ahn JR, Lee I (2017) **Interactions between stimulus and response types are**
881 **more strongly represented in the entorhinal cortex than in its upstream regions in**
882 **rats** *eLife* **6**: e32657.

883 Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A (1999) **Projections from the**
884 **lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal**
885 **formation in rat** *Journal of Comparative Neurology* **403**: 229–260.

886 Ravassard P, Kees A, Willers B, Ho D, Aharoni D, Cushman J, Aghajan ZM, Mehta MR
887 (2013) **Multisensory control of hippocampal spatiotemporal selectivity** *Science* **340**:
888 1342–1346.

889 Rolls ET, O'Mara SM (1995) **View** responsive neurons in the primate hippocampal
890 **complex** *Hippocampus* **5**: 409–424.

891 Royer S, Sirota A, Patel J, Buzsaki G (2010) **Distinct representations and theta dynamics**
892 **in dorsal and ventral hippocampus** *The Journal of Neuroscience* **30**: 1777–1787.

893 Speakman A, O'Keefe J (1990) **Hippocampal complex spike cells do not change their**
894 **place fields if the goal is moved within a cue controlled environment** *European*
895 *Journal of Neuroscience* **2**: 544–555.

896 Swanson LW, Wyss JM, Cowan WM (1978) **An autoradiographic study of the**
897 **organization of intrahippocampal association pathways in the rat** *Journal of*
898 *Comparative Neurology* **181**: 681–715.

899 Tao S, Wang Y, Peng J, Zhao Y, He X, Yu X, Liu Q, Jin S, Xu F (2021) **Whole-brain**
900 **mapping the direct inputs of dorsal and ventral CA1 projection neurons** *Frontiers in*
901 *Neural Circuits* **15**: 643230.

902 Tye KM, Janak PH (2007) **Amygdala neurons differentially encode motivation and**
903 **reinforcement** *The Journal of Neuroscience* **27**: 3937–3945.

904 Valenti O, Mikus N, Klausberger T (2018) **The cognitive nuances of surprising events:**
905 **Exposure to unexpected stimuli elicits firing variations in neurons of the dorsal**
906 **CA1 hippocampus** *Brain Structure and Function* **223**: 3183–3211.

907 Van Groen T, Wyss JM (2003) **Connections of the retrosplenial granular b cortex in the**
908 **rat** *Journal of Comparative Neurology* **463**: 249-263.

909 Yoo SW and Lee I (2017) **Functional double dissociation within the entorhinal cortex for**
910 **visual scene-dependent choice behavior** *eLife* **6**: e21543.

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929 **Figure Legends**

930

931 **Figure 1. Place-preference task in a 2D VR environment.** (A) 2D VR setup. (B) Bird's-eye view of the virtual environment. Various landmarks surrounded a circular arena, and a fixed start location ('St') was at the center. Reward zones are illustrated with white dashed lines for visualization purposes. (C) Place-preference task paradigm. A trial started with one of six pseudorandomly chosen start directions ('Trial Start'). In this example, the rat started the trial facing the northeast (NE) direction, highlighted in green. Subsequent navigation is illustrated here with the associated scene ('Navigation'). A dot on the gray trajectory indicates the rat's current location and the black arrow describes the head direction. When the rat arrived at a reward zone, honey water was delivered within 8 seconds, with the visual scene frozen ('Reward'). Finally, a gray screen appeared, denoting an inter-trial interval; if the rat remained still (<5 cm/s) for 5 seconds, the subsequent trial began ('ITI').

942

943 **Figure 2. Common body-turning behavior of rats after learning.** (A) The reference frame of the virtual environment. The six start directions are illustrated with the red high-value zone (180°) and blue low-value zone (0°). On the right, the departure circle (DC) is denoted with a purple dashed line, and the start direction is marked with a black arrowhead and a green arrow. (B) Overall changes in scene direction over the normalized distance between the start location and the DC (left). Each colored line indicates the median change of scene direction in trials with each start location, and red and blue arrowheads mark high- and low-value zone centers, respectively. The 0°-to-360° range was repeated in the ordinate of the plot to capture

951 rotational movements in opposite directions (positive and negative directions for clockwise
952 and counterclockwise rotations, respectively). The gray lines on the right show the rat's
953 trajectory within the DC. These examples were excerpted from the first and last days of pre-
954 training of a single rat. The numbers after 'Novice' and 'Expert' indicate the rat and session
955 number of the example. (C) Individual examples of scene directions and trajectories in the
956 novice session. Scene direction change for each direction is drawn separately (top) for
957 individual trials. The black arrowhead indicates that specific start direction. Trajectories
958 within the DC (middle) and the whole arena (bottom) are also illustrated according to the
959 indicated color code. Mean travel distance in meters and latency in seconds are shown below
960 the VR arena trajectory. (D) Same as (C), but for the expert session.

961

962 **Figure 3. Learning index for efficient navigation during pre-surgical training.** (A)
963 Changes in departing direction (DD) with learning. (i) Schematic of DD (purple dot), with the
964 departure circle shown as a dashed line. (ii) Distribution of DDs in pre- and post-learning
965 sessions from all rats (rose plots). Gray denotes the pre-learning session, whereas purple
966 indicates the post-learning session. Mean vectors are illustrated as arrows with the same color
967 scheme, and their lengths are indicated at the upper right side of the plot. (iii) Schematic of
968 the DD-deviation angle (angle between the high-value zone center and the DD) and
969 comparisons of DD-deviation angles between pre- and post-learning sessions. Each dot
970 represents data from one rat. (B) Same as (A), but for perimeter-crossing direction (PCD;
971 green dot). The perimeter is drawn as a green dashed circle. **p < 0.01.

972

973 **Figure 4. Cannula implantation locations and schedules for training and drug injection.**
974 (A) Cannula positions marked. (i) Example of bilaterally implanted cannula tracks in Nissl-
975 stained sections in the dHP and iHP. (ii) Tip locations illustrated in the atlas, with different
976 colors for individual rats (n = 8). (B) Training schedule. Rats were divided into two groups
977 (n = 4/group) to counterbalance the injection order for the main task and probe test.

978

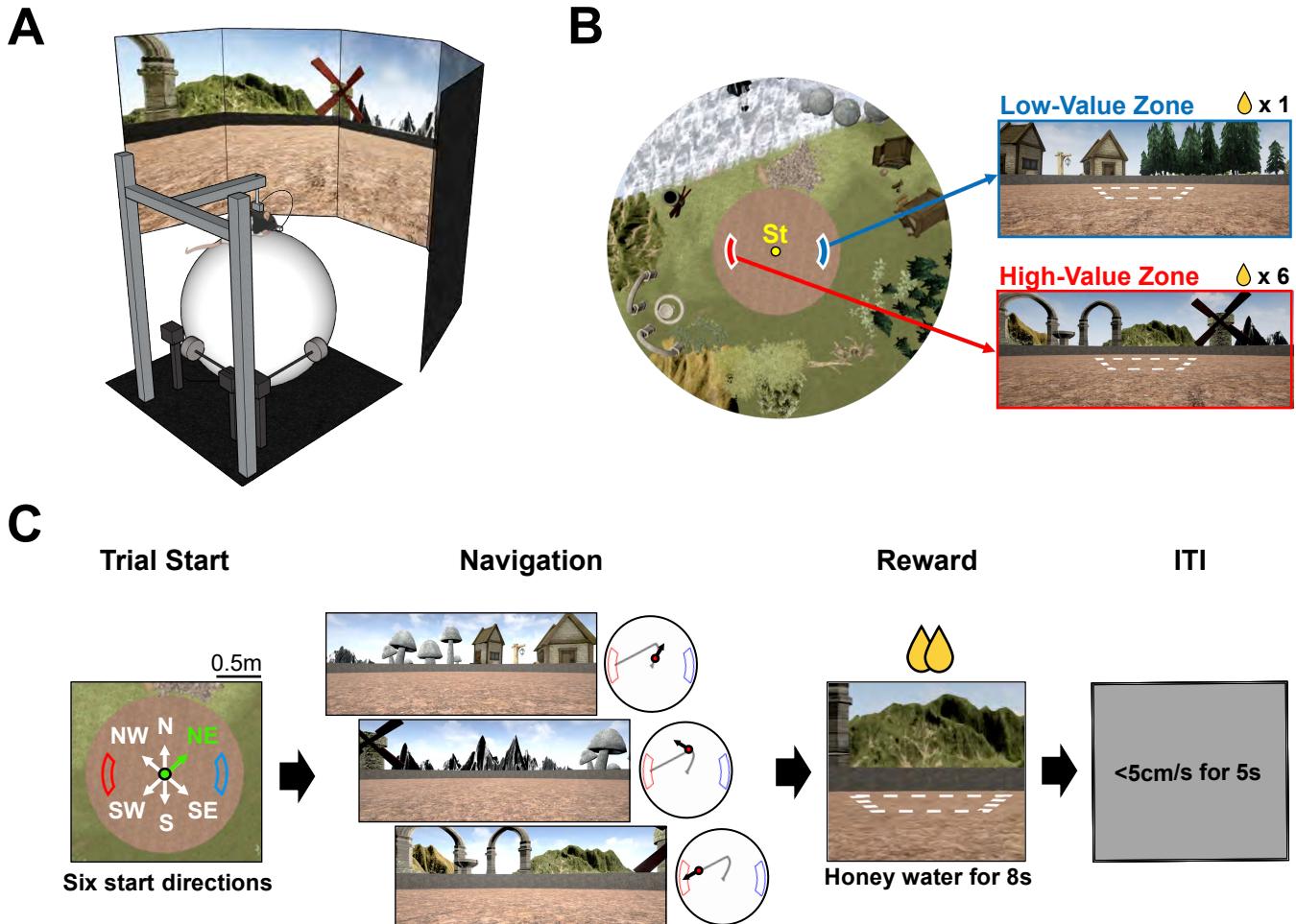
979 **Figure 5. Changes in navigational pattern with each drug condition.** (A) Sample
980 trajectories in each drug condition. Black arrowheads indicate the start direction and the gray

981 line shows the trajectory for each trial. Numbers above each trajectory indicate the
982 identification numbers for rat, session, and trial. (B) Mean high-value zone visit percentage
983 for each drug condition. Gray, green, and orange each indicate PBS, dMUS, and iMUS
984 sessions, respectively. (C) Average running speed. (D) Number of perimeter crossings. For
985 the PBS session, dPBS and iPBS sessions were first tested for significant differences between
986 sessions; if they were not different, they were averaged to one PBS session for analysis
987 purposes. *p < 0.05.

988

989 **Figure 6. dHP and iHP inactivation differentially affect efficient goal-directed**
990 **navigation.** (A) Grouped comparison of DD in each drug condition. (i) Distributions of DDs
991 in each drug condition (rose plots) and a comparison of their mean directions. Gray plots,
992 PBS sessions; green plots, dHP inactivation; orange plots, iHP inactivation. Red and blue arcs
993 indicate high- and low-value zones, respectively. Statistically significant differences in mean
994 vectors, illustrated as arrows, are indicated with asterisks. The mean directions of all four
995 conditions were first compared together (Watson-Williams test); a post hoc pairwise
996 comparison was subsequently applied if the average mean vector length of the two sessions
997 was greater than 0.45. The number on the upper right side of the plot shows the length of the
998 mean vector. (B, C) Changes in mean vector length (B) and deviation angles from the high-
999 value zone center (C) of the DD in each drug session. *p < 0.05, **p < 0.01, ***p < 0.001.

1000


1001 **Figure 7. Precision of goal-directed navigation is more severely impaired with iHP**
1002 **inactivation.** (A-C) Same as Figure 6, except showing PCD. *p < 0.05, **p < 0.01,
1003 ***p < 0.001.

1004

1005 **Figure 8. Goal-directedness and navigational capacity are unaffected by drug infusion.**
1006 (A) Object-guided navigation task as a probe test. (i) A flickering object appeared on either
1007 the left ('Left trial') or right ('Right trial') side of the screen. The start location is marked
1008 with a yellow dot, with a white arrow indicating the start direction, which remained the same
1009 for both trial types. (ii) Example of trajectories in one session. Blue and red lines represent
1010 trajectories from left and right trials that directly arrived at the reward zones, whereas gray

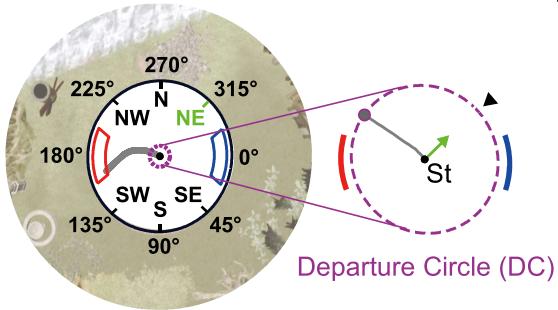

1011 lines indicate failed trials. Green dashed lines denote reward zones. (B) Comparison of the
1012 proportion of each drug condition's direct hit trials (both left and right).

Figure 1

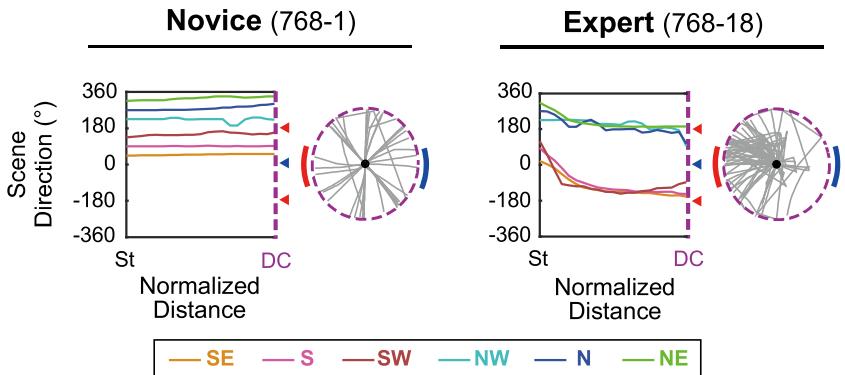
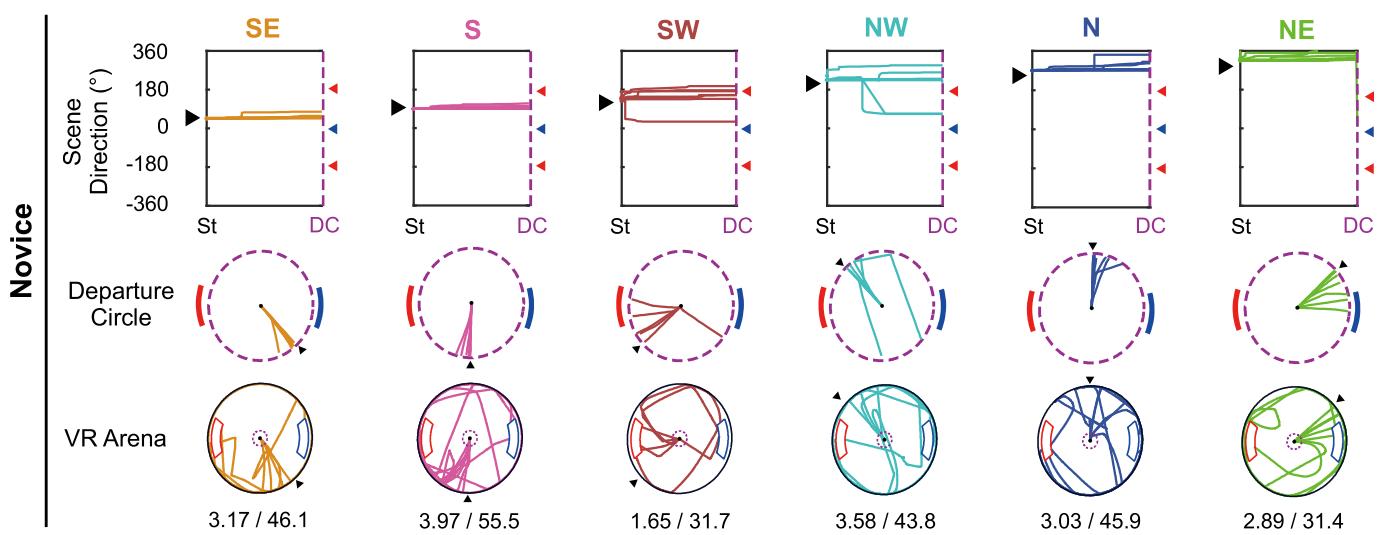
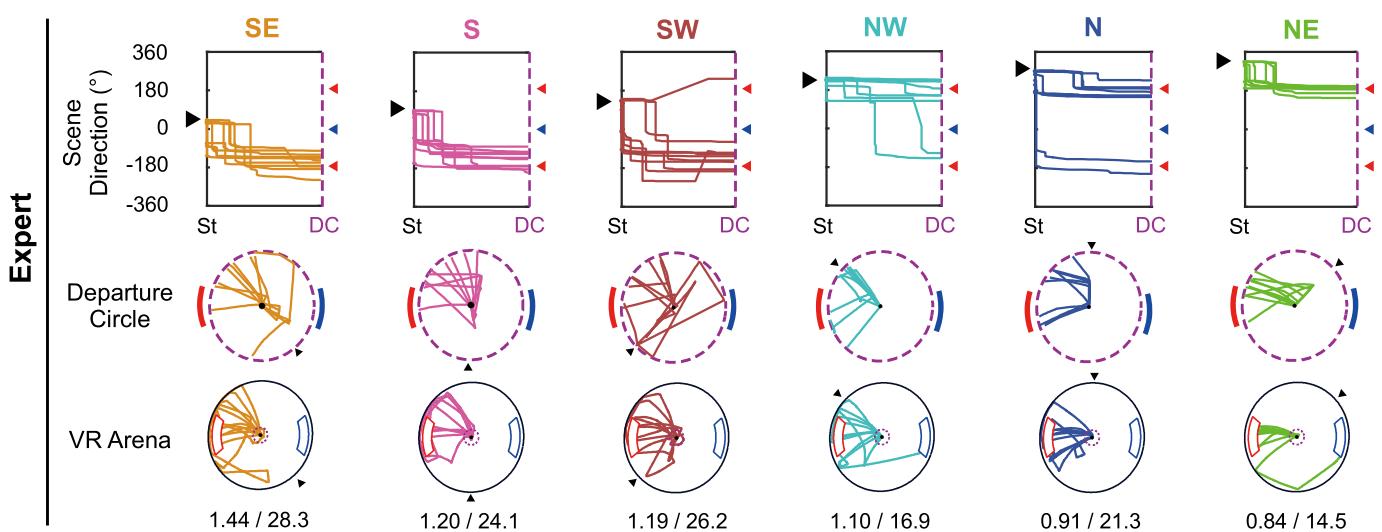
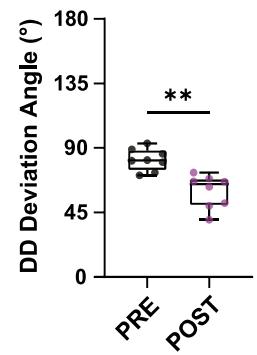
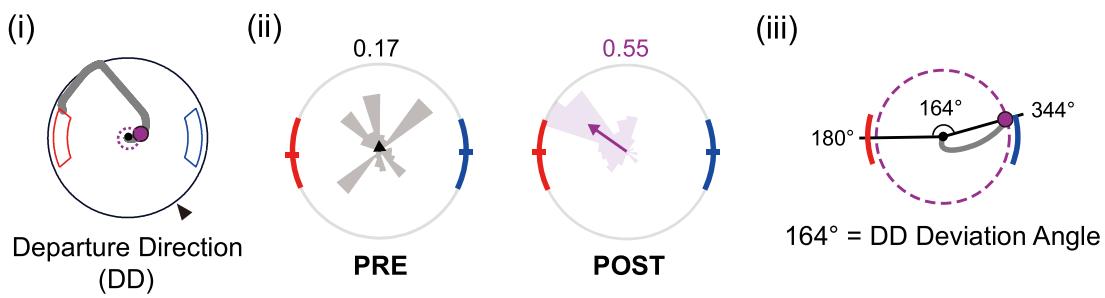


Figure 2


A


B

C

D

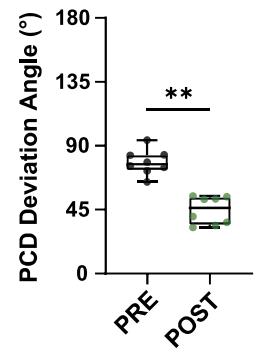
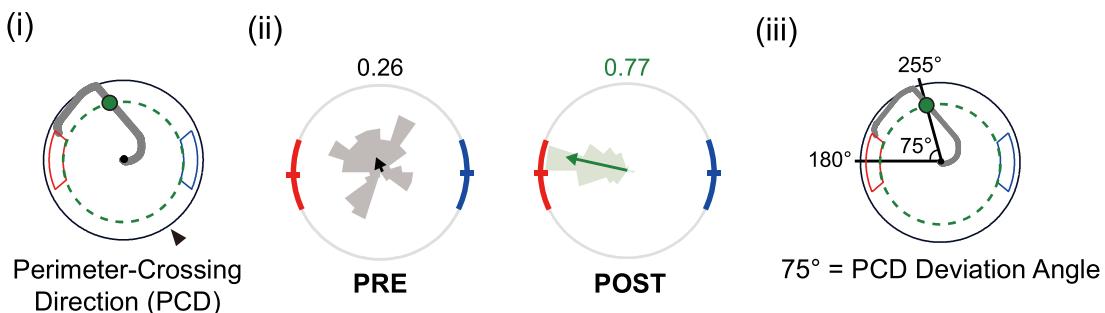
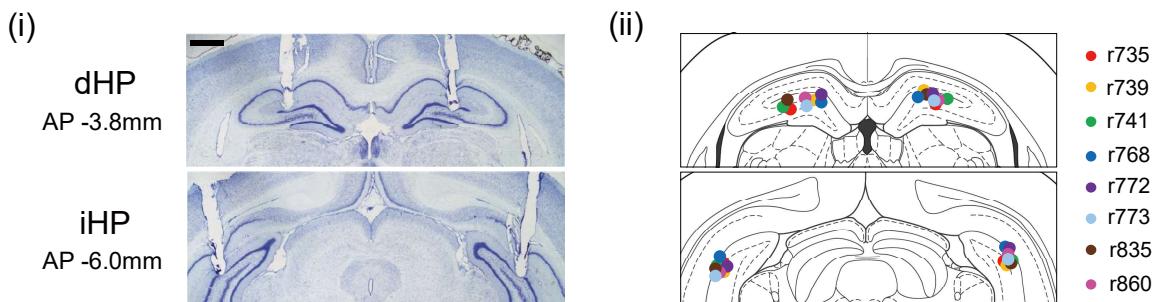



Figure 3

A



B

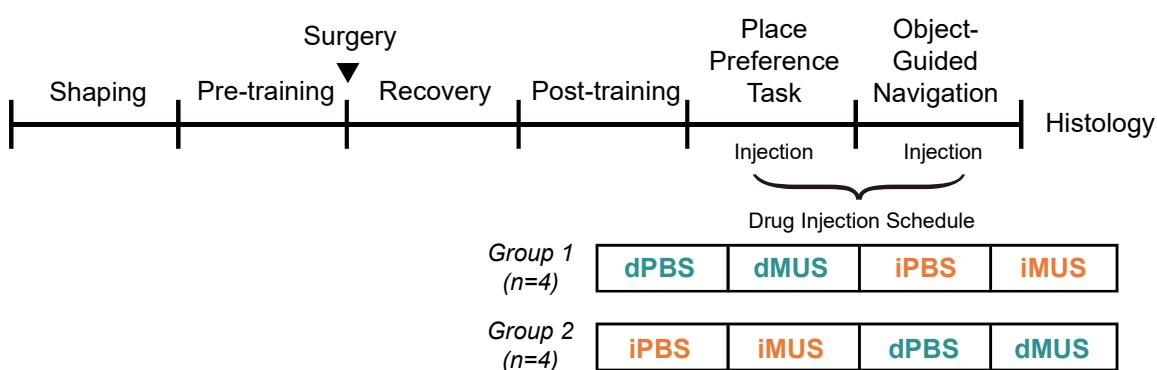
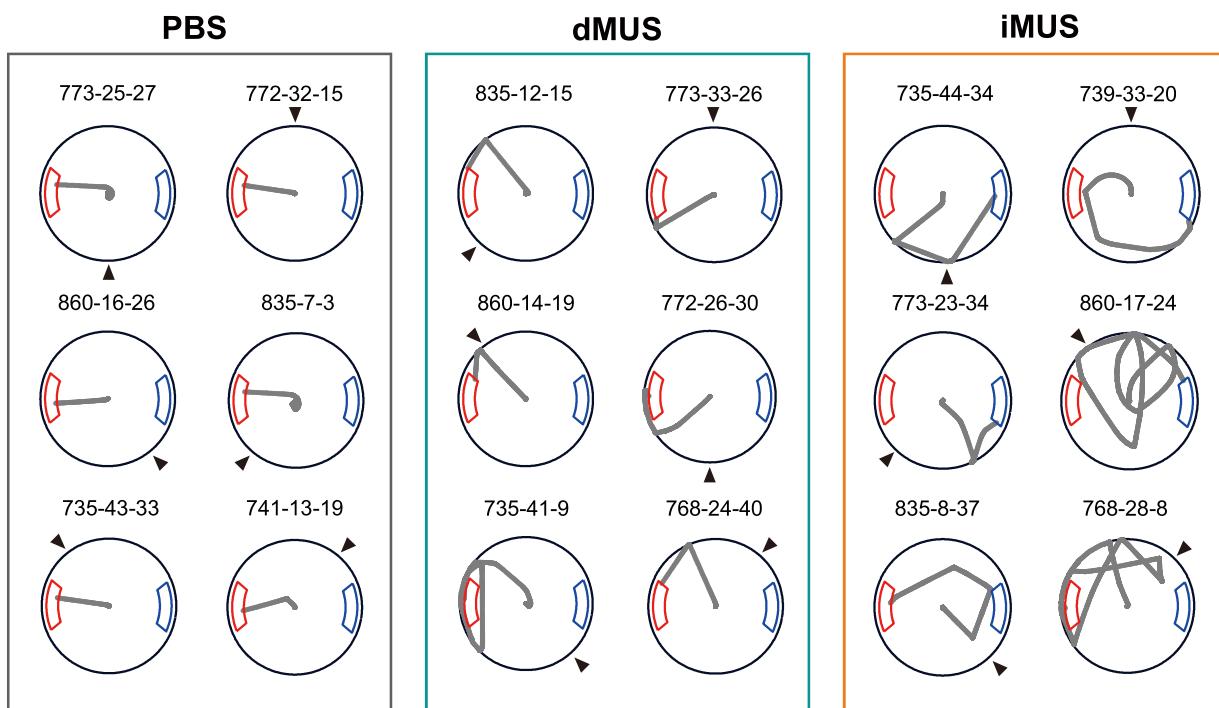


Figure 4

A



B

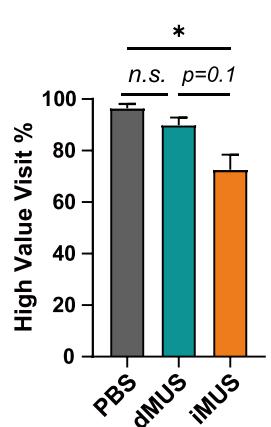
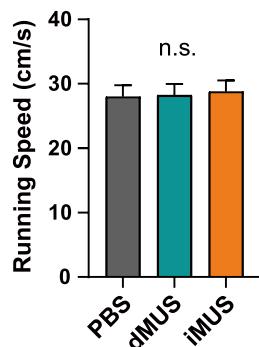
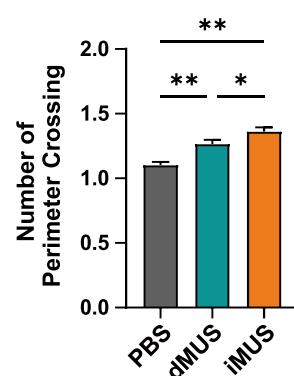
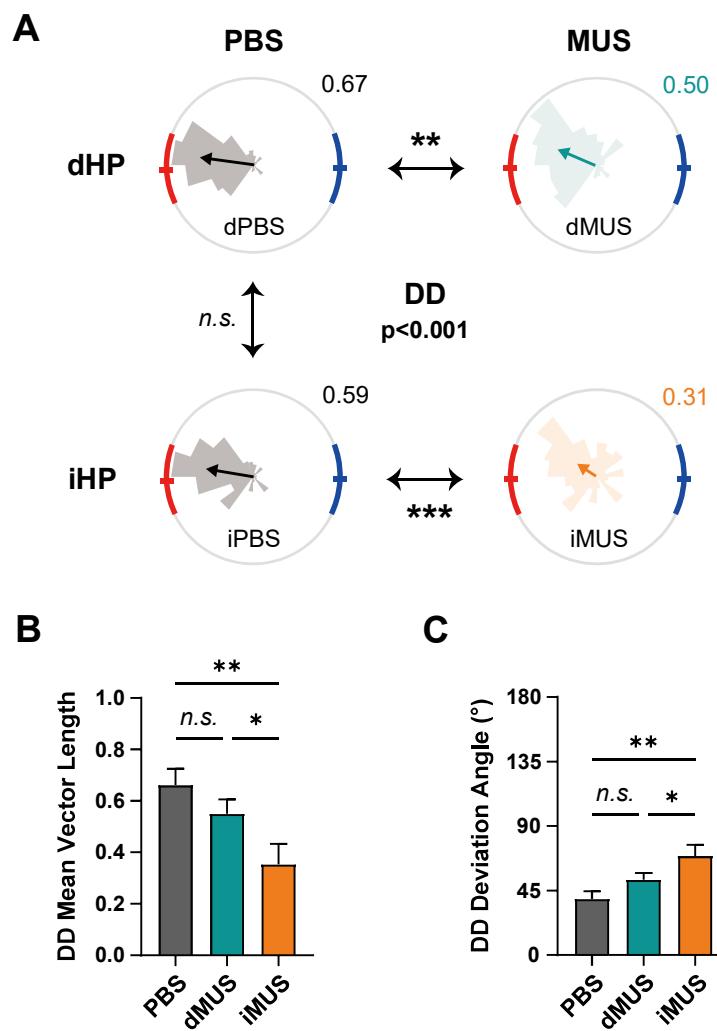
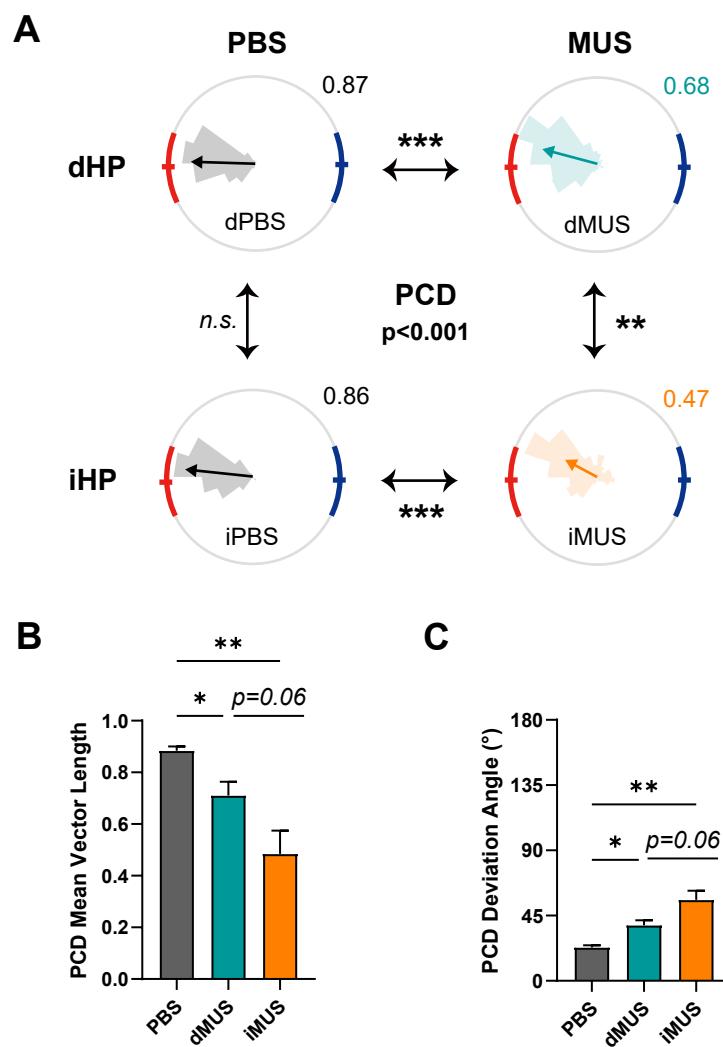


Figure 5


A


B


C


D

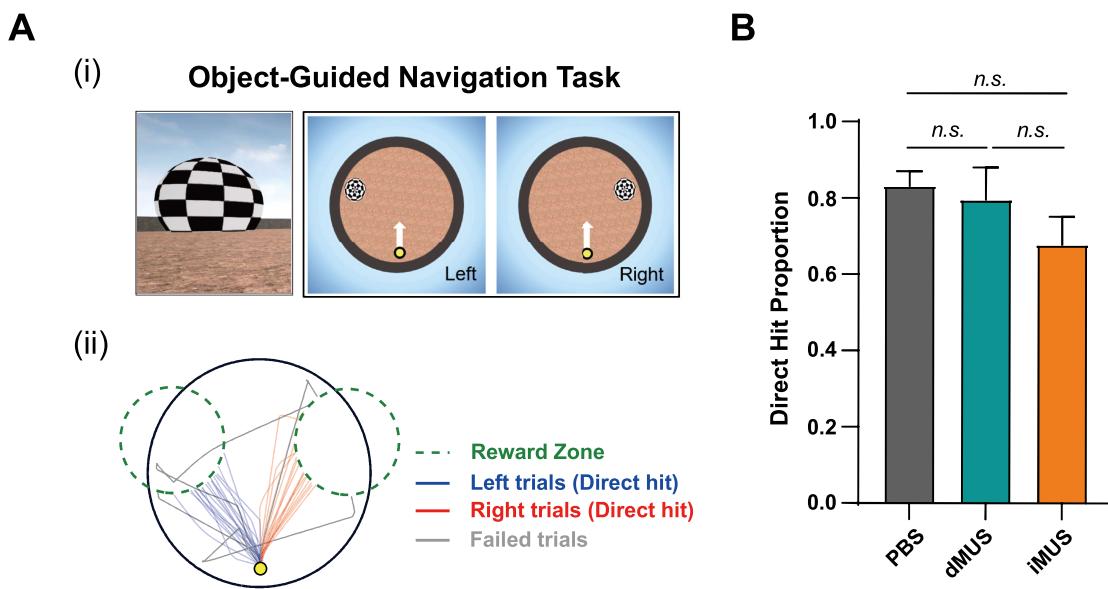

Figure 6

Figure 7

Figure 8

